

NASA CR-72564 APS-5286-R

FINAL REPORT<br>1200-HZ BRAYTON ELECTRICAL<br>RESEARCH COMPONENTS

## Prepared Under Contract NAS3-9427

by
AiResearch Manufacturing Company of Arizona
A Division of The Garrett Corporation
for
National Aeronautics and Space Administration


NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:
A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completencss, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process dism closed in this report may not infringe privately ownod rights; or
13.) Assumes any liabiliti.es with rospect to the use of, or for damages resulting from the use of any information, apparatus, method or prucess disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to
*National Aeronautics and Space Administration
Office of Scientific and Technical Information
Attention: ATSS
Washington, D.C. 20546

## AIRESEARCH MANUFACTURING CUMPANY GF ARIZONA

 a diviaign of the barmitit corplotationNASA CR-72564
AFS-5286-R

FINAL RJ:PORT<br>1200-HZ BRAYTON ELECTRICAL RLSEARCH COMPONENI'S

Prepared Under Contract NAS3-9427
by
AiResearch Manufacturing Company of Arizona
A Division of The Garrett Corporation March 19, 1969
for
National Aeronautics and Space Administration
Lewis Research Center

Technical Management

Space Power Systems Division
James H. Dunn

## A.BSTRACT

The AiResearch Manufacturing Company of Arizona, A Uivision of The Garrett Corporation, designed and fabricated the eloctrical components for a 1200-IIz Brayton enorgy conversion system. These components consist of a high efficioncy Rico four-pole brushiess lo.5-KW alternator, a voltage regulator/exciter, and a parasitic load-type speed control. Ilogether, thoso throe units comprise the alternator: research package (ARP). The alternator was designed with oil-mist l.ubricated ball bearings. However, the specifications require the minimization of the magnetic load unbalance on the bearings to permit the future application of gas lubricated bearings.

Both series and shunt field control are provided in the voltage regulator/exciter to maintain steady-state regulation within $\pm 1$ percent of rated voltage with loads from 10 to 100 percent at 0.75 lagging power factor. The speed control is designed to maintain speed (frequency) regulation of $1200 \mathrm{~Hz}: 1.0$ percent under steadystate conditions.

AIRESEARL'H MANUFACTURING CDMPANY OF ARIZロNA

## TABLE OF CONTENTS <br> AI'ERNATOR RESEARCH PACKAGE FINAI REPORT

|  |  |  | Page |
| :---: | :---: | :---: | :---: |
|  | SUMMARY |  | 1-1 |
| 1.0 | INTRODU | TON | 1-2 |
| 2.0 | SPLCIEICATIONS |  | 2-1 |
|  | 2.1 | Alternator Specifications | 2-1. |
|  | 2.2 | Voltage Regulator/Exciter (VRE) Specificatjons | 2-2 |
|  | 2.3 | Speed-Control Specifications | 2-3 |
| 3.0 | DLSCRIPTION OF ALIERNATOR |  | 3-1. |
|  | 3.1 | Electrical Analysis of the Alternator | 3-7 |
|  | 3.1 .1 | Summary of Electromagnetic Force Considerations as Related to Gas Bearing Application | 3-16 |
|  | 3.2 | Mechanical Analysis | 3-22 |
|  | 3.2 .1 | Rotor Fabrication | 3-32 |
|  | 3.3 | Test Results | 3-43 |
|  | 3.3 .1 | Alternator Research Package Rotor Spin lest Rig | 3-43 |
|  | 3.3.2 | ARP Alternator Evaluation | 3-43 |
|  | 3.3.3 | Functional Test of the Components | 3-50 |
| 4.0 | DESCRIPTION OF THE VOLTAGE REGULATOR/EXCITER (VRE) |  | 4-1 |
|  | 4.1 | Series Field Controller (Exciter) Analysis | 4-5 |
|  | 4.1 .1 | Design of the Series Field Controller | 4-17 |
|  | 4.2 | Shunt Field Voltage Regulator Analysis | 4-19 |
|  | 4.2 .1 | Detail Design of the Shunt Field Regulator | 4-27 |
|  | 4.2 .2 | Detail Circuit Description | 4-30 |
|  | 4.2 .3 | Worst-Case Analysis | 4-35 |
|  | 4.2 .4 | Failure Rate Analysis | 4-41 |
|  | 4.3 | Mechanical Description | 4-52 |

## AIREGEARCH MANUFACTURING CIMPANY GF ARIZDNA

## TABLE OF CONTENTS (Contd.)

|  |  | Page |
| :--- | :--- | :--- |
| 5.0 | DESCRIPTION OF THE SPEED CONTROLLER | $5-1$ |
|  | 5.1 | Design of the Speed Controller |
|  | 5.2 | Reliability Study and Failure Analysis |
|  | 5.3 | Mechanical Analysis |
| 6.0 | SYSTEMS ANALYSIS | $5-7$ |
| 7.0 | CONCLUSION | $5-24$ |
|  |  |  |

## AIREGEARCH MANUFACTURING CDMPANY IF ARIZGNA

## LISI OF FIGURLS

|  |  | Page |
| :---: | :---: | :---: |
| 3-1 | Alternator Sketch | 3-2 |
| 3-2 | Alternator Research Package Components | 3-3 |
| 3-3 | Rice Alternator | 3-4 |
| 3-4 | Alternator Rotor Assembly, lu.R.U. | 3-6 |
| 3-5 | Predicted Alternator Llectrical Characteristics | 3-1. 4 |
| 3-6 | I'otal Loss vs KVA Output B.R.U. Altornator Prolimjnary Dosign | 3-15 |
| 3-7 | Symmetrical Relationship of Windings to Rotor, Four-Pole kice Alternator | 3-18 |
| 3-8 | Percent Voltage Unbalance versus Negative Sequence Reactance at Various Ioad Impedances | 3-20 |
| 3-9 | Alternator Research Package Rotor | 3-23 |
| 3-10 | Alternator Research Package | 3-25 |
| 3-11 | System Assumed in Critical Speed Analysis of BRU Alternator Test Package | 3-27 |
| 3-12 | Critical Speed for Alternator Research Package | 3-28 |
| 3-13 | Alternator Research Package First and Second Critical Definition | 3-29 |
| 3-14 | Bearing System Life for NASA BRU Alternator Research Package Using CEVM M-50 | 3-30 |
| 3-15 | Bearing Powe: Loss for NASA BRU Alternator Research Package | 3-31 |
| 3-16 | Alternator Research Package Main Frame Assembly Detail Parts Prior to Brazing | 3-33 |
| 3-17 | Alternator Thermal Analysis Isotherms with Oixtput OL 10.5 KW at 0.85 pf | 3-34 |
| 3-18 | Alternator Stator Thermocouple Locations for Research Package and Dynamic Simulator | 3-35 |
| 3-19 | Rotor Poles and Separator Prior to Brazing | 3-37 |
| 3-20 | Alternator Research Package Brazed Rotor Assembly | 3-38 |
| 3-21 | Alternator Research Package Rotor Part No. 699531-1, Serial No. $7 \times 102$ Shown in Rotor Spin Iest Rig | 3-39 |



LIST OF FIGURES (Contd.)

|  |  | Page |
| :---: | :---: | :---: |
| 3-22 | No-Load Saturation Characteristics Alternator Research Package at 100 percent Speed ( 36000 RPM) | 3-45 |
| 3-23 | Electromagnetic Test Rig | 3-46 |
| 3-24 | Saturation Charactoristics for BleU Altornator Part 518606 Hosted 6-27-60 | 3-47 |
| $3-25$ | fotal flux at tho Auxiliary Gap vorsus dotal Fiold Excitation BRU Altornator Part 518G0G | 3-48 |
| 4-1 | Block Diagram, Brayton Rotating Unit VoltagoRogulator/kxaitor Unit. | 4-: ${ }^{\text {a }}$ |
| 4-2 | Alternator milectrical Charactoristies | 1-4 |
| 4-3 | Series Field Circuit | 4-6 |
| 4-4 | Series Field Wave Forms | 4-7 |
| 4-5 | Current Transformer Magnetizing Current | 4-10 |
| 4-6 | Series Field Static Control Characteristics | 4-12 |
| 4-7 | Waveforms for Nonsinusoidal. Line Currents | 4-13 |
| 4-8 | Series Field Surge Voltage | 4-1.5 |
| 4-9 | Block Diagram of Shunt Field Regulator | 4-22 |
| 4-10 | Battery Assisted Start Up | 4-23 |
| 4-11 | Switching Regulator | 4-24 |
| 4-12 | Shunt Field Waveforms | 4-26 |
| 4-13 | Shunt Field Regulator Wiring Schematic | 4-31. |
| 4-14 | Field Current ard Output Voltage During Start-Up | 4-34 |
| 4-15 | Regulator-Excjiter Outiine, Voltage, Alternator | 4-54 |
| 4-1.6 | Pegulator-Exciter Assembly, Voltage, Alternator | 4-55 |
| 4-17 | Voltage Regulator/Exciter Assembly | 4-56 |
| 4-18 | Voltage Regulator/Exciter Assembly | 4-57 |
| 4-19 | Voltage Regulator/Exciter Assembly | 4-58 |
| 4-20 | Wiring Diagram (Schematic), Brayton Cycle System | 4-59 |
| 5-1 | Wiring Diagram (Schematic), Control Assembly, Speed, Turbine Generator | 5-2 |
| 5-2 | NASA Proposed Speed-Control Override Circuit | 5-4 |
| 5-3 | Modification Required to Remove Filters | 5-18 |

## AIREAEARLH MANIIFACTURING CIMPANY OF ARIZONA a bivigitin de the gihnett dongrgation

## LIST OF FIGURES (Contd.)

|  |  | Page |
| :---: | :---: | :---: |
| 5-4 | Speed Control, B.R.U. | 5-27 |
| 5-5 | BRU Speed-Control Assembly Three Subassemblies Required | 5 |
| $5-6$ | BRIJ Spoed-Control Gubassombly front View |  |
| 1-7 | RRU Speod-controd Subaraombly Enor Viow | ¢-31 |

## AIRESEARCH MANUFACTURING CIMPANY DF AFIZINA

a Divicion oi the barmatt mompghation

## LISEOF TABLES

|  |  | Page |
| :---: | :---: | :---: |
| 3-1 | Alternator Electromagnotio Weights | 3-8 |
| 3-2 | Pole Configuration Effoct Upon Harmonic Contont. | 3-10 |
| 3-3 | Magnotic Ciroult Data | 3-11 |
| 3-4 | Sorios and shunt Piold Charaotoristios | 3-12 |
| 3-5 | Alternator Lossers, Prrernt | 3-13 |
| 3-1 | Loss Paramotor liftocts | $3-13$ |
| 3-7 | Altormator Loses Summary | 3-16 |
| 3-8 | Rotor Matertat lata Aftox Roprosontative drazo and Heat Jroatment Cyolos | 3-4.1 |
| 3-9 | N1uornator Materiad | 3-42 |
| 4-1 | liela Lxcitation Requirements | 4-3 |
| 4-2 | VRL Componene 'lolerunces | 4-37 |
| 4-3 | VRE Component List | 4-42 |
| 4-4 | Failure ¢ate Calculation for Diodes | 4-44 |
| 4-5 | Failure Rate Calculotion for lransistors | 4-45 |
| 4-6 | Failide Rate Calcuiation for Capacitors | 4-46 |
| 4-7 | Failure Rate Calculation for (Wire Wound) Fesistors | 4-47 |
| 4-8 | Failure Rate Caiculation for Metal Film Resistors | 4-48 |
| 4-9 | Failure Rate Calculation for Power Resistors and Potentiometer:s | 4-49 |
| 4-10 | Failure Rate Calculation for Transformers | 4-50 |
| 4-11 | Summary of Failure-Rate Calculations for Voltage-Regulator/Exciter | 4-51 |
| 5-1 | Component Eata | 5-5 |
| 5-2 | Speed-Control Critical Components (Fail-On) | 5-20 |
| 5-3 | Spead Control Critical Components Operating Characteristics | 5-21 |
| 5-4 | Speed Controller lleat Load Analysis | 5-26 |
| 5-5 | Speed Control Drawings (Breadboard Unit) | 5-28 |

## AIRESEARCH MANUFACTURING CQMPANY OF ARIZONA

a division of the garrett corporation

## LIST OF APPENDICES

| Appendix I | Glossary of Terms and Symbols |
| :--- | :--- |
| Appendix II | Drawings |
| Appendix III | Unbalanced Magnetic Forces |
| Appendix IV | Voltage Regulator/Exciter Optional Wiring <br> Procedure |
| Appendix V | Transient Analysis and Voltage Regulation <br> of a Synchronous Generator |
| Appendix VI | Active Filter Considerations |
| Appendix VII | Systems Analysis |

## AIRESEARCH MANUFACTURING CDMPANY OF ARIZDNA

a divibign df the darmett cormoratigin

FINAL REPORT<br>1200-HZ BRAYTON ELECTRICAL RESEARCH COMPONENTS<br>by<br>AiResearch Manufacturing Company of Arizona

SUMMARY

The electrical components for a $1200-1 \mathrm{z}$ Brayton onergy conversion system have been designed and fabricated. The componcnts consist of a brushless alternator having a rated output of 10.5 KW and the electrical power system controls, consisting of an alternator voltago regulator, a series controller, and a parasitic-type speed controller.

The alternator is a $36,000 \mathrm{rpm}$ four-pole Rice machine designed for a power output range of 2.25 to 10.5 kW . The nagnetic load unbalance in the alternator has been held to a minimum: to permit the future use of gas lubricated bearings. However, the bearings incorporated into this machine are oil-mist lubricated.

The control devices which utilize static components were designed and fabricated as breadboard units. The control units are designed to provide system voltage regulation of $\pm 1$ percent, speed regulation of $\pm 1$ percent, maximum response times for voltage and speed of $1 / 4$ and 1 sec., respectively. The voltage regulator operates in a switching mode. Multiple-speed controllers are provided. The components were designed to operate at the highest practical efficiensy.

## AIRESEARCH MANLFACTURING CDMPANY DF ARIZONA

### 1.0 INTRODUCTION

NASA is currently engaged in a program to develop a prototype Brayton onergy conversion system. The electrical components, as discussed in this report, were designed and fabricated to facilitate carly evaluation of components of this onergy conversion system. The purpose of this program is to ostablish tho performance characteristios of an altornator and associated eloctronic controls which would olocm trically and magnetically satisfy the needs of a space powor convorsion system.

This power conversion system utilizes electrical components similar in configuration to those used in previous systems with the exception that the rotor speed and gas characteristics are different. These differences tend to increase the alternator windage losses.

For instance, the system gas pressure, compared to the previous two-spool Brayton conversion system, is approximately four times greater; the gas molecular weight is twice as large, and the speed is three times greater at basically the sam» power level. These differences result in a need for a rotor design which minimizes the windage loss. The alternator design used is based on the Rice patent. Windage losses are reduced to approximately 30 percent of those which would result were the homopolar induction alternator design used. This latter type of alternator has been used in various power conversion systems developed at INASA-Lewis. The electrical components were designed by the AiResearch Manufacturing Company, A Division of The Garrett Corporation, while the component development is being conducted at the NASA-Lewis Research Center.

## AIRESEARCH MANUFACTURING CQMPANY OF ARIZDNA

### 2.0 SPECIFICATIONS

Specifications for the electrical components were established by NASA Contract NAS $3-9427$, Exhibit "A", as revised in Supplomental Agreement dated July 6, 1967.

### 2.1 Alternator Gpecifications

(a) Alternator to be radial-gap type with stationary excitation coil
(b) Alternator to be capable of motoring
(c) Unbalanced magnetic forces to be minimized
(d) Rated frequency: 1200 Hz at $36,000 \mathrm{rpm}$ (four poles)
(e) Maximum operating speed: $43,200 \mathrm{rpm}$ (120 percent of design)
(f) Continuous rating:
12.6 KVA at 0.85 pf
14.3 KVA at 0.75 pf
(g) Five-second rating:
21.3 KVA at 0.75 pf
(h) Voltage: three-phase, $120 / 208 \mathrm{~V} \pm 1$ percent from 10 to 100 percent load.
(i) Requirements of MIL-G-6099A (ASG) apply to:
(1) Waveform, paragraph 4.5.16, except total RMS harmonic content of line-to-neutral voltage with 10 to 100 percent pure resistive load shall be less than 5 percent
(2) Phase Balance, paragraphs 4.5.10, 4.5.1.0.1, and 4.5.10.2, except individual phase voltage deviation is 1.5, 3, and 6 percent as appropriate in paragraph 4.5.10.1.
(1) Output Voltage Modulation, paragraph 4.5.13, except limit is 0.5 percent.

## AIREGEAREH MANUFACTURING CTMPANY DF ARIZGNA


2.2 Voltage Regulator/Exciter (VRE) Specifications - The following paragraphs define the requirements for the veltage regulator/ exciter:
(a) Voltage Regulation -- plus or minus 1 pereent for combined 10 to 100 percont load and +10 percent speed variation at 0.75 lagging power factor.
(b) Voltage Drift - The voltage drift is specified as 1.0 V maximum at any fixed load between 10 and 100 porcent at 0.75 lagging power factor (voltage to remain within tho 2 percent band defined in the preceding parigraph).
(c) Applicable Requirements of MIL-G-6039A

Voltage Excursion - In accordance with Figure 3 of
MII-G-6099A except that the recovery time to within 5 percent of nominal voltage may be 0.25 sec .
Voltage Adjustment - In accordance with paragraph 3.3.5.1 of MIL-G-6099A.

Short-Circuit Capacity - In accordance with paragraph 4.5.12 of MIL-G-6099A.
(d) Abnormal Operating Conditions - Electrical components shall perform as specified in the following under abnormal operating conditions indicated.
Under abnormal system operating conditions, the VRE shall not be the limiting element.
The system shall operate for at least 5 sec . at an overload of 21 KVA at rated voltage, 0.75 lagging power factor, applied at rated speed and at stabilized rated-load temperature.
At 1800 Hz (1.5 times rated speed) and zero to rated load, the output voltage is to differ from nominal by no more than 5 percent.
At 600 Hz (half-rated speed) and zero load, the output voltage is to differ from nominal by no more than 40 percent.

## AIRESEARLH MANUFACTURING GUMPANY OF ARIZGNA



Temperature was not specified for the research VRE package. A temperature range of $-25^{\circ}$ to $+75^{\circ} \mathrm{C}$ was selected. The upper limit was sclected on the basis of an expected future cold-plate temperature of $65^{\circ} \mathrm{C}$. The lower limit was chosen arbitrarily, based on the $-18^{\circ} \mathrm{C}$ specifications commonly used for this typo of equipment in other spaco programs.
(e) Compononts - Components are to be solected to be replaceable with types suitable for flight without circuit changes. Actual hardware is to bo fabricated of military components and of high-quality, roliable commercial parts.
(f) Electrical Interference - The VRE shall be designed to meet the requirements of MIL-STD-826.
(g) Parts Interchangeability - All parts shall be interchangeable in accordance with the requirements of paragraph 3.4 of MIL-G-6099A (ASG).
(h) Packaging - The VRE shall be mounted on a chassis attached to standard 19-in. rack panels. Components and terminations shall be readily accessible for modification, repair, and instrumentation. Although the package will essentially be a breadboard, all components shall be based on flight environmental. requirements stated herein--notably heat transfer. In subsequent flight models, all heat shall be transferred by conduction to heat sinks which shall not exceed $150^{\circ} \mathrm{F}$.

