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A STOCHASTIC MODEL OF AN INFORMATION CENTER 

Jack Minker 

Abstract 

In a recent paper [ l ]  the author investigated a stochastic model 

relevant t o  information handling centers best typified by computer 

u t i  1 i t ies  and document storage and retrieval centers. 

terist ics o f  information centers were evaluated for retirement policies 

t h a t  govern when items are retired from a primary store t o  a less 

accessible store. The results obtained assumed t h a t  the primary store was 

of unbounded capacity. 

sider the case where the primary store has a f ini te  capacity. 

The growth charac- 

In this paper we remove this restriction and con- 

A se t  of integral equations is derived for the expected number of 

items i n  the primary store. 

arrival d i s t r i b u t i o n  for documents, the request distribution, and the 

parameters associated w i t h  the retirement policy. No particular limiting 

assumptions have been made w i t h  respect t o  the form of the distributions. 

The set  of integral equations are solved for document arrivals that 

The integral equations depend only upon the 

follow a Poisson distribution. The expected value of the size of the store 

approaches the result given i n  [ l ]  as M ,  the size of the primary store, 

becomes unbounded. 



1 .  INTRODUCTION 

In  this paper we shal l  be concerned w i t h  a mathematical model t h a t  

describes a portion of the operation of an information center or a com- 

puter u t i l i t y .  Although many papers have been written concerning l ibra-  

r i e s  and information centers,  re la t ively few papers describe mathematical 

models. An extensive bibliography on papers discussing the use o f  l ibra-  

r i e s  has been prepared by DeWeese [Z]. 

graphy generally present a summary of data collected without reference t o  

mathematical models f o r  describing or  predicting the use of books. 

The papers cited i n  that  biblio- 

Jain [3] reviews some twelve mathematical models tha t  predict the 

use of books. I n  addition, Jain develops a model of his own. The 

author [ I ]  has developed a model of a l ibrary tha t  makes use of the char- 

ac t e r i s t i c s  that  describe book use to  determine the expected s ize  of a 

primary data store.  

paper. 

models t o  describe how books are used, while we would employ the resul ts  

This paper i s  an extension o f  the author's previous 

The work d i f fe rs  from previous work i n  t ha t  others have developed 

of t he i r  work to  determine the expected s ize  of a primary s tore  given a 

specific retirement policy fo r  documents. 

ments, described i n  section 2 ,  considers both the age and the use history 

The retirement policy for  docu- 

of a document. 

In the information center under investigatior, i n  this paper, and i n  

[ l] ,  two s tores  f o r  documents are considered: 

a secondary ( r e t i  rement) s tore .  Current and f requently-used documents re- 

side i n  the primary s tore ,  while less  frequently used documents are  placed 

i n  the secondary s tore .  

a primary (active) s tore  and 

A retirement policy i s  specified tha t  determines 



when an item in the primary store i s  t o  be retired t o  the secondary store, 

and when an item in the secondary store may be returned t o  the primary 

store. 

Although no particular limiting assumptions were made upon the ar-  

r ival  and request distributions, i t  was assumed t h a t  there i s  only one 

class of documents. 

tribution are applicable for a l l  documents. 

placed on the size of the primary store. 

size limitation; specifically, the primary store may contain a t  most M 

items while the secondary store may become arbitrarily large. 

Hence, one arrival distribution and one request dis- 

In [l] no limit has been 

In this paper, we shall add a 

In [ l ]  the authors were able t o  develop an integral equation expres- 

sing the expected size of the primary store. In a similar manner, the 

expected number of items in the primary store under the condition t h a t  

a t  most M items may reside there will be determined for arbitrary arr ival  

and request distributions. 

For a Poisson arrival distribution, an explicit expression i s  found 

for the expected member of items for an arbitrary request distribution. 

As M + 0 0 ,  the expected size of the primary store approaches the result 

previously obtained. 

2. STOCHASTIC MODEL DESCRIPTION OF THE INFORMATION HANDLING CENTER PROBLEM 

Because of the bound, M, on the primary store size, some modifications 

must be made t o  the model described i n  [l]. For completeness , this paper 

contains a l l  the assumptions and definitions as specified i n  [l]. 

tirement and rebirth policy i s  defined as: 

The re- 

Definition 1: Retirement Policy and Rebirth Policy 

a. An item in the primary store i s  retired i f  i t  arrived more 
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than T years ago, or i f  i t  has been i n  the primary s tore  a t  

l eas t  X years ( X  < T) and has been used less  than K-times i n  

the past Y years ( X  - > Y ) .  

