
https://ntrs.nasa.gov/search.jsp?R=19690020661 2020-03-12T03:41:14+00:00Z

E-2410

SUMMARY REP0 RT

ON-LINE LOGICAL SIMULATION (OLLS)

by
H.R. Howie, G. Schwartz,

and
H.A. Thaler
April 196 9

INSTRUMENTATION LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS

Approved: w e u Date: I3 W&l
E. G. HALL, DIRECTORa DIGITAL DEVELOPME
INSTRUMENTATION LABORATORY

Approv Date: /#'%-/9r&
R. R.
INSTRUMENTATION LABORATORY

ACKNOWLEDGMENT

This report was prepared under DSR Project 55-27600, sponsored by the
Electronics Research Center of the National Aeronautics and Space Administration
through Contract NAS 12- 140 with the Instrumentation Laboratory of Massachusetts
Institute of Technology in Cambridge, Massachusetts.

The publication of this report does not constitute approval by the National
Aeronautics and Space Administration of the findings or the conclusions contained
therein, It is published only for the exchange and stimulation of ideas.

ii

E-2410

Summary Report
ON-LINE LOGICAL SIMULATION (OLLS)

ABSTRACT

This report is intended to summarize the progress in implementing the
system described in an earlier document MIT/IL Report E-2265, ON-LINE LOGICAL
SIMULATION (OLLS), written in May 1968.
wil l be reported here in the same order.
with the contents of E-2265 and no attempt wi l l be made here to redescribe the
technical makeup of the various subsystems.
the to-date status of the programs a re presented.

The topics discussed in that document
It is assumed that the reader is familiar

Results of computer test runs and

by H.R. Howie
G. Schwartz
R.A. Thaler
April 1969

iii

TABLE OF CONTENTS

Section

1 INTRODUCTION

2.

3 .

THE MAC 360 WORKING SYSTEM

THE FILLIP CARD INPUT SYSTEM

3.1 General
3 . 2 Existing Programs
3 . 3 Contemplated Programs

4. THE CRT INTERACTIVE SYSTEM

5. CONCLUSION

Page

1
5

9

9

9

28

29

67

V

1. INTRODUCTION

The possibility of using computers to aid designers has been recognized
and exploited, in various ways, for the last several years. Designers can have
mechanized help in small circuit design (ECAP, NET), and in some forms of
mechanical design (SKETCHPAD). A s SKETCHPAD showed, the implications of a
cathode ray tube system whereby the designer and the computer interact, a s opposed
to the more prevalent processing systems, a r e many and exciting.

The possibility of using major data processing aids for logical designs be-
came an important concern to those who had been engaged, for quite some time, in
the development of medium-sized computer systems, especially i f those systems
could be made interactive. But interactive o r not, accumulated experience in logical
design indicated the near necessity of mechanized files, drafting aids, and simu-
lations.

”

The initial objective of MIT/IL was not so much to demonstrate the power

We a re still short of that goal in that we do not have an operational inter-
of a new approach (Computed Aided Design) a s to develop and implement a practical
system.
active system; we do have a batch system (MAC 360) and major portions of the more
ambitious FILLIP List Processing System and the CRT Interactive System. Con-
sequently, the present report is in part a demonstration of achievement and in part
a blueprint of present and future developments.

MAC 360 is a card system, with very limited file capability, wherein the
logical device models a re an integral part of the program. It was written without
recourse to a list-processing language, and has been in use for about six months.

In early 1967 a decision was made by the Digital Computation group (which
runs the data processing system of Instrumentation Laboratory) to implement a
major list-processing language called FILLIP, and it was decided then that OLLS/360
should be based on FILLIP. A s of this writing, FILLIP is still under development
for i ts overall system aspects, and, consequently, some of the FILLIP Card System
remains untested. The major features of FILLIP, and its power, a r e described in
The Users’ Guide to FILLIP by Charles A. Muntz and J. Halcombe Laning, Jr.

