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Abstract •

Experimental heat transfer data are presented for a series

of asymptotic accelerated turbulent boundary layers for the

case of an impermeable wall, for several cases of blowing, and

suction. The data are presented as Stanton number versus

enthalpy thickness Reynolds number.

As noted by previous investigators, acceleration causes a

depression in Stanton number when the wall is impermeable.

Suction increases this effect, while blowing suppresses it.

The combination of mild acceleration and strong blowing results

in Stanton numbers which lie above the correlation for the same

blowing but no acceleration.

Velocity and temperature profiles are presented, from which

it is possible to deduce explanations for the observed behavior

of the Stanton number. A prediction scheme is proposed which

is demonstrated to quite adequately reproduce the Stanton number

results, using correlations derived, from the profiles.
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Nomenclature

English Letter Symbols

A+ - constant in the Van Driest damping factor

Cf - friction coefficient ( = rg/(pua/2))

c - specific heat

Dy - Van Driest mixing-length damping factor

F - blowing fraction ( = v̂ û )

H - boundary layer shape factor ( = 6.]/62)

h - convective heat transfer coefficient
O

K - acceleration parameter ( = (v/u^)(du^/dx))

k - mlitln£-len£th constant

I - mixing-length

$ - heat transfer rate

t - temperature

t - wall, or surface, temperature

t - -free-stream temperature
OO

u - velocity in x-direction

Uco - free-stream velocity

u - friction velocity ( = u/(u0

v - velocity in y-direction at the wall (transpiration
velocity), positive VM for blowing, negative for

suction

x - distance along surface

y - distance normal to surface

Greek Letter Symbols

T

reff

'eff

thermal conducU vity

turbulent thermal conductivity, or eddy
conductivity

99 percent thickness of momentum boundary layer

00

- displacement thickness «= / (1 - ̂ -)dy
J to

- momentum thickness

enthalpy thickness

00

/ (1 - n— )(n-)
J "00 "oo
O

00

/ (̂ -) (T — t~)d
" w "

a turbulence length scale

- viscosity coefficient

- turbulent viscosity, or eddy viscosity

- (H + ut)

- kinematic viscosity (M/p)

- density

shear stress

shear stress at wall

Non-dimensional Groups

P+ - a pressure gradient parameter (

Pr - Prandtl number (

Prt - turbulent Prandtl number (M-tc_/Yt)

3/2.



Re,,

Re.,

St

momentum thickness Reynolds number ( = u

enthalpy thickness Reynolds number ( •= u

an Integrated x-distance Reynolds number

Stanton number ( = h/(ucopc ))

(t-tj
non-dimensional temperature

non-dimensional velocity ( = U/UT)

non-dimensional cloving parameter ( = v̂ (û  YCf/2))

non-dimensional distance from wall [ = yuT/v]

Introduction

In 1965. Moretti and Kays (1) presented the results of an

experimental investigation of heat transfer to a highly accel-

erated turbulent boundary layer. Of particular interest was the

fact that for very strong accelerations Stanton number was

observed to decrease abruptly and to approach what one would

predict for a purely laminar boundary layer. Ttiese results have

been frequently cited as evidence that a strong favorable pres-

sure gradient tends to cause a retransition of a turbulent

boundary layer to a laminar boundary layer. The phenomenon of

retransition has been the subject of numerous recent studies,

Launder (2), Launder and Stinchcombe (3), and Patel and Head

CO, among others. The term "laminarization", suggested by

Launder, has been frequently used instead of retransition.

It seems now to be generally agreed that a turbulent boundary

layer will "lamlnarize", or undergo a retransition to a laminar

boundary layer, in the presence of a sufficiently strong favorable

pressure gradient. However, there is a very important region of

technical applications in the range of moderately strong favorable

pressure gradients where the boundary layer is definitely not

laminar but where laminar-like behavior is observed and, in

particular, Stanton number is observed to fall substantially below

what would be predicted by earlier theories. The present paper

is concerned with the heat transfer behavior in this region.

Including the effects of transpiration (blowing and suction).

