General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

QUARTFRLY PROGRESS REFORT
 CONVOLUTIOMAL CODNG TPCERLCUES

FOR DATA PROTECTION

NASA GRANT NOI-15-004-026

 Einary Convclutioral Cate of Rate $1 / 2$ Suthabis for Semerts Decodite
(a) Description of the Code

The requirements of the Flunt Data Section to the Hze taty have indicated the need for short osstmint 1 ength, $E=1$, convolutional codes that mill yield ist eroo peotablitisy vert decoded by sequential deccitrs. These pontidemthen ixi is a search for a good nor-systematic scie since the "enfective" son-
 that of the mare usual systeratic code. A further menimoment is that the encoder shond be simple-that is, that there shonld te a sreil numser of inputs to the modilic-two auders used in the enculer. This requiretent stem from the fact trat the encoder is a handare device in the space vehicle itself. This search led to the findins of tire code described kelow which crovicies extronely low decoder emor probability anc can le encodeá by a device of mmarable simlinity, recuit s fener manulctwo aders than the presentily usei systematic code of the same constraint lenth. The sode has the furtren decimbie feature that, although non-systeratic, the informarion stome pati be zasily ottaired from the encoded disits without the use \because a decoder. This latter ieature permits guick "1od in" at erexnexine iate ty grouri stations nithout ienoisre squipmit.
 inforation segunce

$$
\begin{equation*}
I(D)=i_{0}+i_{1} D+i_{2} D^{2}+\ldots \tag{I}
\end{equation*}
$$

is used to form two encoded sequences, $T_{1}(D)$ and $T_{2}(T)$, by the rules

$$
\begin{align*}
& T_{1}(D)=G_{1}(D) I(D) \tag{2}\\
& T_{2}(D)=G_{2}(D) I(D) .
\end{align*}
$$

The cede is systematie if $G_{1}(D)=1$, i.e. if $I(D)$ is itself the first encrded sequence.

The starch for a grod ron-systeraitic code was Imited to codes such that

$$
\begin{equation*}
G_{1}(D)=D+G_{2}(D) \tag{3}
\end{equation*}
$$

With this corstraint, we see from (2) that

$$
\begin{equation*}
\mathrm{T}_{1}(\mathrm{D})+\mathrm{T}_{2}(\mathrm{D})=\mathrm{DI}(\mathrm{D}) \tag{4}
\end{equation*}
$$

So that simply by adding (modulo-t:o) the two encoded sequences together, one cbtains the information sequence unaltered except for a delay of one time instant.

It has been observec fron experience, that generators (i.e. the coefficients in the polynonials $G_{1}(D)$ and $G_{2}(\mathbb{D})$ with a hien density of "ones" generally result in low error probability. As will be seen later, a dencity of "ones" well above one-half also leads to a simple encoder. For tnese reasons, a search was made to find a good code using the following algorithm:

Algorithm: (1) Set the first ti:o coefficients in $G_{1}(D)$ equal to "orfe:" end set $k=3$.
(2) Set the ith disit in G_{1} (D) equal to "one"
unless settire to "zero" gives a greater minirum distance over the first k branches of the code tree.
(3) Increase k by 1 and go to (2).

Application of this algor :thm in a computer program up to $k=48$ yielded the followins generators (coefficients show in the usual octal form):

$$
\begin{align*}
& \mathbf{G}_{1}=(733,533,676,737,355,3)_{8} \tag{5}\\
& \mathbf{G}_{2}=(533,533,676,737,355,3)_{8}
\end{align*}
$$

The miniman distance of the Aull code is 15 . Since the algorith is "nested", truncation of the two generators at any $k, k \leq 48$, will yield a good code at thet constraint iength.

For purposes of testre, the code was truncated at $k=36$ since this is a likety fieure to be used in some apolication. Hence, tire stratiors used in the test were:

$$
\begin{align*}
& G_{1}=(733,533,676,737)_{8} \tag{6}\\
& G_{2}=(533,533,676,737)_{8}
\end{align*}
$$

By computer search, it was determined that this code had a "minimun distance" (mes jured over the constraint lenath of 36 branches) of 11 and a "free distance" (minimum distance over the full code tree) of at least 17. The free distance has proved to be a better predictor of error procability that the minimum distance ar? thes code has a hish value of this parameter. The exact free distance, however, is not yet known. It should be noced that G_{1} contains 28 "ones" out of 36 digits, an exceptionally high density of"ones."
(b) Implementation of the Encocier