1

Fig. 1-1 OLLS/360 Installation

2

When it became apparent that the FILLIP language would not be operational
before mid 1968, and FILLIP would not be able to handle difficult 1/0 such as the
CRT interface or a plotter, we decided to implement a machine language version of
the logic file specifically with an interactive CRT - operator interface in mind.
this version may lack some of the elegance present in the FILLIP version made
possible by such FILLIP operations a s "TREE", "SICS", and "MDUPL" which allow
large file structures to be searched and manipulated by only a few lines of source
coding, similar operations a re not difficult to implement in machine language.
tradeoffs a re much more source coding for speed, efficiency, and the ability to
access any 1/0 device attached to the CPU.

While

The

3

2. THE MAC 360 WORKING SYSTEM

This system is very similar to the so-called H1800 system described in
Chapter 2 of E-2265. The original programs (written in a language called MAC)
were translated and expanded from the versions which ran on the Honeywell 1800
to be a useful design tool on the IBM 360.

routines which a r e written in machine language, the IBM 360 version is also written
in the language of MAC.

With the exception of a few input-output

Many changes and improvements w e r e made in the system.

a) The list of available device types w a s expanded to 34 devices.

b) The running time for a typical drawing w a s reduced to about 1.5 minutes
of C P U time.

c) The REVISE mode w a s removed from DRAWSCHEMATIC and replaced
by a separate program which can rename devices and signals i f required.

d) The aesthetic quality of the output plots w a s greatly improved by the
addition of a routine which puts a frame on the plot which conforms to standard
drafting conventions. (See Fig. 2 -1)

The MAC 360 system is in fu l l production use at MIT/IL, and, although it
w a s never intended to be used in production, we feel we have learned much from
the experience.

a) Since most logic designers a re unaccustomed to punching cards, a card
input system can be a very frustrating experience for the designer at first.
much time and energy is spent learning and conforming to card formats and trivial
details, and too little time is spent in design.

Too

b) A system with no immediate feedback to the designer is very slow and
Most drawings require 3 or 4 reruns before they become a finished part of

This implies a process time of about one week and a cost of about
costly.
the logic design.
6 CPU minutes per drawing.

5

W . - -I-

-i-w I 0 1 " 1 m

6

w
G
G
t- o
Z __ ._

CD
G
G
t- o
Z - .-

I- o
Z
0
0
Z

7

For most logic systems which will have many such drawings, the effect
on schedules and budgets is severe. Most of the difficulty is due to the fact that
the entire drawing must be resubmitted in order to make even minor corrections.
The former REVISE mode was no better since even though fewer input cards were
submitted for a revision, the program still had to load up the entire old file to
process a revision. An interactive system of even the most rudimentary type would
be easier to learn, faster to operate (both CPU and real time), and place the designer
in a position where he is not completely at the mercy of a batch program.

c) The inflexibility of this program keeps the designer in a very tight box.
He is constantly faced by problems such a s not enough device types, not enough
space on the drawing, small logic file, etc.

What we learned most from this system is that designers dislike IBM cards.
They also have little use for printed computer output except for finished signal l is ts
(and even then only i f someone else wi l l be reading the list).
easy about designers who must spend too much time doing non-design type clerical
work, and they a re especially uneasy about high costs and schedule bottlenecks.

Supervisors a re un-

The system does work however, and its main selling point is the ability
to produce and maintain accurate signal l ists and wire wrap control cards, and as
such it wil l remain useful (if cumbersome and costly) until an interactive system is
operational.

Figure 2-1 shows the new drawing format. We include it here for i ts own
sake and to aid in the interpretation of the computer output for the creation and
simulation of PFAMD shown in Section 3. (Figs. 3-1 through 3-16).

The simulation of PFAMD shown in Fig. 2-2 was obtained by injecting
Note the appearance of a inputs to the circuit at "2. 6MCLK" and "RSTNCT/".

This represents an essential circuit hazard and is also discovered by the FILLIP
simulation.

sneak pulse" on signal "NOGNCT" coincident with the falling edge of signal "NOGYCL/I'. I 1

(See Fig. 3-14 at time 297 and Fig. 3-15)

8

3. THE FILLIP CARD INPUT SYSTEM

3 . 1 General

The status of the OLLS card system is, a s it has been in the past, closely
related to that of the FILLIP language. A recent milestone in the development of this
language was the implementation of a ''stored file'' capability, which allows for the
creation, deletion, calling, and storage (on disc) of FILLIP files. Now it is possible
to save data files between runs and to store programs, which correspond to OLLS
asterisk cards, in separate files.