### 2.3 Speed-Control Specifications

(a) Speed-Control Type - The speed (frequency) control shall be of the parasitic-loading type.
(b) Frequency Regulation - Frequency regulation shall be as specified in the following:
(1) Steady-state regulation shall be $1200 \mathrm{~Hz} \pm 1$ percent for a change in load from 10 percent to full load.
(2) Under transient conditions, regulation shall be 1200 Hz $\pm 2$ percent with a recovery time of 1.0 sec . (the

```
APS-5286-R
Page 2-3
```


## AIREGEARGH MANUFACTURING COMPANY OF ARIZINA


frequency shall return and romain within the 2 -percent band specified in paragrafi (1)), with no sustained oscillations, when tested under step application and removal of one per unit-load.
(3) Modulation shall not exceed $\pm 2 \mathrm{~Hz}$ under any load condition from 10 to 100 peronnt, under all environmental conditions. Ille frequency shall remain within the 2-percent band specified in paragraph (1).
(4) The drift shall not excoed 12 Hz at any fixed load from 10 to 100 percent load. The froquency shall romain within the 2-percent band specified in paragraph (1).
(c) Electrical Interferenco - The speed-control shall be designed t.o meet the requi.rements of MIL-STD-826.
(d) No-ioad Losses - Special effort shall be made to minimize losses in the control device when the demand for parasitic load is zero.
(e) Harmonic Distortion - Special effort shall be made to minimize the effect of the control device on the harmonic content of the alternator voltage and current.
(f) Control Characteristics - In addition to the frequency regulation specified in paragraph (b) above, the control shall permit the system to start and reach operating speed and shall provide full load to the sysiem for all speeds up to at least 150 percent of design speed to ensure contrcl in case of an accidental overspeed condition.
(g) Voitage Sensitivity - The speed-control sensing device shall be independent of voltage at any steady-state or transient vol.tage within specifications.
(h) Parts Interchangeability - All parts shall be interchangeable in accordance with the requirements of paragraph 3.4 of MIL-G-6099A (ASG).

## AIRESEARCH IMANUFACTURING COMPANY DF ARIZINA

A biviginn of the ganhett cormahatian
(i) Packaging - Tho speed-control dovice shall be mounted on a chassis attached to standard 19-in. rack panels. Components and terminations shall be readily accessible for modification, repair, and instrumentation. Although the package will be essentially a breadboard, all components shall be based on flight environmental requirements stated herein-notably heat transfor. In subsequent flight models, all heat shall be transforred by conduction to hoat sinks which shall not cxceed $150^{\circ} \mathrm{F}$.

AIRESEAREH MANUFALTURING GIMPANY DF ARIZINA
a divigitn df the garrett eormbation

### 3.0 DESCRIPTION OF ALTERNATOR

The objective in developing this alternator was to create a component for a practical space power system capable of operating on gas bearings for support of the rotating elements. The running gear is designed for low bearing losses and tho package includes complete tomporature and pressure instrumentation for performance evaluation. Ihis alternator, however, used an oil-mist lubricated ball bearing system. System considerations established those design critoria for the alternator:
(a) High efficiency (to reduce overall system weight)
(b) Minimum rotor size (to reduce windage loss and bearing load)
(c) Maximum reliability

Evaluation of the applicable system specifications and the various design criteria pertaining to the application of this alternator led to the selection of the Rice configuration (Figures 3-1 and 3-2). AiResearch has considerable experience with the fabrication of Rice alternators. The physical configuration of the alternator is shown on Drawings 699650 and 699651, Appendix II.

The Rice alternator is a brushless, nonrotating coil synchronous alternator (Figure 3-3). The stator has a conventional three-phase winding. In the normal synchronous machine, the field winding is on the rotor and produces a multipolar d-c rotating field. The d-c power is brought to the rotor by slip rings or a rectified rotary exciter. Because of its wound rotor construction, the normal synchronous machine is speed-limited.

The Rice Machine also has a d-c multipolar construction. However, to improve the speed characteristics, the field excitation coil is stationary, and the flux is carried to the rotor through two auxiliary


air gaps at each end of the rotor (Figure 3-l). The north and south pole elemenis of the rotor conduct flux to the stator windings; the main flux flows through paths of least-magnetic reluctance. The flux is established by the magnetomotive force of stationary excitation coils in the frame of the machine. The magnetically conductive portions of the rotor are separated by a nonmagnetic separator which is primarily a structural element to provide strength, or rigidity, and pole separation in the rotor (Figure 3-4). The separator has secondary functions of windage loss reduction and electromagnetic damping to minimize the flux variations.

The stator laminations are supported in a copper cage to:
(a) Achieve good heat removal to the frame, which is fluidcooled.
(b) Minimize flow of flux from the stator to the frame and, thus, reduce the possibility of magnetic unbalanced forces arising due to unsymmetrical flux distribution in the air gap.
(c) Hold the stack laminations together without the use of bonding cement or back-iron weldment.

Other significant features of the Rice configuration are:
(a) The alternator frame serves both as a structural member and as a part of the magnetic circuit. The frame and end plates have two functions in addition to their structural function. First, they provide the necessary low-reluctance magnetic circuit for the excitation coils conducting the flux around the fields to the flux collectors or auxiliary gaps at each end of the rotor. Second, they provide a means of conducting heat from the alternator parts to the cooling fluids.



## AIREGEAREH MANUFACTURING CDMPANY DF ARIZロNA

a bivision of the gatrett dogrboration
(b) Ficld coils are located adjacent to the frame and stator, facilitating heat transfer of the field losses. The field or excitation coils at each end of the alternator are simple bobbin-wound coils. Each eojl has two sections--a series section and a control (shunt) section. The series coils provide excitation from current transformers in the leads to the load. This excitation is proportional to load current. The control coils provide excitation from the voltage regulator as necessary to maintain constant voltage regardiess of load, speed, or temperature variation in the system. The excitation coils are supported in copper bobbins which provide good heat conduction from the coils to the frame. The copper bobbins also facilitate cooling at the end turns of the stator winding.
(c) The rotor is a composite structure of magnetic and nonmagnetic materials. Both casting and brazing techniques are readily available for ensuring high strength for this member. The nonmagnetic material between the poles acts as an electromagnetic damper during motor and generator action.

### 3.1 Electrical Analysis of the Alternator

One of the primary design objectives for the alternator is maximum efficiency. Because of this, the electromagnetic weight of the alternator (Table 3-l) is rather high when compared to lower efficiency machines where minimum weight has been emphasized. To obtain high efficiency, the current densities in the windings must be low. Thus, the heat generation and resultant temperature rises should be low, even at the 21-KVA overload conditions, since the densities at that condition are:

Armature winding current density
Field current density
$9350 \mathrm{amp} / \mathrm{in}^{2}$.
$2900 \mathrm{amp} / \mathrm{in}^{2}$.

## AIRESEARCH MANUFACTURING CDMPANY GF ARIZUNA

TABLE 3-1
ALTERNATOR ELECTROMAGNETIC WEIGHTS

| Componcnt | Lbs. |
| :--- | ---: |
| Rotor | 1.0 .70 |
| Stator Back-Iron | 3.67 |
| Teath | 1.19 |
| Windings | 1.88 |
| Field Coils | 6.59 |
| End-Bells and Frame | 9.75 |
| Core Spacer | 1.00 |
| TOTAL | 34.78 |

Another design objective was that the rotor should be small. A minimum-sized rotor is desirable to provide lower windage losses for bearing design considerations. However, in establishing rotor proportion, judgment must be used to allow adequate separation of the rotor poles to maintain an acceptably low leakage permeance in the rotor structure.

The flux leakage was determined by flux plotting. Because the accuracy of these determinations may be in error by as much as 20 percent, tolerance factors of 1.2 and 1.25 were applied to these permeances, respectively. Since the rotor iron is operated at less than 86 kilolines/in. for all conditions except 21 KVA , the design is anservative far all steady-state load conditions. At 21 KVA , the rotor pole and shaft densities are both 100 kilolines/in. These are easily within the capabilities of the excitation system and the selected materials.

## AIREGEARCH MANUFACTURING CDMPANY OF ARIZINA

a divigion de the gahemtt curfanation

Pole Shape Determination - A harmonic analysis of various pole configurations was undertaken, with results as shown in Table 3-2. For rectangular poles, the lowest tabulated harmonic content is 0.268 at $135^{\circ}$, corresponding to a pole embrace of 0.75 . For trapezoidal. poles with a pole embrace of 0.667 , the lowest harmonic content is 0.215 at $120^{\circ} \pm 10^{\circ}$. This data is a useful guide to establish a practical pole configuration in conjunction with other criteria. Excessive leakage between the poles in the rotor can be caused by a large pole embrace; thus, in the interest of obtaining the minimum rotor size, it is believed that a pole embrace of 0.667 would be the better choice. Fringing is present from the pole sides up to the stator, causing the effective pole embrace to be higher than 0.667 ; the more optimum value is approached without incurring the higher rotor leakage.

The evaluation shows that the trapezoidal pole shape is evidently quite effective in reducing harmonic distortion. However, the trapezoidal shape increases the effective air gap and/or tooth saturation because all of the flux from the wide section of a pole cannot enter the correspondingly narrow section of the adjacent pole. Thus, part of the pole flux must traverse axially across the back-iron. This feature is undesirable because the iron stacking factor is only 90 percent; that is, an air gap of 0.1 in. must be traversed by the axial component of the flux for every inch of the axial path.

All factors considered, it was decided that a good compromise would be a trapezoidal pole shape of $120^{\circ} \pm 5$. This minimizes slot ripple, and the axial flux component in the stator is relatively low.

Magnetic cirsuit data is presented in Table 3-3 and demonstrates the conservative flux densities expected in the unit operation. A noload saturation voltage of 1.3 p.u. $V$ is shown. Performance above this voltage level was not predicted because magnetizing data for AI 4750 stator iron was not readily available at higher densities. In


## AIREGEARCH MANUFACTURING COMPANY OF ARIZONA

## TABLE 3-2

POLE CONFIGURATION EFFECT UPON HARMONIC CONTENT

Pole Configuration

Harmonic Distortion
$=\frac{1}{a_{1}} \sqrt{a_{2}^{2}+a_{3}^{2}=-\cdots-a_{n}^{2}}$

I
RECTANGULAR


$$
\theta=100^{\circ} \begin{aligned}
& \theta 05
\end{aligned}
$$

0.389
0.356

110
0.328

120
0.288

135
0.268

140
0.272

II TRAPEZOIDAL

$120^{\circ} \pm 1.735^{\circ}$
0.2837
$120^{\circ} \pm 5.0^{\circ}$
0.2614
$120^{\circ} \pm 7.5^{\circ}$
0.2380
$120^{\circ} \pm 10.0^{\circ}$
0.2150

AIREGEARCH MANHIAACTURING CDMPANY GF ARIZONA
a OIVIGION UF THE GARMETT CQRHDHATIGI.

TABLEE 3-3
MAGNETIC CTRCUIT DATA-KKILOLINES PER SQUARE INCH

| Ioad Conditions | $\begin{aligned} & \text { No-Load } \\ & 1.0 \mathrm{p} . \mathrm{u} . \\ & \mathrm{V} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { No-Load } \\ & 1.3 \mathrm{p} . \mathrm{u} . \\ & \mathrm{V} \end{aligned}$ | $\begin{aligned} & 7210 \mathrm{VA} \\ & 0.85 \mathrm{pf} \\ & \hline \end{aligned}$ | $\begin{array}{r} 12,600 \mathrm{VA} \\ 0.85 \mathrm{pf} \\ \hline \end{array}$ | $\begin{array}{r} 14,300 \mathrm{VA} \\ 0.75 \mathrm{pf} \\ \hline \end{array}$ | $\begin{gathered} 21.300 \mathrm{VA} \\ 0.75 \mathrm{pf} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Main Gap | 33.5 | - | 34.8 | 36.5 | 39.2 | 12.5 |
| Teeth | 75 | - | 78 | 81.8 | 87.2 | 95.3 |
| Back-Iron | 59 | - | 61.1 | 64.5 | 68.9 | 75 |
| Pole | 61.5 | 86.2 | 70.1 | 79.3 | 86.5 | 100 |
| Shaft | 59.4 | 86.4 | 68.5 | 78.4 | 85.5 | 100 |
| $\underset{\text { Gap }}{\text { Auxiliary }}$ | 24.1 | 33.4 | 27.8 | 31.8 | 34.6 | 40.5 |
| Frame | 57.8 | 80.1 | 67.5 | 77.5 | 84.6 | 100 |

the determination of pole flux under load conditions, only 93 percent of the direct axis voltage drop was subtracted from the total internal generated voltage. This conservatively allowed for the possibility of flux wave distortion at high saturation density in the teeth. In establishing flux density in the back iron, pole flux was used. Since low weight was not a prime requirement, the refinement of subtracting the armature winding leakage flux in the back iron (due to slot permeances) was neglected. This provided a more conservative design.

Series and shunt field characteristics for the stator are shown in Table 3-4 for the load and short-circuit conditions.

Criteria for the selection of the structural and magnetic materials were availability, previous successful usage, and compatibility with the design for high efficiency.


## AIREGEARCH MANUFACTURING CIMPANY GF ARIZINA

IABLE 3-4
SERIES AND SHUNT FIELD CHARACTERISTICS

| Load | Field | INI | Load Amps$I_{I_{1}}$ | Watts |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Series | Shunt |  | Series | Shunt |
| No-Load | 0 | 1102 | 0 | 0 | 35.4 |
| 3 p.u. short circuit | 3300 | 0 | 10.5 | 300 | 0 |
| 7,210 VA (0.85 pf.) | 629 | 995 | 20 | 10.8 | 29 |
| 12,600 VA (0.85 pf) | 1100 | 1036 | 35 | 33.2 | 31.3 |
| $14,300 \mathrm{VA}$ (0.75 pf) | 1250 | 11.94 | 39.7 | 43 | 41.7 |
| 21,300 VA (0.75 pf) | 1860 | 1650 | 59.2 | 95 | 73.5 |

An evaluation of certain variations in the alternator configuration was undertaken to determine if some trade-offs could be established to provide a relatively constant efficiency versus load. Some drop in efficiency at light loads is unavoidable in view of the relatively fixed iron losses. For the design under consideration, losses expressed as a percent of the output are shown in Table 3-5.

Variations in the configuration of the alternator were evaluated for areas where certain losses are predominant, such as back-iron, tooth, and pole losses. The effects are described in Table 3-6.

Predicted Alternator Performance- Figure 3-5 presents the predicted electrical characteristics of the alternator design at no-load, short-circuit, overload, and at three design-point conditions. Table 3-7 gives the calculated alternator losses in watts and the electromagnetic efficiencies, predicted from the loss analysis for this design, at various load conditions. Total losses plotted against the KVA output are shown in the graph of Figure 3-6. It can be seen that there is potential margin in the design efficiency which is in the range of

AIRESEARCH MANUFACTURING CDMPANY OF ARIZONA

## TABLE 3-5 <br> ALTERNATOR LOSSES, PERCENT



Loss Parameter Tooth

Back-Iron Increase section

## Effect

Increases copper losses by 0.7 percent. Creates net efficiency loss of 1.33 percent at 10.7 KW . Almost doubles the temperature rise, reducing reliability and the expected winding life.
Little or no reduction in losses when the theoretical core density is reduced below 60 kilolines (design value). Adds weight. Increases thermal conduction path and results in a greater temperature rise. Reduces slot ripple Increases excitation power requirement Reduces the damping of the maynetic variations due to eccentricity of the rotor.


PREDICTED ALTERNATOR ELECTRICAL CHARACTERISTICS

## FIGURE 3-5

APS-5286-R
Page 3-14


FIGURE 3-6

APS-5286-R
Page 3-15


## AIRESEARCH MANUFACTURING COMPANY UF ARIZONA

a divisian of tme ganrei corpdration

TABLE 3-7
ALTERNATOR LOSS SUMMARY
(All Losses in Watts)

| Loss | No-Load | $\begin{array}{r} 2.650 \mathrm{KVA} \\ 0.85 \mathrm{pf} \\ \hline \end{array}$ | $\begin{array}{r} 7.210 \mathrm{KVF} \\ 0.85 \mathrm{pf} \\ \hline \end{array}$ | $\begin{gathered} 12.600 \\ \mathrm{KVA} \\ 0.85 \mathrm{pf} \\ \hline \end{gathered}$ | $\begin{aligned} & 14.300 \\ & \mathrm{KVA} \\ & 0.75 \mathrm{pf} \\ & \hline \end{aligned}$ | $\begin{gathered} 21.300 \\ \mathrm{KVA} \\ 0.75 \mathrm{pf} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Back-Iron | 80 | 83 | 85 | 96 | 118 | 114 |
| Teeth | 43 | 46 | 51 | 58 | 71 | 86 |
| Armature Copper | 0 | 8 | 56 | 171 | 220 | 490 |
| Field Copper | 17 | 24 | 37 | 64 | 84 | 174 |
| Pole Face | 126 | 130 | 136 | 150 | 172 | 203 |
| Stray Load | 0 | 6 | 41 | 126 | 162 | 360 |
| Total | 266 | 297 | 406 | 665 | 827 | 1,457 |
| Input | 26.6 | 2547 | 6536 | 11,370 | 11,530 | 11.460 |
| Output | 0 | 2250 | 6130 | 10,700 | 10,700 | 16,000 |
| E.M. Efficiency | - 0 | 0.883 | 0.938 | 17.941 | 0.927 | 0.916 |
| System Rating, K V | 0 | 2.250 | 5.000 | 10.500 | -- | -- |

0.85 to 0.92 E.M. efficiency over a power-output rancre of 2.25 tn 10.7 $K W$, respectively.
3.1.1 Summary of Electromagnetic Force Considerations as Pelated to Gas Bearing Application - The ultimate use of this alternatri is in the BRU, which is gas-bearing-supported. The primary concern, therefore, is that the gas bearings are capable of supportind not anlo t!e dynamic loads but also the electromagnetic loads. Stulies of the

## AIRESEARCH MANUFACTURING COMPANY IF ARIZONA

a divisign of the earrett carporation
unbalanced electromagnetic forces have now been completed for the following conditions:
(a) Normal alternator operation at full speed
(b) Unbalanced electrical loads
(c) Short-circuit conditions
(d) Operation as a motor

It has been concluded that bearing loads due to magnetic unbalance should not be a problem within the normal range of operating speeds.

## Evaluation of the Effect of Unbalanced Alternator Electrical

Load - The studies to date on unbalanced magnetic forces have been based on the assumed worst-case condition of no-load, 1.3 p.u.V. A survey was conducted of the effect of unbalanced eiectrical loads on the machine in accordance with MIL-G-6099, paragraph 4.5.10.1.

The symmetry of the machine was first evaluated. The location and distribution of the stator windings in the four-pole alternator is designed so that, when energized, they create a symmetrical magnetomotive force (MMF). With Figure 3-7 considered as typical of the machine under consideration, it may be noted that even if an unbalanced load is applied to the three-phase winding, symmetry is still maintained with respect to the rotor, and this is true for any position of that rotor. Each phase thus creates symmetrical MMFs around the rotor, but variations in load in the phases will vary the cotal MMF in the relative windings. Thus, it may be deduced that there will be no significant magnetic unbalance because of symmetry and, therefore, the magnitude of the MMFs in the windings at unbalanced load conditions is the important consideraticn.

MMF magnitudes were determined by the vectoriai method for s:retrical components and tnen compared to known balanced-load conclitions.

AIRESEARCH MANUFACTURING CDMPANY OF ARIZONA

## AIRESEARCH MANUFACTURING CDMPANY



SYMMETRICAL RELATIONSHIP OF WINDINGS TO ROTOR. 4-POLE RICE ALTERNATOR

## FIGURE 3-1

AIRESEAREH MANUFACTURING CIMPANY GF ARIZONA
a division df the garrett cofriofation

Since the amplitude of the resultant MMF of a symmetrical three-phase system is 1.5 times the amplitude of a single-phase system, the inphase sum of the vectors of the unbalanced system does not exceed unity and, thus, does not exceed the MMF at rated balanced-load.

Since the rated balanced-load condition is not the "worst-case" condition for electromagnetic unbalance, it can be confidently concluded that unbalanced electrical loads will have much less effect upon the gas bearing system than the no-load, l.3-p.u.v condition previously reviewed.

Effects of Negative Sequence Reactance on Voltage Unbalance with Unbalanced Loads - The effect of unbalanced load on unbalanced voltage as a function of negative sequence reactance was investigated, and the results are shown in Figure 3-8. The method of solution utilized unbalanced load impedance rather than unbaianced load currents, and in consequence a slightly optimistic result is presented. This method avoided the use of a difficult iterative analysis, yet provided adequate results.