Both Moretti and Kays, and Launder, proposed that a signifi-

cant acceleration parameter, K , can be defined as follows:
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K = dx

Various combinations of K and the friction coefficient

have also been proposed. For example, in the analysis of a

Couette flow, the effect of a pressure gradient occurs in the

form of a non-dimensional P+ , which is related to K as

follows:

(2)

The parameter K , however, has the virtue of being entirely

dependent upon externally imposed conditions and is, therefore,

a convenient descriptor of the boundary conditions imposed upon

the flow. Launder surges led that laminarization will occur when

K is greater than 2 x 10 ; Moretti and Kays suggested

3.5 x 10"6

in the range 0.0 to 2.5 x 10

The present paper is concerned with values of K

-6 and thus Is concerned with a

region of what is believed to be stable turbulent boundary layers,

2.5 x 10-6 this last statement mayalthough admittedly at K

be debatable.

Further insight into the significance of the parameter K

can be gained by examination of the momentum integral equation

of the boundary layer, and the energy integral equation of the

boundary layer. For constant property flow along a flat plate,

it is possible to express the momentum integral equation of the

boundary layer in the following form:

-3-

dRe,
H)ReM + F

where dR^ = u^pdx/V

(3)

For constant free-stream temperature and constant surface

temperature, the corresponding form of the energy integral

equation of the boundary layer is :

= St

Note that K appears explicitly only in the momentum

I equation, and cf particular interest is the fact thai a. (sufficiently

large positive value of K can cause a decrease in ReM . In

fact, it appears that if K is maintained as a positive constant

over a sufficient length of surface, and if F is zero or a

positive constant, then the rate of change of Re., will tend

towards zero. This yields a boundary layer of constant momentum

thickness Reynolds number, ReM , which will be termed an

"asymptotic" accelerating boundary layer. Exact solutions for

asymptotic laminar boundary layers have been obtained (5), and

Launder and Stinchcombe have demonstrated that such asymptotic

ooundary layers can be obtained for turbulent flows. Under such

conditions, not only is ReM constant, but also Ĉ /2 and the

shape factor H . It also follows that under asymptotic conditions
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the velocity profiles at various stations along the surface wi:i

possess both inner and outer region similarity.

On the .other hand, examination'of equation (t) reveals that

so long as F is zero or a positive constant, the energy thickness

Reynolds number, ReH , will always continue to grow. (The same

conclusions apply for small negative values of F . However,

strong suction leads to an asymptotic suction layer, regardless

of K , with no growth in either ReM or ReH ). One can con-

clude that for prolonged accelerations at any constant value of

K and positive F , ReM
will approach a constant value, whereas

Re., will increase indefinitely.
n

This behavior suggests one reason why, even at moderate

values of K , Stanton number will tend to decrease in an ac-

ueierateu flow, fie,, can only increase indefinitely if the tnermai
n .

boundary layer grows outside of the momentum boundary layer into

a region of zero'eddy conductivity .and higher.heat transfer

resistance. This phenomena is discussed by Launder and Lockwood

(13). It will be seen later that this is not the only reason for •

decreasing Stanton numbers in accelerated flows, but it is certainly

a contributing factor.

An acceleration at constant' K is particularly easy to

establish experimentally with an incompressible fluid, since it

can be shown from continuity that flow between two convergent flat

surfaces yields a nearly constant K when the blowing fraction,

F , is uniform. Asymptotic constant K boundary layers are even

more convenient'for experimental study because once the asymptotic

condition has been closely approached, it is relatively easy to

-in-

accurately deduce the friction coefficient using equation (3).

Furthermore, it is a simple matter to obtain a nearly asymptotic

boundary layer by arranging a starting length with constant free-

stream velocity (before acceleration) such that ReM at the

beginning of acceleration is close to the anticipated asymptotic

. value, thereby avoiding a lengthy transition region.- For most of

the experimental results presented by Morettl and Kays, ReM was

considerably greater than the asymptotic value at the beginning of

acceleration even though K was nearly constant, and thus the

reported heat transfer results were primarily in a region of

rapidly decreasing ReM
Such accelerated boundary, layers will

be referred to as "overshot"; obviously boundary layers can also

be "undershot" if the value of ReM before acceleration is less

than the asymptotic value.

The Stanford Heat and. Mass.Transfer Apparatus was designed

for accurate measurement 'of local heat transfer coefficients along

a flat surface through which -transpiration (either blowing or

suction) can take place in any prescribed manner, and over which

free-stream velocity can be varied In any arbitrary manner.

