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1. INTRODUCTION

The studies under NASA Grant NGR-33-006-42 were concerned
with the development of design techniques for systems with uncertain
parameters. Two classes of problems were treated. In the first class,
statistical information concerning the system uncertainties is known.
Only bounds on the uncertain parameters are known in the second class
of problems investigated.

With regard to the first class of problems, considerable progress
was made for linear systems. A minimum sensitivity design procedure
for multivariable systems has been developed. For a given plant, plant
parameter covariance matrix, input power spectral density matrix, and
required overall system transfer function matrix, formulas are available
which give the physically realizable compensation and feedback network
transfer function matrices that minimize system sensitivity to plant
parameter variations. The derivation of these formulas is contained in
a paper which has been submitted for publication. This paper is included
in this report as Appendix C.

Some interesting results concerning systems subjected to additive
noise disturbances have also been derived. In particular, equations are
available which permit one to investigate the change in system perform-
ance due to changes in the standard deviation of the additive noise. A
paper treating the problem of noise intensity sensitivity was presented
at the Second IFAC Symposium on System Sensitivity and Adaptivity,
and is included in this report as Appendix D.

Unfortunately, most of the results obtained for the first class
of problems studied have limited usefulness in spacecraft attitude control
system design at the present time. The main difficulty is that the
statistical information needed is not available.

The second class of problems treated is more in line with the
information presently available on the uncertain parameters in spacecraft
attitude control systems. The approach taken assumes that for each choice
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of control scheme the uncertain parameters take on the values which
will cause the worst performance. One then attempts to select that
control whose worst performance is less than the worst performance
for any other choice of control. This design approach is referred to
as minimax design.

The objective under the present grant was the delineation of
spacecraft attitude control problems to which the minimax design
procedure can be applied, and the development of analytical results
wherever feasible. Although some notable success with regard to
acquisition and equilibrium phase attitude control has been achieved,
much work remains before practical minimax designs are at hand.

In the sequel, A% A , A*, A- ',  and JAI denote the transpose, the
complex conjugate, the complex conjugate transpose, the inverse, and the
determinant, respectively, of the arbitrary matrix A. A diagonal matrix A
with diagonal elements a it X 2' ... , X n is written as diag [X it X 2' ' ' ' ' X .
Column vectors are represented by x , y, etc., or in the alternative fashion

x = (x 1 x2 , ... xn) I whenever it is desirable to exhibit the components explicitly.

The nxn identity matrix, the n-dimensional zero vector, and the nxm zero

matrix are denoted by 1 n, o n, and Omn, respectively.

II. SENSITIVITY DESIGN FOR ACQUISITION MODE (ONE AXIS ACQUISITION)

The attitude control problem considered is that of reducing the angle
between a reference axis and a body -fixed axis to zero given a large initial
misalignment. Because of the large initial errors, one cannot linearize the
dynamical and kinematic equations of motion. It is assumed,however, that any
motion of the reference axis can be neglected. This implies that acquisition
is achieved in a time interval small compared to the time variation of the
reference axis; thus, for example, for an earth centered reference axis

acquisition is achieved in a small fraction of the period of rotation around the

earth. Let a l , a2 , and a3 be the direction cosines of the body fixed axes with
respect to the reference axis and let w l , w2 , and w3 be the body angular rates.

The equations of motion for this problem are then [I

I01 = (I2 -I3 ) w2 w3 +N1

I2 & 2 -(I3 -11 )w3 w 1 +N2	(1)

I3 Lb 3 =(II -I2 ) wl w2 + N3
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and

d1=W3a2-X2 a3
42 = 1; 1 a3 - W3 a1	 (2)

A 3 =X2 a 1 - W 1 a2

It is assumed for this discussion that the direction cosines can be
measured exactly. The sensitivity parameters are the inertias I 1 , I29 and
I3 and the torque levels al , a 2 , and OLY which are defined as multiplying
factors in a feedback control law, i. e.,

N  =alYx)

N2 =a2 ^ 2 (X)	 (3)

N3 = a3 ^ 3 (x) .

where § i , i =1, 2, 3 are in general nonlinear functions of the "state
_x= (W i t WV W3, al , a2 , a3 ) . It is assumed that the parameter vector
a = (al , oc2, a3 , Il , I2 , I3 )' lies in some closed bounded set 0. The sensitivityM

problem is then to design control laws § i , i =1, 2, 3, such that for any _a which
lies in Q the system performance is acceptable. Acceptable performance
may be defined in several ways. The performance may be acceptable if
(in order of increasingly stringent requirements)

1. the system is asymptotically stable,
2. if 1 and the nettling time t  never exceeds a given value,
3. if 1 and 2 and a scalar performance measure, such as 121

t
rc

C =J EjNi jdt ,	 (4)
o 1

never exceeds a given level.

To solve the sensitivity problems defined by 1 and 2 it appears con-
venient to use Lyapunov functions V, since the dependence of V and V on
system parameters is rather explicit. Thus to satisfy stability criterion one
must determine §i such that V(x)>0 and V(x)<0 for all a which belong to 0.
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To satisfy the settling time criterion one must determine I i such that

Vmax --
a, x V
N N

J,G

is minimized .

Finally to assure acceptable performance for 3, one chooses ^i to
minimize

max C	 (6)
a, x
N w

In both ( 5) and (6) the initial states are assumed to belong to a closed
bounded set X. Unfortunately for the nonlinear dynamics ( 1) and ( 2), there
is no simple analytical way of computing C for a given control input. One
must in this case resort to algorithms which perform the necessary evaluation
of C and minimization of max C.

An example has been worked out for the stability criterions, using a
Lyapunov function derived elsewhere (Sabroff et, al., op. cit. ). Some
difficulty arises in the case of settling time problems, since most Lyapunov
functions derived for (1) and ( 2) do not yield a Vwhich is negative definite.
In these cases (i = 0 .

Example

Consider the following problem: I 1 =200, I2 =180, 72 < I3 5 108 with

N1=-kIW1-c2a2

N2=-k2 w2+c 1 a1	(7)

N3 = -k3w3

This value of t i guaranteeb that

V < min max V = 0
V	 0i a, x V

for all ,% which belong to 0. If this value S does not meet the given bound on
settling time, a solution cannot be guaranteed.

(5)
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Here the form of I i (r.)is assumed and the design parameter vector is the
vector a' =• (kl, k2' k3 , c 1 , c2),'

The Lyapunov function

V=jrI1 x 2+I2 w2+I3 w3+2Il w l a2-2I2 u 2a 1 +211(1-a3 )J ,	 ( 8)

suggested in Sabroff et. al. (op. cit. , page 107) is considered here. With
c l +k2=211, and c 2+k 1 =211, the conditions for V to be nonpositive are
(Sabroff et. al.),

k  >I1
	 (9)

k2 >I2	(10)

I 2	I2

1 114 	2-12)

cl>0
(12)

c2>0

For the parameter values above and c 2= 1, one vector a which satisfies
the given conditions for all values of I3 is

a = (210, 190, 583. 2, 21, 1) .	 (13)

The linear control law is then

N 1 = -210 w 1 - a2

N2 = -190w2 +21 al	(14)

N3 = -583.2 w3

This control law is not unique. In general a trade-off is possible between
the values of ki , k2 , and k3. With saturation effects the above control law
becomes
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Nl = al sat L ( - 210 
01-a2)/al

N 2 = a 2 sat L ( -190 w 2 + 21 al )/a 2 J	 (15)

N 3 = a 3 sat L ( - 583.2 w2)/a3'

where a l , a 2 , and a 3 represent in this problem, known saturation levels.
The linear mode of operation near the origin is enough to guarantee
asymptotic stability for sufficiently small initial disturbances. In general
to allow greater initial disturbances the gains vector a should be as small
as possible (to increase initial states in linear mode).~

No notable success was achieved with problems 2 and 3 . The major
difficulty with problem 2 is that the Lyapunov functions developed for the
dynamical equations (1) and (2) have derivatives which are only negative
semi definite. * This makes it impossible to obtain an estimate of the decay
time from the ratio V /V. Unfortunately a solution to this has not been
developed.

Problem 3 is complicated by the fact that it is very difficult to
evaluate the cost function C even for a linear control law, because of the
nonlinearity of the system dynamics. However, if the value of C can be
evaluated for a particular control law f (x) , the following theorem may be
used to obtain an improved control law.

Th,-nrp m 1 _

If V(x, a ) is the value of
TD

Cu = J
	

L(x (t), u (t))dt,	 x (o) = x
0

*See Appendix A.
*This theorem, and its proof, is quite closely related to a

theorem developed by Ri ssanen L91 on performance deterioration of
optimum systems. A proof of Theorem 1 appears in Appendix E.



7

for the control law u = 7 (x) and the system

X = f (x, a, u) ,

where •r D represents the first passage time to the terminal set D,
and a is a parameter vector, then any control law v = ^ (x) for which

3 f(x, a, v) + L(x, v) < 0	 (16)

for all x and a E 0 , yields a cost value which is strictly less than C u , i. e. ,

Cv < Cu	 all x, a e R ,	 (17)

where Sx denotes the gradient row vector ( 8V • • • V ) .
r	 xl	 n

The advantage of Theorem 1 is that a study of the functional
inequality (17) is reduced to the algebraic inequality (16).

III. SENSITIVITY DESIGN FOR EQUILIBRIUM PHASE

The control of the attitude of a spacecraft when the spacecraft
orientation is close to its desired orientation is referred to as the equilibrium
phase control problem. Because only small deviations are considered in the
equilibrium phase, the equations of motion can be linearized. For this
purpose, it is convenient to introduce two right-handed (x 3 = x I X 3Z and
Y3 -y x , nmas three -dimensional vectors X=1x-^1_Y2) orthoor l set of th	 di	 i	 l	 t r l, xr Z, xr 3l
and Y={yl , yZ , y31 . The set Y is a basis for a reference frame rotating
with respect to inertial space at the constant angular velocity - (lo yZ . The
set X is aligned with the principal axes of the spacecraft ( assumed to be a
rigid body) and represents a basis for the body-fixed frame. When the
angular displacement of the X and Y bases is small so that the right-handed
rotation required to bring Y into coincidence with X (x i aligned with Xi for
i =1, Z, 3) can be approximated by a single rotation of Y about the vector

a x b denotes the three -dimensional vector cross product.
r	 "°
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3

	

A =	 aixi
	 (18)

i=1

where A i is the right-handed rotation of Y about x i, i= 1, 2, 3 required to bring

Y into coincidence with X; and when

	

3	 3

	

c	 `(19)
eOi =) Ili xi:

i=1	 i=1

then the linear::zed equations of motion are

w ` ^0(11-I2+ I f 3	 Z3 -12 ) no a l+ Ooh  _ hl + M1+
1

	

	 1	 T T" Ti	
(20)

M h,
2w2 = ^-- - r	 (21)

u^ = n
o( 12 - I 1 - I3 ) w1 + ( 11 - I2 )

0
0
2
 6 3 - oh1 _ h

3 + M3

3	 3	 3	
T-^ 3 T3

(22)

where I1$1 2
#  

and I3 are the principal moments of inertia about the respective
axes M 1, x 2 , and x 3; h i , h2 , h3 are the momenta of reaction flywheels; and
M 1 , M2 , M3 account for any disturbance torques and the torques developed
by gas jets. The k  and M  are the components of the flywheel momentum
vector and the body torque vector, respectively, in the basis X.