Of course, this state of FILLIP'S development was not unexpected; we have
always endeavored to write our programs in a way which would require no conversion
when the ''stored file" version of FILLIP became available. Only the CARDREAD
program, which does the actual file manipulation, needed rewriting; this has been
done, but the new program has not been debugged.

The new CARDREAD program treats a particular data file either as a
read-only (henceforth called a "read") file o r a s a read/write ("write" o r "working")
file. There is nothing inherent to a FILLIP file which makes it a read or a write
file; this distinction is made by OLLS to enable i ts users to use the same file for
several asterisk instructions without repeating i ts name on each card, and to
simplify the syntax of instructions which require several variables.

Figures 3-1 through 3-16 show the printer output from a recent FILLIP
OLLS run in which a data file was created, three devices were defined, and a circuit,
essentially the same as PFAMD shown in Fig. 2-1, w a s constructed and simulated.
The simulation output from the printer corresponds to the plotted output from the
MAC 360 simulation in Fig. 2-2.

3 . 2 Existing Programs

The following asterisk instructions a re either working o r a r e being debugged:

* OPEN (3 . 2 . 1)
*c DEFINE (3 . 2 . 2)

9

I
i
!

i

I

j

1

E

i

I ,

t
#!

I
f
1
i
i
t

1

I

i

I
1

I
I
!

I

i

~

1
I
I

!

1
~

I

I

1

I
I

,

I
I
I

C
2
4
I!
U
c
c
>
Lu c
U

E
LL
Iu
C

Q

a

cn
t-
3

t
3
0

n

11

I

I
!
I

I

i

i
I

I
i

I
i
I

!

I
~

I

i
I

I

I

i
I

i
I
I I
I
I

I I
I
i

1
I
I

I
I

i
I

0

r
*
c.
r
*
t-
c

r
+
c

4

*
Y

r
+
4

r
*
3

.L

U

t-

r
*
c
+
v)

r
II

4

z
t
t-
4
3

c

5:

!
I

i !

~

I
I

I

!
I

I

I

I

I

!
I

I

I
I
I

I

m
I
m
Q)
k
3
M
iz’

I
i
I

I
I
I
I

OD
V

0

02
N
N
II >
U
0

..
r(

I

I 1

i

I
I

i

I
i
I
1
I

I
I
I

i

I

i

m
v,
c
2

t
3
0

a

13

I I
I

I

I

I I
I

i

d z
(u
r(

1

N
N

N
N

.II

N
rt

c
2

z a

I

I

c-
W z c
v)
a

Y
V
0
-I
V

0
-1
U

k

z

c

c

c

a
C

QD
QD
N

4
N m

I

0

a

rr

%
8- u
2
t;,
a

15

al
W
N

*
N
m

1

0

Y
cj
C
-I
V

ai al
N

U
N
ul

I

0

U

N

P)
U
& c- u z

m
00
N

.d
N
m
I

@

m

N

\
UJ
U
U
c
V
2

PD
02
N

%
In

I

0

4

.t

D
U.
U
t
0
2

m
b)
N

4
N
m

I

0

a

U

UI
U
LL
I-
V z

OD
OD
N

U
N
In
I

d

4:

0

\
J
V >
V
0 z

aY
0
N

U
N
In

I

r,

rl
0
UJ
v)
#I)
2
3

9

a
f-
U
2
I-
VI

e
2
uc > u.

a

Ip

a
c
r

c

Y c
C

c:
U c
2

r

%
Ei
U
U

16

I

I
I

i
I

I

I
I
I
I
I

i

I
I
I

f
I

i

I
I
!
I
I
I
i
I

I

I

i
I

I

I

i i l l

I I

I
' I

I

I
I
I I
I
I

0)

.d

\
0
U
U
t
V z

17

.- +

i
i
1
i
I

I

I

I
I

j
I
I

i
I
I

I
I - @

!