Extensive experimental results obtained from this apparatus for

the case of constant free-stream velocity and the entire spectrum

of blowing and suction have been presented in Moffet and Kays (6),

and Simpson, Moffat, and Kays (7). The apparatus is-also .ideally

suited for a study of the behavior of asymptotic accelerated

turbulent boundary layers with blowing or suction. This paper is

a brief summary of'a few of the results of such an Investigation.

As such, it is a continuation of the work of Moretti and Kays,

but differing in two major respects:
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(a) An attempt is made to obtain close to asymptotic boundary

layers, and thus to carry out a more controlled experi-

ment;

(b) The additional effects of blowing and suction on accelera-

tion are studied, with emphasis on certain unexpected

results of the coupling of blowing and acceleration.

More complete and extensive data resulting from this investi-

gation will be presented in a later paper.

Objectives of this Paper

The specific objectives of this paper are to:

(a) Present the results of a systematic series of heat

transfer experiments on asymptotic accelerated turbulent

boundary laycre for a series of values of the acceifra-

tion parameter K up to 2.5 x 10" , and blowing

fraction, F , from -0.002 to +O.006 .

(b) Present representative velocity and temperature profiles,

and on the basis of these profiles to attempt to explain

the physical phenomena observed.

(c) Present some results of an analytic prediction scheme,

based on a finite difference solution of the boundary

layer equations, to demonstrate a mathematical model

of the phenomena observed.

-7-

Apparatur. and Data Reduction

The Stanford Heat and Mass Transfer Apparotus contains a

24-segment porous plate eight feet long and 18 inches wide, which

forms the bottom surface of a rectangular flow duct. The main

stream flow and the transpiration flow are both air. Each of

the 24 segments is provided with separately controllable transpira-

tion flow and electric power. Fig. 1 shows a cross-section of one

segment. The balsa wood insulation on the walls of the plenum,

the pre-plate, and the honeycomb flow straighteners nerve to

ensure uniform air temperature entering the working plate. Five

thermocouples are imbedded in the plate, in the center six inch

span. The working plate is 0,25 inches thick, made of sintered

bronze with an average particle diameter of 0.005 inches. Heater

wires are imbedded in grooves in the bottom of the plate, close

enough together so that the ^op surface of the plate is uniform

in temperature to within O.Qb°F at maximum power and blowing.

Pressure drop through the working plate is approximately 12 inches

of water at maximum blowing, so that the maximum streamwise pres-

sure gradient (approximately 0.5 inches of water per segment

width) has only a small effect on the distribution of the transpira-

tion flow.

Two different top covers, shown in Fig. 2, were used for the

test duct. One with a single hinge line across it, and one with

two hinge lines, permitted constant K flows to be established

by setting the desired slope of the top surface. Static pressures

were measured with side-wall taps spaced 2 inches apart In the
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flow direction. Static pressure traverses of the main stream

and boundary layer showed no more than 0.002 inches variation

across a plane in the accelerating region.

Temperature and velocity traverses were made with manually

operated micrometer driven traverse gear. Flat mouthed total

pressure probes were used with tips 0.012 inches high and 0.040

wide. Temperature traverses were made using iron-constantan

thermocouples with junctions flattened to 0.009 Inches.

Stanton numbers reported here are based on the heat transfer

from the plate to the boundary layer as deduced by an energy

balance on each plate.

6; = Net Power - ECONV-SQRAD-SQCOND

ECONV measures the energy transport associated with the transpira-

tion flow. Radiation from the top and bottom of the plate is

calculated, based on measured emlssivities of the plate. Heat

is also lost by conduction from the center span of the plate to

the ends of the plate and to the casting. All corrections were

evaluated as functions of plate temperature and transpiration

rate and appropriately entered into the data program.

A somewhat more detailed description is presented by Moffat

and Kays (f>).

Qualification of the Experimental System

Validity of the data reduction program as a mathematical

model of the apparatus was established by a series of energy

balance tests conducted «ith no main stream flow. The energy

-9-

balances closed within 2% for most blowing cases and ^% for moot

suction cases. The Stanton numbers reported here are believed

to be reliable to within 0.0001 units, for the blown cases, and

0.0002 units for suction.