In the event tha t  the primary s tore  is f i l l e d  t o  capacity, the 

oldest item i n  the s tore  is  re t i red whenever a new item arrives.  

An item i n  the secondary (or  re t i red)  s tore  i s  placed i n  the 

primary s tore  i f  i t  has been requested a t  l ea s t  K times i n  the 

previous Y years,  provided tha t  i t  d i d  not arrive more than T 

years ago. 

i n  the secondary s tore ,  e l ig ib l e  for the primary s tore ,  will re- 

place the oldest  item i n  the primary s tore  i f  i t  is younger than 

tha t  item. 

b.  

c. 

If  there are  M items i n  the primary s tore ,  an item 

d. If there are less than M items i n  the primary s tore ,  an e l ig ib le  

item from the secondary s tore  will be shif ted t o  the primary 

s tore .  

The above definit ion modifies [ l ]  t o  assure tha t  there are  a t  most 

M items i n  the primary s tore  and tha t  the youngest items are t o  be i n  the 

primary s tore .  We can now define, 

Definition 2:  P,(w, t)  : Let PM(w,  t )  be the steady s t a t e  probab-llity 

tha t  i f  an item was requested w years a f t e r  i t  arrived, i t  i s  e l i -  

g ib le  t o  be i n  the primary s tore  a t  time t. 

Definition 2 differs from the d e f i n i t i o n  of P(w,t) given i n  [ l ]  only 

i n  t h a t  i t  considers e l ig ib l e  items rather than def ini te ly  transferred 

items. 

primary s tore ,  then i t  follows tha t  P M ( w y t )  5 P ( w , t ) .  

s t a t e  the following lemma without proof, since i t  has been derived i n  [ l] .  

However, since i n  [1] no l imitation was made on the s ize  of the 

bfe may, therefore, 
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Lemma 1 :  The steady s t a t e  probability, P ( w , t ) ,  t ha t  an item requested 

w years a f te r  i t s  arrival i s  e l ig ib le  fo r  the primary s tore  t - w  years 

l a t e r  is given by 

( 1 )  P ( w , t )  = 1 when w < t < X 

( 2 )  P ( w , t )  = 0 when w < t and t < T 

t -w-Y 
+ 1 Rl(r0,w) P(w+royt )dro  when t - > X ,  t - w  - > Y and t 5 T 

0 

and where we define: 

Definition 3: R(r,u):R(r,u) = probability t h a t  the time t o  the next 

request for  an item i s  

i n  the system (u  0 ) .  Rl(r,u) is  defined as Rl(r,u) = arR(r,u). a 

r i f  the item is requested u years after i t  arrived 

Before proceeding w i t h  the derivation of the main resu l t s ,  we need 

the following definit ions:  

EN(z):  Definition 4: Let EM(z)  be the steady s t a t e  expected number 

of items i n  the primary s tore  z years a f t e r  the l a s t  arrival of a new docu- 

ment for  a f i n i t e  primary s tore  o f  s ize  M. 
Definition 5: EM: Let EM be the steady s t a t e  expected number of 

items i n  the primary s tore  for  a f i n i t e  primary s tore  o f  s ize  M. 

Definition 6: S N y i  ( z l R ) :  Let S M Y i ( z 1 R )  be the steady-state proba- 

b i l i t y  tha t  there are exactly i items i n  the primary s tore  z years a f t e r  

the arrival of a new item, for  a primary s tore  of s i ze  M y  and given t h a t  z 

i s  i n  region R .  The region R may take on one of three values: 
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z < X; X - -  < z < T ,  which we shall  condense t o  X - < z; and f ina l ly  z > T. 

In [ l ] ,  where M was real ly  unbounded, i t  was possible t o  derive the 

expected s i ze  of the primary s tore  direct ly  by f i rs t  f i n d i n g  E(z) .  

w i t h  a f i n i t e  M y  i t  i s  not possible t o  f i n d  an expression for EM(z) direct ly .  

Once the probabili t ies S M , i ( ~ l R ) ,  i = l , . . . ,M are found, i t  i s  a s t ra ight-  

forward matter t o  obtain EM(z) and EM, as noted i n  the following section. 

