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FOREWORD 

This interim report summarizes the progress to date of work performed by 

Northrop-Huntsville while under contract to the Computer Research Laboratory 

of the NASA Electronics Research Center, Cambridge, Massachusetts (Contract 

NASL2-500). 

Mr. W. E. Miner has served as the NASA technical coordinator during this 

period. 
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SUMMARY 

This r epor t  descr ibes  and compares a number of non-linear guidance schemes 

t h a t  r equ i r e  information from a precomputed reference t r a j e c t o r y .  However, i t  

i s  not necessary t h a t  t h e  space vehic le  c lose ly  follow the  nominal path. The 

methods are i n d i r e c t  i n  na ture  and are based on one s t e p  iterative techniques 

f o r  so lu t ion  of t h e  nonlinear boundary equations. 

t h e  schemes r equ i r e  accura te  evaluation of t h e  functions g 

boundary conditions.  The de r iva t ives  of t h e  functions g required i n  t h e  

iterative techniques are obtained cheaply by cor rec t ing  precomputed de r iva t ives  

corresponding t o  the  reference t r a j e c t o r y .  

For each guidance command, 

def in ing  the  i 

i 

The guidance algorithms considered may be applied t o  a l a r g e  va r i e ty  of 

space missions, including those requiring bang-bang t h r u s t  magnitude con t ro l .  

I n  general ,  a broad class of guidance algorithms is described and t h i s  r epor t  

selects one technique from t h i s  class which most e f f i c i e n t l y  solves t h e  

optimal guidance problem. 
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Section I 

INTRODUCTION 

1.1 BACKGROUND 

The purpose of t h i s  document is t o  descr ibe  work completed t o  d a t e  under 

Contract NAS12-500 with t h e  Computer Research Laboratory of t h e  NASA Elec t ronics  

Research Center. 

f o r  optimal guidance functions f o r  ascent t o  o r b i t .  The ca lcu lus  of va r i a t ions  

has been used t o  formulate necessary conditions f o r  t h e  optimal guidance func- 

t i ons .  

The major goal is  t o  obta in  approximate a n a l y t i c a l  so lu t ions  

Ef fo r t s  have been d i r ec t ed  toward deriving approximate so lu t ions  of 

t h e  nonlinear,  two-point boundary condition problems t h a t  r e s u l t .  

Since March 1968 a d i f f e r e n t  technique has been employed i n  t h e  develop- 

ment of expansions of t h e  functions g 

gi 

(describing t h e  terminal end cons t r a in t s  
i 

= 0) and t h e  corresponding guidance functions.  

Previously, Taylor series expansions i n  t i m e ,  about t h e  i n i t i a l  po in t  of 

t he  t r a j e c t o r y ,  w e r e  used. 

means f o r  t h e  i n i t i a l  values of t h e  Lagrange m u l t i p l i e r s ,  from which t h e  optimal 

con t ro l  could be determined. 

assumed t o  be ava i lab le .  

m u l t i p l i e r s  w e r e  employed. Some of t h e  main findings of t h i s  former approach 

w e r e :  For c e r t a i n  missions, where change i n  a l t i t u d e  d i d  not exceed 15 k i lo-  

meters, th i rd-  and fourth-order Taylor series would y i e l d  accurate r e s u l t s  

even f o r  range angles t o  180 degrees. 

g rea t e r  a l t i t u d e  changes unless much higher order series w e r e  used. 

achieved from t h i s  approach were documented i n  references 1 and 2. 

The r e s u l t i n g  equations w e r e  solved by i t e r a t i v e  

A good approximation t o  the  f i n a l  t i m e  tF w a s  

However, no i n i t i a l  approximations t o  t h e  Lagrange 

Accuracy began t o  f a l l  off rap id ly  f o r  

The r e s u l t s  

Since Taylor series expansions i n  t i m e  of t h e  gi's above t h e  fourth-order 

are prohib i t ive ly  complicated, i t  w a s  concluded t h a t  t h e  expansions about t he  

i n i t i a l  po in t  of t h e  f l i g h t  path should be abandoned and t h e  method should be 

modified accordingly. 

augmented and s impl i f ied  by making use of p r i o r  knowledge of t h e  space f l i g h t  

mission t o  be accomplished. 

I n  addi t ion  it  w a s  decided t h a t  t h e  method should be  

1-1 
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The different approach still consists of the solution of the end con- 

straints g 

values of the Lagrange multipliers. Values of g 

of tF and the initial multipliers, are obtained by means of numerical inte- 

gration of the equations of motion and the Euler-Lagrange equations. 

class of guidance schemes are embodied in the new approach, but in the case of 

each scheme g is expanded in Taylor series about approximations to tF and the i 
initial Lagrange multipliers 

These series are terminated after several terms and set equal to zero. 
resulting system of polynomial equations are either inverted to obtain explicit 
expressions for t and the initial multipliers, or solved numerically for these 

corrections. In all of these schemes, derivatives of g with respect to t 

and the initial multipliers are required. These derivatives correspond to 

the initial state and the reference t They may F 
be computed numerically (by integration of differential equations referred to 

as the "equations of variation") or obtained approximately (in ways to be 
described) from the reference trajectory. 

= 0, where g i i is considered to be a function of tF and the initial 

corresponding to given values i' 

A large 

obtained from a reference optimal trajectory. 

The 

F 

i F 

and the initial multipliers. 

These new nonlinear guidance schemes, unlike the method of Silber and Hunt 

in reference 3 or second variation guidance (references 4 and 5) are self- 
correcting; i.e., errors introduced by a drift away from the reference path 
are removed. 

It is possible to strengthen the new methods by combining them (in a manner 
to be discussed) with the method of Silber and Hunt or the second variation 

method. In regard to the use of the latter method, there is a note provided 

in Appendix A, which has been published in the AIM Journal (ref. 6). 

Another guidance method, which combines the new approach with the former 

of expanding in time about the initial point of the path is given in Appendix B. 
There is no intention at present of implementing the theory of Appendix A or B. 

1.2 PROBLEM DESCRIPTION 

The derivation of necessary conditions, by means of the calculus of vari- 
ations (COV), can be found elsewhere (ref. 7) and will not be repeated here. 

1-2 
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The Motion and Euler-Lagrange (MEL) differential equations describing 
the optimal paths for minimum fuel consumption are 

P 

1 . 1 ~  x=-frA-- m A  

where x and & are the position and velocity vectors with respect to a non- 
rotating earth-centered Cartesian coordinate system, A and -i are the corre- 
sponding Lagrangian multipliers, p is the gravitational constant, F is the con- 
stant thrust magnitude, m = m - B(t-t ), and B is the constant fuel burning 
rate magnitude. The subscripts o and f signify initial and final values, 

respectively. 

e.g., missing initial values, final time, and possibly other unspecified 

quantities. 

meters, e.g., position, velocity, thrust to weight ratio, and mass flow rate 

to weight ratio. 

I 0 

Let 5 represent an N vector of discrete unknown quantities, 

In addition, define y to be an s vector of initial state para- 

The initial and final end constraints may be represented by the equations 

fib, Y, 5) = 0 (i = 1, ..., N) 
where T-I = q(y, 5) includes the final states and multipliers considered as 
functions of the initial values. 

end conditions, transversality equations from the COV, and scaling conditions. 
These end constraints are usually geometric 

Then it is desired to solve the equations 

gi(Y, 5) = 0 (i = 1, ..., N) (1-2) 

for 5 in terms of initial s.tate parameters y. 
is the solution to the differential equations (1-1). 

Implicit in equations (1-2) 

To illustrate the notation, consider a minimum fuel constant burn mission 

into 8 prescribed terminal orbit from a specified position and velocity. 

initial state vector has the form y = (x 
given. 

The 

io, F/mo, B/mo)T and t = t is 
0 

0: T Then 5 becomes the 7 vector (A o ,  A o ,  tf) . The seven boundary conditions 

1-3 
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include five geometric terminal conditions, one transversality equation, and 

a scaling condition, 

with the same geometric constraints of the first example. 

requirement that the trajectory be of a burn-coast-burn nature. 

state vector y is the same as before with t = t given. Now 5 becomes a 9 
vector (Ao9 io, tl, t2, tf) where tl and t2 are the switch times relating 
to the end of the first burn arc and the beginning of the second burn arc, 

respectively. The corresponding nine boundary conditions include the seven 

A s  a second example, consider a bang-bang control mission 
Further impose the 

The initial 

0 T 

2' of the first example plus an evaluation of the switching function at tl and t 

In the following sections various iterative techniques for solving equa- 

tions (1-2) are described. Section I1 gives a preliminary discussion of iter- 

ating functions for one equation in one unknown. Sections I11 and IV extend 
two particular methods to N dimensions (nothing new) and applies them to the 
optimal guidance equations (1-2). Section V presents some numerical results 
comparing the methods of Sections 111 and IV. Included also is a discussion 

of convergence of the two techniques. 
and overall performance, Section VI describes a guidance routine based on the 
best numerical procedure. Sections VI1 and VI11 conclude the report with a 

discussion of overall performance, summary, conclusions, and extensions. 

Based on the studies of convergence 

1.3 INTRODUCTORY COMMENTS 

Many guidance schemes can be derived by applying various analytic and 

numerical techniques to the system of nonlinear equations (1-2). 

The method of Silber and Hunt considers equations (1-2) as identities in 

y, i.e., 

gi[Y, 5(Y)l = 0 (i = 1, ..., N) 
Then the necessary assumptions from implicit function theory are made and Taylor 

series expansion of <(y) about some nominal y are determined. 
... 

Thus, an explicit formula for 5 in terms of the initial state is immediately 
obtained. If one proceeds further and determines functions of time for the 

1-4 
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nominal s ta te  values and der iva t ives  and s u b s t i t u t e s  t hese  i n t o  t h e  above series, 

then e x p l i c i t  time and s ta te  dependent expressions have been obtained f o r  <. 
Since the  con t ro l  is d i r e c t l y  dependent upon <, then second v a r i a t i o n  guidance 

( r e f .  5) can be considered equivalent t o  t h e  Silber-Hunt series expansion truncated 

a f t e r  f i r s t -o rde r  terms. 

extensions of second v a r i a t i o n  guidance. 

Similar remarks hold f o r  higher order series and 

The l i n e a r  guidance and second va r i a t ions  techniques are non- i te ra t ive  i n  

na ture  and consequently not se l f -cor rec t ing .  

f a s t  but r equ i r e  a l a rge  amount of preparation. 

schemes is  t h a t  t h e  veh ic l e  w i l l  f l y  i n  some l i n e a r  region about t h e  reference 

t r a j e c t o r y ,  and hence a l i n e a r  series is s u f f i c i e n t  or  t h e  region is a t  worst 

quadratic hence a second-order expansion i s  adequate, and so on. 

The methods are computationally 

The general  assumption of these 

The guidance techniques of t h i s  r epor t  are designed t o  give a s e l f -  

cor rec t ing  algorithm while s t i l l  taking advantage of a precomputed nominal 

t r a j e c t o r y  t o  reduce t h e  required computation. 

To v i s u a l i z e  t h e  r e l a t i o n  between the  method of S i lbe r  and Hunt and t h e  

iterative techniques, consider a s impl i f ied  geometric explanation. L e t  y and 

6 be simple va r i ab le s  along with t h e  corresponding boundary function g(y, 6). 
I n  Figure 1-1 a three-dimensfonal sur face  g(y, <) has been sketched. For 

s impl i c i ty  assume t h a t  t h e  nominal y is zero a t  some f ixed  t i m e .  

t o  ob ta in  t h e  trace g(y,  6) = 0 which l i es  i n  the  y, 5 plane. Suppose the  

veh ic l e  i s  cur ren t ly  a t  t h e  t r u e  state 7.  
6 denoted a t  point 1. 

l i n e  through 5 i n  t he  7 ,  5 plane t o  estimate 5 by poin t  2 .  

order methods would pass higher order polynomials through 5 i n  t he  y ,  5 plane. 

A "linear" i t e r a t i v e  method (e.g. Newton Raphson) uses t h e  tangent l i n e  through 

the  poin t  [?, 5, g(?, c ) ]  i n  t h e  5, g plane denoted by point 3.  

sec t ion  of t h i s  l i n e  with the  y, < plane is  the  estimate <* €or <. This pro- 

cess can be repeated by using t h e  tangent l i n e  through [?, E * ,  g(7, <*)] t o  

ob ta in  a new es t imate  f o r  5 .  
s u f f i c i e n t l y  s m a l l .  Again, t h e  use of higher order approximations a t  each 

s t age  should improve the  speed of convergence. 

.., 
It is desired 

Then it  is required t o  ca l cu la t e  

The l i n e a r  method of S i lbe r  and Hunt uses t h e  tangent - 
Of course, higher 

.., 

- .., 

The i n t e r -  

The procedure may be repeated u n t i l  g ( i ,  E * )  is 

1-5 
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The computation of the parameters of the approximating curve at point 3 

is somewhat time consumming and it must be done at least once for every change 

in y. 
parameters at 5. Further details may be found in subsection 2 . 3  

numerical results of subsection 5.4 indicate the approximations work well. 

However, it seems plausible to approximate them from the corresponding ... 
and the 

When comparing any guidance schemes it is very difficult to say, a priori, 
that one is better than the other. Each procedure must be empirically tested 

and compared. Iteration versus closed formulas leads to subtle questions and 

numerical investigation would resolve a few important ones. In fact, it will 

be seen (Section V), that closed formulas fail more often in some problems 

than implicit formulas requiring iteration. 

Y J 
I 

Figure 1-1. GEOMETRICAL INTERPRETATION 

1-6 
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Section I I  

ITERATING FUNCTIONS AND INVERSION 

2.1 INVERSION AND ONE POINT ITERATING FUNCTIONS 

Here the intention is to clarify the relationship between series inver- 
sion and "iteration". 

variable is used. 
For simplicity in presentation, a function of one 

Given f(z) = 0 (2-1) 

find the values of z ,  the zeros or roots, that satisfy equation (2-1). Con- 

structing infinite processes that involve f(z) and its derivatives such that 

values of z can be obtained which satisfy equation (2-1) is the primary goal. 

In other words, one desires to construct functions that generate a convergent 

sequence of approximations Iz .1  to a zero Z ,  i.e., 
1 - 

lim z = z 
i i- 

Let these functions be denoted as 

= $(Zi) = + ( f ,  f', f", ...; Zi). i+l z 

i+l Traub (ref. 8) classifies these as one point iteration functions since z 

depends upon only one point z 

then the identity 

If the recursion (2-2) is to have meaning i' 

- 
z = + ( Z )  

must hold. 

An rth order iteration is characterized by the conditions 

2-1 
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tion is 

where 1.1 is an r 
stands for the 

An iteration of arbitrary order can be produced by construction of a Cp 

function that satisfies the conditions of equation (2-3). One such construc- 

1 r-1 a a-1 

a=l a. (2-4) 

a-1 
arbitrary function. By ($ 3) 

following operation: 

denote an operator that 

Differentiate the function following 

the symbol, multiply it by - f" 
multiply it by l/f', ... continue for a-1 times. 

then differentiate the new function again and 

For example 

\ / J  

The first four terms of equation (2-4) are: 

which is recognized as the series expansion for the inverse of f(z). 

Note that the order of iteration is one more than the corresponding 

order of the series. For example, the first-order inverse series is 

which is also the Newton-Raphson iteration and which is of order two. The 

third-order inverse series written above defines a fourth-order iteration. 

Now it can also be shown (ref. 8 )  that m iterations of an Nth order 

iteration function are equivalent to one iteration with an iteration function 
of order N". 
to one iteration with, or a single evaluation of, a third-order inverse 

series. 

Thus, two iterations with Newton-Raphson should be equivalent 

It would appear that there is no essential difference between using 

several iterations with an inverse series of an order appropriately higher; 
provided, of course, that both methods converge. 

2-2 
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The higher order inverse series requires higher order derivatives. 

Except for functions such as polynomials where the higher derivatives become 

less complicated, the higher order iterations (or inverse series) are likely 

to be more and more ineffecient in terms of computation. 

consider is that there may be significant differences in the behavior of 

convergence between iteration and use of an inverse series of equivalent 
accuracy. 

Another point to 

2.2 INTERPOLATORY ITERATING FUNCTIONS - 
N+p ' Given p approximations to a root z of f(z), e.g., zN+l, z N+2, ..., z 

it seems reasonable to obtain a new approximation, z N+p+l ' by calculating a 
root of rhe interpolation polynomial determined by the p approximations. 

Then repeat again with the points zN+2y Z N+3, ..., z N+p+l 

The types of interpolation polynomials are many and varied. 

here, interest is directed toward hyperosculatory interpolation. In 

particular it is desired that the interpolation polynomial agree with f and 

various derivatives of f at the p approximations. 

However, 

In Section I11 only one interpolation point is used and the function 

value with its first two derivatives are constrained equal to the interpolation 
polynomial. 

For this case it is shown (ref. 8 )  that the order of the iteration is 

equal to the order of the interpolation polynomial. 

2.3 APPROXIMATE INVERSE SERIES BY NUMERICAL INTEGRATION FORMULAS 

The technique discussed here has been examined but not investigated 

numerically. 

at this time. There is a method for solution of nonlinear equations called 
For this reason no recommendations concerning its use are offered 

"Variation of Parameters" attributed to Davidenko (ref. 9). The basic 
approach is as follows: 

Given f(2) = w 
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find a root z = z of f(z) = 0. 
z to z with a corresponding parameter value w and vary w in some continuous 

fashion such that w moves to zero and zo to z .  

The idea is to start with some approximation 

0 0 0 
If 

0 

where D is some region about the point z and is assumed to contain 2, then 
0 

-- I. Z E D  dz 
dw f'(z) 
- -  

Now consider equation (2-5) as a differential initial value problem with 

Then it is desired to integrate equation (2-5) from wo to 0. 
integration is assumed to be such that z remains in D. 

The path of 

First, suppose that one solves the differential equation by Taylor 

series. The interval of expansion is (0 - w ) and thus obtain 
0 

It is evident that the solution is the inverse series, as expected. 

Now, regard the root-finding problem as equivalent to solving a differ- 

ential equation. Then there are opportunities to simplify the series inver- 

sion problem. 

to construct approximations to the inverse series. 

In particular, Runge-Kutta integration formulas can be used 

Recall the Runge-Kutta integration formulas are derived so that solutions 

to differential equations obtained by them will agree with Taylor series sol- 
utions of some order. Thus, a third-order Runge-Kutta formula agrees with at 

least a third-order Taylor series solution, etc. 
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Now suppose that one solves the differential equation (2-5) by means of 
various Runge-Kutta integration formulas. These formulas can be written in 

a general, familiar format as 

Yn+l = Yn + h ai 
where the differential equation is 

Here the subscript n+l refers to the independent variable x+h and n to x. IR 

terms of the root finding initial value problem equation (2-5), rewrite the 
formulas as 

Z = z - f(zn) (Pi n+l n 

Note that the step size, h, is -f(z ); (P. represents one from the family of 

Runge-Kutta integration formulas. 
ation can be explained as follows: 

giving a stepsize of -w = -f(zo). 
improve z by setting z 

and obtain a new z .  Thus, the iterative method is sufficiently defined. Of 

course many variations of this procedure are possible, in particular concerning 
stepsize control of the numerical integration. 

n 1 
The philosophy of the step size determin- 

Integrate from wo to 0 in one step 

Then having determined z = z ,  try to 
* - 

- 0 -  

= z and integrating from w to 0 ,  i.e., h = -w = - f ( z l )  - 1 1 1 

Consider the simplest Runge-Kutta formula. (The Euler or Point-Slope 

Method) 
1 atl = 

f' (2,) 

The approximate solution of the differential equation is 

f (2,) 
= z  - 

n+l n f'(zn) Z 

which i s  the Newton-Raphson Method. 

Other Runge integration formulas yield other iterations - e.g., 

(HEW 
1 = - (kl + k2) 

- h - h 
kl f'(zn) k2 f' (zn + kl) 

@2 2 

- - 
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- - 
@3 

kl - 

k2 

kg - 

- 

= 

- 

@ =  
4 

kl = 

k2 = 

- 
kg - 

- 1 (kl + 4k2 + k 3 )  
6 

h 
f ' (2,) 

i f '  (Z + 2 kl) n 

h 
f ' ( z  + 2k2 - kl) n 

1 
(kl + 3 k3) 

h, 
f ' (2,) 

h, 
1 

n 3 1  f'(z + -  k ) 

h 

f' ( z  + ?  k2) 2 
n 

(RUNGE) 

(HEUN) 

There are ava i l ab le  Runge-Kutta formulas f o r  var ious  higher orders. 

t h e  above formulas CP. is  t h e  f i r s t -o rde r  i n t eg ra t ion  method, @ is second- 

order,  and @ 

orders  are: Q1, second-order, Q2 third-order,  and Q3 and @ 

Higher order i n t e g r a t i o n  methods w i l l ,  of course, provide higher order i ter-  

a t i o n  methods f o r  root-finding, o r  more accura te  approximations t o  t h e  inverse  

functions. 

I n  

1 2 
and Q4 are third-order. A s  i t e r a t i o n  methods f o r  roo t s  t h e  

fourth-order. 
3 

4 

An advantage of t h i s  approach is  t h a t  higher than f i r s t  de r iva t ives  are 

not required,  as i s  the  case when t h e  formal inverse  series is  used. P a r t i a l l y  

o f f s e t t i n g  t h i s  advantage is t h e  need t o  perform add i t iona l  func t ion  evalu- 

a t ions .  Usually p - > n function evaluations are necessary f o r  a Runge-Kutta 

formula of order n t h a t  approximates an inverse  series of order n which, i n  

tu rn ,  def ines  an  i t e r a t i o n  of order n + 1. 
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Section 111 

GUIDANCE BY SOLUTION OF POLYNOMIAL EQUATIONS 

I n  t h i s  s ec t ion  the  system of nonlinear equations (1-2) is  t r ea t ed .  Here, 

consideration is given t o  in t e rpo la to ry  i t e r a t i o n  functions.  

a t i o n  ( i . e . ,  t h e  so lu t ion  of one set of polynomials) is considered and 

numerical r e s u l t s  (see Section V) i n d i c a t e  t h i s  is  s u f f i c i e n t .  

Only one iter- 

3.1 DEVELOPMENT OF EQUATIONS 

L e t  €,' be  an approximation t o  t h e  so lu t ion  5 .  Then pass a pth degree 

polynomial ( i . e . ,  N polynomials i n  the  N va r i ab le s  5 - Eli) such t h a t  i t s  

value a t  6 '  agrees with g(y ,  E ' ) .  Simi lar ly ,  cons t ra in  t h e  f i r s t  p-1 deriv- 

a t i v e s  of t he  polynomials t o  agree with t h e  f i r s t  p-1 de r iva t ives  of gi a t  

t h e  poin t  (y, 5 ' ) .  This is, of course, equivalent t o  a truncated Taylor 

expansion of gi(y, E )  about E ' .  Then le t  

J 

A Taylor series expansion of gi(y, 5 )  = 0 about 5' y i e l d s  

(i = 1, 2 ,  ..., N) 

The guidance scheme requ i r e s  so lu t ion  of t h e  r e s u l t i n g  system of poly- 

nomial equations f o r  A 5  by means o f ,  e.g., t h e  Newton-Raphson method of iter- 

a t ion .  Once t h e  polynomial c o e f f i c i e n t s  have been ca l cu la t ed ,  t h e  i terative 

so lu t ion  of equation (3-1) r equ i r e s  no add i t iona l  t r a j e c t o r y  ca l cu la t ions  o r  

numerical in tegra t ions .  
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3.2 CALCULATION OF DERIVATIVES 

The de r iva t ives  g ("(y, e ' ) ,  gi ( j  9k) (y, c ' )  , . . . may be ca lcu la ted  by i 
means of the  equations of v a r i a t i o n s  ( r e f .  3 , 5 ) .  Although t h e  lat ter method 

may be used i n  numerical s t u d i e s ,  it is  out  of t h e  question ( a t  least i n  the  

case of higher de r iva t ives )  i n  onboard implementation of t h e  guidance shceme. 