Free-stream turbulence intensities were found to be between

0.8 and 1.2# although velocity profiles taken in the uniform

velocity section satisfy Coles' criterion for "normal" boundary

. layers (8).

Two side effects must be investigated before the observed

change in Stanton number behavior can be attributed solely to

the effects of acceleration. It must be shown that the data

are not influenced by surface roughness and that data for various

uniform velocities will display e universal relationship when

plotted against enthalpy thickness Reynolds number.

Surface roughness and velocity effects were investigated

by a series of tests at UO, 86 and 126 fps. Stanton number

data shows the same relationship to enthalpy thickness Reynolds

number for all three velocities, although the velocity profiles

show a slight drop in u* for the data at 126 fps. Plate

roughness elements, considered as half the particle diameter,

are calculated to remain Inside the viscous region of the boundary

layer as best as this can be determined.

Two-dimensionality of a flow can only be established by

elaborate probing of the boundary layers. This was not done.

Secondary evidence, however, can be had by comparing enthalpy

thickness derived from plate heat transfer measurements with

values determined from temperature and velocity profiles. Such
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checks show agreement within 8£ for all blowing runs. This is

within the uncertainty calculated for the enthalpy thickness

Integrals using the method of Kline and McClintock (9). f-

Results

Stanton number data are shown in Figs. 3 through 6, plotted

against enthalpy thickness Reynolds number, Re,, . Each figure

shows the effect of varying K while holding F constant.

Surface temperatures were held constant, for all tests, at

approximately 100°F, while free-stream stagnation temperature

was 60-70°F. The Stanton numbers were corrected to approximately

constant property conditions by the factor (T̂ T̂ )

Fig. 3 shows the data for F = 0.0 using solid symbols to

represent dara in the accelerating region and hollow symbols for

the constant velocity approach. Note that acceleration immediately

depresses the Stanton number below the constant velocity results,

with the magnitude of the depression increasing as K increases.

The data for K = 2.5 x 10 behaves almost as would be

expected from a laminar boundary layer, based on the rate of

change of Stanton number as enthalpy thickness Increases. Shape

factors, determined from the velocity profiles are approximately

I.1* to 1.5 for this acceleration, suggesting that the boundary

layer is still turbulent (the shape factor for the asymptotic

laminar layer Is 2.0). No effort was made to measure turbulence

intensities inside the layer.

It can be seen from Fig. 3 that the boundary layers were

slightly "overshot", in that the momentum thickness Reynolds

-11-

numbers decrease in the flow direction. The boundary layers are

>elieved to be close to the asymptotic condition at the points

ihere Re,, is marked in the accelerating region.

Fig. 4 presents Stanton number data for the same values of

as does Fig. 3, but with blowing: F •= +O.002 . All of the

'ata for the different values of K lie much closer to the

asellne data, taken from Moffat and Kays (6). The spread in

he data is reduced, and the entire pattern is shifted upward.

:celer,?tion at K = 0.75 x 10 now results in a slight rise

n Stanton number above the uniform velocity case, rather than

drop, and even the strongest acceleration (K •= 2.5 x 10" )

[reduces only a relatively minor depression.

I The upward shift indicated by Fig. 4 is seen much more

I.early in the results at higher blowing (Fig. 5: *' = 4-0.0062),

3 the opposite trend is observed for suction (Fig. 6: F =

002). In the presence of strong blowing, even a moderate

eleration (K = 0.77 x 10" ) causes a dramatic upward shift

3m the uniform velocity values for the same blowing. Moderate

tion, F = -0.002, increases the spread between the data for

•lous K values and causes a general downward shift relative

the uniform velocity results.

The combination of blowing and acceleration can thus result

either an increase or a decrease in Stanton number (at fixed

) in spite of the fact that either condition, applied alone,

ults in a decrease. Stanton number is thus not simply re-

ed to Reu , K , and F even for the restricted case studiedn
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here of asymptotic boundary layers. It is not unreasonable to

suppose that highly "overshot" or "undershot" layers will display

somewhat different characteristics, raising the number of

variables from 3 to 5- Experimental studies of these effects

are planned for the near future, as well as investigations into

the behavior of the boundary layer under conditions of variable

K , and in the recovery region downstream of an acceleration.

Velocity profiles with K = 1.̂ 5 x 10 and F •» 0 are

shown on Pig. 7 with solid symbols, while one profile in the

non-accelerating region of this run is shown with hollow symbols.