For long life, use of gas jets should be kept to a minimum. That is,
flywheels should be the principal means of controlling the spacecraft in the
equilibrium phase. The only source of difficulty in using the flywheels
exclusively is velocity saturation. In order to minimize the need for "unloading"
the flywheels with the gas jets, the control system should attempt to achieve
its objective while keeping the angular velocity of the flywheels small. This
being the came, the back emf in the motors driving the flywheels is small,
and a good approximation is that the motor armature current is proportional
to- the armature voltage. With lightly damped flywheels, it is teen true that

k =J 
i w i =ki wi, i=1,2,3	 (23)



0	 0	 0	 1	 0	 0

0	 0	 0	 0	 1	 0

0	 0	 0	 0	 0	 1

^0(I3 -I2)	 ao(I1-I2+1 3)
0	 0	 0	 0

^1 _	 1
0	 0	 0	 0	 0	 0F= I

i
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where, with respect to the x i axis, J i is the flywheel moment of inertia, w
the flywheel angular velocity, k  is the voltage-to-torque conversion constant
of the flywheel motor, and v i the armature voltage of the flywheel motor.
Substituting (23) into (20), (21) , and (22) and making use of ( 1 9) yields

x=Fx+G u	 (24)

where the state vector x(not to be confused with the x i ) is

x= ( 0 1 0 2 03 `1 X 2 I 3 w  w2 w 3 ) , ,	 (25)

the input vector u is

A =(M 1 M2 M3 v I v2 v3)
	

(26)

the matrix F is

	

0 0	 0

	

0 0	 0

	

0 0	 0

0 0—°^ 3
1

	

0 0	 0

0	
0 o(I1-I2) ^o(I2-II-I3) 0

	 0	 - ^o I O	 0I —T	 _3

0	 1	 0	 0	 0	 0	 0 0	 0

0	 0	 0	 0	 0	 0	 0 0	 0

0	 0	 0	 0	 0	 0	 0 0	 0r

(27)

f



and the matrix G is

10

G=

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

f
1

o o - k
1̂

o 0
0 T

2
0 0

k

- —f—
2

0

0 0 ^
3

o °
k

-T
3

0 0 0
k

771
0 0

0 0 0 0
k2

7 0

0 0 0 0
2

0
k3

(2g)
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A satellite in a perfect counterclockwise ( as viewed from below
the plane containing x1 and y2) circular orbit with orbital rate CZ 0 and center
at the earth ' s center of gravity, a Y basis with y 2 perpendicular to the
plane of the orbit and Y3 initially pointed toward the center of the orbit,
and an earth whose center of gravity is moving with constant velocity with
respect to inertial space is now considered. For this case, it follows that
when 2f 3 and y 3 are perfectly aligned, the x 3 axis of the spacecraft
always points toward the center of the orbit. Attention is restricted here to
the case where it is also required that x 1 and _y be aligned. (With only
minor modifications, the following developments can be applied to the cases
in which this requirement is not imposed). That is, in addition to maintaining
the flywheel speeds close to zero it is desired that X and Y be perfectly
aligned. This control objective is met when x= o 9 , and is embodied in theN N

performance index

t1

^ (x Qx+uRu) dt]
t0

C =i lx (t 1 )L x(t 1 ) + (29)

where R, L, and Q are real, symmetric, positive definite matrices. The
term involving the matrix L causes the performance index to be large if
yt1 ) is significantly different from _o 9. The integral term causes the per-
formance index to be large if excessive control u is employed or the stateN

x is significantly different from o 9 in the interval to < t< t 1 . The elements
in R are chosen so as to weight more heavily use of the gas jets than use of
the reaction flywheels. Since satisfactory performance of some spacecraft
attitude control systems is achieved even though certain elements of the
state vector are not near zero, and since it is desirable that results obtained
be applicable to a large class of systems, in the sequel it is assumed that L
and Q are only nonnegative definite.
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The instants to and t  depend upon the overall control policy for the
spacecraft. One possible mode of operation after the acquisition phase has
been completed is to reactivate the equilibrium phase control for a time
interval t2 =t 1 -to whenever the norm of x, written IIXII and defined by

IIXII = ^X' x	 (30)

exceeds a prescribed level, say 6. When the disturbances which cause

IIX II to exceed b have a frequency of occurrence which is small in relation to
the time interval tc , and when in the available time t  the equilibrium phase
control is effective in reducing IIXII to values significantly below 6, then no

control need be exerted in intervening periods. The control period t 
should of course be small with respect to the earth's orbital period around
the sun in order to justify the assumption of an earth's center of gravity
moving with constant velocity in inertial space. During the periods in which
control is exerted, the design objective is to realize the minimum value for
the "cost" C in (29) in the face of uncertainties.

The parameters likely to have uncertain values in (24) are the body
inertias I1 , I2 , and I3 and certain constants associated with the gas jets.
In this regard, it is assumed during periods in which there are no external
disturbance torq- -es acting, that the control of each gas jet is effected
through circuitry with the characteristics illustrated in Fig. 1. When the
deadzone d is small and the saturation effect is ignored, the control torques
can be approximated by
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M i = (Mi)dc= ai mi, i=1,2,3 	 (31)

where the ai are constants which depend on the particular linearization
chosen and the assumed values for the parameters in Fig. 1. The saturation
is ignored on the basis of the hypothesis that the matrices in (29) are so
chosen as to preclude this possibility for optimal controls. Clearly, the
a.i are uncertain parameters and any design should be as insensitive to their
values as possible. It is assumed that

(Ii)min < I i <— I i max
i= 1, 2, 3	 (32)

,a	 <ai)min i <— a'i max

and that the minimum and maximum value for each parameter is known. The
set of values for the parameter vector

a= (III2I3ala2a3)' 	 (33)

which (32) defines is denoted by A.
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M 4-

2.	 - -ON-
ad d mi

4-m

K
I+TS

Fig. 1 - Pulse- Frequency, Pulse-Width Modulation Control

(Taken from Ref. 1, pg. 109)

Mi
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Once the linearization (31) has been made, it is apparent that the
control vector is

iU= (ml m2 m3 v  v2 v3) .

Clearly,

u = diag [a 1 , a 2 , a 3 	 1, i] u = Du .

Hence, in terms of

G = GD	 (36)

the dynamics (24) become

x =Fx +Gu .» N N

An appropriate cost function in this case is

(34)

(35)

(37)

C =i[x (t i )L2F(tl)+
tl
J (x Q x +u' Ru)dt1,
t
0

(38)

where some change in the value of R can be introduced to account for the
change from u to U.

N

A precise mathematical statement of the design objective can now
be made: Determine the control _u (t), t 0 < t< t l , which minimizes the
maximum value of C over all CL.  That is, the u° and a° are sought for which

min max C(a,u)=CQo0,u°)= Co
ueU aeA
»	 N

The set U is the set of admissible controls u(t). When the control u° is
employed, one is then assured for any a e A that C —< Co. Hence, Co represents
the minimum bound on the performance index C which can be obtained. If
this value of C is acceptable, i. e. , less than the value of C required for
satisfactory performance, then a design is feasible.

A completely general solution to the problem posed by (39) which

(39)
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includes the possibility that u depend on a through implementation of a
feedback law seems prohibitive. For the case of an open-loop control
law (u is independent of a ), some analytical results have been achieved,
and they are discussed below. A limited insight into the solution for the
case of a closed-loop control law has also been established in the special
case

u (t) = -K(t) x (t),	 (40)

where the elements of the matrix K(t) are independent of the parameter
vector a and are chosen to minimize the maximum cost. When K(t)
is taken to be a constant matrix, a nonanalytical solution to the problem
may possibly be achieved through use of a minimax algorithm developed
by Salmon [ 31 . This algorithmic approach is now discussed.

Consider a cost function C which depends on a design vector
k and a parameter vector a, i.e., C= C (a , k ), k e W and a e A,
where W and A are given sets. Such a cost function arises, for example,
if the constant control law

u (t) = - K x (t)	 (41)

is applied to the linear system (37) and the cost (38) is evaluated for
this control law. In this case the vector k has as its components
all the entries in the matrix K, or those entries of K which are not
fixed. Salmon [ 31 has derived an algorithm which generates two
sequences	 I SiM I and I Siml such that the minimax value of C, denoted
C o , satisfies the inequalities

S.m < C 
0 < S.M
	

(42)

and

lim C S i M - Sim ) = 0 .	 (43)
i -• 00
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The only conditions for convergence are that C be continuous in k and a
and that A and W be closed and bounded sets. The algorithm is applied
as outlined in the following steps:

1. Choose an arbitrary value of a ;-A  , say a o , then minimize
C(ao , k) with respect to k e W. Let ko be a global minimum of
C(ao , k), and define	 ~

C(a k°) = Som .	 (44)

Z. Maximize C(_a, k o ), with respect to a e A. Let the set
of a values which maximize C( 2 ,a k o ) be denoted ~ ail }	 Let Al be
any subset of a il } such that  ~

max C(a, k) = max C(a , k), all k e W 	 (45)
as A,	 a etalll^

There may be no proper subset of to 	 which satisfies (45), in
which case Al = ;12i 1
	 .

Let
max C (a , k °) = so 	 (46)
a eA

3. Minimize

max	 C(u, k)	 (47)
a e Al

with respect to k. e W . Denote the minimizing value of k by kl
and let

max	 C (a , kl ) = S 1 m
	

(48)

a e Al

If the set Al does not contain a finite number of elements, the
algorithm breaks down at this point since then one is confronted with

the same type of minimax problem given to start with. Unfortunately,
for the stated hypothesis, there is no assurance that such a breakdown
will not occur.



max C (a , k) = max

a	 A 2	 a e A l u IM 2^.ai

C(a, k), all 	 e W
	

(49)
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4.	 Maximize C(2, k1) with respect to a e. A .	 Let t a }i2
denote the set of a which maximize C(a , k1 ). Let A 2 be
any subset of Al C I ai2 I such that

Let

max C (a , k 1 ) = S 1 M
a e A

5. Repeat the above steps to form the sequences (A O a o)

1	 ^

SiM r = ` SoM , S1 M , S2 M, ... )

m	 m m mt Si	 =	 So 	 51	 52 , ...