Indtead, t h e  de r iva t ives  may be approximated as follows: 

. . , -  * 

where 6, y are the reference  values and Ay = y - y. 

values y and 4 may be determined by any of several procedures. 

Given y,  t h e  re ference  - ." 
Appendix A 

discusses  one technique, bu t  i n  implementing the  guidance rou t ine  a time-to- 

go c r i t e r i o n  is used (Section V I ) .  with respect t o  tF may 

be computed p rec i se ly  without t h e  use of e i t h e r  t he  equations of v a r i a t i o n  

o r  equations (3-2). 

Derivatives of g i 

Numerical ca l cu la t ions  of t he  de r iva t ives ,  corresponding t o  an S-IVB 

i n j e c t i o n  i n t o  c i r c u l a r  o r b i t ,  i n d i c a t e  t h a t  t he  de r iva t ives  do not vary 

r a d i c a l l y  as a function of y wi th in  a r a t h e r  l a r g e  neighborhood of y. 

t h e  o ther  hand, t h e  Lagrange m u l t i p l i e r s  and tF change appreciably. 

more, as long as t h e  func t iona l  va lues ,  gi(y, E ' ) y  are computed accura te ly ,  

it is not necessary t o  have very accura te  higher de r iva t ives  i n  order t o  

compute accura te  guidance commands. Therefore, i t  is reasonable t o  use 

equations (3-2) t o  determine the  der iva t ives .  

On 

Further- 

3.3 UPDATING THE DERIVATIVES 

I n  t h e  preceding subsection t h e  ca l cu la t ion  of de r iva t ives  corresponding 

t o  some fixed i n i t i a l  time were considered (i.e.,  5 w a s  defined i n  terms of a 

fixed i n i t i a l  time). However, i n  t h e  guidance problem t h e  de r iva t ives  

(j)(Y, E ) Y  gi ( j Y k ) ( i ,  i), etc. must be updated from t i m e  tl t o  t i m e  t2 as gi 
t h e  space f l i g h t  progresses. This may be done by e i t h e r  of t he  following two 

means : 

- -  
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0 N i z m e r i c a l  i n t eg ra t ion  of t he  a d j o i n t  d i f f e r e n t i a l  equations ( r e f .  10) 
forward over t h e  s h o r t  t i m e  i n t e r v a l  between t and t 

Evaluation of polynomials expressing t h e  re ference  de r iva t ives  as 
functions of t i m e .  

2' 1 
0 

These polynomials can be determined before  f l i g h t .  

It should be noted t h a t  forward in t eg ra t ion  of t h e  a d j o i n t  equations may be 

numerically unstable,  bu t  t h e  s e v e r i t y  of t h i s  problem is  not thought t o  be 

g rea t .  

3.4 USE OF THE METHOD OF SILBER AND HUNT AS A REFINEMENT 

A refinement t o  t h e  guidance schemes disucssed above i s  t h e  use of t h e  

technique of S i l b e r  and Hunt ( r e f .  3 )  t o  determine a f i r s t  co r rec t ion  5' t o  

5 f o r  given Ay. Thus 

- -  
where E ,  5 , etc., are t o  be evaluated along t h e  re ference  t r a j ec to ry .  Again 

t h e  lat ter de r iva t ives  can be expressed as polynomial functions of time f o r  

updating o r  they can be  obtained by in t eg ra t ing  matrix R icca t i  equations from 

t h e  t i m e  of one guidance command t o  t h e  next ( r e f .  10). 

Y i  
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Section IV 

lNVERSlON FORMULAS FOR GUIDANCE 

4.1 DEVELOPMENT OF EQUATIONS 

Here, N-dimensional inversion formulas f o r  t h e  equations (1-2) are pre- 

sented. The inverse  series can be derived by l e t t i n g  t h e  equations 

(i = 1, ..., N )  

def ine  6 imp l i c i ty  as a func t ion  of wi f o r  f ixed y. 

Taylor series about w 

t h e  r e s u l t i n g  inversion. This s t r a i g h t  forward invers ion  is  ca r r i ed  out 

i n  re ference  11 with t h e  following r e s u l t :  

Then expanding 5 i n  a 

= g(y, 6 ' )  and evaluating t h e  series a t  w = 0 gives 
i i 

where w e  have truncated a f t e r  third-degree t e r m s  i n  gay g B y  and g and where 
Y 

C = ( c . . )  = A-' 
1J 

(3 ,k) 
N N  

of j=1 k=l  jBCkB 
-A-' 1 1 c (i) - - 0 

BY 

I n  formula (4-l) ,  g and i t s  de r iva t ives  are t o  be evaluated a t  (y ,  6 ' ) .  
The de r iva t ives  gi(j)(yy C'), gi (j 'k)(y, GI), etc, may be  determined i n  the  

manner discussed i n  subsections 3.2 and 3.3 .  
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An e x p l i c i t  and se l f -cor rec t ing  guidance formula, giving A 6  i n  terms of 

Ay, may be obtained by expressing t h e  nominal de r iva t ives  g ("(y, ;) ,... i n  i 
terms of polynomial func t ions  of t i m e  (which update t h e  de r iva t ives  as discussed 

i n  subsection 3 . 3 ) ,  and s u b s t i t u t i o n  of equations ( 3 - 2 )  i n t o  equation (4-1). 

However, i t  is t o  be  r eca l l ed  t h a t  g(y,  <') would be computed by means of 

numerical in tegra t ion .  
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Section V 

COMPARISON OF METHODS 

This section deals with the comparison of the inversion technique of 

Section IV and the polynomial equation method of Section 111. 
results include comparison with the method of Silber and Hunt. 

The numerical 

5.1 CONVERGENCE IN THE LARGE 

The discussion of this subsection is by necessity intuitive and will be 
limited to a discussion of the solution of a single equation g(5) = 0 in one 

unknown 5. However, the ideas can be generalized. 

The desired solution is 5 (Figure 5-1). A Newton iteration with proper 
S 

damping (limiting) of the corrections would converge to 5 for any initial 

approximation between 5 and 5,. 
undamped Newton method would be quite a bit smaller (but the rate of conver- 

gence usually faster). A second degree polynomial, passing through the 

point (5, g(5)) and having its first and second derivatives equal to those 

of g at 5 = 5, would appear to have a larger region of convergence than 
Newton's method. Perhaps, in many cases, the region would be nearly as large 

as that of the damped Newton method. However, inversion about 5 would lead 
to a series which does not converge outside of the interval I indicated in 
Figure 5-1, because the radius of convergence of the series would be less than 

g(5)A - g(<), there being a singular point in the inverse series at 5 = SA. 
Although the inversion formula may give an explicit solution, any advantage 

this may have is reduced by the limited region of convergence of the inverse 

series. 

S 

The region (not radius) of convergence of an A 

- - 
- 

- 

It will be seen that some of these intuitive observations are clearly 
substantiated by numerical results to be given. 
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Figure 5-1. GEOMETRY OF CONVERGENCE 

5.2 ASYMPTOTIC CONVERGENCE 

underway (asymptotic convergence), the approximation afforded by an Nth degree 

polynomial or Nth order inversion formula, of the types we have discussed, 

is an (N + l)th order iteration function. 

are equivalent to one application of an (N + 1) 
two applications of Newton-Raphson (order 2) gives the equivalent of a fourth- 

order iteration function, 
polynomial formula. 

In reference 6 it is shown that, after the convergence process is well 

Also, M applications of the method 
order formula. Therefore, M th 

the same as that of a third degree inversion or 

Each Newton-Raphson iteration requires one evaluation of the function to 
Each Nth order be driven to zero and one evaluation of its first derivative. 

inversion or polynomial solution requires one evaluation of the function and 

the first through the Nth derivatives. 

to evaluate than the functions themselves, then four units (or less) of time 
are necessary for two Newton-Raphson iterations while four units (or less) are 

required for one third-degree inversion or polynomial solution. However, in 

the guidance problem it is much more time consuming to compute the derivatives 

than the functional values themselves, assuming the equations of variations 

or finite differences to be used in calculating the derivatives. 

If the derivatives require no more time 

Therefore, 

it is clear that if higher degree formulas are to be used for guidance, the 
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derivatives must be determined in some other manner. For this reason i! is 

recommended that the derivatives be calculated from precomputed derivatxves 

from the reference trajectory as shown in subsection 3.2. It remains to be 

determined whether or not these approximate derivatives will be accurate 

enough to give the advantage to the higher degree methods over applications 

of the Newton-Raphson algorithm which requires more functional evaluations in 

order to give an iterative formula of comparable order. 

_. 

5.3 NUMERICAL COMPARISON 

We now consider a numerical comparison of the guidance formulas discussed 
in this report. The symbol N will represent the degree of the formula used. 

The problem under numerical study is that of an S-IVB minimum time injec- 

tion into a 105 nautical mile circular orbit from a point 5 miles below the 

orbit. 

are 

The initial and final end constraints for the two dimensional problem 

(orbital radius) 

(orbital velocity) 

2 fl = Xf xf Rco = 0 

2 f2 = Xf ;Lf - vco = 0 

f 3 = x  f * X f = O  (orthogonality) 

f4 - - xo ' ho - 1 =  0 (scaling) 

f5 = ~~~x~~ - ~~~x~~ - ilox20 + A ~ ~ x ~ ~  = o (transversality) 
and 

Generally speaking the transversality condition should be imposed at the 

terminal point, however, in this case the function f is a constant of the 

motion and its initial value is equivalent to the terminal value. 

of course, reduces the number of derivatives required at final time. Thus 

it is required to solve the equations 

5 
This, 
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\ \  

gi(Y, 5) = 0 (i = 1, ..., 5) 
where, for example 

The reference trajectory (which satisfies, in this case, all boundary condi- 
tions) has the following parameters defining it: 

x = 1761674.2 meters 

x = 6314804.0 meters 

x = 6546.5205 meters/sec 

x = -1728.0676 meters/sec 

10 

20 

10 

20 

. 

Final altitude = 105 nautical miles: 

R = 6565710. meters co 

co V2 = v/R co 

m = 16645.5 '%lass Units" 
0 

6 = 22.0179 '%lass Uni t s " / s ec 
(Mass flow rate) 

c = 4120.193 Meters/sec 
(exhaust velocity) 

F = cB 

Multipliers 

Xl0 = .974 

X20 = .228 
- - -  .179 x loe2 

A1O 
i20 = -.456 x loe2 
tF = 170.3 seconds. 

The initial state can be defined by means of an altitude A, a velocity 

magnitude V, the angle 9 between the local horizontal and the velocity vector, 
and the mass mO. In order to give the guidance algorithms a severe test, 16 
perturbations on the initial reference values of A, V, 9, and m were made. 
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The per turba t ions  were +5 percent i n  Ao, Vo, and m with - +1 degree changes i n  
0 - 

. Some of t hese  per turba t ions  are r a t h e r  unreasonable. Some are severe 

enough t o  throw t h e  i n i t i a l  rad ius  of t h e  t r a j e c t o r y  i n t o  t h e  105 n a u t i c a l  

m i l e  o r b i t .  

s ta te  of each of t h e  16 cases. 

Table 5-1 lists t h e  per turba t ions  and a l s o  def ines  t h e  i n i t i a l  

The t r u e  m u l t i p l i e r s  and f i n a l  t i m e  f o r  t hese  16 cases were obtained by 

using a Newton-Raphson type of i t e r a t i o n .  The "nominal values" ( i . e . ,  t h e  

i n i t i a l  values taken from t h e  re ference  t r a j ec to ry )  were used as i n i t i a l  

guesses i n  t h e  i terative process. 

and "reference" are used interchangeably.) 

classical algorithm i n  t h a t  t he  f u l l  cor rec t ions  w e r e  damped so as not t o  

exceed c e r t a i n  tolerances.  

computed by in t eg ra t ing  t h e  equations of va r i a t ion .  

f i v e  i t e r a t i o n s  w e r e  s u f f i c i e n t .  

( H e r e  and following t h e  words "nominal" 

The i t e r a t i o n  d i f f e red  from the  

The de r iva t ives  on each s t e p  of t h e  i t e r a t i o n  w e r e  

I n  a l l  cases four o r  

The expansion of S i l b e r  and Hunt w a s  obtained f o r  t h e  f i r s t  po in t  of 

The series gives t h e  Si t h e  re ference  t r a j e c t o r y  up t o  second-order terms. 

e x p l i c i t 1 3  i n  terms of t h e  per turba t ions  Ay i' 
de r iva t ive  x are computed d i r e c t l y  from t h e  5 . 
l i ned  i n  d e t a i l  i n  Section V I .  The angle x and i ts  t i m e  de r iva t ive  are 

measured i n  degrees with t i m e  i n  seconds. 

f i r s t  (N = 1) and second (N = 2) order  expansions i n  t h e  16 per turba t ions  are 

given. 

e r r o r s .  

i n  Appendix C as w e l l  as those f o r  t h e  o ther  t a b l e s  presented i n  t h i s  sec t ion .  

The angle x and i ts  t i m e  

These computations are out- 
i 

I n  Table 5-2 t h e  r e s u l t s  of t he  

Also t h e  t r u e  values are tabulated with t h e  corresponding percent 

The corresponding m u l t i p l i e r s  h and io f o r  Table 5-2 are tabulated 
0 

Based on t h e  da t a  i n  Table 5-2, it w a s  decided t o  use  t h e  second-order 

expansion of S i l b e r  and Hunt i n  t h e  guidance algorithm t o  g ive  s t a r t i n g  values 

f o r  t h e  f i r s t  guidance command ( see  Section V I  f o r  f u r t h e r  desc r ip t ion ) .  

t h e  majority of t h e  cases t h e  second-order expansion s i g n i f i c a n t l y  improved 

the  r e s u l t s  compared t o  t h e  f i r s t  order. 

I n  

The guidance formulas described i n  Sections 111 and I V  r equ i r e  t h e  com- 

puta t ion  of var ious  der iva t ives .  

formulas are ca lcu la ted  by in t eg ra t ing  t h e  equations of va r i a t ion .  

I n  Table 5-3 t h e  de r iva t ives  i n  t h e  guidance 

The r e s u l t i n g  
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Table 5-1. PERTURBATIONS OF NOMINAL TRAJECTORY 

CASE A V M 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Nominal 

+ 
+ 
+ 
+ 
+ 
t 

+ 
+ 
- 
- 

100 n m i  6780.6832 
meters/ sec 

t 

16645.597 
"mass units" 0 degrees 
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Table 5-2. SILBER-HUNT (S-H) EXPANSION 

CASE X i % ERROR % ERROR % ERROR 
X X 

N=2 

True Values 

N=2 

Ls-H N=Z 

-31.2 
76.8 

-66.8 
-44.8 

-30.2 
76.8 

-66.6 
-40.6 

65.7 
76.8 
66.8 
65.1 

66.7 
76.8 
66.1 
65.3 

-77.5 
76.8 

-70.2 
-71.6 

68.5 
76.8 
71.3 
66.1 

66.0 
76.8 
70.9 
62.7 

-.36 
.23 

-.06 
-.20 

-.39 
.23 

-.09 
-.19 

.302 

.23 

.28 

.30 

.34 

.23 

.31 

.33 

-.02 
.23 

- . lo  
-.04 

.17 

.23 

.13 

.19 

.15 

.23 

.10 

.18 

128.6 
170.3 
110.8 
121.7 

116.8 
170.3 
93.7 

114.2 

127.1 
170.3 
130.0 
128.9 

114.4 
170.3 
113.9 
118.0 

223.2 
170.3 
212.5 
230.9 

212.5 
170.3 
212.8 
215.0 

237.6 
170.3 
229.9 
240.7 

345.9 
-113.9 
-43.3 

354.7 
-120.9 
-47.8 

-17.0 
-1.7 

.9 

-15.2 
-.5 
2.1 

199.1 
9.5 
7.6 

-1 2.2 
-4.1 
3.4 

-16.4 
-7.5 
5.0 

164.8 
117.2 
44.4 

159.2 
121.9 
51.3 

23.5 
6.3 
1.1 

31.6 
8.7 
1.2 

-1107.6 
624.7 
321.7 

-38.5 
24.5 

-14.7 

-55.8 
32.7 

-22.6 

-32.5 
13.8 
5.3 

-45.9 
19.8 
2.3 

-34.0 
-3.1 
-1.4 

-48.9 
.4 

-3.2 

23.7 
4.8 

-3.4 

19.8 
-. 1 

-1.2 

28.3 
3.2 

-1.3 
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Table 5-2. SILBER-HUNT (S-H) EXPANSION (Continued) 

. % ERROR % ERROR % ERROR 
X i CASE X X 

N=2 

prue Values 

prue Values 
Nomi nal 
S-H N = l  

E - H  N=2 

k-H N=2 

-74.4 
76.8 

-70.0 
-68.4 

79.4 
76.8 
87.1 
83.7 

75.1 
76.8 
87.5 
80.7 

39.9 
76.8 
40.7 
28.5 

38.9 
76.8 
40.9 
27.0 

81.2 
76.8 
82.3 
81.7 

54.2 
76.8 
43.8 
58.2 

-. 001 
e 23 
-.07 
-.O% 

.48 

.23 

.32 

.40 

.55 

.23 

.35 

.46 

.16 

.23 

.18 

.07 

.17 

.23 

.19 

.07 

.16 

.23 

.13 

.16 

.15 

.23 

.13 
09 

201.6 
170.3 
195.3 
208.0 

129.9 
170.3 
125.9 
129.2 

119.7 
170.3 
108.8 
121 .o 
167.9 
170.3 
146.2 
161.9 

154.3 
170.3 
129.0 
150.4 

228 6 
170.3 
227.6 
230.9 

229.7 
170.3 
227.9 
235.3 

203.2 
6.0 
8.1 

3.2 
-9.8 
-5.4 

-2.4 
-16.5 
-7.5 

-92.5 
-1.9 
28.5 

-97.5 
-5.1 
30.6 

5.4 
-1.4 

-.7 

-41.7 
19.3 
-7.3 

18666.1 
-5885.6 
-6221.0 

51.5 
32.2 
15.2 

57.8 
35.7 
16.3 

-48.9 
-16.6 

52.3 

-38.1 
-16.0 

57.5 

-45.3 
16.0 
-1.5 

-52.2 
12.6 
43.1 

15.5 
3.1 

-3.2 

-31.1 
3.0 

.5 

-42.3 
9.1 

-1.1 

-1.5 
12.9 
3.6 

-10.4 
16.4 
2.6 

25.5 
.5 

-1 .o 

25.8 
.8 

-2.5 
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Table 5-2. SILBER-HUNT (S-H) EXPANSION (Concluded) 

% ERROR % ERROR % ERROR 
tF X ic tF 

CASE X X 

True Values 53.7 .13 256.0 
76.8 .23 170.3 -43.1 -78 .O 33.4 

N=2 57.5 .05 261.6 -7.1 63 .O -2.2 
i:raA=l 43.6 .12 245.1 18.9 8.6 4.3 

81.9 .18 206.4 
76.8 .23 170.3 6.2 -29.1 17.5 

N= 1 82.6 -16 210.4 - .9 9.3 -2.0 
N=2 82.1 .18 207 4 -.3 - .8 -.5 
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Tab1 e 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES 

CASE 
% ERROR i % ERROR % ERROR 

X X i tF 

- 
Inversion 

N=l 69.9 .252 
N=2 67.0 .286 
N=3 66.0 ,294 

Polynomial 
N=l 69.9 .252 
N=2 68.4 .308 

I N=3 65.0 .304 

- 
Inversion 

N=l -80.7 
N=2 -60.6 
N=3 -45.5 

Polynomial Sol. 
N-1 -80.7 
N=2 -54.4 
*N=3 77.5 

Newton-Raphson 
2 Iterations -35.2 
(Damped on 2nd) - - 

Inversion 
N=l -86.5 
N=2 -68.1 
N=3 -53.7 

Polynomial Sol.  
N=l -86.5 
N=2 -58.7 
*N=3 -53.4 

Newton-Raphson 
2 Iterations -41.9 
(Damped on 1st) 

d 

,210 
.004 

-. 190 

.210 
-.212 
368 

- .376 

,269 
.719 

- ,075 

.269 
-.212 
- ,045 

-. 321 

116.1 
112.5 
115.8 

116.1 
131.7 
-42.5 

115.8 

108.8 
107.0 
102.9 

108.8 
124.9 
123.9 

103.0 

128.0 
126.7 
126.8 

128.0 
125.9 
126.8 

-158.9 
-94.2 
-46.0 

-158.9 
-74.4 
348.5 

-12.8 

-186.4 
-125.4 
-77.9 

-1 86.4 
-94.3 
-76.9 

-38.6 

-6.3 
-1.9 
-.5 

-6.3 
-4.1 
1 .o 

159.1 
101 .o 
46 .O 

159.1 
40.2 

203.4 

-5.8 

168.7 
130.5 
80.7 

168.7 
45.8 
88.4 

17.9 

16.5 
5.2 
2.8 

16.5 
-1.7 
-.7 

9.6 
12.4 
9.8 

9.6 
-2.4 
133.0 

9.8 

6.8 
8.3 
11.9 

6.8 
-6.9 
-6 .O 

11.8 

-.7 
.3 
.2 

-.7 
.9 
.2 
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Table 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Continued) 

CASE 
% ERROR % ERROR % ERROR 

X X i t F 

I 

Newton-Raphson 1 2 Iterations 65.6 .303 
- 
Inversion 

N=l 70.0 .280 
N=2 67.7 .310 
N=3 67.0 .326 

Polynomial Sol. 
N=l 70.0 .280 
N=2 75.4 .326 
N=3 63.9 .349 

Newton-Raphson 
2 Iterations 66.7 .337 - 

N=l -67.8 
N=2 -72.4 
N=3 -87.8 

Polynomial sol. 
N=l -67.8 
N=2 -79.0 
N=3 -78.4 

1 Newton-Raphson 
L 2 Iterations -80.6 

~ nvw; i on 
58.8 

N=2 74.7 
N=3 66.3 

-.148 
.017 
,191 

-.148 
.018 
.027 

,079 

.155 
;133 
.194 

126.7 

118.0 
114.6 
114.3 

118.0 
111.1 
113.2 

114.0 

216.4 
234.1 
219.1 

216.4 
220.6 
221.7 

218.2 

215.8 
213.2 
211.2 

< 
.1 - A3 

-4.8 17.1 
-1.4 8.2 
- .4 3.5 

-4.8 17.1 
-12.9 3.6 
4.2 -3.2 

.o .5 

12.5 860.8 
6.5 10.8 

-13.2 -883.7 

12.5 860.8 
-1.8 8.0 
-1.1 -40.2 

-3.9 -305.7 

14.0 7.2 
-9.1 20.4 
3.1 -16.1 

.3 

-3.1 
-.l 

.o 

-3.1 
2.8 
1 .o 

.3 

3.0 
-4.8 
1.8 

3 .O 
1.1 

.6 

2.2 

-1.5 
-.3 
.6 
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Tab1 e 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Continued) 