This figure shows some of the important characteristics of ac-

celerated turbulent boundary layers, and asymptotic boundary

layers in particular. Note that the three profiles in the ac-

celerated re^ioxj are close to similar in both the inner and

outer regions, and the boundary layer is not significantly

growing at successive stations along the surface. The usual

rise in u+ in the "wake" region has disappeared, and the

viscous inner region has significantly grown so that u lies

above the non-accelerated curve in the middle region.

On the basis of examination of these velocity profiles,

as well as other asymptotic profiles at different values of

K , it is concluded that Increasing K causes an increase in

the thickness of the viscous region and a decrease in the values

of u+ and y+ at the outer edge of the boundary layer. Such

a trend with increasing K must ultimately lead to a dis-

appearance of the turbulent region entirely, i.e., a laminar

boundary layer.

-13-

A succession of temperature profiles taken under the same

flow conditions are shown on Fig. 8. Two trends are apparent.

In the inner region the curves in the accelerated region come

together, but with a greater slope than in the non-accelerated

region, evidently a direct result of the thickening of the

viscous region near the wall. In the outer region the important

observation is that the thermal boundary layer continues to grow

at successive stations along the surface, unlike the momentum

boundary layer, and is seen to penetrate into a region where

the velocity gradient is small, or zero. Stanton number varies

inversely as the maximum value of t+ , and thus the observed

decrease in Stanton number in Fig. 3 is seen also in Fig. 8.

In summary, it appears that the depression in Stanton

number observed In accelerating flows results from a combination

of an increase in the viscous region thickness, and the growth

of the thermal boundary layer beyond the momentum boundary layer.

Prediction Method

The heat transfer data presented here are only of limited

value unless they can be used as the basis of some kind of pre-

diction method that can be employed in design. However, any

attempt at satisfactory overall empirical correlation of the

data shown on Figs. 3 to 6 would appear to be a virtually hope-

less task because of the -great variety of possible conditions

and resulting behavior. For constant free-stream velocity, the

data of Moffat and Kays (6), and subsequent work on the same

project not yet published, show that Stanton number can be
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expressed as a simple function of Re,, , and a blowing parameter,

and is only weakly dependent upon any other parameters. Thus a

reasonably satisfactory prediction scheme can be developed using

the integral energy equation. The data for acceleration, but no

blowing (i.e., Pig. 3)> show a certain orderliness, but even a

superficial examination of these results suggests that Stanton

number is a function of at least Reu , K , and the value ofn

Re,, (or ReM) where acceleration starts, and these data only

represent the behavior under essentially constant K conditions.

When blowing or suction are superimposed, the number of variables

even for uniform F and K ia obviously out of hand, and be-

havior such as seen in Fig. 5 discourages any attempt at simple

correlation.

The obvious next step is to attempt to correlate the experi-

mental data at a more fundamental level by devising empirical

correlations which can be used in mathematical models of the

momentum and energy exchange processes. Not only can perhaps

the desired generality be obtained, but a better understanding

of the physics as well.

The scheme to be described here is based on a finite-

difference solution of the momentum and thermal energy dif-

ferential equations of the boundary layer, using the Spalding/

Patankar (10) program as the basic mathematical tool. Any de-

sired physical model of the momentum and energy exchange pro-

cesses can be Inserted into the program, subject only to the

restriction that the equations.are In parabolic form, so that

one must be willing to use the concept of eddy viscosity and

-15-

eddy conductivity. However, one is free to evaluate these

quantities in any way desired, and the possibilities range from

direct empirical correlations, to deductions based on solution

of the turbulence energy equation, which can be.solved simulta-

neously by the same program, if desired.