(ko , k 1 , k2 , ... 1

J Ai j _ (Ao , Al t A2 , ... )

The nth minimization step may be written.

min	 max C(2, k )' = S Mn
k e W	 a e An

while the nth maximization-step may be written

max L C(a , kn) i = SnM

ae A

where k 	 is the minimizing value in (55), and A n is such that

An = An-1 U j a ni I and

(50)

(51)

(52)

(53)

(54)

(55)

(56)
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max C (a , k) =	 max	 C (a, k ), all k W	 (57)
l na `' An	 a` L ^'n-1 L 1 ai

where 1 a i n I denotes the set of a which are obtained in the maximization
step (56).	

..

The process may be terminated when the difference SiM-Sim
becomes less than some specified value F .

There are several practical difficulties with applying this algorithm.
One problem is that at each minimization and maximization step one must
determine &lobal minima and maximum. This is computationally very
difficult to do if one does not assume some structure, e. g. , convexity, for
the cost function. Another problem, which has already been noted, is
that the set An may grow too rapidly for practical computation. In particular
the set An may contain an infinite number of points, in which case the
algorithm is no longer useful.

The algorithm described above was not applied to the attitude
control problem considered in this study. A description of the algorithm
is included here to indicate the type of computational procedures which are
available for the sensitivity design of systems using a minimax criterion.

The analytical results obtained for the open -loop problem are for
the case in which the only variable parameters are the a i , i = 1, 2, 3. That
is, the body inertias are assumed to be known, and the parameter vector
is simply

a = (al a 2 a 3 ) 1
	

(58)

kbr this case, it can be shown ( see Appendix B) that the cost C is a
quadratic form in a . It then follows that only those a e A which cannot
be written in the form

2=(1-5)aa +8a
b1

 a a , a b s A, 0< s < 1	 (59)

need be considered when maximizing the cost C (again, see App endix B).
Since the boundaries of the set A are hyperplanes, this means that only
those a which cc.-respond to corner points need be considered. For
convenience, this set of vertices is denoted by

V = ic-Li.  a 20 0. 0 0 a 81' 	 (60)
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One can then write

C°= min max C = min max C 	 (61)
ueU aeA	 ueU aeV

and

C = max min C < C° < min max C = C	 (62)
° a.eA ue U	 ueU° ae V	 1

•..	 N	 N	 ,,,

where the left-hand side inequality is a well known result [4] and

oU Iuo,ul,2,...,u8^

	

u	 (63)

is a subset of U. Specifically, 2 i, is the optimal control with respect to C
for a = a i, i = 1, 2,..., 8 and uo satisfies

max min C = C(a o, u o) = Co.
aeA ue U
	 (6-j

Since an analytical solution for the minimax cont+ol v.° is prohibitive
in general, the inequality (62) suggests the following approach: choose for
the control a the u ie U° which minimizes max C. When u  1,3 the minimizing

CL V
M

control and 
M  turns out to be the associated maximizing a , then

	

C =min max C=C(a	 =C	 (65)
1 ueU aeV	

0020)  0
M	 N

and it follows from (62) that

	

Co=C°=C1	 (64

and

=u o	 (67)

In this case, the minimax solution is realized. Of course, this can only
happen when aoe V. One can expect mere often that C 1 

>C 
0. Since the set

W



21

U° is a set of optimal controls, however, it is reasonable to expect that
C 1 -Co is small in most cases of practical interest. It then follows from

C 1 - C°_< C 1 -Co 	(68)

that C 1 is close to C° and a satisfactory design is realized.

The analytical procedures necessary to carry sst the above steps for
the line,-: Tian t ( 37) with quadratic cost function ( 38) are now discussed. This
type of system has been treated extensively [51, C61 and the results available
in the literature are freely used in the following discussion. First, the
vertices in the set V must be identified. This is not difficult to do when the
parameter vector M contains only three elements. The vertices are simply
the eight corners of the rectangular parallelepiped bounded by the planes

a i=(a i)min, OLi=(a'i)max' i=1,2,3	 (69)

and are easily enumerated.

The next step is the eter*±^±i»atxon of the set U°c. First the computation
of u o is discussed. It is well known for the system (37) that

min C =2 x o M(tl' to) ?; o , o=x(to) 	 (70)
ueU

where

1

M(tl I t) - L^22 ( tl't)-Li112 (tl, to rLfZll (tl , t)-f121 (tl , t)^	 (71)

and the 9 x9 matrices il 11 (tl ' t) ' 11 12(t l' t) ' C)21 (tl, t), and f222(tl , t) are the
four partitions of

Q11(tl' t) " 12 ( tl' t)
n(t l , t)=	 (72j

n2l (tl' t) 1122(11' t)

the 18 x 18 state transition matrix for the homogeneous system of equations

r
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F -GR-1G'
=	 z .	 (73)

The control is given by

u=-R -1 G I M( tip t) Y(t,t0 )x 0	(74)

where

Y (t, to) = [F- GR-1G'M(t l , t)l Y ( t, to) ,	 (75)

Y ( to, to) = 1 9 .	 (76)

Clearly, M(t l , t) depends on G and, therefore, the parameter vector a. If
one now maximizes (70) with respect to a , the value of a  can be established.
This procedure, however, leads to an a o which depends on the initial state
x o. Moreover, the evaluation of a o is not uncomplicated. For these reasons,
use is made of the relationship

xoM(t l , to) X0  am(1X oil
2	 (77)

where ^ m is the smallest eigenvalue of the real symmetric positive-definite
matrix M( t l , to) and the equality sign holds when x  is an eigenvector asso-
ciated with the eigenvalue Xm. It immediately follows that

max min C =C o? 30-Ox0112Xm	 (78)
aeA ueU	 o

where

= max X =1
mo aeA m m M=M o .	 (79)

In line with the above developments, one takes

u o= u o=-R
-1GoMo( tl ,t)T ( t, to) xo a Po(t1 , t,to)xo(80)
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where

Go=Gla=A	
,	 (81)

Mo (t1 , t) = M (t1 , t ) I	 (82)
a=âo

and	 Y0(t, to) ( t, to) I	 (83)
a=ao

The computation of u  (although simpler than the computation of uo)
is complicated because ( 75) is a time-varying matrix differential equation
and the calculation of &, o from (79) is not easily accomplished. Computer
solutions are required, therefore, in almost all cases of interest.

It is not difficult to show that the remaining elements in the set U 
are given by

ui=-R-1GiMi (tit 
0T (t,to) xo°P(tl,t,to)xo,	 (84)

where

Gi=G^a_a '
Ni
	 (85)

Mi(t l , t)= M(t l , t)
1 9 = ai ,	 (86)

and

(t, to) ='Y (t, to)	 (87)

3.

.After.After the set U  is established, the next step is the computation of

c i= max C ( a, U i)	 (88)
aeV

for each i = 0, 1, 2,.. . , 8. One can easily establish after a number of
straightforward steps, that

ci=max i x i (tl9 to)x o < 11XOU
2 max X M = c i	 (8.9)

ae V	 a e V	 i
N	 w
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where the real, symmetric, non-negative definite matrix J i (tl , to ) is a
function of a, and X 	 is the largest eigenvalue of J i . The matrix Ji

1
is given by

Ji (tl , to ) _	 L P' (tl , ti t to) L Pi (tl ,  lot o)

t 
+ i	 [ P'(tl ,to to ) Q P (ti ,t, to)

t0

+ Pi ' (tl ,toto ) R Pi (tl , t o to ) ] dt i ,	 (90)

whe re

F(t-t)	 t
Pi ( tl , to to ) = e	 o + ^^	 e F(t -T) G Pi ( tl , T , to ) d T ,	 (91)

"t
0

Since

C l =minIc0 ,c l ,..., c8 } -e min"co , c l ,... ^ c8
.
J- C l 	 (92)

one chooses for reasons identical to those givF- , for choosing u 0= 2 0 the
control u.2 	iO e j 0, i t 2 1 .. , 81 and

^o

	

Cl=ci _<2di , i=0,1,...,8.	 (93)
0

This choice insures that

C < C l = i Ix o' XM.
	 (94)

10

for all a CA. Clearly,

	

C o= 11X.112 Xm < c <^	 (1X.112 XM. =C 1 ,	 (95)
O	 10

and the effectiveness of the approach presented is measured by the small-
ness of

XMC l -Co -
= - 1 	 (96)

CM

	

0	 0
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It is obvious from the above that the steps required to calculate ui
0

are clear, but not uncomplicated.

The above discussions are directed toward the case in which the
dimension of x is 9 and the dimension of a is three. All essential aspects
of the developments remain unchanged when x is an n-dimensional vector and
a is a k-dimensional vector. Of course, the larger n and k, the more com-
plicated the computations become.

IV. SOME ADDITIONAL RESULTS AND OBSERVATIONS

When the earth-orbiting spacecraft described in the preceding section

is not in a perfect circular orbit and/or when the motion of the earth about
the sun is taken into account, then x = 0 9 is no longer the desired result.
One now requires that

Y 	 1 a 2 3	 yd # 3
	 (97)

in order that the x 3 body axis be pointed toward the center of the earth and
there be no rotation of the spacecraft about this axis. The problem then is
one of controlling the spacecraft so that it is properly aligned in the face
of parameter uncertainties. Since this type of control is long term control,
and since the errors build up only slowly without any control, it is reasonable
to assume that the control is effected with the use of inertia flywheels only.
This is desirable on two counts: first, the gas jets are conserved and second,
the control is insensitive to variations in the uncertain ai , i = 1, 2, 3. Hence,
for the problem under study the spacecraft input and output vectors have only
three components. The same is true for the parameter vector a whose
components are the body inertias I 1 , I2 , and I3.