The "trick" used to reduce modulo-two adder connections in the encoder when the-generators have a high density of "ones" is to implement the cormplement of the generator plus adding a circuit whose el fect is to complement the transfer functicr breceding it. This latter circuit can be-simply built as shown in Fig. 1. At the output of the adder where $Y(D)$ is formed, we have the equation

$$
\begin{align*}
Y(D) & =I(D)+D\left[Y(D)+D^{M} I(D)\right] \\
\text { or } \quad \frac{Y(D)}{I(D)} & =\frac{1+D^{M+1}}{1+D}=1+D+D^{2}+\ldots+D^{M} \tag{7}
\end{align*}
$$

Hence, if $G(D)$ is a polynomial transfer function of degree H, \dot{a} circuit whose transfer function is tne complement of $G(D)$, i.き.

$$
G(D)+1+D+D^{2}+\ldots+D^{M}
$$

can be obtained by adains the output of the circuit in Fis. 1 to the output of the circuit whose transfer function is $G(D)$. Tro M memory cells used to realize $G(D)$ can be the same as those usoi in the circuit of Fiz. I so that the total circuit san be built simply as show in Fig. 2.

These considerations can now be used to develop an encoder for the code whose generators are given in (6). Taking $G(D)$ as the complement of $G_{7}(D)$, we have in octal form

$$
\begin{align*}
G & =(044,244,101,040) 8 \\
\text { or } \quad & G(D)=D^{3}+D^{6}+D^{10}+D^{12}+D^{15}+D^{20}+D^{26}+D^{30} . \tag{8}
\end{align*}
$$

Upon taking $M=35$ and takira $G(0)$ as in (8), it follows from the analysis of Fiz. 2 that $G_{1}(D)$ as in (6) is the transfer function relating $T_{1}(D)$ to $I(D)$ in Fig. 3. Moreover, the transier function relating $T_{2}(D)$ to $I(D)$ in Fig. 3 is just

$$
D+G_{1}(D)=G_{2}(D)
$$

so that the circuit in PiE. 3 is a complete encoder for the binary, $\mathrm{R}=1 / 2$, code with coistraint lensth 35 branches as specified by the generators in (6).

The complete encoder uses only 11 two-input modulo-two aciuers, compr:ed io 21 two-input modulo-two adders required for a tapped shift-register to implement the systeratic code with the seme constreint length that is presently utilized in tie NASA GSFC convolutional coding systems. This code has the generators:

$$
\begin{aligned}
& \mathrm{G1}=(400,000,000,000)_{8} \\
& \mathrm{G} 2=(715,473,701,317)_{8} .
\end{aligned}
$$

Since G2 has 22 "ones" amons its 36 cceffici ${ }^{2}$ nts, the encoder for the systematic coie could profitably te instrumented in the narner show in Fis. 2 . This wuld lead to an encoder with 16 two-input modulo-t:o aditiv, a considerable savinge over the single tapped shift-registor thetatation tut still considerably more than the 11 aduers requiret su the non-systeratir code. This advantace of the non-syster H code is cuite sumprisine since one "Intuitively" expects that a gocd ron-systematio code would be harder to encode
than a good systematic code with the sane constraint lensth.

(b) Performance of the Code

The error probability and comutation performance of the nonsystematic code of (6) relative to the syscematic code of (9) is given in Tables I to IV. Table I Eives the perfomence of the codes on the additive Gaussian ncise channel with an $E_{b / N}$
(Energy per information bit to single-side noise power per Hertz ratio) of 2.0 (3 do). The performance is nearly identical for the tue codes, with the systematic code havirs a very slight computational auvantage. As will be seen, this advantage derives from fact that the systematic code often decodes a frame in reasonably few computations when "prudence" demands a closer examination, i.e. the systematic code is considerably more prone to decodiñ errors.

This latter fact is brought out clearly in Tables II, III and IV which shows perfomance on successively worse binary symetric channels (ESC's.) These BSC's are chosen so that the code rate $R=\frac{1}{2}$ represents $90 \%, 100 \%$ and 110% respectively of the computational cutoff rate ($R_{\text {comp }}$) of the channel. For the worst channel (Table IV), there were no decodine errors over 1000 deccied frmines whereas nearly 10% of the sane frames were decoid incorrectly when the systematic code was used.

Allowinz a rather large (50,000 computaizons-a comutation betng defired as a "rorward look" and requirire about $100 \mu s \in c$ on t. 2 UNIVAC 1107 ecmputer) arourt of computation kefore the attempt to decoie each frame of 256 infomation bits is arandoned, it is remarkable that no decodinc error has yet teen vade in any of the
sequential decodine simiations using the non-systematic code of (6).

