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FOREWORD

This interim report summarizes the progress to date of work performed by
Northrop-Huntsville while under contract to the Computer Research Laboratory
of the NASA Electronics Research Center, Cambridge, Massachusetts (Contract
NAS12-500).

Mr. W. E. Miner has served as the NASA techmical coordinator during this

period.
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SUMMARY

This report describes and compares a number of non-linear guidance schemes
that require information from a precomputed reference trajectory. However, it
is not necessary that the space vehicle closely follow the nominal path. The
methods are indirect in nature and are based on one step iterative techniques
for solution of the nonlinear boundary equations. For each guidance command,
the schemes require accurate evaluation of the functions 85 defining the
boundary conditions. The derivatives of the functions g4 required in the
iterative techniques are obtained cheaply by correcting precomputed derivatives

corresponding to the reference trajectory.

The guidance algorithms considered may be applied to a large variety of
space missions, including those requiring bang-bang thrust magnitude control.
In general, a broad class of guidance algorithms is described and this report
selects one technique from this class which most efficiently solves the

optimal guidance problem.
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INTRODUCTION

1.1 BACKGROUND

The purpose of this document is to describe work completed to date under
Contract NAS12-500 with the Computer Research Laboratory of the NASA Electronics
Research Center. The major goal is to obtain approximate analytical solutions
for optimal guidance functions for ascent to orbit. The calculus of variations
has been used to formulate necessary conditions for the optimal guidance func-
tions. Efforts have been directed toward deriving approximate solutions of

the nonlinear, two-point boundary condition problems that result.

Since March 1968 a different technique has been employed in the develop-
ment of expansions of the functions gi (describing the terminal end constraints

g, = 0) and the corresponding guidance functions.

Previously, Taylor series expansions in time, about the initial point of
the trajectory, were used. The resulting equations were solved by iterative
means for the initial wvalues of the Lagrange multipliers, from which the optimal
control could be determined. A good approximation to the final time tp was
assumed to be available. However, no initial approximations to the Lagrange
multipliers were employed. Some of the main findings of this former approach
were: For certain missions, where change in altitude did not exceed 15 kilo-
meters, third- and fourth-order Taylor series would yield accurate results
even for range angles to 180 degrees. Accuracy began to fall off rapidly for
greater altitude chariges unless much higher order series were used. The results

achieved from this approach were documented in references 1 and 2.

Since Taylor series expansions in time of the gi's above the fourth-order
are prohibitively complicated, it was concluded that the expansions about the
initial point of the flight path should be abandoned and the method should be
modified accordingly. In addition it was decided that the method should be
augmented and simplified by making use of prior knowledge of the space flight

mission to be accomplished.
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The different approach still consists of the solution of the end con-
straints 8; = 0, where 8y is considered to be a function of te and the initial
values of the Lagrange multipliers. Values of s> corresponding to given values
of te and the initial multipliers, are obtained by means of numerical inte-
gration of the équations of motion and the Euler—Légrange equations. A large
class of guidance schemes are embodied in the new épproach, but in the case of
each scheme 84 is expanded in Taylor series about approximations to tF and the
initial Lagrange multipliers obtained from a reference optimal trajectory.
These series are terminated after several terms and set equal to zero. The
resulting system of polynomial equations are either inverted to obtain explicit

expressions for t_, and the initial multipliers, or solved numerically for these

F
corrections. In all of these schemes, derivatives of 8 with respect to tF
and the initial multipliers are required. These derivatives correspond to
the initial state and the reference to and the initial multipliers. They may
be computed numerically (by integration of differential equations referred to
as the "equations of variation') or obtained approximately (in ways to be

described) from the reference trajectory.

These new nonlinear guidance schemes, unlike the method of Silber and Hunt
in reference 3 or second variation guidance (references 4 and 5) are self-~
correcting; i.e., errors introduced by a drift away from the reference path

are removed.

It is possible to strengthen the new methods by combining them (in a manner
to be discussed) with the method of Silber and Hunt or the second variation
method. In regard to the use of the latter method, there is a note provided

in Appendix A, which has been published in the ATAA Journal (ref. 6)..

Another guidance method, which combines the new approach with the former
of éxpanding‘in time about the initial point of the path is given in Appendix B.

There is no intention at present of implementing the theory of Appendix A or B.

1.2 PROBLEM DESCRIPTION
The derivation of necessary conditions, by means of the calculus of vari-

ations (COV), can be found elsewhere (ref. 7) and will not be repeated here.

1-2
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The Motion and Euler-Lagrange (MEL) differential equations describing

the optimal paths for minimum fuel consumption are

; = —TgT-A - u3 X

" x|
- U L XeX (1-1)
A= 3 -1+ > ¥

|| ||

where x and x are the position and velocity vectors with respect to a non-
rotating earth-centered cartesian coordinate system, A and -A are the corre-
sponding Lagrangian multipliers, p is the gravitational comstant, F is the con-

stant thrust magnitude, m = - B(t—to), and B is the constant fuel burning

m
rate magnitude. The subscripis o and f signify initial and final values,
respectively. Let & represent an N vector of discrete unknown quantities,
e.g., missing initial values, final time, and possibly other unspecified
quantities. In addition, define y to be an s vector of initial state para-
meters, e.g., position, velocity, thrust to weight ratio, and mass flow rate

to weight ratio.

The initial and final end constraints may be represented by the equations

fi(na Yy €)=0 (i-:la cey N)

where n = n(y, &) includes the final states and multipliers considered as
functions of theé initial wvalues. These end constraints are usually geometric

end conditions, transversality equations from the COV, and scaling conditions.

Let
g;(y, &) = £.In(y, &), v, El.

Then it is desired to solve the equations
g;(y, ) =0 i1=1, ..., ) (1-2)

for £ in terms of initial state parameters y. Implicit in equatiomns (1-2)

is the solution to the differential equations (1-1).

To illustrate the notation, consider a minimum fuel constant burn mission
into a prescribed terminal orbit from a specified position and velocity. The
A . T .
initial state vector has the form y = (xo, X s F/mo, B/mo) and t = to is

given. Then £ becomes the 7 vectorA(kolAio, tf)T. The seven boundary conditions

1-3
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include five geometric terminal conditions, ome transversality equation, and

a scaling condition. As a second example, consider a bang-bang control mission.
with the same geometric constraints of the first example. Further impose the
requirement that the trajectory be of a burn-coast-burn nature. The initial
state vector y is the same as before with t = to given. Now & becomes a 9

1’ t2, tf)T where t., and t, are the switch times relating

1 2
to the end of the first burn arc and the beginning of the second burn arc,

vector A, t
Qg Ao,

respectively. The corresponding nine boundary conditions include the seven
of the first example plus an evaluation of the switching function at tl and t2‘
In the following sections various iterative techniques for solving equa-
tions (1-2) are described. Section II gives a preliminary discussion of iter-
ating functions for one equation in one unknown. Sections III and IV extend
two particular methods to N dimensions (nothing new) and applies them to the
optimal guidance equations (1-2). Section V presents some numerical results
comparing the methods of Sections III and IV. Included also is a discussion
of convergence of the two techniques. Based on the studies of convergence
and overall performance, Section VI describes a guidance routine based on the
best numerical procedure. Sections VII and VIII conclude the report with a

discussion of overall performance, summary, conclusions, and extensions.

1.3 INTRODUCTORY COMMENTS
Many guidance schemes can be derived by applying various analytic and

numerical techniques to the system of nonlinear equaticns (1-2).

The method of Silber and Hunt considers equatidns (1-2) as identities in
y, i.e.,
g;ly, e(I=0 (1=1, ..., N)
Then the necessary assumptions from implicit function theory are made and Taylor

series expansion of £(y) about some nominal y are determined.

.8 e . L5 s o
E.(y) = g (N+] 3y ) by, + 3 )

(;) Ay Ay + ...
o=1 o o=1 B=1 ByaByB o "8

Thus, an explicit formula for £ in terms of the initial state is immediately

obtained. If one proceeds further and determines functions of time for the

1-4
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nominal state values and derivatives and substitutes these into the above series,
then explicit time and state dependent expressions have been obtained for £.

Since the control is directly dependent upon {, then second variation guidance
(ref. 5) can be considered equivalent to the Silber-Hunt series expansion truncated
after first-order terms. Similar remarks hold for higher order series and

extensions of second variation guidance.

The linear guidance and second variations techniques are non-iterative in
nature and consequently not self-correcting. The methods are computationally
fast but require a large amount of preparation. The general assumption of these
schemes is that the vehicle will fly in some linear region about the reference
trajectory, and hence a linear series is sufficient or the region is at worst

quadratic hence a second-order expansion is adequate, and so on.

The guidance techniques of this report are designed to give a self-
correcting algorithm while still taking advantage of a precomputed nominal

trajectory to reduce the required computation.

To visualize the relation between the method of Silber and Hunt and the
iterative techniques, consider a simplified geometric explanation. Let y and
£ be simple variables along with the corresponding boundary function g(y, &).
In Figure 1-1 a three-dimensional surface g(y, £) has been sketched. For
simplicity assume that the nominal ; is zero at some fixed time. It is desired
to obtain the trace g(y, &) = 0 which lies in the y, £ plane. Suppose the
vehicle is currently at the true state y. Then it is required to calculate
£ denoted at point 1. The linear method of Silber and Hunt uses the tangent
line through % in the y, £ planme to estimate £ by point 2. Of course, higher
order methods would pass higher order polynomials through % in the y, £ plane.
A "linear" iterative method (e.g. Newton Raphson) uses the tangent line through
the point [y, é, g(y, %)] in the £, g plane denoted by point 3. The inter-
section of fhis line with the y, £ plane is the estimate &* for &. This pro-
cess can be repeated by using the tangent line through [;, gx, gy, €%)] to
obtain a new estimate for g. The procedure may be repeated until g(§, g*) is
sufficiently small. Again, the use of higher order approximations at each

stage should improve the speed of convergence.
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The computation of the parameters of the approximating curve at point 3
is somewhat time consumming and it must be done at least once for every change
in y. However, it seems plausible to approximate them from the corresponding
parameters at é. Further details may be found in subsection 2.3 and the

numerical results of subsection 5.4 indicate the approximations work well,

When comparing any guidance schemes it is very difficult to say, a priori,
that one is better than the other. Each procedure must be empirically tested
and compared. 1Iteration versus closed formulas leads to subtle questions and
numerical investigation would resolve a few important ones. In fact, it will
be seen (Section V), that closed formulas fail more often in some problems

than implicit formulas requiring iteration.

gly.E)
A

y=0

<

Figure 1-1. GEOMETRICAL INTERPRETATION
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Section |l

ITERATING FUNCTIONS AND INVERSION

2,1 INVERSION AND ONE POINT ITERATING FUNCTIONS
Here the intention is to clarify the relationship between series inver-
sion and "iteration". For simplicity in presentation, a function of one

variable is used.

Given £(z) =0 (2-1)

find the values of z, the zeros or roots, that satisfy equation (2-1). Con~

structing infinite processes that involve f(z) and its derivatives such that

values of z can be obtained which satisfy equation (2-1) is the primary goal,
In other words, one desires to construct functions that generate a convergent
sequence of approximations {zi} to a zero E, i.e.,

lim z, = 2
. i
1o

Let these functions be denoted as
= = 1 1" . -

z,0q = 0(z)) = o(£, £, £, ...5 2)). (2-2)
Traub (ref. 8) classifies these as one point iteration functions since Zi01
depends upon only one point zg. If the recursion (2-2) is to have meaning
then the identity

z = ¢(z)

must hold.

th . R . . s
An r order iteration is characterized by the conditions

0(2) = 6" () = 0" (@) ... 6" (G) =0 and o @) £ 0 (3-3)
where
(r) _ %%
¢ N r
E4

2-1
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An iteration of arbitrary order can be produced by comstruction of a ¢

function that satisfies the conditions of equation (2-3). One such construc-

tion is
r-1 o o~1
£ 1 1 r
¢ =z + zl (—l)a ET'(fr ] U £ Mo (2-4)
a.':

‘ o-1
where Mo is an arbitrary function. By (f# 9 denote an operator that
stands for the following operation: Differentiate the function following
the symbol, multiply it by f%y then differentiate the new function again and

multiply it by 1/f',... continue for a-1 times. For example

(% )3_1_=__1_g_ 14 (141
£ f! £f' dz | £' dz \f' dz £’

_ —g__]:_.l- f_z- fll _-f_i [3(f")2 — flfll] +
L VI L T R B Y 5

(£")

which is recognized as the series expansion for the inverse of f£(z).

Note that the order of iteration is.one more than the corresponding

order of the series. For example, the first-order inverse series is
f
¢ =2z -%

which is also the Newton-Raphson iteration and which is of order two. The

third-order inverse series written above defines a fourth-order iteration.

Now it can also be shown (ref. 8) that m iterations of an Nth order
iteration function are equivalent to one iteration with an iteration function
of order N". Thus, two iterations with Newton-Raphson should be equivalent
to one iteration with, or a single evaluation of, a third-order inverse

series.
It would appear that there is no essential difference between using

several iterations with an inverse series of an order appropriately higher;

provided, of course, that both methods converge.

2=2
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The higher order inverse series requires higher order derivatives.
Except for functions such as polynomials where the higher derivatives become
less complicated, the higher order iterations (or inverse series) are likely
to be more and more ineffecient in terms of computation. Another point to
consider is that there may be significant differences in the behavior of
convergence between iteration and use of an inverse series of equivalent

accuracy.

2,2 INTERPOLATORY ITERATING FUNCTIONS
Given p approximations to a root z of f(z), e.g., Zyp1® ZNaod tt o zN+p’

it seems reasonable to obtain a new approximation, by calculating a

Z.. ’
Netptl
root of the interpolation polynomial determined by the p approximations.

Then repeat again with the points Zy+2? Zy43? tt s zN+p+1'

The types of interpolatioh polynomials are many and varied. However,
here, interest is directed toward hyperosculatory interpolation. 1In
particular it is desired that the interpolation polynomial agree with £ and

various derivatives of f at the p approximations.

In Section III only one interpolation point is used and the function
value with its first two derivatives are constrained equal to the interpolation

polynomial.

For this case it is shown (ref. 8) that the order of the iteration is

equal to the order of the interpolation polynomial.

2.3 APPROXIMATE INVERSE SERIES BY NUMERICAL INTEGRATION FORMULAS

The technique discussed here has been examined but not investigated
numerically. For this reason no recommendations concefning,its use are offered
at this time. There is a method for solution of nonlinear equations called
"Variation of Parameters" attributed to Davidenko (ref. 9). The basic

approach is as follows:

Given f(z) =w

2-3
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find a root z = z of f(z) = 0. The idea is to start with some approximation
zZ to z with a corresponding parameter value LA and vary LA in some continuous

fashion such that Wo moves to zero and zO to z. If

af _ .,
iz = £'(z) # 0 for z ¢ D

where D is some region about the point z, and is assumed to contain z, then

zeD (2-5)

Now consider equation (2-5) as a differential initial value problem with
z(wo) =z

Then it is desired to integrate equation (2-5) from v to 0. The path of

integration is assumed to be such that z remains in D.

First, suppose that one solves the differential equation by Taylor

series. The interval of expansion is (0 - Wo) and thus obtain

2
a?z (=)

(w)
dW2 o 2!

+ ...

z=200) + S @ )(w) +

£f(z ) 2
1 d 1 0
%0 ¥ Tz [ TF(Z)] +Ef(f7><_ 71 e

2
[-£"(z0) ] [‘f(zo)]

+

5 51 ves
' !

f (zo)

1
= + = [~
2, * gz y [FE(z )1 +
o
It is evident that the solution is the inverse series, as expected.

Now, regard the root-finding problem as equivalent to solving a differ-
ential equation. Then there are opportunities to simplify the series inver-
sion problem. In particular, Runge-Kutta integration formulas can be used

to construct approximations to the inverse series.

Recall the Runge-Kutta integration formulas are derived so that solutions
to differential equations obtained by them will agree with Taylor series sol-
utions of some order. Thus, a third-order Runge~Kutta formula agrees with at

least a third-order Taylor series solution, etc.
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Now suppose that one solves the differential equation (2-5) by means of
various Runge-Kutta integration formulas. These formulas can be written in

a general, familiar format as

Yo+l T th Qi
where the differential equation is
y' = ¥(y; %)

Here the subscript ntl refers to the independent variable x+h and n to x. In
terms of the root finding initial value problem equation (2-5), rewrite the
formulas as

Z

ntl = zn - f(zn) Qi

Note that the step size, h, is -f(zn); @i represents one from the family of
Runge-Kutta integration formulas. The philosophy of the step size determin-
ation can be explained as follows: Integrate from LA to O %n one step
giving aNStepsize of W =~—f(zo). Then having determined z = z, try to
improve z by setting z, = z and integrating from w

1 1
and obtain a new z. Thus, the iterative method is sufficiently defined. Of

to 0, i.e., h = W, = —f(zl)

course many variations of this procedure are possible, in particular concerning

stepsize control of the numerical integration.

Consider the simplest Runge-Kutta formula. (The Euler or Point-Slope

Method)
1

o, = -
1 f (zn)

The approximate solution of the differential equation is

f(zn)

=2y T f'(zn)

Zn.+l

which is the Newton-Raphson Method.

Other Runge integration formulas yield other iterations - e.g.,

=1
2, =5 (k; +k,) (HEUN)
h h
K, = =p—— k, ==
1 E(z) 2 f (z, + k)

2-5
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=1
0, =% (k, +4k, +k;) (RUNGE)
h
Kk, = =
1 £ (zn)
K, = h
' —
£ (2 +2k)
_ h
' -
3" F(z_ ¥ 2K, - kD
o =1 (k. +3k,) (HEUN)
5 =7 (kg 3
ky = £z,
"‘zv= hl
£'(z +3 k)
_ h
ky =

2
' £
£' (z_ +3 k)

There are available Runge-Kutta formulas for various higher orders. 1In
the above formulas @l is the first~order integration method, @2 is second-
order, and ®3 and ®4 are third-order. As iteration methods for roots the
orders are: @1, second-order, @2 third-order, and ®3 and ®4 fourth-order.
Higher order integration methods will, of course, provide higher order iter-
ation methods for root-finding, or more accurate approximations to the inverse

functions.

An advantage of this approach is that higher than first derivatives are
not required, as is the case when the formal inverse series is used. Partially
offsetting this advantage is the need to perform additional function evalu-
ations. Usually p > n function evaluations are necessary for a Runge-Kutta
formula of order n that approximates an inverse series of order n which, in

turn, defines an iteration of order n + 1.
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Section il

GUIDANCE BY SOLUTION OF POLYNOMIAL EQUATIONS

In this section the system of nonlinear equations (1-2) is treated. Here,
consideration is given to interpolatory iteration functions. Only one iter-
ation (i.e., the solution of one set of polynomials) is considered and

numerical results (see Section V) indicate this is sufficient.

3.1 DEVELOPMENT OF EQUATIONS

Let &' be an approximation to the solution £. Then pass a pth degree
polynomial (i.e., N polynomials in the N variables gi - E’i) such that its
value at &' agrees with g(y, £'). Similarly, constrain the first p-1 deriv-
atives of the polynomials to agree with the first p-1 derivatives of 85 at
the point (y, £'). This is, of course, equivalent to a truncated Taylor

expansion of gi(y, £) about &'. Then let

AE = - &'
KGN
i P
i EJ
2
NGRS N W
i agjagk

A Taylor series expansion of gi(y, g) = 0 about &' yields

N

g, (v, £ + ] pes 8, P e 45y ] i sesog, 8, @, 10
i=1 j=1 k=1
N N N
var 111 espger, g PP e v =0 (3-1)
* j_—. k=1 Q=1

i1=1, 2, ..., N)

The guidance scheme requires solution of the resulting system of poly-
nomial equations for Af by means of, e.g., the Newton-Raphson method of iter-
ation. Once the polynomial coefficients have been calculated, the iterative
solution of equation (3-1) requires no additional trajectory calculations or

numerical integrations.
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3.2 CALCULATION OF DERIVATIVES
The derivatives gi(j)(y, £'), gi(j’k)(y, £'), ... may be calculated by

means of the equations of wvariations (ref. 3,5). Although the latter method

may be used in numerical studies, it is out of the question (at least in the

case of higher derivatives) in onboard implementation of the guidance shceme.

Instead, the derivatives may be approximated as follows:

N

. ~ iy o~ o~ S iy o~ - . ~ =
R A A A A b A I N IR IR SN O
a=1 Yo a=1

g, B, e

: e, 90, o (3-2)

where é, ;kare the reference values and Ay = y - ;. Given y, the reference
values ; and é may be determined by any of several procedures. Appendix A
discusses one technique, but in implementing the guidance routine a time-to-
go criterion is used (Section VI). Derivatives of 8 with respect to tp may
be computed precisely without the use of either the equations of variation

or equations (3-2).

Numerical calculations of the derivatives, cérresponding to an S-1VB
injection into circular orbit, indicate that the derivatives do not wvary
radically as a function of y within a rather large neighborhood of ;. On
the other hand, the Lagrange multipliers and tp change appreciably. Further-
more, as long as the functional values, gi(y, £'), are computed accurately,
it is not necessary to have very accurate higher derivatives in order to
compute accurate guidance commands. Therefore, it is reasonable to use

equations (3-2) to determine the derivatives.

3.3 UPDATING THE DERIVATIVES

In the preceding subsection the calculation of derivatives corresponding
to some fixed initial time were considered (i.e., & was defined in terms of a
fixed initial time). However, in the guidance problem the derivatives
gi(j)
the space flight progresses. This may be done by either of the following two

(v, &), gi(J’k)(y, £), etc. must be updated from time t; to time t, as

means:

3-2
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o Numerical integration of the adjoint differential equations (ref. 10)

forward over the short time interval between t1 and tz.

e Evaluation of polynomials expressing the reference derivatives as
functions of time. These polynomials can be determined before flight.

It should be noted that forward integration of the adjoint equations may be
numerically unstable, but the severity of this problem is not thought to be

great.