The block diagram of a possible control system for this purpose is
shown in Fig. 2. G,(s) and H(s) are 3x3 transfer function matrices to be
determined and Gp(s, ca) denotes the 3 x3 spacecraft transfer function matrix
after feedback stabilization is introduced. (The spacecraft is normally
unstable and must first be stabilized before applying the technique presented
in the sequel. ) The symbol a is here used to denote the nominal. value of the
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U	 )	 YGp (S,,%

H (s)

Yd + 
E
	

I Gc ( s) I

Fig. 2- Spacecraft Control System

plant parameter vector and any deviations from this nominal value are
denoted by 60L . Only small deviations are assumed. It is also understood

that a physically realizable non-anticipatory and stable nominal transfer
function matrix

1
W(s,a) =Gp(s, a. )Gc ( s )`1 3+ H( s )Gp ( s , .%)Gc(s)-J 	(98)

has been specified.

The objective is the determination of physically realizable transfer
function matrices Gc(s) and H(s) for which

S = E	 (ya -Y) I (Ya-y) r	 (99)

is a minimum. In (99), ya denotes the response when instead of a the
parameters take on the value a +6a.. Since long term effects are being
considered, an infinite range of integration is chosen. The symbol E0
denotes the expected value. The problem posed is a special case of
the one whose solution appears in Appendix C. The solution requires
that the covariance matrix

E 16a 6a'I _ [ oij 1, aji =Cij	 (100)
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be known. Since this knowledge is not likely to be available in the design
of spacecraft attitude control system, the results are of limited utility
nor this application. They are presented, however, since they extend
earlier results [ 71 to the multi-variable case as promised in the proposal
for the present grant.

For long term control it is also of interest to determine the
effect of additive noise -like torque disturbances. Consider the linearized
equations

x = Fx+Gu +H^,	 (101)

where 5 is a white noise (formally the derivative of a Wiener process
(t) torque disturbance). Consider a performance index

tl

C= E x^(tl )Lx(tl)+	 (x"Qx+u'Ru)dt}	 (102)
t0

If the variance parameter a 2 of the white noise, defined by

E	 (t) ^^(T) } = C 2 I b (t-T ),	 (103)

where I represents the unit matrix, is small, then an estimate of the
change in C, due to changes in a = C 2 , can be obtained from

GC = ^ Ga	 (104)

When 8a is evaluated at a = 0 , formula (104) can be used to study
the effect of low intensity noise on a deterministic system. Note that
a = 0 corresponds to a 6eterministic system since for a Wiener process
a = Q 2 = 0 implies ; (t) = 0 . It can be shown that v = $a satisfies

Thisequation is developed in appendix D for the case where 7 is a
scalar Wiener process and the system is optimal for the nominal value
of a . Appendix D duplicates [10] .
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the partial differential equation

0 =1(Fx+Gu)v + 1 tr [HH'V ]
x	 xx

(105)

+ v + t r [ H H ' vt	 xx ]	 ,

where u= - K x and

vx=L
av	 av	 (106)-...^^^

2	
2

v	 =	 av	 av	 (107)

	

xx ; ax	 axla x2

a2v

j x'3^cf x1	 i
i

I
i

L

vt 
= av	 (108)

and where tr A denotes the trace of A, i. e.

•	 T

	

all	 a'12
tr	 a 21	 I	 = all + a22 + ... ann ,	 (109)

L	 .

The function V denotes the value of the cost (102) for the nominal value
of a. The boundary condition for (105) is

v(t, x)	 = 0, for all x .	 (110)
t=T
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For the linear problem with additive noise the computation of v is

particularly simple, v is given by v(t, x) = r(t), where r(t) satisfies

the equation

r+trIHH'PI = 0, r(T)=0,

and P satisfies the equation

P+(F -GK)'P+P(F -GK) _ -(Q+KIRK)

P(T) = Onn'
	 (112)

Since the long term effect of parameter and additive torque disturbances

were not considered major problems in this study, no numerical

computations are included here for the above results.

V. CONCLUSIONS

A main objective of the initial studies under the present grant

was directed toward isolating spacecraft attitude control problems to

which the ideas of modern control theory can be successfully applied.

Substantial progress has been made in this regard for design in the

face of uncertain parameter values, but much yet remains to be done.

Difficult computational hurdles must be crossed before results useful in

practice are at hand.
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Appeadix A

As ymptotic Stability C rite rion f  r V <_ 0.

Most of the Lyapunov functions, V, which have been found

for attitude control systems are such that the time derivative of

V, V, is negative semi-definite, For asymptotic stability the usual

stability theorems require that V be negative definite

(see reference L 11 , Theorem II, page 37). There does exist
a theorem, however, which can be used to guarantee asymptotic stability
for a semi-definite V. Such a theorem appears in references [ 21 and
[3 1 (Theorem VI, page 58 of reference [1] , and Theorem 26. 2, page 108
of reference [ 3] ), with a proof outline. Since this theorem is especially
relevent to attitude control systems it is presented here with a detailed
proof. The proof given here follows that of Youla (reference [2] ).
Theorem

Given a nonlinear system

x = f(x)	 (1)

whera f (x) satisfies the conditions

(a) f (o) = o , i. e. , x = o is an equilibrium point,

(b) f (x) is continuous and locally Lipshitz* in the region

II X II < h•~
and if there exists a positive definite decrescent function V whose

A function f (x) is said to be locally Lipshitz in a Region R if there exists

^
ositive numbers b and K such that all x l and x 2 in the closed sphere
I x II < b, which lies in R, satisfy

I I f (X2 ) - f(X1 ) it < K 11 X~  - X 1 II

A function V(x) is said to be positive definite if
1. V(X) =  0 , if x = 0,

2. V(x) > * ( I I x~II) , where *(r) is real continuous scalar function,
w -	 r

defined for 0 S r < h , which is monotonically increasing in r, i. e. ,
* (r2 ) > * ( rI) if r2> rl , and which vanishes for r = 0. A function V(x) is s?-id
to be decrescent ii a functio n f(r) with the sair a properties of * (r) above,
exists such that

IV(X) I_^til X tl)



31

total derivative V is not positive, i.e. , V < 0 , then the null solution
x (t) = o is asymptotically stable provided the set M of points x for
which

IV f(x) = 0,	 (2)
N

where TX-denotes the row (gradient) vector ( TR , Sxv , ... TX— } ,1	 2	 n

contain no nontrivial solution of (1). It is assumed here that the above
gradient exists and is continuous in x.

Proof.

Since V(x) is positive definite there exists a function *(r),
with previously delineated properties, such that V(x) > *( 11 x").
Given an a such that 0 < e <h, from the decrescent property of V
it follows that there exists a vector xo such that II x o 11 < e and
V(x 0  ) < * ( e ) . From V < 0 it follows that the system is Lyapunov
stable and,hence, with the above choice of x O , that

11 x (t, xo ) 11 < e	 for	 t > 0 ,	 (3)

where x (t, _xo ) denotes the solution of (1) with _x(0) = xo . It also follows
from V < 0 that V does not increase with time along a trajectory and,
hence,

V(x (t, xo)) > lira V (x (t, xo)) = V00 > 0 .	 (4)t 
-*00

It will now be shown that V .0 > 0 leads to a contraction. The proof is

then complete since from the properties of V, if V OO = 0, then

lim	 x (t, x )	 = 0
t 00

To continue with the proof, let x	 be a limiting value of x(t, xo ); i. e. ,



32

lim x(t, xo ) = x,,,
t -' 00

It follows from (4) and the cc.itinuity of V that V(x,,,) = V im . It is evident
from (3) that the norm of the limiting value of x ( t, xo ) cannot exceed e
so that	 x_ ,,. ^^ < e . It will now be shown that the limiting norm is
actually less than e . If II xll = e , then since V is positive definite

J(X* ) > s ( II X* II ) = * (-)
	

(5)

But V < 0 implies

lim V(x (t, x)) = V(x *) < V (x o ) .	 ( 6)
t -400	

o

Recall that xo was chosen so that V (x o ) < * (e). Thus (b) yields,

V (X* ) < $ ( e ) .
	

(7)

which contradicts (5); hence, II x * I I < e . Since II x * I I < e , the solution
X (t, x *) is well defined and nontrivial. The solution starting at X* is
nontrivial since II x * (I > 0 (recall that V(x *) > 0 by assumption, and
V(x) is decrercent so that 0 <V (x* ) < 0 ( II x* II ); hence, kx* II >0)
and from the uniqueness of solutions -: (t, x *) cannot be the null solution
if x # 0 . By assumption all nontrivial solutions leave the set M where
V = 0 ; hence, there exists some finite time t  such that

11(x (ti t X *)) < V (X ( O . X* ) ) = V(X *) = V00	 (8)

Since lim x (t, x o) = x * and solutions of x (t, x o) , are continuous
t -.Cc..

in the initial sti r-re x  it follows that

lim x (tl , x (t)) = x (tl , x *)	 (9)
t -4 00	 .,
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From the continuity in V(x) ,

lim V(x (tl , x (t) ) = V(x (tl ,	 (10)
t -00 M	 w

From the semi-group properties of solutions x (t,x o ) of (1),it follows
that

x ( tl + t, x o ) = x ( tl , x(t)	 (11)

Therefore,from (11) , (10) and (8) it follows that

lim 

V(x (tl, x ( t )) = t imao V(x (tl+t, x o ) = V(x (tl, X*) < V00
t ao 

(12)

But ,

lim V(x (tl+t, x O ) ) = V(x *) < V00	 (13)
t -00

contradicts

lim V(x (t, x)) = V(x ^) = V	 (14)t 
^ ao	

"'	
o	 00

obtained previously. Thus the assumption V00 > 0 must be false and
the proof is complete.