3. STOCHASTIC INTEGRAL EQUATIONS 

However, 

In this section we shall  derive integral equations t o  determine the 

probabili t ies S M , i ( ~ I R )  t h a t  there are exactly i items i n  the primary 

s tore  o f  s ize  M,z years a f t e r  the l a s t  arr ival  of  a new item given tha t  z 

is i n  region R. I t  will  be convenient t o  use a shorthand notation for 

probabilist ic statements. 

rec t ly  and is  easy to  manipulate. 

The shorthand notation can be interpreted d i -  

Definition 7:  (.-Notation. We shall define an in f in i t e  sequence, 

5 = (51, 5*'*..' si ,.. e ) , to represent probabi 1 i t i e s  of various different  

s ta tes ,  s ta r t ing  from the current s t a t e  <1, a t  a particular time and rang-  

i n g  backwards i n  time. The parameters si may t ake  on the following values. 

=I 1': denotes the probabi l i  t y  t ha t  the entry under consideration si 
is  i n  the primary s tore .  

primary s tore ,  then the probability of t h i s  s t a t e  is  given by 

If  there are less than M items i n  the 

p(w,  t) * 

si ='rC 
i s  no t  i n  the primary s tore .  

denotes the probability tha t  the item under consideration 

If  there are  less  than M items i n  

the s tore ,  the s t a t e  probability is given by [ l - P ( w ,  t)]. 

si = 8 :  
i- item and a l l  ea r l i e r  items no longer play a role i n  system 

denotes the probability one, i .e . ,  a s t a t e  i n  which the 
t h  
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operation, and hence, any s t a t e  i s  allowed. 
t h  

( d )  S i  = AR: denotes the probability tha t  the i- document arrives 

i n  the region R .  
t h  ( e )  f i  = 8,: denotes the probability tha t  the i- document does 

not  arr ive in the region R. 
t h  ( f )  Si = AR. ' l ' :  denotes the probability tha t  the i- item arrived 

in the region R and the document i s  s t i l l  i n  the primary s tore .  
t h  - 

( g )  S i  = AR.l l ' :  denotes the probability tha t  the i- item arrived 

in the region R and the document is  no longer in the primary 

s tore .  

Definition 8: Convolution Type Operator *. The convolution type 

operator, defined by the operator (*) i s  t o  be interpreted as: 

A ( t )  * F ( t )  = I d A ( t )  F (t + T) 
B1 ,2 

integrated over some region B1,2 .  

e i ther  by the function A (t)  or  the function A 

preted as the function A ( t )  without the subscript i n  the region R, or 

The function A(t) may be replaced 

( t)  and i s  t o  be inter-  
R2 R1 

R1,  respectively. 

W i t h  the above def ini t ions,  we can now s t a t e  and prove the following 

theorem : 

Theorem 1:  The probabili t ies S,,,, . ( z l R )  t h a t  there are exactly i 

items in the primary s tore  o f  s ize  M,z years a f t e r  the arrival of a new 

document, given t h a t  z is i n  region R is expressed by the following re- 

cursion relat ions,  where R1 i s  the region z < X and R2 the region 

X < z < T .  - -  

1.1 The region R1: z < X 

(1) S 1 , J Z I R ] )  = 1 
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where 
03 T-t-z 

T-t-z 0 
T- z X-Z 

(t+z) = I dA(t) + J dA(0 [l-P(0, t+z+E)] F2,1 (t+z+c) F2,1 

x- z 

For the region R2 we have the following recursion relations: 

where 
m 

H 2 $ l  (z )  = P(o,z) f dA(t) + P(O$z) 
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T-z x-z 

1.3 The region R3: z > T 

(11) s M , i ( z ~ R ~ )  = f o r  a l l  M and a l l  i .  

Proof: 

We shall  prove the theorem i n  several stages- We f i r s t  consider the 

case where M = 1,  and derive equations (1)  and ( 6 ) .  Second, we take the 

case M = 2 ,  and derive equations 2 .1 ,  2.2, 7.1 and 7.2. Arbitrary values 

of M ai:e then considered and the remaining equations are derived. 

a. M = 1.  

a.1. The region z < X. The derivation of S1,l(zIz<X) is  ob- 

vious. Since a t  time 0 an arr ival  occurred, the probability tha t  there 

is  one entry i n  the primary store i s  one since z < X and the item must 

stay i n  the s tore  a t  l eas t  X years,  unless a subsequent arr ival  comes 

along t o  replace i t .  

a.2. The region X < z < T. 