3.4 USE OF THE METHOD OF SILBER AND HUNT AS A REFINEMENT
A refinement to thé guidance schemes disucssed above is the use of the
technique of Silber and Hunt (ref. 3) to determine a first correction &' to

¢ for given Ay. Thus

- s s
g'=c+ | Ay 2 ) ZAyya
i=1 Y3 i=1 j=1 SRE
. S 5 s
+ Ay A
31 Z zlkz ¥ 185 505, Eyyyk

where E € , etc., are to be evaluated along the reference trajectory. Again
the latter derlvatlves can be expressed as polynomial functions of time for
updating or they can be obtained by integrating matrix Riccati equations from

the time of one guidance command to the next (ref. 10).

3-3
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Section |V

INVERSION FORMULAS FOR GUIDANCE

4.1 DEVELOPMENT OF EQUATIONS
Here, N-dimensional inversion formulas for the equations (1-2) are pre-

sented. The inverse series can be derived by letting the equations

8;(y, &) =w, i=1, ..., M)

define £ implicity as a function of LA for fixed y. Then expanding & in a
Taylor series about wi’ = g(y, &') and evaluating the series at w, = 0 gives
the resulting inversion. This straight forward inversion is carried out

in reference 11 with the following result:

N N | /N N N
-1 1 : (k)
AE = -A + o _ - 0
- =T jzl kzl azl O le yzl By %6%y
N N N N
(G,k) _ 1
Loce g )le -5 1 11
g=1 kBB 3421 ke 1
N N N
. (j sk"Q') (4_1)
uzl “tofal L, ueds (;Zl “avBy)| &

where we have truncated after third-degree terms in 8,> 8g» and gY and where

A -—
_ R §
C = (cij) = A
azAg th N N
66(1) = 5———5—1'— = comi!ionent —A_l Z €%k g(J’k)
Y 858, of j=1 k=1 JF

In formula (4-1), g and its derivatives are to be evaluated at (y, £').

The derivatives gi(J)(y, £Y), gi(J k) (y, &'), etc, may be determined in the
manner discussed in subsections 3.2 and 3.3.

4-1
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An explicit and self-cbrrecting guidance formula, giving Af in terms of
Ay, may be obtained by expressing the nominal derivatives gi(j)(y, %),... in
terms of polynomial functions of time (which update the derivatives as discussed
in subsection 3.3), and substitution of equations (3-2) into equation (4-1).

However, it is to be recalled that g(y, £') would be computed by means of

numerical integration.
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Section V

COMPARISON OF METHODS

This section deals with the comparison of the inversion technique of
Section IV and the polynomial equation method of Section III. The numerical

results include comparison with the method of Silber and Hunt.

5.1 CONVYERGENCE IN THE LARGE
The discussion of this subsection is by necessity intuitive and will be
limited to a discussion of the solution of a single equation g(g) = 0 in one

unknown £. However, the ideas can be generalized.

The desired solution is gs (Figure 5-1). A Newton iteration with proper
damping (limiting) of the corrections would converge to gs for any initial
approximation between gA and gB' The region (not radius) of convergence of an
undamped Newton method would be quite a bit smaller (but the rate of conver—
gence usually faster). A second degree polynomial, passing through the
point (%, g(%)) and having its first and second derivatives equal to those
of g at £ = é, would appear to have a larger region of convergence than
Newton's method. Perhaps, in many cases, the region would be nearly as large
as that of the damped Newton method. However, inversion about % would lead
to a series which does not converge outside of the interval I indicated in
Figure 5-1, because the radius of convergence of the series would be less than
g(&), - g(¢), there being a singular point in the inverse series at & = §,.
Although the inversion formula may give an explicit solution, any advantage
this may have is reduced by the limited region of convergence of the imverse

series.

It will be seen that some of these intuitive observations are clearly

substantiated by numerical results to be given.
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g(e)

Figure 5-1. GEOMETRY OF CONVERGENCE

5.2 ASYMPTOTIC CONYERGENCE

In reference 6 it is shown that, after the convergence process is well
underway (asymptotic convergence), the approximation afforded by an Nth degree
polynomial or Nth order inversion formula, of the types we have discussed,
is an (N + l)th order iteration function. Also, M applications of the method
are equivalent to one application of an (N + 1)M thorder formula. Therefore,
two applications of Newton-Raphson (order 2) gives the equivalent of a fourth-
order iteration function, the same as that of a third degree inversion or

polynomial formula.

Each Newton-Raphson iteration requires one evaluation of the function to
be driven to zero and one evaluation of its first derivative. Each Nth order
inversion or polynomial solution requires one evaluation of the function and
the first through the Nth derivatives. If the derivatives require no more time
to evaluate than the functions themselves, then four units (or leés) of time
are necessary for two Newton-Raphson iterations while four units (or less) are
required for one third-degree inversion or polynomial solution. However, in
the guidance problem it is much more time consuming to compute the derivatives
than the functional values themselves, assuming the equations of variations
or finite differences to be used in calculating the &erivatives. Therefore,

it is clear that if higher degree formulas are to be used for guidance, the

5-2
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derivatives must be determined in some other manner. For this reason it is
recommended that the derivatives be calculated from precomputed derivatives
from the reference trajectory as shown in subsection 3.2. It remains to be
determined whether or not these approximate derivatives will be accurate
enough to give the advantage to the higher degree methods over applications
of the Newton-Raphson algorithm which requires more functional evaluations in

order to give an iterative formula of comparable order:

5.3 NUMERICAL COMPARISON
We now consider a numerical comparison of the guidance formulas discussed

in this report. The symbol N will represent the degree of the formula used.

The problem under numerical study is that of an S-IVB minimum time injec-
tion into a 105 nautical mile circular orbit from a point 5 miles below the

orbit. The initial and final end constraints for the two dimensional problem

are
2 . .
fl =X * X - Rco =0 (orbital radius)

L] L ] 2 . .
f2 = Xg * X - Vco = 0 (orbital velocity)
f3 =X s X = 0 (orthogonality)
f4 = Ao . Ao -1=0 (scaling)
f5 = AlOXZO - KZOX10 - AlOXZO + AZOXIO = 0 (transversality)

and ) ) . . T
Y= 1*10° *20° *10° *20°m_ ’* m_
o o
with
VU VSN U SUR b
&= (o> 29> *10° 2200 B¢ .

Generally gspeaking the transversality condition should be imposed at the
terminal point, however, in this case the function f5 is a constant of the
motion and its initial value is equivalent to the terminal value. This,
of course, reduces the number of derivatives required at final time. Thus

it is required to solve the equations

5-3
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N

g;(y, £) =0 (i cees 5)

[}
-
™

where, for example
gl(y, g) = fl[n(Y: g)’ ¥ E]

2

= xf(YQ E) ° Xf(Ys E) - RCO .

The reference trajectory (which satisfies, in this case, all boundary condi-

tions) has the following parameters defining it:

x10 = 1761674.2 meters
%90 = 6314804.0 meters
ilo = 6546.5205 meters/sec
iZO = -1728.0676 meters/sec

Final altitude = 105 nautical miles:

R = 6565710. meters
co
2 _
Vco B u/Rc:o
m = 16645.5 "Mass Units"
B = 22.0179 "Mass Units''/sec
(Mass flow rate)
c = 4120.193 Meters/sec
(exhaust velocity)
F = cB
Multipliers
AlO = 974
?20 = ,228 "
A = -,179 x 10
"10 —
XZO = -,456 x 10
tF = 170.3 seconds.

The initial state can be defined by means of an altitude A, a velocity
magnitude V, the angle 6 between the local horizontal and the velocity vector,
and the mass m . In order to give the guidance algorithms a severe test, 16

perturbations on the initial reference values of A, V, 8, and m were made.

5-4
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The perturbations were +5 percent in Ao, Vo’ and m with +1 degree changes in
eo. Some of these perturbations are rather unreasonable. Some are severe
enough to throw the initial radius of the trajectory into the 105 nautical
mile orbit. Table 5~1 lists the perturbations and also defines the initial

state of each of the 16 cases.

The true multipliers and final time for these 16 cases were obtained by
using a Newton-Raphson type of iteration. The '"nominal values" (i.e., the
initial values taken from the reference trajectory) were used as initial
guesses in the iterative process. (Here and following the words '"nominal
and "reference" are used interchangeably.) The iteration differed from the
classical algorithm in that the full corrections were damped so as not to
exceed certain tolerances. The derivatives on each step of the iteration were
computed by integrating the equations of variation. TIn all cases four or

five iterations were sufficient.

The expansion of Silber and Hunt was obtained for the first point of
the reference trajectory up to second-order terms. The series gives the Ei
explicitly in terms of the perturbations Ayi. The angle ¥ and its time
derivative x are computed directly from the gi. Thesée computations are out-
lined in detail in Section VI. The angle ¥ and its time derivative yx are
measured in degrees with time in seconds. In Table 5-2 the results of the
first (N = 1) and second (N = 2) order expansions in the 16 perturbations are
given. Also the true values are tabulated with the corresponding percent
errors. The corresponding multipliers Ao and io for Table 5~2 are tabulated

in Appendixyc as well as those for the other tables presented in this section.

Based on the data in Table 5-2, it was decided to use the second-order
expansion of Silber and Hunt in the guidance algorithm to give starting values
for the first guidance command (see Section VI for further description)., 1In
the majority of the cases the second-order expansion significantly improved

the results compared to the first order.
The guidance formulas described in Sections III and IV require the com-

putation of wvarious derivatives. In Table 5-3 the derivatives in the guidance

formulas are calculated by integrating the equations of variation. The resulting

5-5



NORTHROP-HUNTSVILLE IR_792.3-047

Table 5-1. PERTURBATIONS OF NOMINAL TRAJECTORY

CASE A v M 5
1’ + + + +

2 + + - +

3 + + + -

4 + + - -

5 + - + +

6 + - - -

7 + - + -

8 + - - +

9 - + + +
10 - + - +
1 - + + -
12 - + - -
13 - - + +
14 - - - -
15 - - + -
16 - - - +

Neminal 100 n mi gggg;g?ggc lgggg'gzgts" 0 degrees
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| S-H  N=2

Table 5-2. SILBER-HUNT (S-H) EXPANSION |
. % ERROR % ERROR % ERROR
CASE .
| o r i X X te
[True Values -31.2 -.36 128.6
Nominal 76.8 .23 170.3 345.9 164.8 -32.5
S-H  N=1 -66.8 -.06 110.8" -113.9 117.2 13.8
[S-H N=2 244.8 -.20 121.7 -43.3 44.4 5.3
[True Values -30.2 -.39 116.8
Nominal 76.8 .23 170.3 - 354.7 159.2 -45.9
S-H N=1 -66.6 -.09 93.7 -120.9 121.9 19.8
S-H N=2 -40.6 -.19 114.2 -47.8 51.3 2.3
[True Values 65.7 .302 127.1
Nominal 76.8 .23 170.3 -17.0 23.5 -34.0
S-H N=1 66.8 .28 130.0 -1.7 6.3 -3.1
[S-H  N=2 65.1 .30 128.9 .9 1.1 -1.4
True Values 66.7 .34 114.4
Nominal 76.8 .23 170.3 -15.2 31.6 -48.9
S-H N=1 66.1 .31 113.9 -.5 8.7 X
[S-H  N=2 65.3 .33 118.0 2.1 1.2 -3.2
True Values -77.5 -.02 223.2
Nominal 76.8 .23 170.3 199.1 -1107.6 23.7
S-H N=1 -70.2 -.10 212.5 9.5 624.7 4.8
S-H  N=2 -71.6 -.04 230.9 7.6 321.7 -3.4
(True Values 68.5 .17 212.5
Nominal 76.8 .23 170.3 -12.2 -38.5 19.8
S-H  N=1 71.3 .13 212.8 -4.1 24.5 -1
[S-H  N=2 66.1 .19 215.0 3.4 -14.7 -1.2
[True Values 66.0 .15 237.6
Nominal 76.8 .23 170.3 -16.4 -55.8 28.3
S-H N-1 70.9 .10 229.9 -7.5 32.7 3.2
62.7 6 -1

.18 240.7 5.0 -22.
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Table 5-2. SILBER-HUNT (S-H) EXPANSION (Continued)

. % ERROR % ERROR % ERROR

CASE X x t . : o

[True Values ~74.4 -.001  201.6

Nomina1l 76.8 .23 170.3 203.2  18666.1 15.5
Blsih N=1 -70.0  -.07 195.3 6.0  -5885.6 3.1

S-H N=2 -68.4  -.08 208.0 8.1  -6221.0 3.2

[True Values 79.4 .48 129.9

Nominal 76.8 .23 170.3 3.2 51.5 -31.1
9s-H  N=1 87.1 .32 125.9 9.8 32.2 3.

S-H N=2 83.7 .40 129.2 5.4 15.2

_frue Values 75.1 .55 119.7

Nominal 76.8 .23 170.3 2.4 57.8 -42.3
1005y N= 87.5 .35 108.8 _16.5 35.7 9.1

S-H  N=2 80.7 .46 121.0 7.5 16.3 1.1

[True Values 39.9 .16 167.9

Nominal 76.8 .23 170.3 -92.5 ~48.9 1.
Moy N= 40.7 .18 146.2 -1.9 -16.6 12.

S-H  N=2 28.5 .07 161.9 28.5 52.3 3.

[True Values 38.9 17 154.3

Nominal 76.8 .23 170.3 -97.5 -38.1 -10.4
124 N=1 40.9 .19 129.0 -5.1 -16.0 16.4

SEH N=2 27.0 .07 150.4 30.6 57.5 2.6

[True Values 81.2 .16 228.6

Nominal 76.8 .23 170.3 5.4 ~45.3 25.5
Blsy N1 82.3 13 227.6 1.4 16.0 .

S-H o Ne2 81.7 .16 230.9 -7 1.5 -1.

[True Values 54.2 .15 229.7

Nominal 76.8 .23 170.3 -41.7 -52.2 25.8
Wsh N1 43.8 .13 227.9 19.3 12.6 .

S-H  N=2 58.2 .09 235.3 7.3 43.1 2.5
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Table 5-2. SILBER-HUNT (S-H).EXPANSION (Concluded)

. % ERROR % ERROR % ERROR

CASE X X t X % te
[True Values 53.7 .13 256.0
Nomina1 76.8 .23 170.3 =43.1 -78.0 33.4
S5 N= 43.6 12 245.1 18.9 8.6 4.3
S-H N=2 57.5 .05 261.6 -7.1 63.0 -2.2
[True Values 81.9 .18 206.4
Nominal 76.8 .23 170.3 6.2 -29.1 17.5
6l NeT 82.6 .16 210.4 -.9 9.3 -2.0
S-H  N=2 82.1 .18 207.4 -.3 -.8 -.5

5-9
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Table 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES

. % ERROR % ERROR | % ERROR
CASE X X te X x Y
[Inversion
N=1 -80.7 .210 116.1 -158.9 159.1 9.6
N=2 -60.6 .004 112.5 -94.2 101.0 12.4
N=3 -45.5 -.190 115.8 -46.0 46.0 9.8
1
Polynomial Sol.
N=1 -80.7 .210 116.1 -158.9 159.1 9.6
N=2 -54. -.212 131.7 -74.4 40.2 -2.4
*N=3 77.5 .368 -42.5 348.5 203.4 133.0
Newton-Raphson _ ,
2 Iterations -35.2 -.376 115.8 -12.8 -5.8 9.8
L (Damped on 2nd)
[Tnversion
N=1 -86.5 .269 108.8 -186.4 168.7 6.8
N=2 -68.1 119 107.0 -125.4 130.5 .3
N=3 -53.7 -.075 102.9 -77.9 80.7 11.9
2 Polynomial Sol.
N=1 -86.5 .269 108.8 -186.4 168.7 6.8
N=2 -58.7 -.212 124.9 -94.3 45.8 -6.9
*N=3 -53.4 -.045 123.9 -76.9 88.4 -6.0
Newton-Raphson
2 Iterations -41.9 -.321 103.0 -38.6 17.9 11.8
(Damped on 1st)
(inversion
N=1 69.9 .252 128.0 -6.3 16.5 -.7
N=2 67.0 .286 126.7 -1.9 5.2
N=3 66.0 .294 126.8 -.5
3 Polynomial
N=1 69.9 .252 128.0 -6.3 16.5 -.7
N=2 68.4 .308 125.9 -4.1 -1.7
N=3 . 65.0 .304 126.8 1.0 -.7
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Table 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Continued)

% ERROR % ERROR % ERROR

CASE X X tp X X t
Newton-Raphson : S
2 Iterations 65.6 .303 126.7 .1 -.3 .3
—inversion
N=1 70.0 .280 118.0 -4.8 17.1 -3.1
N=2 67.7 .310 114.6 -1.4 8.2 -.1
N=3 67.0 .326 114.3 -4 3.5 .0
4 Polynomial Sol.
N=1 70.0 .280 118.0 -4.8 17.1 -3.1
N=2 75.4 .326 111.1 -12.9 3 2.
N=3 63.9 .349 113.2 4.2 -3.2 1.0
Newton-Raphson
8 2 Iterations 66.7 .337 114.0 .0 .5 .3
[nversion
N=1 -67.8 -.148 216.4 12.5 860.8 3.0
N=2 -72.4 017 234.1 6. 10.8 -4.8
N=3 ~-87.8 .191 219.1 -13.2 -883.7 1.8
5 Polynomial Sol.
N=1 -67.8 -.148 216.4 12.5 860.8 3.0
N=2 -79.0 .018 220.6 1.8 8.0 1.1
N=3 -78.4 .027 221.7 -1.1 -40.2 .6
Newton-Raphson
2 Iterations -80.6 .079 218.2 -3.9 -305.7 2.2
rinversion'
N=1 58.8 .155 215.8 14.0 7.2 -1.5
N=2 74.7 2133 213.2 -9.1 20.4 -.3
N=3 66.3 .194 211.2 3.1 -16.1
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'Tab1e 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Continued)

% ERROR % ERROR % ERROR

CASE X X te x X tp
6 Polynomial Sol.
N=1 58.8 .155 215.8 14.0 7.2 -1.5
N=2 67.2 .166 212.5 1.8
N=3 68.4 .166 212.3 .0
Newton-Raphson
2 Iterations 68.0 .170 211.1 .6 -1.5 .6
Enversion
N=1 46.4 .108 246.4 29.6 26.9 -3.7
N=2 -88.5 -.067 240.9 234.0 145.1 -1.3
N=3 57.8 .260 228.9 12.3 -75.3 3.6
7 Polynomial Sol.
N=1 46.4 .108 246.4 29.6 26.9 -3.7
N=2 62.6 .145 238. 5.1 2. -
N=3 "65.8 .148 237. .3
Newton-Raphson
2 Iterations 66.1 154 232. -.1 -3. 2.2
i (Damped on 1st)
Finversion
N=1 -70.4 -.075 193.8 5.4 -7265.3 3.8
N=2 -67.7 -.092 206.9 9.0 -9007.4 -2.6
N=3 -78.2 .070 201.5 -5.0 6960.8 0
8 Polynomial Sol.
N=1 -70.4 -.075 193.8 5.4 -7265.3 3.8
N=2 -75.8 .006 199.6 -1.8 689.5 .9
N=3 -75.2 .007 201.2 ~.9 784.7
Newton-Raphson
2 Iterations ~75.3 .002 201.1 -1.1 2037.3 .2
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Table 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Continued)

% ERROR ~ % ERROR % ERROR

CASE X X tf X X tp
Finversion
N=1 72.7 .380 129.9 8.4 20.4 .0
N=2 76.4 .448 129.9 3.7 5.9 .0
N=3 78.1 467 129.9 1.5 1.9 .0
? Polynomial Sol.
N=1 72.7 .380 129.9 8.4 20.4 .0
N=2 85.9 .435 137.4 -8.2 8.6 -5.7
*N=3 74.6 L474 124.7 6.0 4 4.0
Newton-Raphson
2 Iterations 78.8 A7 128.5 .7 1.2 1.0
—inversion
N=1 69.1 .373 121.0 7.9 31.9 -1.0
N=2 72.0 .485 119.8 4.0 11.5 -.0
N=3 73.4 .519 119.9 2.1 5. -
10 Polynomial Sol.
N=1 69.1 .373 121.0 7.9 31.9 -1.0
*N=2 87.4 .479 131.6 ~-16.4 12.6 -9.9
*N=3 45.8 512 79.9 38.9 6.5 33.2
Newton-Raphson
2 Iterations 74.0 .533 117.4 1.5 2.7 1.9
[Tnversion
N=1 40.8 .178 144.6 -2.1 -14.6 13.8
N=2 27.4 .064 161.5 31.4 58.5 3.8
N=3 32.3 .097 171.8 19.1 37.3 -2.3
1 Polynomial Sol.
N=1 40.8 .178 144.6 -2.1 ~-14.6 13.8
N=2 38.4 .159 157.2 3.8 -2.4 6.3
N=3 39.8 .160 163.7 .4 -3.0
Newton-Raphson
2 Iterations 39.1 .146 168.1 2.1 6.0 -1
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Table 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Continued)

% ERROR % ERROR % ERROR

- CASE X X tf X X tF
?nversion
N=1 43.8 -.492 132.3 -12.5 393.7 14.2
N=2 29.8 .100 144.4 23.5 . 40.0 6.4
N=3 29.2 .092 154.8 24.9 44.8 -.3
12 Polynomial Sol.
N=1 43.8 -.492 132.3 -12.5 393.7 14.2
N=2 39.2 .183 144.7 -.6 -9.1 .
N=3 39.0 .173 151.4 -.4 -3.4 1.8
Newton-Raphson
2 Iterations 35.7 .189 151.4 8.2 -12.5 1.8
?nversion
N=1 84.0 .086 232.5 -3.4 46.1 -1.7
N=2 79.6 .207 229.2 2.0 -30.1 -.2
N=3 81.9 .133 228.0 -.8 16.5
13 Polynomial Sol.
N=1 84.0 .086 232.5 -3.4 46.1 -1.7
N=2 80.0 .156 229.2 1.4 1.6 -.2
N=3 80.8 .161 228.5 4 -.9
Newton-Raphson
L 2 Iterations 80.8 .162 225.8 A4 -1.8 1.2
—inversion
N=1 33.6 .081 232.0 37.9 46.8 -1.0
N=2 77.8 -.247 243.0 -43.6 262.9 -5.8
N=3 66.3 .289 216.5 -22.2 -90.6 5.7
14 Polynomial Sol
N=1 33.6 .081 232.0 37.9 46.8 -1.0
N=2 50.6 .150 227.9 6.6 1
N=3 54.2 .154 228.2 .0 -1.7
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Table 5-3. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Concluded)

% ERROR % ERROR % ERROR

CASE X X tr X X tr
Newton-Raphson
| 2 Iterations 53.6 .193 198.0 1.0 -27.5 13.7
[ .
Inversion
N=1 24.2 .008 265.7 54.8 94.0 -3.7
N=2 -25.9 -.830 286.1 148.3 739.4 -11.7
N=3 71.0 431 207.0 -32.1 -232.0 19.1
15 Polynomial Sol.
N=1 24.2 .008 265.7 54.8 94.0 -3.7
N=2 46.7 115 255.5 13.0 11.4 .
N=3 53.3 131 253.9 .6 -1.2 .8
Newton-Raphson
2 Iterations 57.1 141 229.3 -6.3 -8.3 10.4
Inversion
N=1 84.2 .143 207.7 -2.7 20.1 -.6
N=2 81.1 .195 206.7 .9 -8.7 -.1
N=3 82.0 175 206.2 -.1 2.2 0
16 Polynomial Sol.
N=1 84.2 .143 207.7 -2.7 20.1 -.6
N=2 81.5 .178 206.5 4 .3 -.0
N=3 81.8 179 206.4 N -.1
Newton-Raphson
L 2 Iterations 81.8 .180 205.9 .0 -.4 2
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¥ and i for the 16 perturbations are tabulated along with the percentage errors.
The inversion formulas of orders one, two, and three, along with the solutions
of the first-, second-, and third-degree polynomials are given. In addition
the results of a Newton-Raphson procedure at the end of two iterations are
listed. Thus examples of second-order (inversion N=1 and polynomial solution

N
N

1 which are identical), third-order (inversion N = 2, polynomial solution

2), and fourth-order (inversion N = 3, polynomial solution N = 3, second
iteration of Newton-Raphson) iteration functions have been compared. The

few computations in which damping was used in the Newton-Raphson procedure are
indicated. 1In these cases it should be noted that the damping obscures the
true asymptotic convergence rate and a fourth-order classification of two
Newton-Raphson iterations is not correct. The cases where the iteration on
the polynomial equations did not converge are noted by an asterisk. The data
listed are the results after the last iteration. The percentage errors are
rounded to the nearest tenth percent. In some cases (e.g., cases 5 and 8) the
true values of i are near zero (i.e,, an order of magnitude less than the
nominal values) and the corresponding percentage errors are very large.