Solutions of (1 ) which has unique solutions and is stationary
have the so-called semi -group property,

x (tl + t2 , x o) = x- (t2 , x (tl , x o) )

for all positive tl and t2.
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Appendix B

Properties of the Open-Loop Cost Function

The dynamical system considered here is described by

x= F x + G u,	 (1)

where x and u are, respectively, n-dimensional and r-dimensional
column vectors, and

G = L al E1 I a 2 121 ... 4N BN 1 G J	 (2)

The $l are n-dimensional column vectors and G is an n x ( r -N) matrix
independent of the a  . The N-dimensional parameter vector

a = (al a 2 ... aN )
i	 (3)

belongs to a closed, bounded, convex set A and the boundaries of this
set are hyperplanes. The system performance is characterized by
the cost index

` tl
C = tx (tl ) L x (tl ) + S [x'(t) Q x(t) + u' (t) R u (t) ] dt } . 	 (4)

t
0

In (4), L and Q are real, symmetric, nonnegative definite matrices
and R is a real, symmetric, positive definite matrix. It is shown in
this appendix that

max C = max C	 (5)
a c A	 a e V

where V is the subset of A consisting only of the corner points of A.
The corner points of A are all those points which cannot be written as

(1-s) a a +sa b0	aa, a b e A, 0< s<1.	 (6)
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It is first noted that

t
X (t) _	 (t, t) X + 1	 (t, T) G u (T ) d T	 (7)0

O	 J	 ^.
t

O

where ^ (t, T ) is the state transition matrix for the homogeneous
system x = F x. When u is partitioned according to

u = (u l I2 2 )
.# 0	(8)

where u l is an N-dimensional column vector, then

G u = [ al 91 1 "2 b2I ... I aN JSN I u 1 + 6U 2 .	 (9 )

Substituting (9) into (7) yields

x (t) = v (t, t0 ) + T (t, t0 ) a,	 (10)

whe re
t

v (t, to ) 	 ( t , to ) x o + J	
(t, T ) G u 2(T) d T	 (11)

t0

and

t

Y (t , t0 ) _ ` § (t , T ) [ ul(T) 'S1 I u 2(T) g 2 I • .. I uN(T) g ] d T.	 (12)
-N

t
0

It follows, therefore, that

C =-Z(aI'a+2b'a+c),	 (13)
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whe re

tl

I' = r (tit to ) _	 ( ti p t o ) L Y (tit t0 ) + l F' , (t, t0 ) Q Y (t, t o ) dt,	 (14)
t0

t1

b = b (t1 , t0 ) = v' (tl -to ) L Y'(t l , t 0 ) + t v' (t, t0 ) Q IF (t, to ) dt,	 (15)
t
0

and

tl

	

c = c (tit to ) = v (ti, to ) L v (ti , t0 ) 
+ .,i

 [ v (t, t0 ) Q v (t, to )+u'(t) R u(t)] dt.	 (16)
t
0

It is clear from (13) that the cost C is a quadratic form in a.
Moreover, since t is a nonnegative definite matrix, the cost is a convex
function of a. That is, for O< s <1, and for a s and a b any two vectors
in A, then

C [ (1-s) as + s ab ] < (1-s) C(a a ) + s C(ab ) .	 (17)

The result (17) follows immediately from

C [ (1-s) as + s ab ] 	 (1-s) C(a a ) + s C(ab ) - s(1-s)(a a-ab) A(aa -ab ). (18)

The two possibilities which exist when C takes on its maximum
value for a not a corner point are now considered : First, that
C(a) < C(a M ) where a M is an interior point of the set A. Second, that

C(a) < C(a M)where a M is on the boundary of A, but not at a corner point.
In the first case, one can immediately conclude that C(a) is constant with
respect to a (see Theorem 4, pg. 71, of Ref. [1 ]). Hence, the cost C
is maximized in this case for any a in A and, hence, one need
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only consider the corner points.
In the second case, it is new shown that a similar result holds.

When a M is on a bounding hyperplane, but not at a corner point, one
can always choose an e > 0 and any other point a e which is on the
particular hyperplane under consideration such that

R = aM 
+ 1: 	 - a )	 (19)

is in A and also on this hyperplane. With

one gets

2 M =  (1-s) R+ s a.	 (21)

Using the convexity of the cost function yields

C (a M) < (1-s) C((3) + s C (a) . 	 (22)

One also has

C(a) < C (a M )	 (23)

and

C(R) < C (a M)•	 (24)

if C(a) < C (a M) it follows from (22) and (24) that

C(a M ) <(1-s) C(a M) + s C (aM ) = C (a M),	 (25)

a contradiction. Hence, C(a) = C(a M)
for all points a including thg corner points on the bounding hyperplane
containing aM, and again the maximum C can be realized by considering
only the corner points of A.
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Appendix C

Minimum Sensitivity Desi n of Linear Multivariable Feedback Control
Systems by atrix pectra Factorization*

Introduction

The results of an earlier effort [1 ] are extended to linear lumped
stationary multivariable control systems in this paper. The system con-
sidered is shown in Fig. 1. The plant is represented by the rational trans-
fer function matrix Gp(s, a ). It is assumed that the plant is asymptotically
stable. (When the plant is not asymptotically stable, but is completely con-
trollable it can always be made asymptotically stable with state variable
feedback [2 ] or with output feedback through a compatible observer [3 ]. )
The N-dimensional column vector q represents the mean or expected value
of the plant parameters, and any deviation from the mean is denoted by 8a.
Thus,

E { b ai } = 0, i = 1, 2, ... , N	 (1)

where E {. } denotes the expected value and Sa i is the element in the i-row
of Sa . It is assumed that the covariance matrix (the prime denotes the
transpose)

E = E {Sa ba' } = [ (r. ] .,a.ti ti	 1J	 J i = 
v.

1J 
= E { ba.

1 
ba 

J
. }	 (2)

is known, and that the variations 6a  are small and independent of the signals
in the system. The input k is generated by a stationary stochastic process
with known power spectral density matrix.

The rational transfer function matrices Gc (s) and H(s) represent,
respectively, the tandem compensation network and the feedback network.

R(a)	
Gc(s) " Gp(s,a)	

C(s)
+

ComlmWion	 Plant
H(s)

Feedback

Fig. 1 The System

This appendix has been submitted to the IEEE Tra 	 .tions on Automatic
Control by J. J. Bon¢iorno. Jr.
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The bilateral Lapla^-e trar-Jorm is used exclusively and attention is re-
stricted to only '^Liose cases in which the strip of convergence for all trans-
forms includes the Imaginary axis of the complex s-plane. In this setting,
a transfer function, min rix is physically realizable (i. e. , the impulse response
matrix is causal) if, and only if, all of its elements are analytic in Re s > 0.

The objective is the determination of physically realizable transfer
function matrices G c (s) and H(s) for which

W(s, a) = Gp(s. a) Gc(s) [1n + H(s) Gp ( s , a)G^(S)] -1 	 (3)

(I n denotes the n x n identity matrix and n is the dimension of fit) satisfies
the dynamic performance requirements placed on the system and for which
the scalar sensitivity measure

S = E {(ca - c)' Q (ca - c )}
	

(4)

is a minimum. The square matrix Q is real, symmetric, constant, and
non-negative definite. The response ca (t) is the output response c(t) when
instead of a the parameter vector takes on the value a + 6a.

For the case of single -input -output systems, the sensitivity index
(4) reduces to one similar to that employed by Mazer [ 13]. Here, however,
the expectation is taken over the random plant parameters as well as the
stochastic inputs. The sensitivity measure (4), except fcr taking the expected
value, is also identical to the one considered by Perkins and Cruz [4 ], [5 ].
These same authors in collaboration with Gonzales [6 ] recently treated the
design of the system shown in Fig. 1 from a minimax parameter optimiza-
tion point of view. Using a computational algorithm they obtain the values
of parameters which determine G c (s) and H(s). When statistical information
on the variable plant parameters is available, the approach taken here leads
to an analytical solution. Also, no constraint is imposed on the structure
of Gc (s) and H ( s). It is only required that these matrices be physically
realizable. This freedom in the choice of Gc ( s) and H(s), however, leads
to many designs in which differentiators are required. These differentiators,
then, must be approximated with practical circuits.

The solution of the problem posed here is accomplished by first solving

the multivariable semi-free-configuration Wiener problem. The solution of

this Wiener problem is in itself of some theoretical interest. It was first
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treated by Hsieh and Leondes [7]. They reduced the problem to th,^ solu-
tion of a system of algebraic equations, but never proved that this system
of equations has a solution. Indeed, for the free configuration problem
Davis [81 states that their method fails in the case of a predictor. The
solution for the semi-free-configuration problem is achieved here using
the idea of matrix spectral factorization. The conditions under which a
matrix can be spectrally factored were first derived by Youla [9 ]. A com-
puter program for factoring those square rational matrices which can be
factored has recently been developed by Tuel (10].

The notation used in this paper is now summarized for easy reference.
For an arbitrary matrix A the transpose, the complex conjugate, the adjoint
(the complex conjugate transpose), the inverse, the trace, and the determi-
nant of A are denoted by A', A, A*, A -1 , Tr [A], and JA I, respectively.
A diagonal matrix A with diagonal elements X 1 , X2, ..., X  is written as
A = diag [X l , X 2, ... , X  ]. Column vectors are represented by *C, x, etc.,
or in the alternative fashion ,;c = (x l , x2... xn)' whenever it is desirable to
indicate the components explicitly. The n x n identity matrix, the n -dimen-
sional zero vector, and the n x m zero matrix are denoted by l n, Qn, and
Onm, respectively. The n-dimensional column vector with unity in the i-row
and all other elements equal to zero is denoted by Xi. The right inverse of a
p x q matrix A is the q x p matrix A -1 which has the property A A -1 

= I 
A matrix A ( s) is , ational when each of its elements are rational.

The matrix A(s) is analytic in a region when each of its elements are analytic
in the region. A(s) is said to be real if A(s) = A(s). When for the matrix A(s)
there exists one minor of order v which does not vanish identically, and
when all minors of order greater than v vanish identically, then A(s) is said
to be a matrix with normal rank v. A point so is a pole of A(s) if some
element of A(s) has a pole at s = so. It is also convenient to introduce the
notation

A*(s) = A*(-s)	 (5)

which for real matrices - the only kind of interest here - reduces to

A* (a) = A' ( -s).	 (6)
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Prey inary Analysis

When the number of plant outputs exceeds the normal rank of the
plant transfer function matrix, one can always restrict atter.*:on to the n
independent outputs. Since the number of independent outputs is always
less than or equal to the number of inputs, it is always possible to choose
n inputs to control the plant. One can choose for the n inputs those asso-
ciated with the n columns of any nonzero minor of Gp(s, a) of order n.
Once attention is restricted to n x n plant transfer function matrices, it im-
mediately follows for input vectors r(t) of dimension n that both G c (s) and
H(s) are n x n matrices. In the sequel, therefore, all transfer function
matrices are square and of order n, and the normal rank of the plant trans-
fer function matrix is n.