For present purposes a direct empirical mixing-length cor-

relation is used, based on a modification of the Van Driest

mixing-length hypothesis. The equations used are as follows:

M. + nt effective viscosity

turbulent viscosity

mix ing-length

I = kyD for y<(>.5/k)

I = X6Dv for y>(X6/k)

where 6 is the 9956 momentum boundary layer
thickness

k = 0.44 mixing-length constant —

X = 0.25 ReM~1/' [1 - 67.5(^/u^)] turbulence length scale

if X < 0.085 , * =--0.085

Dy = 1 - exp(-yp
Van Driest damping factor
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+ + 0.17) - 1133P'4" ' w'

1.100.25
where f(P+,v+) = -1990(-P+ v+ ) for v > 0.0

f(p+.vj) = e^-pV-7^)1-4 for v; < o.o

empirical correlation of the effects of

transpiration and acceleration

+ TV effective conductivity

/Prt turbulent conductivity

Prt =

if Prt < 0.86 , Prt = 0.86

turbulent Prandtl number

Although the quantity of empirical input appears formidable,

it should be pointed out that correlating A with Re., and
H

vv/u» nas only a minor influence, and that is at low Reynolds

lumbers only. A constant value, X = 0.085 > will also yield

results close to those to be shown. Similarly, constant turbulent

Prandtl irunber, Prt = 0.90 , will yield Stanton numbers in close

agreement with those to be shown. The rather complex expression

used is based on direct measurements of Prfc (11) which indicate

a variation through the boundary layer starting high near the

wall. In the prediction scheme it was found that such a

-17-

/arlation in Prt is needed to obtain accurate temperature

srofiles. Prfc = 0.90 is simply an effective average.

The core of the correlation scheme is in the expression

or A+ . Note that for v+ = 0 and K = 0 , A+ = 26 , a

'requently used value. This correlation is presented as only

;entative and illustrative of what can be done. Essentially

\ is related to the thickness of the viscous sublayer (in y+

oordinates), and the correlation reflects the thickening of

.his region in a favorable pressure gradient as observed in

'ig. 7. It also includes a decrease in thickness observed for

"lowing, as determined from the data of Simpson, et al (7), and

i cross-coupling effect.

One further point should be noted. In attempting to apply

le above model to an acceleration with K = 2.5 x 10" , it

as found that although a substantial decrease in St occurs,

uantitative agreement with the data shown in Fig. 3 was not as

ood as for lower values of K , and there were also qualitative

ifferences. The only reasonable modification in the model

lat yields results in good agreement with the data of Pig. 3

nvolves forcing the eddy viscosity, and thus eddy conductivity,

o zero in the outer part of the boundary layer. Since the shear

tress, T , is very low in the outer half of a highly accelerated

oundary layer the damping function, Dy , already has the de-

ired characteristic, but the damping is evidently not great

nough; the difference between low turbulence and zero turbulence

n the outer half of the boundary layer has a negligible influence

n the momentum equation, and the resulting velocity profile, but
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a decisive influence on the energy equation. For K > 1.5 x 10

this damping is accomplished in the program by artificially re-

ducing T to zero in the equation for DV at an appropriate

point. It is emphasized, however, that this artifice is used

for only one of the nine runs to be shown, and further investi-

gation of this region of high K , where complete laminarization

is certainly near, is definitely needed.

Some sample results of predictions based on the above

described model are shown in Figs. §, 10, and 11. The imposed

boundary conditions correspond closely in each case to the test

results in Figs. 3 to 6.

With the exception of the region Just following the start

of acceleration, the agreement with the experiments is, in every

case, quite good. The difficulty at the beginning of acceleration

is an understandable and easily correctable one. The correlation

for A+ is based on velocity profiles for equilibrium boundary

layers, i.e., the asymptotic cases such as shown in Fig. 7. The

viscous sublayer of the real boundary layer does not instantaneously

assume its new equilibrium configuration when a new pressure gradi-

ent is imposed; there is obviously a lag, and detailed examination

of the experimental -data shows this lag very clearly. Launder

and Jones (12) propose a.reasonable and simple scheme for intro-

ducing such a lag into the calculation, and the authors intend to

investigate this scheme shortly.

The most spectacular success of the prediction method, set-

ting aside the problem Just discussed, is shown on Fig. 11. Here

i
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the unexpected increase in Stanton number with a mild acceleration,

seen experimentally on Fig. 5, comes throuch very clearly.

The main conclusion which can be drawn from the results of

the analysis is that the primary effects of acceleration, transpi-

ration, and a combination of both, can be introduced into the

analysis merely through the constant in the Van Driest damping

term, A+ . If A+ is evaluated properly, everything else fol-

lows. The fact that Stanton number sometimes increases and some-

times decreases with acceleration is merely attributable to the

response of the boundary layer equations to the imposed conditions.

