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A ,  MIELE ANDJ.C. HEIDEMAN 

Abstract. The problem of minimking a function f(x) subject t o  a constraint ~ ( x )  = 0 is 

considered. Here, f is a scalar, x is an n-vector, and cp is a p-vector. An iterative 

algorithm is presented, made up of the alternate succession of gradient phases and 

restoration phases. In the gradient phase, the first-order change of f is minimized 

subject to the linearized constraint and a quadratic constraint on the displacement Ax. 

In the restoration phase, the displacement modulus 16x 1 is minimized subject to the 

linearized constraint. It is shown that,if CI is the stepsize of the gradient phase, 

2 Ax = O(a) and 6x = O(u ). Therefore, for (x, sufficiently small, the restoration algorithm 

preserves the descent property of the gradient algorithm: the function f decreases 

between any two successive restoration phases. 
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1 .  Introduction 

In a previous paper (Ref. l), a review of the ordinary gradient method for minimizing 

a function f(x) of an unconstrained n-vector x was presented. The basic idea is to  minimize 

the first-order change 6f(x) subject to a quadratic constraint on the displacement vector. 

In this paper, the minimization of the function f(x) subject to the constraint cp(x) = 0 

is considered, where x is an n-vector and rg is a p-vector. Once more, the ordinary 

gradient method is employed. This involves the minimization of 6f(x) subject to Gcp(x) = 0 

and a quadratic constraint on the displacement vector. Since the constraint rp(x) = 0 is 

accounted for only to first order, the position vector 2 at the end of the gradient phase 

is such that @(%) # 0. This being the case, a restoration phase is needed prior to starting 

the next gradient phase. Specifically, one has to apply a small perturbation to x" to 

generate a new position vector x" such that cp(x") = 0.  While there a re  infinite ways to 

perform this operation, the simplest way is that developed in Refs. 2-3: the constraint 

is restored to a preselected degree of accuracy subject to the least-square change of the 

position vector. 
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2 .  Statement of the Problem 

We consider the problem of minimizing the function 

f = f(x) 

subject to  the constraint 

Q(X) = 0 

In the above equations, x is an n-vector and cp is a p-vector, respectively defined by 

x =  

1 

2 

X 

X 

n 
X 

t Q ( X )  = 
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3 .  Gradient Phase -__-______ 

Consider a displacement Ax leading from the nominal point x to  the varied point % 

such that 

Z=x+AX (4) 

Assume that the nominal point x satisfies (2) exactly and that the varied point %satisfies (2) 

to first-order. The first-order change of the function (1) is given by 

T 
M(x) = g (f,x) ax 

where the symbol g(f,x) denotes the gradient of the scalar function f with respect to  title 

vector x, that is ,  

The symbol T denotes the transpose of a matrix. In turn, the first-order change of the 

constraint (2) is represented as 

T 
Q(x) = G (cp,x) Ax = 0 (7) 

where G(w,x) denotes the gradient of the vectorial function cp with respect to the vector x. 

This is the matrix 
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j whose jth - column is the gradient g(cd,x) of the scalar function cp with respect to the vector 

x. In extended form, (8) can be rewritten as the n x p matrix 

G(ep,x) = ~~n 2 2 2  . . . . . . .  ax^ 2 

. . . . . . . . . . . . . . . . . . . . .  

acp /ax ;3rp /ax . . . . . . . $/axn 

Next, consider the following quadratic constraint on the displacement: 

T K = D x  Ax 

(9) 

where K is a constant prescribed a priori. With this understanding, we formulate the 

following problem: Find the variation Ax which minimizes (5) subject to  (7) and (10). 