R2 
I 1 I I 

-c------3 T-z 0 X z T 

Figure 1 

Since M = 1 ,  we have t o  consider the various cases i n  which we could 

get an entry i n  the primary s tore  z years a f t e r  the l a s t  a r r iva l .  The 

following equations expressed i n  the 6-notation account for the various 

cases : 
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The f i r s t  term represents the probability that  the l a s t  item i s  i n  the 

primary s tore  and we don ' t  care a b o u t  any other s t a t e  since, regardless 

of w h a t  occurs, there can be only one item i n  the primary s tore .  

second term represents the probability tha t  the item t h a t  arrived l a s t  

The 

is  not i n  the s tore ,  the item tha t  arrived previously came i n  the region 

R2 and i s  i n  the primary s tore ,  and we don ' t  care about subsequent items. 

The t h i r d  term represents the probability tha t  the l a s t  item t o  arr ive 

i s  not i n  the primary s tore ,  the one previous t o  tha t  one arrived i n  the 

region R E Y  and i s  not i n  the primary s tore ,  and the one previous to  tha t  

item arrived i n  the region R2 a f t e r  that  item and is i n  the primary 

s tore ,  and we d o n ' t  care about subsequent arr ivals .  

are  clear.  

Subsequent cases 

From the above discussion and the equation describing 

Sl , l  ( z  I XLZLT), i t  i s  readily seen tha t  we may write 

S1 , l ( z I X ~ z ~ T ) = '  1 I + '  7 I ( A * '  1 I ) + I  'i I (A*' T ' (A* '  1 I ) ) + I  'i I (A*' T I ( A * '  T ' (A*' 1 ' ) ) )+. . . , 
where the operator * i s  given i n  Definition 8. 

I t  may be seen, readily,  tha t  the above ser ies  can be factored. One may 

merely return t o  the probabilist ic interpretation of the ser ies  t o  de- 

velop the factorization. Thus ,  

S1 , l ( ~ I X ~ ~ ~ T )  = ' l '+ 'T'LA*f' l  ~ + ' ~ ' ~ ( A * ' l ' ) + ' ' i ' ( A * ' i ' ( A * l l ( ) ) ) l  

s1 ,1 ( z ~ X L Z ~ T )  = 'l'+'T'[A*{Sl,l(z/X~z<l)~]. 

Translating this expression into probabilist ic terms we have, 
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'1 '  ? P ( 0 g z )  
- 

I T '  s [ I -P(o,z)]  

Then, 
T -2 

0 
(6) S ~ , ~ ( Z I R ~ )  = P ( O , Z )  + [1-P(03Z)I J d A ( t )  Sl , l ( t+z[R2) 

T h u s ,  we have proved equation ( 6 ) .  

b. M = 2  

b.1. The region z < X ,  and S (zlz<X).  2 Y1 
We f i rs t deri ve S2,, ( z  I z<X). Havi ng devel oped the s i  gni f i cance o f  

each term i n  the previous case (derived i n  a .2) ,  we shall  merely employ 

the notation developed t o  derive our resul t .  

I I I I I  

0 2 X 
c-.--t 

x-z - > 
T -2 

Figure 2 

, + ( T , A  l i 1 , R  ,fl ,... 
$> R2 R2 

I + ( I l l , A  'T',A I i l 9 8  , f 1 9 . . . )  1 R2 R2 R2 

The above are the only cases i n  which there can be one item in the primary 

s tore ,  given a maximum primary s tore  o f  two items and z < X. The above 

equations can be rewritten, using the operator * as ,  
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We note that  the term i n  the brackets of the l a s t  equation may be 

written as ,  

(z )  = + A * ('TI F2,1(z)) . 
F2,1 R2 R2 

Transforming the l a s t  two equations t o  probability distribution and 

as was t o  be shown. 

b .2 .  The region z<X and S2 2(zIz<X). 
Y 

I I  I 

Z X 
R2 I  R1 I 

0 
> T-z < 

Figure 3 

We must distinguish two regions, and hence two cases. In the f i r s t  

case, following the l a s t  a r r iva l ,  there i s  an arr ival  in region R1 and, 

i n  the second case a t  l eas t  one item tha t  arrived in region R2, b u t  not 

i n  region R1 is  i n  the primary store.  These are represented by 

Case 1: 1 
Case 2: 

+ (AR l i 1 , A  ' T 1 , A  I l l ,  PI,... ) 
2 R2 R2 

- 11 .. 