- T - T "

I

!
I
!

I

I 1
I

I

! ,

!

!
I
I

i
1
f
I

i
I

i
i

f

i
I
I

1

I
i
!

Q G
I

>oo

Q)
U

0

W
n!
N
ti
>
a
D

..
4

00

00

0 0

0 0

00

Q ? o I
PI-

@ &

0 0

00

0 0

0 0

Hd

Ucu
mal

dd

00

0 0

00

0 0

&
0

4 - t m

0 0

0 0

r l U

U d

0 0

e m
W(x?

0 0

0 0

0 0

d
0

6 0
Q.0

r(

0 0

0 0

$4

0

d d

0 0

In9
0 0
H d

I
0 :

o j

I

I

c c o ~ q t o u
I
I

4 - d k - l
O Q Q O I

00

00

I d &

100

d d

0 0

00

00

I I
I I

v - 4 4

00

I

I

! I

I

eo
9

0

..
3

0
5
4
U.
P

I

I

I

1 j I I

I

,

I I

I 22 I

I ’
I

/ I r
N
U

I
I I

i 1
! I

I
!

oc.
U ..

,

i
+,&A

,
I

40-r I
c o o o @ o c ~

I
I

1

‘ i I

0
5

U
a .

a 1

I 1 I

1
I

o Q c c b o o @ o o ~ o o

1.11

3 0

3 0

0 0

rrl
0

d
C

o c

In<
4 4
P(r

i
I

!

I
I
I

i

I

I
1
I

i

1

I

i

I

i I

I

I
I

I
I

I

I

I
i

I

1
I

I
i
I
I

I
I

I
I

I
I
I
I

I
I

I

I

I

i

1

I

I
I
i
I

1
I

1

I I
I

!

ro
Irl

I
m

I

I

I
1

!
I

i I
!
i

f

* SIMULATE (3 . 2 . 3)
* CHANGE (3 . 2 . 4)
* OUTPUT (3 . 2 . 5)

* EXIT (3 . 2 . 6)

3 . 2 . 1 OPEN

This instruction has the form,

;k OPEN DATAFILE filename

Its function is twofold; it establishes the existence of a working file, and it replaces
the ADD instruction.

The data file specified by the variable ''filenamer' becomes the working
file, replacing any previously named working file; if there is no file which has this
name, one is created.

In the example, Fig. 3-1 , "CREATE FILE'' would now be replaced by
"OPEN DA TAFILE ".

If an OPEN instruction is followed by data cards, they a re assumed to be
of the form described for the ADD instruction described in E-2265 (Section 3 . 5 . 5) .
"OPEN DATAFILE" replaces "GET" in Fig. 3-5. The first device being added to
the file is a NAND gate (which was defined in Fig. 3-2) with identification "l", and
it is placed on drawing "1" at coordinates (1 , l) , its output pin A is the source of
signal "RSTNCT/", and i ts input pin B is connected to "RSTNCT".

3 . 2 . 2 DEFINE

The DEFINE instruction (See E-2265 , 3 . 2 , 3 . 3 . 1) is in working condition.
It has the form,

* DEFINE type

where the variable "type" is the name given to the device which is defined by the
subsequent data cards. The new device definition is added to the glossary of the
working file.

Figures 3 -2 through 3 -5 show three devices being defined , a 4-input NAND
gate, a J-K flip-flop, and an oscillator.

3 . 2 . 3 SIMULATE

The SIMULATE instruction has the form,

* SIMULATE (filename)

The parentheses indicate that the variable ''filename" is optional. If present ,
filename'' is the name of the (read) data file to be simulated; i f missing, the file 11

simulated is the current working file.

26

The following subinstructions a re available:

EVENT
SE QUENC E
TRACE
SAMPLE
RUN
INITIAL0
INITIAL1
PROP
MINPULSE
PRINT

(3.3.2,b; 3.3.3,a41);:'6
(3.3.2,b)
(3.3.2,cl)
(3.3.2,c2; 3.3.3,a4a)
(3.3.2,d; 3.3.3,a4b)
(3.3.3,c)
(3.3.3,c)
(formerly PROPAGATE: (3. 3 . 3 , ~)

The MINPULSE instruction is used to define the minimum number of time
units a signal must either be 0 or 1 for a hazard not to exist.