However, some of the values are very good estimates.

In Table 5-4 the derivatives of the guidance formulas were computed by
updating corresponding derivatives from the reference trajectory (as described
in subsection 3.2). The resulting ¥ and_i are listed for each of the 16 cases.
Here, only the N = 1 and N = 2 orders of the polynomial formulas are considered.
The data in Tables 5-3 and 5-4 were obtained by using the initial point of
the nominal trajectory as starting values. Comparing the values in Table 5-4
to the corresponding ones in Table 5-3 one observes that the results differ
very little. One may conclude that the updated derivatives from the reference

trajectory are sufficiently accurate while reducing the computations considerably.

Study of the tabulated errors in Table 5-3 clearly indicates the superiority
of the polynomial solutions over the inversion formulas, computation time not
considered. Quantitatively, for example, the percentage errors in the second
degree polynomial solutions for x exceeded 15 percent in only 2 cases out of 16

while the second-order inversion formulas exceeded 15 percent in 7 cases.
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Table 5-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE
DERIVATIVES AND USING NOMINAL STARTING VALUES

% ERROR % ERROR % ERROR

CASE X X tp X X tp
Fbo]ynomia] Sol.

1 N=1 -80.8 .21 116.1 -158.5 159.0 9.7
. *N=2 18.4 -.05 153.7 158.9 85.7 -19.6

Polynomial Sol.

2 N=1 -86.6 .27 108.9 -187.0 169.1 6.8
| *N=2 -57.1 -.21 120.3 -89.4 47.5 -3.0
Polynomial Sol.

3 N=1 69.9 .27 128.1 -6.4 12.0 -.8

N=2 68.9 .31 125.5 -5.0 -3.4 1.2
rbolynomia] Sol.

4 N=1 70.0 .28 118.1 -4.9 17.1 -3.2

N=2 73.8 .32 111.7 -10.7 3.3 2.3
—bo1ynomia1 Sol.

5 N=1 -67.7 -.15 216.3 12.6 872.0 3.1

N=2 -79.0 -.02 220.5 -1.9 -14.1 1.2
=}o]ynom1a1 Sol.

6 N=1 59.0 .15 215.8 13.8 7.2 -1.5

N=2 67.0 A7 212.3 2.1 1.0 0.0
_Po1ynomia1 Sol.

7 N=1 46.6 .11 246.5 29.4 27.0 -3.7
| N=2 63.3 .15 237.5 4.1 1.0 0.0
—Po1ynomia1 Sol.

8 N=1 -70.3 -.07 193.6 5.5 -5911.4 3.9
| N=2 -74.5 -.01 199.5 -.1 -542.4

Polynomial Sol.
9 N=1 72.7 .38 130.0 8.4 20.2 -.1
N=2 87.0 .43 139.0 -9.6 9.2 -7.0
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Table 5-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE
DERIVATIVES AND USING NOMINAL STARTING VALUES (Concluded)
. % ERROR % ERROR % ERROR .

CASE X tg X X tr
—5olynomia1 Sol.

10 N=1 68. .39 121.1 8.2 29.7 -1.
| N=2 86.3 47 129. -15.0 13.4 -8.
-Eolynomial Sol.

11 N=1 40.8 17 144.8 -2.1 -14.1 13.
. N=2 39. .16 156. 1.7 -7.3 6
-501ynom1a1 Sol.

12 N=1 43.8 .21 132. -12.5 -22.9 14.2
L N=2 39. .19 142.8 -1.1 -11.3 7
FEo]ynomia] Sol.

13 N=1 84. .09 232. -3.6 46.5 -1.
| N=2 80. .16 229. 1.4 -
'ﬁo]ynom1a1 Sol.

14 N=1 33. .08 232. 37.9 46.9 -1.1
| N=2 50.1 .15 227. 7. 3.6 .8
'5o1ynomia1 Sol.

15 N=1 24, .008 265. 54.8 93.9 -3.8
L. N=2 48.2 121 254, 10.3 6. .6
Polynomial Sol.

16 N=1 84, .14 207.7 -2. 21.1 -

N=2 81. .18 206.6 1.5 0.
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But even weighing in the total numerical computation one must favor the poly~-
nominal solutions. For example, a second-order inversion is equivalent (in
computation time) to generating the corresponding second-degree polynomial and
performing two Newton-Raphson iterations toward solving the equations. In all
cases, three additional iterations were imposed. However, in many cases two
iterations would have been sufficient. This fact may be determined by com-
paring the solution of the first degree polynomials (which is the result of

the first iteration om all higher degree polynomials) with the édlufion of the
second-degree polynomials. This coupled with the probability of improving the
efficiency of the Newton-Raphson iteration (see Section VI for further comments)
makes inversion and solution of the polynomial equations about equal in terms
of computation time. But, most important is the question of convergence, i.e.,
the comparison of the tabulated percentage errors. There is no doubt that

for the perturbations considered the performance of the polynomial solutions

exceeds that of the inversion formulas.

One further comment on these comparisons needs to be made., The term
"convergence" when applied to the polynomial equations has two different
meanings. The solution of the polynomial equations represents one iteration of
an interpolatory iteration function. In this sense, convergence was discussed
in subsections 5.1 and 5.2. Furthermore, only one iteration is being con-
sidered. Secondly, convergence must be discussed when considering iterative
techniques for solution of the polynomial equations at each step of the larger
process. Suppose this iteration does not converge sufficiently within the
number of iterations allowed? This question is critical in determining the
usefulness of an interpolatory iteration. However, for the second degree
polynomials only two cases did not converge. When this happens the logical
move is to use the solution obtained from the first iteration. For this
problem the results were very satisfactory. The question of convergence in
the large is a very difficult one and a problem of this magnitude requires

empirical verification.
Based on these results a guidance algorithm is presented in Section VI.

Considering time and storage limitations, the second-degree interpolatory

iteration was chosen.
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As suggested in subsection 3.4 the expansion of Silber and Hunt was used
as a refinement. Recall the starting values used in Table 5-4 were the
nominal values, and were generally very poor, which can be seen by examining
the errors in Table 5~2. Instead, the second-order expansion of Silber and Hunt
was used to generate starting values. Then the second-degree polynomials were
obtained with corrected derivatives from the nominal trajectory. Table 5-5
contains the.results of this procedure under the heading "First Guidance Command".
In comparing the percentage errors in yx and i of Table :5-5 to those of the
second-order expansion of Silber and Hunt in Table 5-2 one sees that the
error is reduced in every case. Even the solution of the linear polynomials
(N = 1) reduces the error in all cases except one. Furthermore, it is verified
that starting with the expansion of Silber and Hunt improves the performance
of the guidanée formulas over that by starting with reference values. Con-
cerning the errors in tf, it is observed that in most cases the error of the
guidance formulas and the Silber-Hunt expansion is acceptable. However, in
two cases (11 and 12) the error in the guidance formula was much greater than
the corresponding Silber-Hunt error. For this reason it was decided to return
the Silber-Hunt estimate of time-to-go on the first guidance cycle. In order
to investigate the initial behavior of the guidance package a second guidance
cycle was computed with no change in the initial state y. The results are
tabulated in Table 5-~5 under the heading '"Second Guidance Command". This repre-
sents essentially two iterations of the interpolatory iteration functiom. All

errors were driven to more than acceptable limits.

The results of the numerical study are compared qualitatively on the basis
of accuracy and convergence in Table 5-6. The ratings are determined by com-

puting a weighted percent error, by weighting x and i two and t_. one. The

f
reasoning here being that x and x are of direct initial importance whereas

the beginning values of tf are merely indicators of future state and do not
affect current action. It is clear from Table 5-6 that the use of the Silber-

Hunt expansion greatly improves the convergence of the guidance formulas.

In summary the main conclusions of this numerical study are listed:

(A) The N = 1 polynomial solutions improved the Silber-Hunt approximations
of x and x in every case. The advantage of this combination of
methods is obvious.
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Table 5-5. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES

. % ERROR % ERROR % ERROR
CASE X X te X X te

?o]ynomia] Sol.
First Guid. Com.

N=1 -33.7 -.37 122.7 -7.7 -4.5 4.6
1 N=2 -34.4 ~.35 123.5 -10.1 .8 4.0
Second Guid. Com.
N=1 -31.5 -.36 127.8 -.6 -2.0
| N=2 -31.7 -.36 127.9 -1.4 -1.7

—iolynomial Sol.
First Guid. Com.

N=1 -32.4 -.40 110.7 -73.8 -2.9 5.2
2 N=2 -33.4 ~-.38 112.1 -10.7 1.7 4.0
Second Guid. Com.
N=1 -30.5 -.40 116.0 -1.1 -1.2
N=2 -30.6 -, 40 116.1 -1.4 -1.2
FBo]ynomia1 Sol.
First Guid. Com.
N=1 65.6 .30 127.2 .2 .0 L1
3 N=2 65.6 .30 127.2 | .0 .
Second Guid. Com.
N=1 65.6 .30 127.1 .0 .0 .0
. N=2 65.6 .30 127.1 .0 .0 .0
-Eo1ynomia1 Sol.
First Guid. Com.
N=1 66.5 .34 114.6 ) .0 -2
4 N=2 66.6 .34 114.6 .2 .0 -2
Second Guid. Com.
N=1 66.7 .34 114.4 .0 .0
N=2 66.7 .34 114.4 .0 .0

S,
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Table 5-5. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Continued)

% ERROR % ERROR % ERROR

CASE X X ’tF v X X tr
FBolynomial Sol.
First Guid. Com.
N=1 -76.8 -.002 227.7 .9 106.8 -2.0
5 N=2 -77.0 -.002 227.7 .6 89.5 ~2.0
Second Guid. Com.
N=1 -77.7 -.01 223.5 -.2 .5 -.1
N=2 -77.6 -.02 223.2 -.2 .0 -.0
F@o]ynomia] Sol.
First Guid. Com.
N=1 68.7 A7 211.6 .3 .0 A
6! ~ N=2 68.7 17 212.3 -.4 .0
Second Guid. Com.
N=1 68.5 17 212.5 .0
| N=2 68.5 A7 212.5 .0
ri’o]ynomial Sol.
First Guid. Com.
N=1 66.4 .15 234.3 -.6 .0 1.4
7 N=2 66.5 .15 237.0 ~.7
Second Guid. Com.
N=1 66.2 .15 237.4 ~.4 . .
| N=2 66.2 .15 237.5 .3 .0 .0
rT’o]ynomial Sol.
First Guid. Com,
N=1 -73.8 -.02 203.1 9 -1564.8 -
8 N=2 -74.0 -.02 202.9 .6 ~-1200.9 -
Second Guid. Com.
N=1 -74.5 -.005 201.6 -1 -272.6
| N=2 -74.5 -.004 201.5 -.0 -217.2
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Table 5-5. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Continued)

. % ERROR % ERROR % ERROR
CASE X X tp X X tF

—
Polynomial Sol.
First Guid. Com.

N=1 79.5 47 129.9 -2 i .
9 N=2 79.7 .47 130.2 -.4 1.4 -.2
Second Guid. Com.
N=1 79.4 .48 129.9 .0 .0
N=2 79.4 .48 129.9 .0 .0

—bolynom1a1 Sol.
First Guid. Com.

N=1 75.3 .54 119.3 ~.3 1.4 .3
10 N=2 75.5 .54 119.9 ~-.6 1.6 -.1
Second Guid. Com.
N=1 75.1 .55 119.7 .0 . .
N=2 75.1 .55 119.7 .0 .2 .0

(Eo]ynomia] Sol.
First Guid. Com.

N=1 47.3 .13 214.9 -18.6 14.8 -28.0
11 *N=2 14.2 -.07 322.2 64.5 146.1 -92.0
Second Guid. Com. .
N=1 34,7 .13 157.8 13.0 16.3 6.0
N=2 37.2 .15 164.9 6.7 7.0

e

-Bo1ynomia1 Sol.
First Guid. Com.

N=1 49.1 .15 204.6 ~-26.3 13.4 -32.6

121 *N=2 34.5 .08 246.2 11.2 50.9 -59.6
Second Guid. Com.

N=1 32.2 .12 143.2 17.4 26.2 7.2

N=2 35.2 .15 151.1 9.6 12.3 2.1
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Table 5-5. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Concluded)

. % ERROR % ERROR % ERROR
CASE X X tF X X tF

[Polynomial Sol.
First Guid. Com. \
N=1 81.3 .16 228.7 iy 3 .0

13 N=2 81.3 .16 228.7 -.1 .3 .0
Second Guid. Com.
N=1 81.2 .16 228.7 .0 . .
. N=2 81.2 .16 228.7 .0 .0 .0

-Eo1ynomia] Sol.
First Guid. Com.

N=1 51.6 .14 225.7 4.8 8.7 1.7

14 N=2 52.9 .14 234.1 2.5 5.5 -1.9
Second Guid. Com.

N=1 53.7 .15 231.1 7.0 1.0 -.6

N=2 53.8 .15 231.1 .8 .8 -.6

Polynomial Sol.
First Guid. Com.

N=1 50.6 .10 246.5 5.8 22.6 3.7

15 N=2 52.4 .10 262.9 2.4 15.7 -2.7
Second Guid. Com.

N=1 51.7 .13 257.2 3.8 4.1 -.5

N=2 52.0 .13 258.8 3.3 3.1 -1.1

—Eo1ynomia1 Sol.
First Guid. Com.

N=1 81.9 .18 206.4 .0 .0
16 N=2 81.9 .18 206.4 .0 .0
Second Guid. Com.
N=1 81.9 .18 206.4 .0 .
L N=2 81.9 .18 206.4 .0 .0
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Table 5-6. QUALITATIVE COMPARISON OF THE GUIDANCE FORMULAS

RATINGS
A B C

Nominal 0 0 16
Silber-Hunt Expansion

N=1 3 8

N=2 4 8
Inversion (Integrated derivatives, Nom. starting values)

N=1 0 7

N=2 4 6

N=3 5 7
Polynomial (Integrated derivatives, Nom. starting values)

N=1 0 9 7

N=2 10 4 2

N=3 13 0 3
Damped Newton-Raphson (2 Iterations) n 4 1
Polynomial (Corrected nominal derivatives, Nom. starting values)

N=1 0

N=2 10
Polynomial (Corrected nominal derivatives, S-H starting values)

N=1 10

N=2 12
Polynomial (Second Guidance Command)

N=1 14 1 1

N=2 14 2 0
E = weighted error magnitude E<5%

5%< E<15% B
E>15% C
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(B) The polynomial solutions were obviously more effective than the
inversion formulas.,

(C) The N = 2 polynomial solution on the first guidance command gave little
improvement over the N = 1 polynomials. In cases 1l and 12 the iter-
ation on the N = 2 polynomials did not converge.

(D) The N = 2 polynomial solution gave significant improvement over the
N = 1 polynomial solution on the second guidance command in cases 11
and 12 where it was most needed. However, in view of conclusion (C)
the use of N = 2 is held open until further investigation.

(E) The Silber-Hunt second-order terms improved the first-order terms more
than is implied by Table 5-6, especially for te. However, the N = 2
terms failed to improve the N = 1 terms in a few cases (notably
cases 11 and 12) and even deteriorated the N = 1 estimates. Consid-
ering the additional computing time and storage requirements for
N = 2, the advisability of using it for calculating approximate multi-
pliers is open to question.
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Section VI

DEFINITION OF A GUIDANCE PACKAGE

The content of this section describes a guidance routine based on the
pblynomial solutions discussed earlier. However, in order that this section
may be complete and used as a reference all the necessary equations are
repeated. The test mission will be a minimum fuel, comstant burn injection
into .a specified circular orbit. For simplicity, the space dimensionality

will be constrained to two.

6.1 A BRIEF SUMMARY

The problem may be simply stated, 'Given the state of the vehicle Y,
return the thrust direction and its time derivative (i.e., X and i, see
Figure 6-1) such that the optimality criterion (minimum payload) is satisfied'.
In general, x and i are calculated from the solution of a set of simultaneous
polynomial equations whose coefficients are approximated from a nominal
trajectory. Currently a "time-to-go' criterion is used to select a point

from the nominal trajectory.

THRUST VECTOR

-
M

Figure 6-1. DEFINITION OF THRUST ANGLE x
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The guidance routine is required to return a ¥ and i for a set of state
vectors proceeding along some path. Thus a sequence of related problems must
be solved by the routine. Each problem needs an initial approximation to the
solution of the polynomial equations. Here, the solution of the previous
problem equations with a linear update is used as the approximation. On the
very first call to the routine the second-order expansion of Silber and Hunt

(ref. 3) is used to obtain the approximation.

The solution to the polynomial equations begin to degenerate when the
time~to-go becomes small because many of the coefficients are approaching
zero. Thus, when the time~to-go becomes less than some prespecified value

(AT ) the control laws are assumed linear and a simple update of x and i

HOM
is performed.

A set of five second-degree polynomials are used. The coefficients of
the linear and second-order terms are obtained from simple expansions about
the nominal trajectory as mentioned before. The constant terms are calculated
by numerical integration. The accurate evaluation of these terms gives the
guidance routine its self-correcting behavior as well as a measure of its

success.,

In the following, £ represents the vector of multipliers and time-to-go

associated with the state Y.

6.2 STATEMENT OF COMPUTATIONAL ALGORITHM
A concise description of the calculation procedure is contained here.
The notation is defined followed by a general flow chart (Figure 6-2) and

algorithmic description anoted by a detailed explanation.

6.2.1 Definition of Symbols and Notation

X cartesian position vector (xl, xz)t
'y Y - A4 . t
X cartesian velocity vector (xl, xz)
%- thrust to mass ratio
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YES

INPUT STATE
Y

OBTAIN

APPROXIMATION
£' FOR ¢

IS NO
At'gATHQM?

SOLVE
POLY. EQS.
FOR ag.SET
g=¢'+4t

UPDATE ¢
BY CYCLE
TIME

CALCULATE
x AND ¥
"OUTPUT x, x, At
EXIT

DETERMINE
Y, £ FROM
NOMINAL VIA

‘TIME-T0-GO'

CALCULATE
g(Y,e') BY
NUMERICAL

INTEGRATION

COMPUTE BY

POLY. APPROX.
g 4 329
3g, 3& , a¥ag

Y

l

- CALCULATE

ag d%g
&, 352

Y

Y,e'

Figure 6-2. FLOWCHART FOR
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E‘ mass flow rate magnitude to mass ratio
e . F g\t
Y initial state vector = (X, X, 7 °m
At time-to-go
t
A vector of Lagrangian multipliers (xl, Az) associated
with X
. . . t
A vector of negated Lagrangian multipliers (Al, Az)
associated with X
: t
g vector of unknown quantities = (Ao, Ays At) ~ *
ATex External cycle time of guidance package, i.e. the elapsed

time between exit from the guidance routine and upon
entry again

ATIN Internal cycle time, i.e. the elapsed time between entry
into guidance routine and exit

AT Trajectory constant which indicates when the derivatives
SWCH . . .
are calculated by linear interpolation.
ATNOM Initial value of nominal At
AT Trajectory constant which indicates when a simple guid-
HOM . .
ance law will be invoked.
T Time on nominal trajectory from which Y, £ has been
obtained
Rco’ VCo Radius and velocity at cutoff; input constants.

The values Y and £ represent the true state of the wvehicle and the solution
obtained from the polynomials, respectively. A "prime" adjoined to & indicates
estimates for &. Quantities from the nominal trajectory corresponding to Y

are denoted Y and £.