We note, however, tha t  Case 2 i s  related direct ly  t o  S (zlX<z<T). 1 , l  - -  
We may then write,  

b . 3 .  The region X<z<T -- and S2.1(z/Xc z<T).  - 

R2 
I I 

0 i c ;  i 
< > T-z 

Figure 4 

Using our notation, we may write down the equation direct ly .  Hence, 

+ ( ' l 1 , A R  ' T I ,  il ,@,...) 
2 R2 

+ ( I T '  ,A ' 1  I ,fi y @ , .  . . 
+(T,A I l l ,  A I i ' ,  A ,@,...) 

R2 R2 

R2 R2 R2 

+ ( T , A R  I T ' ,  A T ,  A, , @, ... 
+('TI, A 'T', A I l l ,  A ' ity A ,@,...) 

2 R2 2 

R2 R2 R2 R2 

Regrouping terms (Def. 81, and u s i n g  the convclutim operator, we have, 

-1 2- 



where 

(z )  = '1 'H + 
HZ ,l R2 

In probabi 1 i s t i c  and i n t e g r a l  

as was t o  be shown. 

b.4. The r e g i o n  X<ziT -- and Szy2(z IX5 ziT) 

The cases f o r  f i n d i n g  e x a c t l y  two i tems i n  t h e  pr imary s t o r e  g iven a 

capaci ty  of two i tems i n  t h e  pr imary s t o r e  and XLZLT are  enumerated as: 

('l', A i l ' ,  8 ,  ... 1 
+ ( ' l ' , A ' T ' ,  A ' l ' .  8 ,  ... ) 

t ( ' l ' ,  A ' T ' ,  A l l ' ,  A l l ' ,  P , . . . )  

+('TI, A l l ' ,  A ' l ' ,  8, ... 1 

+('it, A l l ' ,  A l l ' ,  A l l ' ,  p l y . . .  1 
+('TI, A l l ' ,  A ' l ' ,  A l l ' ,  A l l ' ,  p , . . . )  

It may be seen r e a d i l y  t h a t  these cases reduce t o :  
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c .  General value of M > 2. 

c.1. The region z < X ,  and S M , i ( ~ I ~ < X )  for i = 1,2,  ... M-2. 

When i = 1 ,  Z,..., M-2, i t  i s  c lear  that  the value of SMYj(z Iz<X) i s  

T h u s ,  for example, S dependent upon i and not M. 

t o  S2,,(zIz<X) since the value of M = 3 had no bearing upon the probability 

that  there i s  one item i n  the s tore .  

than M. 

and we must then derive SM,M - , (z]z<X) and SM,M(ZIZ'X). 

(zlz<X) i s  identical 391 

The limiting factor  was i ,  rather 

The equations (3) therefore are valid fo r  i = 1 ,  Z,..., M - 2 ,  

c.2. The region z < X ,  and SM,M - l ( ~ I ~ < X )  

Using the convolution operation (Def. 8 ) ,  SF1,M - ( tJzcX) i s  given 

I-\. 

*...*A ' * sM,l ( Z l R , )  
+ AR1 R1 

That the above i s  correct may be seen by considering the following: 

R2 R1 
I b I f 

0 z <- > x- 2 

Lr > 
T-z 

Figure 5 

In the f i r s t  term we note tha t  A 

is  an arr ival  i n  the region 

represents the probability t h a t  there 
R2 

R2 preceding the l a s t  a r r iva l ,  and the term 

(z IR2) denotes the conditional probability tha t  there a re  exactly s~ ,M-2 
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M-2 i tems i n  the  pr imary s t o r e  from t h a t  reg ion  i f  z i s  i n  R2. The second 

term represents the  p r o b a b i l i t y  t h a t  t he re  i s  an a r r i v a l  i n  the  reg ion  

fo l lowed by a l l  o thers  i n  reg ion  R2. 
pa t te rn .  The l a s t  term represents  t h e  p r o b a b i l i t y  t h a t  the  M-2 a r r i v a l s  

f o l l o w i n g  the  l a s t  a r r i v a l  a re  i n  t h e  reg ion  

t h a t  need t o  be expressed. 