A sample simulation is shown in Figs. 3-6 through 3-15. The PRINT
instruction is used in Figs. 3-6 and 3-7 to obtain the l is ts shown, and in Fig. 3-8
to obtain the linear trace.

3.2.4 CHANGE

Thirteen other PRINT options a r e available at this time.

The operations which can now be performed with the CHANGE instruction,

* CHANGE

are (1) the identification of a drawing, signal, or device may be changed, and (2)
a device may be moved to a different drawing or to a different location on the same
drawing. Other functions have been coded, but not debugged.

3.2.5 OUTPUT

This instruction,

* OUTPUT (filename)

is used to generate signal lists and other useful data from either the file "filename"
or, i f this variable is missing, from the current working file.

3.2.6 EXIT

An EXIT card is needed at the end of each OLLS run to insure a normal
FILLIP termination. Its format is simply,

* EXIT

**Numbers in parentheses a r e references to sections of Report E -2265.

27

3 . 3 Contemplated Programs

The following asterisk instructions a re planned for future implementation:

DELETE (3 . 3 . 1)

COPY (3 . 3 . 3)
ASSEMBLE (3 . 3 . 4)

DELETE TYPE (3 . 3 . 2)

3 . 3 . 1 DELETE

The function of the asterisk card

* DELETE

is described in the report (Section 3. 5 .9)

3 . 3 . 2 DELETE TYPE

The instruction

* DELETE TYPE type

wi l l be used to remove the definition named "type" from the glossary of the working
file (See Section 3 . 5 . 1 0 of the report).

3 . 3 . 3 COPY

The COPY instruction, which w i l l have the format

* COPY FROM filename

wi l l be used to duplicate into the working file useful device definitions
or entire drawings. The source of these definitions and drawings is the file
filename ' I .

11

3 . 3 . 4 ASSEMBLE

The ASSEMBLE instruction,

* ASSEMBLE type

wi l l be used to create a device definition named "type" in the glossary of the working
file; data following the asterisk card indicates several instances to be combined to
form this definition. (See Section 3 . 2 . 4 of the report).

28

4. THE CRT INTERACTIVE SYSTEM

This section was called Section 3.6 in E-2265 but because the CRT programs
now operate a s a stand-alone system and because it is this system which we feel has
the most promise for the future, we present here a new section with the included
figures which illustrate our progress to date.

The CRT system is written in IBM machine language. A data structure
very similar to that used by the FILLIP system (See E-2265 Section 3) w a s imple-
mented by machine language subroutines which allow the program to operate on a
file which is much larger than the available CPU core capacity.
can rapidly follow pointers to data which is not currently in core if s o required by
the operator at the CRT.

These routines

A s described in E-2265 our design philosophy for the CRT system has been
to relieve the logic designer of the burden of learning detailed card formats and
conventions and in general to show him the way as much as possible. Instructions
to the designer appear. prominently on the screen when appropriate. Options which
a r e logically available for him to select at any time are indicated by a "#" to the
left of the option. We call this character a "light button", and, to select it, the
designer merely points the light pen at it and depresses the tip switch in the pen.
When the designer has selected a particular option, he is given feedback from the
program by changing the "#" to the character "XI' to indicate selected.
only reminds him of what option he is currently operating, but it should help prevent
him from "fat fingering" the light buttons accidentally with the light pen (which is
somewhat similar to a blunderbuss).