6.2.2 General Description of Flow Chart for Guidance Package

A, TInput Y = (X, i, E;-, g ; request for guidance command. The vector
My ° Mo

Y designates the current true state of the vehicle.

* The subscripts "o" and "f" will designate the quantity at the initial time
and the final time respectively.
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~

If this is the first guidance request initialize Y, & from first point

of nominal. Set T = 0 and then use Silber's expansion to obtain the

‘approximate £' (see detailed descriptions). Proceed to step C.

If this is not the first guidance request then obtain £'from the

previous calculated £ as follows:

A' = A + AT A
ex

A" = A 4+ AT A
: ex
At' = At ~ AT
ex

Test to see if the estimated time—to—go At' is less than or equal to

AT In other words the question to be answered 'Is it close

HOM®
enough to cutoff time so that a simple linear guidance may be used?'
The degree of closeness is indicated by the input constant ATHOM'
If the answer is yes than &' is an accurate estimate of £ thus set

g€ = &' and proceed to step J.

At this step it is desired to obtain a Y, £ with the same time-to-go
as &' or simply At = At'. This is accomplished by integrating the

MEL equations with the initial conditions Y, & (from last guidance

call) from t = T to t = ATNOM - At'., Then reset Y, & from the final
values of the integration. Also set At = At - (ATNOM - OAt') and
T = AT - At'. The numerical integration here will probably be

NOM
over a small interval. Based on numerical studies on this nominal

trajectory (ref. 12) it seems desirable to use only one integration

step with a fifth-order Runge-Kutta (See detailed description).

Integrate the MEL equations with the initial conditions Y, &' from
t =0 tot=At'. Then compute g(Y, £') from the initial and final

values of the integration (see detailed description).

Based on numerical studies of perturbations of the nominal trajectory

it seems desirable to use 3 integration steps for this case (ref. 12).

Obtain derivatives

g (0 8 5 (X 0, and oy (1, ©)
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from nominal trajectory via least square polynomials. Evaluate poly-
nomials with t = T. (See detailed description.)

Calculate
) 9 o 32 o ; - 82 - =
v, e =L, +E -, -0 +E @, 0 € -0
o0& 9& 9Y3¢g ag2
82‘ 32 . -
£y, £ = %55 @, ©
& 0&
(See detailed description)
Solve the following polynomials for Af, by Newton-Raphson iteration:
2 2
i 9 9 A
0=g(¥, £") + 28 (v, £') ag + & (v, g) B
9E 2 2
9€
Calculate g = &' + AZ
(See detailed descriptioms.)

With ATIN being the cycle time of guidance package update £ by the same

formulas of step B, i.e.

A=A+ ATIN A
A=A+ ATIN A
At = At - ATIN
Calculate
X = Arctan-x—
2
5 = Mr MM
2 2
Al + AZ

Output ¥, i, At and exit.

Detailed Descriptions

The letters in parenthesis refer to those in subsection 6.2.2. Some

items are sufficiently described in subsection 6.2.2 and no further description

is required.
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(B) Expansion of Silber and Hunt - On the first guidance request the expan-

(D), (E)

sion of Silber and Hunt will be used to give a 'crack', &', at the

unknown quantities £. These expressions are in the form

~ z 'BE 1 g g 3 Ej -
g, =& F (Y €)AY + = — (Y, g)AYAY
i l 2 j=1 k=1 Y, Bxk ik
where AY, =Y, - %. and
J J ] 2
BEi 9 Ei
dY, ’ 3Y,0Y
| ik
are stored constants. Taking advantage of the fact that
2 2
) Ei ) 9
b
anaYk aYkan
then
A P
5= AY AY, = AY,” + 2 = AY,AY
R R L S A = anz ] j=2 k=1 %% Ik
Thus equation (6-1) may be written as
. g I azgi AYj g jil azgi
g.' =g, + + AY, + o MY, AY
i i j=1 an 3Yj2 2 3 §=2 k=1 oY, aYk ik
Then it is necessary to store the constants
oL, - - _No.
- (Y, &) i=1,...5; j=1,...6 30
azgi
i=1,...5; j=1,...6 30
9Y,
3
826
W (Y 5;) i=1,...5; j=2,...6; k=1,...j-1 75
i~k
TOTAL 135

Integration Package - This should be a separate subroutine which

integrates the MEL equations.

(6-1)

(6-2)
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.- F M
X =2 - X
mi R3
= [-as B g
R R
where A = (x-x)llz, R = (X-X)l/z, m = -8, and y, F, B, are constants.

(E)

More compactly written

; = f(t, p) .

F

Input to this routine should be the initial values of X, k, As i, o’

%,,to (initial time), te (final time), and NSTEP (number of integra-

tion steps). Output should be the final values of X, i, A, i, 53 and
8

-‘[-n— .
The integration formula is a Runge-Kutta 5-3 formula (fifth-order
approximate with 3 evaluations of f(t, p) required) where h is the

integration stepsize. This formula was derived by Andrus in refer-

ence 12,
K1=hf(t:P)
- h h-_h
K, =hf (t+5,p+2p+s Kl>
- 2 425 B A
K3 = hf {t + 3 h, p + 3 hp 57 Kl + 7 h K2>
‘ - - _h_
p(t+h) = p + hp + 777 (7 K; + 50 K, + 27 Ky)
K, = hf(t + h, p(t + h))
AN S
p(t+h) = p + 33z (14 K| + 125 K, + 162 K5 + 35 K)

It should be noted that this formula requires 4 evaluations of £ on
the first integration step but only three thereafter since K4 at step

n is K

1 at step ntl.

The routine should flow as shown in Figure 6-3.

Evaluation of g(¥,£') - When injecting into a circular orbit in two

dimensions one must satisfy the following conditions
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// S

]
i
+
el

1
&

i
(@}

p 1
g1 (Y, £) =X + X0 - R

|
o
+
>

vi =0

' ——
8 (Ys ') = Kjp + Xyp =V

. / - 1 = X 2 =
g3(¥, £7) =X Xy + Xy Xop = 0

2 2
R 14 _ 4 o=
g4(Ya g ) AlO + AZOV a 0
1y = 1 IR R 31 =
85(Y, £7) = A35%90 = A90%10 ~ A10%20 T A20%10 = ©
~y =3
where a = kl + AZ

Notice that the last two g's are evaluated at.the initial time.

(F), (G) The Derivatives - Since the last two g's are functions of variables

at the initial time then their partial derivatives with respect to

the E'j are easily calculated.

———ag4 = 2)\' R ———ag4 = 2)\' s -————8g4 = O,j = 3, 4, 5.
ag;  “'10% sg, 20 agj
o8 ) g . o8 CJ: g
3 > - %00 % > - X10° % > - “X20° 3 > - X100 3 2= 0
3 £y £y £, Es
32g4 32g4 3284
— = 2, — = 2, ——— =0 i=l,... 5, j=1,... 5 except as noted.
5 3E 9L 98,
1 2 ~
Also
2
—3—§§*-= 0 i=l,... 5; j=1,... 5.
9iiaij ’ ’ >

It can be shown that
28

i _ e
8&5 =8, i=1, 2, 3
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Bzgi .-
5= gi i=1, 2, 3.
3&5 ‘

which may be obtained directly from the results of the numerical inte-
gration in step (E). Thus, the derivatives that need to be approxi-

mated from the reference (nominal) trajectory are

32g' TOTAL
ST (1,805 i=1,2,3;3=1,2,3,4 12
]
2
g,
—"—'_:L_—(Ys E'); i=l’ 23 3;j=1s 2: 3, 4:5 42%
BEjBEk

k=1, ..., 3;

j and k both not

simultaneously 5

These derivatives are approximated by expanding about the nominal

trajectory and truncating

2 2
e A R - Ay PR by -
5 =5 (0, 8+ o (f, 8)AY, + o (, &), - ¢
Bij BEj k=1 BkaEj k k=l'8gkagj k k
2 2
A L R My
Y, & = Y, £
BEjaik Bijaik
where AYk = Yk - Yk .
2 2
9 9z 9 9;

* S =
ince 3€j3€kv agkagj
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Thus it is necessary to have stored

TOTAL
Bgi . o~ .
SE—-(Y, £) i=1],2,3;3=1, 2, 3, 4 12
]
2
9 gi - o~
(Y, g) i=1,2,3;3=1, 2, 3, 4; 72
BYkB€
. k=1,2,3,4,5,6
azgi ~ o~
—_— (X, &) i=1,2,3;3j=1,2, ..., 5 _gg
ngaik
k=1, «cvy j
TOTAL 126

These derivatives will be stored in the form of third-degree poly-

nomials in the wvariable t (time on the nominal, t = AtNOM - At).

(F) Interpolation for Derivatives — Due to the fact that all the

derivatives
Bgi . -
E(ng) i=l’2’3;j=l’2:3’4
J
are zero when At = 0 then their values are fairly well approximated
by linear interpolation for small At. When At' f-ATSWCH then the
time-to-go is "small" and linear interpolation is used, otherwise

the third-degree polynomials are used.
There will be 126 polynomials as noted earlier designated say

_ 2 3 .
pi(t) = aio + ailt + aiZt + aiBt i=1, ..., 126

These should be evaluated using Horner's method, i.e.
pi(t) = a5 + t[ail + t(ai2 + aiBt)] (6-3)

The first time that At' < AT then the derivatives are calculated

SWCH

by equation (6-3) and at the same time set a9 = 3%— i=1, ... 126.
where Y = At'. Then thereafter, calculate
- ' —
pi(t) At a;y - (6-4)
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The following flow diagram (Figure 6-4) describes the computations

of step (F):

SET
=T
CALCULATE sgT | YES
DERIVATIVES g
BY POLY.(6-3) Y
CALCULATE
DERIVATIVES

BY POLY.(6-3)

Y Y
SET
350 = P4

PASS THRU

CALCULATE
DERIVATIVES
BY (6-4)

> { EXIT \
\ STEP F )

Figure 6-4. FLOWCHART FOR STEP F

(H) Solution of Polynomials - Given the true state Y it is desired to

find the unknowns £ such that the boundary conditions are zero, i.e.

gi(Y, £) =0 i

1, «eey 5

Expanding in a Taylor series about &' and truncating after second-

order terms gives

6-13
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1o

g;(¥, £) = g (¥, £") + (¥, £") At

1 %, k
1§ £ o2g
= (Y, £') AL, AL i=1,2,...,5
t2h b 1 9538, KL

where
- S |
Agk = Ek E k 4

The coefficients of the polynomials are computed in steps (E) and (G).
There are 5 polynomial equations in 5 unknowns Agk, k=1, ..., 5. The
object here is to solve the polynomials by Newton's iteration. To

rewrite the polynomials in a nicer form

5 5

(i) (i) 1 (L .
p.(8) =a"’ + X L ) €’ 8.8 i=1, ..., 5  (6-5)
i k 2 kel Ie1 kL kL
where
Sk = A&k .
Since
2 2
9 gi _ P gi
agkagL agLagk
then
¢ _ (D)
kL Lk

Then one might expect to save a few operations by taking advantage of

the symmetry property. Consider

5 5 5
) céi) 5.5, = Z c(l) s + z y c(l)
k=1 L=1 k=1 k=1 L=1
k#L

k

(1) 2 (1) (i)
Z Cer St kgz Lzl Cpr” S S + LZZ kzl Cor SSL

fi

(1) (1)
Z C, sk + 2 kzz Lg Cer. S5t

Thus, instead of havihg 25 summations there are only 15. Then the

polynomials may be written

6-14
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5 5 k-1 . ,
(1) (1) , 1 (1) (i)
p.(8) = a't + bt + = ¢ S S. + C S. S (6-6)
i kzl (k 2 “kk k> k kZZ LZl kL kL

3

In the Newton iteration an initial guess is made at Sk’ say Séo)-

then pi[S(o)] is evaluated. Next the partial derivatives are required

i NP

s,
J

Differentiating equation (6-~5) wrt Sj obtain

ap. 5 . 5 . 5 .
i 1) 1 (i) 1 (1) - @ (1) _
asj (s) = bj +3 kzl ij S, + C.r.” 5. bj + kzl ckj s, (6-7)

Then the 5x5 matrix %E—[S(o)] is computed and the linear equations

__g_g [S(o)] AS(O) - p[s(o)] (6-8)
are solved for AS(O) and a new S(l) = S(o) + AS(O) is computed. The
(n)

process is repeated until AS is sufficiently small, A computational

flow chart follows in Figure 6-5.

If for some reason the linear equations become singular or the iter-
ation fails to converge, then it is assumed that At' is so near zero
that the equations have become singular. Then AT is set to At' and

HOM
execution proceeds to step (C).

6.3 ESTIMATION OF EXECUTION TIME AND STORAGE

The arithmetic execution time of the SIV~B computer, LVDC, is assumed of
the following form: fixed point add time o, multiply time 50, divide time
8a, where o = 82y sec (ref. 13). Further, it is assumed that all arithmetic
operations are performed in fixed-point mode. Then giving a maximum of five
iterations on the polynomial equations, an operation count reveals that a
cyéle time of less than 1.6 seconds is determined by the Algorithm as defined.
It should be noted that the execution time is linear in the number of iterations
T on the polynomial equatons with a very large positive derivative. To be
specific

Extime = .630 + .180 T seconds
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ENTRY

SET
S=0

!

COMPUTE
P(s) BY
EQS. (6-6)

y

COMPUTE

P
Eo)

BY EQS. (6-7)

~_ - >~

!

SOLVE
LINEAR
EQS. (6-8)

e

'

COMPUTE
S=S+4AS

RETURN

Figure 6-5. FLOWCHART FOR NEWTON-RAPHSON
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It is expected that only one or two iterations will be required making the

execution time around .8 to 1.1 seconds.

The storage requirements are determined from a UNIVAC 1108 load map of a
model deck. It is assumed that ome digital word contains one entire data repre-~

sentation. The storage of the model deck is less then 4000 words.

The total execution time is estimated by counting arithmetic operations
only. The auxilliary bookkeeping instructions are assumed negligible. 1In
addition some advantage can be taken of the overlap feature of the multiply
instruction which allows simultaneous execution of one or two additional

minimal cycle instructions (e.g., load and store instructions).

Table 6-1 gives a detailed summary of the arithmetic operation counts
necessary in each block of the general flowchart presented earlier. The
symbols are defined as follows:

q dimension of space (2 or 3)

N dimension of isolation space (i.e., &)

p; number of integration steps on nominal trajectory (Block D)
p2 number of integration steps in computing g(Y, &') (Block E)
r degree of approximating polynomials for derivatives
dimension of state vector Y
T number of Newton-Raphson iterations on polynomials (maximum of 5)

a number of intermediate and terminal functions in g wvector.

In the numerical integration of blocks D and E it is required to extract
a square root. Here, this operation is approximated by 4 adds, 4 multiplies,
and 3 divides, i.e., 3 Newton iterations preceded by a normalization. ~In
block J it is required to calculate an inverse tangent which is approximated
by a continued fraction of 6 adds, 2 multiplies, and 3 divides. The times

of blocks A, C, and K are assumed négligible.
The execution of the guidance package may be one of four different modes

depending on the estimated time-to-go At'. The first mode consists of the

maximum time and requires the use of Silber's expansion on the first call to

' 6-17
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Table 6-1. OPERATION COUNTS FOR GUIDANCE ROUTINE
OPERATION i
STEP ADD MULTIPLY DIVIDE
NUMBER | ‘ ,
B 2q + 1 2q 0
N[1+25+5 (S50 1 N[25+5(S-1)T*
D, E [P,+P,] [41q+27]+5q+9 [P1+P2] [53q+36]+9q+19 | [P1+P,] 27+0
’ +
F a(N-1) []+5+N%Z. r a(N-1) [I+S+H723 r 0
(0)* (126)*
G 12[1+2(S+N)] 12[S+N] 0
H %[l%ﬁ + 9N2:IT BN3 + 3N2]T NZT
I 2q + 1 q 0
J 7(g-1) 4(q-1) 4(q-1)

*In block B, indicates Silber's expansion of Mode 1.

In block F, indicates Linear interpolation of Mode 3.
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the guidance routine. The second mode is the standard procedure and is used

for the time-to-go between the first call and up to At' = AT The third

SWCH*
mode uses a linear interpolation when calculating the derivatives. The fourth
mode is used when At' < ATHOM and the vehicle is assumed so close to cut-off

that linear guidance laws are sufficiently accurate.

It should be emphasized that the execution times previously stated are
for a two dimensional injection into a circular orbit. For a general three
dimensional problem where it is desired to inject into some prescribed orbit
the corresponding execution time is of course greater. A rough calculation
using Table 6-1 as a guide (i.e., q =3, N=7, S =8, T = 5) indicates that
the execution time is approximately two times that of the two~dimensional
problem or 3.0 seconds. Again the execution time is linear in the number of

iterations T. For the three dimensional problem the expression
Extime = 1.180 + .356 T seconds

characterizes this relation for mode 1 time.

The total effort of the guidance routine is almost entirely composed of
three distinct parts. The numerical integration comprises approximately one-
fifth of the execution time, the calculation of the derivatives about one-
fifth, and the solution of the polynomial equations entails three-fifths.
Thus, if the computing time is to be reduced then a good place to begin the
reduction is in the iterative solution of the polynomial equations. Here it
has been proposed that a Newton-Raphson iteration be used. It is felt that
some modification in the iterative procedure could save at least three-tenths
of the total time spent in solving the polynomial equations. This resolves
into a 1.3 second cycle time for the two-dimensional problem and a 2.4 second

cycle time for the 3-D problem.
The storage required for a three-dimensional deck is estimated to be less

than two times that required for the storage of the model deck or less than
8000 words.

6-19



TR-792-9-547

NORTHROP-HUNTSVILLE

Section VI

DISCUSSION OF PERFORMANCE

The purpose here is to criticize as objectively as possible the guidance
Algorithm of Section VI. Various measures of performance have been outlined
in reference 14 and these points are discussed explicitly. Each performance

criteria is defined and then followed by supporting critical statements.

7.1  OPTIMALITY
Given that there is a performance index to be minimized, e.g., propellant
expenditure; how does the obtained value of the performance index compare to

the theoretical minimum?

The minimum value is defined here to be that value obtained by satisfying
various necessary minimum conditions of the calculus of variations. This mini-
mum is of course a local minimum and is considered acceptable for this problem.
The various errors in the Algorithm are discussed in subsection 7.2. These
errors generally subtract from the performance index and it is difficult to
state "a priori" just what the total effect is. Empirical study usually gives
a good idea of the performance. However, numerical results are not available

on this point yet.

7.2  ACCURACY

Given that approximations are introduced into the derivation and mechani-
zation of the guidance equations; what are the resulting errors in the desired
terminal conditions? These errors can be classified according to:

e  APPROXIMATION ERRORS ~ Due to analytic approximations introduced into
the derivation of the guidance equatiomns.

The physical assumptions of a spherical homogeneous earth and two-body

approximations introduce some error. However, this is expected not to be severe.

In addition the approximation of the boundary conditions by the second-degree
polynominals serves as a perturbation. The results of Section V indicate these

errors are certainly acceptable,

¥
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] COMPUTER ERRORS - Due to the inaccuracies of the numerical Algorithms
used to implement the guidance equatioms. '

A combuter error analysis has not been carried out for this Algorithm.
However, favorable to this point is the iterative property (with a self-
correcting nature) of the guidance scheme.

e MECHANIZATION ERRORS -~ Due to the inability of the vehicle to physi-
cally respond to the guidance commands.

Currently no provisions are made for problems of bounded control or state
variables. However, it is possible to extend the guidance Algorithm to cover

such cases.

7.3 REGION OF APPLICABILITY
What is the range of perturbations which can be adequately treated by

the guidance mode?

In terms of the state space, a second-order region is covered by the
Silber-Hunt expansion whereas the iterative refinement of the guidance formulas
certainly extends this region. The five percent perturbations in state of the

problem of Section V was adequately handled by the guidance formulas.

7.4 COMPUTER FACTORS

What are the real time omboard and/or earth-based computer requirements,
in particular, how much storage space is required, what is the length of the
computiﬁg cycle for iteration of the guidance equations, and how complex must

the computer be?
This information is covered in detail in subsection 6.3, In summary, the

computer requirements appear to be sufficiently fulfilled by the state-of-the-

art hardware, quite probably the LVDC currently used on the S-IVB.
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7.5 PREFLIGHT PREPARATION
What is the cost in time and money of preflight preparation of the guid-
ance equations, in particular how long does it take to prepare the guidance

system to accomplish a given mission?

The guidance routine as defined in Section VI requires the generation of
a nominal trajectory and the computation of the least square polynomials approx—
imating the required derivatives. This job is being accomplished by a program
which takes less than 15 minutes of execution on an IBM 7094 for the problem

of Section VI.

7.6 FLEXIBILITY
What are the types of missions which the guidance mode can perform, and

how well can it adapt to changes in the mission?

Currently, the guidance mode is designed to handle a two-~dimensional,
constant-burn, minimum-fuel injection into a circular orbit. The reference
trajectory is representative of S-IVB type vehicles. However, the basic guid-
ance scheme is very general and requires only that the boundary conditions be
expressed as equality constraints., Adapting to changes in mission is accom-
plished by generating a corresponding nominal trajectory and computing the
required derivative least square polynomials. This dependence upon a pre-

computed reference trajectory is the primary drawback of this guidance scheme.

7.7 GROWTH POTENTIAL
What is the potentiai applicability of the guidance mode to future

missions?

The flexibility of the guidance routine discussed earlier certainly pro-

jects the possible capability of this package for use in future missions.
The Algorithm can be extended to cover:

e Low thrust

® Bang-Bang control
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e Orbital transfer, rendezvous, intercept
) Bounded control and state
e N~body problems

* Oblateness effects

I.e., almost any conceivable mission in which disturbance from an earth deter-

mined reference program is "small".
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Section VI
CONCL USIONS AND RECOMMENDATIONS

The numerical algorithms discussed in this report add self-correcting
features to second variation guidance. However, the techniques are still de-
pendent on proximity to a reference path and require storage of coefficients

of polynomial functions of time.