% ERROR % ERROR % ERROR 
CASE X X x i t F 

Polynomial Sol. 
N=l 58.8 
N=2 67.2 
N=3 68.4 

Newton-Raphson 
- 2 Iterations 68.0 

Inversion 
- 

N=l 46.4 
N=2 -88.5 
N=3 57.8 

Polynomial Sol. 
N=l 46.4 
N=2 62.6 
N=3 65.8 

Newton-Raphson 
2 Iterations 66.1 
(Damped on 1st) - - 

Inversion 
N=l -70.4 
N=2 -67.7 
N=3 -78.2 

Polynomial Sol. 
N=l -70.4 
N=2 -75.8 
N=3 -75.2 

Newton- Rap hs on 
2 Iterations -75.3 

.155 

.166 

.166 

.170 

.lo8 
- .067 
.260 

.lo8 

.145 

.148 

.154 

- .075 
- .092 
.070 

-.075 
.006 
.007 

002 

215.8 
212.5 
212.3 

211.1 

246.4 
240.9 
228.9 

246.4 
238.4 
237.1 

232.3 

193.8 
206.9 
201.5 

193.8 
199.6 
201.2 

201.1 

14.0 7.2 -1.5 
1.8 .5 .o 

.o .4 .o 

.6 -1.5 .6 

29.6 26.9 -3.7 
234.0 145.1 -1.3 
12.3 -75.3 3.6 

29.6 26.9 -3.7 
5.1 2.2 -.3 
.3 .3 .2 

-.l -3.5 2.2 

5.4 -7265.3 3.8 
9.0 -9007.4 -2.6 
-5.0 6960.8 .o 

5.4 -7265.3 3.8 
-1 -8 689.5 .9 
- .9 784.7 .1 

-1.1 2037.3 .2 
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Table 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Continued) 

CASE 
% ERROR % EFROR % ERROR 

X X X X 

1c 

11 

Inversion 
N=l 72.7 
N=2 76.4 
N=3 78.1 

Polynomial Sol. 
N=l 72.7 
N=2 85.9 
*N=3 74.6 

Newton-Raphson 
2 Iterations 78.8 

- 
Inversion 

N=l 
N=2 
N=3 

Polynomial Sol. 
N=l 
*N=2 
*N=3 

Newton-Raphson 
- 2 Iterations 

Inversion 
N= 1 
N=2 
N=3 

- 

Polynomial Sol. 
N=l 
N=2 
N=3 

2 Iterations 
Newton-Raphson 

69.1 
72.0 
73.4 

69.1 
87.4 
45.8 

74.0 

40.8 
27.4 
32.3 

40.8 
38.4 
39.8 

39.1 

c 

.380 

.448 
,467 

.380 

.435 

.474 

.471 

.373 

.485 

.519 

.373 

.479 

.512 

.533 

.178 

.064 

.097 

.178 

.159 

.160 

,146 

129.9 
129.9 
129.9 

129.9 
137.4 
124.7 

128.5 

121 .o 
119.8 
119.9 

121 .o 
131.6 
79.9 

117.4 

144.6 
161.5 
171.8 

144.6 
157.2 
163.7 

168.1 

8.4 
3.7 
1.5 

8.4 
-8.2 
6.0 

.7 

7.9 
4.0 
2.1 

7.9 
-16.4 
38.9 

1.5 

-2.1 
31.4 
19.1 

-2.1 
3.8 
.4 

2.1 

20.4 
5.9 
1.9 

20.4 
8.6 
.4 

1.2 

31.9 
11.5 
5.3 

31.9 
12.6 
6.5 

2.7 

-14.6 
58.5 
37.3 

-14.6 
-2.4 
-3.0 

6 .O 

.o 

.o 

.o 

.o 
-5.7 
4.0 

1 .o 

-1 .o 
- .o 
-.l 

-1 .o 
-9.9 
33.2 

1.9 

13.8 
3.8 
-2.3 

13.8 
6.3 
2.5 

-.l 
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Table 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Continued) 

% ERROR % EFROR % ERROR 
CASE X X , tF X X t F - 

1 2  

-. 
Inversion 

N=l 43.8 
N=2 29.8 
N=3 29.2 

Polynomial Sol. 
N=l 43.8 
N=2 39.2 
N=3 39.0 

Newton-Raphson 
2 Iterations 35.7 

r 
Inversion 

N=l 84.0 
N=2 79.6 
N=3 81.9 

I Pol ynomi a1 sol , 
N=l 84.0 
N=2 80.0 
N=3 80.8 

New ton- Rap hson 
- 2 Iterations 80.8 

14 

- 
Inversion 

N=l 33.6 
N=2 77.8 
N=3 66.3 

Polynomial Sol 
N= 1 33.6 
N=2 50.6 
N=3 54.2 

- .492 
.loo 
.092 

- .492 
.183 
.173 

,189 

.086 

.207 

.133 

.086 

.156 

.161 

.162 

,081 
- .247 
.289 

.081 

.150 

.154 

132.3 
144.4 
154.8 

132.3 
144.7 
151.4 

151.4 

232.5 
229.2 
228.0 

232.5 
229.2 
228.5 

225.8 

232.0 
243.0 
216.5 

232.0 
227.9 
228.2 

-12.5 
23.5 
24.9 

-12.5 
- .6 
- .4 

8.2 

-3.4 
2.0 
-.8 

-3.4 
1.4 
.4 

.4 

37.9 
-43.6 
-22.2 

37.9 
6.6 

.o 

393.7 
40.0 
44.8 

393.7 
-9.1 
-3.4 

-1 2.5 

46.1 
-30.1 
16.5 

46.1 
1.6 
- .9 

-1.8 

46.8 
262.9 
-90.6 

46.8 
1.7 
-1.7 

14.2 
6.4 
-.3 

14.2 
6.2 
1.8 

1.8 

-1.7 
-.2 
.2 

-1.7 
-.2 

.o 

1.2 

-1 .o 
-5.8 
5.7 

-1 .o 
.7 
.6 
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Table 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Concluded) 

% ERROR % EFROR % ERROR 
CASE X i X X t F 

15 

1E 

New ton- Rap h so n 1 2 Iterations 53.6 

Inversion 
N=l 
N= 2 
N=3 

Polynomi a1 Sol. 
N=l 
N=2 
N=3 

Newton-Raphson 
- 2 Iterations 

Inversion 
N=l 
N=2 
N=3 

- 

Polynomial Sol. 
N=l 
N=2 
N=3 

Newton-Raphson 
- 2 Iterations 

24.2 
-25.9 
71 .O 

24.2 
46.7 
53.3 

57.1 

84.2 
81.1 
82.0 

84.2 
81.5 
81.8 

81.8 

-193 

.008 
- .830 
.431 

.008 

.115 

.131 

,141 

.143 
,195 
.175 

.143 

.178 

.179 

.180 

198.0 

265.7 
286.1 
207.0 

265.7 
255.5 
253.9 

229.3 

207.7 
206.7 
206.2 

207.7 
206.5 
206.4 

205.9 

1 .o 

54.8 
148.3 
-32.1 

54.8 
13.0 
.6 

-6.3 

-2.7 
.9 

-.l 

-2.7 
.4 
.1 

.o 

-27.5 

94.0 
739.4 
-232.0 

94 .O 
11.4 
-1.2 

-8.3 

20.1 
-8.7 
2.2 

20.1 
.3 

-.l 

- .4 

13.7 

-3.7 
-11.7 
19.1 

-3.7 
.1 
.8 

10.4 

- .6 
-.l 

.o 

- .6 

- .o 
.o 

.2 
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x and 

The inversion formulas of orders one, two, and th ree ,  along with t h e  so lu t ions  

of t h e  f i r s t - ,  second-, and third-degree polynomials are given. I n  add i t ion  

the  r e s u l t s  of a Newton-Raphson procedure a t  the  end of two i t e r a t i o n s  are 

l i s t e d .  Thus examples of second-order (inversion N = l  and polynomial so lu t ion  

N = 1 which are i d e n t i c a l ) ,  third-order (inversion N = 2, polynomial so lu t ion  

N = 2) ,  and fourth-order (inversion N = 3,  polynomial so lu t ion  N = 3, second 

i t e r a t i o n  of Newton-Raphson) i t e r a t i o n  functions have been compared. The 

few computations i n  which damping w a s  used i n  the  Newton-Raphson procedure are 

indicated.  I n  these  cases it  should be  noted t h a t  t h e  damping obscures t h e  

t r u e  asymptotic convergence rate and a fourth-order c l a s s i f i c a t i o n  of two 

Newton-Raphson i t e r a t i o n s  is not  co r rec t .  

t he  polynomial equations d id  not converge are noted by an  a s t e r i s k .  

l i s t e d  are t h e  r e s u l t s  a f t e r  t he  last i t e r a t i o n .  

rounded t o  t h e  neares t  t e n t h  percent. I n  some cases (e.g., cases 5 and 8) the  

t r u e  values of x are nea t  zero ( i . e , ,  an order of magnitude less than t h e  

nominal values) and t h e  corresponding percentage e r r o r s  are very la rge .  

However, some of t h e  values are very good estimates. 

f o r  t h e  16 per turba t ions  are tabulated along with the  percentage e r ro r s .  

The cases where t h e  i t e r a t i o n  on 

The da ta  

The percentage e r r o r s  are 

I n  Table 5-4 the  de r iva t ives  of t h e  guidance formulas w e r e  computed by 

updating corresponding de r iva t ives  from t h e  re ference  t r a j e c t o r y  (as described 

i n  subsection 3.2). 

Here, only t h e  N = 1 and N = 2 orders  of t h e  polynomial formulas are considered. 

The d a t a  i n  Tables 5-3 and 5-4 were obtained by using t h e  i n i t i a l  po in t  of 

t he  nominal t r a j e c t o r y  as s t a r t i n g  values. Comparing t h e  values i n  Table 5-4 

t o  t h e  corresponding ones i n  Table 5-3 one observes t h a t  t h e  r e s u l t s  d i f f e r  

very l i t t l e .  

t r a j e c t o r y  are s u f f i c i e n t l y  accura te  while reducing t h e  computations considerably. 

The r e s u l t i n g  x and are l i s t e d  f o r  each of the  16  cases. 

One may conclude t h a t  t h e  updated de r iva t ives  from t h e  re ference  

Study of t h e  tabulated e r r o r s  i n  Table 5-3 c l e a r l y  ind ica t e s  t h e  supe r io r i ty  

of t h e  polynomial so lu t ions  over t h e  invers ion  formulas, computation t i m e  not 

considered. Quant i ta t ive ly ,  for  &ample, t h e  percentage e r r o r s  i n  the  second 

degree polynomial so lu t ions  f o r  x exceeded 15 percent i n  only 2 cases out of 16 

while t h e  second-order invers ion  formulas exceeded 15 percent i n  7 cases. 
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Table 5-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE 
DERIVATIVES AND USING NOMINAL STARTING VALUES 

CASE 
% ERROR % ERROR % ERROR 

X X X X 

1""~~mial sol. 
-80.8 

*N=2 18.4 - 
Polynomial Sol. 

N=l -86.6 
*N=2 -57.1 - - 

Polynomial Sol. 
N=l 69.9 
N=2 68.9 

Pol ynomi a1 Sol . 
N=l 70.0 
N=2 73.8 

Polynomial Sol. 
N=l -67.7 
N=2 -79.0 

Polynomial Sol. 
N=l 59.0 
N=2 67.0 

Polynomi a1 Sol . 
N=l 46.6 
N=2 63.3 

Polynomial Sol. 
N=l -70.3 
N=2 -74.5 

Polynomial Sol. 
N=l 72.7 
N=2 87.0 

8L 

.21 
- .05 

.27 
-.21 

.27 

.31 

.28 

.32 

-.15 
- .02 

.15 

.17 

.ll 

.15 

- .07 
- .01 

.38 

.43 

116.1 
153.7 

108.9 
120.3 

128.1 
125.5 

118.1 
111.7 

216.3 
220.5 

215.8 
212.3 

246.5 
237.5 

193.6 
199.5 

130.0 
139.0 

-158.5 
158.9 

-187.0 
-89.4 

-6.4 
-5.0 

-4.9 
-10.7 

12.6 
-1.9 

13.8 
2.1 

29.4 
4.1 

5.5 
-.l 

8.4 
-9.6 

159.0 
85.7 

169.1 
47.5 

12.0 
-3.4 

17.1 
3.3 

872.0 
-14.1 

7.2 
1 .o 

27.0 
1 .o 

-591 1.4 
-542.4 

20.2 
9.2 

9.7 
-19.6 

6.8 
-3.0 

- .8 
1.2 

-3.2 
2.3 

3.1 
1.2 

-1.5 
0.0 

-3.7 
0.0 

3.9 
1 .o 

-.l 
-7 .O 

5-17 



TR-792-9-547 NORTHROP- HUNTSVILLE 

Table 5-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE 
DERIVATIVES AND USING NOMINAL STARTING VALUES (Concluded) 

CASE 
% ERROR % ERROR % ERROR 

X i X i 
Polynomial Sol. 

101 N=l 
N=2 

~ol:~~mial sol. 

~ol:1p”i a1 sol , 

polynomial sol. 

N=2 

N=2 

a1 Sol. 

Polynomial Sol. 
151 N=l 

N= 2 

Sol 
N=l 
N=2 

68.9 
86.3 

40.8 
39.2 

43.8 
39.3 

84.1 
80.1 

33.7 
50.1 

24.3 
48.2 

84.3 
81.7 

39 
.47 

.17 

.16 

.21 

.19 

.09 

.16 

-.08 
.15 

.008 

.121 

.14 

.18 

121.1 
129.6 

144.8 
156.3 

132.4 
142.8 

232.4 
229.0 

232.1 
227.8 

265.8 
254.4 

207.7 
206.6 

8.2 29.7 
-1 5.0 13.4 

-2.1 -14.1 
1.7 -7.3 

-12.5 -22.9 
-1.1 -11.3 

-3.6 46.5 
1.4 .3 

37.9 46.9 
7.7 3.6 

54.8 93.9 
10.3 6.9 

-2.9 21.1 
.2 1.5 

-1.2 
-8.3 

13.7 
6.9 

14.2 
7.5 

-1.7 
-.2 

-1.1 
.8 

-3.8 
.6 

- .6 
0.0 
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But even weighing i n  the  t o t a l  numerical computation one must favor t h e  poly- 

nominal so lu t ions .  For example, a second-order invers ion  is  equivalent ( i n  

computation time) t o  generating t h e  corresponding second-degree polynomial and 

performing two Newton-Raphson i t e r a t i o n s  toward solving t h e  equations. I n  a l l  

cases,  t h ree  add i t iona l  i t e r a t i o n s  w e r e  imposed. However, i n  many cases two 

i t e r a t i o n s  would have been s u f f i c i e n t .  This f a c t  may be determined by com- 

paring t h e  so lu t ion  of t h e  f i r s t  degree polynomials (which i s  t h e  r e s u l t  of 

t h e  f i r s t  i t e r a t i o n  on a l l  higher degree polynomials) with t h e  so lu t ion  of t h e  

second-degree polynomials. This coupled with t h e  probabi l i ty  of improving t h e  

e f f i c i ency  of t h e  Newton-Raphson i t e r a t i o n  ( see  Section V I  f o r  f u r t h e r  comments) 

makes invers ion  and so lu t ion  of t he  polynomial equations about equal i n  terms 

of computation t i m e .  But, most important is t h e  question of convergence, i .e . ,  

t he  coniparison of t he  tabulated percentage e r ro r s .  

f o r  t h e  per turba t ions  considered t h e  performance of t he  polynomial so lu t ions  

exceeds t h a t  of t he  inversion formulas. 

There is  no doubt t h a t  

One f u r t h e r  comment on these  comparisons needs t o  be made. The t e r m  

convergence" when applied t o  t h e  polynomial equations has two d i f f e r e n t  I 1  

meanings. 

an in t e rpo la to ry  i t e r a t i o n  function. I n  t h i s  sense,  convergence w a s  discussed 

i n  subsections 5.1 and 5.2. Furthermore, only one i t e r a t i o n  is being con- 

sidered. Secondly, convergence must be discussed when considering i t e r a t i v e  

techniques f o r  so lu t ion  of t h e  polynomial equations a t  each s t e p  of t h e  l a r g e r  

process. Suppose t h i s  i t e r a t i o n  does not converge s u f f i c i e n t l y  wi th in  the  

number of i t e r a t i o n s  allowed? This question is c r i t i ca l  i n  determining t h e  

usefulness of an  in t e rpo la to ry  i t e r a t i o n .  However, f o r  t h e  second degree 

polynomials only two cases d id  not converge. 

move is t o  use t h e  so lu t ion  obtained from t h e  f i r s t  i t e r a t i o n .  For t h i s  

problem t h e  r e s u l t s  w e r e  very s a t i s f a c t o r y .  

t h e  l a r g e  is a very d i f f i c u l t  one and a problem of t h i s  magnitude requi res  

The so lu t ion  of t he  polynomial equations represents  one i t e r a t i o n  of 

When t h i s  happens the  l o g i c a l  

The question of convergence i n  

empirical  v e r i f i c a t i o n .  

Based on these  r e s u l t s  a guidance algorithm is presented i n  Section V I .  

Considering t i m e  and s to rage  l i m i t a t i o n s ,  t h e  second-degree in t e rpo la to ry  

i t e r a t i o n  w a s  chosen. 
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A s  suggested i n  subsection 3 .4  t h e  expansion of S i l b e r  and Hunt w a s  used 

as a refinement. 

nominal values,  and w e r e  genera l ly  very poor, which can be seen by examining 

the  e r r o r s  i n  Table 5-2. 

w a s  used t o  generate s t a r t i n g  values. 

obtained with corrected de r iva t ives  from t h e  nominal t r a j ec to ry .  

contains t h e  r e s u l t s  of t h i s  procedure under t h e  heading "F i r s t  Guidance Command". 

I n  comparing t h e  percentage e r r o r s  i n  x and 

second-order expansion of S i l b e r  and Hunt i n  Table 5-2 one sees t h a t  t he  

e r r o r  is reduced i n  every case. 

(N = 1) reduces t h e  e r r o r  i n  a l l  cases except one. Furthermore, it is v e r i f i e d  

Recall t h e  s t a r t i n g  values used i n  Table 5-4 were the  

Instead, t h e  second-order expansion of S i l b e r  and Hunt 

Then t h e  second-degree polynomials were 

Table 5-5 

of Table 5-5 t o  those of t he  

Even t h e  so lu t ion  of t h e  l i n e a r  polynomials 

t h a t  s t a r t i n g  with t h e  expansion of S i lbe r  and Hunt improves t h e  performance 

of t he  guidance formulas over t h a t  by s t a r t i n g  with re ference  values.  

cerning t h e  e r r o r s  i n  t it  is observed t h a t  i n  most cases t h e  e r r o r  of t h e  

guidance formulas and t h e  Silber-Hunt expansion is  acceptable. However, i n  

two cases (11 and 12) t h e  e r r o r  i n  t h e  guidance formula w a s  much g rea t e r  than 

t h e  corresponding Silber-Hunt e r r o r .  

t h e  Silber-Hunt estimate of time-to-go on t h e  f i r s t  guidance cycle.  I n  order 

t o  inves t iga t e  t h e  i n i t i a l  behavior of t h e  guidance package a second guidance 

cycle w a s  computed with no change i n  t h e  i n i t i a l  state y. 

tabulated i n  Table 5-5 under t h e  heading "Second Guidance Command". 

s e n t s  e s s e n t i a l l y  two i t e r a t i o n s  of t h e  in t e rpo la to ry  i t e r a t i o n  function. All 

e r r o r s  were dr iven  t o  more than acceptable l i m i t s .  

Con- 

f '  

For t h i s  reason i t  w a s  decided t o  r e t u r n  

The r e s u l t s  are 

This repre- 

The r e s u l t s  of t h e  numerical study are compared q u a l i t a t i v e l y  on t h e  b a s i s  

of accuracy and convergence i n  Table 5-6. 

puting a weighted percent e r r o r ,  by weighting x and x two and tf one. The 

reasoning here  being t h a t  x and x are of d i r e c t  i n i t i a l  importance whereas 

t h e  beginning values of t 

a f f e c t  cur ren t  ac t ion .  It is  clear from Table 5-6 t h a t  t he  use of t h e  S i lber -  

Hunt expansion g r e a t l y  improves t h e  convergence of t h e  guidance formulas. 

The r a t i n g s  are determined by com- 

are merely ind ica to r s  of f u t u r e  state and do not f 

I n  summary t h e  main conclusions of t h i s  numerical study are l i s t e d :  

(A) The N = l.polynomia1 so lu t ions  improved t h e  Silber-Hunt approximations 
The advantage of t h i s  combination of of x and x i n  every case. 

methods is obvious. 
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Table 5-5. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE 
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES 

CASE 
% ERROR % EFROR % ERROR 

X X X 

2 

Polynomial Sol. 
First Guid. Corn. 

N=l -33.7 
N=2 -34.4 

Second Guid. Corn. 
N=l -31.5 

- N=2 -31.7 

Polynomial sol. 
First Guid. Com. 

N=l -32.4 
N=2 -33.4 

Second Guid. Corn. 
N=l -30.5 
N=2 -30.6 - 

7 

Polynomial Sol. 
First Guid. Corn. 

N=l 65.6 
3 N=2 65.6 

Second Guid. Corn. 
N=l 65.6 
N=2 65.6 

Sol. 
- 

First Guid. Corn. 
N=l 66.5 

66.6 

Second Guid. Corn. 
N= 1 66.7 
N=2 66.7 

-.37 
-.35 

-.36 
-.36 

- .40 
-.38 

- .40 
- .40 

.30 

.30 

.30 

.30 

34 
.34 

.34 

.34 

122.7 
123.5 

127.8 
127.9 

110.7 
112.1 

116.0 
116.1 

127.2 
127.2 

127.1 
127.1 

114.6 
114.6 

114.4 
114.4 

-7.7 
-10.1 

-.6 
-1.4 

-73.8 
-10.7 

-1.1 
-1.4 

.2 

.1 

.o 

.o 

.4 

.2 

.o 

.o 

-4.5 
.8 

-2 .o 
-1.7 

-2.9 
1.7 

-1.2 
-1.2 

.o 

.o 

.o 

.o 

.o 

.o 

.o 

.o 

4.6 
4.0 

.6 

.5 

5.2 
4.0 

.6 

.6 

.1 

.1 

.o 

.o 

-.2 
-.2 

.o 

.o 

. 
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Table 5-5. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE 
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Continued) 

CASE 
% ERROR % EFROR % ERROR 

X X X 

Polynomial Sol. 
First Guid. Corn. 