This not

W e have tried to avoid use of the alphameric keyboard except where
absolutely necessary, i. e. , when creating new names for files devices, signals
etc. Again this is to relieve the designer of any opportunity to do any thinking
except on his design problem. We have provided a parallel set of light buttons to
those on the screen with the programmed function keyboard (PFK). We found that
after a designer has had some hours of experience operating the CRT system, he
can work slightly faster by using the P F K if he learns by memory the assignments

29

of the buttons.
time and trouble required to hang up the light pen in order to type a ch
press a button. This may seem trivial, but experience has shown us t

4.1 Light Pen Tracking

One important factor which we found essential to consider is the

One area where both "light-buttons" and the keyboard a r e inadequate is in
describing lines and shapes to the logic file.
detector, the only way in which the program can know the X, Y coordinates of the
pen on the screen at any time is for the pen to detect light from some symbol which
is already on the screen at coordinates known to the program.
then take logical action to move the symbol to a new set of coordinates and add the
new X, Y point to the line segment currently being drawn. Basically the program
must display a tracking symbol which traps the light pen within i ts light boundaries.
Thus whenever the designer moves the light pen, the program receives an interrupt
from the light pen detect and moves the tracking symbol in the direction of the
detect.

Since the light pen is only a light

The program can

Although there a re many possibilities in the design of tracking symbols
such a s the static display of a circle, square, cross, spiral, etc., or a dynamic
display of a random pattern of points or a regularly scanned area of the screen,
only a few a r e well suited to a particular application. Dynamic patterns require
local hardware able to update the display continuously and handle a very high
interrupt rate.

Static patterns must be of just the right shape, size, light intensity, and
light sensitivity to provide the user with sufficient degrees of freedom to accomplish
his task. In the three tracking symbols shown below, we have combined the
characteristics of our available hardware with the requirements of OLLS to produce
a very flexible facility for light pen tracking. (Each symbol is about 1/2 inch in
diameter.)

a)

I)
e e

b) 6 e e

I) I)

e

s long straight lines since the pen can detect light only from a
ally or horizontally related to the center. Symbol b) can be

h curves can be drawn.
45' a s well as vertically or horizontally. Symbol c) has enough

30

The basic symbols above have been augmented by providing the designer with
some frills which a r e available for him to select such as tracking magnification
for very detailed work, a means of moving the symbol unattached from the line
segment he is drawing, and a means of turning the symbol on and off while tracking.
(Remember the pen is trapped by the symbol and if the symbol could not be turned
off, the designer could not even pick up the pen without leaving a light smear on
his work. 1 The point in the center of each symbol is used as an alternate action
switch which causes the program to sensitize (enable) or desensitize (disable) the
points around the center for light per detects. We have found that with these frills,
light pen tracking can be very easy and effective. (See Fig. 4-25)

Two things are essential to economical light pen tracking. One is software
designed with the user in mind and the other is hardware which allows interrupts
to be processed rapidly without tying up too much CPU. For a time sharing environ-
ment this would be impossible without a small dedicated computer to buffer interrupts
and update the display. In a multiprogrammed environment such a s ours, interrupts
can be handled more readily by the CPU since the programs to handle them are in core
when needed.
which can execute buffer subroutines would be better than the Model 1. The buffer
subroutine can update the position of the tracking symbol and add points to the seg-
ment being drawn interrupting the CPU only when the operator wishes to transmit
a complete line segment.

In either environment a display unit such a s the IBM 2250 Model 3

The following figures are reproductions of photographs taken at the IBM
2250 CRT console a s the designer uses almost as much of the system a s is opera-
tional to date. A s of this writing two important sets of menus, DRAWING MANI-
PULATE and OUTPUT OPTIONS, a re in the final stages of debugging.

31

Figure 4-1

When the system first comes on, we see the major options
available and that we have neither a Read Only File nor a Working
File.

The designer selects FILE MANIPULATE by touching "#"
with the light pen.

32

33

Figure 4-3

The designer detects

SELECT WORKING FILE.

An “XI’ always appears in place of the ‘ I # ’ ’ which the designer
detected.
lest he forget or blunder with the light pen.

This shows him positively what he is currently doing

34

35

Figure 4-4

The designer detects

03CCCCCC to be his working file. This file w a s
created by

CREATE NEW FILE on an earlier run.

Figure 4-5

After the designer detects

EXECUTE

we see that the WORKING FILE is

03CCCCCC as requested. (In fact the entire file
is moved from the IBM 2314 disk pack where all the files a r e stored
to the IBM 2301 drum.
and protects the old copy of the file in case of some system disaster.)