The comparison of the polynomial solutions and the inversion formulas on
an S-IVB type trajectory clearly indicates the superiority of the polynomial
solutions. Based on these numerical results a guidance algorithm was designed

with the polynomial solutions used as the driving element.

One of the more important and unique features of the guidance algorithm
was the rapid technique used for computing approximate first and second de-
rivatives of functions of the final state with respect to current Lagrange
multipliers: The first derivatives were approximated by correcting nominal
derivatives to account for deviations from the current nominal state and
nominal Lagrange multipliers. The second derivatives were simply set equal
to the nominal derivatives. This technique for finding approximate derivatives
led to guidance commands which did not vary much from the guidance algorithm

utilizing true derivatives.

Included in the numerical study was an independent use of the expansion
of Silber and Hunt. The results showed clearly that a combination of the Silber-
Hunt expansion with the polynomial solutions proved much more useful than either

taken individually.

The guidance formulas described in Sections III and IV were of arbitrary
order. However, the numerical results of Section V indicated that the second

or higher order formulas are of questionable utility.
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More studies of the guidance algorithm in simulated flight are recommended
in order that:
e The best combination of auxilliary algorithms may be selected.

® TFeatures which contribute little to the performance may be eliminated.

A more detailed study should be made of the approximations to the true

derivatives in order to find improvements to the method of approximation.

Finally, an effort should be made to make the method less dependent upon

a single stored reference trajectory.
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Appendix A

A METHOD FOR COMPARING TRAJECTORIES IN
OPTIMUM LINEAR PERTURBATION GUIDANCE SCHEMES*

In the application of neighboring optimum feedback guidance schemes the
choice of the optimum reference state to compare with the perturbed state is
not straightforward. Recent studies have shown that time~to-go is preferrable
to clock time and performance index-to-go as a lookup parameter. The guidance
Algorithm of Section VI uses the time-to-go criterion to select a point from
the referénce trajectory. An alternate way of determining the lookup
parameter is presented in this analysis. The parameter is determined by
solving iteratively a nonlinear algebraic equation in one unknown which is
derived from the basic assumption of neighboring optimum feedback guidance
(i.e., that the perturbed state is close to the optimum state). This method
does not involve an estimation of the perturbed final time whereas time-to-

go requires such an estimate.

In recent years the idea of using a linear (and possibly higher order)
perturbation of a predetermined optimum trajectory for the feedback guidance
of space wvehicles has been advanced by a number of investigators (refs. Al -

A4). That is,-if {x*(t), u*(t)} represents a trajectory and control which

minimizes
te
J = g(tf, xf) +J L (t, %, wdt (A-1)
to
and satisfies the constraints
x, = fi(t’ Kiseens Xy Upsenn, um) (i=1,...,n) (A-2)

*

This appendix is contributed by William F. Powers, Assistant Professor,
Department of Aerospace Engineering, The University of Michigan, Ann Arbor,
who has served as a consultant to Northrop-Huntsville during this contract
period.
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wi(to, X tf, xf) =0, (i=1,...,p<2n+2) (A-3)

.then references Al - A3 present methods which determine

Gui(t) =

| ™~

(t,7) 6xj(T), (i=1,...,m) (A-4)

where the axj functions are perturbed values of the state at te [t ,t.1, the

G (t 1) functions are the feedback gains associated with the time 1, and the
functlons Gui(t) (t) + Gu (t) define the optimal controls for te [T1,t ]

if no further disturbances occur., In reference A4, the Lagrange multlpllers
(which result from the Euler-Lagrange equations associated with the variational
problem) for the perturbed trajectory are obtained as power series in the state
perturbations, 6xi, and the maximum principle is then used to determine the
corresponding Sui. In the usual case, the Gui's are determined so that equa-

tions (A-3) are satisfied and the perturbed trajectory is optimal in some semnse.

* % %
Assume that the values of Xi(T), ui(T), and Gij(t,r) are stored onboard
for each t, TE[to, tf]. Then the time, T, is actually a parameter which

associates the feedback gain, G,. (t,t), with the function space point

ij
* % % .
(xl(r),..., Xn(T), ul(T),..., u;(r)) of the optimal trajectory. An inherent
ambiguity in these schemes is the way that the "lookup" parameter TE[to, tf]

is determined for a state (xl,..., xn) which is "close'" to the optimal trajec-

tory, but not on it. At first glance it appears that the time, say Ty at which

the vehicle arrives at (xl,...xn) is also the value of the lookup parameter,
TE[to, tf]. However, T

may be greater than t_, and/or X(Tl) may not be "close"

1 £
to x*(rl), whereas x(rl) may be close to some other point on the optimum

trajectory, say X*(Tz) (Figure A-1).

In references A5 and A6 an unpublished suggestion by J. C. Dunn is used to
alleviate this ambiguity. In reference A5 it is shown that by using time-to-go

as the lookup parameter (e.g., in Figure A-1, T, is the time-to-go lookup

3

1
instead of clock time, the linear and quadratic guidance for Zermelo's problem

parameter when the perturbed trajectory is at T, with time-to-go equal to T)

is much improved. In reference A6 time~to-go is used to give excellent results
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Figure A-1. TIME PARAMETERS ASSOCIATED WITH OPTIMUM
AND NEAR-OPTIMUM TRAJECTORIES

for the linear guidance of a reentry vehicle. 1In both of these analyses
estimates of the change in terminal time, te, are used to determine the time-

to-go on the perturbed trajectories.

Since the basic assumption of a linear perturbation feedback guidance
scheme is that the perturbed state and control are ''close" to the optimum
state and control, respectively, then this should be the main guideline in
the selection of the lookup parameter. Thus, one should choose the lookup
parameter in such a way that the perturbed state, x, and control, u, are as
close as possible to the functions x*(t) and u*(t). Since the perturbed
control is given as a function of the perturbed state by the guidance scheme,
then only the satisfaction of the requirement x '"close" to x*(t) can be used

to choose the lookup parameter. Therefore, an alternate method for selecting

A-3
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the lookup parameter Te[to, tf] is the following: determine the value of
Ta[to, tf] at which the "distance" between the point x and the curve x*(t) is
minimized (Figure A-2). This method does not involve an estimated change in’

the terminal time, tf, on the perturbed trajectory.

X(t) "

X*(t) ™

Figure A-2. 'MINIMUM STATE-SPACE DISTANCE COMPARISONS FOR DETERMINING THE
LOOKUP-PARAMETER

To illustrate the application of this method, assume the following situ-
ation: the optimum state variables can be represented by polynomials in time,
i.e.,

. K+l 4
x; (t) = jZO a5t telt , t

f] (i=1,...,n) (A-5)
which result from a curve-fitting procedure. 1In a general analysis, the func-
tional form of the distance function will depend upon the state wvariables which

are employed. For this example, assume the following distance function
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2]1/2 (A-6)

o [z, w ()] = [kyGry = )7+ 0+ (x =~ x.())
where xe R" is a point "mear" the curve x*(t)e:Rn and the ki's are scale factors.
The method requires that the following problem be solved: 'Determine the
te[to, tf] which minimizes the quantity pz [x, x*(t)], where x is a given point
in R™ and x*(t) is given by equation (A-5)." Thus, the result is just an ordi-
nary minimization problem. A necessary condition for this minimization is that

the lookup parameter, t, satisfy:

2 dx dx.
9 -0k [x - x ()L 4 ...+ 2k [x - x ()] —2 (A-7)
t 1 1 1 dt e n n n dat °

[eN)=H

Equation (A-7) can be rewritten as

k(k+l) _

Co(a;x) + Cl(a;x) t+ ... +C 0, (A-8)

k(et1) @59 €
which can be determined as a function of x and t before the flight. Instead
of attempting to solve for the roots of equation (A-8) analytically, Newton's
method could be used to iterate for the lookup parameter onboard since the

clock time is a good estimate of the lookup parameter. Suppose that t is the

solution of equation (A-8) for a given state x. Then,

n
u, (£) = u:(t) + jzl 645 (6,0 [x; - x:(T)] (i=1,...,m) (4-9)

represents the control program for all te [t,t_]. Note that the actual clock
time at t=1 might be 1+ At (At> 0) so that clock time is not involved in equa-

tion (A-9). This allows for an automatic adjustment of the terminal time on

the perturbed trajectory.
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Appendix B

EXPLICIT FORMULAS FOR FIRST ORDER METHOD

B.1 INTRODUCTION AND PRELIMINARIES

The object of this study is to solve the differential boundary-condition
problem related to optimal guidance as derived from the application of the cal-
culus of variations (cov). 1In particular, the primary goal is to obtain approx-—

imate closed form solutions.

The differential equations may be expressed in the form

X = £ —j - -H - X (B-1)
m|A] %]
3 2
| %] | %]

Here, the "super dot" notation indicates differentiation with respect to time.

The vectors X = (X cens Xn)T and X = (il, cees Xn)T represent Cartesian po-

1’
sition and velocity of the space vehicle relative to the stationary earth
center. The scalars u, F, and m represent the Gaussian gravitational constant,
the vehicle's thrust and mass, respectively. Mass as a function of time is

described by
m = -8 (3-3)

where B is the mass flow rate magnitude. The LaGrange multipliers are demnoted
by the vectors A = (A;, ..., An)T and -\ = (—Xl, s —in)T. The symbol "| |
denotes the Euclidean norm when applied to vectors, otherwise the absolute
value function. The symbols X, i, A, and A will designate n component vectors
where n is the dimension of the gpace being studied (n = 2 or 3); the vector
components are represented by the usual subscript convention. The notation

X-)\ represents the scalar product of X with A.
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Equations (B-1) and (B-2) are often called the equations of motion and
the Euler-Lagrange equations, respectively. The form of equation (B-1) re-
flects the two-body, spherical earth approximation of the physical problém

and in this report is assumed to be sufficiently accurate.

At the initial time, s it is assumed that the quantities X, X, and m

are specified. The boundary conditions are given by the equations
fi(nay’g) = 0, i= 1, 2, cosy P (B"'l})

The fi are functional constraints upon X, X, A, A, and m at the initial and/or

final time, t The vector y represents the variables X, X, and m at t = to’

£

while n represents X, X, A, A\, and mat t = t The p component vector &

£
designates those quantities not explicitly known which are required to obtain
the solution of the boundary condition problem, e.g., A and A at t = t, and

possibly final time, t Generally the f's include geometric end comstraints,

£
transversality conditions from cov, and possibly some scaling conditions.

Implicit in equation (B-4) is the relation
g;(v,8) = £,(n(¥,8),y,8) =0, i=1, ..., p. (B-5)
Under the proper assumptions Andrus (ref. B-1) obtains inversion formulas for

£ as a function of an approximate £, y, and n(y,%), Explicit formulas are

given for the coefficients of an expansion of the form

AE, = Xc(l)f. + ) S S ) ¢ g g f 4. (B-6)
T R TR TN T TN T SIS P TR TP TR A
1 71 1’72 M1t2 1°72°73 "17273
P P .
where ) represemts ) ) , etc., £, = £,(y,E), and At = £, - E. .
1,1, 1=1 1,=1 3 ko 7k Tk

B-1. Andrus, J. F., "Explicit Solutions to Problems of Optimal Guidance”,
Northrop~Huntsville Tech. Report TR-792-8-303, January 1368.

B-2
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If for some N and k we let

§ = Céﬁ)i i
lz.I.N
then it is evident that
S = s(n(y,&), v, £).

Thus, due to the functional dependence upon n the coefficients in the inverse
series as well as the fi's will require the value of quantities at thé final

point of the trajectory. These values, generally, are not known explicitly,

hence one must replace n with an approximation n. The approximations may be

obtained by wvarious techniques, e.g., Taylor series or Runge-Kutta expansions
as functions of tf - to.

The following subsections apply these techniques to a particular problem
and derive a set of closed form expressions for the A&i's. It is emphasized
that the method used is more general than the following may indicate. Due
to the closed form nature of the solution, assumptions valid in one applica-
tion which are made to simplify the expressions, would not necessarily be wvalid

in another. However, the general procedure is the same,

B.2 USE OF LINEAR TERMS IN INVERSE SERIES
In equation (B-6), if only the first "order" term is retained then we

obtain the approximation

- 1)
Mgy =] Cki fil
ll 1
or in matrix notation
AE = Cf("bY:‘E) (B'—7)

(y,€)
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where (ref. B-1)

afi

-C = A= EET-(n,y,E) o
+ (y,E)

The assumption of the nonsingularity of A is implicit in this analysis.
Equation (B-7) has the equivalent form

AAE = -f . (B-8)

The solution of the linear equations (B-8) may be effected by any of several

methods.

B.2.1 TYPES OF ITERATION
Given an approximation é to £ in equation (B-5), then under certain con-
ditions the solution to equation (B~8) gives an improved approximation,

é + Af, to §. This procedure is known commonly as the method of Newton-

Raphson. If we define E(O) = é and g(l) = é + AE = g(o) + Ag(o) then a re-
cursive definition follows and can be formulated by

gty _ (@) ) (n) (B-9)
where

ame™ = g (B-10)
with

5>
|

= A[ﬂ (Y,E(n))sy,i(n):l s

f[;(y,a(n)),y,a(ni].

In carrying out iteration (B-9) it may sometimes be useful to introduce a

Fh
[

scaling factor at each step of the iteration. This is commonly done in the form
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g(n+l) = E(H) + anAg (n) (B-11)

where 0 < a <l,n=0,1, 2, .... There are various ways for selecting a

and a judicious choice can reap a considerable reduction in labor.

Another variation in (B-9) is related to the computation of A at each
step of the iteration. Often, labor can be reduced if at steps ntl, n+2,
.., ntp the A of step n is used. The index p méy be selected by monitoring

some norm of f and using A until this norm stops decreasing.

B.2.2 SOME NOTATION

Define for t,itst the scalar products

£
R? = %%,
v? = X°%,
8% = aa,
0 = X-A,
8, = XA,
6, = XX,
8, = X-1,
6, = XX,
6 = A,
8, = A*A.

To simplify the notation of equations (B-~1) and (B-2) let

-1
by = ok
1
S
27 3
L, oDt
3772

Then equations (B~1) and (B-2) have the equivalent form
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Fb

[
il

>
|

= u(-b\ + 3b,3). (B-13)

To handle the time derivatives of the above equations introduce

bi = b1b4
Y -
4 m AZ
2
2 20
- - _ 2 5
bl;_bs— 2 5 3ub36 +e6 ubZA —
. m A A
3 58 68
28 1 4 5
b. = b, = 55— -~ =5<3ub 2[e+26:l—6———+——
5 6 m3 Az 3 1 2 R2 A2
2
36 20 46
Fuby( T e, ) - 2 (3 -5 ) pe
R A A ‘

When the subscripts "o" and "f" are appended to symbols, the quantities are
assumed initial and final values, respectively. The definitions of the above

symbols shall be referred to as the equations of set I.

B.2.3 APPROXIMATION OF 7(y, £)

Recall from subsection B.l that

T\(Ysg) =

o> B XKeM




TR-792-9-547

NORTHROP-HUNTSVILLE

Thus for to <t E_tf, we can define Ezy;é,t) by the differential equations
(B-1), (B-2), and (B-3) with n(y,&) = n(y,&,t.). The problem becomes that of

approximating n(y,£,t_.) in terms of the known quantities ﬁ(y,&,to).

B.2.3.1 Taylor Series Approximations
With y and & fixed and assuming m and f continuous, it is evident from
equations (B-1), (B-2), and (B-3) that there exists % continuous time deriva-

tives of n(y,£,t) for t,stet Hence by Taylor's theorem

£
2-1
; R ~(2-1) At -
n(y,& atf) =n(y,& 9t0) + .00 F1 (y,& ’tO) -1 + RQ, (B-14)
where At = £, - €
£ o
2
- (L At
and RQ, = n( )(Y,E,E) ﬂ— s
with t < e < t_.
o — -~ °f

In the following only the truncated portion of equation (B-14) shall be used,

i,e., RE will be assumed negligible and dropped.

From the definition of n this will require expansions of Xf, Xf, kf, Af,

and me. A glance at equation (B-3) with the assumption 8 is constant with

respect to time reveals the exact representation

me =m - BAL. (B-15)

Expansions for Xf and Af are obtained below and those for if and if may be

obtained by differentiating the respective series. Let S represent one of X

or A. We shall use the convention

n
d's - S(n)
n o

X + bnxico (B-16)
de °

= bnl)\o + bnéxo + bn3

t=t
o
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Differentiating equation (B-16) with respect to time and using equatioms (B-1)

and (B-2) gives

(n+l) _ . . .
8o = (b = ubyb o + Fbyb Ja, + (b, + D )2,
# (b_y + 3ubgb ) = wbyb X+ (b, + b IX
= bo1,1% F Pnsr, 200 T Poar, 3% T Pat1, %o

From the equation above a recursive definition for the coefficients in equation

(B-16) may be induced. Let

T
By = (bygs By bogs Bp)
and
0 —ubz 0 Fbl
1 0 0 0
A =
0 3ub3 0 —ub2
0 0 1 0
L it
Then it follows
Bn+l = Bn + ABn. (B-17)

(n)

o}

To compute Bn for X use the initial condition

B = (1, 0, 0, 0).

For Aén) use

B = (0,0, 1, 0)'.
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Equation (B-17) may be used directly to compute the derivatives of Xo and A .
5) (5
o

These derivatives are derived in subsection B.3.5.1 up to Xo ,

B.2.3.2 Other Approximations

It might prove advantageous to consider approximations implied by various
numerical integration techniques. For example a single-step method like the
Runge-Kutta formulas or possibly multistep methods locked with the Runge-Kutta

starters. Even Romberg-type formulas might submit to simplification.

The point to be made here is there are many different types of approxima=-

tions that can be tried and further investigation is suggested.

B.3 APPLICATIONS: INJECTION INTO CIRCULAR ORBIT

Consider a two-dimension guidance problem in which the object is to burn
with a constant thrust magnitude, ¥, into a prespecified circular orbit. It
is assumed that the rocket engines will be initially thrusting at t = £ the
vehicle's position and velocity are known in the sense of equation (B-1), as we
well as the mass. The mass flow rate, B, in equation (B-3), is constant and
assumed specified. The problem is to find the wvalues of the Lagrange multi-
pliers, A and —i, at t = to which define the optimal direction in which the

rocket engines should thrust in order to minimize the fuel consumption.

In order to inject into a circular orbit the radius (measured from the
earth's center) and velocity vectors must be perpendicular, as well as having

prescribed values. These geometric conditions can be expressed in the form

2
Xf'Xf - Rco =0 (radius condition)
ﬁ -i - V2 =0 (velocity condition) (B-18)
£f°f co
Xf'if =0 (orthogonality condition)
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where RCo and Vco are specified radius and velocity at cut-off. The subscript
"f" indicates that evaluation is performed at t = te- Equations (B-18) com-
pletely describe a circular orbit in two dimensions. The cov ties down the

injection point into the orbit by the addition of the transversality condition:

= A1o%90 * ApoXio = 05 (B-19)

A10%20 ~ *20%10

where the subscript "o" indicates initial values. Inspection of equations (B-1)
and (B-2) reveals them to be homogeneous in A, i.e., for a > 0, a A also satis-
fies the equations, hence a scaling equation is needed to insure uhiqueness of

the solution, e.g.,
Ao'ko -1=20 (3-20)

Equations (B-18), (B-19), and (B-20) may be adjoined to give five boundary

conditions corresponding to the set of (B-4), i.e.,

2
f1 = XX =R, = 0
. . 2
f2 = Xf Xf - VCD = 0
f3 = Xf'Xf = 0 (3-21)

£, =AA ~-1=0
O o

foo= A, X - - ) =
5 = *10%20 T *20%10 7 210%20 T 290%g = O

The vectors y and n become

B-10
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and

1
e
el

> bde
o +Hh Fh Hh Eh

B>

L -

Since the final time is unknown, t_. is inserted into the £ vector and we ob-

f
tain

>

(B-22)

vy

i

rr >
o

Differentiating the fi’ i=1, ..., 5, of equation (B-21) with respect to Ej’

j=1, ..., 5, gives

B L)) ) . ]
(L) (2D 2X."X 2X.°X 2% X
2X X 2K Xg £ f £ OF £
2D ¢ ox(2) A ) 2o (4) v ow
ZXf Xf 2)(f Xf ZXf Xf 2Xf Xf ZXf Xf
. o - . . - 3 . 4 0 4 - . -
A= Xf'Xé]') + Xf'Xf(l) Xf‘Xéz) + Xf'Xéz) Xf'Xf(s) + Xf'Xé ) Kf’X< ) + Xf‘Xf( ) Xf'Xf + Xf'Xf . (B—ZB)
2, 20,0 0 0 0
%20 10 %20 %10 0
" G _ X . .
Here the notation Xf =3¢, 1s used. Since ES = tf then it is straight-
i
5 | 2 . .
forward to show that Xé ) = Xf. The following subsections will discuss a

method of solving equation (B-8) with the relevant approximation of n(y,é).

B-11
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To facilitate some notational problems, we define for i, j, and k ranging

over the integers 1, 2, 3, and 4

X'Xci) X'ch) X‘f(
o, = det| x-x‘1 x-x3) XX ,
ij
L)(C:'L)-}'( +xBx @3+ x@Px 2z +x% B
- e
L () =
55 XX X+X
_ _]___' ','(j) .
Bj = det 5 fz XX XX R
£4 Pz e xP oy 1k 4 x-X
My = det | Xx) %53 ) ’
ijk
X(i)‘f( + }.{(i)-X - —
1 (1) () ]
5t XX XX
- c xx (1) v ox (D)
Cij = det -2-f2 X-X XX
£, LCO NN S ¢ D B € ) SRS N €
- -

B~12
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It is to be understood that all evaluations are terminal i.e., at t = tf. 1f

S represents any of the above quantities for fixed i, j, or k, themn it is evi-

dent that

S = S[n(y,é), v 5__‘-

B.3.1 CRAMER'S RULE

The linear equations (B-8) may be solved by the application of Cramer's

rule, i.e.,

() det(A,)
Aé;j = det(A) Py ] = l’ 2’ 3’ 4’ 5’

where Aj is the matrix A with the jth column replaced by f.