3 .1 .  Derivation of the Algorithm. Standard methods of the theory of maxima and 

minima show that the fundamental function of this problem is the scalar function 

T T T  T 
0 = g (f ,x)k + X  [G (cp,x)Ax] +(1/2a)Ax Ax 

where 1/2 CL is a scalar Lagrange multiplier and X denotes the undetermined, constant 

vector Lagrange multiplier 
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If one introduces the augmented function 

T 
F(x) = f(x) + T(X) 

and observes that 

and that 

T T T T  
g = g  (f,x) + I  G (cp,x) 

the fundamental function (1 1) becomes 

T T 
R = g  ( F , x ) k + ( 1 / 2 a ) k  Ax 

In Eqs . (14)-(16), g(F,x) denotes the gradient of the augmented function F with respect 

to the vector x .  The optimum change Ax satisfies the relation 

where g(Q, Ax) denotes the gradient of the fundamental function R with respect to the vector 
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Ax. The explicit form of (17) is the following: 

and shows that the displacement vector Ax has the same direction as the gradient g(F,x) of 

the augmented function F with respect to the vector x. Of course, g(F, x) is known provided 

the multiplier X is known (see following paragraph). 

3 . 2 .  Lagrange Multiplier. Lf Eqs. (14) and (18) are combined, the displacement 

vector becomes 

Next, we substitute (19) into the linearized constraint (7) and obtain the relation 

Since the vector g(f, x) and the matrix G(Q, x) are known at the nominal point x, Eq. (20) 

supplies the multiplier A; this is precisely the value which guarantees satisfaction of the 

constraint (2) to first  order at the end of the gradient phase. 

3 . 3 .  Descent Property. The first  variation of the augmented function F is given by 

T 6F(x) = g (F,x)Ax 

which, in the light of (181 can be written as 



8 AAR-59 

T Since g (F, x)g(F,x) > 0, Eq. (22) shows that the first variation of F is negative for a > 0 .  

Therefore, if a is sufficiently small, the augmented function F decreases during the gradient 

phase. 

Alternatively, the first variation of F can be written as 

6F(x) = 6f(x) i- 1 T 6rp (X) 

Because of (7), Eq. (23) reduces to the form 

6F(x) = 6f(x) (24) 

which states that the functions F and f behave identically, to  first  order. Therefore, the 

descent property (22) also holds for the function f .  

3.4. Stepsize. Since g(F,x) is known at the nominal point x, Eq. (18) shows that 

the correction Ax is proportional to a. This is why a is called the stepsize of the gradient 

method. Upon substituting (18) into (lo), we see that 

Therefore, a one-to-one correspondence exists between the values of the constant K and the 

values of the stepsize a. This being the case, one can bypass prescribing K and reason 

directly on a , as in the considerations which follow. 

The next step is to assign a value to  the stepsize a. If Eqs. (4) and (18) are combined, 

the position vector at the end of the gradient phase becomes 

Z = X  - ag(F,x) 
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For each point x, Eq. (26) defines a one-parameter family of points 2 for which the functions 

f and F take the form 

f(Z) = f[x - ag(F,x)] = f(a) 

F(Z) = FCX - ag(F,x)] = F(a) 

These equations are particular cases of a more general equation of the form 

where Y = f if one reasons in terms of the function to be minimized and T = F if one reasons 

in terms of the augmented function. 

For the sake of discussion, we assume that the function Y has a relative minimum 

with respect to a. Under these conditions, the greatest decrease of the function Y occurs 

if the parameter a satisfies the following necessary condition: 

{(a) = o  

where the dot denotes the derivative with respect to a. On account of (28), the following 

relation holds: 

Therefore, Eq. (29) becomes 
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and shows that, at the point where Y is a minimum, the gradient gfl,?) is orthogonal to 

the gradient g(F,x). In the light of (18), Eq. (31) can also be rewritten as 

T g (Y,Z)k  = o  

and shows that the gradient g(Y,?) is orthogonal to the correction k. This is due to  the 

fact that Ax and g(F, x) are parallel. 

In conclusion, the optimum value of amust be determined by solving Eq. (29), in  

general, by approximate methods. In order to  prevent a from becoming too large (that 

is, in order to limit the constraint violation), the solution of (29) is to  be subordinated to 

either of the following inequalities : 

as  El or  P(?) 5 e2 

where 

(33) 

denotes the performance index and where E: and E: are small quantities prescribed 1 2 

a priori. Incidentally, Ineqs . (33) are of fundamental importance in those cases where 

Y(a) is monotonically decreasing, that is ,  those cases where Eq. (29) has no real solution. 
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4. Search Technique - ~ _ _ - _  
In this section, we present methods to solve the equation 

where Y can be either f or  F. Since the methods in question involve the consideration of 

the first derivative $(a) and perhaps the second derivative v(a), we summarize these 

derivatives below. 