Summary and Conclusions

In this paper experimental data on heat transfer to close

to asymptotic accelerated turbulent boundary layers, with and

without transpiration, have been presented. It is shown that

acceleration causes a depression in Stanton number for the case

of no transpiration, and for suction. For an accelerated boundary

layer with blowing it is shown that acceleration can cause an

increase in Stanton number under certain conditions.

Examination of velocity and temperature profiles suggest

that acceleration causes an Increase in the thickness of the

viscous sublayer. It has been shown earlier that blowing causes

a decrease in sublayer thickness, while suction increases thickness.

Acceleration can cause the momentum thickness Reynolds number to

decrease, and an acceleration at a constant value of the parameter

K will lead to a constant value of momentum thickness Reynolds

number. The enthalpy thickness Reynolds will always Increase,
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however, (except for strong suction), with the result that pro-

longed acceleration will lead to penetration of the thermal boundary

layer beyond the momentum boundary layer. The decrease in Stanton

number observed for accelerated boundary layers is believed to

result from a combination of the effects of a thicker sublayer

and a thermal boundary layer penetrating beyond the momentum

boundary layer.

Finally, a mathematical model based on the Van Driest

mixing-length hypothesis, and incorporating the observed effects

of acceleration and transpiration on the sublayer thickness, is

shown to be capable of quite satisfactorily reproducing the

experimental data for accelerations up to K = 2.5 x 10 , and

& wide range of blowing or suction. Means for improving the
I
I model nrp dlsniBSPrt, ,

Referoncpr:

Moretti, P. M., and Kays, W. M. , Int. Jour, of Heat and Mass
Transfer, Vol. 8, p. 1187.

Launder, B. E. , J. App. Mech., Vol. 31 (Dec. 1964) p. 707.

Launder, B. E., and Stinchcombe, H. S., "Non-Normal Similar
Turbulent Boundary Layers," Imperial College, Mech. Engrg.
Dept., TEF/TN/21, 1967.

Patel, V. C., and Head, M. R., Jour. Fluid Mech., Vol. 3t,
part 2, p. 371, 1968.

Pohlhausen, K. , Z. angew, Math. Mech., Vol. 1, p. 252, 1921.

Moffat, R. J., and Kays, W. M., Int. Jour, of Heat and Mass
Transfer, Vol. 11, No. 10 (Oct. 1968) p.

1.

2.

3.

5.

6.

7. Simpson, R. L. , Moffat, R. J., Kays, W. M., "The Turbulent
Boundary Layer on a Porous Plate: Experimental Skin Friction
With Variable Injection and Suction," (to be published in the
Int. Jour, of Heat and Mass Transfer).

8. Coles, D. E., "The Turbulent Boundary Layer In a Compressible
Fluid," RAND Report R-t03-PR(l952) .

9. Kline, S. J., KcClinluek, F. A., "Describing uncertainties In
Single Sample Experiments," Mechanical Engineering, January
1953, p. 3.

10. Patankar, S. V., Spalding, D. B. , "Heat and Mass Transfer In
Boundary Layers," Morgan-Grampian Press, Ltd., London, 1967.

11. Simpson, R. L., Whltten, D. 0., Moffat, R. J., "Experimental
Determination of the Turbulent Prandtl Number of Air," (to
be published in the Int. Jour, of Heat and Mass Transfer).

12. Launder, B. E. , Jones, W. P., "On the Prediction of
Laminarlzation, " presented at a meeting of the ARC Heat and
Mass Transfer Sub-committee, April 5, 1968.

13. Launder, B. E. , Locfcwood, F. C., "An Aspect of Heat Transfer
In Accelerating Turbulent Boundary Layers," ASME Paper No.
68-WA/HT-13.



1. Porous plate
2. Heater wires
3. Thermocouples
4. Support webs
5. Honeycomb
6. Thermocouple
7. Base casting
8. Pre-pjate
9. Balsa insulation

10. Delivery tube

Pig. 1 - A segment of the porous test plate showing transpira-
tion system and plate heating system.
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Plg. 2 - Arrangement of top covers of test duct to obtain
constant K acceleration.
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Pig- 3 - Heat transfer results for four values of the ac-
celeration parameter, K , for no transpiration,
F = 0.0 .
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