The sensitivity index (4) is equivalent to
00 00

S = E I f f x' (t-T l ) SW' (T l ) Q 6W(T 2 ) X(t - T2 ) dT l d-r. ,	 (7) 0 0

where in terms of impulse-response-matrices

SW(t) = W(t, a + ba) - W(t, a) .	 (8)

Using the fact that the 6a  and r i(t) are independent, denoting the expectation
with respect to the Sai by Esa and the expectation with respect to the ri(t)
by Er , and recognizing

Tr [A B I = Tr [B A I
	

(9)

whenever the indicated matrix products are defined, one easily obtains
(provided the double integral exists)

I	
oD rr aD

S = E ba Tr [f0 JO 0 ( T2 - T 1 ) S(T1, T 2 ) dT l dT2 I ,	 ( 10)

where

0r (T) = Er 10 ) X' (t + T) I	 (11)
and

(T 1, T 2 ) = 6W' (T 1 ) Q SW Cr ? ) •	 (12)

Attention is restricted here to those cases in which the elements of both
0 ( T ) and 6W( T ) are bounded by a decaying exponential function of T. The
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existence of the double integral in (14) is guaranteed, then, and Parseval' s
relationship leads to

m

S 
= ES 

Tr [
rJ 0 (s) SW' ( s) Q SW( - s) do ]	 (13)a	 ^ J?j -j oo r

where 0r (s) and SW(s) are the bilateral Laplace transforms of 0r(T) and
SW( T ), respectively. The matrix 0 (s) is the power-spectral -density matrix
for the process generating the inputs r(t).

The approximation

8W(s, q)
SW(s) =

	

	 6a
1 = l 8a  1

is now made since the Sai are small. Substituting ( 14) into (13), recalling
(2), and interchanging the expectation, trace, and integral operations
yields

I	 jN	 N	 8W (s, J)	 CI W(-s, 
2L)S = 2n j 1 mTr[^	 atm ^ (s) 8 ^ Q 8----, do . (15)

joo 1 = 1m=1	 L	 m

Since Q is a symmetric non-negative definite matrix, it can always be
written as

a = Q Q ,	 (16)

where the rank of Q is equal to the number of rows of Q. This being the
case, one can take Q = I n without any loss in generality: formulas for
the case Q ^ I n are simply obtained from the formulas derived in the se-
quel by replacing W with QW. With Q = I n in ( 15) one obtains after substitut-
Mg

aw

	

 _ (1 - W H)	 G-1 W	 (17)k	 n	 ak

and defining

rr
N

 ^^N

	

L L. aim Amy W* 0 W' Al ^	 (18)
l=1 m=1

where
8G

Ak -	 I Gp1	 (19)
°k

(14)
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the relationship

j0oS = 2=-r- f	 Tr [(l n -  WH)' (I n - WH)' 0] ds .	 (20)
_j ao

Since the normal rank of G p is n, the existence of G
P
 I is guaranteed aln.ost

everywhere in the complex s -plane. In (17) thru (20) and in the sequel, the

dependence of 0, Gp, W, and A  on s and a, and the dependence of 0 , Gc,
and H on s is not shown explicitly unless necessary for clarity.

The Multivariable Semi-Free-Configuration Wiener roblem

It is not difficult to show and interesting to note that the mean-sq}i3re-
error for the system shown in Fig. 2,

S = E Ixe(t) Xe(t ) I ,	 (21)

is given by the value of s in (20) when the power-spectral-density matrix
for the process generating the input y(t) is 0.ti

Y	
H	 ^!V	 + 0

Fig. 2 System Defining Optimum H(s)

Finding the physically realizable H which minimizes S given W is, therefore,
equivalent to solving the multivariable semi-free-configuration Wiener prob-
lem for the system shown in Fig. 2. This is done here using in part the
techniques in Section 4-2 and 4-3 of Reference [ I 1 ].

Replacing H by H + c H I in (20), one obtains

S= S0 -2eS I +C 2 S2 ,	 (22)

where

S^ = j f 1 Tr [(ln - WH)' (ln - WH)*' 	 ds ,	 (23)
-j 00
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r
51 = 2n j 

,/ i0o 
Tr [(l n - WH)' W* Hi * @] do,	 (24)

_j OD

and	 j
S2 = 21T 	 ,f	 Tr [(WH 1 )' (WH 1 )* 0] do .	 (25)

j OD

When S 1 = 0 and S 2 > 0 for all physically realizable H 1 , then there is no
physically realizable choice for the feedback network transfer function
matrix other than H which gives a smaller value for the sensitivity index S.

The condition
ao

S 1 = I j f 1 Tr [0 (1 n - WH)' W* Hi * ] do = 0	 (26)
-j co

is necessary for H to be the optimum transfer function matrix. It must be
satisfied for all physically realizable H 1 . Hence. it mubt be satisfied for

H 1 ( s ) = h( s ) [ tiei t^].	 (27)

where the scalar function h(s) is analytic in Re s > 0 and satisfies

s m s h(s) Tr [m ( ln - WH)' W , (k i 'J) = 0	 (2R)

Substituting (27) into (26) and using (28) gives)

lim
P .im p[x)i ( a ) J h (- s ) do = 0,	 ^. ))

where xji ( s) is the element in the j-row. i-column of

X i 0 (i n - WH)' W*	 (30)

and C is the contour in the complex s-plane consisting of the imaginaryP 
axis for w < p and the semi -circle s = p ejg Tr	 3w 9 < 3=, It follows
from (29) and the fact that h(-s) is analytic in Re s < -0, that xji(a),
j, i = 1.2. ... , n must be analytic everywhere in the half -plane Re s < 0.
That is, H must satisfy ( 30) where the :"Matrix X is analytic in Re s < 0,
but is otherwise arbitrary.

Conditions are discussed in the next section under which it is possible
to write

4* 0	
(31)
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and

n w w = r* r,	 (32)

where the n x n square matrices o and Ttogether with their inverses are
analytic in Re s > 0. Assuming these conditions are met, one obtains
from (30) after transposing and making the substitutions (31) and (32)

TM 1 (W* - T* rH) W = r -  X' (N. ) -1 aX	 (33)

where X is analytic in Re s < 0. Now one can write

r 
1 W* A' ={r, - 1 w* D'}+ + {r* 1 W* ^'}_	 (34)

where
rJ	 l

{ r 1 W* Al = Om E -st(^
L 2n j J _. o r 1 W Aie st ds 

J 
dt	 (35)

t

is analytic in Re s > 0 and

{T 1 W* & I } _ 
(' 0 E -st 

r 2nj ^, m r^x-1 
W* &I E st ds1 dt	 (36)1

-00	 1	 -j m	 J

is analytic in Re s < 0. It therefore iolLows from ( 33) that

{r -1 W* A t 1 + - TH t&' = X - {r; 1 W* ,&' } _	 (37)

The left-hand side of (37) is analytic everywhere in the half -plane Re s > 0

and the right-hand side of (37) is analytic everywhere in the half-plane
Re s < 0. Thus, the left -hand side of (37) must be analytic everywhere.
This is the case if, and only if,

{r 1W* 0' }+-rHA' = K	 (38)

where K is an arbitrary polynomial matrix. Solving for H and recognizing
that (32) implies r*-1 

W* = rW -1 yields 0W1 .4 0 is assumed)

H = Ho - r - 1 
K (o^) 

-1 r	 (39)

where

HO = r- I  { r W-1 p' } + (A' ) -1 .	 (40)
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Equa .ion (39) is arrived at after consideration of a special class
of variations for H 1 . It can not be stated, therefore, that S 1 = 0 for all
physically realizable H l when H is given by (39). It can be stated. however,
that if an optimum H exists it must be included among the family of functions
defined by (39). It is now shown that H o is the optimum H. Substituting (39)
into (20) one obtains

S=S0 +2 S 1 +S2 ,	 (41)

where
rj^

S0 = 2nj 1	 Tr [(I n - WHo ) I (ln - WHo) -S] ds ,	 (42)
-j o0

f ' OD5 1 = 2nj	
Tr [(l n - WHo ) , W* (r ) K* 1 0] ds 	 (43)

-j o0

and

S2 = 2^r1 ,1	 Tr [0 -1 KI (r, ) -1 w , w (I,*) -1 1{ , gxl ^] ds. (44)
_j m

[Equations (41) thru (4a ; can also be arrived at by substituting c = 1,

H = Ho, and H1 = -I , K(A' ) '1 in. (22) thru (25).] From (40) it follows that

( ln - WHo) = W r' 1 (rW -1 A, - {rw-1'a, }+ ) W )-1	 (45)

or

(ln - WHo ) = w r' 1 {rw' 1 & I } _ W )` 1	 (46)

Using (31), (32), and (46) in (42) thru (44) gives

CO
SO = T- J Tr [( {rW -1 0' } _;^ ({rw '1 &I) ) ] ds ,	 (47)

-j OD

jm
S 1 = 2 nj f	 Tr 1({rw Al } _) K* ] ds ,	 (48)

-j OD

and

'CoS2 = 2 1R j f	 Tr [K K* ] do.
_j CO

The above results are arrived at with the aid of (91 and the additional fact

that a matrix and its transpose have the same trace.

(49)
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It follows from (41) and (47) thru (49) that if either

K a Onn

or

K-- {I'W -1 ,& } _ , Isl—roo

then, and only then, can the sensitivity index be finite. The condition
(51) is never satisfied unless W -1 has no poles in Re s > 0: in this case
{TW -1 A, } _ = 0 n and the best result possible, S = 0, is obtained. When
(50) and ( 51) are not satisfied it follows that

Tr [ K K,, ] = q (s 2 )# 0 1	 (52)

where q (s 2 ) is an arbitrary polynomial in s 2 . This is the case because
n

Tr [KK*] _l	 i ix^ 0	 (53)i l 

if, and only if,k = fin , i = 1, 2, ... , n where jcci is the i -row of K. Sub-
stituting (52) into (49) immediately leads to S 2 and, therefore, S being in-
finite. The only possible choice for H in (39) is, then, H = Ho.

It is now verified that S2 10 for all physically realizable H 1 and,
therefore, that H = Ho is the optimum choice for the feedback network trans-
fer function matrix. From (25), it suffices to show that

I(jw ) _ [ (WH 1 )* 0 (WH1)') (s = jw = [ (WH 1 )* 4* A (WH1) ' ] 
fs = jw (54)

is a non-negative definite hermitian matrix. Applying the definition (5) with
s = jw to ( 54) gives

I(jw ) = Z* (jw ) Z (Jw ),	 (55)

where
Z(jw) _ [A (WH 1 ), ] 1 s = jw .	 (56)

Clearly, I (jw) is a non-negative definite hermitian matrix. Thus, H = Ho
is optimum, and (47) is a compact formula {cr the minimum value of S:

minS=SIH=H =900
	 (57)

(50)

(51)
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On the Spectral Factorizations

The fundamental theorem regarding the spectral factorization of
rational matrices is contained in [9 ]. An abbreviated statement of the
theorem suitable for the problem being treated here is

Theorem 1: When the n x n real rational matrix A ( s) satisfies

a 1 ) A(s) = A' (-s) = A*(s),
a2) A(s) is analytic on the finite s = jw axis, and
a3) A(jw ) is positive definite for all finite w, then there exists

an n x n real rational matrix B(s) such that

b l ) A(s) = B' (-s) B(s) = B* (s) B(s) and
b2 ) B(s) and B -1 ( s) are both analytic in Re s > 0.