The maximum permissible value of $X_{2}$, the negative sequence reactance, is 0.3 p.u. or $2.38 X_{1}$, where $X_{1}$ is the armature winding leakage reactance. While this appeared to lie in the range of $X_{2}$ attainable in solid pole-face machines without the use of damper bars, a test on the ARP resulted in an $X_{2}$ value of 0.38 p.u. Unless absolutely necessary, the use of pole-face dampers should be avoided in order to simplify construction of the unit. However, if it is determined that the voltage unbalance is higher than anticipated, pole-face dampers can be added without much difficulty to overcome the problem. Motor starting and unbalanced magnetic forces are two other considerations that could also require rotor modification to include damping. divisign gef the garrett garporation

$$
\begin{aligned}
& \text { LOAD IMPEDANCES: } \\
& \mathrm{Z}_{\mathrm{A}}=(3+j 0) \text { p.u. } \\
& \mathrm{Z}_{\mathrm{B}}=(3+j 0) \text { p.u. } \\
& \mathrm{Z}_{\mathrm{C}}=(1+j 0) \text { p.u. } \\
& \text { BASE } O H M S=3.43
\end{aligned}
$$


$\mathrm{X}_{\mathrm{e}}$ NEGATIVE SEQUENCE REACTANCE PER UNIT OHMS

PERCENT VOL TAGE UNEALANCE VS. NEGATIVE SEQUENCE REACTANCE AT

VARIOUS LOAD IMPEDANCES
FIGURE 3-8
APS-5286-P
Page 3-20

AIRESEARCH MANUFACTURING CIMPANY OF ARIZONA
a division dr the garmett carporation

Evaluation of Electrical Short-Circuit Effects on the Electromagnetic Forces Imposed on the Bearings - Under conditions specified by MIL-G-6099, paragraph 4.5.12, at 3-p.u.V short-circuit current, the flux in the main air gap is proportional to the voltage drop ( $I_{s h}, c_{a}$ ) in the armature winding and approaches 50 percent of rated voltage. Auxiliary air-gap flux under the same conditions is increased because the field winding ampere-turns are almost at the maximum value, and leakage flux is also a considerable portion of this air-gap total flux at short-circuit. In the analysis of the alternator, 1624 field ampere-turns are present at short-circuit. At overload conditions, 1755 ampere-turns are present at $21.3 \mathrm{KVA}, 1.0$ p.u.V.

Thus, it may be concluded that the short-circuit condition does not represent an electromagnetic force problem for the bearings and will be considerably less severe than the no-load 1.3 p.u.V case chosen.

Evaluation of Electromagnetic Forces on the Bearings Due to Operation of the Alternator as a Motor - Initial studies of the electromagnetic effect on the loading of the gas bearings have indicated that, when utilizing the alternator as a motor for starting purposes, loads were established as follows:

| Main flux gap | $2.31 \mathrm{bs}$. |
| :--- | :--- |
| Auxiliary flux gaps | 0.54 lb. each |

The above represents a distributed load, per bearing, of 1.69 lbs. Assumed conditions were as follows:
(a) Across-the-line start at 600 Hz and rated volts per cycle i.e., 60 V
(D) No eddy-current damping
(c) Rotor is consiclered stationary
(d) 0.002-in. magnetic rotor eccentricity

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA
a division jf the garrett corporation

One additionai check-point was taken at a low rotational speed, and the loads indicated a diminishing trend as was expected. Further studies will be undertaken in this area, and these will include various starting frequency levels. However, it is considered that the initial trends, as established, signify that bearing forces should not create problems of operation during motor-start conditions.

Motoring Start Capability - The performance of the MTU as a motor was investigated. Under locked-rotor conditions, the torque was 5 to 7 lbs.-in. at 35 amps stator current, $16.5 \mathrm{Va} \mathrm{a}, \mathrm{c}, 400 \mathrm{~Hz}$. The torque variation was due to rotor saliency.

This data can be projected to show 34 lbs.-in. at rated volts per cycle ( $40 \mathrm{~V}, 400 \mathrm{~Hz}$ ) with stator current of $83.5 \mathrm{amps}(2.38 \mathrm{p} . \mathrm{u}$. based on 35 amps rated-load current). This would indicate that the alternator, as a motor, would perform much more satisfactorily than initially expected.

### 3.2 Mechanical Analysis

Dynamic Analysis of the ARP (Critical Speed Analysis) - The rotor cf this machine (Figure 3-9) is a furnace-brazed bimetallic, solidmetal part having a smooth, compact configuration possessing stiffness and strength required for this rotational speed and bearing application.

Ball bearings were selected on the basis of digital computer analysis. The bearings should meet the design objective of a TBO of 300 hrs. minimum when using an oil-mist lubrication (MIL-L-7808). The major characteristics of the bearings are:

```
Bore diameter
Outsido dlameter
```




Width
Numba of balls
Ball dianeter
Inner-race curvature
Outer-race curvature
Contact angle
Ring and ball material

Separator material

$$
12 \mathrm{~mm}
$$

$$
13
$$

$1 / 4$ in.
52-53 percent of ball diameter
52-53 percent of ball diameter
$20^{\circ}$
Consumable-electrode vacuummelted M-50 tool steel
Iron-silicon-bronze, silverplated

The axial length of the main and auxiliary flux gaps, rotor flux leakage considerations, and requirements for instrumentation and bearing supports defined the bearing center-to-center distance and acted as restraints in analysis of critical speed performance for the shaft. The stator end-plates were utilized to mount the speed sensing and orthogonal proximity probes and to mount the bearing carrier suppoits.

Operating clearances at the main and auxiiiary flux gaps (Figure $3-1$ ) were designed to be 0.020 in. A limited radial travel of 0.002 in. was allowed between shaft and stator centers. This minimized the unbalanced electromagnetic loads on the bearings, yet imposed design restraints on the method of mounting the bearings.

Figure 3-10 presents a cross-sectional view of the alternator research package (ARP). The unit consists basically of the same alternator electromagnetic configuration and cooling system that is to be utilized in the Brayton rotating unit (BRU) but mounted on oil-mistlubricated ball bearings. A buffer seal arrangement at the rotor cavity and an external gas supply fitting is provided so that $B R$ alternator cavity ambient conditions can be simulated during alternator performance evaluation. Drawings of the bearings and seal arrangement are inciuded in Appendix II. The ARP is driven with a turbine assembly



FIGURE 3-10
APS-5286-R Page 3-25

AIRESEARCH MANUFACTURING COMPANY DF ARIZONA
a divibion of the garrett corpuration
through a special, balanced coupling as shown in Figure 3-10. This coupling is detailed in Drawing 699667, Appendix II.

The nole through the axial center of the alternator rotor simulates the tie-bolt hole, which is required in the BRU. A nonmagnetic tie-bolt is used in the BRU to avoid the magnetic leakage that a magnetic bolt would create.

The elastic and mass models of the rotating assembly used for the critical speed analysis are shown in Figure 3-1l. The rotating assenbly critical speeds plotted as a function of bearing resilient-mount spring-rate are shown in Figure 3-12. This shows that the use of 20,000-ppi resilient mounts at each bearing mounting will permit operation at the design operating speed of $36,000 \mathrm{rpm}$. Bearing loads at $36,000 \mathrm{rpm}$, with the $20,000 \mathrm{ppi}$ resilient mounting system, are shown to be in the order of 5 to 7 lbs . at an assumed rotor c.g. eccentricity of 0.0002 in. (Figure 3-13).

The bearing system life, $\mathrm{B}_{1}$, for a preferred preload of 30 lbs , a 6.6-lbs. unidirectional radial load per bearing, and dynamic loads of 5 to 7 lbs. is shown to be in excess of $2400 \mathrm{hrs}$. (Figure 3-14). The horsepower loss per bearing under these conditions (Figure 3-15) is approximately 0.215. The bearing requirements are shown in AiResearch Source Cr.ntrol Drawing 358498, Appendix II.

The proposed carbon-face contact seal for the alternator package application is shown on AiResearch Source Control Drawing 699652, Appendix II.

Thermal Analysis - A thorough thermal analysis was performed on the alternator research package. Journal bearing heat losses utilized the auxiliary gaps to transfer their shaft heat, by convection, to the end-plates. Rotor heat was removed at the main gap. Windage and convection shields were attached to the inside of the end plates to direct
GARERTT
AIRESEAFCH MANUFACTURING COMPANY DFARIZGNA
 BOTH BEA
HOUNED
$\because$

at benk inc locat Ions ib in



FIGURE 3-13
ALTERNATOR RESEARCH PACKAGE
FIRST AND SECOND CRITICAL
DEFINITION
(onTETMT


BEARING SYSTEM LIFF FOR NASA BRI: ALTERNATOR RESEARCH
PACKAGE USING CEVM M-5?


APS-5286-R
Page 3-31

## AIRESEARCH MANUFACTURING CIMPANY OF ARIZGNA

the heat to the flux gaps mentioned. The cooling jacket around the stator was thus employed to remove the generated waste heat and also limit the heating of the stator coils to safe operating levels.

The liquid-coolant heat exchanger utilized for cooling the alternator consists of a double helix machined onto the outer frame assenbly of the alternator stator (Figure 3-16).

The coolant passage cross-sectional dimensions are 0.20 in. wicie by 0.25 in. deep and the thread lead is 0.667 in. Each helical passage is independently supplied with coolant to provide the required coolant system redundancy.

The specified coolant is Dow-Corning 200, blended to yield, at $770^{\circ} \mathrm{F}$, a viscosity cf 2.0 centistokes. The recommended coolant flow rate, determined from heat-transfer analysis on the BRL, is 0.12 1\%. sec. Estimated pressure drop, including inlet and discharge disturbarces, is 7.5 psi.

Results of the thermal analysis are presented in Figure 3-17. Based on these results, thermocouple locations in the ARP were assignori as in Figure 3-18.
3.2.1 Rotor Fabrication - The major probiems encountered during the fabrication of the alternator were the development of a satisfactory braze technique for the rotor and an acceptable heat-treatmont procedure.

In its final form, the rotor is a solid structure made by frazing three separate pieces together. Figure 3-4, SKP 18036, depicts the rotor and shows the nonmagnetic metal separator (Inconel 718) that is brazed to the two magnetic (SAE 4340) pole pieces. As shown, tife rating surfaces have a complex shape, and development of the proper

AIREGEARCH MANUFACTURING COMPANY OF ARIZONA


ALTERNATOR RESEARCH PACKAGE
MAIN FRAME ASSEMBLY
DETAIL PARTS PRIOR 10 BRAZING

```
FIGURE 3-16
APS-5286-R
Page 3-33
```



FIGCRE 3-17
ALTEPMTOR THERMAL ANALYSIS ISOTHERMS
WITH OUTPUT OF 10.5 kN AT 0.85 PF

$$
\text { A33193. Rev. } 1
$$

$$
\text { R.PS }-5286-R
$$

Pacje 3-34

AIRESEAREH MANUFACYURING COMPANY OF ARIZロNA


## AIRESEARCH MANUFACTURING CDMPANY OF ARIZONA

a division df the garrett curpgitation
brazing technique was required. In this respect, metallurgical and process problems were resolved and sound rotors were produced.

The rotor pole pieces are machined from bar stock. The Inconei separator is first cast and then finish-machined to match the pole pieces using the "Elox" process. The three parts of the rotor, prior to brazing, are shown in Figure 3-19. The brazed rotor prior to final machining is shown in Figure $3-20$. Figure $3-9$ shows a typical spin test rotor after final machining. Spin testing (on the test rig, figure 3-21) at speeds up to $50,000 \mathrm{rpm}$ is used as a method of determining braze integrity.

A considerable effort was expended in developing the brazing procedure. Sample parts were prepared and brazed in accordance with a schedule of different techniques. These parts were subsequentiy sectioned to permit inspection of the integrity of the braze for evaluation of the process.

To detrrmine the heating and cooling cycles required for brazinc the rotors, a dummy assembly was prepared. This was made of SAE 4340 bar-stock identical in size and shape with the braze assembly. The dummy assembly was then provided with thirmocouples at eight locations throughout its mass. It was run through a trial cycle in the brazing furnace. During the entire cycle, an eight-point recorder continuously monitored and recordal the temperatures. Since the furnace used was of the vacuum-hydrogen-purged, sealed-retort type, very close control could be maintained over the rate of heating and cooling by regulating the flow of hydrogen purge through the sealed retort as well as $b_{i}$ controlling the furnace heaters. Pesponse time of the hearil: thermocoupled dummy assembiy determined the heating rates to which actial assembjies would be subjected. The spread between readings of the eight thermocouples monitoring the temperatures wicis held to $\pm 10^{\circ} \mathrm{F}$.

AIRESEARCH MANUFACTURING COMPANY OF ARIZIUNA
a division of the garrett cordoration


ROTOR FOLES AND SEPARATOR PRIOR TO BRAZING
FIGURE 3-19

APS-5286-R
Page 3-37

AIRESEARCH MANUFACTURING CDMPANY DF ARIZDNA
a oivision of the ciarrett corparation


ALTERNATOP PESEARCH PACKIGE
BRAZFD ROTOR ASSEMBLY
FIGURE 3-20

APS-5286-P.
Page 3-38

MIRESEARCH MANUFACTURING CDMPANY DF ARIZGNA


ALTERNATOR RESEARCH PACKAGE ROTOR
PART NO. 699531-1, SERIAL NO. 7XIO2
SHOWN IN ROTOR SPIN TEST RIG
FIGURE 3-21
APS-5286-R
Page 3-39

AIRESEAREH MANUFACTURING COMPANY GF ARIZINA
a divigion of the garirett buhroration

From metallurgical examination and spin testing of sample rotors, a process specification was developed. Briefly, the specification calls for preparation of the braze joint surfaces of all three pieces by a steel grit blast. They were then given a nickei-plated flash, which was followed by plating with 0.0002-in. electrolytic gold. Due to its excellent wetting and strength characteristics for the type of alloy under consideration, Palnioro-7 was used for the braze alloy. Pieces of the alloy, formed from foil, were preplaced over the entire joint area prior to assembly of the rotor pieces. Intimate fit of the foil to the Eloxed joint surfaces, and of the pieces to each other, was accomplished by subjecting the three assembled parts to the force of a hydraulic press. Rdditional filler alloy in the form of wire and powder supplemented the in-joint foil.

The investigation into the rotor heat treatment required to produce satisfactory rotors involved some seven different heat-treat cycles. These cycles ranged over the austenizing temperature range of the 4340 material. It was determined that the length of time at $1200^{\circ} \mathrm{F}$ during the heat-treat cycle was a critical factor. Too short a time at this temperature allowed a significant amount of austenite to be retained at room temperature, which was then transformed into martensite or bainite. The resultant structure was notch-sensitive and subject to cxack propagation.

To summarize, the brazing and heat-treat sequence involves the following steps:
(a) Heat to $1980^{\circ} \mathrm{F}$ at 350 to $400 \mathrm{deg} / \mathrm{hr}$.
(b) Hold at $1980^{\circ} \mathrm{F}$ for 15 min . brazing time
(c) Furnace-cool to $1700^{\circ} \mathrm{F}$ at $200 \mathrm{deg} / \mathrm{hr}$.
(d) Furnace-cool to $1400^{\circ} \mathrm{F}$ as fast as the furnace will permit
(e) Hold at $1400^{\circ} \mathrm{F}$ for 5 hrs . minimum - heat-treat time for Inconel 718

AIRESEAREH MANUFACTURING COMPANY DF ARIZDNA
(f) Furnace-cool to $1.165^{\circ} \mathrm{F}$ at $100 \mathrm{deg} / \mathrm{hr}$.
(g) Hold at $1165^{\circ} \mathrm{F}$ for 8 hrs . heat-treat time for wrought 4340
(h) Rapid-cool to room temperature

Table 3-8 indicates the latest available data obtained on the rotor matarials following subjection to representative braze and heattreat cycles. In the case of the wrought 4340, the heat-treat cycle was generated by sample test to provide the results tabulated. Minimum rotor requirements are based upon design analysis, experience in braze development, and the stresses to be incurred in overspeed tests (50,000 rpm). The overspeed tests are required for quallity control purposes.

Material.s selected for the alternator construction are tabulated in Table 3-9.

TABLE 3-8
ROTOR MATERIAL DATA AFTER REPRESENTATIVE BRAZE AND HEAT TREATMENT CYCLES

|  | Minimum Rotor Requirements | $\begin{aligned} & \text { Wrought } \\ & 4340 \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Cast } \\ \text { Inco } 718 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Retained Austenite - \% | 1.0 | 0.3 | - |
| Yield Strength - ksi | 50 | 65.4 | 110 |
| Ultimate Strength -ksi | 100 | 114.4 | 143.6 |
| Elongation -- \% | 10 | 23.5 | 11.0 |
| Hardness - Rockwell C | 15-20 | 17-18 | - |
| Notch Sensitivity Charpy $V$ - ft.-lb. | 20 | 22-24 | - |
| Heat-treat |  | $8 \mathrm{hrs}$. at |  |
|  |  | $1165^{\circ} \pm 15^{\circ} \mathrm{F}$ | $1400^{\circ} \mathrm{F}$ plus |
|  |  |  | $8 \mathrm{hrs}$. at |
|  | APS-5286--R <br> Page 3-41 |  |  |



2ABLE 3-9

| Component | Material | Basis for Selection |
| :---: | :---: | :---: |
| Frame and End plates | Annealed Ingot Iron | High saturation-density at relatively low magnetizing intensity; good availability. |
| Rotor | 4340 Nickel Chrome <br> Alloy Steel and <br> Inconcl 718 | The 4340 has desirable magnetic and structural properties. The nonmaqnotic Inconel 718 is a good thermal match for use in this bimetallic structure. previoas good oxporience in furnace-brazing Rice rotors of smaller size using these materials was ar all-important factor in this selection. |
| Laminations | AL* 4750, 0.004 in. | This 48 percent nickel alloy was sclected to obtain low tooth and core loss. Since saturation density is lower than for silicon steels, a weight disadvantage is incurred. Laminations were treated to produce a No. 11 oxice film. |
| Magnetic Wire | Heavy ML Insulated Copper | Class $220^{\circ} \mathrm{C}$ insulation provides reliable, long-life operation with cood margin for thermal overloads. |
| Stator Winding | Westinghouse | Class $220^{\circ} \mathrm{C}$ varnish with good buil? ans |
| Varnish | Doryl Bl09-3 | toughness. |
| Field Coil Impregnant | Epoxylite 108 | Class $180^{\circ} \mathrm{C}$ impregnant. Successfully used in similar applications. |
| Slot Insulation | ```Triple Ply (3-3-3) of Nomex, H-Film, and Nomex``` | Class $220^{\circ} \mathrm{C}$ materials with good physical and dielectric properties. |
| Top stick |  | Micarta Doryl laminate |

*Allegheny I.udlum

APS-5286-R
Page 3.42


Figure 3-2 shows the ARP disassembled. The calculated weight of the electromagnetic components of the ARP is tabulated in Table 3-1.

### 3.3 Test Results

By contract, the usual component development tests would be performed by NASA rather than by the contractor. Under these conditions, it was also the intent of NASA to match the alternator with the first VRE and speed-control. However, to assure proper functioning of the components, certain functional tests were performed.
3.3.1 Alternator Research Package Rotor Spin Test Rig - A simplf test rig (Figure 3-2l) utilizing antifriction bearings for support was designed and fabricated for rotor spin testing. This rig was तesigned to accommodate all rotors, whether for BRUs or the researuh nackage. Before use in machines, all rotors were subjected to this spin test to demonstrate integrity. Overspeed of $50,000 \mathrm{rpm}$ subjects the rotor to approximately twice the design stress levels and was used to prove rotor integrity.
3.3.2 ARP Alternator Evaluation - Prior tu the system tests using the Alternator Research Package, the voltage-regulator/exciter, and the speed control, a performance scan test was run on the ARP alternator unit. To obtain an early assessment of the electromagnetic performance of the alternator components, a magnetic test unit (MTU) was fabricated early in the development program. The stator, field coils, and rotor were magnetically the same as their counterparts in the $A R P$ and $B R U$. The frame and end-plates were magnetically similar to the ARP and BRU counterparts, but differed physically because of design simplifications. Low-speed bearings were substituted for the oil-mist or gas bearings.