Using equation (B-23) and expanding about the fourth row of A gives

g [k @ x® e ® g |
det(A) = SJeklo det :
L _‘5‘10 X0 %10 ° |
—x-xcl) xx3) xx@® x-i{ﬂ )
+ AZO det . >
_5(20 X0 %o ° 1)

Expanding the resulting determinants about the fourth row and using the pre-

defined o,, yields
1]

B-13
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det(a) = 8'{}A10[%10“34 = Xy0%24 T Xlouzs]

+ A20["‘2-0"‘34 - Xo0%14 Xloal%] j}

X T Tlx ). (B-24)
347 Gyg "0y | ©

or more conveniently

det(A) = SAO'

Thus det(A) resolves into the inner product of Ao and A vector V which is a com~

bination of X and X .
o o

Now, turning our attention to det(Aj) notice that AlO and XZO may be scaled

such that £, = 0. Then for j =1

4
_ -
l'f X'X(z) X'X(B) X’X(a) XX
271
1 5 (2) . L L
2 f2 XX
dEt(Al) = -8det f3 X(z)'i + k(z)'x —— —_ ——
0 Mg 0 0 0
£ %o %20 X0 0

Expanding about the fourth row gives

B-14
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271
1 - 2(3) — —
. | 2 f2 XX
detﬁAl) = —SAZOdet 3) . .3

£, gz +xPx -

£ -X X 0
5 20 10

| N

Examination of f_ reveals that one may choose AlO or A such that f5 = 0. Then

20

-850 {‘X2084 - X1053}
84
81, 0% - ., ) (B-25)

5
expanding about the last row gives

det(Al)

Similarly for j = 2, 3, 4, 5,

B
—— » 3 -
det(AZ) = —8)“10Xo <B4> s (B-26)
B
Jda s 2
det(A3) = SAO B4X0 + XlO(;B;) s (B-27)
. 8
== - M — 2 v—
det(a,) = -8A_"(8,X x20<_81> , (B-28)
. L g
23 224
det(A_ ) = 81 *{z,, X - X . (B-29)
5 o 3470 (;;13 ;l;> o

In equations (B-24) through (B-29) the subscripted quantities o, B8, and

¢t are all to be evaluated at the current approximation ES =t Thus, in order

£
to get closed form expressions for Agj, the a's, B8's, and ¢'s must be approximated

by some artifice.
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B.3.2 APPROXIMATION OF BOUNDARY FUNCTIONS

It is required to have some closed form approximating expressions for fi’
i =1, 2, and 3, defined by equations (B-21). Notice it is not necessary to ex-
pand the boundary functions f4 and f5 since they are initial conditions. A

further savings of labor is obtained by the fact that
g o Zpl) g g, L (B-30)

Hence truncated Taylor series shall be obtained for fl and f2 only. Using the

notation
f. =R +RAt+RAt2+ +RAt5+e (B-31)
1 1 2 3 e 6 1

and
o=V, VAL ... + VAL e (B-32)
2 1 2 o 5 2?

then

=1 3 g at? 2 &
f3—2R2+R3At+2R4At +...+2R6At +e3.
. . 1
The e;, 1= 1, 2, and 3, are the remainder terms and Rn+l = ;-Rn, n=1, 2, ...,
with Ro being fl evaluated at to. This notation is similarly defined for Vn'

The expressions for Ri and Vi are derived in section B.3.5.2 and shall here-

after be designated those of set II.

B.3.3  APPROXIMATION OF TERMINAL ELEMENTS IN CRAMER’S RULE

The purpose of this subsection is to derive experssions for the subscripted
quantities 7,0, and 8 of subsection B.3.1l. Before proceeding to these expansions
some notational artifices are introduced. From the definition of 7, a, and B the
quantities x-x3), %%, ana x@.x + k@ x, 5 =1, 2, 3, 4, are explicitly

involved. Define for =1, 2, 3, 4

B-16
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P,C0) = x-x 3 (B-33)
P x) = x-x)

J
fj(x) = xx ¢ @ g .

The following expansions will have coefficients which are functions of the

Pj(XO) and its time derivatives. The necessary formulas are derived and listed

in subsection B.3.6 as set TII.

Consider first the Cij

Expanding Cijf
4

ijf

where

and

's, then introduce the notation

iif = ij and T4, = L4y

in a Taylor series out to fourth order terms gives

(Z)At + Q(B)At + C(A)At3 + C(S)At4 + 5(6)
ijo ijo
P
(n+l) _ Cij 1 é(n) 1. 2
ijo n! ac? n “ijo > ?
t=1:0
At = tf-—t
6
~ dz,. 1
e T TE| T fefestp-
4 dt
t=¢
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Similar notation will apply to o and B. By definition

r—-l -
2f1 Pi(X) Pj X
r.. = det Le P.(X) P,(X)
ij 272 i i
£, P, (X) Pj(X)
and it follows that
7R, R (K) Ry
6 RN 1 : ' =
ijo = det 2vl Pi(Xo) Pj(Xo) 0
R, Pl(XO) PJ. (Xo) :
| __J
since
Pi(Xo) = Pi(Xo) = Pi(Xo) =0 i=1, ..., &,

By differentiating the determinant D and using the row wise derivative rule then

(2) = 5 =D, +D, +D, =0

ijo 17 P27,

where the subscripts refer to the rows being differentiated. Similarly

(3) B l—_"_ !__

r,ijo = 2D = 2(D11 + 21)12 + D22 + 2D23 + D33 + 2D
=-];(2D +D,,+ 2D, +D,,) =0
T 213 22 23 33

These results follow due to two additional facts. First

Pi(Xo) = Pi(Xo) =0 i=3,4

B-18
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and secondly because the third row of the matrix is the time derivative of the
first row. Thus, whenever the first row is differentiated one more time than
the third row, the resulting determinant is identically zero for all t and

furthermore all additional derivatives of that term may be dropped.

Continuing
SO 22D ) + 4D gy + 3D 45 + Dypy + Dypy + 3Dypn + 3D,0s + D
ij0 2 6 113 T #1923 133 ¥ D192 * Doy 223 233 ¥ D333
-1
= 5(4D1p3 + 3Dyg3 + Dy + 3Dy53 + 3Dyg5 + Dyg3)
=1, . + D, .)
20223 * Dy34
1 - .
=% Rl[%i(XO)Pj(XO) Pi(Xo>Pj(XO)J s
(G) -1 _(v)_1_
80 = 25 D= 35 (TDy993 + 10D 933 + 3Dyq33 + 4D1g35 + Dynyy + 4Dy903
* 6D, 55 + 4Dgqqq + Dyggs)
_ 1
=5 (Dygog + TDyg9q + 6Dyoqq + 10Dy 555 + 4D)gq4 + 3Dy943)

_ (]_V) e oo . . » sae
= 24 l[}P (X )P (X ) - ZPi(Xo)Pj(Xo) + 3Pi(Xo)Pj(X0)
. .. 1
- 3Pi(Xo)Pj(Xoi] ST Ry [}OP (x )P (X,)

. . 1
- 7Pi(Xo>Pj(Xoi] 16 lP (X )P (X )
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) -1 ) _1
Cij0 60 D = 50WiPy9993 * 23Dy5544 + 13Dyy9q5 + 18D, 544,

+ 7Dyy395 + 9D13395 + Dynoon + 3095003

+ 10D,,,44 + 10D,5555 + 55555 + Dyggqs)

+ 23D + 13D + 18D

- L
= o1 11233 12333

12223 12233

+ 7D1333 + 5Dgg599 + 10Dy9933 + 10D,, 555 + 3Dyqq44)

o1 _ 53 (iv) = e s vee e
= %0 Rll: 5 Pi(Xo)Pj (Xo) + 5Pi (Xo)Pj (Xo) SPi(Xo)Pj (Xo)

5 x yp AW (iv) . 35 (v ypM
SPi(XO)Pj (X)) - 5p; (Xo)Pj(Xo) + zPi(Xo)Pj (XO)]

-+

<+

60 Rzl:llPi(Xo)Pj (Xo) + 23Pi(Xo>Pj (Xo) - 23Pi(Xo)Pj (XO)

* s (V) 1y 13 )
lSPi(Xo)Pj (xo) -5V 7 P, (X )P 04 )]

- 60 2[131’ (X )P 0.4 ):] 0 P (X )|:2R P.(X )}

For OLij we have by definition

+4-

lo
P, (X)) R 3
a., = det | P.(X) P.(X) xf
ij i j 272
RGO PO £y
_ -
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By interchanging columns 2 and 3, then 1 and 2, it is seen that aij is the
determinant of the same matrix as [, 13 with the exception of the first column

which is just the time derivative of the first column of z, Th Therefore, the

(n)

formulas foraj may be obtained from those of C( n) by replacing the elements

(n)

of the first column by those in o ijo’ i.e., R, by 41? Vg by oV ;. This

glves

S @ )

1_‘]0 130 130
ORI )

agso =7 R %(xw<x> P@)Pm>],

NONEE (iv) . . C .
%30 = 2% 2[21’ (X )P ;@) - 2P (XPLX) + 3P (X )PL ()

- 3Pi (Xo)Pj (Xo)] + 12 R3[10Pi (Xo)Pj (Xo)

. .o, 1 .
- 7Pi(X0)Pj (Xo):l ~ 16 VZPi(Xo)Pj (Xo) .

(6) l__ _ —5_ . (lV) . .o . on
lJO 60 RZ[ 2 Pi(Xo)Pj (Xo) + SPi(Xo)Pj (Xo)

o . s (v (V) .o
SPi(Xo)Pj(Xo) + SPi(Xo)P 3 (xo) SPi (xo)Pj(xo)

25 x ypW) 1
+ 2 P:i.(Xo)Pj (Xo):l 30 3 [llP (X )P (X )

e e L “ . .o (iv)
+ 23Pi(X0)Pj (Xo) 23Pi(XO)Pj (Xo) + 18Pi(Xo>Pj (XO)J

7 ) .
60 VZ[ P (X )P 0.4 ):] - 35 V3l}3Pi(X0)Pj (Xo)]

1
+—1—0-R4P (X )P (X)
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Proceeding similarly with Bi

Le p i |

21 i 271
= 1 ' L ;
%_— det 5 f2 Pi(X) ) f2 .
£, P, (X) £q
Then

— . .

7R B Ry
1) _ - 1 " =
g '= D =det =V, P, (X)) v, 0
R, P, (X)) 2R,
Differentiating the determinant in column fashion

@) . j . ' = -

Bio =D =Dy #Dy+Dy=Dy)+Dy=D,
=iz ZRP(X) VP, (X))
2 27iv o

3 _13_1
Bio =20 =5y + Dyy + 2Dy + D3+ Dyg)
":'-l—(D + 2D, +D,, +D )/==l“-(D + 2D,,)
27722 23 13 33 23722 23

=

- 1
Rll:ZR3Pi(XO) - vzpi(xo):l Al |}R P. ()
RzPi(Xo)] > 2'} P, (x y -V P ;X ):l
1

» . . l .
+ 2 Rl{%R4Pi(Xo) - ZVBPi(XO{} +VR2{; VlPi(Xo)

)]
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g(3) _

10

g(
i

4)
)

24

_l

6

p V)

TR-792-9-547

O\

(D19g ¥ Dygp + 3Dypq + 3Dy55 + 3Dpqg + Dyyg + 2Dy + Dysy)

1

E(D : 3D + 3D + 3D + 2D

222 + D323 123 233 133 * D333)

1
6 (Pggg + 3Dygq + 3Dy95 + 3Dy34)

1 (iv) 1 (iv)
0 lI:zR P. (X ) = VB, (xo)] 7 l[?R P, (X)) - RP. (X ):]

——"

1 - - 1 - .
+ TR, VzPi(XO) - RzPi(Xoi] + Z-Rl[%R4Pi(XO) - 2V3Pi(XO{]

1 B . vee 1 - e s
- 5 Vy|6R,P, (X)) - 2R3Pi(Xo{] + 5 R2[:2V3Pi(Xo) - 2R3Pi(XO{]
+lR—&é(X)—w§(x)+R Ly P (X)) - 2R.P.(X)
4 721 471V o 37iYo 3]2 "27iY0o 37iY o

1 . . .. l . . .
+ Z Rl 24R5Pi (Xo) - 6V4Pi(Xo)] + 3R4[2 VlPi(Xo) - RZPi (Xo)]

25 P1222 T Dgggp ¥ 405503 F 601555 + 6D5553 + 3D; 444

+ 8D19qq + 4Dygqq + 2Dygqq + 3D 445 + Dogqq)

4(D2222 4Dy993 F 01995 F 6Dy93q + 8Dyogs + ADyqqg

D743 + 3Dy335 + Dy3q9)

1
25 (Dg009 T 4Dgg93 F 0D15,55 + 6Dy55q + 8Dy 555 + 4Dyg44)

1 (iv) ) 1 (iv) W)

48 Rl[%R3P1 (X)) - VB (Xoi] s 1[%R3P (X,) = RyPy (koi}
1 (iv) (iv) ok (iv) .
+ 57 Rz[% P (X ) - R N (x {] + ii-Rl[%RéPi(Xo) - 2v.P; (XO{}

(iv) 1
—12 1[6RP(X)-—2R3P (X)} 62[2RP(X)—2VP(X)‘J
B-23
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l [~ .. . s 1 .o oor
+ 3 R2L?R4Pi(xo) - 2V3Pi(Xo{] - Vz[%RaPi(XO) - 2R3Pi(xoi]

1 . - o, 1 - -
+ 5 R 2V3Pi(X0) - 2R3Pi(xo€] + ) Rl[%4R5Pi(Xo) - 6V4Pi(XO{]

l [ e .os —]-- e ) LX) .
- E—V 24R5Pi(Xo) - 6R4Pi(Xoi] + 7 RZ[%VAPi(Xo> - 6R4Pi(XO{]

1 B 1 . .
+ g R2 _24R P (X ) - 6V P (X )]+ 2R4[2 1P (X ) - RZPi(XO{l
1 .- P
+ =5 12 lE.ZOR P, (X ) - 24V P X )] + 4R [2 lPi(XO) - RZPi(XO{]

B.3.4 NUMERICAL PROCEDURE

Implementation of these results could proceed in these steps.

Input initial guesses at & and formula constants.

Initialize A , and A such that £, = f_ = 0.
o 0 4 5

Compute new § by Newton Raphson via formulas of Set I, II, and IIT.

E U

Proceed to step 2 and repeat another iteration or exit if convergence
or divergence is detected.

B.3.5 SUPPLEMENTARY FORMULAS

Here various expressions are derived to supplement those of earlier subsections.

B.3.5.1 Time Derivatives of X and A

It is desired to obtain the expansions

2 3 4 5

_ . SoAET U AT (4) At (5) At”

Xf = Xo + XoAt + Xo 21 + Xo 3| -+ X 4' + X 5'
2 3 4
s v o AL (4) At (5) At
Xf = Xo + Xo At + Xo ET—-+ Xo ET—'+ Xo ZT—'
In subsection B.3.1 it is shown that
x® o b A 4+b.h +b .X +b X (n=0,1, 2, ...) (B-34)
o nl"o n2"o n3 o nd o 2o et
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where the bni's satisfy the differential recurrence relation defined by equation

(B-17) with the initial condition B0 = (0, 0, 1, O)T. Direct application of the

recurrence formula gives

0 0 —ubz 0 Fbl 0
0 1 0 0 0 0
B, = +
0 3ub3 0 —ub2 1
0 0 0 1 0 0
S - L. p— L
In the same fashion
Fbl Fblb4
0 Fbl 2Fblb4
Bz = s B3 = R B4 =
-ubz 3ub26‘,+ 6ub3Fbl -
RZ
0 6ub
- - -ub 2 8
) 22 b
- - L.
B 12ub,6, 3
Fbl b6 + R2 -+ 3b4b5 - 4ub2b4 + b4
b 3b2 ~ 2ub, + 3b
1\7P4 T MR 5
B, =
b, 100,60 > 3ub, 6
Fb| 1|26, + 06, - + 2b,b, |6y - —=
1 R2 1 2 RZ 374 R2 R
3ub 1562
12ub, Fb, = —m |t 4 BB _ 5y2
3 RZ RZ 3R

B-25
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Fb, (by = 2ub, + b;)

2
3ub2 564 N 24 V2
R2 2 3R
2
358
<15Vz 10 ___@>
R RZ




TR~792~9-547

NORTHROP-HUNTSVILLE

Similarly one obtains for A using Bo = (1, 0, O, 0)T

"0' —_ubz'ﬂ 3ub2
2
R
1 0 —ubz
B. = B — s B -
1 ’ 2 3 3ub 50,6
0 3ub 2 4
3 5 (0 + 8, ~ )
R R
1.0_ | 0 3ub3
S,
B 2
3ub 56
2 4 2 u 2
6ub,Fb —_——_ + =~V
3771 RZ RZ 3 R
6ub2 .
R2 4
B4 = )
3ub ] 56
_.._Q.Z FblA2+ 263+4ub26 +§% 2——12—*-— Fble —V2 —-55261+ 262 -
R R R R
6ub2 o 5646
RZ 1 2 R2
L

B.3.5.2 Expansion of Terminal Conditions in Circular Problem

Equations (B-21), (B-31), and (B-32) give

R, = X X —R2 =R2—R2

1 oo co co

R2 = (2X-X)o = 264

R=(X-i+}.(-}'() = Fb. X *A - ub,X *X +‘i]2=Fbe--ubR2+V2
3 o 10 o 270 "o 1 2
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1 .'-n ® '3 1 .
R, = FX'X + 3X:X) = (Fbe + Fb.o +ubp, + 2VV)

4 1
1
= §|:Fbl(b 6 + 0, +6,) + ubyo, + 2Fb,0, - 2ub.0 41
1

=3 [Fbl(b46 + 361 + ez) - ub264:]

_ !‘_ . 3 ..L R - o .
R5 =% R4 =12 [Fbl(b49 + 391 + 62) + Fbl(bSG + b46 + 391 + 62)
0 ,
+ 31Jb2 ;2'— ubze4

1 2 2
= E{Fbl<b4e + 3b461 + b462 + b56 + b461 + b462 + 3 [FblA - pbzs + 83]

GZ u 2
+ 93 + 2ub29 + 3ub2 'R—z' - ubz Fble -y + Vv
= %b <b + b - Zub 0 + 4b461 + 2b49 + 49 + 3Fb A2>

I : :
- o ( oo §J[oE + vy - ] + [ogmn + ]y + [ + 62] 4
. 6ub,o,
+ l:b463 + 63] 4 + [bl]—A + ZAA] 3Fbl + 2b4b5 + b6 + —;2'—-—- 8
2
3ub 36
2 24 "y 4
+ 4b561 + 2b562 + 3Fblb41\> + 5 ( R Rz >

R

3
- 2VV + ub.6 66‘*——6—%— Fb.6 - uwb.R> + V2
294 T o 2 1 uby
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=L Jep [ |63 + 3b,b. - 2ub.b, + b -l——z—u—-bl—‘ie+ 5b% + 5b. - Sub. | A
60 1 4 4°5 ub,b, 6t 22 4 5 o1 %1
2 2
+ [31)4 + 3b, - 6pb2] 6, + 10b,0, + 12ubs0, + 10Fb 6, + 10b,Fb, A
2 3
3ub,0 360 66 60,
+ 24 Vz"%"‘zi’“bz “b294+__4"—24'V2‘“b2R2:|
R R R R L
24pb 0 B
=1 3 24 2 }
=5 1Fb; [b4+3b4b5 2ubyb, + b + = Je+ 5b, + 5b, 8ub2] 8,
+|3b% + 3b. - 6ub, | 6. + 10b,6. + 10Fb. | 0. + b, 4>
4 5 Py 1 Y2 43 1|5 4
3ub.6 562
e EIEEE R ey RSt
R R
Similarly calculate for the velocity equation
V. =X X -vV: =v%-v?
1 e} co co
V, = (2X°X)_ = 2Fb 6, - 2ub,8,
2
v, =1y = Fb,b,6 + Fb.6. + 3ub E‘i- b0
353V 471 1’1 Wby ™5 T M 4
= Fb, (b6, + Fb.A? - ub.6 + 6. ) - ub, [Fb.o - & 4 v2 —3-?2
1\ °4°1 1 ) 3/ T HP AT TR T2
, 2
= Fb. | -2ub.6 + b,6. + 6. + Fb.A%) - ub VZ—P—-B—e‘i
1 Hby 4°1 3 1 ubgy R 2
v =2y, =1l be+e ~2ub, b0 +6.1b, +{b6. +8
4= 37373190 W 1| Ps 493 * 93
6ub .6
2 . 2°4 2
+|:b4A +2AA]Fbl+ ¥ 8 + bgoy + Fbb,A
2 3 .
3ub..6 30 66 66,8
+ 224VZ_R_—2-£ - ub, 2W+“b24 44‘ ;4
R R R R
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1 1ouby8, 2
=3 Fbl —3ub2b4 + T 0 + —5ub2 + b4 + b5 61 - 3pb262

2
3ub, 0 56
2 2 4 2 L, u 4
+ 2b463 + 3Fbl [95 + b41\_ :J>+ 3 <3V 3 e >
R R
+u bz 4 }'
lSsz 1ouby0, . 2
V5 = Fb 48 F e SMb2 4 [b4el + el:l [b4 + b5 - Ssz]
2
+ _b492 + eé] [}BHbé] + [ bo5 + 3] 2b, + 6Fb b, [%5 + by ]

B 75ub,,8 4 . 15ub, . ub,8, s 15pb2 A
4 4 HP9P5 2

R

911]3264 . 5 .
+ 2b4b5 + b6 1 + 2 2 + 2b563 [65 + bSA + 2b4AA:I 3Fbl

15ub,0 3ub 5e4 3ubye, [ -
+H - — v? - ")tz 6VV + 3uboe,
R R
3 : 2,22
108, 108,8,\ 6ubye,  , ,.
TR T2 2 T b0,
R R R
15ub
_ 1 22474 2 22 22
= 15 {Fb; [: " - 3ub,b 4 = wb,b, — ub,be + 5u“by - 61D
| 75uby9,  1sub ub. 8
2 4 2 2 2 2%4%4
7+ — (%ble - ub,R” + V’> 5 = 3ub,b. + 9Fb uby
R R R
3ub 562\  30ub,0 15ub,0
+ ——53- 3w -3 v - 24 - 42 4 + pzbg o + ———53J3 3ubyb,
R R R R
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+ b, + b4b5 - 51.11)2b4 - 2ub2b4 + 5 + Zb[*b5 + b6 + 3

3 15ub,0,, l8pb284}
4 7 3 %
R R

15ub264 9ub204'“ 9
+ ——£§—~—-— 3ub2b4 - 3pb2b4 - 2ub2b4 + 2 0, +| b, + b5 - Sub,

2 .
2 + 2b4 + 2b5] 63 + |:6ub3b4]64 +l:l4b4Fle 95 + 3Fble6

2 3ub
A 2 2.2 2 2 2 2
+[$ (}4 + b, —- 5ub%> +2b4A - ubzA + b5A ] 3Fb;> + 5 [Y

- 3ub

i

R
) sez ) ) sez 1063
- ubzR -5 AV 3ub2R - - | + 94 '—6pb264 + i + 3ub264
R R R
106
4 ( 2 2 2 2
- —;é— <V - ub2R> - Zubze] + ubz (V - ub2R>
30ub.b,8 120ub. 62
vo = Ldm (22254 b2 Cogub b - 2622 - 2
5" 12 1 2 HhoPy HByP5 " By 4
R R
2
24ub2V 48ub264 3
+ 24Fb1ub3 + T 6 + ——1;2*——— - 10ub2b4 + b4 + 3b4b5 + b6 9
24ub264 3
+ ——;5——— - 8ubyb, [ 6, +|3b, + 3bg - 8ub, | 6, + 14Fb.b, 6,
3ub
2 2 2 2 2
592 ) ) seZ 10@2 1094v2
- 3v —3ub2R - +64 5ub264+ i 5
R R R R

2 2
+ ubz <V - ubZR )
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&)

B.3.5.3 Time Derivatives of Xo'J
Using the recurrence formula of (B-17), the time derivatives of X(J) may
be obtained by differentiating equation (B-34) with respect to Ej, j=1, 2, 3, 4.