An immediate consequence of Theorem 1 is

Theorem 2: Sufficient conditions for the n x n real rational matrix
Q = W*W to have the spectral factorization o = r* r where rand r-1
are both n x n real rational matrices analytic in Re s > 0 are

c l ) W(s) be physically realizable and
C ? ) W(jw )l # 0 for all finite w, or
c 3 ) W -l (s) be analytic on the finite s = jw axis.

Proof: Clearly, 92 ( s) = W' (-s) W (s) = i2' (-s) and condition a l ) is satisfied.
Since W(s) is physically realizable, W(s) is analytic in Re s > 0 and W' (-s)
is analytic in Re s < 0. Hence, 92(s) is analytic for s = jw, and condition a2)
is met. Finally, I W Ow ) I =^ 0 guarantees that the hermitian matrix 92(jw )

is positive definite, and a 3 ) is satisfied. The equivalence of c 2 ) and c3)
follows immediately from W(s) W -1 (s) = 1 n. Wherever W -1 (s) is analytic
on the s = jw axis; f W -1 (jw ) l is finite and I W (jw) IW -1 (jw )l_ . 1 leads to

W(jw )I k 0. On the other hand, wherever W(jw )l)k 0, W (jw )l must be
finite. This is the case for finite w only if W -1 (s) is analytic on the finite
s = jw axis.

The spectral factorization of the matrix *defined by (18) is now con-
sidered. The conditions under which it is possible to accomplish the required
spectral factorization are embodied in

Theorem 3: The n x n real rational matrix *has the spectral factorization
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O= A* Awhere A and A -1 are both analytic in Re s > 0 whenever all of
the following conditions are satisfied:

d i ) 0r satisfies ad thru a3)
d2) W satisfied c I ) and c 2 ) ,
d3)

G 
-1 is analytic on the finite s = ;W axis,

d4) The N x N covariance matrix E= [aij ] is positive definite,
and

d5) the rank of the n x nN matrix

	

ac	 aG	 aG

aa^

	

1	 2	 a1V

is n everywhere on the finite s = jw axis.

Proof:	 It is not difficult to establish from d l ) and d2 ) that the representa-
tion

W* 0W` = V*v	 (58)

is possible where the real rational n x n matrices V and V -1 are analytic
in Re s > 0. Equation ( 18) is, therefore, of the form

f
N

	

a1m Mm* M1	 (59)
1=1 m=1

where
`

Mk = V A  = V 
ak

	

f
G P
	

(601,

Since G  is real and rational it follows that the Mk are also. Hence, 0
is an n x n real rational matrix. Moreover,

	

N N	 N

0* E E aim M1* Mm = f E om1 M1* Mm = 0 ,	 (b1)
1=1 m=1	 m=1 1=1

and condition a l ) is satisfied.

Because G  is physically realizable and rational it is true that the
aG

'1%
are analytic in Re s > 0. Condition d 3 ) insures, therefore, that the

Mk are analytic on the finite s = jw axis. It immediately follows that
0 is analytic on the finite 9 = jw axis and condition a 2 ) is satisfied. It
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only .remains to show that 0 satisfies condition a3).

Equation (59) is equivalent to

O=M*  E M	 (62)

where
M = [Mi { M2, ... I MN ]' 	 (63)

and

= E X In = [^ij I n ]	 (64)

The matrix E is a Kronecker product (see page 227 of [12 ]). Since both
Z and 1 n are positive definite or, equivalently, have only positive eigen-
values, it follows that all eigenvalues of E are positive. Thus, O(jw) is
positive definite for every finite w if, and only if, there exists no n-dimen-
sional non-zero column vector k and no finite w for which M(jw) t = Q(nN)'
This is the case if, and only if, the rank of M' (jw) is n for all finite w.
Now

M' _ V diag [G - , Gp l , ... , G P1 ] diag [V' , V' , ... , V' ], 	 (65)

and it immediately follows from d 5 ) that rank M' (jw) is indeed n for all
finite w provided V and Gp are nonsingular in the finite s = jw axis. That
V(jw ) is nonsingular foll y-ws from the fact that the right-hand side of (58)
is positive definite on the finite s = jw axis. Arguments identical with those
used to establish the equivalence of c 2 ) and c3) can be used with d 3 ) to es-
tablish that Gp(jw ) is nonsingular for all finite w.

It is not difficult to verify that the plant transfer functic . matrix has
the form

Gp(s, t.) = G(s) diag [c i, a2' . • •' an ]
	

(66)

when the plant is described by the vector differential equation

= Ax+Bdiag [ a l . CL ... , an]
(67)

= D;E .

The 6 a  then represent variations in control effort gains. It is now shown
for the case in which G -1 is analytic on the finite s = jw axis and a i J 0
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for each i = 1, 2, ... , n, that condition d 5 ) is satisfied. The ai are non-
zero in keeping with the fact that only plant transfer function matri---es with
normal rank n need be considered. The analyticity of G -1 on the finite
s = jw axis assures thL satisfaction of d3).

When the j-column of G is denoted by the column vector g. , then one
ti

can write

c')G

gj e	 68

J

Substituting (68) into the matrix V defined in d F ) eitablishes that the only
nonzero columns of V are the columns g j , j = 1 3, 2, ..., n. Since G - 1 

is

analytic on the finite s = jw ax:.s, it followe that the minor of order n formed

from these n columns of V is r_onzero on the finite s = jw axis. The rank

of Von the finite s = jw a yd*& is n, therefore, and condition d 5 ) is satisfied.

Physical Reaii^&w'Zillt:- of Gc(il_

The above developments are concerned with the determination of Ho

once W is specified. Attention is now tuzlied to the computation of Gc,

and the determination of condit=.ors which guarantee that G  is physically

realizable. Solving (3) with H Ho for G  and using (46) in the result
yields

GC = G-1
p 

(1 
n - 

WH 0 )  W = G-
p 
1 A' L -1 r	 (69)

where

L = Tw -! &,I -	 (70)

It is clear from (69) that G  is not, generally, physically realizable. The
matrices Gp1 and L -1 can have poles in Re s > 0. The problem facing
the designer and the one discussed here is the specification of W so that
the Gc given by (69) is physically realizable.

Any W satisfying conditions c 1 ) and c2 ) or c 3 ) can be written in the
form

hw =	 (?1)^ w ,

where q = q(s) is a monic polynomial with zeros in Re s > 0 only. The



52

zeros of q include any zeros in Re a > 0 common to every element of W and,
also, any other possible poles of W -1 in Re s > 0. From c l ), c 3 ), and the
definition of q, it follows that W 	 analytic in Re s > 0. Substituting
(71) into (70), recalling that rand &are analytic in Re a > 0, and collecting
terms in the partial fraction expansion of TW -1 6 1 associated with the
zeros of q one obtains

L = —h - ,
q

ti

where L is a polynomial matrix. When for example the zeros of q are all
simple and denoted by sip i = 1, 2, ... , 1, then

I [(s - s i) q*	 1 ,

i=1	 q	 s = s.	 (s - si)
i

From (69) and (72) it follows that
ti	 ti

Gc = q G pl At L-1 r = q G	 (?4)

ti
is physically realizable if, and only if. the poles of G  in Re s > 0 are can-
celled by zeros of q.

It is of interest to examine the case in which G_ has only one pole
in. Re s > 0 at s = ao > 0, ao real. When it is possible to meet the dynamic
performance requirements placed on the system with

s -0	 ti
W = - ( s--o ) W	 (75)

0

where W and W -1 are analytic in Re s > 0, then one can choose T = -W
and obtain from (73)

ti
L= 2 Oo G' (oo ).	 (76)

It now follows from (74) that

G  = - 2 a (g - a0) Gp O ' [0 ' (00 )1 -1 W"	(77
0

Since A -1 is analytic in Re s > 0, the matrix [A' (0o )] -1 is finite. More-
over, (a - co ) G p , At and W are analytic in Re s > 0, and G  is, therefore,
physically realizable.

(72)
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Another interesting case for which general conclusions can be drawn
occurs when G pl has no poles in Re s > 0, and the dynamic performance
requirements of the system are met by a physically realizable W whose
inverse is analytic in Re s > 0. Under these conditions

{T W -1 & , I + = rw -1 0 ,	(78)
and

IT W -1 p , I_ = pnn .	 (79)

Hence, (40)-ireduces to Ho = W -1 , and (57) leads to min S = 0. Substitut-
ing Ho = W into (69) indicates that

G = G -1 KWc	 p

which aside from the fact that K is a constant matrix each of whose elements
are infinitely large is physically realizable. That is, the sensitivity can
be made arbitrarily small at the expense of high gains in the tandem com-
pensation network. This is simply a generalization to the multivariable
case of the well known result for single-input-output systems that overall
system sensitivity to plant parameter variations can be made arbitrarily
small when the specified plant and overall system transfer functions are
minimum phase.

Conclusions

The approach taken in this paper is significant in that it leads to tie
analytical design of minimum sensitivity feedback systems. The method
is applicable when the plant is a linear, time-invariant, lumped, finite-
dimensional dynamical system and the uncertain plant parameters can be
viewed as random variables. A part of the development important in its
own right is the solution of the semi-free-configuration Wiener problem for
the multivariable case.
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Appendix D

NOISE-INTENSITY SENSITIVITY IN OPTIMAL STOCHASTIC SYSTEMS

1. Introduction

In the design of optimal control systems for plants with random
attributes (noise signals or randomly varying parameters), a question of
some interest is the effect of the noise intensity on the performance index.
For plants where zero noise-intensity reduces the system to a determin-
istic one, a noise-intensity sensitivity analysis yields some insight into
the first order effects of noise on a deterministic design.

Consider a plant characterized by the stochastic differential
equation

	

d 	 =f(x, u)dt+C(xl4^,	 (1)

where

x - n dimensional state vector,

u - m dimensional control input vector,

7 t - scalar Wiener Process with v^ riance parameter a, i.e.

E t ( 9 t+ At - 
^t)2 1 = a A t

f (x, u), C (x) - n dimensional vector functions of x and u .

For more details on this type of representation of stochastic systems,
including mathematical conditions for the existence and uniqueness of
solutions of equation (1), see Kushner [1 ] . Only a single noise source
is considered here to simplify the subsequent computation, however,
the results can easily be extended to multiple noise sources.