## AIRESEARCH MANLFACTURING COMPANY DF ARIZONA

a givigion of the oahatil ghifrohaticin

The load and ehort-circuit characteristics for the ARP are shown in Figure 3-22, which compares the test data with the design predictions. These tests reveal appreciabie differences between the predicted $\because R P$ alternator performance and the results of low-speed tests undr.rtaken previously on the MTU (irigure 3-23). The saturated no-load vo" ${ }^{\text {a }}$ age obtained with the MTU (Figurc 3-24) was 1.82 p.u. as compared to 1,4 for the ARP (30-percent low). The no-load performance of the ARP was rechecked at 36,000 and 3600 rpm to rule out the possibility of test-meter error and also to determine if there was a speed effect on saturation voltage due to poor interlamination resistance of the stator stack. Results indicated that initial saturation data results for the ARP were valid and also that the speed effect was slight. At the same time, a no-ioad saturation test was again conducted on the MTU, using different instruments. These results confirmed the original MTU value. In addition to the above-mentioned dynamic tests, static tests were made to obtain a flux survey of the machine. These tests check the accuracy of the leakage illux calculations. Results showing the total flux crossing the auxiliary gap plotted against excitation are shown in Figure 3-25. Hence, it was concluded that there were, in fact, performance differences between the MTU and ARP magnetic systems.

A review of possible causes for the indicated discrepancy disclosed the following three items worthy of consideration:
(a) The rotor used in the MTU was one of the first three ever made. Although defective in the brazed joint, the rotor had been satisfactorily heat-treated and considered safe to spin in the MTU test fixture lip to 6000 rpm . The ARP rotor had been subjected to a revised heat treatment, then finish-machined. Metallurgical examination of later rotors (double-braze group) showed that following the second braze cycle, approximately 8 percent austenitic iron had been

```
APS-5286-R
Page 3-4.1
```

AIREGEAREH MANUFAETLIRING CIMPANY QF ARIZINA


ELECTROMAGNEIIC TEST RIG
FIGURE 3-23
APS $-5286-12$
Page 3-46

SATURATION CHARACTERISTIC
FOR BRU ALITERNATOR PART 518606
TESTED 6-27-60


FIGURE 3-24
APS-52.86-R
Page 3-47

TGTAL ELUX AT THE AUXILIARY GAP
VERSUS
TOTAL FIELD EXCITATION
BRU ALTERNATOR PART' 518606


FIGURE 3-25
APS 5286 -R
Page 3-48
retained. To obtain removal of the retained austenite in the ARP rotor would have required tempering. Since the rotor had been finish-machined, tempering was not attempted because it was believed that distortion might occur. A cold-soak to $-30^{\circ} \mathrm{F}$ for 1 hr . and subsequent heating to $+350^{\circ} \mathrm{F}$ had been undertaken in order to physically stabilize the rotor as much as possible with minimum distortion.
(b) Stator laminations had been heat-treated in two groups, and the MTU and research package stacks differed in this respect. Poor annealing or handling abuse during stacking could have affected the performance.
(c) Investigation of the laminations in the two groups also indicated that the insulation resistance of the No. Il film was poor, particularly on those representative of the ones used in the research package.

Because all of the above possible causes were determined on the basis of the tests conducted on the ARP, further investigation and corrective action was initiated as follows:

Rotof - To determine the effuct of retained austenite, the backup rotor, ARP Serial No. ? (with identical fabrication processes and heat treatment) was adapted to fit the MTU. Comparison check runs were made. (A replacement rotor is in process for the delivery ARP. Note that in Section 3.2.1 in the discussion of the rotor heat treatment, processing was established for all future rotors; insuring the percentage of retained austenite is held to an acoeptably low level.)

These tests showed that the Serial No. 2 rotor had a saturation voltage of only 1.63 p.u. compared with 1.82 for the original MTU rotor. Tempering of Serial No. 2 rotor at $1200^{\circ} \mathrm{F}$ for 2 hrs . was then successfully attempted with only slight growth or distortion of the part. When the Serial iNo. 2 rotor was again tested in the MTU, the

AIRESEARCH MANUFACTURING CIMPANY OF ARIZONA
a division df the garhett cormoration
saturation voltage increased to 1.76 p.u. This indicated that the basic cause of poor performance (low saturation voltage) was austeniteretention in the rotor. This problem should not exist in future units.

Stator Laminations - Future stator laminations will receive a high-temperature insulating film treatment in lieu of the No. 11 oxido film originally specified.

With the design and fabrication of the ARP completed and the unit due to be delivered, the ARP was shipped to the NASA-Lewis Research Center where development tests could indicate other areas of possible deficiency in that unit. In its present condition, the ARP is expected to display a lower overall efficiency than predicted, and additional excitation power will be required at the $21.3-\mathrm{KVA}$ overload condition. A replacement rotor to correct these deficiencies will soon be available for installation in the ARP.
3.3.3 Functional Test of the Components - Prior to the acceptance of the alternator research package, the VRE and speed-control were connected with the ARP and briefly checked to assure compatibility between the components. This could not be determined conclusively, however, because of the filter problem noted in the speed-control section. When the VRE and the alternator were connected and the speed-control disconnected, the operation was stable. When the speed-control was connected without filtering, there was some interaction between the VRE and the speed-control at conduction angles near $90^{\circ}$ due to the transient noise generated. Proper filtering probably would remove this interaction.

The VRI and the alternator were stable when an air turbine drive system was used. The speed control demonstrated capability of attaining the specified limits of $1200 \mathrm{~Hz} \pm 1$ percent from zero to 10.5 KW with 0.75 pf lagging vehicle load. It cannot be concluded from this,

AIRESEAREH MANUFACTURING CIMPANY OF ARIZONA

however, that the entire system will be stable when operated with a much stiffer drive system.

ARP Acceptance Test - The ARP was operated through the entire speed range while the bearing temperatures, vibration levels, and operational characteristics were observed. Tho accoptance test was witnessed and approved by NASA representatives. Tncluded in the tests were a critical speed survey, 30 min . operation at the design spect of $36,000 \mathrm{rpm}$, and 10 min . operation at $120 \cdots$ percent speed (43,200 rpm). During these tests, temperatures and vibration lovels wore recorded.

AIRESEARCH MANLFACTURIIVG CDMPANY GF ARIZDNA
4.0 DESCRIPTTON OF THF VOLTAGE REGULATOR/EXCITFR (VRE)

The voltage regulator/cxciter is designed as a breadboard unit utilizing high reliability components. It is designed for maximum flexibility during development testing and includes such features as provisions for eithor internal or external voltage sensing and a removable series field module.

A block diagram of the VRI: and of its loops is shown in figure 4-1. This diagram is also used to defino tho major symbols used in this report. Capital lotters denote d-c or rms quantitics, as appropriate, and lower case lettors denote instantancous quantities.

For all specified lagging load conditions the excitation provicled by the series field is less than the total required alternator excitation. The shunt field regulator supplies the required incremental excitation upon demand as determined by the voltage loop. Operation at leading power factors, when the series field excitation may be in excess of the total requirement, is not within the capability of this system.

Table 4-1 is a summary of the alternator field excitation requirements. This information is derived from the predicted alternator performance curves shown in Figure 4-2. Total excitation requirements at short circuit and various other operating points are obtained directly from the graph. The available series field excitation is lineariy extrapolated from the short-circuit requirements, and the difference is then assigned to the shunt field.

It may be noted that, for example, at 12.6 KVA and 1800 Hz (equivalent to 0.667 p.u. voltage on Figure 4-2), the total excitation requirement is only 1500 ampere turns, of which at least 1100 ampere turns are supplied by the series field. Clearly the overspeed


|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \mathrm{FVE} \\ & \mathrm{P} . \mathrm{F} . \end{aligned}$ | $0$ | $\begin{aligned} & 2.65 \\ & 0.85 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7.21 \\ & 0.85 \\ & \hline \end{aligned}$ | $\begin{aligned} & 12.6 \\ & 0.85 \\ & \hline \end{aligned}$ | 14.2 1.75 | $\xrightarrow{2-3}$ | $\begin{gathered} \text { S:OR } \\ - \\ \hline \end{gathered}$ |  |
| $\mathrm{I}_{\mathrm{L}}$ | 0 | 7.37 | 20.0 | 35.0 | 32.7 | 5 E \% | 205 | $\begin{gathered} A \\ \cdots \\ \hline \end{gathered}$ |
| $\begin{aligned} & \because I \text { at } 1.2 \mathrm{EC} \\ & \text { ( } \because \mathrm{C})_{R} \\ & I_{F R} \\ & E_{F R}, 177^{\circ} \mathrm{C} \\ & E_{F R}, \quad 22^{\circ} \mathrm{C} \end{aligned}$ | $\begin{array}{r} 1100 \\ 0 \\ 0 \\ 0 \end{array}$ | $\begin{array}{r} 1300 \\ 232 \\ 0.647 \\ 2.85 \end{array}$ | $\begin{array}{r} 1625 \\ 629 \\ 1.76 \\ 7.75 \end{array}$ | $\begin{aligned} & 2136 \\ & 1108 \\ & 3.07 \\ & 13.5 \end{aligned}$ |  |  | $\begin{aligned} & 330 r \\ & 3300 \\ & \frac{0.20}{3 . .5} \\ & \hline 20.3 \end{aligned}$ | $\begin{gathered} A \mathrm{~A} \\ \mathrm{~N} \\ \mathrm{NC} \\ \text { vo } \\ \text { wo } \end{gathered}$ |
|  | $\begin{aligned} & \hline 1100 \\ & 3.02 \\ & 12.2 \\ & (7.56) \end{aligned}$ | $\begin{gathered} \hline 1068 \\ 2.9 .7 \\ 11.6 \\ (7.35) \end{gathered}$ | $\begin{aligned} & 965 \\ & 2.73 \\ & \text { ir. } \\ & 16.0 .8 \end{aligned}$ | $\begin{gathered} 1036 \\ 2.84 \\ 12.4 \\ (7.10) \end{gathered}$ |  | $20 ミ 0$ <br> $\pm .53$ <br> -2 <br> 2.0 | ris | $\begin{gathered} x \\ \therefore c \\ \because c \\ \because c \\ m c \end{gathered}$ |
|  | $\begin{aligned} & 1225 \\ & 1225 \\ & 3.36 \\ & 13.4 \end{aligned}$ | $\begin{aligned} & 1500 \\ & 1328 \\ & 3.62 \\ & 14.5 \end{aligned}$ | $\begin{aligned} & 1616 \\ & 1271 \\ & 2.46 \\ & 14.6 \end{aligned}$ | $\begin{aligned} & 2-10 \\ & 140 \\ & 3.65 \\ & 15 . i \end{aligned}$ |  | craser | 1365: |  |
| $\begin{aligned} & \because I \text { at } 1.32 \mathrm{riC} \\ & (: I)_{U} \\ & I_{\mathrm{Fi}} \\ & \because_{F!}, \quad 77^{\circ} \mathrm{C} \\ & Z_{\mathrm{F}}, 22^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 1000 \\ & 1000 \\ & 2.75 \\ & 11 . \end{aligned}$ | $\begin{gathered} 1206 \\ 068 \\ 2.66 \\ 1 \because .7 \end{gathered}$ | $\begin{aligned} & 195 \\ & 5 \\ & \frac{2.26}{10.15} \end{aligned}$ | $\begin{gathered} 1 \\ 1 \\ \because \\ \because \\ \ddots \end{gathered}$ |  | $\because$ $\therefore$ $\therefore$ | 120n! |  |
|  | $\begin{aligned} & 100 \\ & 10 . \end{aligned}$ | ST: |  |  |  |  |  |  |




AIRESEARCH MANUFALTURING GUMPANY DF ARIZINA

operational requirement is only marginally controllable, and only a bare minimum of excess series field capacity may be allowed to cover design tolerances.

### 4.1 Scries piold Controller (Exciter) Analysis

The serics ficld circuit is sohematically shown in figure $4-3$. The output of threo line current transformers is roctifiod and fed to the ficld. The purpose of the capacitor is to climinate the high voltage pulses which, in its absence, would appear across tho fiold anct the rectifiers; it also sorvos to control the magnitude of transiont field voltage resulting from a step-load application. Tho roquired design equations are derived below and are followed by detail numerical information.

Figure 4-3 is used to define the nomenclature. The symbol. $I_{I}$ is used for the rms magnitude of the line currents.

Current Transformer Derivations - The rectifier output current is shown in Figure 4-4c. It is assumed that its a-c component flows in the capacitor only. By inspection, the d-c component is the field current, given by:

$$
\begin{equation*}
I_{F R}=\frac{3}{\pi} \int_{\pi / 3}^{2 \pi / 3} \sqrt{2} \frac{I_{L}}{N} \sin \theta d \theta=1.35 \frac{I_{L}}{N} \tag{4-1}
\end{equation*}
$$

where $N$ is the turns ratio (number of secondary turns) of the transformer. The d-c voltage is simply given by

$$
\begin{equation*}
E_{F R}=I_{F R} R_{F R}=1.35 \frac{I_{L}}{N} R_{F R} \tag{4-1a}
\end{equation*}
$$

AIREGEARCH MANHFALTURING CIMPANY IF ARIZGNA

APS-5286-R
Page 4-6


FIGURE 4-4
SERIES FIELD WAVE FORMS
FIGURE 4-10d
SECONDARY VOLTAGE OF PHASE A TRANSFORMER SCALED WITH RESPECT TO D-C FIELD VOLTAGE

FIGURE 4-10e
FLUX OF PHASE A TRANSFORMER

## AIREGEARCH MANUFACTURING GUMPANY GF ARIZGNA

Although tho transformer secondary currente are essentially sinusoidal, the secondary voltages are not. The secondary voltages are determined by the serios ficld voltage, as the sceondaries are sequentially clamped to the fiold by tho roctifiers. For ideal rectifiers, zero magnotizing ourrent and a large filtor capacitor, the transformor socondary voltage is as shown in figure 4-4d.

The transformor flux, as dolator to the voltage, is shown in fild ura 1-4e. From faraday': law:

$$
\begin{equation*}
\text { cat }=10^{-8} \mathrm{Na} d \tag{4-2}
\end{equation*}
$$

Dividing both sides of the equation by tho half-poriod Il/2 and integrating between appropriate limits:

$$
\begin{equation*}
\frac{2}{T} \int_{t_{0}}^{t_{1}} \mathrm{edt}=\frac{2}{T} \int_{-\phi_{M}}^{+\phi_{M}} 10^{-8} \mathrm{Nd} \phi \tag{4-3}
\end{equation*}
$$

The left-hand momber of this expression is recognized to be the halfcycle average value of the voltage; and, thus, by inspection (figure 4-4d):

$$
\frac{4}{9} E_{F R}=\frac{2}{T} \times 1.0^{-8} \mathrm{~N} \times 2 \phi_{M}
$$

The total flux is replaced $k y \phi_{M}=B_{M} A_{C}$ and the expression is solved for $A_{C}$ :

$$
\begin{equation*}
A_{C}=\frac{10^{8} \mathrm{E}_{\mathrm{FR}}}{9 \mathrm{~N} \mathrm{~B}_{\mathrm{M}^{\mathrm{f}}}} \tag{4-4}
\end{equation*}
$$

where $f$ is in Hertz, $B_{M}$ in kilogauss, and $A_{C}$ in square centimeters.

```
AFS-5286-R
Page 4-8
```


## AIREGEAREH MANUFALTURING LIMPANY DF ARIZINA

a buthion be tat barmeti cotarghation

By substituting Eq. 4-1 into 4-4, another form is obtainod:

$$
\begin{equation*}
\Lambda_{C}=\frac{10^{8} \times E_{F R} \times I_{F R}}{12.15 \times \mathrm{E}_{M} \times \mathrm{I}_{\mathrm{J}} \times \mathrm{E}} \tag{4-5}
\end{equation*}
$$

which simply states that, for a given line current, the crosssoctional area of the core is dotorminod by the sorios fiold power requiroment. In practical computation, the $2-V$ drop of the rectifiers is lumpod into tho iffr of tho above equations.
llhe waveform ghown in Figure $4-4 d$ is not seen in practice due to the suporposition of a ripplo voltage gencrated by the a-c component of the rectifier output current. When the peak of this ripple voltage is smaller than $E_{F R}$ its average over the integration period is zero, and the results are not affected. If $E_{F R}$ tries to go negative during parts of a cycle due to high ripple voltage, the rectifier free-wheels at those times. The effect is an increase in average field ourrent, approaching the peak of the a-c current. In a three-phase circuit, this effect is negligible since the peak a-rc current is less than 5 percent higher than the average.

The magnetizing current of the $C T$ is considered with the aid of Figure 4-5 in which the usual $B-H$ curve is replaced by the flux-current loop of the particular transformer. The idealized loop shown is considexed sufficiently accurate for the materials used. The peak magnetizing current, referred to the secondary, is then given by:

$$
\begin{equation*}
I_{M}=\frac{H_{c}{ }^{1} c_{c}}{0.4 \pi N} \tag{4-6}
\end{equation*}
$$

where $\mathrm{II}_{\mathrm{c}}$ is the coercive force in question, and $l_{c}$ is the magnetic path length in centimeters.


CURRENT TRANSFORMER MAGNETIZING CL.?EENT
FIGURE 4-5

> APS-5.286-R
> Page $4-10$

AIREGEARCH MANUFACTURING CIMPANY OF ARIZONA
a divigion df the garmeil corparation

This magnetizing current is accounted for by adding it to the field current required by the alternator.

Series Field Transfer Function - Figure 4-6 depicts the static transfer function of the series field during a three-phase shortcircuit. The shunt field contributes nothing during a short. The "required" curve shows the alternator short-circuit test characteristics. This curve does not pass through the point of origin due to residual magnetism. The "supplied" curve indicates the design requirements. To provide short-circuit current capability, the twc curves must intersect above the minimum specified fault-current.

Nonsinusoidal Alternator Load - It is instructive to look at a condition of nonsinusoidal alternator loading. Figure 4-7 presents waveforms associated with a'rectifier load having a large choke input filter. The amplitude of the line current is equal to the d-c load current $I_{D}$. Clearly, if $N$ is the current transformer (C.T.) turns ratio

$$
\begin{equation*}
I_{F R}=\frac{I_{D}}{\bar{N}} \tag{4-7}
\end{equation*}
$$

However, the RMS line current is given by:

$$
\begin{equation*}
I_{L}=0.816 I_{D} \tag{4-8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
I_{F R}=\frac{1.225 I_{I}}{N} \tag{4-9}
\end{equation*}
$$

The transformer voltage waveform is shown in Figure 4-7c. Clearly: the transformer has to support only one-third of the half-cycle field

AIRESEARLH MANLFACTURING CQMPANY OF ARIZINA
a biviaion dif the gankeit colhptiantion


SERIES FIELD STATIC CONTROL CHARACTERISTICS
FIGURE 4-6


FIGURE 4-14a
PRIMARY LINE CURRENTS OR SECONDARY PHASE CURRENT'S

FIGURE 4-14b CONDUCTING RECTIFIER

FIGURE $4-14 c$ PHASE A TRANSFORMER SECONDARY VOLTAGE

FIGURE 4-7

WAVE FORMS FOR NON-SINUSOIDAL
LINE CURRENTS

## AIREGEAREH MANLFACTURING LIMPANY OF ARIZIINA

a mulsion in thi batafit gobambatitin
volt-seconds as compared to four-ninths in the sinusoidal case. Tho corresponding transformer equations become

$$
\begin{equation*}
A_{C}=\frac{10^{8} \times E_{F R}}{12 N \mathrm{~B}_{\mathrm{M}}^{\mathrm{f}}}=\frac{10^{8} \times \mathrm{E}_{\mathrm{FR}} \times \mathrm{I}_{\mathrm{FR}}}{14.7 \times \mathrm{B}_{\mathrm{M}} \times \mathrm{I}_{\mathrm{L}} \times \mathrm{f}} \tag{4-10}
\end{equation*}
$$

Evidently, if the transformer is sized for the sinusoidal caso, thoro is now more field current flowing por lRMS line current-mi.u., the shunt ficld has less work. Morcover, the core can support a higher short-circuit current duo to the reduced volt-second demand.

Capacitor Derivation - The function of the capacitor is to limit the surge voltage upon application of transient loading. A simplified analysis is based on the equivalent circult and waveforms shown in Figure 4-8. Initial conditions are assumed to be zero. When a stepcurrent is applied to the circuit, the field voltage will tend to ring up sinusoidally to a peak determined by the surge impedance and the magnitude of the current. At the time $t_{1}$, however, the current transformer saturates and ceases to supply current. Whatever current has been established in the inductor: by that time "free-wheels" down by way of the rectifiers.