Then

@ . . N s . .
G R € I € DI ) F L €D B ) M G D)
o) nl "o nl'o n2 ‘o n2" o n3 o b4 "o
since X§3)= iéj)= 0. The recurrence formulas of subsection B.2.3.1 have been

used to calculate bn and bn forn =1, 2, 3, 4, and 5 in subsection B.3.5.

1 2

Let

T
G (G G G (@G)
Bn bnl ? bn2 : bn3 i bn4

Then the results may be obtained by directly differentiating the formulas of
equation (B-34). To aid in this derivation it is required to have the partial
derivatives of the elements defined by the formuals of set I. A direct calcu-

lation gives at t = to

) =y - , j=1,2, 3, and 4
Y
= ( 5 j=3, 4
o3 - X , i=1, 2
=0 ’ j = 3’ 4
9](.:]) XJ ) 1= l’ 2
= O s j = 3, 4
eéj) =0 ’ 1= 1’ 2
" %52 ’ 3=34
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egj)::o ? J=1)2
= j_z N J=3,4
623) =0 , j=1,2, 3,4
'eéj) = 1, , j=1, 2
=)\j__2 ) j=3,4
eéj)”’ , j=1,2
=2).\J_2 s j=3,4
=b.A.
b(J) = .,__l,_.]_z s J = l, 2
1 A
= 0 s j=3:4
béj) =0 > j=1,2,3,4
b, X.
b:gJ)=—g'§g’ s J=132
R
=0 > j=3s4
. 26 .
b = (2 - ) L i1, 2
A A J J
1
= - = A j=3,4
2 "3-2 ?
A
() _ 2 403 465 . bubg
b = —1 3ub,0 -~ —=+ 6 A, +—= A, ~ X, , j=1, 2
5 A4 3 AZ 6/ 73 A& h A2 i
26
=2 (5 - =
= A2<A2 )‘3—2 )\3—2 s J 3, 4
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p @) - 2 Fub?’/e {1265
6 12 Az \\ 12
2ub

-+

56,6 600
4 5 :
- 5~ 5 ]Xj + 3ub3Xj}

R A

2_

=

+ ub, F’ez'
R

1] }

In terms of the above formulas j = 1, 2, 3, 4

NCD IO
o 1
@] [ (0 @ |
Fb1 Fbl b4 + Fblb4
)
0 Fbl
() _ (3 .
BZ = > 33 = >
0 0
0 0

B-33

1262

A

2 36 :
96 6
Ub 2 - ———;>'+Fb - —
2 2 < 22 1 2

(1) _
B, =

206
7 (o ""3.2 "3‘(3“ '”**f)x
A A A

2 30,
2-—~—5 +Fbl—A—2—+

Gt

3ub

(3 _ 2
Fb1 (b5 Zub2 + b4)

(1) (3)
+ Fbl(b5 + 2b4b4 )

(3 &)
2(Fby"’b, + Fbyb,~")

(GD) : (I
6ub3 Fbl + 6ub3Fbl
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G4 12ub 84 3 ‘T
Fbl b6 + ——R-i-—— + 3b4b5 - l}].lbzb4 + b4
) 1 ) _ 1) 2.(p
+ Fbl( 6 + 3b b + 3b4b5 4Ub2b4 + 3b4b4

Fb(J) <3b4 - 2ub, + 3b> +Fb <6b b(J) + 3b§3)>

b 106,60
G —2 o4
Fbl RZ 261 + 62 Rz + 2b3b4

b
2 &) ) _ 4 1 (1 ,
+ Fbl<:R2 20,77 + 8, Z + 2b3°7b, + 2bb, 6u

+ 12ub Fb(J)

()
12ub,” ' Fb 3

1

B.3.5.4 Some Auxiliary Formulas

It is required to have expressions for various time derivatives of PJ(X ) and

P (X ) defined by equation (B-33) in order to complete the formulas for ¢, a, and

B. It is required to have

Using the formulas for Bn and

(o]

x®™ g
[s)

PV ), 3 -

1
l-—-l

“»

-
£
o}

[
ft

-

w
W

n),; .
P; )(XO), 3 =1, v, 43 n=1, ..., 4.

@

Bﬁj) calculate

ml nl nl 1" n2 m2 nl

+b b A x() l:b b4 4 p b(J):le+l:b b4 4 p b0 )] 8,

- p b4 )A2+b P 2y +l:b ) 4y b(J):l 8¢

ml n2" o 1"n3 m3 nl 1" n4 m4 nl

#b b A a9 b 0Bl 41y b B(J)+|:b )

nl"o "o m2 n2 6 276 2 'n3
(i) 1 (3 (1) 6 (3)
+ b 3b 2 62 +1b 2b 4 + b b n2 6 -+ b b 16 + b 3b 2 2

(3),2 (1 ) (1)
+b3b3R +[:b3b4+bb :} +b b 16,7 +b b 0
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Proceeding with Xéj) = }.((J) =0, =1, ..., 4

P (X)) = 0
B (X)) = 0
e - v w3 ) (1
Py() = X tX 77 = bygbyy”  + bysbyy
P.x ) = 3% x93 4 x -x@
jio o "o oo
- (i) ) &D) ) (1
= 3(%14b21 61 + Byybyi®177 ) FDpgbgy 8y F bysba 8T 4+ bygby 6,
b ) _ ek D 4 i i) 4 g GO
j o o “o o “o o “o

- G),2 .2, (3) (3 (3)
=6 <:bZlb21 A" + bo AN + byuboi’0 + byabo 6 + 4 (b, bay76,

(GD) i) &) (i) &P
+ Dy4Pgp 09 F byybg 0077 by ba 8577 )+ by, 70 + bygb570,

#b b3 wp b 0wy b 3IR2

03741 0374272 03743
(iv) = (3),2 2 ,(3) (3) (3)
Py (X)) = 6Dy by AT + 6by A A+ (6b) b,y 7 + bosby37 ) 8

&D) &D) ) (&D) (i)
+ <%b23b21 + bogbyy” )07 F 4L Pybay70) + by bay0g + By by

&D) (3) &D) (3,2
+ Dy pbgo0577 | Hbab, 570, + Dygb, 8,77 F bygb, 3R

P (x ) = 10x x4 10x X9 4 sx xEVI U g x (D@
i o o "o o o o "o o
- (3),2 3 () (3) (3)
- 10 <P31b21 2%+ by by a9 4 bb A, + b b de 4 b b330

L (3) @) (i) (1,2
# by i alI + bbo 6t 4 b b, 6090 ) w0 (b, 0530
) i) @ &D) (i)
T boyPyg AT A+ by by 05 by bk AT F bygbay’e + bygbane,
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’ 3) ) @G) 3) (3)
F bygbgy 877 + bygba 0,77 ) 5\ byyby5704 + by ybu3T0, by 0

&D) &) &D) () ()
+ by Pp0g7 7 | Fbpgbey 8 F babn0, F bygbe 877 + bysbg,0,

(3),2 (3)
+ bysbg3 R+ bygbgy 70,

31721 21731 31721 32721
(3) (3) ) &) &)
+ by bg” |05 + |10 (bagboy” + bygbay” ) +boaboy” | 6 + 10bg, byyTe
. ., (9D (3)
+ 20bg,b,o X *A ST+ | 10 (bygbo + bygba ) +boabe, | @

&) G3) (3)
+5 [2b34b21 + b14b41] 6,77 + | 10b,3ban” + bysbos’ 18,

= 10 [p b3 4 5. 589 |42 & 20010908 + 10 [b p(3)

(i) (3)
* [?0b23b32 * bo3b52:l 627"+ 5P14by37 %5

% [éb b3 + b b(j)] 6, + 5b.,b, 83 + b p{I)g2

14943 0354 | %4 14°42%3 0353
P (k) =0
e N e eo(d) &P) &P
Py) = XX 70 = by bor” 1 F Bibyfy
P x) =2x -x9) 4 x XD
) o “o o "o
_ (1) 52 2, () () 3 &)
=2 <}21b21 # o5 APy 4 b, 66 + b6, 0 +b b6,
GD) &D) (1
+ by,bgp70g + byybg 8777 + by bgs0g
T R O IR C RN C oY e)
jio o "o o "o o "o
_ (3),2 i) ) (i (3>
=6 (%31b21 A7+ bgibog AL+ byyby770, + bygbyy 70 + by by770,
N G D] (3) (3 (3),2
F bgybogAo AT T bggbyy8 7T+ bgby 677 )+ 3 byybgyTa

() i) N GD) &P
+ bygbgy AT+ by b 0, + Dy bk TASTT + BygbayTO
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Pj (XO) =
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&P @ &D)
T bygbgn8y F bygbg 87T 4 bygbay0,77 ) 4by,by 58,

(i) i)
MRS VAIA L N S PLIPA RN

3) (3)Y) 42 (3 (37
3 <?b3lb21 + byybay” ) AT+ 9bg by A+ 3( 2Dy by

3) 3) &) (1)
+ by bon’ ) 8.+ 3 {2byabo77 4 bygbay” ) 6 4 6by,bo770,

L, (@) )
+ 6byobor A A ST+ 3 (2bggbyy F bygba, J 00+ {6by, by

&P 2(3) ) i
+ b14b41> 077 F 3byybgod tASTT F 3bygban70, 4 3D,5bg 00

) i)
+ D14by378, F bysby o0,

1053 @) 4 jox X9 4ok V) 4 g xO@D
O (o] o O o O 0O O

(3,2 G ) () (1)
10 (}41b21 A 4 by by A A + b, oD)1785 + bygby770 + b, D030

> 3 Gy Gy G3y,2
F byoborty A b43b_21e +b,4P000977 )+ 10 by baytA
(3 G ) LGP &)
+ Dy by A A F bay by F baobay {65+ byybaod ta 7T + bygbayTe
+0,,00 b b2 a8 wp b B 4Ly p )

34731 1 3273170 "o 32732 "6 2 "32732°6

3 (3 (3) &D) (3)
+ Dygbgn 0y + byba570g F bygbg 0T + bygbg 8,77 + by, byi6y

+

) (G 2 &) (1)
bypbagfs™” |+ 4\ byybyy” T+ byyby g A A + by b 500
)

& () () ()
* Po1P42%0 "0 +'[b21b43 *basbyl” | O bysba78y

3 3) (). 2 GD)
+ Bygbyg8 77 F bygb 00,77 F bygb R ) 4Dy, Dy 70y

&D) &D) &D) &D)
+ bybg3 05 F byubg3t0, + by b6y + by b0y
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2<5b b 45 ) 4o b(j)> A%+ 2 <5b b

41721 31731 21741 41721

2 (3) (3) (3)

+ 5byy + 2b21b41> AN+ 2 <s,b42b21 + 5| byyboy
(3) (3) &) RRSD
+ by boy” [+2b,,b 57 J 85 + 2| 5bgby7” + Sbygbay

e

(i) 3 &D) (i)

2 [b21b43 + 1,037 Jo + (100,58 + 100,03
&D) S G D

b14Ps1” )01 + 10 (byobyy + Dgobyy JATASTT + 2{ 5b,5byy

+ 2.5, V69 + [10b, b +b. b e

23%41 44021 14051
(@) 3 2 ()

(}Ob3lb32 ) Ay A3 4 10b,b 300 4 sb2 6

3232 % 32%
2 <5b v) 4 2 b(j)> 0, + (lOb p3) 4y b(j)> 6,

+

+ 1Ob34b31

+

Sbysbgy

+ 4b21b42

=

+

33P32 2342 34P37 14P52
&D)
2 <5b33b32 14 52) 04

+ b, b
. (3),2 &P)
+ 4byaby3"RT + by be3t0,

ot

eéj) + <10b b

+ 2b23b42> 34039

Making some substitutions

B, (X.)

B (X))

(iv)
P 3 &)

= 6r%b. 082 & sziA(j)A +

o ()

()
Fb,"'0 + Fb;

(3)
3 <Fbl N

(3)
+ b6,

&
+ Fb 0

>> + Q@‘bfj)b4 ¥ Fblbéj)> 6, + Fblbae(j)
&D) (1 ()
(b“ ~ 6uFb,b; ) 6 + <b4i

&) () (3) (3) ()
lb2> 87 + 4 Q:»Bl 6, + Fb;""64 + Fbib 0,77 + Fb 0, )

11

- 6uFb

(3) (3 (3);2
+b,570, + 2Fb,b 0,77 + b3 R
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(v) - 2 &) G\ ,2 2.2, ), 2, 1D
P70 (X)) = 10 {F"b b, b7 + Fbybyy” ) AT + 2087b7b, AN A + 20F7b, b, 0

G). i) @Y 4 ()
+ (10 l:Fbl by = ubybid’ | + 530 ) 6~ 10 b Eb I e,
2.2: _(3) _ i)
+ 20F%bA AP+ <10 l:Fblb33 ub,,Fb. b 4:] + b51> 6
_ i) 3 _ 1
+5 <b4l Zuszbl> 6,9 + (b5d) - 100,037 6,

- () (3) (3) (3>
+ <b52 1ouszbl>e2 + 5b,5°05 + { 5b,37 + b0 )8,

2

5

(3) (1)
+ 10Fb,b,6,°" + b3 R

1}

Fbij)a + Fb. o

Pj (Xo) 1 171

b (% 2, (3,2 . 52,2, (), _ G, _ (3
P (X)) 2<F b b " A" + F"bIA A = ub,Fb 7’8 - ub,Fb,o

+ 3% 4 bej)e + Fb.b,eld) & Fb, 6

31 71 3 17471 3

it
W

(% 2 (3 ()Y ,2 2,2 (3) 2, (@
Pj(XO) <2F b.b,b,"7 + Fby by ) AT + 9F byb A A + 9F b b "0,

zbii Pl
o] (o]

) &) _ D
+3 <2b33Fb1 - ub,Fb 37 ) o ~ 6ub,Fb 6, + 6F

- &) - (1)
+ 3 { 2by4Fb, uszbl>e +{b,, = 6ub,Fb, )6y

2,2 .5G) _ 3y _ (1) (3) (3)
+ 3F bl}\o )\o BubZFbl 62 3ub2Fb162 + b43 6, + 2Fblb463

N

174731 1741

+ 5F2b2b2>A(j)A + 2 <15F2b b b9 4+ 9Fp b(j)> 0y

Gv) 5y = (3) (3) (3)) ,2
PR = <5Fbl b,y *+ 5Fb b by’ + 2Fb b >A + 2 (7}?blb41

174 17471 1731

(1) (3) (3) (3)
2 <5Fbl by + 5Fb " bag + 2| Fbob,3” - ub,b, 77| )6

) (3) (3) 2,2, ., @)
(lOFbl by * 10bg,boy” + by )6 + 30EDIb A ex

+

+-
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- &)
+ 2 <5Fblb43 + 5Fb,b, b, 2ub2b41> 67 + | 10Fb b, ,

(3) 2,205 @) 2, (@
+ 10Fb;b,bs, + b51> 6777 + 18F bb,A A 7 + 10F b bi76,

2.2 (3) &) _ (1) _ )
+ S5F b166 + 2 <5Fbl b33 211132b42 82 + lOuszbl

(3 &) _ (3)
+ by’ )8y + 2( 5Fbibyy - bubyFbib, 16,77 + ( by, - 10ub,Fb, ) 8,

- (3)32 (3)
4ub,b,3°R” + bo3’0,
B.3.6 SUMMARY OF EQUATIONS AND FORMULAS

The necessary formulas that provide an improved approximation, under proper

conditions, to £ by Newton's method are listed here for convenience.

NOTATION

X = position vector

X = velocity wvector

A=

_i _ (- Lagrange multipliers

m = mass

R = mass flow rate
R = radius at cutoff

co
Vco = velocity at cutoff

t0 = initial time

tf = final time

1 = Gaussian gravitational constant
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Initial Inner Products:

Set 1

R2 = XX
v2 = %%
A2 = A*)
8 = X-A
8, = X+2
8, = X-A
6, = X2
6, = XX
65 = A'i
8, = AtA
Coefficients of Motion and Fuler-Lagrange Equations

by =%
b
b3=%3

R
{’1=b1b4=b1<ﬁ'?§’>

A
. ﬁﬁ 1
by = b5 =75 = =5 | 3ubge + O
m A

b o280 L
bs'bé‘ms - 2[3“b3 2[
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Set II
Radius Equation:
Fl = Rl + RzAt + R3At2 + R4At3 + RSAt4 + R6At5 =
At = tf -~ tO
R1 - R2 " Rio
R2 = 264
R, = Fb.® - ub R2 + V2

2

1
R, =24drb. (bo +0. + 36 )- ub.o
4~ 3 1\ "4 2 1 LA

1 2 2
R5 = E{Fbl <|:b4 + b5 - Zubz] 6 + 4b4el + 2b462 + 463 + 3FblA )
2

e
- ub V2 -3 S ub R2
2 RZ 2

1 3 24ub,y0, 2
R, = 25 4Fb, ( [b, + 3b,bs - Zubyb, + b + — + [ij4 + 5b,

2 2
- 8ub2] 61 + [}b4 + 3b5 - ﬁubz:]ez + 10b463 + 10Fbl [65 + b4A:I>

2

R

2
3ub.6 56
28 (392 DA 3 r? )4 0%
2 2 204

Velocity Equation:

2 3 4

f2 = Vl + VzAt + V3At + V4At -+ VSAt =0
2 2
Vi=V -V
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= 2 <Fb161 - ub294>

2
2 2 2 3%,
Fbl —2pb26 + b461 + 63 + FblA - ubz VT o~ ubzR - R—z—

1 Sub,0 i 2
"3— Fbl 3 "—-;E——‘ - ub2b4 0 + b4 + b5 —f5ub2 81 - 3ub262

2
3ub,6 56
2 2°4 2 4 2
—e - — - R
+ 2b463 + 3Fbl [65 + b4A _>+ Rz <3V Rz 3pb2 >
2.2
+ u bze4 }
1 15b 6 600 4
1z Fbl 2ub -2 b + b lZub 4 + 12Fb b3

2 48ub
+12L}e +[—-———2—‘i 10ub. b +bZ+3bb +b6‘J 0,

RZ 274 475

36
+ 8Ub2 [;—2—— - bé] 2 [Sb + 3b - 8ub ] + 14Fb b465

3ub 2
+ 3Fb 66 + [71)4 + 4b -~ 8ub :I ubzR
2
__‘L
2

56
R2

2 2
+ pbz [V - ubzR] }

2 2 292
4 2 2 4 ' 2 2 4
VT - 3ub2R - 2 2V° - ub R™ - 5

Orthogonality Equation:

3 2 3,5 4
R2 + R3At + > R4At + 2R5At + 5 R6At =0

er—l
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Newton-Raphson Iteration Formulas ~ (Cramer's Rule)