N=l -76.8 
5 N=2 -77.0 

Second Guid. Corn. 
N=l -77.7 
N=2 -77.6 

6 

- 
Polynomial Sol. 
First Guid. Corn. 

N= 1 68.7 
' N=2 68.7 

Second Guid. Corn. 
N=l 68.5 

- N=2 68.5 

Sol 

N= 1 66.4 
66.5 

66.2 
66.2 

N=l -73.8 
-74.0 

ISecond Guid. Corn. 
-74.5 
-74.5 

- .002 
- .002 

- .01 
- .02 

.17 

.17 

.17 

.17 

.15 

.15 

.15 

.15 

- .02 
-.02 

- .005 

- .004 

227.7 
227.7 

223.5 
223.2 

211.6 
212.3 

212.5 
212.5 

234.3 
237.0 

237.4 
237.5 

203.1 
202.9 

201.6 
201.5 

.9 

.6 

-.2 
-.2 

- .3 
- .4 

.o 

.o 

-.6 
-.7 

-.4 
- . 3  

.9 

.6 

-.l 
- .o 

106.8 
89.5 

.5 

.o 

.o 

.o 

.o 

.o 

.o 

.o 

.o 

.o 

-1564.8 
-1200.9 

-272.6 
-217.2 

-2.0 
-2 .o 

-.l 
- .o 

.4 

.l 

.o 

.o 

1.4 
. 3  

.1 

.o 

-.7 
- .6 

.o 

.o 
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Table 5-5. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE 
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Continued) 

CASE 
% ERROR % ERROR % ERROR 

X X i t F 

Polynorni a1 Sol. 
First Guid. Corn. 

N=l 79.5 
9 N=2 79.7 

Second Guid. Corn. 
N=l 79.4 
N=2 79.4 - 

Polynomial Sol. 
First Guid.  Corn. 

N= 1 75.3 
10 N=2 75.5 

Second Guid. Corn. 
N=l 75.1 
N=2 75.1 

~ 

- 

11 

12 

- 
Polynomial Sol,  
First Guid. Corn. 

N= 1 47.3 
*N=2 14.2 

Second Guid. Corn. 
N = l  34.7 

- N=2 37.2 
- 
Polynomial Sol. 
First Guid. Corn. 

N = l  49.1 
*N=2 34.5 

Second Guid. Corn. 
N=l 32.2 

- N=2 35.2 

.47 

.47 

.48 

.48 

.54 

.54 

.55 

.55 

.13 
-.07 

.13 

.15 

.15 

.08 

.12 

.15 

129.9 
130.2 

129.9 
129.9 

119.3 
119.9 

119.7 
119.7 

214.9 
322.2 

157.8 
164.9 

204.6 
246.2 

143.2 
151.1 

-.2 
-.4 

.o 

.o 

-.3 
-.6 

.o 

.o 

-18.6 
64.5 

13.0 
6.7 

-26.3 
11.2 

17.4 
9.6 

.7 
1.4 

.o 

.o 

1.4 
1.6 

.2 

.2  

14.8 
146.1 

16.3 
7 .O 

13.4 
50.9 

26.2 
12.3 

.o 
-.2 

.o 

.o 

. 3  
- . l  

.o 

.o 

-28.0 
-92 .O 

6 .O 
1.7 

-32.6 
-59.6 

7.2 
2.1 
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Tab1 e 5-5. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE 
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Concluded) 

CASE 
% ERROR % ERROR % ERROR 

X i X i t F 
Polynomial Sol. 
First Guid. Corn. 

N=l 81.3 
13 N=2 81.3 

Second Guid. Com. 
N=l 81.2 
N=2 81.2 

- 
Polynomial Sol. 
First Guid. Com. 

N=l 51.6 

~ 

14 

15 

16 

N=2 52.9 

Second Guid. Corn. 
N=l 53.7 

- N=2 53.8 

Polynomi a1 Sol . 
First Guid. Corn. 

N=l 50.6 
N=2 52.4 

Second Guid. Corn. 
N= 1 51.7 
N=2 52.0 

Polynomial Sol. 
First Guid. Corn. 

N=l 81.9 
N=2 81.9 

Second Guid. Corn. 
N=l 81.9 
N=2 81.9 

.16 

.16 

.16 

.16 

.14 

.14 

.15 

.15 

.10 

.10 

.13 

.13 

.18 

.18 

.18 

.18 

228.7 
228.7 

228.7 
228.7 

225.7 
234.1 

231.1 
231.1 

246.5 
262.9 

257.2 
258.8 

206.4 
206.4 

206.4 
206.4 

-.2 .3 
-.l . 3  

.o .o 

.o .o 

4.8 8.7 
2.5 5.5 

1 .o 1 .o 
.8 .8 

5.8 22.6 
2.4 15.7 

3.8 4.1 
3.3 3.1 

.o .o 

.o .o 

.o .o 

.o .o 

.o 

.o 

.o 

.o 

1.7 
-1.9 

-.6 
- .6 

3.7 
-2.7 

- .5 
-1.1 

.o 

.o 

.o 

.o 
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Table 5-6, QUALITATIVE COMPARISON OF THE GUIDANCE FORMULAS 

RAT I NG S 
A B C  

Nominal 0 

Silber-Hunt Expansion 
N=l 3 
N=2 4 

N=l 0 
N=2 4 
N=3 5 

N= 1 0 
N=2 10 
N=3 13 

Inversion (Integrated derivatives, Nom. starting values) 

Polynomial (Integrated derivatives , Nom. starting values) 

Damped Newton-Raphson (2 Iterations) 11  

N=l 0 
N=2 10 

N= 1 10 
N=2 12 

N=l 14 
N= 2 14 

Polynomial (Corrected nominal derivatives, Nom. start ny values) 

Polynomial (Corrected nominal derivatives, S-H starting values) 

Polynomial (Second Guidance Command) 

0 

8 
8 

9 
6 
3 

9 
4 
0 
4 

9 
4 

3 
2 

1 
2 

16 

5 

4 

7 
6 
7 

7 
2 
3 
1 

7 
2 

3 
2 

1 
0 

E = weighted error magnitude E<5% - A 
5%< E~l5% B 

E>15% C 
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(B) The polynomial so lu t ions  w e r e  obviously more e f f e c t i v e  than the  
invers ion  formulas. 

(C) The N = 2 polynomial so lu t ion  on t h e  f i r s t  guidance command gave l i t t l e  
improvement over t h e  N = 1 polynomials. 
a t i o n  on the  N = 2 polynomials d id  not converge. 

(D) The N = 2 polynomial so lu t ion  gave s i g n i f i c a n t  improvement over t h e  
N = 1 polynomial so lu t ion  on the  second guidance command i n  cases 11 
and 1 2  where i t  w a s  most needed. However, i n  v i e w  of conclusion (C) 
t h e  use of N = 2 is held open u n t i l  f u r t h e r  inves t iga t ion .  

(E) The Silber-Hunt second-order t e r m s  improved t h e  f i r s t -o rde r  t e r m s  more 
than is implied by Table 5-6, e spec ia l ly  f o r  tf. However, t he  N = 2 
terms f a i l e d  t o  improve t h e  N = 1 terms i n  a few cases (notably 
cases 11 and 12) and even de te r io ra t ed  t h e  N = 1 estimates. Consid- 
e r ing  t h e  add i t iona l  computing t i m e  and s to rage  requirements f o r  
N = 2, t h e  a d v i s a b i l i t y  of using it  f o r  ca l cu la t ing  approximate multi- 
p l i e r s  is open t o  question. 

I n  cases 11 and 12 t h e  iter- 
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Section V I  

DEFINITION OF A GUIDANCE PACKAGE 

The content of t h i s  s ec t ion  descr ibes  a guidance rou t ine  based on the  

polynomial so lu t ions  discussed earlier. However, i n  order t h a t  t h i s  s ec t ion  

may be complete and used as a re ference  a l l  t h e  necessary equations are 

repeated. 

i n t o  a spec i f i ed  c i r c u l a r  o r b i t .  For s impl i c i ty ,  t h e  space dimensionality 

w i l l  be constrained t o  two. 

The test mission w i l l  be a minimum f u e l ,  constant burn i n j e c t i o n  

6.1 A BRIEF SUMMARY 

The problem may be simply s t a t e d ,  'Given t h e  state of t h e  veh ic l e  Y ,  . 
r e t u r n  t h e  t h r u s t  d i r e c t i o n  and i t s  t i m e  de r iva t ive  ( i . e . ,  x and x, see 

Figure 6-1) such t h a t  t h e  opt imal i ty  c r i t e r i o n  (minimum payload) i s  s a t i s f i e d ' .  

I n  genera l ,  x and x are ca lcu la ted  from t h e  so lu t ion  of a set  of simultaneous 

polynomial equations whose c o e f f i c i e n t s  are approximated from a nominal 

t r a j ec to ry .  Currently a 'time-to-go' c r i t e r i o n  is  used t o  select a poin t  

from t h e  nominal t r a j ec to ry .  

Figure 6-1. DEFINITION OF THRUST ANGLE x 
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The guidance rou t ine  is required t o  r e t u r n  a x and f o r  a set of state 

vec tors  proceeding along some path. 

be solved by t h e  rout ine .  

so lu t ion  of t h e  polynomial equations. Here, t h e  so lu t ion  of t he  previous 

problem equations with a l inear  update is used as t h e  approximation. On t h e  

very f i r s t  ca l l  t o  t h e  rou t ine  t h e  second-order expansion of S i lbe r  and Hunt 

( r e f .  3) is used t o  obta in  t h e  approximation. 

Thus a sequence of r e l a t e d  problems must 

Each problem needs an i n i t i a l  approximation t o  the  

The so lu t ion  t o  t h e  polynomial equations begin t o  degenerate when the  

time-to-go becomes s m a l l  because many of t h e  c o e f f i c i e n t s  are approaching 

zero. Thus, when the  time-to-go becomes less than some prespec i f ied  value 

(AT,,) t h e  con t ro l  l a w s  are assumed l i n e a r  and a simple update of x and x 
is performed. 

A set of f i v e  second-degree polynomials are used. The c o e f f i c i e n t s  of 

t h e  l i n e a r  and second-order terms are obtained from simple expansions about 

t h e  nominal t r a j e c t o r y  as mentioned before.  

by numerical in tegra t ion .  

guidance rou t ine  i t s  se l f -cor rec t ing  behavior as w e l l  as a measure of its 

success. 

The constant terms are ca lcu la ted  

The accura te  evaluation of t hese  terms gives  t h e  

I n  the  following, 5 represents  t h e  vec tor  of m u l t i p l i e r s  and time-to-go 

assoc ia ted  with t h e  state Y. 

6.2 STATEMENT OF COMPUTATIONAL ALGORITHM 

A Concise desc r ip t ion  of t h e  ca l cu la t ion  procedure is contained here. 

The nota t ion  is  defined followed by a genera l  flaw cha r t  (Figure 6-2) and 

algorithmic desc r ip t ion  anoted by a d e t a i l e d  explanation. 

6.2.1 Definition of Symbols and Notation 

X 

iz 
F 
m 
- 

Cartesian pos i t i on  vec tor  (x 1’ X2I t  

Cartesian ve loc i ty  vec tor  (x 

t h r u s t  t o  m a s s  r a t i o  
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SOLVE 
POLY. EQS. 
FOR &.SET 
5 = 5' + A C  

I 
UPDATE c 
BY CYCLE 

-----(?b CALCULATE 

NOMINAL V I A  
' T IME-TO-GO ' 

F igure 6-2. FLOWCHART FOR GUIDANCE PACKAGE 

6-3 



T~-792-9-547 
NORTHROP-HUNTSVILLE 

B 
m 

Y 

- 

A t  

h 

i 

5 

ATex 

'*IN 

m a s s  flow rate magnitude t o  m a s s  r a t i o  
t 

i n i t i a l  state vec tor  = 6, 2, , 9> 
time-to-go 

vec tor  of Lagrangian m u l t i p l i e r s  (Al, h 2 )  associated 
with X 

vec tor  of negated Lagrangian m u l t i p l i e r s  Ci,, i2) 
associated with 2 

vector  of unknown q u a n t i t i e s  = ( A o ,  io, A t I t  * 
External cyc le  t i m e  of guidance package, i.e. t h e  elapsed 
t i m e  between e x i t  from t h e  guidance rou t ine  and upon 
en t ry  again 

t 

t 

I n t e r n a l  cyc le  t i m e ,  i.e. t h e  elapsed t i m e  between en t ry  
i n t o  guidance rou t ine  and e x i t  

Trajectory constant which ind ica t e s  when t h e  de r iva t ives  
are ca lcu la ted  by l i n e a r  i n t e rpo la t ion .  " SWCH 

I n i t i a l  value of nominal A t   AT^^^ 
 AT^^^ 

T 

Tra jec tory  constant which ind ica t e s  when a s i m p l e  guid- 
ance l a w  will be invoked. 

Time on nominal t r a j e c t o r y  from which Y, 5 has been 
obtained 

- . - .  

Radius and ve loc i ty  a t  cu to f f ;  input  constants. 
RcO,  %o 

The values Y and 5 represent  t h e  t r u e  state of t h e  veh ic l e  and the  so lu t ion  

obtained from t h e  polynomials, respec t ive ly .  

estimates f o r  5 .  Quant i t ies  from t h e  nominal t r a j e c t o r y  corresponding t o  Y 

are denoted Y and 5. 

A "prime" adjoined t o  5 i nd ica t e s  

." ." 

6.2.2 General Description of Flow Chart for Guidance Package 

A. Input Y = 6 ,  k,  , ")' ; request f o r  guidance command. The vec tor  
mo mo 

Y designates t h e  cu r ren t  t r u e  state of t h e  vehicle.  

* The subscripts "on and 'If" w i Z Z  designate the quantity a t  the i n i t i a l  time 
and the f ina l  time respectively. 
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B. I f  t h i s  is t h e  f i r s t  guidance request i n i t i a l i z e  Y ,  5 from f i r s t  po in t  

of nominal. 

approximate 5' (see d e t a i l e d  descr ip t ions) .  Proceed t o  s t e p  C. 

Se t  T = 0 and then use S i l b e r ' s  expansion t o  ob ta in  t h e  

I f  t h i s  is  not  t h e  f i r s t  guidance request then ob ta in  ('from t h e  

previous ca lcu la ted  5 as follows: 

A '  = A  + A T  x ex .. 
A' = i + ATex A 

At' = At - ATex 

C. T e s t  t o  see i f  t h e  estimated time-to-go A t '  is less than o r  equal t o  

ATHOM. 
enough t o  cutoff t i m e  so t h a t  a simple l i n e a r  guidance may be used?' 

The degree of closeness is indica ted  by t h e  input  constant ATHoM. 

I f  t he  answer is  yes than 5' is an accura te  estimate of 5 thus set 

5 = 5' and proceed t o  s t e p  J. 

I n  o ther  words t h e  question t o  be answered 'Is it  c lose  

- -  
D. A t  t h i s  s t e p  i t  is des i red  t o  obta in  a Y ,  5 with  t h e  same time-to-go 

as 5' o r  simply A t  = A t ' .  This is accomplished by in t eg ra t ing  t h e  

MEL equations wi th  t h e  i n i t i a l  conditions Y ,  5 (from last  guidance 

c a l l )  from t = T t o  t = ATNOM - A t ' .  

values of t h e  in t eg ra t ion .  

T = ATNOM - A t ' .  

over a s m a l l  i n t e r v a l .  Based on numerical s t u d i e s  on t h i s  nominal 

t r a j e c t o r y  ( r e f .  12) i t  seems des i r ab le  t o  use  only one in t eg ra t ion  

s t e p  with a f i f th -order  Runge-Kutta (See d e t a i l e d  descr ip t ion) .  

- 
- . . .  

-... 
Then reset Y, 5 from t h e  f i n a l  ... - 

Also set A t  = A t  - (ATNoM - At') and 

The numerical i n t eg ra t ion  here  w i l l  probably be 

E. I n t e g r a t e  t h e  MEL equations with t h e  i n i t i a l  conditions Y ,  5' from 

t = 0 t o  t = A t ' .  

values of t h e  in t eg ra t ion  (see d e t a i l e d  descr ip t ion) .  

Then compute g(Y, 5')  from t h e  i n i t i a l  and f i n a l  

Based on numerical s t u d i e s  of per turba t ions  of t h e  nominal t r a j e c t o r y  

i t  seems des i r ab le  t o  use  3 i n t eg ra t ion  s t e p s  f o r  t h i s  case ( r e f .  12). 

F. Obtain de r iva t ives  
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from nominal t r a j e c t o r y  via least square polynomials. 
nomials with t = T. 

Evaluate poly- 
(See d e t a i l e d  descr ip t ion . )  

G. Calculate 

(See d e t a i l e d  descr ip t ion)  

H. Solve the  following polynomials f o r  A t ,  by Newton-Raphson i t e r a t i o n :  

Calculate 5 = €,' + A€, 

(See d e t a i l e d  descr ip t ions . )  

I. With ATIN being t h e  cycle t i m e  of guidance package update 5 by t h e  same 

formulas of s t e p  B ,  i.e. 

A = X + ATIN h 

X = h + ATIN X 
.. . 

A t  = A t  - ATIN 

J. Calculate 
hl x = Arctan - 

h2i, - hli2 
2 X' 2 

+ h2 

. 
K. Output x, x, A t  and e x i t .  

6.2.3 Detailed Descriptions 

The letters i n  parenthes is  r e f e r  t o  those i n  subsection 6.2.2. Some 

i t e m s  are s u f f i c i e n t l y  described i n  subsection 6.2.2 and no f u r t h e r  desc r ip t ion  

is required.  
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(B) Expansion of S i lbe r  and Hunt - On t h e  f i r s t  guidance request t he  expan- 

s ion  of S i lbe r  and Hunt w i l l  be used t o  g ive  a 'crack' ,  C', a t  the  

unknown quan t i t i e s  5. These expressions are i n  the  form 

- 
where AY = Y - Y .  and 

j j ~  2 ac i  a Ci - 
ayj * ay ayk 

j 

Taking advantage of t h e  f a c t  t h a t  

a ti 2 

8 y . a ~  ay a Y  ' 
J k  k j  

are s tored constants.  
2 a si - - 

then 

Thus equation (6-1) may be wr i t t en  a s  

.., 

Ci'  = si + 

Then it  is 

r 

L 

necessary t o  s t o r e  the  constants  

a t ,  .., - 
aYi 
- (Y, E )  i=l, ... 5; j=l  y.. .6 

J 

2 a c i  - .., 

ay 
j 

2 (YY C) i=l, . . .5; j=l , .  . .6 

AY AY 
j k  

No. 

30 

30 

2 a < ,  - - 
(Y, <) ill ,... 5; j=2, ... 6; k=l  9...j-l 75 ay . ay 

J k  
TOTAL 135 

(D),  (E) In tegra t ion  Package - This should be a separa te  subroutine which 

in t eg ra t e s  t h e  MEL equations. 
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3x * X  .. 

where A = ( A - A )  1 /2  , R = (X-X)1/2, A = -6, and p, F, $, are cons tan ts .  

More compactly w r i t t e n  .. 
p = f ( t ,  P) - 

* F  Input t o  t h i s  rou t ine  should be t h e  i n i t i a l  values of X ,  X ,  A ,  A ,  --, 
B - t ( i n i t i a l  t ime),  tf ( f i n a l  t i m e ) ,  and NSTEP (number of in tegra-  m y  o 
t i o n  s t eps ) .  
- B 
m 

* F  Output should be t h e  f i n a l  values of X ,  X ,  A ,  A ,  ;, and 

The in t eg ra t ion  formula is  a Runge-Kutta 5-3 formula ( f i f th -order  

approximate with 3 evaluations of f ( t ,  p) required) where h i s  the  

i n t e g r a t i o n  s t eps i ze .  This formula w a s  derived by Andrus i n  r e f e r -  

ence 12. 

K 2 = h f  ( t + $ , p + - p + - K  h *  h 
5 50 1 

h 
168 p(t+h) = p + h i  + - (7 K1 + 50 K2 + 27 K3) 

K4 = h f ( t  + h,  p ( t  + h ) )  

p(t+h) = p + - (14 K1 + 125 K2 + 162 K3 + 35 K4) 336 

It should be  noted t h a t  t h i s  formula requi res  4 evaluations of f on 

t h e  f i r s t  i n t eg ra t ion  s t e p  bu t  only t h r e e  t h e r e a f t e r  s ince  K4 a t  s t e p  

n is K The rou t ine  should flow as shown i n  Figure 6-3. a t  s t e p  n+l. 1 

(E) Evaluation of g ( Y , < ' )  - When i n j e c t i n g  i n t o  a c i r c u l a r  o r b i t  i n  two 

dimensions one must s a t i s f y  t h e  following conditions 
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’/ ’ 

2 2 2 
gl(Y, 5’) = Xlf + X2f - R = 0 co 

g5(Y, 6 ’ )  = x;oir20 - x;oi,o - i;ox20 + i;*xlo = 0 

“2 “2  
A1 + A2 where a = 

Notice that the last two g ’ s  are evaluated at the initial time. 

The Derivatives - Since the last two g ’ s  are functions of variables 

at the initial time then their partial derivatives with respect to 

the 5’ are easily calculated. 
j 

- -  ag4 0,j = 3 ,  4 ,  5. 
a %  

- 0. - -  ag5 ag5 
xlo’ 6- ag5 ag5 -x - =  285 . 

a 51 
x20’ ag, - - -X1Or a53 = 20’ ac4 - 

A l s o  
e, 

aLg5 
= 0 i=l, ... 5; j=l,.  .. 5. aEiaEj 

It can be shown that 
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which may be obtained d i r e c t l y  from t h e  r e s u l t s  of t he  numerical i n t e -  

g r a t i o n  i n  s t e p  ( E ) .  

mated from t h e  re ference  (nominal) t r a j e c t o r y  are 

Thus, t h e  de r iva t ives  t h a t  need t o  be approxi- 

3 

-J. (Y, t f ) ;  i = 1, 2, 3; j = 1, 2, 3 ,  4 ,  5 ac.ae,, 

TOTAL 
12 

42* 

k = 1, ..., j; 

j and k both not 
simultaneously 5 

J "  

These de r iva t ives  are approximated by expanding about t h e  nominal 

t r a j e c t o r y  and truncatillg 

2 
5 a g i  - - agi . ai - .., 6 a g i  -.. - - 2 

- -  (y, <)Auk + 1 ( y Y  c > ( < ' k  - <k) 
k=l  ackacj  

(Y, 5) + 1 - -  
a c j  a c j  k = l  aYkacj 

= Yk - iik . k where AY 
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Thus it is necessary t o  have s tored  

agi I 

- (Y, 5) i = 1, 2, 3; j = 1, 2, 3, 4 acj 

TOTAL 

1 2  

2 
a g i  - -. 

(Y, 5) i = 1, 2, 3; j = 1, 2 ,  3,  4; 72 
aYka 5 

k = 1, 2,  3 ,  4, 5, 6 

TOTAL 126 

These de r iva t ives  w i l l  be s to red  i n  t h e  form of third-degree poly- 

nomials i n  t h e  va r i ab le  t (time on t h e  nominal, t = A t N O M  - At). 