R1 
The nex t  t o  l a s t  term fo l l ows  t h e  same 

Rl. There are no o the r  cases 

We may r e w r i t e  the  above equat ion as 

We note, however, t h a t  t he  term i n  brackets  i s  s imply,  
M-3 

Then, we may r e w r i t e  our  equat ion as, 

i s  proved as soon as we show SM,M - z(z 1 R2) = SM-1 ,M-2 (2 I R2) ' 

c.3. The reg ion  z < X and S (zlz<X). M YM 

As i n  Sect ion c.2, above, we may w r i t e ,  

,-.-..- M- 2- _._ .-.- -i c--- u- , *. . .*AR1*AR2*S1 ,1 ( z I  R2)+AR * * .  **AR1 
R1 *Ai ,  1 

+. . . t A  



Hence, 

c.4. The r e g i o n  X<z<T -- and SH,i(~IR2), i = 1 ,. . . , M-2. 

The d iscuss ion of s e c t i o n  c.1, above, appl ies,  where i n s t e a d  o f  

reg ion  R1 we rep lace i t  w i t h  reg ion  R2. 

equat ion 4 i s  now proved. 

Hence, equations (8) apply, and 

C. 5. The r e g i o n  X<z<T -- and SM-M 

For t h i s  reg ion  we may w r i t e  t h e  equat ion expressing SM,M-l(~(Rz) 

d i r e c t l y  as, 

Therefore, (9)  has been shown. 
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We have, therefore, proved Theorem 1. 

The probabili t ies SMyi(z1R) are only of i n t e re s t  t o  us to  help ob- 

t a i n  the expected s ize  of the primary s tore .  

now be shown t o  be v a l i d .  

The following theorem will 

Theorem 2: The expected s i ze  of the primary s tore  fo r  a given 

bounded primary s tore  of s i ze  M is  given by the recursion relationship: 

( l 1 )  EM = EM-l + (M-l) CsM+l ,M(OIRl) - SM,M(o]Rl)I 

+ 'M+l ,M+l(OIR1) * 

Equation (11) is  valid fo r  an arbi t rary arr ival  distribution. 

Proof: 

Since we have, by Theorem 1 ,  the probabili t ies S M Y i ( z ] R )  for  i = l , . .  

and R = R 1 ,  R 2 ,  the expected number i n  the s tore  z years a f t e r  the l a s t  

arrival for  a particular region R i s ,  by definition, the sum of the 

probability tha t  there are exactly i items i n  the s tore  times the number 

of items i .  T h u s ,  by def ini t ion,  
M 

(12) EM(zIR) = c 
i =1 

i SM,i(zlR). 

Again, by def ini t ion,  we have 

Hence, 

Now, (13) can be rewritten by f i r s t  summing from i=l  t o  M-2 and 

n o t i n g  t ha t  due t o  the relationships (3 )  and (8) , we can replace M by 

M-1 i n  SMyi(z]RI .  Then, adding and subtracting an appropriate term t o  

account for  SMel ,M-l (zlR) , we obtain 
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Now, setting M = M+l in equation (4),  and subtract ing equation ( 4 )  and 

Substituting equations (15) and (16) into (14) ,  we obtain equation (11) 

which proves the theorem. We note t h a t  no limiting assumptions were 

made concerning the form of the distribution A ( t ) .  

4. THE EXPECTED SIZE OF THE PRIMARY STORE FOR THE CASE OF POISSON 

ARRIVALS OF NEW DOCUMENTS 

Using the results o f  the previous section, the expected size of the 

primary store i s  calculated for a Poisson distribution of arrivals. 

shown i n  ( l ) ,  i f  the primary store i s  permitted t o  be unbounded in size, 

As 

then 
T 

= a X + a j' P(o ,u )du ,  
X 

(17)  p = E 
Q) 

where 
-at (18) A ( t )  = 1 - e 
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The expression f o r  EM w i l l  be shown t o  be r e l a t e d  c l o s e l y  t o  E,. 

We f i r s t  def ine,  

The f o l l o w i n g  theorem then app l ies .  