A good qualitative comparisor of the nor-systematic code of (6) to the systematic code of (9) can be obtained from Table IV which gives their performance on a very misy BSC. There are 141 more frames out of 1000 frames which fail to decode (in 50,000 computations on less) for the non-systeratic code. However, 87 frames are erroneously decoded with the systematic code compared to none for the non-systematic code. The conclusion is that the decoding terminated on the extra 141 frames with the systematic code by "decodins" when the decoded frame error probability was near 50%. Without trying to be fiippant, one could term this a "Fouls rush in where angels fear to tread" phenomenon that accounts for the computational advantage of the systematic code as a consequence of its sreater proneness to decoding : ror. The non-systematic code emerges a clear winner in system perfomance as well as system complexity.
2. Free Distance of Convolutional Codes.

Prior work done inder this Erant has estatilished the importance of the free distance, $d_{\text {free, }}$ of convolutional codes when used with sequential deccine as a determirer of the decoder error probability.

Recent vork tu D. Costello has resulted in a "Gilbert-like" lower bound on the frce instanae atiairabie :ith periodic, time-varying convoluthe: qu.. Tris hork chom that surnisincly larce free distance ane attatelie, Zu example, at $R=1 / 2$, a free distarce to corvtratt i=teti natio of at least 0.39 can ce obtained. This - comans to an ori•ay rirtmu distence to constraint lensth ratio
of at least 0.11 guaranteed by the usual Gilbert bound. As $R \rightarrow 1$, the ratio between these two bound becomes infinite. Costello's lower bound on $\mathrm{d}_{\text {tree }}$ has also been used to ovtain an asymptoticaily tight bound on the error probaidility attainable with low rate codes on the BSC.

A technical report, now in preparation, will give complete details of this work.
3. Simulation of the Jeiinek Sequential Decoding Alcorithm
J. Geist has just completed the programing of the UNIVAC 1107 computer in the Univ. of Notre Dame Conputing Center to simulate a sequential decoder employing the Jelinek decoding algcrithm, This facility will te used in the next quarter to cotain detailed performace comparisons with the Fano algortim. Preltminary results indicate that:
(a) The two alerirms require about the same decoding time wen the code rate F is about 90% of $R_{\text {corm }}$. For lower rates, the Jelinek algorithm is elightiy suerior.. For highen rates, the Fan:o algoritinm becomes much superior.
(b) The time per comatation of the Jelirek algorittm grow quadraticaliy with the total numer of comutations requined to decod the frame. The time ner computation is fixed with the Fgro algoritim.
\rightarrow Unit delay

$I(D)$

Fig. 1 Binary Linear Sequential Circuit with Transfer Function $1+D+\ldots+D^{M}$

Fig. 2 Binary Linear Sequential Circuit with Transfer Function $G(D)+1+D+\ldots+D^{M}$ where $C(D)=g_{0}+g_{1} D+\ldots+g_{M} D^{M}$

Nincoder for the Non-Systematic Code Havinf,
$G_{1}=(733,533,676,737)_{3}$
$G_{2}=(533,533,676,737)_{3}$

TABLE I:

$\left.E_{\mathrm{b} / \mathrm{N}_{\mathrm{O}}}=2.0: 3 \mathrm{~d} \mathrm{j}\right)$. Rectites
256 Informateon Bits Eact..

No. of framse with corqutation, equal to or Ereetor than the nuwber shom ir.

TABLE III: Performence on the Binary; Symetric Channel with Crossover Prstability 0.045 ($\Omega=R_{\text {comp }}$). Results of Lecodirg 1000 Irames o: 256 Information Bits Each.

	Nor.-Systematic Coie of En. (6)	Systeratic Code of EO. (9)
No. of frames with 292 corputation equal 400 or greaten than the 550 numer shom in the 700 first colurn 850 1000 1500 2000 2500 5000 10,000 20,000	$\begin{array}{r} 1000 \\ 991 \\ 785 \\ 581 \\ 477 \\ 382 \\ 240 \\ 167 \\ 134 \\ 63 \\ 36 \\ 23 \end{array}$	$\begin{array}{r} 1000 \\ 991 \\ 756 \\ 510 \\ 403 \\ 320 \\ 1137 \\ 138 \\ 104 \\ 48 \\ 31 \\ 11 \end{array}$
No. of erased frames (computation exceedins 50,000)	8	4
No. of frames resulting in decodins emons	0	2

TABLE IV: Pe.formance on the Binary Symetric Channel with Crossover Probability 0.045 ($\rho=1.1 R_{\text {comp }}$). Results of Decoding 1000 Franes of 256 Infor-maiion bits Each