The field volt-seconds represented by the shaded area are approximately

$$
\begin{equation*}
(E T)_{F R}=\frac{E_{p k} \cdot{ }^{t_{1}}}{2} \tag{4-11}
\end{equation*}
$$




If the flux in the transformor traversed from negative to positive saturation during this time, then according to the transformer equation, it absorbed the following volt-seconds:

$$
\begin{equation*}
(E T)_{I F}=2 \mathrm{NA}_{\mathrm{C}}{ }_{\mathrm{B}} \cdot 10^{-8} \tag{4-12}
\end{equation*}
$$

Howover, as proviously shown, cach core absorbs only fourminthe of tho field volt-seconds; thus:

$$
\begin{equation*}
\frac{4}{9} \cdot \frac{E_{p k} \cdot t_{1}}{2}=\quad(E I)_{T} \tag{4-1.3}
\end{equation*}
$$

During the first part of the cycle the majority of current flows into the capacitor. Therefore, one can write

$$
\begin{equation*}
E_{p k}=\frac{I_{F R}}{C} \cdot t_{1} \tag{4-14}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{1}=\frac{E_{p k} \cdot C}{I_{F R}} \tag{4-15}
\end{equation*}
$$

Substituting Eq. (4-15) into (4-13):

$$
\begin{equation*}
E_{p k}=\sqrt{\frac{9}{2} \cdot(E T)_{T} \cdot \frac{I_{F R}}{C}} \tag{4-16}
\end{equation*}
$$

or

$$
\begin{aligned}
& C= \frac{4.5 \cdot(E T)_{T} \cdot I_{F R}}{E_{\mathrm{pk}}^{2}} \\
& \begin{array}{l}
\text { APS-5286-R } \\
\text { Page } 4-16
\end{array}
\end{aligned}
$$

## AIRESEARLH MANUFACTURING CIMFANY DF ARIZINA



Since (EI') ${ }^{\prime}$, the transformer volt-seconds, is determined by other considerations, Eq. (4-16) and (4-17) establish a trade-off between surge voltage and capacitor value.

Ripplo current (or voltage) rating must be considored during capacitor selection. Sance the waveforms are analogous to those shown for standari rectificrs, the following is prosented without furthor proof.

For $X_{c}$ much smaller than $X_{L}$ (at the ripplo frequoncy), the total RMS current in the vapacitor is given by

$$
\begin{equation*}
I_{r^{\prime}}(\mathrm{RMS})=0.042 I_{F R} \tag{4-18}
\end{equation*}
$$

If ripple voltage is desired, it can be approximated by its fundamental:

$$
\begin{equation*}
E_{r^{\prime}}(\mathrm{RMS})=\frac{0.040 \mathrm{I}_{\mathrm{FR}}}{12 \pi \mathrm{fC}} \tag{4-19}
\end{equation*}
$$

where $f$ is the line frequency. Equations (4-18) and (4-19) assume a balanced three-phase system.

It should be noted that the series field module contains no protection in case of open-circuit series field wiring. A protective circuit can be added in the future; however, due to the high energy levels and high transient voltages involved, such a circuit is not simple.

```
4.1.1 Design of the Series Field Controller
DAIA: }\mp@subsup{I}{FR}{}=9.2\mathrm{ amps minimum at 105 amps short-circuit line
                                    current
    R FR}=4.4 ohms maximum at 177 % C
```

The series field resistance $R_{F R}$ was predicted at 4.1 ohms. llowever, a value of 4.4 ohms is used to provide a 7 -percent safety factor for tolerances and bus drops. A similar safety factor is used for the control ficld.

Allowing a 10 -percont margin to assure an intorsection (Figuro 4-6), the secondary turns are, by Eq. (4-1):

$$
N=\frac{1.35 I_{I_{1}}}{I_{F R}}=\frac{1.35 \times 105}{1.1 \times 9.2}=14 \text { turns }
$$

The average d-c voltage at $177^{\circ} \mathrm{C}$, including a $2-\mathrm{V}$ allowance for tho rectifiers, is:

$$
E_{F R}=I_{F R} R_{F R}+V_{D}=[1.1 \times 9.2 \times 4.4]+2=46 \mathrm{~V}
$$

Selecting a 4-mil-grain oriented silicon steel toroid for the current transformer core, $B_{(S A T)}$ is 17.6 kilogauss; and according to Eq. (4-4), the required cross-sectional area is

$$
A_{C}=\frac{10^{8} \mathrm{E}_{\mathrm{FR}}}{9 \mathrm{NB}_{\mathrm{M}^{\mathrm{f}}}}=\frac{10^{8} \times 46}{9 \times 14 \times 17.6 \times 10^{3} \times 1.2 \times 10^{3}}=1.75 \mathrm{~cm}^{2}
$$

With allowance for a stacking factor of 90 percent, the gross core area becomes $1.95 \mathrm{~cm}^{2}$ minimum. Since standard cores having such an area are large, a special core was designed. It is specified in AiResearch Drawing 521258 (Appendix II) and has a magnetic path length of 7.6 cm . Ihe coercive force is estimated at 1.0 oersted; thus, the magnetizing current, referred to the secondary, is given by Eq. (4-6):

$$
\begin{aligned}
I_{M}=\frac{\mathrm{H}_{\mathrm{C}} \mathrm{I}_{\mathrm{C}}}{0.4 \pi \mathrm{~N}} & =\frac{1.0 \times 7.6}{0.4 \pi \times 14}=0.43 \mathrm{amp} \\
& \text { APS }-5286-\mathrm{R} \\
& \text { Page } 4-18
\end{aligned}
$$

## AIRESEARCH MANIFACTLIRING GIMPANY DF ARIZGNA

The maximum cross-sectional area of the core is $2.2 \mathrm{~cm}^{2}$ and the maximum saturation flux consity is estimated to be 20 kilogauss. According to Eq. (4-12), the volt-soconds are

$$
(\mathrm{ET})_{\mathrm{c}}=2 \mathrm{NA}{ }_{\mathrm{C}}^{13} \times 10^{-8}=2 \times 14 \times 2.2 \times 20 \times 10^{3} \times 10^{-8}=1.23 \times 10^{-2}
$$

For a capacitor of 2 Mfd and a stop eurront of 10 amps, tho ourgr volt.e age, por Fq. (4-16), is:

I'his is within the capability of the selected rectifiers and within the surge rating of the capacitor.

The RMS ripple current is computed by Eg. (4-18) for a 3.1-amp field current (nominal condition):

$$
I_{r}(\mathrm{RMS})=0.042 \mathrm{I}_{\mathrm{FR}}=0.13 \mathrm{amp}
$$

which also is well within the continuous rating of the selected capacitor.

## 4. 2 Shunt Field Voltage Regulator Analysis

The alternator output voltage is regulated by controling the average shunt field current. This is accomplished by a transistorized switching regulator (chopper). The average field current is determined by the duty cycle (ON-time with respect to the OFF-time) of the chopper, which, in turn, is a function of the error voltage.

AIREGEARCH MANUFAGTURING GDMFANY DF ARIZDNA

The normal ficld supply voltage is supplied by rectifiers taking power from the alternator output. Ihe system battery is gated into the field circuit by a diode and supplies field current until the rectifior output ( $\mathrm{E}_{\mathrm{FF}}$ ) exceeds the battery voltage, thoroby roversobiasing the diode. Sinco the battory by itsolf can supply tho rated $1.0 \mathrm{p} . \mathrm{u}^{2}$ oxditation requimements, no fiold-flashing is noedort to nssuro builu-up. I'lh: axooss Epf ovor battery voltage provides a souroo for fiolu-forcing.

Tho dynamic rosponse of tho altornator output is prinofpally dotorminod by the simplo shont fidold timo-constant and, to a lossor dogroc, by the machino subtransiont response. Ihe contribution of tho feedback signal rectifior filtor $F(s)$ is small. The responso to load application is faster than the response to loart removal due to the availability of field-forcing voltagc. Response to load removal can be improved at the exponse of extra puwer dissipation.
provisions are made for the injection of a hold-off bias derived from the battery which disables the shunt field regulator during alternator acceleration in order to minimize prime mover loading. It should be noted that some excitation will still be available from the series field unless an external short circuit is placed across the series field terminals by the system controller.

The switching regulator also incorporates a current limit designed to protect the field against overheating during prolonged fault conditions. It should be noted that this feature will not protect the VRE output transistor in case of a shorted shunt field bus because the circuit depends upon the field inductance to limit the rate of current rise. Protection against a bus short, however, can be added if so desired.

AIRESEAREH MANUFACTURING CUMPANY IF ARIZONA


A block diagram of the shunt ficld regulator is shown in Figure 4-9. Briefly, the regulator consists of tioe following functional sections:
(a) $\quad$ transformer-rectifier/filter circuit to provide power for the shunt ficld regulator
(b) A transformer-rectifier/filtor circuit to sense the alternator output voltage
(c) A shunt field current switching aircuit to meter power from the power supply to the shunt field
(d) A voltage reference and error detector
(e) A shunt field current level detector and a circuit to protect the switching transistors as well as the field by providing a current limited mode of operation
(f) An OK-gate circuit to provide a smooth transition from voltage regulation to the current limit mode of operation
(g) An auxiliary power supply for the regulator electronics
(h) A battery gating-circuit to assure alternator buildup in lieu of field flashing (Figure 4-10)

Shunt Field Transfer Function - The shunt field transfer function is derived with the aid of Figure 4-11. Symbols and terminology correspond with the definitions presented in Figure 4-l. The switch (SW) represents the action of the solid-state regulator.

When the switci: is closed, the total supply voltage is applied to the field, causing current to build up. Diode D is reverse-biased and nonconducting. When the switch is opened, current continuis to flow in the field circuit due to the effect of the field inductance. This current is in the direction of diode forward conduction; thus, the voltage across the field terminals becomes reversed in polarity and limited in magnitude to the forward voltage drop of the diode. The current then decays according to the field time-constant until the

AIRESEARCH MANUFACTURING COMPANY DF ARIZLINA
a uivision of the garrett corporation


AIRESEARCH MANUFACTURING LUMPANY OF ARIZGNA


LATTERY ASSISTED START UP<br>FIGURE 4-10



AIRESEARCH MANUFACTURING CUMPANY DF ARIZINA
a bivision de the gafolefit comboration
switch is again closed to initiate a current buildup. The duty cycle of this switching action determines the average field current. The resultant field voltage and current waveforms are shown in Figures 4-12c and 4-12d, respectively, drawn with the free-wheeling diode and switch considered ideal. By inspection, it can be scen that the average field voltage is given by:

$$
\begin{equation*}
E_{F H}=E_{F F} \cdot \frac{T_{C}}{T} \tag{4-20}
\end{equation*}
$$

and that the average field current is given by

$$
\begin{equation*}
I_{F H}=\frac{E_{F H}}{R_{F H}} \tag{4-21}
\end{equation*}
$$

If the current ripple is very low, then $I_{F H}$ is also equal to the peak value of the power supply current pulse, $i_{s}$.

The switching action is controlled at the summing junction in the manner shown by Figure 4-12a. This point has two inputs: a d-c reference ( $E_{R}$ ), and a feedback signal ( $e_{B}$ ). The feedback signal consists of a d-c level ( $E_{B}$ ), with a proportional superimposed ripple at three times line frequency if $\alpha$ is the constant of proportionality:

$$
\begin{equation*}
e_{B}=E_{B}+\left[\alpha E_{B}\right](t) \tag{4-22}
\end{equation*}
$$

This signal is obtained from the alternator output voltage by the sensing transformer rectifier; since $E_{B}=\beta E_{T}$, one can write

$$
\begin{equation*}
e_{B}=\beta\left\{E_{T}+\left[\alpha E_{T}\right](t)\right\} \tag{4-23}
\end{equation*}
$$



SHUNT FIELD WAVE FORMS
FIGURE 4-12


AIREGEARCH MANLFACTURING CIMPANY IF ARIZGNA
a giviaidn df the tiarbeti domboration

The switch is actuated by the relationship between $E_{p}$ and the instantancous level of $e_{B}$ as shown in Figure $4-12 \mathrm{~b}$. The switch is open for $c_{B}>E_{R}$ and closed for $e_{B}<E_{i R}$. The error ( $\epsilon$ ) indicates that, at the illustrated operating point, closed-loop equilibrium demands that $T_{0}>\mathrm{I}_{\mathrm{c}}$ for $\mathrm{E}_{\mathrm{FF}}>2 \mathrm{E}_{\mathrm{FH}}$; this is the "gain error" of a Type-Zero loop. The triangular ripple is a close approximation to actual circuit waveforms. In fact, the detail dosign of the vol.tage sensing circuit filter shapes the ripple to this desired waveform. The ficld supply voltage is proportional to the alternator line voltage; thus, it can be written (referring to Figure 4-1)

$$
\begin{equation*}
E_{F F}=K_{T} E_{T} \tag{4-24}
\end{equation*}
$$

The transfer function can now be derived. When the error is positive and equal to half the peak-to-peak amplitude, the troughs of $e_{B}$ cease intersecting with $E_{R}$, and $E_{F H}$ goes to zero. When the error is negative and equal to half the peak-to-peak amplitude, the peaks of $e_{B}$ cease intersecting with $E_{R}$ and the switch goes fully on--i.e., $\mathrm{E}_{\mathrm{FH}}=\mathrm{E}_{\mathrm{FF}}$. For the triangular ripple this change is linear; thus, if $\left[\alpha E_{B}\right](t)$ is the peak-to-peak ripple, then:

$$
\begin{equation*}
\frac{\Delta E_{F H}}{\Delta \epsilon}=\frac{E_{F F}-0}{\left[\alpha E_{B}\right](t)}=\frac{K_{T} E_{T}}{\alpha \beta E_{T}}=\frac{K_{T}}{\alpha \beta} \tag{4-25}
\end{equation*}
$$

Equation (4-25) is the open-loop gain ( $K_{A}$ ) of the amplifier. $K_{T}$ is fixed by the field voltage requirements, and $\beta$ is simply the ratio between $E_{R}$ and $E_{T}$. Obviously, the gain is a function of the ripple amplitude only--whence the name "ripple regulator".
4.2.1 Decail Design of the Shunt Field Regulator - According to Table 4-1, the shunt field voltage requirement at rated-overload and

AIRESEARCH MAPNUFACTURING CDMFANY DF ARIZDNA
$177^{\circ} \mathrm{C}$ copper temperature is 18 V . For fast response, twice this voltage should be availn!le for field forcing. If a $2-V$ series drop is assigned to the regulator,

$$
E_{F F}(M I N)=2 \times 18+2=38 \mathrm{~V}
$$

Allowing a 10 -percent design tolerance on this supply, fip becomes

$$
\mathrm{E}_{\mathrm{FF}}(\mathrm{NOM})=42 \mathrm{~V}
$$

From Eq. (4-24),

$$
K_{T}=\frac{E_{F F}}{E_{T}}=\frac{42}{120}=0.350
$$

which determines the design of the field supply transformer-rectifier,

The selected zener reference voltage is 6.2 nominal, thus

$$
\beta=\frac{E_{R}}{E_{T}}=\frac{6.2}{120}=0.052
$$

According to Paragraph 2.2a, a total operating band of 2 -percent is permitted. This corresponds to 124 mv referred to the reference. The 1.0 V allocated for drift corresponds to 52 mv referred to the reference. Thus the regulation error becomes 72 mv .

## AIREGEARCH MANUFACTURING GQMPANY DF ARIZロNA

According to Table 4-1, between zero and 12.6 KVA and $\pm 10$-percent speca, the shunt. field has to swing a maximum of 6.4 V (at $177^{\circ} \mathrm{C}$ ) for zero error. From this,

$$
\mathrm{K}_{\mathrm{A}}=\frac{\Delta \mathrm{E}_{\mathrm{FII}}}{\Delta \mathrm{r}}=\frac{6.4}{72 \times 10^{-3}}=89
$$

A aesign gain of 100 is chosen to allow for worst-case $K_{T}$ and $E_{R}$. The required ripple can now be computed from the gain expression (4-25) and from the ripple definition (4-22)

$$
\begin{aligned}
\alpha \beta & =\frac{\mathrm{K}_{\mathrm{T}}}{\mathrm{~K}_{\mathrm{A}}}=\frac{0.35}{100}=0.0035 \\
\beta\left[\alpha E_{\mathrm{T}}\right](t) & =0.0035 \times 120
\end{aligned}
$$

In practice, a ripple of exactly triangular waveform cannot be realized. To compensate for the resultant rounded corners, a smaller ripple amplitude is required. From experience, a factor of 0.7 applies and, thus, the required ripple becomes $300 \mathrm{mv} \mathrm{P}-\mathrm{P}$. This defines the filter of the feedback rectifier and also its frequency dependence $F_{1}(s)$. Due to the low open-loop gain, the lags associated with $F_{1}(s)$ and with the switching transport lag are negligible in comparison with the principal time constant, e.g., the field L/R; therefore, the regulator loop is stable. Provisions have to be made to add a stabilizing network if such is required to enhance system stability.

Due to lack of pertinent data, it is difficult to predict conformance to the drift specification of paragraph 2.2 b . However, the drift due to field warmup corresponds to and estimated $\Delta \mathrm{E}_{\mathrm{FH}}$ of 4.3 V , which would reflect to the alternator output as a line voltage shift of approximately 1.0 V RMS.

### 4.2.2 Detail Circuit Description

The schomatic of the sinunt ficld regulator is shown in figure 4-13.

Voltage Rogulator powner Supply - Power for tho shunt ficld regulator is derived from an unregulatod powor supply comprising transformor Tl, bridge rectifion (IRl, and filtor capacitor C5. Imotransformer was dosignod in tho dolta-delta configuration to inoroase tho reliability of the unjt, should it be forcod to oporato in the opordolta configuration due to an open-typo failure in one of the onjo. the transformor was desjgned to have tightly balanced coils to minimize circulating currents.

Switching circuit - The basic field current switching function is performed by Transistor Q5. Transistor Q4 is a Darlington driver to increase the gain of the switching circuit. Resistor R13 provides tho base current drive for Transistor Q4, which is normally in the ONcondition when Q3 is OFF. Transistor Q3 is driven ON by Q2. This drive can be overridden by the inhibit circuit comprising R34, R35, CR7, and CR8 permitting the shunt field to be shut off during engine start-up. Zener Diode CR7 provides approximately 6 V of noise immunity for the inhibit circuit.

Voltage Loop - Voltage requlation is performed by comparing a d-c feedback voltage to a reference voltage. The resulting error voltage is amplified and used to control the basic switching function. The feedback voltage is derived from the voltage sensing transformer T2 and the bridge rectifier CR3, CR4, and CR5. This feedback voltage is fed into the "left" base of the differential amplifier 01 and is compared to the reference voltage established by zener diode CRJO. Potentiometer $R 3$ adjusts the level of the feedback voltage and, therefore, determines the alternator output voltage. Capacitors Cl, C2,


Younour bisma


AIREGEARCH MANLFACTLRING CDMPANY GF ARIZロNA
a division dr the garabtt cormgratign
and C3 filter high-frequency noise spikes on the sensing transformer output windings. Resistor R 8 , which is coupled from the output of the OR-gate (Q2) to the input to the differential amplifier, provides positive feedback that docreases the rist time of the switching transistors and gives a more positive switching action by the introduction of a small amount of hysteresis. Resistor R5, the final value of which has not been determined, is used to match the diode temperature coefficient to the temperature coefficient of the transformer winding resistance; theoretically a vaiue can be chosen to make the net temperature coefficient zero. Capacitor $C 4$ controls the ripple amplitude and hence the loop gain.

OR-Gate Circuit - Transistor Q2 is an OR-gate that is driven from the voltage level detector when the alternator voltage is in the normal regulation band but is overridden by the current detector circuit whenever the output voltage is substantially below normal.

Current Level Detector - During a cold start, the shunt field resistance can be as low as half the hot resistance. The fact that the resistance is low and that a two-times forcing voltage is provided would require the switching transistor to be capable of conducting several times the normal operating current. The current limit circuit protects the shunt field winding and the switching transistors from a possible overcurrent condition when a low output voltage would otherwise command maximum available current flow.