The derivative $(a) is given by Eq. (30) as 

.. 
and the derivative Y(n,) is given by 

where H(Y,x) denotes the n x n matrix of second derivatives 

- 
2 1 1  2 1 2  2 1 n  a */ax ax a Wax ax . . . . . a '+'/ax ;3x r 
2 2 1  2 2 2  2 2 n  a v / a X  ax a '+'/ax ax . . . . . a ~ / a x  ax 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

4 - 
If the second-derivative matrix is not explicitly available, one can use the difference scheme 
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In practice, one may choose 

where t: is a small number. 3 

4 . 1 .  Cubic Interpolation. Let the values of the function Y(a) and its derivative 

Y(a) be computed for two different values of a, namely c j  and a2, with a > fl,l 2 0. If 

a and a are suchthat 

2 

1 2 

then the minimum of the function Y(a) occurs for some value a in the range 

a 1 < , < a 2  

In this range, we represent the function V(a) with the cubic 

whose first and second derivatives are given by 

The scalar coefficients A, B, Cy D are determined by requiring (43) to match the ordinate 

and the slope of the curve Y(a)  at al and a2. Therefore, one has to  solve the linear equations 

Y(al) = A 

Y(u2) = B + 2C(m2 - al) + 3D(a2 - El) 2 
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Once the coefficients of the cubic (43) are known, the optimum value of a is determined 

by the conditions ( 3 5 ) .  Therefore, in the light of (44), one arrives at the solution 

(46) 
2 a = al + (1/3D)C-C +J(C - 3BD)I 

At this point, one recomputes the function Y(a) and the derivative {(a). Then, the process 

is iterated until Eq. (35-1) is satisfied to a desired degree of accuracy, that is, until 

In practice, one may choose 

where 6 is a small number. 4 

4 . 2 .  Quasilinearization. An alternate technique for computing the optimum stepsize, 

that of quasilinearization with built-in safeguards to ensure that the function decreases at  

every step of the iterative search, is now presented. Let 

Ea=a-ao (49) 

denote the correction to a starting from an arbitrary nominal value a . If quasilinearization 

is applied to  Eq. (35- l), one obtains the linear algebraic equation 

0 

.. 
Y(ao)Ga+ +(a 0 ) = 0 

Next, we imbed Eq. (50) in the more general equation 

;y'cao)6r. + uouc(ao) = 0 
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where udenotes a scaling factor and p a direction factor such that 

Equation (51) admits the solution 

The direction factor p is determined in such a way that the first variation 

is negative. From (53)-(54), we obtain 

Therefore, 6Y(a ) is negative if the direction factor p is chosen as follows: 
0 

.. 
p = sign "ao) 

Because of this choice, the correction (53) becomes 

To perform the search, a nominal value must be given t o  a . Then, one sets u = 1, 
0 

computes 6cl from Eq. (57) and a from Eq. (49). If Y(a) < Y(uo), the scaling factor u = 1 

is acceptable. If Y (a) > Y ( a  ), the previous value of y must be replaced by some smaller 

value in the range 0 

through bisection, that is, by successively dividing the value of u by 2. At this point, the 

0 

u 5 1 until the condition Y(c$ < ut(a ) is met; this can be okkained 
0 
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search step is completed. The value obtained for a becomes the nominal value a. for 

the next search step, and the procedure is repeated until a desired degree of accuracy is 

obtained, that is, until Ineq. (47) is satisfied. In the absence of better information, the first  

step in the search procedure can be made with a = 0. 
0 
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5. Restoration Phase 

At the end of the gradient phase, the point 2 is known. If the constraint is linear, the 

relation Cp(2) = 0 holds. On the other hand, if the constraint is nonlinear, ~(2) # 0, which 

means that some degree of dissatisfaction exists. Therefore, a restoration phase is 

needed prior to starting the next gradient phase. Specifically, one has to apply a small 

variation 6x to 2 to generate a new position vector 

such that cp(g) = 0. While there are infinite ways to  perform the restoration, the simplest 

is that developed in Refs. 2-3: the constraint is restored to a preselected degree of 

accuracy subject to  the least-square change of the position vector. 