In t e rpo la t ion  f o r  Derivatives - Due t o  t h e  f a c t  t h a t  a l l  t he  

de r iva t ives  

ag, - 
2 (Y, c )  i = 1, 2, 3; j = 1, 2, 3 ,  4 a5j  

are zero when A t  = 0 then t h e i r  values are f a i r l y  w e l l  approximated 

by linear in t e rpo la t ion  f o r  s m a l l  A t .  When A t '  - < ATSWCH then t h e  

time-to-go is  " s m a l l "  and l i n e a r  i n t e rpo la t ion  is used , otherwise 

the  third-degree polynomials are used. 

There w i l l  be 126 polynomials as noted earlier designated say 

i = 1, ..., 126 2 3 pi(t) = aiO + a t + a t + ai3t il i 2  

These should be  evaluated using Horner's method, i.e. 

pi(t) = aiO + t[ail + t(ai2 + ai3t)l  

The f i r s t  t i m e  t h a t  A t '  - < ATSWCH then t h e  de r iva t ives  are ca lcu la ted  

i = 1, ... 126. by equation (6-3)  and a t  t h e  same t i m e  set  a 

where Y = A t ' .  Then t h e r e a f t e r ,  c a l c u l a t e  

P i  = - 
i 0  y 

pi(t) = A t '  aiO . 

6-12 
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The following flaw diagram (Figure 6-4) descr ibes  t h e  computations 

of s t e p  (F): 

STEP F 

SET 
T = T  

F i g u r e  6-4. FLOWCHART FOR STEP F 

(H) Solution of Polynomials - Given the  t r u e  s ta te  Y i t  i s  des i red  t o  

f ind  t h e  unknowns 5 such t h a t  t h e  boundary conditions are zero,  i .e. 

gi(Y, 6) = 0 i = 1, ..., 5 
Expanding i n  a Taylor series about 5' and t runca t ing  a f t e r  second- 

order terms gives  

6-13 
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The coe f f i c i en t s  of the  polynomials are computed f n  s t eps  (E) and (GI. 
There are 5 polynomial equations i n  5 unknowns Ag k = 1, ..., 5. The 

object  here  is  t o  so lve  the  polynomials by Newton's i t e r a t i o n .  

rewrite the polynomials i n  a n i ce r  form 

k' 
To 

i = 1, ..., 5 (6-5) 
1 ( i )  5 

pi(S) = a(i) + 1 b r )  Sk + 2 1 1 CU SkSL k=l  k= l  L = l  

where 

then 

Then one might expect t o  save a few operations by taking advantage of 

t he  symmetry property. Consider 

5 5 k-1 

k=l  k=2 L = l  

Thus, ins tead  of having 25 summations the re  are only 15. 

polynomials may be wr i t t en  
Then the  

6-14 
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(0). 
k '  I n  t h e  Newton i t e r a t i o n  an i n i t i a l  guess is  made a t  Sky say S 

then P . [ S ( ~ ) ]  is evaluated. N e x t  t h e  p a r t i a l  de r iva t ives  are required 
1 

Dif fe ren t i a t ing  equation (6-5) w r t  S. ob ta in  
3 

Thea t h e  5x5 matrix * [S'O)] is computed and t h e  l i n e a r  equations 
as 

are solved f o r  AS(') and a new S(') = S ( O )  + AS(') is computed. 

process is  repeated u n t i l  AS(n) is s u f f i c i e n t l y  small. 

flow cha r t  follows i n  Figure 6-5. 

The 

A computational 

I f  f o r  some reason t h e  l i n e a r  equations become s ingu la r  o r  t h e  iter- 

a t i o n  f a i l s  t o  converge, then it is  assumed t h a t  A t '  is so near zero 

t h a t  t h e  equations have become singular.  

execution proceeds t o  s t e p  (C). 

Then ATHOM is  set t o  At' and 

6.3 ESTIMATION OF EXECUTION TIME AND STORAGE 

The arithmetic execution time of t h e  SIV-B computer, LVDC, is  assumed of 

f ixed  poin t  add t i m e  a ,  multiply t i m e  5a,  d iv ide  time t h e  following form: 

8a, where a = 8211 sec ( re f .  13). Further,  i t  is  assumed t h a t  a l l  arithmetic 

operations are performed i n  fixed-point mode. Then giving a m a x i m u m  of f i v e  

i t e r a t i o n s  on t h e  polynomial equations, an opera t ion  count reveals t h a t  a 

cyc le  t i m e  of less than 1.6 seconds is  determined by t h e  Algorithm as defined. 

It should be noted t h a t  t h e  execution time is l i n e a r  i n  t h e  number of i t e r a t i o n s  

T on t h e  polynomial equatons with a very l a r g e  p o s i t i v e  der iva t ive .  

s p e c i f i c  

To be 

8 

Extime = .630 + .180 T seconds 
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cl7 RETURN 
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It is expected t h a t  only one o r  two i t e r a t i o n s  w i l l  be  required making t h e  

execution time around .8 t o  1.1 seconds. 

The s torage  requirements are determined from a UNIVAC 1108 load map of a 

model deck. 

sen ta t ion .  The s to rage  of t h e  model deck is  less then 4000 words. 

It is assumed t h a t  one d i g i t a l  word conta ins  one e n t i r e  da t a  repre- 

The t o t a l  execution t i m e  i s  estimated by counting a r i t hme t i c  operations 

only. The a u x i l l i a r y  bookkeeping in s t ruc t ions  are assumed neg l ig ib l e .  I n  

add i t ion  some advantage can be taken of t he  overlap f e a t u r e  of t h e  multiply 

i n s t r u c t i o n  which allows simultaneous execution of one o r  two add i t iona l  

minimal cyc le  i n s t r u c t i o n s  (e.g., load and s t o r e  in s t ruc t ions ) .  

Table 6-1 gives a de t a i l ed  summary of t he  a r i t hme t i c  operation counts 

necessary i n  each block of t h e  general  flowchart presented earlier. 

symbols are defined as follows: 

The 

4 
N 

P 1  

P2 
r 

S 

T 

a 

dimens ion  

dimens i o n  

number of 

number of 

degree of 

dimension 

number of 

number of 

of space (2 o r  3) 
of i s o l a t i o n  space (i.e., <) 

i n t eg ra t ion  s t e p s  on nominal t r a j e c t o r y  (Block D) 

i n t eg ra t ion  s t e p s  i n  computing g(Y, e ' )  (Block E) 

approximating polynomials f o r  de r iva t ives  

of state vector Y 
Newton-Raphson i t e r a t i o n s  on polynomials (maximum of 5) 

intermediate and terminal functions i n  g vector.  

I n  t h e  numerical i n t e g r a t i o n  of blocks D and E i t  is  required t o  e x t r a c t  

H e r e ,  t h i s  operation is approximated by 4 adds, 4 mul t ip l i e s ,  a square root.  

and 3 div ides ,  i .e . ,  3 Newton i t e r a t i o n s  preceded by a normalization. I n  

block J it  is required t o  c a l c u l a t e  an inverse  tangent which is approximated 

by a continued f r a c t i o n  of 6 adds, 2 mul t ip l i e s ,  and 3 div ides .  The t i m e s  

of blocks A ,  C ,  and K are assumed negl ig ib le .  

The execution of t h e  guidance package may be one of four d i f f e r e n t  modes 

depending on t h e  estimated time-to-go A t ' .  

maximum time and requi res  t h e  use of S i l b e r ' s  expansion on t h e  f i r s t  cal l  t o  

The f i r s t  mode cons i s t s  of t h e  
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Table 6-1. OPERATION COUNTS FOR GUIDANCE ROUTINE 

B I 
ADD 

2q + 1 

[P1+P2] [41q+27]+5q+9 

a(N-1) [l+Sq] r 

(a* 

12[1+2(S+N)] 

1 1 1 3 + 9 N  T 
P b  7 
2q + 1 

MULTIPLY 

2q 
N[2S+S( S-1)]* 

+P ] [53q+36]+9q+19 CPl 2 

a(N-1) [l+Sq] r 

(1 26)* 

12[S+N] 

[313 + 3NqT 

DIVIDE 

0 

0 

0 

N ~ T  

0 

*In block B, indicates Silber's expansion o f  Mode 1. 

In block F, indicates Linear interpolation o f  Mode 3 .  
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t h e  guidance routine.  The second mode is t h e  standard procedure and is used 

f o r  t h e  time-to-go between t h e  f i r s t  ca l l  and up t o  A t '  = ATSWCH. The t h i r d  

mode uses a l i n e a r  i n t e rpo la t ion  when ca l cu la t ing  t h e  de r iva t ives .  

mode is used when A t '  < ATHOM and t h e  vehic le  is assumed so c l o s e  t o  cut-off 

t h a t  l i n e a r  guidance l a w s  are s u f f i c i e n t l y  accurate.  

The fou r th  

It should be emphasized t h a t  t h e  execution times previously s t a t e d  are 

For a genera l  t h ree  f o r  a two dimensional i n j e c t i o n  i n t o  a c i r c u l a r  o r b i t .  

dimensional problem where i t  is des i red  t o  i n j e c t  i n t o  some prescribed o r b i t  

t h e  corresponding execution time is  of course g rea t e r .  

using Table 6-1 as a guide ( i . e . ,  q = 3 ,  N = 7, S = 8, T = 5) ind ica t e s  t h a t  

t he  execution t i m e  is  approximately two t i m e s  t h a t  of t h e  two-dimensional 

problem o r  3.0 seconds. 

i t e r a t i o n s  T. 

A rough ca l cu la t ion  

Again t h e  execution t i m e  is l i n e a r  i n  the  number of 

For t h e  t h r e e  dimensional problem t h e  expression 

Extime = 1.180 + .356 T seconds 

charac te r izes  t h i s  r e l a t i o n  f o r  mode 1 t i m e .  

The t o t a l  e f f o r t  of t h e  guidance rou t ine  i s  almost e n t i r e l y  composed of 

t h r e e  d i s t i n c t  pa r t s .  

f i f t h  of t h e  execution time, t h e  ca l cu la t ion  of t h e  de r iva t ives  about one- 

f i f t h ,  and t h e  s o l u t i o n  of t h e  polynomial equations e n t a i l s  t h ree - f i f th s .  

Thus, i f  t h e  computing time is  t o  be reduced then a good p lace  t o  begin t h e  

reduction is i n  the  i terative so lu t ion  of t h e  polynomial equations. 

has been proposed t h a t  a Newton-Raphson i t e r a t i o n  be  used. 

The numerical i n t eg ra t ion  comprises approximately one- 

Here i t  

It is f e l t  t h a t  

some modification i n  t h e  i terative procedure could save a t  least three-tenths 

of t h e  t o t a l  t i m e  spent i n  solving t h e  polynomial equations. 

i n t o  a 1.3 second cyc le  time f o r  t h e  two-dimensional problem and a 2.4 second 

cyc le  time f o r  t h e  3-D problem. 

This reso lves  

The s torage  required f o r  a three-dimensional deck is  estimated t o  be less 

than two times t h a t  required f o r  t he  s torage  of t h e  model deck o r  less than 

8000 words. 
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Section VI I  

DISC USS ION 0 F PERFORMANCE 

The purpose here is to criticize as objectively as possible the guidance 

Algorithm of Section VI. Various measures of performance have been outlined 
in reference 14 and these points are discussed explicitly. Each performance 

criteria is defined and then followed by supporting critical statements. 

7.1 OPTlMALlTY 

Given that there is a performance index to be minimized, e.g., propellant 

expenditure; how does the obtained value of the performance index compare to 
the theoretical minimum? 

The minimum value is defined here to be that value obtained by satisfying 
various necessary minimum conditions of the calculus of variations. This mini- 

mum is of course a local minimum and is considered acceptable for this problem. 
The various errors in the Algorithm are discussed in subsection 7.2. These 

errors generally subtract from the performance index and it is difficult to 
state "a priori" just what the total effect is. 

a good idea of the performance. However, numerical results are not available 
on this point yet. 

Empirical study usually gives 

7.2 ACCURACY 

Given that approximations are introduced into the derivation and mechani- 

zation of the guidance equations; what are the resulting errors in the desired 
terminal conditions? These errors can be classified according to: 

0 APPROXIMATION ERRORS - Due to analytic approximations introduced into 
the derivation of the guidance equations. 

The physical assumptions of a spherical homogeneous earth and two-body 
approximations introduce some error. However, this is expected not to be severe. 

In addition the approximation of the boundary conditions by the second-degree 
polynominals serves as a perturbation. 
errors are certainly acceptable. 

The results of Section V indicate these 

7 -1 



TR-792-9-547 
NQRTHRQP-HUNTSVILLE 

0 COMPUTER ERKORS - Due to the inaccuracies of the numerical Algorithms 
used to implement the guidance equations. 

A computer error analysis has not been carried out for this Algorithm. 
However, favorable to this point is the iterative property (with a self- 

correcting nature) of the guidance scheme. 
0 MECHANIZATION ERRORS - Due to the inability of the vehicle to physi- 

cally respond to the guidance commands. 

Currently no provisions are made for problems of bounded control or state 

variables. 
such cases. 

However, it is possible to extend the guidance Algorithm to cover 

7.3 REGION OF APPLICABILITY 

What is the range of perturbations which can be adequately treated by 

the guidance mode? 

In terms of the state space, a second-order region is covered by the 

Silber-Hunt expansion whereas the iterative refinement of the guidance formulas 

certainly extends this region. 

problem of Section V was adequately handled by the guidance formulas. 
The five percent perturbations in state of the 

7.4 COMPUTER FACTORS 

What are the real time onboard and/or earth-based computer requirements, 

in particular, how much storage space is required, what is the length of the 

computing cycle for iteration of the guidance equations, and how complex must 

the computer be? 

This information is covered in detail in subsection 6 . 3 .  In summary, the 

computer requirements appear to be sufficiently fulfilled by the state-of-the- 
art hardware, quite probably the LVDC currently used on the S-IVB. 
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1.5 PREFLIGHT PREPARATION 

What i s  t h e  cos t  i n  t i m e  and money of p r e f l i g h t  preparation of t he  guid- 

ance equations,  i n  p a r t i c u l a r  how long does i t  take  to  prepare the  guidance 

system t o  accomplish a given mission? 

The guidance rou t ine  as defined i n  Section V I  r equ i r e s  the generation of 

a nominal t r a j e c t o r y  and t h e  computation of t h e  least square polynomials approx- 

imating t h e  required der iva t ives .  

which takes  less than 15  minutes of execution on an  IBM 7094 f o r  t h e  problem 

of  Section V I .  

This job i s  being accomplished by a program 

7.6 FLEXIBILITY 

What are the  types of missions which the  guidance mode can perform, and 

how w e l l  can i t  adapt t o  changes i n  the  mission? 

Currently,  t he  guidance mode i s  designed t o  handle a two-dimensional, 

constant-burn, minimum-fuel i n j e c t i o n  i n t o  a c i r c u l a r  o r b i t .  The reference 

t r a j e c t o r y  is  r ep resen ta t ive  of S-IVB type vehic les .  However, t h e  bas ic  guid- 

ance scheme is very general  and requi res  only t h a t  t h e  boundary conditions be 

expressed as equa l i ty  cons t r a in t s .  Adapting t o  changes i n  mission i s  accom- 

plished by generating a corresponding nominal t r a j e c t o r y  and computing the  

required de r iva t ive  least square polynomials. This dependence upon a p re -  

computed re ference  t r a j e c t o r y  is  the  primary drawback of t h i s  guidance scheme. 

7.7 GROWTH POTENTIAL 

What is  the  p o t e n t i a l  a p p l i c a b i l i t y  of t h e  guidance mode t o  f u t u r e  

m i s s  ions ? 

The f l e x i b i l i t y  of t h e  guidance rou t ine  discussed earlier c e r t a i n l y  pro- 

jects t h e  poss ib le  c a p a b i l i t y  of t h i s  package f o r  use i n  f u t u r e  missions. 

The Algorithm can be extended t o  cover: 

0 Low t h r u s t  

0 Bang-Bang con t ro l  
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0 Orbital transfer, rendezvous, intercept 

0 Bounded control and state 

0 N-body problems 

0 Oblateness effects 

I.e., almost any conceivable mission in which disturbance from an earth deter- 

mined reference program is "small". 
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Section V l l l  

CONCLUSIONS AND RECOMMENDATIONS 

The numerical algorithms discussed in this report add self-correcting 

features to second variation guidance. However, the techniques are still de- 

pendent on proximity to a reference path and require storage of coefficients 

of polynomial functions of time. 

The comparison of the polynomial solutions and the inversion formulas on 

an S-IVB type trajectory clearly indicates the superiority of the polynomial 
solutions. Based on these numerical results a guidance algorithm was designed 
with the polynomial solutions used as the driving element. 

One of the more important and unique features of the guidance algorithm 

was the rapid rechnique used for computing approximate first and second de- 
rivatives of functions of the final state with respect to current Lagrange 

multipliers: The first derivatives were approximated by correcting nominal 
derivatives to account for deviations from the current nominal state and 

nominal Lagrange multipliers. The second derivatives were simply set equal 
to the nominal derivatives. This technique for finding approximate derivatives 

led to guidance commands which did not vary much from the guidance algorithm 

utilizing true derivatives. 

Included in the numerical study was an independent use of the expansion 
of Silber and Hunt. The results showed clearly that a combination of the Silber- 

Hunt expansion with the polynomial solutions proved much more useful than either 
taken individually. 

The guidance formulas described in Sections I11 and IV were of arbitrary 
order. However, the numerical results of Section V indicated that the second 
or higher order formulas are of questionable utility. 
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More studies of the guidance algorithm in simulated flight are recommended 
in order that: 

e 

0 

The best combination of auxilliary algorithms may be selected. 
Features which contribute little to the performance may be eliminated. 

A more detailed study should be made of the approximations to the true 

derivatives in order to find improvements to the method of approximation. 

Finally, an effort should be made to make the method less dependent upon 
a single stored reference trajectory. 

8-2 



NORTHROP - HUNTSVILLE TR-792-9-547 

1. 

2. 

3. 

4 .  

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Section IX 

REFERENCES 

Thompson, M. L., et al., "An Analytical Approach to Solution of Two-Point 
Boundary Condition Problems in Optimal Guidance", Summary Report for NASA 
Contract NASW-1165, Northrop-Nortronics-Huntsville Memo TM-292-6-038, 
June 1966. 

Andrus, J. F., et al., "Analytical Research in Guidance Theory", Final 
Report for NASA Contract NAS12-500, Northrop-Nortronics-Huntsville Report 
TR-792-9-283, November 1967. 

Silber, R. and Hunt, R. W., "Space Vehicle Guidance - A Boundary Value 
Formulation", NASA Tech. Memo X-53059, June 1966. 

Kelley, H. J., "An Optimal Guidance Approximation Theory", IEEE Trans. on 
Automatic Control., Vol. AC-9, 1964, pp. 375-380. 

Breakwell, J. V., Speyer, J. L., and Bryson, A. E., "Optimization and 
Control of Nonlinear Systems using the Second Variation", J. Society of 
Industrial and Applied Math. Control, Series Al, 1963, pp. 193-223. 

Powers, W. F., "A Method For Comparing Trajectories in Optimum Linear 
Perturbation Guidance Schemes", AIAA Journal, Vol 6, No. 12, December 1968. 

Leitman, G. (editor), Optimization Techniques, Academic Press, 1962. 

Traub, J. F., Iterative Methods for the Solution of Equations, Prentice- 
Hall, 1964. 

Davidenko, D. F., "On a New Method of Numerical Solution of Systems of 
Nonlinear Equations", Doklady Akad. Nauk UZSSR (N.S.) Vol. 88, 1953 
(Russian), pp. 601-602. 

Athan, Michael and Falb, Peter L., Optimal Control, McGraw-Hill, 1966. 

Andrus, J. F., "Explicit Solutions to Problems of Optimal Guitiance", 
Summary Report for NASA Contract NAS8-20082, Northrop-Nortronics-Huntsville 
Report TR-792-8-303, January 1968. 

Andrus J. F., "Runge-Kutta Formulas For Second-Order Differential Equations", 
Northrop-Huntsville, Report TR-792-8-322, September 1968. 

IBM, Systems Training Notes on Launch Vehicle Digital Computer/Launch 
Vehicle Data Adapter, IBM Federal Systems Division, Huntsville, Ala. 

Pfeiffer, C. G., "An Analysis of Guidance Modes" in Second Compilation of 
Papers on Trajectory Analysis and Guidance Theory, PM-67-21, NASA-ERC, 
January 1967. 

9-1 



TR-792-9-547 
NORTHROP - HUNTSVILLE 

Appendix A 

A METHOD FOR COMPARING TRAJECTORIES IN 
OPTIMUM LINEAR PERTURBATION GUIDANCE SCHEMES* 

In the application of neighboring optimum feedback guidance schemes the 

choice of the optimum reference state to compare with the perturbed state is 

not straightforward. Recent studies have shown that time-to-go is preferrable 

to clock time and performance index-to-go as a lookup parameter. The guidance 

Algorithm of Section VI uses the time-to-go criterion to select a point from 
the reference trajectory. An alternate way of determining the lookup 

parameter is presented in this analysis. 

solving iteratively a nonlinear algebraic equation in one unknown which is 

derived from the basic assumption of neighboring optimum feedback guidance 

(i.e., that the perturbed state is close to the optimum state). 

does not involve an estimation of the perturbed final time whereas time-to- 

go requires such an estimate. 

The parameter is determined by 

This method 

In recent years the idea of using a linear (and possibly higher order) 
perturbation of a predetermined optimum trajectory for the feedback guidance 

of Space vehicles has been advanced by a number of investigators (refs. A1 - 
A4). 
minimizes 

That is,.if (x*(t), u*(t)) represents a trajectory and control which 

J = g(tf, xf> + L (t, x, u)dt 
0 

and satisfies the constraints 

x i = fi(t, x~,..., xn, ul,..., um) (i=l, ..., n) (A-2) 

* 
This appendix is contributed by  W i l l i a m  F .  Powers, Assistant Professor, 
Department of Aerospace Engineering, The University of Michigan, Ann Arbor, 
who has served as a consultant t o  Northrop-Huntsvii!le during t h i s  contract 
period. 
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$i(to, x t f ,  x f )  = 0, ( i = l ,  ..., pZh+2> 
0' 

(A-3) 

then references A 1  - A3 present methods which determine 

n 

j =1 
6ui(t) = 1 Gij ( t ,T) 6x. (T) , (i=l,. . 'rn) (A-4 1 

J 

where t h e  6x. func t ions  are perturbed va lues  of t h e  state a t  T E  [ t o y t f ] ,  t he  

G . . ( t y ~ )  func t ions  are the  feedback ga ins  assoc ia ted  with t h e  t i m e  T ,  and t h e  

functions 6ui(t) = u 

i f  no f u r t h e r  disturbances occur. 

(which r e s u l t  from t h e  Euler-Lagrange equations assoc ia ted  with t h e  v a r i a t i o n a l  

1 

1J * 
( t )  + 6 u . ( t )  de f ine  the  optimal cont ro ls  f o r  t E  [ ~ , t ~ ]  

I n  re ference  A4, t h e  Lagrange m u l t i p l i e r s  
i 1 

problem) f o r  the  perturbed t r a j e c t o r y  are obtained as power series i n  t h e  s ta te  

per turba t ions ,  6xi, and t h e  maximum pr inc ip l e  is  then used t o  determine the  

corresponding 6u 

t i ons  (A-3) are s a t i s f i e d  and the  perturbed t r a j e c t o r y  is  optimal i n  some sense. 