Assume that a performance index of the form
T

	

C = Ex	 S k(xs , us ) ds + b(X- T)
	

(2)

Paper presented by P. Dorato at the Second IFAC Symposium on
System Sensitivity and Adaptivity, Dubrovnik, Yugoslavia, Aug. 26 -31, 1968.
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is given, where

k(x 8 , u s ), b(xT ) - non-negative loss functions,

Ex i • ) - expectation operator conditioned on

T - fixed end time.
The optimal stochastic control problem is to determine a control

law _u =	 (x,t), within a class of admissible control inputs, which
minimizes the performance index (2). As is well known j.l] the optimiza-
tion equation appropriate to the above problem is given by the stochastic
Hamilton-Jacobi equation

0 = min Lk(x , u) + f (x, u) V  + 0^(x) Vxx C (?[) + V  ] ,	 (3)
u

with the boundary condition

V(x, T)=0,	 (4)

for all x . In (3), Vx is a column vector with entries C w j and V
i xx

2
is a matrix with entriesL^ V , f denotes the transpose of f , and

1	 J

Vt denotes the partial derivative with respect to t .

Let t o(x, t) denote the value of _u which minimizes the bracketed
term in (3). Then the minimal value of C is given b y the solutionV(x , t)
of the equation

0 = k(!, !°) + f I(x, 0 ° ) Vx + a 'J	 V	 Cr (x), + V,,	 (5)

subject to the boundary cone—i tion (4).
A solution of (5) yields performance value V which depends on

x, t, and the noise parameter a, i.e., V = V(x , t, a). This then implies
that the control law 0 o(x , t) also depends on x, t, and a . The sensitivity
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problem considered here relates to the study of the variations in the
performance index (2) with variations in the variance parameter a in
the dynamics (1), for the fixed control law 1 0 (x, t).

2. Sensitivity Equation

Let the nominal value of noise parameter be a and the perturbed
value be a + La. It is assumed that the only parameter variation of
significance is in the plant equations, so that the control law can be
considered fixed once the nominal value a, is fixed. In this case the
equation which the performance sensitivity function [2]

a V = Ua

satisfies may be formally determined by taking the partial derivative of
(5) with respect to a , and interchanging derivatives with respect to a
and x. This yields the sensitivity equation

O=Lf'vx +	 ?'v o+vt+a c' v a	 (6)xx-

wherein (6) Vxx is evaluated at the nominal value of the variance
parameter.

Equation (6) is a linear second order partial differential equation
for the sensitivity function v = v(x, t, a). The boundary condition for (6)
is

v(x, T, a) = 0 ,	 (7)

for all _x. The boundary condition (7) results from the fact .hat at the
termination point the value of v is identically zero.
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3. Some Solutions to the Sensitivity Equation

Even though the sensitivity equation (6) is linear, solutions to this
equation are difficult to obtain in general 	 In this section certain linear
problems will be considered where at least a partial solution is possible.

Problem 1. (Additive Noise)

Plant dynamics:
dx =Ax dt+Bu dt+gd;,

where A and B are matrices and g is a column vector.
Performance index:

T
C=Ex t (xSCxs+U,Dus)ds}J

t

As is well known [1] , [3] the optimal control law for this
stochastic problem is

!o :-- - D-1B V--I--- x

where V = V(x , t) satisfies the equation

0= LxCx +(fo)'Dto +Vt + (Ax +B o)'Vx+"g Vag,	 (9)

with the boundary condition

V(x, T) = 0 .

The solution of (9)- is given by [1] , [3]

V(x,t) = x' P(t) x+ q(t),

where P(t) satisfies the equation

It should be noted that since the sensitivity function v satisfies a
diffusion type equation [1] , it is possible to determine v(x , t) from
Monte Carlo methods.
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P+A'P+PA+C - P(BD 'B')P=0, P(T)=0,

and q(t) satisfies the equation

q+ag'P(t)g =0, q(t)=0.

Since P(t) is independent of a and

Io (X ) _ - D 1 B P(t) X.

it follows that for this particular problem, the control law is independent
of the noise intensity. This result is a consequence of the additive nature
of the noise signal ; t in plant dynamics (8). The results are quite different
for the multiplicative-noise case considered in the next problem. The
sensitivity equation (6) for this problem becomes, after some manipulation,

0 =[x'(A	 vxx J	 (10)

The solution of (10) is given by

v(x, t) = x' S(t) x + r(t),

where S(t) and r(t) satisfy the equations

S + (A -BD -1  B'P)' S + S(A-BD -1B'P) = 0

r+g'Pg+ag Sg=0

with the boundary conditions

S(x,T)=0, r(t)=0.

Since the equation for S in (11) is linear and homogeneous and
S(x_ , T) = 0 , it follows that S(x_ , t) = 0 . Thus v(x , t) becomes simply
v(x,t) = r(t) where r(t) satisfies the equation, i + g' Pg = 0 .
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Problem 2. (Multiplicative Noise)

Plant dynamics

dx = Ax dt + Bu dt + Gx d^

where A, B, and G are matrices.

Performance Index: Same as problem one.

The optimal control law for this problem is given by

D lB'V
f' O=

where Vx satisfies the equation (9) with g replaced by Gx . The
solution of this equation is known [31, [4] to be given by

V(x,t) = x' P(t) x,

where P(t) satisfies the equation

P + A' P + PA + C + aG' PG - P(BD -1 B') P - 0 ,	 (12)

with

P(T) = 0 .

Since

§° = - D -1  B' Px ,

and P (t), from (12), depends on a the control law is dependent on
the noise intensity. The sensitivity equation for this problem is,

0 = [x' (A-BD -1 B'P) vx + x' G'PGx+ vt + a x' G'v Gx j . (13)
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The solution of (13) is given by

Ax , t) = X S(t) X ,

where S(t) satisfies the equation

S + (A-BD 1B'P) S + S(A-BD -1B'P) + G' PG + a G' SG = 0 ,	 (14)

with S(x, T) = 0. Here, as in problem one P(t) is evaluated at the
nominal value of noise intensity a .

Example:

Consider the scalar syitem

dx=(-x+u)dt+xd;,

with a performance index
00

C = Ex t (x2 + u2 ) ds } .
0

This represents a control problem with a time constant equal to -1
perturbed by "white noise" (derivative of Wiener process). For this

J.

multiplicative noise problem equation (12) becomes -

p2 -	 + a p - 1 = 0 ,

with positive solution

2
p=^1+7)+	 + 	 +1

The sensitivity equation (14) becomes

[2(1-p)+a ]s +p = 0 ,

where p is given above. The solution of this sensitivity equation is

For T = co , P and S are zero and P is the positive definite solution
of the resulting algebraic equation (12).
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S = 1

+1

Let s  denote a normalized sensitivity parameter defined by

S  = s/C where C is the optimal cost at the nominal setting.

Since C = P. s  can be written

1S T,	 Z

2 ^1+^ +1

It is interesting to note in this case that the normalized sensitivity
is greatest for the no noise case (a = 0) and decreases monotonically
with increasing noise intensity.

4. Conclusion

A sensitivity equation is derived for the analysis of optimal
performance index sensitivity to variations in the variance parameter of
a random disturbance signal. Since statistical parameters, such as
variances, are never known exactly, this type of sensitivity analysis
is essential in the practical design of optimal stochastic systems. It
is difficult to arrive at general conclusions from the sensitivity
equation (6), since an analytic solution of this equation is not available
except for some low order problems. However, the first order example
worked out in section 3, indicates that performance index sensitivity
decreases with increasing values of variance. This appear, to be a
reasonable conclusion since one would expect the design of a system for
large noise perturbation signals to be less sensitive to these perturbation
signals.
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Appendix E

Proof of Theorem 1

First note that V(x, a ) satisfies the partial differential

equation

8Vf (x , a , I (x) ) + L(x , (x)) = 0	 (1)

$o r all x outside o D and

V(x) = 0 ,	 (2)

for _x on the boundary of D. The boundary condition (2) follows

directly from the definition cf T D , that is if _x is on the boundary of D,

then T D = 0 and V (x) = 0 . The partial differential equation (1) may

be derived as follows. From the integral form of V(x, a) , i.e.,

( TD
V(x , a) = S L(x , § (x) ) dt

0

it follows that one can write

At A TD	 TD

V(x ,a) _	 L dt +	 L dt, x(o) = x .	 (3)

0	 AtATD

where A t A TD denotes min( At, TD). The second integral in (3) is given

by

V(x ( At A T D ), a) .	 (4)

If now At 0 and a Taylor series expansion is made of (4), about the

point x(t) = x , there results

V (x, a)=LAt+V(x,a)+ 8x Ax +...	 (5)

It is assumed here that
lim (At A TD) = At

At -'0
This is true, for example, if x(t) is continuous in t.
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If (5) is divided by G t and the limit taken as At 	 0 , eq uation (1)
results. Converse.y, if V(x , a) satisfies the equation (1) and the
boundary condition (2), then V(x,a ) is given by

(TD

V(x , a) = J L(x (t), § (x (t) ) dt , 	 (6)

0

where x (t ) is the solution of

x = f (x, a, I (x ))	 (7)

1 see this let x ^ be the solution of (7), with x P) = x ; then, since
(1) is satisfied for all x , outside of D, it is satisfied for x 4 , i.e.,

+88V f (XO , a ,	 (x 0) ) + L(X 	 (X,)) = 0	 (8)

Now integration (8) yields
TD(§)

V(X^ (T D)) - V(x) + S	 L(x, , (x ^) ) dt = 0 ,	 (9)
0

since the integrand in the first term of (8) is a perfect differential.
From the boundary condition (2), V(X^(T D) ) = 0 , and the required
result follows (the value of TD ( f) corresponds to the time required
for x 0 to reach D).

Consider now the inequality

T8  f (x, a, v) + L(x , v) < 0 , 	 (10)

where v = * (x) and where ' V = V(x, a) satisfies (1) and (2). Let
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^f be th4 solution of

x = f (x, a. v)

with v = * (x) and substitute x $ in (10). Let TD( *) be the time required

for x * to first reach D. Then (10) becomes after integrating

(TD

V(x 
* (TD) , 

_ V(x) + J L(x * (t), (x * (t) ) dt < 0	 (11)
0

But V (x y (TD)) = 0 since x ^(T D) is in D and V satisfies (1); therefore,
N	 M

T D 	 TD
L(x ^(t),	 (x ^,(t) ) dt < V (x) _ ! 	 L(x ^ (t), 0 (x 0 (t) ) dt . (12)

0	 N	 0
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