If quasilinearization is employed, Eq. (2) is approximated by 

T + G (cp,2)6x = 0 (59) 

In order to prevent the variations 6x from becoming too large, we imbed Eq. (59) into the 

one-parameter family 

where 

O l k l l  

denotes a scaling factor. 
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1 

2 

0 

0 

. 

In the light of the previous discussion, we seek the minimum of the function 

d 

1 T  
2 

J =-6X 6X 

subject to the linearized constraint (60). Standard methods of the theory of maxima and 

minima show that the fundamental function of this problem is given by 

where , a p-vector, denotes the undetermined, constant Lagrange multiplier 

The optimum change 6x satisfies the relation 

g(w, 6x) = 0 6-55) 

where g(w, 6x) denotes the gradient of the scalar function w with respect to the vector 6x. 

The explicit form of (65) is the following: 
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The Lagrange multiplier is obtained by combining (60) and (66) to eliminate 6x. This 

yields the relation 

T 
kM2) - [G (CP, 2)G(cp,fE)h = 0 

For any given k in the range (61), Eq. (67) supplies the Lagrange multiplier vector 0. 

Once o is known, the correction 6x is given by Eq. (66), and the corrected position vector 

is given by Eq. (58). Of course, the restoration phase must be performed iteratively 

until a desired degree of accuracy is obtained, that is, until the inequality 

is satisfied, where 6 is a small number. 5 

5.1. Descent Property. The first variation of the performance index is given by 

T T  6P(Z) = 2cp (2)G (cp,?)$r 

and, because of Eq. (60), reduces to 

GP(2) = - 2 kep T (EE)ep(g) 

which, in the li@t of (34), becomes 

Since P(2) > 0, Eq. (71) shows that the first variation of the performance index is negative 

for k > 0. Therefore, if k is sufficiently small, the decrease of the performance index is 

guaranteed. 
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6.  Sequential Gradient- Restoration - Algorithm -- -- 
The algorithm presented in this report consists of the alternate succession of gradient 

phases and restoration phases. A summary of the algorithm and its properties is given 

below. 

6.1. Gradient Phase: (a) Select a nominal point x such that cp(x) = 0; (b) at this nominal 

point, compute the gradient g(f, x) with Eq . (6)  and the matrix G(rp, x) with Eq . (9); 

(c) solve Eq. (20) in order to ohtain the multiplier 1; (d) compute the gradient g(F,x) with 

Eq . (14); (e) the displacement vector Ax is supplied by Eq . (18) and is known except for 

the stepsize a, to be determined by the search technique. 

6 .2 .  Search Technique: (a) Establish a search criterion Y = f o r  Y = F; (b) consider 

the one-parameter family of points 2 defined by (26); (c) for these points, consider the 

function Y(a) and search for the minimum of this function using, for instance, cubic 

interpolation or  quasilinearization; (d) if the minimum exists, stop the search when Ineq. 

(47) is satisfied; the resulting value of a is subordinated to  the further satisfaction of 

either of heqs  . (33); (e) if the minimum does not exist, use the value of GI for which either 

of (33) becomes an equality; (f) once a is known, the gradient correction Dx can be computed 

with Eq. (18); (g) the position vector 2 at the end of the gradient phase is determined with 

Eq. (4). 

6 . 3 .  Restoration Phase: -- (a) At the point 2, compute the vector ~ ( 2 )  with Eq. (3-2) and 

the matrix G(cp,2) with Eq. (9); (b) assurning k = 1, determine the multiplier cs with Eq. (67); 

(c) once CT is known, the correction 6x is supplied by Eq. (66); (d) the new position vector 

i? is given by Eq. (58); (e) if P(i?) < P(x"), the scaling factor k = 1 is acceptable; if 

P(g) 

d u 

P(Z), the previous value of k must be replaced by some smaller value in the range 
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(61), until the condition P(2) < P(%) is met; this can be achieved through successive bisections 

of k; (f) return to step (a) and repeat the restoration algorithm using x" as the starting 

point Z for the subsequent iteration; (g) terminate the restoration algorithm when the stopping 

condition (68) is satisfied; (h) once the restoration algorithm is completed, verrfy the 

inequality 

f(2) < f(x) (72) 

E Ineq. (72) is satisfied, start the next gradient phase. E Ineq. (72) is violated, return to 

the previous gradient phase and reduce the stepsize a until, after restoration, Ineq. (72) 

is satisfied. 