Theorem 3: L e t  A ( t )  be a Poisson d i s t r i b u t i o n  o f  a r r i v a l s  o f  new 

documents t o  a pr imary s to re ,  where A ( t )  i s  g iven by (18). Then, we have 11 

I H (z lR2)  = 1 - exp(-a P(o,v)dv) 
[ 1 3 1  L 

(z lR1) = a[X-z] eaP eaZ 1 H2,l 

H2,1 (z IR2) = 01 1 P(o,u)du exp(-a P(0,v)dv) 
d L i T 7- 

SzY2(zIR2) = 1 - {l + aC1-P (opt)] I P(o,u)du} exp(-a I P(o,u)du) 

H 2 , 2 ( ~ ( R 2 )  = 1 - (1 + a 

z /- 7- T 

P(o,u)du) exp(-a I P(o,u)du) 
% z 

and , 
1) For convenience, t h e  n o t a t i o n  "exp" and "e" w i l l  be used interchangeably t o  

denote t h e  exponent ia l  f u n c t i o n .  
- 19 - 



j M - 2 - j  pi 

i! 
e-Peaz - M-2 j+l (qz) 

= 1 + c (-1) 1 
sM,M(z‘R1 j =o i =o 

M-l j+l (az) j M - 1 - j  1 e i ,-p ,az 

j =O i !  HM,M(zIR1) = l-e-aX e-az + 1 (-1) ~ 

j! i =o 

+ P(o,u)[a P(o,u)du] M-l T 
exp ( - a  1 P(o,v)dv) 

Z (M-1 ) ! 

M-1 [a 4 P(o,u)du] j T 
exp(-a I P(o,v)dv) 

Z 
H # , 4 Z I R &  = 1 - j =o c j !  



Proof: 

That the equations (20) , (21) ,  and (22)  are correct may be seen by 

substi tuting these equations i n t o  equations ( 1 )  - (10). Because of the 

length of the proof, we shall provide, therefore, only a sketch of how the 

formulae were derived. 

For M=l and M=2, the integral equations expressing SM . (z I R )  

solved by transforming the equations into f i r s t  order different ia  

t ions.  The pattern for  the general formulae then became evident. 

9 1  
were 

equa- 

The 

general case was then solved by induction on M .  More particularly,  we may 

write,  from equation ( l o ) ,  and (19) ,  

Since A ( t )  i s  given by (18), we may d i f fe ren t ia te  b o t h  sides of the equa- 

tion a n d ,  using both the equation and i t s  derivative,  we can transform 

this equation into the form 

This equation is  a f i r s t  order l inear  different ia l  equation whose solution 

can be determined most readi ly to  be: 

Since S 

the formula fo r  SM,M(z I R 2 ) .  

(z  /R2) is dependent upon Hb, - ,M (z  l R 2 ) ,  by induction we may obtain M ,M 
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Finally, we have: 

Theorem 4: Let A ( t )  be a Poisson dis t r ibut ion of a r r iva ls  given by 

Then, the expected number of documents i n  the primary s tore  given (18). 

a maximum s i ze  of the primary s tore  o f  M documents, i s  given by: 

or 
M- 1 

(24) EM = M - egP 1 ( M - j )  P’  
j =o  j! 

T 

X 
and M - > 1.  where = UX + u j’ PI‘ o,u)du = E co 

We define Eo = 0. 

Proof: 

Equation (23) can .,e determined readily. From Theorem 2 we have that  

EM is  given by equation (11). From equation ( 2 2 )  we know expl ic i t  formulae 

(zlR1) and SM M ( ~ I R 1 ) .  I f  we s e t  z = o and subst i tute  these for S ~ , ~ - i  9 

expressions into (1 1 ) , we get 

and hence, performing the algebra, we obtain (23). 

Equations (24)  and (25) a re  then obtained most readily by algebraic 

man i pu 1 a t  i on. 
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I t  can be seen from (25),  tha t  EM may be written as 
W 

EM = Ew + 1 Bj& where the B are derived from (25) .  
j =M j 

As M -f , we obtain the resu l t  found i n  [ l ] .  For M suff ic ient ly  

large, we may approximate EM by Ew and thereby save considerable compu- 

tation time. 

5. SUMMARY 

The work s tar ted i n  [ I ]  concerning the determination of the ex- 

pected s ize  of the primary s tore  of a two level storage system has been 

extended t o  the case of a bounded primary s tore  of s i ze  M .  

probability distribution describing how requests are  made on documents 

stored in the system, equation (23)  gives a simple recursion formula 

for  determining the expected s ize  of the s tore .  Lemma 1 ,  derived in 

[I] ,  provides an integral equation for  determining P ( w , t ) ,  required 

in equation ( 2 3 ) .  

R(r,u), t will be d i f f i cu l t  t o  solve the integral equation expressed 

i n  Lemma 1 .  I t  would appear t h a t  the equations would have t o  be solved 

nurnerica ly by d ig i ta l  computer. 

Given a 

Unfortunately, for  some r e a l i s t i c  distribution o f  
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