I n  the  usual case, t h e  6u.'s are determined s o  t h a t  equa- i' 1 

* * * 
Assume t h a t  t h e  values of xi(.) , ui(T) , and G.  . (t , . r> are s to red  onboard 

1J 
f o r  each t ,  T E [ ~  o ,  t f ] .  

a s soc ia t e s  t he  feedback gain,  G 

(x,(T), ..., x ~ ( T ) ,  u l ( ~ )  ,..., u*(T)) of t he  optimal t r a j e c t o r y .  m 
ambiguity i n  these  schemes is  t h e  way t h a t  t h e  "lookup" parameter TE[t 

is determined f o r  a state (xl,..., xn) which is "close" t o  t h e  optimal trajec- 

tory ,  but not on it. A t  f i r s t  glance it appears t h a t  t h e  t i m e ,  say T a t  which 

t h e  vehic le  arrives a t  (x ... x ) is a l s o  t h e  va lue  of t h e  lookup parameter, 

T E [ t o ,  t f] .  However, T may be g rea t e r  than t 

to X*(T ), whereas X(T  ) may be c l o s e  t o  some o the r  po in t  on the  optimum 

t r a j e c t o r y ,  say x * ( T ~ )  (Figure A-1). 

Then t h e  t i m e ,  T ,  is  a c t u a l l y  a parameter which 

( t ,T ) ,  with t h e  function space poin t  * J; * i j  
An inherent 

0 '  t f l  

1' 

1' n 
and/or X(T ) may not be "close" 1 f '  1 

1 1 

I n  references A5 and A6 an unpublished suggestion by J. C. Dunn is  used t o  

alleviate t h i s  ambfguity. 

as t h e  lookup parameter (e.g., i n  Figure A-1, T~ is  t h e  time-to-go lookup 

parameter when the  perturbed t r a j e c t o r y  is a t  T~ with 

I n  reference A5 i t  is shown t h a t  by using time-to-go 

me-to-go equal t o  T) 

t 

re 

r and quadra t ic  guidance f o r  Zermelo's problem 

A6 time-to-go is used t o  give exce l len t  r e s u l t s  
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Figure A-1. TIME PARAMETERS ASSOCIATED WITH OPTIMUM 
AND NEAR-OPTIMUM TRAJECTORIES 

f o r  t h e  l i n e a r  guidance of a r een t ry  vehic le .  

estimates of t h e  change i n  terminal t i m e ,  t f ,  are used t o  determine the  t i m e -  

to-go on t h e  perturbed t r a j e c t o r i e s .  

I n  both of these  analyses 

Since t h e  bas i c  assumption of a l i n e a r  per turba t ion  feedback guidance 

scheme i s  t h a t  the  perturbed s ta te  and con t ro l  are "close" t o  the  optimum 

state and cont ro l ,  respec t ive ly ,  then t h i s  should be t h e  main guide l ine  i n  

the  s e l e c t i o n  of t he  lookup parameter. Thus, one should choose the  lookup 

parameter i n  such a way t h a t  t he  perturbed state, x, and con t ro l ,  u,  are as 

c l o s e  as poss ib le  t o  t h e  functions x*(t)  and u*(t). 

con t ro l  i s  given as a func t ion  of t h e  perturbed state by t h e  guidance scheme, 

then only t h e  s a t i s f a c t i o n  of t h e  requirement x "close" t o  x*(t)  can be used 

t o  choose the  lookup parameter. 

Since t h e  perturbed 

Therefore, an a l t e r n a t e  method f o r  s e l e c t i n g  
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TR-792-9-547 
NORTHROP-HUNTSVILLE 

t 

t he  lookup parameter a s [ t  t is  the  following: determine t h e  value of 

-rs[t 

minimized (Figure A-2) .  

the  terminal t i m e ,  tc, on the perturbed t r a j e c t o r y ,  

0' f 

This method does not involve an estimated change i n  

t f ]  a t  which t h e  "distance" between the  point x and t h e  curve x*(t)  is  
0' 

A 

\ 
. .  

Figure A-2. MINIMUM STATE-SPACE DISTANCE COMPARISONS FOR DETERMINING THE 
LOOKUP- PARAMETER 

To i l l u s t r a t e  t h e  app l i ca t ion  of t h i s  method, assume the  following s i t u -  

t h e  optimum state va r i ab le s  can be represented by polynomials i n  t i m e ,  a t i o n :  

i .e.,  

* K4-1 

j =O 
x i ( t )  = 2 aij tJ ,  t c [ t o ,  t f ]  (i=l, ..., n) (A-5) 

which r e s u l t  from a curve- f i t t ing  procedure. 

t i o n a l  form of t h e  d is tance  function w i l l  depend upon the  state va r i ab le s  which 

are employed. For t h i s  example, assume the  following d i s t ance  func t ion  

In  a general  ana lys i s ,  t h e  func- 
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n where XE R 

The method requires that the following problem be solved: 
2 tc[to, t ] which minimizes the quantity p 

in Rn and x*(t) is given by equation (A-5) ."  

nary minimization problem. 

the lookup parameter, t, satisfy: 

is a point "near" the curve x*(t)ERn and the k 's are scale factors. i 
"Determine the 

[x, x*(t)], where x is a given point 
Thus, the result is just an ordi- 

A necessary condition for this minimization is that 

f 

* * 
- -  * dxn dp - 0 = 2kl [xl - xl(t)]r dt ... + 2kn [xn - xn(t)] dt . * dX1 + 

2 

Equation (A-7) can be rewritten as 

(a;x) t = 0, (A-8 1 k(k+l) 
+ 'k (k+l) Co(a;x) + Cl(a;x) t + ... 

which can be determined as a function of x and t before the flight. 

of attempting to solve for the roots of equation (A-8) analytically, Newton's 
method could be used to iterate for the lookup parameter onboard since the 

clock time is a good estimate of the lookup parameter. Suppose that T is the 
solution of equation (A-8) for a given state x. Then, 

Instead 

represents the control program for all tE [~,t 1. Note that the actual clock 
time at t = T  might be T+ At (At> 0) so that clock time is not involved in equa- 

tion (A-9). 

the perturbed trajectory. 

f 

This allows for an automatic adjustment of the terminal time on 
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Appendix 6 

EXPLICIT  FORMULAS FOR FlRST ORDER METHOD 

B.l INTRODUCTION AND PRELIMINARIES 

The object of this study is to solve the differential boundary-condition 

problem related to optimal guidance as derived from the application of the cal- 

culus of variations (cov). In particular, the primary goal is to obtain approx- 
imate closed form solutions. 

The differential equations may be expressed in the form 

Here, the "super dot" notation indicates differentiation with respect to time. 

The vectors X = ( X I ,  . . , Xn) T and = (i, , . . . , &)T represent Cartesian po- 
sition and velocity of the space vehicle relative to the stationary earth 

center. The scalars p ,  F, and m represent the Gaussian gravitational constant, 

the vehicle's thrust and mass, respectively. 
described by 

Mass as a function of time is 

m = -$ (B-3) 

where 13 is the mass flow rate magnftude. The LaGrange multipliers are denoted 

by the vectors A = ( A l ,  ..., The symbol " 1  1 ' '  
denotes the Euclidean norm when applied t o  vectors, otherwise the absolute 
value function. The symbols X, X, A, and A will designate n component vectors 
where n is the dimension of the space being studied (n = 2 or 3 ) ;  the vector 
components are represented by the usual subscript convention. 

X-A represents the scalar product of X with A .  

* T  and -i = (-a,, ..., -An) . 

The notation 
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Equations (B-1) and (B-2) are often called the equations of motion and 

the Euler-Lagrange equations, respectively. 

flects the two-body, spherical earth approximation of the physical problem 

and in this report is assumed to be sufficiently accurate. 

The form of equation (B-1) re- 

At the initial time, it is assumed that the quantities X, X, and m 
are specified. The boundary conditions are given by the equations 

fi(TI,Y,0 = 0 ,  i = 1, 2, ..., p. (B-4 )  

The f. are functional constraints upon X, X, A, A, and m at the initial and/or 

0' 
final time, tf. 

while TI represents X, X, A,  A, and m at t = tf. 

designates those quantities not explicitly known which are required to obtain 

the solution of the boundary condition problem, e.g., A and A at t = t 

possibly final time, tf. 

transversality conditions from cov, and possibly some scaling conditions. 

1 
The vector y represents the variables X, X, and m at t = t 

The p component vector 5 

and 
0 

Generally the f's include geometric end constraints, 

Implicit in equation (E-4) is the relation 

Under the proper assumptions Andrus (ref. B-1) obtains inversion formulas for 

5 as a function of an approximate E ,  y, and q(y,&). 
*) - 

Explicit formulas are 

given for the coefficients of an expansion of the form 

f. fi + 1 C(3) fi fi fi + ... (B-6) A<, = i 1 C(')fi Ki 1 + il,i2 1 C(2) Ki i 1 1 2 il,i2,i3 Ki i i 1 2 3 
1 1  1 2  1 2 3  

- 
a, 

P P '  
where 1 represents 1 1 , etc., f = f.(Y,<), and A t ,  = 5 ,  - Ek. 

i -1 i2=1 j 3  
il 9 i2 1- 

B-I.  Andrms, J .  F., "ExpZicit Solutions t o  Problems of Optimal Guidance", 
Northop-HuntsviZZe Tech. Report TR-792-8-303, January 1968. 
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If for some N and k we let 

(N) 
'ki i ... i S =  

1 2  N 

then it is evident that 

Thus, due to the functional dependence upon 

series as well as the f . ' s  will require the value of quantities at the final 

point of the trajectory. These values, generally, are not known explicitly, 
hence one must replace 11 with an approximation G. The approximations may be 

obtained by various techniques, e.g., Taylor series or Runge-Kutta expansions 
as functions of t 

the coefficients in the inverse 

1 

f - to* 

The following subsections apply these techniques to a particular problem 

and derive a set of closed form expressions for the A6 ' s .  

that the method used is more general than the following may indicate. 

to the closed form nature of the solution, assumptions valid in one applica- 
tion which are made to simplify the expressions, would not necessarily be valid 

in another. However, the general procedure is the same. 

It is emphasized i 
Due 

B.2 USE OF LINEAR TERMS IN INVERSE SERIES 

In equation (B-6), if only the first "order" term is retained then we 

obtain the approximation 

or in matrix notation 

03-71 
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where (ref. B-1) 

The assumption of the nonsingularity of A is implicit in this analysis. 
Equation (B-7) has the equivalent form 

The solution of the linear equations (B-8) may be effected by any of several 

methods. 

B.2.1 TYPES OF ITERATION 

Given an approximation to 5 in equation (B-5), then under certain con- 

ditions the solution to equation (B-8) gives an improved approximation, 

E; + AE, to E .  
Raphson. 
cursive definition follows and can be formulated by 

This procedure is known commonly as the method of Newton- 
If we define 5 (') = ; and 5 (') = E; + At = 5 (') + A( (') then a re- 

where 

with 

(B-10) 

In carrying out iteration (B-9) it may sometimes be useful to introduce a 

scaling factor at each step of the iteration. This is commonly done in the form 

B-4 
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where 0 < an 5 1, n = 0, 1, 2, .... 
and a jud ic ious  choice can reap a considerable reduction i n  labor .  

There are various ways f o r  s e l e c t i n g  a n 

Another v a r i a t i o n  i n  (B-9) is  r e l a t e d  t o  the  computation of A a t  each 

s t e p  of t h e  i t e r a t i o n .  Often, l abor  can be reduced i f  a t  s t e p s  n+l, n+2, 

..., n+p t h e  A of s t e p  n is  used. 

some norm of f and using A u n t i l  t h i s  norm s tops  decreasing. 

The index p may be se lec ted  by monitoring 

B.2.2 SOME NOTATION 

Define f o r  t < t z t f  the  scalar products 
0 -  

e = X * A ,  

€ I 2  = X * A ,  

€I3 = X - A ,  
. .  

e 4  = x*x, 

To simplify t h e  nota t ion  of equations (B-1) and (B-2) l e t  

b 2 = - ,  1 

R3 

(B-11) 

Then equations (B-1) and (B-2) have t h e  equivalent form 

B-5 
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.. 
X = Fblh - yb2X , 
.. 
X = p(-b2h + 3b3X). 

To handle the time derivatives of the above equations introduce 

bl = blb4 

(B-12) 

(B-13) 

b5 = b6 = m - L@b3(b1+202] A 2  - 0[2 + ?] ) 
+ ,,,(,, 304 2 + .$ - 2 ( e 6  - $)}. 

When the subscripts "0" and "f" are appended to symbols, the quantities are 

assumed initial and final values, respectively. The definitions of the above 
symbols shall be referred to as the equations of set I. 

B.2.3 APPROXIMATION OF ~ ( y ,  5) 
Recall from subsection B.l that 

X ]- 
t=tf 

B-6 
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Thus fop to 

(B-1) , (B-2) 

approximating 'I(y,<,tf) in terms of the known quantities {(y3S,to). 

t 

and (B-3) with ?-I (y,c) = 0 (y3t ¶tf). 

tfy we can define T(y,e,t) by the differential equations 
- 

The problem becomes that of 

B.2.3.1 Taylor Series Approximations 

With y and 5 fixed and assuming m and f continuous, it is evident fro% 
equations (B- l ) ,  (B-2), and (B-3) that there exists R continuous time deriva- 

tives of ;(y,t;,t) for to 5 t 2 tf. Hence by Taylor's theorem 

(B-14) 

- to where At = tf 

with to L E  < t - f' 

In the following only the truncated portion of equation (B-14) shall be used, 
i.e., R will be assumed negligible and dropped. R 

From the definition of < this will require expansions of X f' X f '  h f 3  Xf' 
and m A glance at equation (B-3) with the assumption 6 is constant with 
respect to time reveals the exact representation 

f '  

m = m - Bat. (B-15) f o  

Expansions for X and h are obtained below and those for X and h may be 

obtained by differentiating the respective series. 
f f f f 

Let S represent one of X 

the convention or h .  We shall use 

- dnS 

dtn 
= S(n) = b X + b + bn3Xo + bnxio 0 nl o nz o 

t=to 

(B-16) 
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Differentiating equation (B-16) with respect to time and using equations (B-1) 

and (B-2) gives 

From the equation above a recursive definition for the coefficients in equation 

(B-16) may be induced. Let 

and 

A =  

0 

1 

0 

~ 0 

-1-1 b2 

0 

3ub3 

0 

Then it follows 

Bn+l = Bn + ABIl. 

To compute B for Xin’ use the  initial condition n 

us e For ho  (n) 

-ub2 Fl 0 

(B-17) 
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Equation (13-17) may be used directly to compute the derivatives of X and A . 
These derivatives are derived in subsection B.3.5.1 up to X c 5 ) ,  X 

0 
(5 )O  . 

0 0 

B.2.3.2 Other Approximations 

It might prove advantageous to consider approximations implied by various 

numerical integration techniques. For example a single-step method like the 
Runge-Kutta formulas or possibly multistep methods locked with the Runge-Kutta 

starters. Even Romberg-type formulas might submit to simplification. 

The point to be made here is there are many different types of approxima- 
tions that can be tried and further investigation is suggested. 

8.3 APPLICATIONS: INJECTION INTO CIRCULAR ORBIT 

Consider a two-dimension guidance problem in which the object is to burn 

with a constant thrust magnitude, F, into a prespecified circular orbit. It 

is assumed that the rocket engines will be initially thrusting at t = the 

vehicle's position and velocity are known in the sense of equation (3-1), as we 

well as the mass. The mass flow rate, 8 ,  in equation (B-3), is constant and 
assumed specified. The problem is to find the values of the Lagrange multi- 

pliers, X and -A, at t = t 

rocket engines should thrust in order to minimize the fuel consumption. 

which define the optimal direction in which the 
0 

In order to inject into a circular orbit the radius (measured from the 
earth's center) and velocity vectors must be perpendicular, as well as having 
prescribed values. These geometric conditions can be expressed in the form 

(radius condition) 2 Xf*Xf - R = 0 co 

(velocity condition) 2 . .  
Xf'Xf - vco = 0 (B-18) 

Xf'Xf = 0 (orthogonality condition) 

3-9 
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where R and V are specified radius and velocity at cut-off. The subscript 

"f" indicates that evaluation is performed at t = tf. 

pletely describe a circular orbit in two dimensions. 

injection point into the orbit by the addition of the transversality condition 

eo eo 
Equations (B-18) com- 

The cov ties down the 

A10X20 - A2oi10 - hlOX20 + h20XlO = O, (B-19) 

where the subscript "0" indicates initial values. Inspection o f  equations (B-1) 

and (B-2) reveals them to be homogeneous in A, i.e., for a > 0 ,  a A also satis- 
fies the equations, hence a scaling equation is needed to insure uniqueness of 

the solution, e.g., 

A o ' A  - 1 = 0 
0 

Eqbations (B-18), (B-19), and (B-20) may be adjoined to give five boundary 

conditions corresponding to the set of (B-4), i.e., 

fl = Xf*Xf * Rco z = 0 

2 . .  
f 2 = X . X  - v  = o  

f3 f f 

f4 = A o ' X o  - 1 = 0 

f f co 

= o  

The vectors y and 17 become 

(B-20) 

(B-21) 

B-10 
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r -  

xf 
if 

r) = Af 

if 

f m 
L 

and 

Since the final time is unknown, t is inserted into the 5 vector and we ob- 
rain 

f 

(B-22) 

Differentiating the f i = 1, ..., 5, of equation (E-21) with respect to 5 
j = 1, ..., 5, gives 

i’ j’ 

2Xf. x p  r 2Xf - 4 3 )  2Xf.  x?) 1 2Xf 4, 

0 0 0 2 x 2 0  

-xlo 0 
20 xlo -x 

(j) = axf is used. Since t5 = t then it is straight- Here the notation X f as j  f 

forward to show that X (5) = Xf. * The following subsections will discuss a f 
method of solving equation (B-8) with the relevant approximation of n ( y , < ) .  
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To facilitate some notational problems, we define for i, j, and k ranging 

over the integers 1, 2, 3, and 4 

B-12 
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It is to be understood that all evaluations are terminal i.e., at t = tf. If 

S represents any of the above quantities for fixed i, j ,  or k, then it is evi- 
dent that 

B.3.1 CRAMER'S R U L E  

The linear equations (3-8)  may be solved by the application of Cramer's 
rule, i.e., 

dec(A.1 
(n) = - j = 1, 2, 3 ,  4, 5, A C j  det(A) ' 

where A is the matrix A with the jth column replaced by f. 
j 

Using equation (B-23) and expanding about the fourth row of A gives 

Expanding the resulting determinants about 

(3) x.x 

20 -X 

(3) x*x 

-x20 

the fourth 

( 4 )  x*x 

%o 

( 4  1 x-x 

xlo 

X')c 

0 

row and using the pre- 
defined a; yields 

B-13 
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o r  more conveniently 

det(A) = 8 h o *  -a34Xo + ( *  (B-24) 

Thus det(A) reso lves  i n t o  the  inner product of X 
bina t ion  of Xo and X . 

and A vec tor  V which i s  a com- 
0 

0 

Now, turn ing  our a t t e n t i o n  t o  det(A.) no t i ce  t h a t  h and A 2 0  may be scaled 
J 10 

such t h a t  f = 0. Then f o r  j = 1 4 

det(A1) = -8det 

1 (2) - f  X'X 
2 1  

0 0 0 
20 0 

0 
20 x l o  -X 

10 -X 
f 5  

Expanding about t h e  fou r th  row gives 

B-14 
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Examination of f reveals that one may choose X 5 
expanding about the last row gives 

or A20 such that f5 = 0. Then 

det(A1) = "20B4 - '10B3 

- - 8h 20 X 0 o f 3 ) .  B4 

Similarly for j = 2, 3 ,  4 ,  5, 

det(A2) = -8h 

det(A4) = -8ho 

det(A5) = 

(B-25) 

(B-26) 

(B-27) 

(B-28) 

(B-29) 

In equations (B-24)  through (B-29) the subscripted quantities a, 6, and 
< are all to be evaluated at the current approximation = tf. Thus, in order 
to get closed form expressions for A 6  the a's, B's, and < ' s  must be approximated 
by some artifice. 

j' 

B-15 
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B.3.2 APPROXIMATION OF BOUNDARY FUNCTIONS 

It is required to have some closed form approximating expressions for fi, 
i = 1, 2, and 3, defined by equations (B-21). Notice it is not necessary to ex- 

pand the boundary functions f and f since they are initial conditions. A 

further savings of labor is obtained by the fact that 
4 5 

, n = 1, 2, .... fl (n) = n 2 F3 (n-1) (B-30) 

Hence truncated Taylor series shall be obtained for fl and f2 only. 
no tat ion 

Using the 

(B-31) 2 5 + ... + R At fl = R1 + R2At + R3At + el 6 

and 

4 f = V + V2At + ... + V At f e2, 2 1  5 (B-32) 

then 

1 2 5 4 
2 2  2 4  2 6  f3 = - R  + R3At + 3R At + ... + -R At + e3. 

n = 1, 2 ,  . . . 2  
1 .  - - 

n+l - n Rn’ The ei, i = 1, 2, and 3, are the remainder terms and R 

with R n’ being fl evaluated at t . This notation is similarly defined for V 
0 0 

The expressions for R i 1 
after be designated those of set 11. 

and V. are derived in section B.3.5.2 and shall here- 

B.3.3 APPROXIMATION OF TERMINAL ELEMENTS IN CRAMER’S RULE 

The purpose of this subsection is to derive experssions for the subscripted 
quantities < , a ,  and f3 of subsection B.3.1. Before proceeding to these expansions 

some notational artifices are introduced. From the definition of 5 ,  a ,  and B the 
quantities X-X (’I, i*i(j), and X ( j ) = %  + i ( ’ ) - X ,  j = 1, 2, 3, 4 ,  are explicitly 

involved. Define for j = 1, 2, 3, 4 

B-16 
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b+l) = L L i  dnc 
' i jo  n! dtn 

Then 

= 1 ;(n) n = 1, 2 ,  ..., n ijo' 
t=t- 

and 

The following expansions will have coefficients which are functions of the 

P.(X ) and its time derivatives. 

in subsection B.3.6 as set 111. 

The necessary formulas are derived and listed 
J O  

Cansider first the cij's, then introduce the notation 

and = - 
Cijf - rij ijo 'ij 

t=to 

Expanding 5 in a Taylor series out to fourth order terms gives ij f 

- (1) (')At + qijoAt (3) 2 + rijoAt ( 4 )  3 + t;(5)At4 + ;(6)At5 Cijf - rij + sijo ijo ijo 
0 

where 

U At = t -t f o  

and 

B-17 
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Similar notation will apply to a and 6. By definition 

and it follows that 

L J 

since 

Pi(X0) = Pi'X0) = Pi(io) = 0 i = 1, ..., 4 .  