The shunt field current is detected by measuring the voltage developed across Resistor Rl6. This voltage is compared to a reference voltage determined by Resistors R29 and R30. The peak voltage across R16 is coupled to the "left" base of the differential amplifier Q9. If the voltage exceeds a preset level, the "left" transistor turns ON and, thus, the "right" transistor is turned OFF. A positive feedback current is coupled back to the "left" base through C8 and R22. This

## AIRESEARCH MANUFACTURING COMPANY GF ARIZGNA

a divigion df the inarett conmuhation
holds it in the $O N-c o n d i t i o n$ for a period determined by the timeconstant of C 8 and R22. As the "left" transistor of $Q 9$ is turned $O N$, the OR-gate (Q2) is also turned $O N$, which turns the field current switch (Q5) OFF. The field current free-wheels down due to the winding inductance until the end of the above-mentioned one-shot period. At that time the "left" transistor of $Q 9$ turns OFF, allowing $Q 5$ to turn $O N$ again. When $Q 5$ turns $O N$, field current increases until it reaches the current limit point, and the cycle repeats. Operation of this circuit requires a certain minimum of series inductance and will not provide field bus short-circuit protection unless an inductor is added inside the VRE. Capacitor C7 filters the high-frequency clearing spike generated by the free-wheeling diode CRIl at the instant it recovers from a free-wheeling condition. Diode CRl5 provides a fast recovery path for the one-shot timing circuit.

Figure 4-14 depicts the field current and the alternator output voltage for a typical start-up condition. The internal $\Delta T_{1}$ (Figure 4-14) is the time-constant of the current limit circuit. During this time, the field current is decaying according to the $L / R$ time constant of the shunt field. Interval $\mathrm{JT}_{2}$ is the tirle required for the current to build back-up to the aurrent linit point. The slope of the current ripple is a function of the field inductance and the supply voltage and is determined by

$$
\begin{equation*}
\frac{\mathrm{d} \vdots}{\mathrm{dt}}=\frac{\mathrm{E}_{\mathrm{FF}}}{\mathrm{~L}_{\mathrm{FH}}} \tag{4-26}
\end{equation*}
$$

As the output roltage crosses the 10 r-mpercent point (point $a$ on Figure 4-14), the ficid curient control shifts to the voltage loop anci decreases to the normal operatirg current. The output voltage can overshoot somewhat due to the excess stored energi in the field, bit this is small compared to the overshoots seen in the absence of current


## AIRESEARCH MANUFACTURING CIMPANY GF ARIZGNA <br> a divisian of the garrett carporation

limiting. The current limit point is adjusted by potentiometer R-18.

Logic Power Supply - The current-limit circuit is sensitive to power-supply changes; and in order to assure operation of the power transistor well within its safe operating area, reasonably accurate power supply performance is required. This power supply accuracy also contributes the basic simplicity of the overall circuit and minimizes the use of zener diodes.

The logic power supply is composed of Transistors Q7 and Q8 and their associated components. The output voltage is compared to zener reference CR10 by differential amplifier Q8. Field effect diode CR9 supplies a constant base drive current to the series regulating Transistor Q7. With the assumption that the differential amplifier is operating normally, an increase ir the power supply output voltage will cause the "right"-hand transistor of $Q 8$ to increase its collector current, which reduces the available base drive current to $\Omega 7$. The output voltage will therefore decrease to the normal value. Resistor R24 is used to adjust the power-supply voltage.

Although the field effect dicde is a new and unproven device, the simplifications afforded by its use make it an excellent candidate for widespread future application. The diodes shipped in the VRE have been subjected to a fairly severe screening and burn-in program at Aikesearch ant are, therefore, considered sufficiently reliable Eor this application. The worst-case analysis of the power supply allows for a $2: 1$ change in the field effect diode characteristics without regradation of the power supply performance.

### 4.2.3 Worst-Case Analysis

This section provides a brief sumary of the roltage regulator vorst-case analysis ard the ground rules on which it is based. riat

AIRESEARCH MANLFACTURING CDMPANY OF ARIZINA
a divigion de the ganrett ciramaration
analysis shows the maximum and minimum limits of major circuit parameters due to component tolerances, temperature effects, and aging.

The basic design of the shunt field regulator, in conformance to the established ground rules, does not lend itself readily to a failsafe "fail-off" configuration. In a "HI-REL" end application, additional external protection devices are mandatory.

Ground Rules - Supply voltage is 42 nominal, with 80 V transient peaks, transient dips to 22 V ; the ambient temperature range is established as $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. In general, component design tolerances are derived from MII-HDBK-217A. Some component tolerances are shown in Table 4-2, and include long-term drifts when available.

Current Limit Circuit - The worst-case analysis of the current limit circuit shows the change in the current limit as a result of temperature, power supply drift, and aging of components. Due to the method used to sense the control field current, differential voltage changes between the voltage reference divider and the current sense divider are reflected directly to the current sense resistor. The current limiter has a sensitivity of $5 \mathrm{ma} / \mathrm{mv}$. Since the actual current limit is not critical, this circuit was preferred over more accurate ones because of its simplicity and the small number of components.

Current
Change, Percent* amp $\pm \quad$ Change $\pm$

Variable
Power supply drift ( $\pm 0.5 \mathrm{~V}$ ) Temperature Effects

Voltage reference
Current sense circuit

| 0.2 | 3.2 |
| :--- | :--- |
| 0.055 | 0.9 |
| 0.075 | 1.2 |


| $T / \mathrm{C}, \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ | Specification |
| :---: | :---: |
| 200 | MIL-R-10509 |
| 200 | MIL-R-22684 |
| 50 |  |
| 30 | MIL-R-93 |
| 50 | MIL-R-27208 |

TABLE 4-2
VRE COMPONENT TOLERANCES


| $\mathrm{T} / \mathrm{C}$ |
| :--- |
| $\% /{ }^{\circ} \mathrm{C}$ |

$\pm 0.001$


$10 \Omega$
. 001
1.2

| Test |
| :---: |
| Current |

7.5 ma

| CE (sat) |
| :---: |
| max |

$\sim$
0
$i$
0.7
5 mv and $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
*Initial tolerance plus allowances for aying and temperature cofficients.
Supplemenial data 2 N 2060 differential amplifier: ${ }^{\mathrm{H}_{\mathrm{FE} 2} / \mathrm{H}_{\mathrm{FE} 1}:} 9 \mathrm{~min} .1 .0 \max \quad \Delta \mathrm{~V}_{\mathrm{BE}}:$
*Initial tolerance plus allowances for aying and temperature cofficients.

1. Resistors
Type
Metal film
Metal film
Wire Wound, power
Wire Wound, precision
Wire Wourd, variable



| $\underset{\sim}{E}$ | $\infty$ |
| :--- | :--- |
| $>$ | $\infty$ |
| $>$ | n | | $\mathrm{H}_{\mathrm{FE}} \mathrm{min}$ |
| :---: |
| at $-25^{\circ} \mathrm{C}$ |
| 30 |
| 35 |
| 60 |


Reference Diode
$\stackrel{\sim}{\sim}$

##  <br> IN827A <br> Type <br> 3. Signal Transistors

Type
2N2060
2 N 2219
2N3251

|  | Current Change, amp $\pm$ | Percent* Change $\pm$ |
| :---: | :---: | :---: |
| Temperature Effects (CONT) |  |  |
| Differential ampljifier |  |  |
| base emitter offset voltage | 0.003 |  |
| Differential amplifier |  |  |
| base current offset | 0.018 | 0.3 |
| Aging Effects |  |  |
| Voltage reference resistors | 0.35 | 5.6 |
| Current sense circuit resistors | 0.55 | 8.8 |
| TOMAI Drift | $\pm 1.25$ | $\pm 20.0$ |

The minimum current limit is established at 5 amp to allow some margin with respect to the 4.5 -amp maximum required field current. Consequently, the initial setting must be $5.00+1.25=6.25 \mathrm{amp}$ and the maximum current is $6.25+1.25=7.5 \mathrm{amp}$.

Power Amplifier - The current handing capability of the output Transistor $Q 5$ and of its drive $Q 4$ is analyzed with respect to transistor parameter changes, power supply voltage extremes, temperature fluctuations, and resistor tolerances. Power dissipation in the main power transistor, 25 , is calculated under worst-case operating conditions; however, data to derive worst-case switching losses is not available and, thus, these losses were estimated from breadboard measurements.

The results of the analysis may be summarized as follows:

Q5
(a) Steady state
7.5 amp
(b) Transient peak
11.5 amp
*Based on 6.25 amp nominal current linit.

AIREGEARCH MANUFACTURING COMPANY DF ARIZGINA
a divisidn of tme garrett corpdration

Transient peak is $0.2-\mu$ sec long during recovery of CRll
(c) Maximum power dissipation:

| Due to switching losses | 3.5 W |
| :--- | :--- |
| Die to oN conditions | 6.4 W |
| Total | 9.9 W |

(d) Maximum steady-state voltage drop, collector to emitter: 1.32 V
(e) All switching transitions are estimated as less than 6- $\mu \mathrm{sec}$ duration and thus, well within safe-operating regions of second breakdown curves.

Q4
(a) Maximum collector current:

| Steady state | 0.5 amp |
| :--- | ---: |
| Transient peak | 11.5 amp |

(b) Maximum steady-state voltage drop collector to emitter:
0.2 V
(c) All swi.tching transitions are well within the safe operating area of second breakdown curves.

Q3
(a) Maximum collector current: 96 ma
(b) Minimum overdrive

$$
\frac{\beta I_{B}}{I_{C}}=2.7
$$

Nominal overdrive $=5.3$

Error Detector and Amplifier - The stability and sensitivity of the error amplifier (comprising Transistors Q1 and Q2 and associated circuitry) are analyzed with respect to variations of critical circuit parameters, including initial parameter variations within manufacturer tolerances and changes due to aging and temperature effects.

## AIREGEARCH MANUFACTURING CGMPANY DF ARIZDNA

a division dif the garritt gormoratign

Changes in the $d-c$ feedback voltage at the input to the amplifior are expressed as percentages of nominal and are reflected as changes in the $a-c$ output voltage on $\mathrm{a} 1: 1$ basis.

Variable
Resistor-divider ratio

Combined input ofiset
Reference diode voltage changes as function of:
(a) Bias and load changes
(b) Temperature coefficient of reference diode Amplifier gain change

TOTAL (sum of changes)

Fercent Change in Input

| Due to Time <br> and Temp, ? | $\begin{gathered} \text { Due to l'omp } \\ \text { Only, } \quad 8 \\ \hline \end{gathered}$ |
| :---: | :---: |
| +2.26, | $\pm 0.26$ |
| -2.17 |  |
| $\pm 0.15$ |  |
| $\pm 0.15$ |  |
| $\pm 0.16$ ( | $\pm 0.42$ |
| $\pm 0.08$ |  |
| $\pm 0.032$ |  |
| +2.68 | $\pm 0.68$ |
| -2.59 |  |

Sensing Transformer - The sensing transformer presents a rather complex picture as a function of temperature. The change in copper resistance drop is opposite to the change in diode voltage drop. In addition, since the magnetizing and iron loss currents are significant with respect to the load current, they reflect an additional component into the primary voltage drop. This is further complicated by the discontinuous nature of the load current. It is often possible to select a load resistor to minimize the net effects of temperature variations. A "ball-park" value has been calculated and was used to establish the voltage divider resistors; it requires experimental verification and adjustment. Provisions have been made for additional loading for compensation purposes (R5).
a giviaion of the garafitt d:lirpmation

Power supply - The logic power supply analysis is based on a 50-ma essentially constant load and includes combined effects of lemperature and aging. The correct initial setting is 15.0 v.

| Variablee | Output Voltage, mv |  |
| :--- | :--- | :--- |
| Tnput linc voltage | $\pm 50$ (estimate) |  |
| Gain and current source variations | $\pm 100$ |  |
| Reference and $\Delta V_{B B}$ | -10 |  |
| Bridge resistors | +310, | -350 |
| TOTAL Design Tolerarce: | +470, | -510 |

### 4.2.4 Failure Rate Analysis

Wherever feasjble, components have been initially selected from the "JPL Approved Parts List". However, following an investigation into the availability and cost of such components, the selection requirements were clarified and redirected. For fabrication purposes, "commercial equivalent" or military parts were used. Table 4-3 is a list of the parts actually used for the regulator.

Potentiometers have been selected for use where adjustment is needed for component tolerances, since the values are unknown until final adjustment. "Select at Test" procedures would have resulted in excessive procurement delays.

A failure rate analysis for the shunt field is summarized in Tables 4-4 through 4-11. It is based on the following criteria:
(a) Data in accordance with MIL-HDBK-217A when available
(b) Ambient and mounting-base temperature of $70^{\circ} \mathrm{C}$
(c) No allowance for increased reliability due to screening of the power transistors, transformers, and the constant current

'IABLE: 4-3

| I'ABLE: 4-3 <br> VRE: COMPONFNT IIST part: 543936-1-1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Componont besignation Shunt Finla | Mamufactingr | Part Pumber | Ratind |  |
| 1.1 | Sipriagun | P1354crasmben |  |  |
| $1 \%$ | Siprague |  | $150052,0,264,10$ | : $111 .-1-6314$ |
| $1 \cdot 3$ | fentros: | 22.41, - 1000 -20\% | 200092, 0.1 W, |  |
| p1 | faramar |  |  |  |
| 以 | arragur | kWrosv | (1) 3 W | 911,-r-31.0 |
| Pr, | Combiny Glasa | P1,07s:3'26 | 2700S2, 1, 2r, $\quad$ U |  |
| $\mathrm{P} /$ | corning cilass |  |  |  |
| $1: 8$ | Cosuing Gians |  |  |  |
| R! | Corning GJatar | 12107:6216 |  |  |
| RJ.0, 12. | Corninc; glass | R1,07S1026 | 1000S2, 1.256 .20 | M11,-10-? |
| 1211 | Corning Glass | RL.20S162G | 160032, 0.5w, ? ${ }^{\text {c }}$ |  |
| R13 | Sprague | RW6.V911 | $91052, \quad 6.5 \mathrm{w}, 5 \mathrm{~s},$ | $M 11,-1-21, c^{\prime}$ |
| R14 | Corning Glass | RL,075101G | $100 \Omega, 0.25 \mathrm{~W}, 27$ | $N 11,-1:-226841$ |
| R15 | Corning Glass | RL07S821G | 820S, $0.25 \mathrm{~W}, 2 \mathrm{l}$ |  |
| R. 66 | Dale | RE70NR200 | 0.2很, 0.25w, 1.\% | M11-P-18946 |
| R17 | Corning Glass | RL07S751G | $750 \Omega 3,0.25 \mathrm{~W}, 2 \mathrm{6}$ | M11,-1-2268.11 |
| R19, 29 | Sprague | RB54CE18000B | 1800 $2,0.25 \mathrm{~W}, 0.10$ | M1t, - - 93 |
| R20 | Sprague | RB54CE562ROF | 562S2, $0.25 \mathrm{~W}, 2 \mathrm{~L}$ | MTI, - $\mathrm{K}-931$ \% |
| R21, 23 | Corning Glass | RL07S222G | 2200S, 0.25W, 2\% | MTI, R-2268.43 |
| R22 | Corning Glass | RL07S362G | 3600S, $0.25 \mathrm{~W}, 2 \mathrm{O}$ | MT1, - $2-226941 \mathrm{C}$ |
| R24, 18 | Bourns | 224L-500-102 | $1000 \Omega, 0.5 \mathrm{~W}$ |  |
| R25, 26 | Sprague | RB55CE12100F | $1210 \Omega, 0.15 \mathrm{~W}, 18$ | $\mathrm{MII}-\mathrm{R}-226,84 \mathrm{~B}$ |
| R27 | Sprague | RB55CE20000B | $2000 \Omega, 0.15 \mathrm{~W}, 0.1 \%$ | MIL-R-931: |
| R28 | Sprague | RB5 5CE 27100 B | $2710 S 2,0.15 \mathrm{~W}, 1 \%$ | $M I T,-R-93 B$ |
| $\text { R } 30$ | Sprague | RE54CE12100B | $1210 \Omega, 0.25 W, 0.18$ | $M I L-R-9313$ |
| R 32,33 | sprague | RW69V |  | MIL-R-26C |
| R34 | Sprague | RW69V152 | 1500ת, $3 \mathrm{~W}, 50$ | $\cdots 11-R-26 C^{\circ}$ |
| R35 | Corning Glass | RLO7S202G | 2000ת, $0.25 \mathrm{~W}, 2 \mathrm{~S}$ | MIL-R-2268413 |
| $\mathrm{Cl}, 2,3$ | Sprague | 196P10492S4 | $0.1 \mathrm{MFD}, 200 \mathrm{~V}, 10 \%$ |  |
| C4 | Sprague | 150D105X9075B2 | $1 \mathrm{MFD}, 75 \mathrm{~V}, 10 \mathrm{~g}$ |  |
| C5 | GE | 69F116G2 | $440 \mathrm{MFL}, 100 \mathrm{~V}$ |  |
| c6 | Corning glass | CY10G221J | $220 \mathrm{pF}, 300 \mathrm{~V}$ | MTI-C-23269 |
| $1 \mathrm{C}$ | Corning Glass | CY30G103J | 10000pF, 300V | M1L-C.-23269 |

## |Gamany| airebearch manufacturing company af arizona

| 'I'ABLE 4-3 (CON'T) <br> VRE COMPONENI LIST <br> part 543936-1-1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| component Designation | Manufacturnr | Part Number | Rating | Approved Standard |
|  | Spragur <br> : :pragua <br> : ipraque <br> Spragur. <br> Varo <br> (il: <br> Motorola <br> Motorola <br> Motorola <br> FAS, tI <br> Motorola <br> Motorola <br> AiResearch <br> AiRescarch <br> AiResearch |  | ```0.022 MFD, 200V 94 MFII, 50V (1) (1) 250v, 15 amp 600V, 12 amp 180V, 100 ma 6.2V 45% 100V, 2.7 mа 6.2v, +5% silicon NPN Dual Silicon PNP Silicon NPN silicon NPN Power``` | M.IT-ST-19500/160 <br> MIL- 5 ;-19500/11813 <br> MII.-S-19500/127 <br> MIL-S-19500/159 |
| $\begin{aligned} & \frac{\text { Series Field }}{\text { C1, } 2} \\ & \text { CR1, } 2,3, ~ 1 ; \\ & 5,6 \\ & T 1,2,3 \end{aligned}$ | Marshall <br> AiResearch | HL4-105(ISC) <br> IN4507 <br> 521247-1 | $1 \mathrm{MFD}, 40 \cap \mathrm{~V}$ $400 \mathrm{~V}, 12 \mathrm{amp}$ |  |