The drum operates much faster than disk

NOTE: The actual selection of which storage devices wil l be
allocated to the various files is determined at execution time
by the Job Control Language statements which invoke OLLS.
The JCL can also select a different "ACTIVE OLLS FILE
LIST" for different runs thus providing complete flexibility
to run OLLS in any IBM 360 environment or to transport an
OLLS file or the OLLS System to a different computing facility.

36

37

Figure 4-7

see the major options available,
file and can set out to do some

VICE MANIPULATE

3%

39

Figure 4-8

The DEVICE CENTRAL menu shows the list of available
devices in the designer's working file (OSCCCCCC). These
devices are his to copy, delete, o r modify (at his own peril)
to suit his design needs. It is from this list that he chooses
devices for his drawings.

Figure 4-9

The designer has detected

DISPLAY 02CCCCCC DEVICE INDEX
then # EXECUTE

to display the l ist of devices in the read only file (OZCCCCCC).
These devices a r e available only for the designer to display or
to copy to save him the time and trouble of redefining a useful
device himself.

40

41

Figure 4-10

The designer wishes to examine a particular device
(4BCOMP) in the read only file perhaps to pirate a good idea
o r to decide i f he wants to copy it to this working file.

He detects

DISPLAY DEVICE
4BCOMP

followed by
EXECUTE

Figure 4-11

The DISPLAY DEVICE menu allows the designer to examine
the device shape, terminals or equations. (He is now looking at
shape and terminals.

42

43

Figure 4-12

The designer has detected
EQUATIONS

(and has turned off the terminals display for some reason by
detecting

X TERMINALS)
The equation list shows the two output equations and l ists the inputs.

RETURN TO DEVICE CENTRAL

Figure 4-13

The designer wishes to display yet another device so he
detects

DISPLAY DEVICE
BINARY01
EXECUTE

44

45

Figure 4-14

This shows an example of what we consider about the limit
of complexity of a single component device. A more complicated
device would better be defined as a "drawing1' in i t s own right and
built up from smaller component devices.

Figure 4-15

To create a new device he detects
CREATE OR COPY DEVICE

and begins typing in:

FLOP01 BOOLEAN FLIP FLOP (3NAND GATES)

This new device wil l be added to his working file when
he presses the END KEY after typing.

46

47

Figure 4-17

When the designe

DISPLAY 03CCCCCC DEVICE INDEX

EXECUTE,
(his working file)

he sees that FLOP01 has indeed been added to the list. It
to the 3NAND he copied. Had he not elected to

o-called NULL device would have

48

49

Figure 4-18

In order to make a flip-flop out of his FLOPOl which
is now a single 3NAND gate, he detects

MODIFY DEVICE
FLOPOl

f ollo wed by

EXECUTE

Figure 4-19

The MODIFY DEVICE menu is initially very similar to the
DISPLAY DEVICE menu with the addition of the four options which
allow the designer to modify the device size shape terminals
o r equations.

50

5 1

Figure 4-20

A flip-flop is larger than a 3NAND gate so the designer
first detects

SIZE/MASKS

and a sub menu appears which allows the designer to alter the
size. (MASKS wi l l be explained later.)

Figure 4-21

SIZE(Y) = 1

3

EXECUTE

to change the vertical size to 3 units.
option at the bottom of the screen controls the display of the size
outline. 1

(The #NO GRID - #GRID

52

5 3

Figure 4-23

The designer rotates the center device to each of the two
outer positions a s shown by

a) # X AXIS, Symmetry

r e

Figure 4-25

New segments a re added to NEW S H A P E by

P E N DOWN (P F K)

moving the tracking symbol to each new position and ma
point with the programmed function keyboard.
P E N UP.

This co
This mode is useful for drawing long s t r

56

57

Figure 4-27

To modify the original 3NAND terminals, detect

TERMINALS

to cause this sub menu to appear.
the origioal 3NAND gate.
and IN2, and finally add a new terminal OUT4.