By differentiating the determinant D and using the row wise derivative rule then 

(2) F = D  + D 2  + D 3  = 0 'ijo 1 

where the subscripts refer to the rows being differentiated. Similarly 

1" 1 'ijo '3) - - - -D 2 = -(D 2 1-1 + 2D12 + D22 + 2DZ3 + D33 + 2DI3) 

- 1  = $2D13 + DZ2 + 2D23 f D33) = 0 

These results follow due to two additional facts. First 

Pi(X0> .. = +io> = 0 i = 3 , 4  

B-18 
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and secondly because the third row of the matrix is the time derivative of the 

first row. 

the third row, the resulting determinant is identically zero for all t and 

furthermore all additional derivatives of that term may be dropped. 

Thus, whenever the first row is differentiated one more time than 

Continuing 

1 
= z(D223 D233) 

1 r 

.. .. . l  .I .. 1.. 

B-19 
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1 
23D12233 + 13D11233 + 18D12333 

c6) DCv) 
' i jo  60 = 60c11D12223 

"'22233 ""22333 5D23333 + D33333) 

1 
= 60( l lD12223  + 23D12233 + 13D11233 18D12333 

+ 7D11333 + 5D22223 + ""22233 + ""22333 + 5D23333) 

. . . . . . .  .... ... 1 
- 60 1 0 
- - R [- $ 
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By interchanging columns 2 and 3,  then 1 and 2 ,  it is seen that a is the 

determinant of the same matrix as < 
which is just the time derivative of the first column of < Therefore, the 

formulas fora?) may be obtained from those of <(n) by replacing the elements 
of the first column by those in a ijo, i.e., Rn by an+,, Vn by nVn+l. 
gives 

ij 
with the exception of the first column ij 

ij * 

ijo 
(n) 

ijo 
This 

.... . 
2Pi(X0)Pj (X0) 

.. , ... 
+ 3Pi(XO)Pj (XO) 

... . . .  

.. . ... .. . 

8-21 
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Proceeding  s i m i l a r l y  with B 
i 

Then 

8. = d e t  
1 

D = d e t  

- 
1 '  

Pi(X) T f l  

Pi(X> 7 f 2  

1 - f  
2 1  

1 - f  2 2  
1 '  

D i f f e r e n t i a t i n g  t h e  de t e rminan t  i n  

Pi (X0) 
1 - R  2 1  

column f a s h i o n  

+ D 2 + D 3 = D  + D 3 = D 2  
2 

= o  

r 1 

( 3 )  $ D = -(D 1 i o  2 1 2  + D22 + 2D23 + D13 '33) 

- 1  1 
= 5 ( D z 2  + 2DZ3 + D13 + D33) = -(D + 2D23) 2 22 

- V 2 1  P ,  (X 0 )] - $ Vl[iR3si(Xo) 

- R2Pi(Xo) ... ] + T ' R  2 [RP.(x) 2 1 o - V P  2 i  ( X ) ]  o 
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1 
= -(D 6 222 + 3D223 + 3Di23 + 3D233) 

A ... 
- V2P~iv)(Xo-] - - V  I 1 2  1 [ 2R 3 1  P.(X 0 ) - R P(iv) (Xed 

c - I-- 7 
.*. 

- 2V3Pi(X0) 

1 
-I- 4D2223 + 6D1223 + 6D2233 + 8D1233 + 4D2333 = -(D 24 2222 

1 
= -(D 24 2222 4D2223 -!- 6D1223 + 6D2233 8D1233 + 4D2333) 

(io) - V 2 P p )  (Xed - -pg 1 VlER3Pi ( iv) (Xo) - R 2 P p )  (So ) ]  
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.. ... 
- 6v4pi(x0) 

B.3.4 NUMERICAL PROCEDURE 

Implementation of these results could proceed in these steps. 

1. Input initial guesses at E and formula constants. 

2. Initialize h and such that f = f = 0. 

3. Compute new 5 by Newton Raphson via formulas of Set I, 11, and 111. 
4. Proceed to step 2 and repeat another iteration or exit if convergence 

0' 0 4 5  

or divergence is detected. 

B.3.5 SUPPLEMENTARY FORMULAS 

Here various expressions are derived to supplement those of earlier subsections. 

B.3.5.1 Time Derivatives of X and h 
It is desired to obtain the expansions 

.. At2 ... At (4) ,,4 (5) & 
f o  0 + xo 5- + xo 4! + xo 5 !  X = X  + X A t + X o r  

2 (5) ,,4 + x;4) + x 
0 4! * 

*" At .. 
X = X  + X  A t + X o r  f o  0 

In subsection B.3.1 it is shown that 

X(n) = bnlho + bn2io + bn3Xo + bn4Xo , (n = 0, 1, 2, ... ) 
0 

(B-34) 
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where t h e  b 's s a t i s f y  t h e  d i f f e r e n t i a l  r e c u r r e n c e  r e l a t i o n  d e f i n e d  by equa t ion  

(B-17) w i t h  t h e  i n i t i a l  c o n d i t i o n  B = (0, 0, I, 0 )  . Direct a p p l i c a t i o n  of t h e  

r e c u r r e n c e  formula g i v e s  

n i  

0 

- 
B1 - 

I n  t h e  s a m e  f a s h i o n  

- 
B2 - 

Fbl 

0 

-vb2 

0 

+ 

0 -vb2 0 Fbl 

1 0 0 0 

0 3vb3 0 -vb2 

0 0 1 0 

, B =  3 , B =  4 

Fdlb4 

Fbl 2Fblb4 

+ 3b4b5 - 4pb 2 4  b + b;) 
R 

- 2vb2 + 3b 

("' [2e1 + e 2  - -1 108 8 + 2b3bJ6y - 7 3vb2 7 e 4  (,5V2 - % - -p-- 
R2 

Fbl 2 R 

9 
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- 

T 
Similarly one obtains f o r  h using B = (1, 0 ,  0 ,  0 )  

0 

- 
B1 - 

r 

Y 
- 

B2 - 

-vb2 

0 

3ub3 

0 

Y 
- 

B3 - 

-ub2 

3Vb2 5e4e  
(e, + e 2  - -1 2 

R R 

3Vb3 

Y 

1 

B.3.5.2 Expansion of Terminal Conditions in Circular Problem 

Equations (B-21), (B-31), and (B-32) give 

2 2  
= R - Rco 2 R1 - - Xo*Xo - Rco 

1 7 

2 2 2 .. 
= (X-X + i .k )o  = Fb X ' A  - Vb2Xo'Xo + V = Fble - pb2R + V 

R3 l o  0 
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1 .  * .. 1 .*. 
3 0 

R4 = -(X*X + 3X.X) = 3(Fble + Fbli + pb2e4 + 2VTj) 

c 1 

1 = -  1 bl(b40 + + 8,) + + 2Fb1e1 - 21-lb2G4 

= !j CFbl~b40 + 3e1 + e,> - pb20,] 

3 

R5 - - R  - 1 '  4 4 =-L  12  FGl(b40 + 301 + El2) + Fbl(b50 + b4U + 3e1 + e 2 )  

2, 
= SGb,( [bz  + b5 - 2 p b ~  8 + 4b4e1 + 2b4e2 + 4 e 3  + 3FblA 

+ 4b501 + 2b5e2 + 3Fb b A + 1 4 2, 
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+ 3b5 - 6vb2] e 2  + 10b 0 + 12ub3B4 + 10Fble5 + 10b Fb A 4 3  4 1  

f. 3vb28 4 t2 - E - $)- pb2 (vb2e4 + 4 602 - - 684 [V2 - ub2R2]) 1 
R2 R R R2 

24vb204]0 + [5bt + 5b5 - 8pb2 = {bl ([b~ + 3b4b5 - 2vb2b4 + b6 + 1 R2 

+ 3b - 6vb2] e 2  + 10b 0 + 10Fbl 5 4 3  

+ 

S i m i l a r l y  c a l c u l a t e  f o r  t h e  v e l o c i t y  equa t ion  

2 2 
= v - vco VI - - XO'XO - vco 2 . .  

. .. 
V2 = (2X-X)  = 2Fb1e1 - 2pb2O4 

0 

1 .  
2 2  1 4 1  1 1  V3 = - V = Fb b 0 + Fb 0 + 3vb2 

b 0 -I- FblA 2 - pb20 + 0 )  - vb2 (,,,e - + V 2 - - 30:) 
= F b 1 ( 4  1 3 R2 

= Fbl + b4B1 + 8 3 + l?blA2> - vb2 (V2 - - 2) 
6vb204 

+ b A + 2 A A  Fbl + 0 + b5el + Fblb4A [- '1 R2 
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= ~~1([- 

+ 2b4e3 + 

.3vb2b4 + + [-5pb2 + b4 2 

v 5 = -  1 2  {Fbl([b40 + 6 1  t5~2e4 - ,"b2b4] + [b4e1 + e,] [bi  + b5 - ,,,,I 

2 e 2  + 2b5e3 +. 
911b2e4 

+ 2b4b5 + b6] e1 + 
R 

2 2 2  
i o e i  1oe4e4 " b2e4 2 2 '  } +--  *)- R2 + 1-1 b2e4 R4 R2 

75vb2e4 2 15pb2 %b28 4b4 - + - (xble - pb2R2 + V2) + - 3pb2b5 + 9Fblpb3 
R 4 R2 R2 

B-29 



TR- 7 92-9-54 7 
~ ~ V ~ ~ ~ E  

1 15pb 28 4 18yb2e4 
+ 2 b b  + b 6 +  3 

R2 4 5  n 2 4 5  + b4 + b b - 5pb2b4 - 2pb2b4 + 
n 

15Ub2o4 
- 3pb2b4 - 3pb2b4 - 2pb2b4 

+[ R2 

2 2  2 2 +[& (bi + b5 - 5pb2) +2b4A - pb2A 

- yb2R 2 - - "'1 [3V2 - 3pb2R 2 - 
2 

R 2 
R 

+ b - 5pb2 4 5  i- 

+ [ I  14b4Fbl + 3Fb1e6 

+ b5A2] 3Fb1) + F([V2 

- - loo4 (V2 - pb2RZ) - 2pb204])+ yb2 (V2 - p b 2 R v  } 
R2 

2 2 2  120yb28i  

4 - 4yb2b4 - 4pb2b5 - 24p b2 - 
R 

1 24lJb2V ] r81lJ284 - lOpb b + b 3 + 3b b + b6 
2 

2 4  4 4 5  + 24Fblpb3 + e +  
R 

+ 4b5 - 8.b2] + ~ ( [ V 2  - pb2R 2 
R 

+ O4 
2 - -  "a] 2 [3V2 - 3pb2R - 

R 

+ llb2 (v2 - Ub2R2) } 
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(j ) 6.3.5.3 Time Derivatives of Xo 

Using the recurrence formula of (B-17), the time derivatives of X'j) may 

be obtained by differentiating equation (B-34) with respect to 5 j = 1, 2,  3, 4. 
Then 

j' 

. .  
since .('I= X ( J ) =  0. 

used to calculate b 

Let 

The recurrence formulas of subsection B.2.3.1 have been 
0 0 

and bn2 for n = 1, 2, 3, 4, and 5 in subsection B . 3 . 5 .  nl 

Then the results may be obtained by directly differentiating the formulas of 

equation (B-34). To aid in this derivation it is required to have the partial 

derivatives of the elements defined by the formuals of set I. A direct calcu- 

lation gives at t = 

7 j = l , 2  

= o  7 j = 3 ,  4 

= o  

7 j = 1 ,  2 

Y j = 3 , 4  

Y j = l , 2  

= o  I) j = 3 ,  4 

= x  j-2 

7 

7 

j = 1 , 2  

j = 3 , 4  
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OP - ~ ~ ~ T S ~ ~ L ~ E  

= x  j -2 

= A  j -2 

= 2 i  j -2 

-b A 
( j )  = Ij b 
1 A' 

= o  

= o  

= - -  

/ 

Y 

Y 

Y 

Y 

Y 

j = l , 2  

j = 3 , 4  

j = 1, 2,  3, 4 

j = 1 ,  2 

j = 3 , 4  

j = 1 ,  2 

j = 3 , 4  

j = l y 2  

j = 3 , 4  

j = 1, 2, 3 ,  4 

j = 1 , 2  

j = 3 , 4  

j = 1 ,  2 

j = 3 , 4  

n 
, j = 3 , 4  
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2 

+[.b2 - &) + Fbl - - 39 6 +-]ij 129 + y [ e l + e 2  3wb2 
R A  A2 A3 R 

, j = 1 , 2  

605 . 
- - - -{[.b2 (2 - G) +Fbl - - 

n 2  R A  

+ wb2 -2% -R2 - lj xj-2} 

In terms of the above formulas j = 1, 2 ,  3,  4 

0 

, j = 3 , 4  

0 

B-33 



TR-792-9-547 E 

+ 3b4b5 - 4pb2b4 + b4 
1 2 ~ b 2 8 4  

Fb;') (b6 + 
R2 

+ €I2 - 

[28 ij 

B.3.5.4 Some Auxiliary Formulas 

It i s  required t o  have expressions f o r  var ious t i m e  dz r iva t ives  of P . ( X  ) and 
J O  

P . ( X  ) defined by equation (B-33) i n  order  t o  complete t h e  formulas f o r  5 ,  a, and 

6. It i s  required t o  have 
3 0  

p!")(Xo), j = I, ...) 4; n = 1, ..., 4. 
J 

Using the  formulas f o r  B and B:) ca l cu la t e  n 

+ b m l  b n2 X o *i(j)+ o [ b m 1  b ( j )  n3 + b m3 b n l  ("1 8 + [b m l  b ( j )  n4 + b m4 b")] n l  

1 ( j )  +[b b ( j )  
m2 n3 + b b i -1:'' + b b("8 + -  b b 8 

+ b m3 b")] n2 8 2  + [bm2bz) + b m4 b n2 

m2 n l  o m2 n2 6 2 m2 n2 6 

(''1 O 3  + b b e(')+ b b 8") m3 n l  m3 n2 2 

+ b b(j)R2 + b b") + b b'"] e 4  + b b 0") + b b 8") . 
m 3  n3 [ m 3  n4 m4 n3 m4 n l  1 m4 n2 3 
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Proceeding  w i t h  X") = i") = 0, j = 1, ..., 4 
0 0 
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P .  (X0) 
J 

. .  

... . 

+ b23b310(j) + b23b3202 (’3 +5 (b14b;;)€13 + b14b;i)e4 + b14b41eij) 

+ bo3bi:)R2 + b 03 b(j’0 54 4 

+ b21b31 (j)] A 2  + 20b31b21A(j)A + 10  [ b 32 b ( j )  2 1  

+ b 21 b”)] 32 e5  + [lo c33bi:) + b23b31 (’9 +bo3bii)] 0 + iOb34b;!)01 

+ 20b32b21io*h2j)+ [lo (b33b21 + b23b3$ +bo3b51] 0 ” )  

( j )  + b b ( j ) I e 2  + 5 [2b34b21 + b14b41] 0;’’ + [10bZ3b32 03 52 

= o  

+ b14b$i)03 + b14b310;j) + b 14 b 32 0 ” )  3 

+ b 32 b 2 1  o -A(’)  o + b33b210(j) + b34b21el (’3 + 3(b21b$:)A2 
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P-N VlLL 

+b 14b4 3' 4 
+ b23b i i )82  + b23b318 ( j )  + b23b3202 ( j  )) 

(j) + b b $1 
+ b14b4181 1 4  42  3 

= 3 ( 2b 31 b ( j )  2 1  + bZlbgl ('I) A 2  + 9b31b21A(j)A + 3 ( 2b 32 b ( j )  21  

+ b 21  b")) 32 e5  + 3 (2b33bg)  + b23b31 (j)) 8 + 6b34b:1)01 

+ 6b b *A(') + 3 + b23b31 ) e( ' )+ ( 6 b  34 b 2 1  32 2 1  o o 

(j) + b b ( j ) e  + - 1 b b e ( j  1 
32 32 6 2 32 32 6 ("0 + b b 'A 

+ b34b31 1 32 31 Q o 

+ b33b3(j2)e2 + b34b$;)e3 + b33b31e(j) + b 33 b 32 8") 2 + b 34 b 31 e ( j )  1 

+ b34b320$i)) (b21b41 21  4 1  2 1  42 5 

+ b 2 1 b 4 2 A o - ~ ~ j )  +[b21b4(:) + b23b4(J)] 8 + b23b42 ( j I e  

14  5 1  1 
+ b23b416(j) + b 23 b 42 8") 2 

+ bl4b;:)O3 + b 1 4  b ( j ) 8  53 4 + bl4bs10;j) + b14b528ij) 

( j )  + b b &)A + b b ( j ) e  

(j)K2) +b b ( j ) 8  + b23b43 
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5b41b:i) + 5b31bil) + 2b21b41 ('I) A 2  + 2 (5b41b21 

+ 5[b 31 b ( j )  32 
+ 5bk + 2b21b41) 

+ b32b$)] +2b 2 1  b")) 42 O 5  + 2 (5b43bi:) + 5b 33 b") 31 

+ 2 [b b'j) -t b b(j)])e + (10b44bi:) + 10b34b31 ( j  1 
2 1  4 3  23 4 1  

+ b14b$:)) €Il + 10 (.,,b2, + bq2bjl) h o ' A : j )  + 2 (5b43b21 

Making some subs t i t u t ions  
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P ( v ) ( X  ) = 10 + Fb b ” ) )  A 2  + 20F 2 2  blb4A(j)A -t 20F 2 blbl ( j )  e5  
J 0 1 31 

+ (10 [Fb:j)b33 - pb2b::)l + b$)> 8 - 1 0  b2Fbl ( j  ) 

+ 20F 2 blho*h:j) 2. + Fblb33 - pb2Fblbq] + b51) e ( j )  

+ 5 (h41 - 2pb2Fbl) 8;’) + (b;;) - 10ub2Fbl 

+ (bS2 - 10pb2Fbl)8,!j) + 5b42 ( j) ,  + (5b i i )  + b,!;))e4 

+ 10Fb lb46~ j )  + bi:)R2 

$.  (i ) = Fb;j)B1 + Fb 1 1  8 
J O  

* *  . 
P .  (X0) = 2 

J 

+ 
... . 
P.  (xo) = 3 

J 

+ 

+ 

+ 

(io) = 2 
3 

+ 

+ 

+ 

(”8 + F b i j ) 8 3  + Fblb4f3ij) + Fb1e3 b31 1 

(2F2blb4b:’) + Fblbgl (j)) A 2  + 9F2bfb4A(j)A 2 ( j )  
e 5  + 9F blbl 

- pb 2 1  Fb ) 8 ” )  + ( b41 - 6ub2Fbl) 8;’’ 

3F blXo*Xo - 3pb2Fb;j)02 - 3ub2Fb1e2 ( j )  + b43 (”0 + 2Fblb4e3 ( j  1 

(i””:i),41 + 5Fblb4bil) + 2Fblb41 (’I) A 2  + 2 (7Fblbql 

8 5  
5F blb4 ’)A(j)A + 2 (15F2b.b4bij) + 9Fblb31 ( j  ’> 

b33 2 [Fblbi:) - 

2 2  ( j  1 
b44 + 10b34b$:) bi;)) + 30F blb4Xo*Xo 
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+ 2 5Fblb43 + 5Fblb4b33 - 2vb2bql) e(’) +- (10Fblb44 ( 
2 2  2 ( j )  + 10Fblb4bjq + bil) 0;’) + 18F blb4ho*”j) + 10F blbl ‘6 

+ 5F2b:0:j) + 2 5Fb:j)b33 - 2pb2b l i ) )  B 2  + (-10ub2Fbl ( j )  

+ b::)) e3 + 2 (, 5Fblb33 - 4pb2Fblb4)B2 ( j  1 + (b52 - 10pb2Fbl) O 3  (j 1 

B.3.6 SUMMARY OF EQUATIONS AND FORMULAS 

The necessary formulas that provide an improved approximation, under proper 

conditions, to 5 by Newton’s method are listed here for convenience. 

NOTATION 

X = position vector 

i = velocity vector 

-A  = }  = Lagrange multipliers 

m = mass 

f3 = mass flow rate 

R = radius at cutoff 

Vco = velocity at cutoff 

eo 

to = initial time 

tf = final time 

1-1 = Gaussian gravitational constant 
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Set I 

Initial Inner Products: 
2 R = X*X 

v2 = i*? 
2 n = X'X 

0 = X*X 

el = X-A 

e 2  = X*X 
. .  

e3 = X*X 

e4 = x-x 
e5 = X * A  

e6  = i-i 

Coefficients of Motion and Euler-Lagrange Equations 

1 bl = - mA 

b2e - -  - 
b3 R2 

bl = blb4 = bl@ - 3)  

b, = b6 - - 1 el + 2e2 

A2 
- 291 

5.) n2 + !JJ2 

(y 2 

B-41 



R a d i u s  Equation: 

2 3 4 5 
F1 = R1 + R 2 A t  + R A t  + R A t  + R A t  + R 6 A t  = 0 3 4 5 

f - to A t  = t 

2 2 R = R  - R  1 co 

4 R = 28 2 

2 2 + V R3 = Fb18 - vb2R 

R 5 = &{Fb,([.Z + b5 - 2vb2 + 2b4e2 + 403 + 3FblA 

= $(.bl([b: + 3b4b5 - 2vb2b4 + b6 + 24ub204] 6 + [5b: + 5b5 
R6 R2 

- t3,b2] 01 + [3b: + 3b5 - 6vb2] + 10b4e3 + 10Fbl 

Velocity Equation: 

2 3 4 f 2  = V + V 2 A t  + V3At + V 4 A t  + V A t  = 0 1 5 

2 2 V1 = v - vco 
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V4 = ${Fbl 6 [5p:$4 - pb2b4] e + [ b ~  + b5 - 5pb2] €I1 - 3pb202 

2 

+ 2b4e3 + 3Fbl [e5 + b4A2])+ 3pb2e4 R2 G V  2 - 2 5e4 - 3pb2R2) 
R 

2 6004 
V5 = &{Fbl c u b 2  [,;f4 - 2 (bi + b5) -12ub2 - - R 4 + 12Fblb3 

1 V2] e + r8:2'4 - 10pb b + b4 3 + 3b b + b6 
2 4  4 5  + 1 2  - 

R2 

+ 8pb2 [? - b4] O 2  + [3ba + 3b5 - 8pb2] e 3  + 14Fblb4e5 

+ 4b5 - 8pb2] Fb1,z> f ~ ( ~ V 2  - vb2R 2 

+ llb2 [v2 - ub2R2] } 
Orthogonality Equation: 

1 3 2 3 5  4 f = - R  + R A t  + - R  A t  + 2R5At + y R 6 A t  = 0 3 2 2  3 2 4  
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VlLLE 

5 = 

Newton-Raphson Iteration Formulas - (Cramer's Rule) 
- - 

"0 

X20 

hl0 

X20 

tf - - 

det (Ai) 
det(A) ' A E i  = - 

det(A) = 8X 

i = 1, 2, ...9 5. 

det(A1) = 8X20Xo* (i) 
det(A2) = -8X X 10 0 

det(A3) = SAo' [.io + XI() (-;$ 
det(A4) = -8X 0 c3i0 - x20 (;:)) 
det(A5) = -8X 0 a 
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Se t  I11 

Formulas for  <, a, 6 .  