NOTE: (1) Component values to be selected as required during development tests at Lewis Research Center.
TABLE 4-4
FAILURE RATE CALCULATION FOR
DIODES (FIG. 7.4.3 MIL-HDBK-217A)

| Part | Type and No. | $\begin{aligned} & \mathbf{P}_{\text {Jmax }} \\ & \underset{W}{W} \\ & \# M A \end{aligned}$ | $\underset{\substack{\mathbf{P}_{\mathbf{J}} \\ \mathrm{m} \mathrm{w}_{\mathrm{MA}}}}{ }$ | $\mathrm{T}_{\mathrm{Jmax}_{\mathrm{Cax}}}$ | $\begin{aligned} & \mathbf{T}_{\mathbf{8}} \\ & { }^{\circ} \mathbf{C} \end{aligned}$ | ${ }^{9}{ }_{J A} \frac{T_{J_{\text {max }}}{ }^{-T_{\mathbf{s}}}}{\substack{\mathrm{P}_{\mathrm{Jmax}} \\\left({ }^{\circ} \mathbf{C} / \mathrm{mW}\right)}}$ | $\begin{gathered} \mathrm{T}_{\mathrm{A}} \\ { }^{\circ} \mathrm{C} \end{gathered}$ |  | $T_{n}=\frac{T_{J}-T_{8}}{T_{J \max }{ }^{-T_{B}}}$ | $\begin{gathered} \text { Base } \\ \text { Failuze } \\ \text { Rate } \\ \left(10^{0}\right) \\ \hline \end{gathered}$ | K | Total <br> Faflure <br> Rate <br> ( $10^{-6}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 165 | 75 | $5^{\circ} \mathrm{C} / \mathrm{W}$ | 70 | 110 | 0.39 | 0.620 | 6.0 | 3.720 |
| (1) CR1 | $\begin{array}{r} 45524- \\ 200 \end{array}$ | - | 101 | 165 | 75 | $5 \mathrm{C} / \mathrm{W}$ | 70 |  | 0.26 | 0.005 | 1.0 | 0.005 |
| (2) CR2 | IN1206 | - | 0 | 200 | 25 |  | 70 | 70 | 0.26 | 0.005 |  |  |
| CR3 | IN485B | 200* | 5* | 200 | 25 | $0.875^{\circ} \mathrm{C} / \mathrm{MA}$ | 70 | 74 | 0.28 | 0.255 | 1.5 | 0.372 |
|  | +1888 | 200* | 5* | 200 | 25 |  | 70 | - 74 | 0.28 | 0.255 | 1.5 | 0.372 |
| CR4 | IN485B | 200 | 5 |  | 25 |  | 70 | 74 | 0.28 | 0.255 | 1.5 | 0. 372 |
| CR5 | IN485B | 200* | 5* | 200 | 25 |  | 70 | 74 | 0.26 | 0.255 | 1.0 | 0.340 |
| CR6 | \| W1206 |  | 0 |  |  | $\begin{aligned} & 0.250 \\ & 0.44 \end{aligned}$ |  | 70 |  | 0.340 | 1.0 |  |
| CR7 | In753A | 400 | 0 | 200 | 25 |  | 70 | 70 | 0.26 | 0.670 | 1.0 | 0.670 |
|  |  |  | 0 | 200 | 25 |  | 70 | 70 | 0.26 | 0.222 | 1.5 | 0.333 |
| CR8 | IN485B | 200* |  | - | 25 |  | 70 | 90 | 0. 37 | 0.870 | 1.0 | 0.870 |
| (3) CR9 | IN5308 | - |  |  |  |  | 70 | 90 | 0.37 | 0.980 | 1.0 | 0.980 |
| CR10 | 128827A | 400 | 46 | 200 | 25 |  |  | 90 |  |  |  |  |
| (2) $\begin{array}{r}\text { CR11 } \\ \text { CR12 } \\ \text { CR13 } \\ \text { CR15 } \\ \text { CR16 }\end{array}$ |  |  | $\begin{gathered} 3 \mathrm{~W} \\ 20^{*} \\ - \\ \sim 0 \\ \sim 0 \end{gathered}$ | $\begin{gathered} 200 \\ 200 \\ - \\ 200 \\ 200 \end{gathered}$ | 25 <br> 25 <br> 25 <br> 25 | $\begin{aligned} & 3^{\circ} \mathrm{C} / \mathrm{W} \\ & 0.875^{\circ} \mathrm{C} / \mathrm{MA} \end{aligned}$ | 70 | 79 | 0.36 | $\begin{aligned} & 0.515 \\ & 0.290 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$ | 0.515 |
|  |  |  |  |  |  |  | 70 | 87.5 | 0.36 |  |  | 0.435 |
|  |  |  |  |  |  | - | - | - | - | - | - | - |
|  |  |  |  |  |  |  |  |  | 0.026 | 0.222 | 1.5 | 0.333 |
|  |  |  |  |  |  | - | 70 | 70 | 0.026 | 0.222 | 1.5 | 0.333 |
|  |  |  |  |  |  | - | 70 | 70 | 0.026 | 0.222 | 1.5 | 0.333 |
|  |  |  |  |  |  |  |  |  |  |  |  | 9.650 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

[^0]table 4－5
FAILURE RATE CALCL！ATION FOR
transistors（FIG．
i． 4.4 MIL－HDBK－2 ita）

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| $\cdots$ | （1） | － 0 | $\stackrel{\sim}{n} \stackrel{\sim}{i}$ |
|  | $\underset{\sim}{\sim}$ |  | $\stackrel{\sim}{\aleph}$ ก̂ก̣ |
| 范 |  | ¢00 | $\stackrel{\sim}{m}$ |
| $\begin{aligned} & n \\ & n_{1}^{m} \\ & o+0^{2} \\ & +\infty \\ & h \\ & m \end{aligned}$ | $\cdots$ 둘 | \＃き ¢ | a 9 |
| $\mathrm{H}^{\circ} \mathrm{O}$ | 와 | 웅 | $\bigcirc$ |
|  |  |  |  |
| mos |  | $\stackrel{\sim}{n}$ | $\stackrel{\sim}{\sim}$ |
| － | $\underset{\sim}{8} 888$ | $\underset{\sim}{8} \underset{\sim}{8}$ ¢ | \％ |
| 073 | $\cdots$ 出 | $\because \dot{\sim}$ | 8 N |
| ${ }_{0}^{\text {a }}$ | ${\underset{c}{n}}_{\substack{\% \\ 0}}^{\infty}$ | 아 ㅇ | n |
|  |  |  |  |
| ${ }^{4}$ |  | 흥 | 88 |

table 4-6

table 4-7
failure rate calculation for wire wound resistors


- Exteapolated irum 125 Rating $t " \because$ C hase $e m p e r a t u r e$. Used for stress calculation only.
failure rate calculation fabie m－y metal film resistors

|  |  |  |  | P0 |
| :---: | :---: | :---: | :---: | :---: |
| $\pm$ |  |  |  | m |
|  | $\begin{array}{cccc} 0 & 0 & 0 \\ \underset{N}{N} & \stackrel{0}{\sim} & \stackrel{0}{\sim} \\ \dot{\sim} & \dot{\sim} & \dot{0} & \dot{0} \end{array}$ | $\begin{array}{cccc} \therefore & 8 & 0 & 8 \\ \underset{\sim}{m} & \underset{\sim}{N} & \underset{\sim}{n} \\ \dot{0} & \dot{0} & \dot{0} & \dot{0} \end{array}$ |  | $0$ |
|  | $=\stackrel{0}{0}$ $\stackrel{0}{0}$ 0 | M10ccos |  |  |
| 203 |  |  | 雨： |  |
| $a^{4} 3$ |  | Wrrcr |  | $\begin{aligned} & \stackrel{4}{\sim} \\ & \stackrel{1}{~} \end{aligned}$ |
| 皆管 |  |  | O［ |  |
| $\stackrel{\sim}{\sim}$ |  |  | ！ |  |
| 茳 | $\cdots \underset{x}{\sim}$ | $\underset{\Delta r}{\text { a }}$ |  | $\stackrel{4}{4}$ |

[^1]1 Failure does not affect normal iperation.
failure rate calculation fab poner resistors and potentiometers

| PART | TYPE | VALUE | ${ }_{\text {P }}^{\text {w }}$ | $\stackrel{\mathrm{P}}{\text { Pa }}$ | $\begin{aligned} & \text { STRESS } \\ & \text { SACTOR } \\ & \mathbf{P}_{\mathbf{a}} / \mathrm{P}_{\mathrm{P}} \end{aligned}$ | BASE FAILURE RATE $\left(10^{-6}\right)$ | k |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R5 | Mil-R-26 | (1) |  |  |  |  |  |  |
| 213 | MIL-R-26 | 910 | 6.5w | 2.0 | 0.31 | 0.016 | 10 | 0. 160 |
| K34 1) | MIL-R-26 | 1500 | 3.0w | 0 | 0 | 0 |  |  |
| R3 | POT, 224 L | 2000 | 0.5 | 0.130 | 0.260 | 0.068 |  | 0.068 |
| R18 | POT, 224L | 1000 | 0.5 | 0.013 | 0.026 | 0.068 |  | 0.068 |
| R24 | POT, 224 L | 1000 | 0.5 | 0.025 | 0.050 | 0.068 |  | $\frac{0.066}{0.364}$ |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

TABLE 4－10


|  |  |
| :---: | :---: |
| $\star$ | $\stackrel{\sim}{\sim}$ |
| － | $\begin{array}{ll}\text { O} & \text { O} \\ \text { O } \\ \text { O }\end{array}$ |
| 言 ${ }_{4}^{5}$ | $\ddot{0}$ <br> $\stackrel{0}{\circ}$ |
|  |  |
|  | $\begin{aligned} & \$ \$ \\ & \$ \\ & N \\ & \end{aligned}$ |
|  |  |
|  | ［ |
|  | ＋ |
|  | $\begin{aligned} & \underset{\sim}{3} \\ & \stackrel{Q}{\sim} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{u} \end{aligned}$ |
|  | $\because-$ |

## AIRESEARCH MANUFACTURING COMPANY IF ARIZONA

TABLE 4-11<br>SUMMARY OF FAILURE-RATE CALCULATIONS FOR VOLTAGE-REGULATOR/EXCITER

## Part Name

| Resistors (Table 4-8) |  |
| :--- | :--- |
| Resistors (Table 4-7) |  |
| Resistors (Table 4-9) |  |
| Capacitors (Table 4-6) |  |
| Transformers (Table 4-10) |  |
| Transistors (Table 4-5) |  |
| Diodes | (Table 4-4) |
| TOTAL |  |

Total Application Failure Rate $\left(10^{-6}\right)$

$$
\begin{aligned}
\lambda & =28.939 \times 10^{-6} / \mathrm{hr} . \\
\mathrm{MTBF} & =34,550 \mathrm{hr} .
\end{aligned}
$$

dicde. (It should be noted that the screening has proven very effective in removing weak power transistors and constant current diodes.)

The resultant overall failure rate is $29 \times 10^{-6} /$ tre, correspending to an MTBF of $34,500 \mathrm{hrs}$. This appears encouraging, since it is based on standard military and commercial components. With elighttype components, at least a tenfold improvenent is anticipated. mit two largest contributors to the present failure-rate evaluation resuits are the diodes (including rectifiers), and the precision viremounc resistors. Simple semiconductor screening to Jan $T X$ spocifications is clained to reduce failure rates by one order of magnitude. In addition, if the precision wire-wound resistors are replaced by precision, established-reliability fim resistors purchased to Level $P$ of

## AIRESEARCH MANUFACTURING COMPANY DF ARIZONA

MJ.L-R-55182, a 40 -times reduction in the predicted failure rate may well be possible.

### 4.3 Mechanical Description

The VRE is packaged in a 19-in. rack panel chassis. The chassis is mounted on slides to provide corvenient access to the electrical componerts. The basic mechanical concept was to provide a packaged breadboard where components are conveniently located and, at the same time, to maintain quality workmanship. The series field module can be removed from the VRE chassis and located remotely if desired. Terminal junctions are located on the inside of the back panel to allow for the following optional wiring configurations:
(a) Local or remote voltage sensing
(b) Local or remote power pickup
(c) Local or remote series field location

The optional wiring schedule, Drawing 521301 (Appendi: Iy) cortains detailed instructions for reconnecting the terminal junctions. A set of jumper leads and special tools for wire installation ama removal are provided with each unit. Note that in order to use the "Local" wiring option, the alternator output must. be routed throiari: the VRE chassis. The VRE is delivered prewired in the local configuration.

CAUSION: The machine may not be operated under any circur:stance with P2 and/or P7 disconnected (Series Field open) when current flows in the current transformer primary. This primary consists of three wires routed througi holes in the series field rodule.

AIREGEAREH MANUFACTURING CUMPANY OF ARIZONA
a divigidn gF the garrett edrporation

The physical configuration of the VRE is shown on Drawing 543936 (Figure 4-15) and the location of the various components and modules is shown on Drawing 543937, Figure 4-16. Photographs of the actual hardware are presented in Figures 4-17, 4-18, and 4-19. Figure 4-20 is the system wiring diagram of the BRU alternator, VRE, and speed control.

2. FOR SYSTEM HIEING DIAGRAM SFF SEAWING 521215.

- FOP SCNEAFATIC DIAGPAM SEE DPAWING 521169.

NOTES: UNLESS OTHERWISE SPICIFIEO


FIGURE 4-15
APS-5286-R
Page 4-54

FOE SHSTFM WIRING EIRGRNM SEF SRANING 工श/E19.
FOP SCHEMATIC DIAGRAM SEE ORAWINE 581/69.
NOTES: UALEESS OTHERWISE SPCCIFIED




FIGURE 4-16
APS-5286-R
Page 4-55


VOLTAGE REGULATOR/EXCITER ASSEMBLY
FIGURE 4-17


FRONT VIEW
WITH PANEL REMOVED




AIREBEARCIH MANLFACTURING CDMPANY OF ARIZDNA
5.0 DESCRTPTION OF THE SPEED CONTROLTER

Whe speed control system is a parasitic-load-type using dissipative resistive load to balance real load changes and/or variations in net turbine shaft power input to the alternator. The speed control requirements include the following:
(a) Capability of controlling speed using a frequancy error signal.
(b) Capability of maintaining the alternator frequency at 1200 Iiz to within the specified limits.
(c) Minimizing the effect of the control device on harmonic content of the alternator voltage and current.
(d) Minimizing the losses in the control device when the demand for parasitic load is zero.
(e) Provide capability for loading the alternator to 150 percent of design rating.

The speed-control system schematic is shown on Drawing 43534, Figure 5-1. This system utilizes three control circuits (one to sense each phase of the $1200-\mathrm{Hz}, 120-\mathrm{V}, 10.5-\mathrm{KW}$ alternator) to apply or remove parasitic loading to maintain a constant frequency under varying vehicle load and alternator input conditions. Three control circuits are utilized to improve system reliability. Each control circuit loads all three phases simultaneously. The parasitic loads were established at 2 KW each to provide a total of 6 KW per control circuit. As the maximum parasitic load required is 10.5 KW , one control circuit may fail in the OFF-condition without affecting overall system performance.

Each control circuit consists of a frequency detector, an amplifier section, and a firing circuit. The frequency detector converts the frequency error to a d-c signal. This signal is amplified by two stages of push-pull magnetic amplifiers. The output from the magnetic



amplifiers is a monopolarity pulse that occurs at the center of each half-cycle. The duration of each pulse is proportional to the frequency error. (This signal could also be used for transistor control of the parasitic load at such time as a $600-\mathrm{V}, 10$-amp transistor of proven reliability is available.) For use with the SCR circuit shown, additional signal conditioning is required. This is accomplished with saturabio reactors $Z_{3}, Z_{A}$, and $Z_{5}$.

Variablo-froquoncy and variablo-gain controta, locatod on the front panol, aro incorporated in gach control drouit.

A filter ciseuit has beon incomporatod in the dosign to roduco the effect of the speed control on the gencritar output.

NASA has requested incorporation of a scheme to allow mamall or automatic fullon/full-off parasitic load control, fjgure 5-2. Hhis control system is not to be furnished by AiRescarch. llowever, a tionin point is provided as shown on the schematic, Wiring Diagram 43534, Figure 5-1. For the full-olf mode, a negative bias was suggested. As discussed below, this would not be satisfactory for linear control. Grounding the tie-lead through a controlled impedance would satisfy the requirement. The circuit in the full-on mode serves to override the speed-control signal to the saturable reactors by providing sufficient current to saturate the saturable reactors for full-on, and grounding short-circuits the signal for full-off. For automatic control, the speed control normally is not affected by the manual control circuit. The control logic circuit is to be provided by NASA to turn the speed control on or off, based on other system requirements.

Table 5-1 lists the components shown on Schematic 43534, Figure 5-1, together with ratings, manufacturer, and reliability information.
AIRESEARCH MANUFACTURING COMPANY OF ARIZENA - Ovis:on Grthe basonte coopoont:=n

APS-528G-R
Page 5-4



## Speed Controller Transfer Function

The effects of transients such as those specified in 2.3b are dependent upon the total system. An analog study (included as Appendix V), investigating such system effects, has been completed. The transfer function of the specd control is as follows:


The above relationship is based upon adding the phase-control sections sequentially. For example, the $6 \cdot \mathrm{KW}$ load controlled by Phase A will be added as required for the first l/4-percent error; the $6-\mathrm{KW}$ load controlled by phase $B$ will be added as required for the next $1 / 4$-percent error; and the $6-\mathrm{KW}$ load controlled by phase $C$ will be added as required for the next $1 / 4$-percent error should either Phase A or Phase B control section fail. The possibility of loading with all three control sections simultaneously ( $72 \mathrm{KW} /$ percent of change in frequency) is being investigated. This would allow complete interchangeability of mocules (refer to Drawing 43534, Figure 5-1).

### 5.1 Design of the Speed Controller

As shown on the block diagram section of AiResearch Drawing 43534, there are three basic sections to the speed control. These are
(a) The frequency detector
(b) Magnetic amplifier
(c) The firing circuit

AIREGEAREH MANUFACTURING CIMPANY DF ARIZGNA

The design of these sections was based upon considerable previous experience with the frequency detector and with similar magnetic amplifier arrangements. In the following paragraphs, details of the design are discussed. For component call-outs, rofer to the wiring schematic, Drawing 43534, Figure 5-].

The speed-oontrol is designed for a parasitic load speed-control. power loss of less than 24 W when no parasitic load is being applind. Largo derating factors have been used for components that would cause loading if the componont failed (see paragraph 5.2, Roliability study and Failure Analysis).

## Frequency Detector

The circuit consists of a bridge with two active and two resistive leys. The active element consists of two charging capacitors in series, $C^{\prime} s 2$ and 3 and $C^{\prime} s 4$ and 6 , around which there is a twotransistor switch (Q's 1 and 3 and $Q^{\prime s} 2$ and 4). The transistors are complementary NPN and PNP so that when one transistor is turned on, the other one is turned off. A timing capacitor (C's 1 and 5) is connected from the junction of the two series charging capacitors to the junction of the two emitters of the switching transistors. The collectors are tied to the extremes of the charging capacitors. With this arrangement the timing capacitor is switched, on alternate half cycles, from one end of the charging condensors to the opposite end. This action removes a charge from these charging condensors, with the result that there is continual charging current through the fixed resistive legs of the bridge. The bridge must be balanced at the reference frequency. With a bridge supply voltage $V_{S}$, the voltage drop across $R_{2}$ (or $R_{3}+R_{4}$ ) is $V_{s} / 2=I R_{2}$, where

$$
I=\frac{Q}{t}=Q f=\frac{V_{S}}{2} C_{1} f
$$

therefore

$$
R_{2}=\frac{V_{s}}{2 I}=\frac{1}{C_{1} \mathrm{f}}
$$

Tho change in the detector output, $V_{c}$, per percent frequency change or detector gain, by voltage loop equations is

$$
\frac{5.2 \text { millivolt } \times \mathrm{V}_{\mathrm{s}}}{\text { Percent frequency change }}
$$

Before determining $C_{1}$ and $V_{S}$, it is necossary to determine the preamplifier input requirements. The gain of the frequency detector must be large enough to minimize the drift level of the first stage of amplification. This drift is difficult to accurately predict; however, from experience with similar magnetic amplifiers, it has been found that if the ambient temperature is kept below $130^{\circ} \mathrm{C}$ and the core material is well-matched Mo-Pemalloy, a worst-case drift figure of 0.033 -ma turn $/{ }^{\circ} \mathrm{C} / 100$ gate turns can be expected.

It is obvious that since all the drift is not the fault of the gate diodes, the drift level is not directly proportional to gate turns; however, for a number of turns between 200 and 1000 , this figure will suffice. In the case in question, there are 670 gate turns; therefore, the worst-case drift will be $6.7 \times 0.033$ or 0.221 ma turns $/{ }^{\circ} \mathrm{C}$. For a $\pm 50^{\circ} \mathrm{C}$ change, this represents ll.l-ma turns drift. With 2000 turns on the control, this represents $\pm 5.5 \mu \mathrm{a}$. Since the control range of this device will be approximately $1 / 4$ percent, the gain should be much larger than $22 \mu \mathrm{a} /$ percent of change in frequency. In addition to this, the impedance of the detector should be high with respect to the d-c resistance of the control winding. This will minimize the gain change as a function of ambient-temperature change. For 2000 turns control,

AIRESEAREH MANUFACTURING CIMPANY OF AIZIZGNA
a divigion ge the garafti diamburation
the minimum resistance $\left(R_{C}\right)$ will be approximately 100 ohms; therefore, the impedance of the frequancy detector should be approximately i.foo ohms.