The t e inals shown a re of
, move OUT09 IN13 We wil l delete

58

59

A new terminal OUT4

ADD,

Figure 4-29

is added by detecting

typing in the terminal characteristics as desired, and pressing the
END KEY.

kground such as
for n

60

Figure 4 -31

63

detect

Figure 4 - 3 3

Again we see the major options available. We have a
satisfactory list of devices so we can proceed to:

DRAWING MANIPULATE

64

the same fa

Figure 4-35

A s of this writing

MODIFY DRAWING
DISPLAY DRAWING

and
OUTPUT OPTIONS

a r e in final stages of implementation.
(See Fig. 3-41 and Fig. 3-42 in E - 2 2 6 5 .)

66

5. CONCLUSION

After almost three years of experimenting with different file structures
(from the very earliest forms in Honeywell 1800 MAC to the very elegant forms
possible in FILLIP) , with different drawing and simulation algorithms , and with
both interactive and non-interactive systems , we believe the following three points
express the essence of our findings and our contributions to the area of computer
aided design of logic circuits.

a) The nature of the OLLS project is of such complexity that the key to
success in any implementation of the required goals is the structure of the data
file.
efficiency and ease of coding.
embodies (we feel) most of the requirements of today's logic subsystems and has
the ability to be easily expanded as future developments in this field require.

The means of the implementation of this structure w i l l affect only the running
The data structure outlines in Section 3 . 1 of E-2265

b) A card input system is almost unacceptable in a production environment.
A s an experimental tool, however, a card input system such a s the FILLIP logical
simulator can be a powerful engineering aid to understanding complex logic circuits.

c) Today's technology in the field of logic circuits is advancing too fast
for a system which has not been designed to accommodate changes with ease. It is

absolutely essential (especially in the area of defining devices) that there be a
minimum of arbitrary constraints upon the user such as insufficient file size, limited
number and variety of device terminals, shapes, or behavior, or input/output
formats which a re not completely flexible to suit the current application of the system.

We now have an operational facility (MAC 360) to produce logic flow dia-
grams, logical simulations, useful output lists, and a wrap deck compatible with
existing wirewrap software.
almost operational a s described in Section 3. We wi l l continue our efforts at de-
bugging some of the newer features of that system although at a reduced level since
i ts production usefulness is not a s apparent now a s is the CRT system.
effort in the near future will be toward making the interactive CRT system opera-
tional, at least to the point where we can produce logic flow diagrams, lists, and

We have the complete FILLIP Card Input System

Most of our

67

plots which a re of superior quality and less expensive in te rms of time and money
than the MAC 360 system. We anticipate being in a position to phase out the
MAC 360 system in early 1969.

For.purely economic reasons we have fallen short of our goal: We do not
have nor wi l l we have an On Line Logical Simulator as the acronym OLLS suggests.
We have instead two separate systems which i f combined would do all that we
initially set out to do. We have the on-line CRT system which has f u l l drawing,
file manipulating, and output capability but which cannot at this time perform logical
simulations; and we have the FILLIP card input system which is not interactive,
cannot produce any graphic output, but probably has the most powerful logical
simulation capability available in the country today. Most of the difficult design
work for an integrated system is complete, however, and we a re now in a position
where we require some external support for the implementation of the total system.
The choice of whether it should be an all FILLIP implementation, a machine language
implementation, or a combination, is not important,
have shown the utility of such a system, have explored most of the alternatives
which might be considered in implementing it, and have outlined a clear set of input,
output, and internal structure requirements necessary for the computer aided design
of logic systems.

What is important is that we

68

Internal

R. Battin
R. Crisp
E. Duggan
J.B. Feldman
S. Forter
F. Glick
A. Green
W. Grigg
Eldon Hall
A. Harano
D. Hoag
A. Hopkins (25)
F. Houston
H.R. Howie (25)
t J. Kingston

E-2410

DISTRIBUTION LIST

A. Kosmala
A. Laats
J. Laning
L. Larson
P. Mimno
J. Nevins
J. Nugent
R. Ragan
G. Schwartz
H. Thaler
M. Trageser
R. Woodbury
W. Wrigley
Apollo Library (2)

MIT/IL Library (6)

*Letter of transmittal only

External

NASA/E RC (50 + 1 R)

575 Technology Square
Cambridge, Massachusetts

A TTN: KC / C omput e r Re search Laboratory
Mr. D. J. Kelleher (Letter of Transmittal only)