.. ... 

r 

(5) - - 1 
' i jo  - 24 R1 

. . .  1 1 . . . . .  ... 
KO/ + 

. . . . . .  
Pi(X0)Pj do> 

7Pi(XofPj (X0) 
* *  ' 1 

.. ... 1 

. . . . . .  . . .  . . . .  + 1 R L i i p .  (X )P. (X ) + 23Pi(X0)Pj (Xo) - ~ 3 ~ i ( x 0 ~ p j ( x 0 )  ... 
60 2 1 0 J O  

B-45 



TR-792-9-547 
T ~ W ~ ~ ~ ~  

% by %+I and KvK+l* 
(n) the  aij0 (n) are obtained by replacing i n  Sijo K 

(3) 2 (4) 3 m n t 4  6, - - Bi0 (1) + Bi0 (2) A t  + Bi0 A t  + Bio A t  f Bio 

.. 
- V2Pi(xo) 

. .  
+ R 2  [' 2 V 1 1  P .  (X 0 ) - R2Pi(Xo)] 

) - V P(iv) (X )] - 12 1 V1 [2R3P;(Xo) - R2Pfiv) (Xo)] 
2 i  0 

... ... 
+ 6 2  R [. 2 1 0  P. (X ) - 6 R 4 f i ( i o )  - 2V3Pi(X0)] 

.. . 1 .. ... 
- 4 1  V [,, 4 1 0  P. (X ) - 2R3Pi(X0)J + R2 [2V3Pi(Xo) - 2R 3 1  P .  (X 0 )] 

. .  . .  
] [' V P (X ) - 2R P . ( X  )I + $ R2 [6R4Pi(X0) - 2V3Pi(X0) + R3 2 3 1  0 

. .  .. . .  1 [Lv P.(x ) - R P . ( X  )] 2 1  0 + 4 1  R [24RgPi(Xo) - 6V4Pi(Xo) + 3R4 

1 
0 

(5) = - R [2R P 
'io 48 1 3 i 

2V3Pfiv' (Xed -=I 

- -  ] [2R 
P'.& ) - 2V P'.(x ;] 12 v1 [ 6 R  4 P . ( X  1 0 ) - 2 R  3 1  P!iv)(Xo) + 6 R2 3 1  0 
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- I-- 

.. ... .. . 
] [,V P.(X - 6R4Pi(Xo)] ,, - V1 [24R5Pi(Xo) - 6R4Pi(Xo) + 'i; R2 

. .  .. .. . .  
0 
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Appendix C 
TABLES OF LAGRANGE MULTIPLIERS 

I n  Section V various numerical t a b l e s  were presented which l i s t e d  the  

t h r u s t  d i r e c t i o n  angle y, and its t i m e  de r iva t ive  

formulas discussed i n  Sections 111 and I V .  

w e r e  derived t o  c a l c u l a t e  d i r e c t l y  t h e  i n i t i a l  values of t h e  Lagrange multi- 

p l i e r s  h and i from which x and 

understanding of t h e  m e r i t s  of t h e  guidance rout ines  may be  obtained by 

f o r  several of t h e  guidance 

However, t h e  guidance formulas 

w e r e  computed. It is f e l t  t h a t  a deeper 

studying t h e  corresponding mul t ip l i e r s .  

Here t h e  m u l t i p l i e r s  corresponding t o  Tables 5-2, 5-3, 5-4, and 5-5 a r e  

presented i n  Tables C-1, C-2, C-3, and C-4, respec t ive ly .  
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Table C-1 . SILBER-HUNT (S-H) EXPANSION 

i, x lo2 i, x 10 2 CAS E 

.519 

.974 
,919 
.704 

.503 
* 974 
.918 
.702 

.911 

.974 
,919 
.907 

.919 
,974 
.921 
.go9 

.976 

.974 

.941 

.949 

.930 

.974 

.947 

.915 

.914 

.974 
,945 
.889 

-.855 
.228 

-. 393 
-.710 

- .865 
.228 

- .397 
-.712 

.412 

.228 

.394 

.421 

.395 

.228 

.390 
,418 

-.216 
.228 

- .339 
-.316 

.367 

.228 
,321 
,404 

.407 

.228 

.327 
459 

.284 
-.178 
-.016 
.151 

.310 
-.178 
-. 272 
-147 

- .268 
-.178 
- .251 
-. 269 
- .285 
-.178 
- .265 
- .290 
- .012 
-.178 
.059 
,027 

-.168 
-.178 
-.136 
-.191 

-.165 
-.178 
-.122 
-.199 

,733 
- .456 
-.110 
.340 

.823 
- .456 
-.151 
.324 

- .700 
- .456 
- .646 
- 700 
- .765 
- .456 
-.697 
-. 775 
-.032 
- .456 
.165 
.069 

- .380 
- .456 
- .279 
- .450 
- .357 
- .456 
-. 227 
- .460 
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Tab1 e C-1 . SILBER-HUNT (S-H) EXPANSION (Continued) 

CASE 2 i, x lo2 i2 x 10 

- H N = 2  

.963 

.974 

.939 

.930 

.983 

.974 

.999 
994 

.966 
,974 
.999 . 

.987 

.641 

.974 

.652 

.477 

.628 

.974 

.654 

.454 

.988 
,974 
990 

.990 

.811 

.974 

.692 

.850 

- .268 
.228 

- .343 
- .368 

,184 
.228 
.050 
. l lO 

.258 
,228 
,446 
.162 

.767 

.228 

.758 

.879 

.778 
,228 
.756 
.891 

,. 152 
. ?28 
.1'34 
.744 

,585 
.228 
.722 
.527 

,003 
-.178 

,047 
.049 

- .299 
-.178 
-.194 
- ,245 

- .358 
-.178 
- .208 
- .283 

- .332 
-.178 
- .349 
- .384 

- .358 
-.178 
- .361 
- ,415 

-.124 
-.178 
-.lo7 
-.123 

-.215 
-.178 
- .264 
-.148 

. O O l  
- .456 

.121 

.128 

- .903 
- .456 
-. 575 
- ,737 

-1.086 
- .456 
- .625 
- .858 

- ,820 
- .456 
-.891 
- .978 

- .go9 
- .456 
- .935 

-1.089 

- .300 
- .456 
- .250 
- .303 

- ,481 
- .456 
-.610 
- ,270 
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Table C-1 . SILBER-HUNT (S-H) EXPANSION (Concluded) 

CASE i, x lo2  i, x 10 2 

= 2  

= 2  

.806 

.974 

.689 

.844 

.990 

.974 

.991 

.991 

,592 
.228 
.725 
537 

.141 

.228 

.129 

.137 
I 

- .200 
-.178 
- .251 
-.123 

-.132 
-.178 
-.121 
-.132 

- ,428 
- .456 
- .565 
-.178 

- .335 
- .456 
- .301 
- .336 
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES 

CASE 2 i, x lo2 i, x 10 

Inversion 
N = l  
N = 2  
N = 3  

Polynomial Sol. 
N = l  
N = 2  

*N = 3 

Newton-Raphson 
2 Iterations 

Inversion 

(Damped on 2nd) 

N = l  
N = 2  
N = 3  

Polynomial Sol. 
N = l  
N = 2  

*N = 3 

Newton-Raphson 
2 Iterations 

(Damped on 1st) 

I nvers i on 
N = l  
N = 2  
N = 3  

.986 ’ 

.870 

.713 

.986 

.813 

.976 

.576 

.998 

.927 

.806 

.998 

.854 

.803 

.667 

-.160 
- .491 
- .700 

-.160 
- .582 
.216 

- .817 

- ,060 
- ,372 
- .591 

- .060 

-.519 
-. 595 

- .744 

.938 .344 

.920 .391 

.913 .406 

-.lo8 - .353 
.024 - .020 
.147 .324 

-.lo8 - .353 
.141 .355 

- .248 -.712 

,280 .741 

-.149 - .460 
-.042 - .2Q7 
.073 .109 

-.149 - .460 
.132 .351 
.058 .Q54 

.226 .586 

- .296 -. 577 
- .252 - .650 
-. 272 - ,681 
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Continued) 

2 CAS E i, x lo2 i, x 10 

3 Polynomial Sol. 
N = l  
N = 2  
N = 3  1 2 Iterations 

[Inv;r:i;n 

Newton-Raphson 

I N = 2  I N = 3  

4 Polynomial Sol. 
N = l  
N = 2  I N = 3  

Newton-Raphson 1 2 Iterations 1 1nv;r:i;n 
I N = 2  

N = 3  

5 Polynomial Sol. 
I N = l  I N = 2  

N = 3  

Newton- Rap hson 
L 2 Iterations 

.938 

.929 
,906 

.910 

.939 

.925 

.920 

.939 

.967 

.897 

.918 

.926 

.953 
999 

.926 

.981 
979 

.986 

.344 

.367 

.422 

.413 

,342 
.379 
.390 

.342 

.252 

.440 

.396 

- .377 
- .302 
- .038 

- .377 
-. 190 
- .zoo 

-.163 

- .296 
- .258 
-. 272 

- .269 

- .235 
- .263 
- .276 

- .235 
- .238 
- .307 

- .284 

.082 

.076 
-.112 

082 
- .013 
-.016 

- ,044 

- ,577 
- .679 

-.713 

- .703 

- .606 
- .693 
- .735 

- .606 
- .650 
- .829 

- .762 

.244 
- .036 
- ,328 

,244 
- .028 
- .044 

-.131 
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Continued) 

2 CASE i, x lo2 i, x 10 
- 
Inversion 

N = l  
N = 2  
N = 3  

Polynomial Sol. 
N = l  
N = 2  
N = 3  

Newton-Raphson 
2 Iterations 
Inversion 
- 

N = l  
N = 2  
N = 3  

Polynomial Sol. 
N = l  
N = 2  
N = 3  

Newton- Raphson 
2 Iterations - (Damped on 1st) - 
I nvers i on 

N = l  
N = 2  
N = 3  

Polynomi a1 Sol . 
N = l  
N = 2  
N = 3  

.855 

.964 

.915 

.855 

.922 

.929 

.927 

.724 

.999 
,846 

.724 

.887 

.912 

.914 

.517 

.263 

.401 

.517 

.387 

.367 

.374 

.689 
- .026 
,532 

,689 
.456 
.410 

,405 

.942 - .335 

.925 - .379 

.978 - .204 

.942 - .335 

.969 - .244 

.966 -. 255 

-.195 
-.129 
-.191 

-.195 
-.172 
-.167 

-.170 

-.219 
.007 

-. 273 

-.219 
-.173 
-.165 

-.167 

.043 

.056 
- .036 

.043 
- ,002 
- .001 

-.434 
- .276 
- .454 

- .434 
- .387 
- .378 

- .388 

- ,469 
.116 

- .708 

- .469 
- 374 
- 357 

- .367 

.122 

.150 
-.116 

.122 
- .009 
- .011 
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Continued) 

CAS E 2 i, x lo2 i, x 10 

Newton-Raphson 1 2 Iterations 

TI nvers i on 
N = l  
N = 2  
N = 3  

9 olynomial Sol. 
N = l  
N = 2  

*N = 3 

ewton-Raphson 
Iterations 

nversi on 
N = l  
N = 2  
N = 3  

olynomial Sol, 
N = l  

*N = 2 
*N = 3 

ewton- Raphson 
Iterations 

N = l  
N = 2  
N = 3  

.967 

,954 
.972 
,978 

.954 

.997 

.963 

.980 

.933 

.951 

.958 

.933 

.998 

.716 

.960 

.653 

.459 

.534 

- .253 

.297 

.234 

.205 

.297 
,070 
.266 

,194 

.357 

.308 

.285 

.357 

.044 
697 

.277 

.756 

.888 

.845 

- .007 

- .276 
- .290 
- .299 

-. 276 
-. 252 
-.313 

- .298 

- .356 
- .339 
- .350 

- .356 
- .268 
- .609 

- .354 

- .346 
- .387 
- .352 

- .033 

- .778 
- .874 
- .895 

-. 778 
-. 779 
- .945 

- .896 

- .833 
- .999 
-1.049 

- .833 
- ,848 

-1 '840 

-1.070 

- .877 
- 994 
- .875 
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Continued) 

11 

12 

13 

2 CASE i, x lo2 i, x 10 

Polynomial Sol. 
N = l  
N = 2  
N = 3  

Newton-Raphson 
Iterations - 

I nvers i on 
N = l  
N = 2  
N = 3  

Polynomial Sol. 
N = 1 
N = 2  
N = 3  

Newton-Raphson 
2 Iterations 
- 
Inversion 

N = l  
N = 2  
N = 3  

Polynomial Sol. 
N = l  
N = 2  
N = 3  

Newton-Raphson 
2 Iterations 

.653 

.620 

.639 

,630 

.692 

.496 

.487 

.692 

.631 

.630 

.583 

.994 

.983 

.989 

.994 

.984 

.987 

.987 

,756 
.783 
.768 

,776 

.721 
,868 
.872 

.721 

.775 

.776 

.811 

.lo5 

.181 

.141 

.lo5 

.172 

.159 

.159 

- .346 
- .352 
- .338 

-. 329 

- .345 
- .407 
- .404 

- .345 
- .372 
- .363 

-. 301 

- .079 
-.153 
-.lo8 

- .079 
-.124 
-.125 

-.125 

-.877 
- .892 
- .843 

- .809 

.880 
-1.065 
-1.053 

.880 
- .963 
- ,927 

-. 982 

-.158 
-. 395 
- .249 

-.158 
- .298 
- .304 

- .306 
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Continued) 

CASE x1 
2 i, x lo2 i2 x 10 

14 

15 

.. 
Inversion 

N = l  
N = 2  
N = 3  

Polynomial Sol. 
N = l  
N = 2  
N = 3  

Newton- Raphson 
2 Iterations 

I nvers i on 
N = l  
N = 2  
N = 3  

- 1  

Polynomial Sol. 
N = l  
N = 2  
N = 3  

Newton-Raphson 
2 Iterations - (Damped on 1st) 
Inversion 
- 

N = l  
N = 2  
N = 3  

.554 
,977 
.915 

.554 

.772 

.811 

.805 

,410 
.437 
,945 

.410 

.727 

.802 

,839 

.832 

.210 

.402 

.832 

.634 

.585 

.593 

.911 
- .899 
.325 

-91 1 
.685 
.597 

,542 

.994 .lo1 

.987 ,154 

.990 .138 

- .290 
.078 

- .249 

- .290 
-. 230 
-.217 

- ,249 

- .289 
.635 
-.310 

- .289 
-. 222 
- .203 

-.193 

-.lo7 
-.141 
-.129 

- .689 
.457 

- .660 

- .689 
- .525 
- .488 

- .602 

- .67E 
2.004 
- .902 

- .676 
- .485 
- ,437 

-..417 

-. 261 
- .365 
- ,326 
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING 
NOMINAL STARTING VALUES (Concluded) 

CASE 2 il x lo2 i, x 10 

Polynomial Sol 
N = l  
N = 2  
N = 3  

Newton-Raphson 
,2 Iterations 

.994 .lo1 -.lo7 - .261 

.989 .147 -.132 - .334 

.989 .142 -.131 - .334 

.989 .141 -.131 - .335 

c-11 
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Table C-3. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING 
REFERENCE DERIVATIVES AND USING NOMINAL STARTING VALUES 

CASE 2 i, x l o 2  . i2 x 10 

I Polynomial sol. 

[ol;n:rn;a1 so l .  

[oI;ny;aI sol.  

olynomial Sol.  

*N = 2 

N = 2  

N = l  
N = 2  

[..i;ny;a1 SOI. 

Polynomial Sol. 

N = 2  

[ 
Polynomial Sol.  

N = l  
N = 2  

[P.1:non:al SO]. 

N = 2  

.987 

.316 

.998 
,840 

.939 
* 933 

939 
,960 

.925 

.982 

.857 

.921 

.726 

.893 

.942 

.964 

.955 

.999 

-.160 
.949 

- .595 
- .543 

.344 

.360 

.343 

.278 

- .379 
-.191 

,515 
.390 

.687 

.449 

- .337 
- .267 

.297 

.052 

-. lo9 
- .208 

-.150 
,132 

- .228 
- .259 

-. 236 
- .246 

.083 
-.016 

-.195 
-.172 

-.218 
-.173 

.044 

.006 

- .277 
- .248 

- .355 
- .344 

- .463 
.341 

- .577 
- .684 

- .607 
- .665 

,245 
- ,036 

- .433 
- .386 

- .467 
- .374 

.123 

.013 

- .782 
- .770 

c-12 
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Tab1 e C-3. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING 
REFERENCE DERIVATIVES AND USING NOMINAL STARTING VALUES (Concl uded) 

2 CAS E hl x 2  i, x lo2 i, x 10 

Sol. 
N = l  
N = 2  

olynomial Sol. 
12 N = l  

N = 2  

olynomial Sol. 
13 N = l  

N = 2  

olynomial Sol. 
14 N = l  

N = 2  

Sol. 
N = l  
N = 2  

16 [ N = l  
N = 2  

Polynomial Sol. 

,933 
.998 

653 
,632 

.692 

.634 

.995 

.985 

.554 

.767 

.411 

.745 

.995 

.990 

,359 
.645 

.757 

.775 

.722 
* 774 

.lo3 

.172 

,832 
.642 

.911 

.667 

.099 

.144 

- .298 
-. 271 

- .347 
- .353 

- .346 
- .375 

- .079 
-.126 

- .289 
- .232 

- .289 
- .221 

-.lo7 
-.131 

- .836 
- .848 

- .876 
- .892 

- .880 
- .971 

-.158 
- .303 

- .688 
- .528 

- .675 
- .481 

- .259 
- ,330 
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Table C-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING 
REFERENCE DERIVATIVES AND USING SILBER-HUNT STARTING VALUES 

CASE 2 i, x l o 2  i, x 10 

1 

2 

3 

4 

- 
Polynomial Sol. 
F i r s t  Guid. Corn. 

N = l  
N = 2  

ISecond Guid. Corn. 

- 
Polynomial Sol. 
F i r s t  Guid. Corn. 

N = l  
N = 2  

Second Guid. Corn. 
N = l  
N = 2  

i N = l  

- 
Polynomial Sol. 
F i r s t  Guid. Corn. 

- 
Polynomial Sol.  
F i r s t  Guid. Corn. 

N = l  
N = 2  

Second Guid. Corn. 
N = l  
N = 2  - 

.554 

.565 

.522 

.525 

.536 
,550 

.508 
,509 

.911 

.911 

.911 

.911 

.917 

.918 

.918 

.918 

- .832 
- .825 

- .853 
- .851 

- ,844 
- .835 

- .862 
- .861 

.413 

.413 

.412 

.412 

400 
.398 

.396 

.396 

.284 

.270 

.288 

.286 

,308 
.292 

.312 

.312 

- .269 
- .269 

- .269 
- .269 

- .286 
- ,286 

- .285 
-. 285 

.748 

.670 

.748 

.743 

,825 
.775 

.831 

.830 

- .700 
-. 700 

- .700 
- .700 

- .769 
- .766 

- .766 
- .766 
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Table C-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE 
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Continued) 

2 CAS E i, x l o 2  i2 x 10 

5 

Polynomial Sol. 
F i r s t  Guid. Corn. 

N = l  
N = 2  

I 
.974 
.974 

6 

7 

p o l  ynorni a1 so l  . 

8 
F i r s t  Guid. Corn. 1 N = l  

Second Guidance Corn. 
N = l  

. N = 2  

Polynomi a1 Sol . 
F i r s t  Guid. Corn. 

N = l  
N = 2  

Second Guid. Corn. 
N = l  

I N = 2  

Polynorni a1 Sol . 
F i r s t  Guid. Corn. 

- 

N = l  
N = 2  

Second Guid. Corn. 
N = l  

- N = 2  

N = 2  
I 

.977 

.977 

.932 

.932 

.930 

.930 

,916 
.917 

.915 

.915 

.960 
,961 

.964 

.963 

- .228 
- .225 

-.213 
-.214 

.363 
,363 

,366 
.366 

,400 
.399 

.403 

.403 

- ,279 
- .276 

- .267 
- .268 

- * 001 
- ,003 

- .010 
-.010 

-.168 
-.167 

-.168 
-.168 

-.168 
-.165 

-.164 
- .T64 

.013 

.010 

.004 

.004 

.003 
- ,003 

- ,024 
- .026 

- .382 
-. 378 

- .379 
- .379 

- .368 
- ,358 

- .355 
- .355 

,033 
.026 

.007 

.006 

C-15 
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Tab1 e C-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE 
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Continued) 

CAS E x1 
2 i, x lo2 i2 x 10 

9 

10 

11 

12 

- 
Pol ynorni a1 Sol. 
First Guid. Corn. 

N = l  
N = 2  

Second Guid. Corn. 
N = l  

- N = 2  

Polynomial Sol. 
First Guid. Corn. 

N = l  
N = 2  

Second Guid. Corn. 
N = l  

. N = 2  

,983 
.984 

.983 

.983 

.967 

.968 

.966 

.966 - 
Polynomial Sol. 
First Guid. Corn. 

N = 1' 
*N = 2 

Second Guid. Corn. 
N = l  

- N = 2  

.735 

.245 

.569 

.605 

Polynorni a1 Sol. 
First Guid. Corn. 

N = l  
*N = 2 

Second Guid. Com. 
N = l  
N = 2  

.756 

.567 

.532 

.576 

.182 

.179 

.185 

.185 

.254 

.251 

.257 

.257 

.678 

.970 

,822 
.796 

.655 

.824 

.847 
,818 

- ,297 
- .294 

- ,299 
- .299 

- .353 
- .351 

- * 357 
-. 357 

- .248 
- .280 

- .365 
- .350 

- .248 
- ,299 

- .398 
- ,382 

- ,895 
- .888 

- .902 
- .902 

-1.069 
-1.064 

-1.083 
-1.083 

- * 543 
- .601 

- .926 
- .877 

- .550 
- .688 

-1.039 
- -988 
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Table C-4 GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE 
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Concluded) 

2 CASE i, x lo2 ii, x 10 

Polynomial Sol. 
First Guid. Corn. 

13  N = l  
N = 2  

Second Guid. Com. 

;I; 
Polynomial Sol.  
First Guid. Corn. 

14 N = l  
N = 2  

Second Guid. Corn. 
N = l  
N = 2  

Polynomial Sol. 
First Guid. Corn. 

N = l  
N = 2  

15 

Second Guid. Corn. 
N = l  
N = 2  

Polynorni a1 Sol. 
First Guid. Corn. 

I 
N = l  
N = 2  

16 

~ S e c ~ n ~  :uid. Corn. 

N = 2  

.989 

.988 

.988 

.988 

.784 

.797 

.806 
,807 

.773 

.793 

.785 

.787 

.990 
* 990 

* 990 
.990 

.150 

.151 

.153 

.153 

.621 

.604 

,592 
.590 

,635 
.610 

.620 

.617 

,141 
.141 

.141 

.141 

-.123 
-.123 

-.124 
-.124 

-.217 
-.215 

-.216 
-.216 

-.191 
-.190 

- .206 
- .206 

-.132 
-.132 

-.132 
-.132 

- .299 
- .299 

- ,300 
- ,300 

- ,487 
- .477 

- .484 
- .484 

- -384 
- .388 

- .440 
- .440 

- .334 
- .335 

- * 335 
- .335 
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