6.4. Stopping Conditions. The combined gradient-restoration algorithm is terminated 

when 

Q@) * "6 

where 

(73 1 

and where 8 denotes a small number. 6 

6.5. Order of Magnitude Analysis. The position vector x" at the end of the restoration 

phase and the position vector x at the beginning of the gradient phase are related by 
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where Ax is the gradient correction and 6x is the restoration correction. From Eq. (18), 

we see that the gradient correction has the order 

Ax = o(a) (76) 

Next, we observe that 

where h(cp,x, Ax) denotes the p-vector 

h(cp,x, h) = 

- 
AxTH(cpl, x ) k  

AxTH(rp2,X)aX 

Since the nominal point x satisfies (2) exactly and the variation Ax satisfies (2) to  first 

order, the first two terms on the right-hand side of (77) vanish. Therefore, in the light 

of (76) and (78), we conclude that 

2 
CP(3 =o(a 1 (79) 

Next, we turn our attention to Eq. (67). If 

then, a Taylor expansion of G(ep,2) shows that o has the same order of magnitude as q(%), 
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that is , 

2 
0 =o(a ) 

Therefore, from (66) and the Taylor expansion of G(cp,%, we see that 6x has the same order 

of magnitude as o, that is, 

In conclusion, if the gradient correction is of the order a, the restoration correction is 

of the order a . This guarantees that, for sufficiently small  a, 2 

6.6. Descent Property. Finally, we consider the points x and 2, both satisfying the 

constraint (2). To first order, the difference of the values of the function f at these points 

is given by 

T f(2) - f(x) = g (f,x)[k + 6x1 

For a sufficiently small, Ineq. (83) applies and Eq. (84) can be approximated by 

T T f(Z) - f ( x ) l  g (f,X)aX = - ag (F,x)g(F,x) 

(84) 

Therefore, for a sufficiently small, the restoration algorithm preserves the descent property 

of the gradient algorithm: the function f decreases between any two successive restoration 

phases. 
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7. Examples 

In order to illustrate the theory, two numerical examples are now supplied. For 

simplicity, all the symbols employed in this section denote scalar quantities. W e  refer  to 

the problem of minimizing the function 

subject to  the scalar constraint 

cp(x,y, 2) = 0 

The gradient algorithm is represented by 

jY=x+L!x , f ; = y + A y ,  z " = z + a z  

where 

A x = - @  X +XQ) X 

Az=-a(f Z +Xq) 2 

Ay=-  a(f +Xcp ) 
Y Y  

and where the multiplier X is defined as 

(87) 

(89) 

The stepsize a is determined in such a way that either the function f o r  the function F is 

minimized along the line represented by Eqs . (88)-(89). This is done by employing quasi- 

linearization, as explained in Section 4.2. The search is terminated when 



o r  when 

with the understanding that 

u s  1 o r  P(%,?,Z) 5 1 

The restoration algorithm is represented by 

Z=X"+6x , F = f + 6 y  , z"=Z+6z  

where 

6x=-ocp , 6y=-orpy , 6 z = - d p ,  
X 

and where the multiplier 0 is given by 

The restoration algorithm is terminated when 

- 12 P(z, 7,Z) 10 

It should be understood that, for every combined gradient-restoration phase, 

AAR- 59 

(91) 

(93) 

(94) 

(95) 

(97) 

f(Z,f, E) < f(x, y, z )  
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E Ineq. (98) is satisfied, the next gradient phase is started; if Ineq. (98) is violated, the 

stepsize CL is bisected successively until (98) is met. 