210
A0
e= || » Et= g+
A0
te
det(Ai)
by = - Feray » t=L 2.5
. oL o
det(a) = 8 (o x | % A
© %13 ™14 | %o
By
det(A) = B, X - :, )
By
det(Az) = —8)\10X0' g
4
i 8,
det(a,) = 8 _* (B,X + X, 4
) B,
det(a,) = -8A | 8% - Xy 5
g z
det(a,) = -8) Tk + | 23 724 |«
13 %14 | °
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Set IIT
Formulas for g, o, B.
L., = C(l) (2) At + §(3>At +oean (6)
ij = “ijo T "ijo %1508
1 _ @) _ (3)
gijo - Cijo N C130
4y _ 1. -
Cijo =% [P (X )P (X ) P (X )P X )]
) _ (iv) -
Cijo_24 1[2}? (X )P (X) 2P (X )P (X)+3P (X )P (X)
.ee . * l
- 3Pi(Xo)Pj (Xo)] 2% 2|:10P (X )P (X ) - 7P (X )P (X ):|
- 2=V P (X )P x)
T 16 14
(6) _ _l__ _ 2 . (iV) . car N s _ .ot s ®
Eijo = %0 Rll: 2 Pi(Xo)Pj (XO) -+ SPi(Xo)Pj (XO) SPi(Xo)Pj (XO)
T (iv) (iv) 5 (v)
+ SPi(XO)Pj (Xo) 5P (X )P (X ) + = P (X )P (X )]
éo 2[1113 x_ )P &) + 23P, (X )P X)) - 23P, (X_ )P )
(iv) 1 73 )
+ 18P, (x )P X ):I ~50 1[2 Pi(Xo)Pj (XO)]
60 v, [131? (X )P X ):I 3 3[1? (X )P X )]
o= o P g 0$8) ¢
ij ij 130 ijo
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the OL:%I?_) are obtained by replacing in C:EJZ) R‘K by KRK+1 and VK by KVK+1'
(1) (2) 3),,2 (4) (5) o
Bi Bio + Bio At + Bio AtT + Bio t + B
(l)
10
(2) B !-_ B . . _ . . N
B =5 Ry _2R3Pi(XO) VzPi(Xo) |
(3) _ -]; [~ e . _ ese — _ l .o N .ee
Bio” =% Ru | PRePi(K) - VpPy KD -3 Yy l:zRBPi(Xo) RZPi(Xo)]
1 " . . 1l )
+ 5 R, [RzPi(XO) - vai(Xo)] 5 Ry [6R P, (X ) - 2V P (X )]
+ R [1 P(X) R.P(X)J
212 171
) _ 1 (iv) 1 PO ~ (iv)
B =13 l[ZR P, (X ) = VB (X )] 17 Yy [2R3Pi(xo) R,P. (XO)]
+ir |vP (x) - RP. (X )] + LR [ég,p (x ) - 2v, P (x )]
6 2| '21i% 271 4
l ™ e “ep 1 . .. e
-7 _6R4Pi(Xo) - 2R3Pi(XO)] + 5 R, [2V3Pi(xo) - 2R3Pi(XO):|
l [ ° . X1 l
+ 7R _6R4Pi(Xo) - 2V3Pi(X0):| + Ry [2 2P X)) - 2R, P (X )]
l - - - .o 1 - L] °
+ Ry _24R5Pi(XO) -~ 6V4Pi(X0)] + 3R, l:—z- VP (X)) - R2Pi(Xo)]
Gy _ 1 (iv) (v) _1 (iv) _ ()
Bio “a8 ®1 [%R3P SO (Xoi} 48 V1 [%R3Pi (X,) - RyP; <Xé§

1 (iv) (iv) 1 5 vy L (iv) T
+ 2% R2 [VZP (X ) - R P X ):] + 12 R1 [6R4P1(Xo) 2V3Pi (XO)J

l_—- e _ (iv) -]; sy - _ LEx
- 17 Vl [6R4P1(Xo) 2R3Pi (Xo):] + 3 R2 [ZRBPi(Xo) 2V3Pi(XO)]
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2 ~6R4Pi(Xo))- 2V3Pi(Xo):| -

+
cof
P
o=

—

v, [6R4Pi(Xo) - 2R3Pi(xo>]
1

3 2V3Pi(Xo) - 2R3P1(Xo)] + F Rl [24R5P1(X0) - 6V4Pi(Xo):l

+
N
o)

e nae 1 .o (13 .
1 24R5Pi(Xo) - 6R4Pi(XO)] + A R2 [6V4P1(X0) - 6R4Pi(xo)]

b

1
oo
<

- .. - - R
2 _24R5Pi(XO) - 6V4Pi(Xo)] + 2R4 I:—z- VlPi(Xo) - RzPi(XO):]

+
o\
]

st

] . . l . . .«
+ 12 Rl [120R6P1(X0) - 24V5P1(X0)] + 4R6 I:‘z" VlPi(XO) - RZPi(XO):|
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Appendix C
TABLES OF LAGRANGE MULTIPLIERS

In Section V various numerical tables were presented which listed the
thrust direction angle y and its time derivative i for several of the guidance
formulas discussed in Sections III and IV. However, the guidance formulas
were derived to calculate directly the initial values of the Lagrange multi-
pliers A and A from which x and i were computed. It is felt that a deeper
understanding of the merits of the guidance routines may be obtained by

studying the corresponding multipliers.

Here the multipliers corresponding to Tables 5-2, 5-3, 5-4, and 5-5 are

presented in Tables C-1, C-2, C-3, and C-4, respectively.
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Table C-1. SILBER-HUNT (S-H) EXPANSION

| : . 2 . ?
CASE A] Az A] x 10 AZ x 10
"True Values .519 -.855 .284 .733
Nominal .974 .228 ~-.178 -.456
S-HN =1 .919 -.393 -.016 -.110
S-HN=2 .704 -.710 .151 .340
[ True Values .503 -.865 310 .823
Nominal .974 .228 -.178 -.456
S-H N = .918 -.397 -.272 -.151
S-HN=2 .702 -.712 147 .324
 True Values 911 412 -.268 -.700
Nominal .974 .228 -.178 -.456
S-H N =1 .919 .394 -.251 -.646
S-H N=2 .907 421 -.269 -.700
"True Values .919 .395 -.285 -.765
Nominal .974 .228 -.178 -.456
S-H N =1 .921 .390 -.265 -.697
S-HN=2 .909 .418 -.290 -.775
True Values .976 -.216 -.012 -.032
Nominal .974 .228 -.178 -.456
S-H N = .941 -.339 .059 .165
| S-H N =2 .949 -.316 .027 .069
[True Values .930 .367 -.168 -.380
Nominal .974 .228 -.178 -.456
S-H N.= .947 .321 -.136 -.279
S-H N =2 .915 .404 -.191 -.450
[True Values 914 407 -.165  -.357
Nominal .974 .228 -.178 ~-.456
Is-HN=1 .945 .327 -.122 -.227
S-HN=2 .889 .459 -.199 -.460




NORTHROP-HUNTSVILLE

TR-792-9-547.

Table C-1. SILBER-HUNT (S-H) EXPANSION (Continued)
. . ya
CASE A] Az A] x 10 12 x 10
True Values .963 .268 .003 .001
8 |Nominal .974 .228 -.178 -.456
S-H N = T .939 .343 .047 121
S-H N = 2 .930 .368 .049 .128
True Values .983 .184 =,299 -.903
9  |Nominal .974 .228 -.178 -.456
S-H N = 1 .999 .050 -.194 -.575
S-H N = 2 .994 .110 -.245 -.737
True Values .966 .258 -.358  -1.086
10 Nominal .974 .228 -.178 -.456
S-H N = .999 - .446 -.208 -.625
S-H N = 2 .987 .162 -.283 -.858
True Values .641 767 -.332 -.820
11 |Nominal .974 .228 -.178 -.456
S-H N =1 .652 .758 -.349 -.891
S-H N = 2 477 .879 -.384 -.978
[True Values .628 .778 -.358 -.909
12 |Nominal .974 .228 -.178 -.456
S-H N =1 .654 .756 -.361 -.935
S-H N = 2 454 .891 -.415 -1.089
True Values .988 152 -.124 -.300
13 |{Nominal .974 .228 -.178 -.456
S-H N = .990 .134 -.107 -.250
S-H N = 2 .990 .144 -.123 -.303
True Values .81 .585 -.215 -.481
14 [|Nominal 974 .228 -.178 -.456
S-H N =1 .692 722 -.264 -.610
S-H N = 2 .850 .527 -.148 -.270
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Table C-1. SILBER-HUNT (S-H) EXPANSION (Concluded)

. 2 . 2

CASE A] A2 A] x 10 AZ x 10
"True Values .806 .592 -.200 -.428
15 | Nominal .974 .228 -.178 =.456
S-H N =1 .689 .725 -.251 -.565
| S-H N = 2 .844 .537 -.123 -.178
True Values .990 1471 -.132 -.335
16 |Nominal .974 .228 -.178 -.456
S-H N =1 .991 .129 -.121 -.301

[S-H N =2 .991 137 -.132 -.336
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Table C-2. GUiDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES

. 2 2
CASE _ M Ao Ay X 10 Ay X 10
[Inversion
N=1 .986 -.160 -.108 -.353
N=2 .870 -.491 .024 -.020
N=3 713 -.700 147 .324
1 Polynomial Sol.
N=1 .986- -.160 -.108 -.353
N=2 .813 -.582 141 .355
*N = 3 .976 .216 -.248 -.712

Newton-Raphson

2 Iterations .576 -.817 .280 741
(Damped on 2nd)

Inversion
N =1 .998 -.060 -.149 -.460
N =72 927 -.372 -.042 -.207
N=3 .806 -.591] .073 .109
2 Polynomial Sol.
N=1 .998 -.060 -.149 -.460
N=2 .854 -.519 .132 .351
*N =3 .803 -.595 .058 .054

Newton-Raphson

2 Iterations .667 -.744 .226 .586
(Damped on 1st)

[Inversion
N=1 .938 .344 ~-.296 -.577
N=2 .920 .391 -.252 -.650
N=3 913 .406 -.272 -.681

Cc-5
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Continued)

. 2 . 2
CASE M Ao Ay X 10 Ao X 10
3 Polynomial Sol.
N=1 .938 .344 -.296 -.577
N=2 .929 .367 -.258 -.679
N=3 .906 422 -.272 -.713
Newton-Raphson
| 2 Iterations 910 413 -.269 -.703
[ Inversion
N =1 .939 .342 -.235 -.606
N=2 .925 .379 -.263 -.693
N=3 .920 .390 -.276 -.735
4 Polynomial Sol.
N=1 .939 .342 -.235 -.606
N=2 .967 .252 -.238 -.650
N=3 .897 .440 -.307 -.829
Newton-Raphson ‘
| 2 Iterations 918 .396 -.284 ~.762
[ Inversion
N =1 .926 -.377 .082 .244
N=2 .953 -.302 .016 -.036
N=3 .999 -.038 -.112 -.328
5 Polynomial Sol.
N=1 .926 -.377 .082 .244
N=2 .981 -.190 -.013 -.028
N=3 .979 -.200 -.016 -.044
Newton-Raphson
2 Iterations .986 -.163 -.044 -.131
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Continued)

CASE . Ay i, x 10 %, x 107
_Inversi on
N=1 .855 517 -.195 -.434
N=2 .964 .263 ~.129 -.276
N=3 915 .401 -.191 -.454
6 Polynomial Sol.
N =1 .855 .517 -.195 -.434
N=2 .922 .387 =172 -.387
N =3 .929 .367 -.167 -.378
Newton-Raphson
|2 Iterations .927 .374 -.170 -.388
[Inversion
N=1 724 .689 -.219 -.469
N =2 .999 -.026 .007 .116
N=3 .846 .532 -.273 -.708
7 Polynomial Sol.
N=1 724 .689 -.219 -.469
N=2 .887 .456 -.173 -.374
N=3 912 410 -.165 -.357
Newton-Raphson
2 Iterations 914 .405 -.167 -.367
| (Damped on 1st)
Tnversion
N =1 .942 -.335 .043 .122
N=2 .925 -.379 .056 .150
N=3 .978 -.204 -.036 -.116
8 Polynomial Sol.
N=1 .942 -.335 .043 .122
N=2 .969 -.244 -.002 -.009
N=3 .966 -.255 -.001 -.011
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Continued)

. 2 . 2
CASE A Ao Ay X 10 Ay X 10
Newton-Raphson
| 2 Iterations .967 -.253 -.007 -.033
-inversion
N=1 .954 .297 -.276 -.778
N=2 972 234 -.290 -.874
N=3 .978 .205 -.299 -.895
9 Polynomial Sol.
N =1 .954 .297 -.276 -.778
N =2 .997 .070 -.252 -.779
*N = 3 .963 . 266 -.313 -.945
Newton-Raphson
|2 Iterations .980 .194 -.298 -.896
[nversion
N=1 .933 .357 -.356 -.833
N=2 .951 .308 -.339 -.999
N=3 .958 .285 -.350 -1.049
10 | Polynomial Sol.
N=1 .933 .357 -.356 -.833
*N = 2 .998 .044 -.268 -.848
*N = 3 716 .697 -.609 -1.840
Newton-Raphson
| 2 Tterations .960 277 -.354 -1.07¢
Inversion
N =1 .653 .756 -.346 -.877
N=2 .459 .888 -.387 -.99%4
N=3 .534 .845 -.352 -.875

c-8



TR-792-9-547

NORTHROP-HUNTSVILLE

Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Continued)

. 2 . .2
CASE M Ay Ay X 10 Ay X 10’
11 {Polynomial Sol.
N=1 .653 .756 -.346 -.877
N=2 .620 .783 -.352 -.892
N=3 .639 .768 -.338 -.843
Newton-Raphson
2 Iterations .630 776 -.329 -.809
Tnversion
N=1 .692 721 -.345 .880
N=2 .496 .868 -.407 -1.065
N=3 .487 .872 -.404 -1.053
12 {Polynomial Sol.
N =1 .692 721 -.345 .880
N=2 .631 775 -.372 -.963
N=3 .630 776 -.363 -.927
Newton-Raphson
2 Iterations .b83 .811 -.301 -.982
[Inversion
N=1 .994 .105 -.079 -.158
N=2 .983 .181 -.153 -.395
N=3 .989 141 -.108 -.249
13 |Polynomial Sol.
N=1 .994 .105 -.079 -.158
N=2 .984 172 -.124 -.298
N=3 .987 .159 -.125 -.304
Newton-Raphson
|2 Iterations .987 .159 -.125 -.306
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Continued)

. 2 . 2
CASE M Ao A X 10 Ao X 10
Enversion
N=1 .554 .832 -.290 -.689
N=2 977 .210 .078 457
N=3 915 402 -.249 -.660
14 |Polynomial Sol.
N =1 .554 .832 -.290 -.689
N=2 J72 .634 -.230 -.525
N =3 .811 .585 -.217 -.488
Newton-Raphson
2 Tterations .805 .593 - . 249 -.602
ﬁnve}éion
N =1 410 911 -.289 -.67¢6
N=2 437 -.899 .635 2.004
N=3 .945 325 -.310 -.902
15 (Polynomial Sol.
N =1 410 911 -.289 -.676
N=2 727 .685 -.222 -.485
N=3 .802 .597 -.203 -.437
Newton-Raphson
2 Iterations .839 .542 -.193 -.417
| (Damped on 1st)
Enversion
N=1 .994 .101 -.107 -.261
N=2 .987 .154 -.141 -.365
N=3 .990 .138 -.129 -.326
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Table C-2. GUIDANCE FORMULAS WITH DERIVATIVES NUMERICALLY INTEGRATED AND USING
NOMINAL STARTING VALUES (Concluded)

' . 2 2
CASE x] Az A] x 10 AZ x 10
16 | Polynomial Sol.
N=T1 .994 101 -.107 -.261
N=2 .989 .147 -.132 -.334
N=3 .989 .142 -.131 -.334
Newton-Raphson
| 2 Iterations .989 141 -.131 -.335
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Table C-3. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING
REFERENCE DERIVATIVES AND USING NOMINAL STARTING VALUES

' . 2 . 2
CASE M Ao Ao x 107 Ay x 10
=
Polynomial Sol.

1 N=1 .987 -.160 -.109 -.355
| *N =2 .316 .949 -.208 -.344
r-'Po1ynom1'a1 Sol.

2 N=1 .998 -.595 -.150 -.463

*N = 2 .840 -.543 .132 341
Polynomial Sol.

3 N =1 .939 .344 -.228 -.577
| N=2 .933 .360 -.259 -.684
_Po]ynomia] Sol.

4 N=1 .939 .343 -.236 -.607

N=2 .960 .278 -.246 -.665
-Po1ynomia1 Sol.

5 N =1 .925 -.379 .083 .245
. N=2 .982 -.191 -.016 -.036
PPo]ynomia] Sol.

6 N=1 .857 .515 -.195 -.433
. N=2 .921 .390 -.172 ~.386
“Polynomial Sol.

7 N =1 .726 .687 -.218 -.467
. N=2 .893 .449 -.173 -.374
'Polynomial Sol.

8 N=1 942 -.337 .044 .123
| N=2 .964 -.267 .006 .013
-Polynomial Sol.

9 N=1 .955 .297 -.277 -.782
. N=2 .999 .052 -.248 -.770
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Table C-3. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING
REFERENCE DERIVATIVES AND USING NOMINAL STARTING VALUES (Concluded)

. 2 - 2
CASE M Ao A1 X 10 Ay X 10
-Polynomial Sol.

10 N=1 .933 .359 -.298 -.836
| N=2 .998 .645 -.271 -.848
-bolynomial Sol.

11 N =1 .653 757 -.347 -.876
| N=2 .632 775 -.353 -.892
Polynomial Sol.

12 N=1 .692 722 -.346 -.880
| N=2 .634 774 -.375" -.971
Polynomial Sol.

13 N=1 .995 .103 -.079 -.158
| N=2 .985 172 -.126 -.303
-bo]ynomia1 Sol.

14 N =1 .554 .832 -.289 -.688
| N=2 767 .642 -.232 -.528
'bolynomia1 Sol.

15 N=1 A1 911 -.289 -.675

N=2 .745 .667 -.221 -.481
Polynomial Sol.

16 N =1 .995 .099 -.107 -.259

| N=2 .990 .144 -.131 -.330
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Table C-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING
- REFERENCE DERIVATIVES AND USING SILBER-HUNT STARTING VALUES

. 2 2
CASE | A Xy Ay X 10 Ay X 10
'$o1ynom1a1 Sol.
First Guid. Com.
1 N =1 .554 -.832 .284 .748
N=2 565 -.825 .270 .670
Second Guid. Com.
N =1 522 -.853 .288 .748
N=2 .525 -.851 .286 .743
-bolynomia1 Sol.
First Guid. Com.
2 N=1 .536 -.844 .308 .825
N=2 .550 -.835 .292 775
Second Guid. Com.
N=1 .508 -.862 312 .831
B N=2 .509 -.861 312 .830
—Po1ynomia1 Sol.
First Guid. Com.
3 N=1 911 413 -.269 -.700
N=2 911 413 -.269 -.700
Second Guid. Com.
N =1 L9711 412 -.269 -.700
N=2 911 412 -.269 -,700
Polynomial Sol.
First Guid. Com.
4 N=1 .917 .400 -.286 -.769
N =2 .918 .398 -.286 -.766
Second Guid. Com.
N=1 .918 .396 -.285 -.766
| N=2 .918 .396 -.285 -.766
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Table C-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Continued)

| . 2 . 2
CASE ' A] AZ A] x 10 Ay X 10
Polynomial Sol.
First Guid. Com.
5 N =1 .974 -.228 -.001 .003
N=2 .974 -.225 -.003 -.003
Second -Guidance Com.
N=1 977 -.213 -.010 -.024
i N=2 .977 -.214 -.010 -.026
_Po1ynomia1 Sol.
First Guid. Com.
6 N=1 .932 .363 -.168 -.382
N=2 .932 .363 -.167 -.378
Second Guid. Com.
N =1 .930 .366 -.168 -.379
N=2 .930 .366 -.168 -.379
-Po1ynomia1 Sol.
First Guid. Com.
7 ' N=1 916 .400 ~-.168 -.368
N=2 917 .399 -.165 -.358
Second‘Guid. Com.
N=1 .915 .403 -.164 -.355
L N=2 .915 .403 -.164 -,355
-501ynomia1 Sol.
I First Guid. Com.
8 N=1 .960 ~-.279 013 .033
N=2 .961 -.276 .010 .026
Second Guid. Com.
cN=1 .964 -.267 .004 .007
N=2 7 .963 -.268 .004 .006
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Table C-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE
- DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Continued)

. 2 . 2
CASE | A] Ao Ay X 10 Ao X 10
}olynomial Sol;
First Guid. Com.
9 N =1 ' .983 .182 -.297 -.895

N =2 .984 179 -.294 -.888
Second Guid. Com.

N =1 .983 .185 -.299 -.902
| N=2 .983 .185 -.299 -.902
-bo1ynomia1 Sol.

First Guid. Com.
10 N,= 1 .967 ..254 -.353 -1.069

N=2 .968 .251 -.351 -1.064
Second Guid. Com.

N=1 .966 .257 -.357 -1.083
| N=2 .966 .257 -.357 -1.083
-bo1ynomia1 Sol.

First Guid. Com.
11 N=1 .735 .678 -.248 -.543
*N = 2 .245 .970 -.280 -.601

Second Guid. Com.

N=1 .569 .822 -.365 ;.926
. N=2 .605 .796 -.350 -.877
[ Polynomial Sol.

First Guid. Com.
12 N=1 .756 .655 -.248 -.550
*N = 2 .567 .824 -.299 -.688

Second Guid. Com.

N=1 .532 .847 -.398 -1.039
B N=2 .576 .818 -.382 -.988
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Table C-4. GUIDANCE FORMULAS WITH DERIVATIVES OBTAINED BY CORRECTING REFERENCE
DERIVATIVES AND USING SILBER-HUNT STARTING VALUES (Concluded)

: . 2 . 2
CASE M Ao A X 10 Ay X 10

Polynomial Sol.
First Guid. Com. .
13 N =1 .989 .150 -.123 -.299

N=2 .988 .151 ~-.123 -.299
Second Guid. Com.

N =1 .988 .153 -.124 -.300

N=2 .988 .153 ~-.124 -.300

[Polynomial Sol.
First Guid. Com.

14 N =1 .784 621 -.217 ~,481
N=2 .797 .604 -.215 ~-.477
Second Guid. Com.
N =1 .806 .592 -.216 -.484
N=2 .807 .590 -.216 -.484

S

_Polynom1a1 Sol.
First Guid. Com.

15 N =1 773 .635 -.191 -.384
N=2 .793 .610 -.190 -.388
Second Guid. Com.
N =1 .785 .620 -,206 -.440
N=2 .787 .617 -.206 -, 440

Polynomial Sol.
First Guid. Com.

]6 N =1 .990 .141 -.132 -.334
N =2 .990 .141 -.132 -.335
Second Guid. Com.
N =1 .990 .141 -.132 -.335
. N=2 .990 . 141 -.132 -.335
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