Example 7 . 1 .  We consider the problem of minimizing the function 

2 2 2  f = x  + y  + z  (99) 

subject to the constraint 

2 x + y  - 1 = o  

This function admits the relative minimum 

f = 3/4 

at the points defined by 

x = 1/2 , y = f 1/4/2 y z = o  

The nominal point chosen for the descent process is the point of coordinates 

x = - 3 ,  y = 2  y z = 1  (103) 

consistent with (100). Since the function is quadratic and the constraint is quadratic, the 

search performed by quasilinearization yields the optimum value of CL in one step. Since 

the minimum (101) is known a priori, the stopping condition (73) is replaced by 

-6 
If - 3/4 I 10 
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Computations were performed with a Burroughs B- 5 3 0  computer in double-precision 

arithmetic. 

number of iterations (each iteration includes a gradient phase and a restoration phase) 

and N the number of restoration cycles per iteration. As can be seen, the number of 

restoration cycles decreases as the algorithm progresses toward termination. 

The results are summarized in Tables 1 and 2, where N denotes the 

R 

Example 7.2. We consider the problem of minimizing the function 

2 4 
f = (x - y) + (y - z) 

subject to  the constraint 

2 4  
x ( l + y ) + ~  - 3 ~ 0  

This function admits the relative minimum 

f = O  

at the point defined by 

The nominal point chosen for the descent process is the point of coordinates 

consistent with (106). Since the minimum (107) is known a priori, the stopping condition 

(73) is replaced by 

f I ,  
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Computations were performed with a Burroughs B- 5500 computer in double-precision 

arithmetic. 

number of iterations (each iteration includes a gradient phase and a restoration phase) 

and N the number of restoration cycles per iteration. As can be seen, the number of 

restoration cycles decreases as the algorithm progresses toward termination. 

The results are summarized in Tables 3 and 4, where N denotes the 

R 
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X Y z f NR N 

14.0000000 0 -3 .oooo 2 .oooo 1 .oooo 

1 3 0.1769 0.9072 0 .oooo 0.8543922 

2 2 0.4191 0.7621 0 .oooo 0.75653 19 

3 1 0.4752 0.7244 0 .oooo 0.7506136 

4 1 0.4919 0.7127 0 .oooo 0.7500646 

5 1 0.4973 0.7089 0 .oooo 0.7500070 

6 1 0.4991 0.7077 0 .oooo 0.7500008 

Table 2 ("r = F) 

X Y z f NR N 

0 -3 .oooo 2.0000 1 .oooo 14.0000000 

1 3 0.2701 0.8543 -0.0328 0.8039208 

2 2 0.4840 0.7182 0.0092 0.7503381 

3 1 0.4977 0.7087 - 0.0025 0,7500 116 

4 1 0.4994 0.7075 0.0003 0.7500004 
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Table 3 (V = f )  
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x Y Z f NR N 

2 

1 

0 

0 - 2.6000 2.0000 2 .oooo 0.21 x 10 

1 5 -0.3517 0.0226 1.3530 0.32 x 10 

3 2 0.4890 0.5104 1.2425 0.28 x 10 

4 2 0.5317 0.7694 1.2113 0.94 x 10-1 

7 1 0.8222 0.8203 1.1289 0.90 x 

13 1 0.9060 0.9053 1.078 1 0.89 loe3 

27 1 0.9474 0.9472 1.0471 0.99 

68 1 0.9708 0.9713 1.0271 0.99 

194 0 0.9838 0.9839 1.0154 0.99 x 
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X Y 2 f NR N 

0 

1 

2 

4 

7 

12 

25 

59 

161 

- 2.6000 

-0.3368 

-0.2234 

0.6173 

0 A334 

0.8995 

0.9483 

0.9712 

0.9839 

2.0000 

0.0130 

0.6155 

0.7954 

0.8352 

0.9148 

0.9484 

0.9712 

0.9839 

2.0000 

1.3515 

1.3486 

1.1880 

1.1220 

1.0774 

1.0463 

1.0270 

1.0155 

2 
0.21 x 10 

1 

0 

0.33 x 10 

0 . 9 9 ~  10 

0.55 x 10-1 

0.67 x 

0.93 

0.91 

0.97 x 

0.99 x lom6 
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