If $R_{2}$ must be approximately 1000 ohms,

$$
C_{1}=\frac{1}{R_{2} f}=\frac{1}{(1.2) \times\left(10^{6}\right)}=0.83 \mu 1
$$

If $C_{1}=1 \mu f, R_{2}$ adjusts to

$$
\frac{1}{C_{1} \mathrm{I}}=830 \mathrm{ohms}
$$

For the gain to just equal the drift of $22 \mu \mathrm{a}$ /percent of change in frequency, from Ohm's Law, the $d-c$ voltage change must be current $\times\left(R_{2}+R_{c}\right)$ or $22 \times 10^{-6} \times(830+100)=20.5 \mathrm{mv}$. From the gain relationship for the detector, the supply voltage required would be:

$$
\mathrm{V}_{\mathrm{s}}=\frac{20.5 \mathrm{mv} / \% \mathrm{f} \text { change }}{5.2 \mathrm{mv} / \% \mathrm{f} \text { change }}=3.9
$$

By setting $V_{S}=50 \mathrm{~V}$, the gain due to drift from temperature change is negligible, and medium voltage transistors $\left(V_{s} / 2\right.$ is seen by the transistor) may be used for switching. The 2N2222A and 2N2907A transistors Jisted in the JPL Preferred Parts List are adequate. The charging capacitors $C_{2}, C_{3}, C_{4}$, and $C_{6}$ must be large with respect to $C_{1}$ and $C_{5}$ and are set at $15 \mu \mathrm{f}$.
$A V_{s}$ of 50 V results in a frequency detector gain of $260 \mathrm{mv} /$ percent of frequency change or $65 \mathrm{mv} / 1 / 4$ percent.

## AIRESEAREH MANUFALTURING GQMPANY OF ARIZINA

The only compononts that would cause drift due to temperature are $C_{1}, C_{5}, R_{2}$, and $R_{3}$ (Drawing 43534 , Figure 5-1). Precision components have been selected for these requirements as shown in Table 5-1. At this time, it is assumed that $R_{4}$ will be eliminated from the flight package.

## Magnetic Amplifiors

From the previous discussion, it can bo soon that tho magnotio proamplifier design must bo tailorod to the frequoney detoctor characteristios. The gate voltage, which is an arbitrary value, was seleoted as 20 V RMS. Lvon though the value of this voltage is arbitrary, once it has been selected, it determines the number of yate turns and the gain of the amplifier per given number of control turns. It also has an effect on the time-constant of the amplificr. From the standard transformer equation, i.e.,

$$
N_{g}=\frac{(E)\left(10^{8}\right)}{4.44 \mathrm{EBA}_{\mathrm{C}}}
$$

the gate turns are 670 turns for a standard core (Part 52002-2D, Magnetics Inc.). For control, 2000 turns were selected on an arbitrary basis; however, there are factors that limit this selection. The time constant of the amplifier is proportional to the number of control turns squared and is divided by the resistance of the control circuit. Gain is directly proportional to the number of turns, while the $d-c$ resistance of the control winding is related to the number of turns squared. Of course, the number of windings establishes the minimum window area of the core.

Gain of this device can be calculatad by using some of the fundamental equations that express the relationship between NI, gausses,

AIRESEARCH MANLFACTIURING CIMPANY DF ARIZGNA
a Divibign df tmt garnall runioltalighe

Oersteds, and volts. These relationships must also include such things as ratio of $I D$ to $O D$ and the incremental permeability in tne control region. However, from past experience, it has been found hy empirical means that the gain of this devien is approximatoly $0.003 \mathrm{~V} / \mathrm{ma}$ control/ control turn/volt gate. Iherofore, with a gate voltage of 20 and 2000 control turns, the gain will be 0.003 $\times 20 \times 2000$ or $120 \mathrm{~V} / \mathrm{ma}$. Mhis figure includos the degonorative action that rosults from solf-biasie

Solf-hias is the noxt comsidoration in the dosign and, as in tho case of control, the following folationship exprosses tho hias curront, $I_{B}=H 1 / 0 / 0.4 \pi N$, where $H$ is the drive roguired to resot the coro to the mid-point or the $90-\mathrm{deg}$ firing point. Ihe voltage available is 1.5 times the gate voltage. By using these relationships, tho selfbias resistance is equal to 82,000 ohms. From the frequency-detector analysis, the current for $1 / 4$ mpercent frequency error will be $80 \mu \mathrm{~m}$; and the gain through the magnetic preamplifier is $9.6 \mathrm{~V} / 0.25$ percent: change in frequency. Response time of the amplifier can be oxpressed as follows:

$$
\mathrm{T}=\frac{\mathrm{KN}}{}{ }^{2}
$$

where

$$
\begin{aligned}
& \mathrm{N}=\text { number of control turns } \\
& \mathrm{R}=\text { bridge resistance } \\
& \mathrm{K}=(\mathrm{V} / \mathrm{AT}) /\left(2 \mathrm{~N}_{\mathrm{g}} \mathrm{f}_{\mathrm{g}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
V / A T & =\text { gain of the amplifier (volts per ampere turn) } \\
N_{g} & =\text { number of turns on the gate } \\
f_{G} & =\text { frequency of gatc }
\end{aligned}
$$

AIREGEARCH MANLIFACTURING COMPANY OF ARIZONA
a givibiga or the garrett curmaralign

Solving for $k$ :

$$
\mathrm{V} / \mathrm{A}^{\prime}=60, \mathrm{~N}_{\mathrm{g}}=670, \mathrm{f}_{\mathrm{g}}=1,200
$$

Wherefore,

$$
\begin{gathered}
K=3.73 \times 10^{-5} \\
L^{\prime}=\frac{(37.3)(4)}{9!50}=0.1575
\end{gathered}
$$

Since

$$
\begin{aligned}
& T=\frac{1}{W} \text { and } \mathrm{f}=\frac{\mathrm{W}}{2 \pi} \\
& \mathrm{~W}=6.35 \mathrm{radian} / \mathrm{sec} \\
& \mathrm{f}=1.10 \mathrm{~Hz}
\end{aligned}
$$

Where $f$ is the high-frequency cutoff, it becomes obvious that the bandwidth must be expanded at least 10 times by negative feedback. With this much feedback, the $80 \mu$ a for $9.6-V$ output now becomes $800 \mu \mathrm{a}$, with all but 80 being cancelled by the feedback. Therefore,

$$
R_{f b}=\frac{(8.0)\left(10^{3}\right)}{0.72}=11,000 \text { ohrns }
$$

A complete description of the transfer function for this amplifier is $(12 \mathrm{~V} / \mathrm{ma}) /(1+0.0157 \mathrm{~S})$. The second stage of magnetic amplification is identical with the first stage except that the coupling resistance is 10 times the impedance of the frequency detector, (12V/V)/(1+0.0157S).

AIREGEARCH MANUFACTURING CGMPANY DF ARIZGNA

By multiplying the yains of the three elomonts, for $1 / 4$-percent change in frequoncy, the voltago out is $9.22 \mathrm{~d}-\mathrm{c}$. Prom a transforfunction standpoint, there is a double lag at $63 \mathrm{rad} / \mathrm{sec}$.

## Transformer

Iransformer I-I provides power to the frequoney dretector and thr magnotio mopifiors. Th is assumod that thr saturatort eomation of
 at 720 Hz ) . لho primary emoront is found by summing tho roflocom secondary currents and tho oxotation ouraont. starting with tho mitynotio amplifiors, two will rofloct a total of 13 mato the primary while the frequency dotector will rofloct 35 ma, which will make a total of 48. Ihe exciter current cannot be calculated untij. the matyretic core is selected. However, with the excitation of 10 peroont or less, the primary wire size of 33 was chosen. this gives a ciroular area of 50 mills. It is assumed that the maximum flux density is 10,000 gauss.

From the standard transformer equation, an expression for the primary turns can be found, $N_{p}=58 / A_{c}$, where $A_{c}$ is the cross-sectional area of the magnetic path, in inches. The number of primary turns can also be expressed as a function of window area and wire size. It can be assumed that half the window area will be filled with copper and that half of this area will be the primary. Maerefore, the window area $\left(W_{a}\right)=\left(N \times 50 \times 10^{-6}\right) / 0.25$ or $N=5 \times 10^{3} W_{a}$. By equating the two relationships, $5 \times 10^{3} \mathrm{~W}_{\mathrm{a}}=58 / \mathrm{A}_{\mathrm{c}}$ or $\mathrm{W}_{\mathrm{a}} \mathrm{A}_{\mathrm{c}}=0.0116-\mathrm{in}{ }^{4}$. From the manufacturer's catalog, a core can be selected (E127) that has a $W_{a} A_{c}$ of 0.0176 . This is more than required, according to tho previous calculation. A for this caso is 0.141 in. from which $N_{p}=411$ turns and requires less than 0.25 of the available window area. Solving for the excitation, $I_{c}=\| C / c / 0.4 \pi N$. Let $H c=0.60$, then $I_{c}=6.7$ ma. The resistance of this winding is found to be approximately 12 ohms; however, an arbitrary maximum limit of 18 ohms was

```
APS-5286-12
Page 5-14
```



## AIREGEARLH MANUFACTURING CDMPANY OF ARIZONA

chosen. This should allow for production tolerances and, from a regulation and heat-gencration standpoint, should cause no problems. The secondaries wore designed by using 1000 circular mils per ampere wire. Resistance values were calculated and all other design detailsi were considered (soe AiRosoarch Drawing 307594, Appondix IT).

Firing Circuit - $A$ magnotio amplifior was originally consiolorol; howovar, from a roliability stamipolnt, a saturablo roactom would bo proforable. In tho daso of zoro control mignal, tho paratitic load
 gato windings, tho volt-socond intograt should acoommodato tho sathe ration of the gomerator-mthat $i=120 \mathrm{~V}$ RM: at $72011 \%$ Wish thw umo of a standard Magnotics linc., Case 52106-2A, the

$$
N_{G}:=\frac{0.451:}{(f)\left(21.3 \mathrm{~m}_{\mathrm{c}}\right)\left(10^{-8}\right)}=1,400 \text { turns }
$$

Solving for the excitation current gives $I_{c}=H C l c / 0.4 N=1.68 \mathrm{ma}$. The gain of this device is expressed through the basic relationship of the ampere turns of the gates must equal the ampere turns of the control. When these devices are used in a parallel configuration, as in this case, the gates then carry twice the NI that the control does. The final design configuration and considerations are shown on AiResearch Drawing 307597, Appendix VII.

The SCRs (Q5 and Q6) must handle the current for half of the 2-KW loads or

$$
\frac{2000}{(2)(120)}=8.33 \mathrm{amp} \text { RMS }
$$

## AIRESEAREH MANUFACTLIRING CDMPANY DF ARIZDNA

A bivimion or the gatertit conmoralion
and a peak voltage of 170 . Initially, General filectric C35M SCRs were selected because they are included on the JPI, prefereed parts List. Consideration was given to the use of Type ci35 sclis because of a higher dvidt* rating. However, the gate current requirement for the d 35 is gleater than that avallable from tho control circuit. An analysife was made to dotormine the worst-caso dv/dt that eould nerur with this dosion. It was oaloulated with tho filtor in tho firime oitouit, as

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=2.15 \mathrm{v} / \mathrm{sinc} .
$$

without the filtor in tho firing cirouit,

$$
\frac{d \mathrm{v}}{\mathrm{dt}}=3.0 \mathrm{~V} / \mathrm{scc}
$$

C35M rating

$$
\frac{d v}{d t}=10 \mathrm{~V} / \mathrm{sec}
$$

From this it is seen that the C35M SCRs have adequate design margin, either with or without the filter. C35Ms rated at 600 V peak and 35 amp RMS are used in the breadboard controls. The thermal and roliability analysis shows the device to be satisfactory for this design. However, care is required when mounting the SCRs on a $150^{\circ} \mathrm{F}$ heat-sink.

The saturable reactor firing circuit for the SCRs should be carefully evaluated when operated at rated-load. Some additional development may be required to obtain balanced loading of the phases and w assure adequate gate current to the SCRs.
*dv/dt is the rate of rise of forward blocking voltage that will not turn on the SCR.

## AIRESEARCH MANUFACTURING CIMPANY IF ARIZONA

a division of the garrett corporation

## Filter Circuit

As indicated in 2.3 c , the system is to be designed to control EMI to meet the requirements of MIL-STD-826 and to minimize harmonic distortion of the alternator output resulting from speed-control switching (Paragraph 2.3e).

Because the configuration of the controls supplied to NASA were of the open-breadboard type, not the configuration planned for the flight units, and because the controls would not be located in the system as finally proposed, the EMI analysis has been postponed until the system is flight-packaged.

Included in the speed control is a passive filter for harmonic distorcion caused by the application of pulsed loads. However, it has been determined that the voltage regulator/exciter (VRE) will not function satisfactorily with a leading power factor such as produced by this filter.

NASA agreed to accept the speed-control to the approved design with the filters connected. Prior to operation with the VRE, NASA will disable the filters. This will be accomplished by lifting the ground on capacitor $C 9$ and connecting a jumper around $L 2$ as shown in the schematic section of Figure 5-3.

The modification below is required for all three phases in all three modules to render the filters inoperative.

Additional analysis and development will be performed by NASA to determine the optinum type and location of the filter.

AIRESEARCH MANUFACTURING CIMPANY UF ARIZINA
A DIVISIIN DF THE GARRETI CUAFUHATIIN


FIGURE 5-. 3

Because the generator output contains about 4-percent distortion, AiResearch has recommended that the filter be placed in the vehicle load-line and that an active filter be considered. (One is described in Appendix VI.) VRE regulation and interaction is improved by placing a filter between the speed-control and the VRE voltage-sense leads.

### 5.2 Reliability Study and Failure Analysis

For the reliability study performed on the speed-control, three sources of data were used:
(a) MIL-HDBK-217A, Reliability Stress and Failure Rate Data for Electronic Equipment, dated December 1965.
(b) BuWEPS Failure Rate Data Program.

```
APS-5286-R
Page 5-18
```


## AIRESEARGH MANUFACTURING CDMPANY GF ARIZCINA

(c) Reliability Application and Analysis Guide by D. R. Earles, Ine Martin Company, dated July 1961.

The results of this study were separately reported in Roliability Report, $\mathrm{RC}-5199-\mathrm{R}$, dated October $14,1966$.

Bocause tho reliability data wore for a class of components rather than for specific itoms, the rosults of this study did not appoar to bo particularly applicablo to design improvemont. In addition, the data were not appiicablo for the spocific high-reliability components contemplated for use in the flight package. Further reduction in the usefulness of the analysis results from the fact that only limited rating characteristics were considered.

In view of the unsatisfactory study, the system regrinenents were revieweã to estaidish a better reliability approach.

Reliability was the primary consideration for establishing the speed-control philosophy. The cantrol consists of three sections that apply up to $2 \mathrm{KW} /$ phase/section. As the design power rating of the BRU is $10.5 \mathrm{KW}_{\mathrm{e}}$ maximum, only two sections (12-KW capacity) are required to fully load the BRU. Therefore, one section serves as a backup for failure of a section in the full-off condition. Also, a speed-control override is available to control the firing circuit.

From a system standpoint, a failure is the condition where the system fails "on". Table 5-2 lists those failures that will result in a failure in the "on" mode. Table 5-3 lists the critical components with their operating and rated parameters.

AIREGEARCH MANLIFACTHRING CDMPANY DF ARIZINA


I'ABLE 5-2<br>SPEED-CORTMPOL CRTITCAL COMPONENTS (FAIL-ON)



NOTES

1. Not corrected by customer-furnished speed control override circuit shown in Figure 5-2.
2. Full-on with any input signal from speed-detector (with speod above the set-point) section as negative feedback is removed.

| TAble 5-3 |  |  |  |
| :---: | :---: | :---: | :---: |
| SPEED CONTROL CRTTICAL COMPONENTS OPERAIITNG CHARACTERISTICS |  |  |  |
|  | $\begin{aligned} & \mathrm{Q1}, \mathrm{Q}, \\ & 2 \mathrm{~N} 222 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & Q 2, Q 4 \\ & 2 \mathrm{~N} 2907 \mathrm{~A} \\ & \hline \end{aligned}$ | $\begin{array}{r} \text { Q5, } 06 \\ \text { C35M } \\ \hline \end{array}$ |
| $\mathrm{V}_{\text {ce }}$ rated, V | 40 | 60 | 600 |
| ${ }^{7}$ ce operating, V | 25 | 25 | 1.70 |
| $P_{1 j}$ max at $46^{\circ} \mathrm{C}$, mw | 430 | 350 | -- |
| $\mathrm{P}_{\mathrm{D}}$ operating, mw | 20 | 20 | -- |
| $I_{c}{ }^{\text {max }}$ | 800 ma | 600 ma | 35 amp RMS |
| $I_{c}$ operating | 30 ma | 30 ma | 8.5 amp RMS |
| $\mathrm{T}_{\mathrm{j}} \max ,{ }^{\circ} \mathrm{C}$ | 175 | 200 | 125 |
| $\mathrm{T}_{j}$ operating, ${ }^{\circ} \mathrm{C}$ | 52 | 55 | 75 |

## Capacitors

|  | C2, C3, C4, C6 | C9 |
| :---: | :---: | :---: |
| Volts rated/operating | 75/25 | $330 / 170$ RMS |
| Current-rated, amp | -- | 43 at $50^{\circ} \mathrm{C}$, |
|  |  | 25 at $80^{\circ} \mathrm{C}$ |
| Current-operating, amp | -- | 15 at $46^{\circ} \mathrm{C}$ |

## Resistors

For power ratings, see lable 5-1.

## Reactors

Z1, Z2, Z3 - See AiResearch Drawings 307595, 307596, and 307597, Appendix II.


Heat-transfer calculations for these devices follow:

Junction Temperatures

Q5 and Q6, G.E. C35M (2N690)
Sclocted from JPI, list, $600 \mathrm{~V}, 35 \mathrm{amp}$ RMS
Max OP $=125^{\circ} \mathrm{C}$ (derating tomp $\left.30^{\circ} \mathrm{C}\right)=\mathrm{T}_{\mathrm{j}} \max$
Avorage curront for 2 KW and 120 V lRMS

$$
\begin{aligned}
& I=\frac{2,000}{120}=16.7 \mathrm{amp} \mathrm{RMS} \\
& I_{\mathrm{avg}}=0.9 \times I_{\mathrm{RMS}}=0.9 \times 16.7=15 \mathrm{amp}
\end{aligned}
$$

Each SCR conducts for $1 / 2$-cycle

Therefore, $I_{a v g} / S C R=7.5 \mathrm{amp}$ for $180-\mathrm{deg}$ conduction.
From the G.E. curve for forward dissipation: Pd $=11 \mathrm{w}$.
From the G.E. Curve for maximum case temperature to $7-1 / 2$ amp, $T_{c} \max =100^{\circ} \mathrm{C}$.
From the work statement, $150^{\circ} \mathrm{F}\left(66^{\circ} \mathrm{C}\right)$ is the heat-sink and $115^{\circ} \mathrm{F}\left(46^{\circ} \mathrm{C}\right)$ is the maximum ambient temperature.

Based upon Wakefield NC 303 dissipation data for natural convection (for research package):

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{s}}=28^{\circ} \mathrm{C}\left(11 \text { watts) }+\mathrm{Ta}=28+46=74^{\circ} \mathrm{C}\right. \\
& \mathrm{T}_{j}=\mathrm{T}_{\mathrm{s}}+\mathrm{p}\left(\theta_{\mathrm{s} \text { to } \mathrm{c}}+\theta\right. \text { to j) }
\end{aligned}
$$


where
c = case
$\mathrm{s}=$ sink
$j=j u n c t i o n$
$a=$ ambient

From the GE data,

$$
\begin{aligned}
O_{\mathrm{C}} \text { to } j & =1.7^{\circ} \mathrm{C} / \mathrm{W} \max \\
\Delta_{\mathrm{T}}{ }_{\mathrm{C}} \text { to } j & =11 \times 1.7=18.7^{\circ} \mathrm{C}
\end{aligned}
$$

$\Delta T_{C}$ to $x$ is very low, when using joint compound, assume $2.2^{\circ} \mathrm{C}$.

$$
\therefore T_{j}=74+18.7+2.2=95^{\circ} \mathrm{C}
$$

## Conclusion

$T_{j}<T_{j} \max$ and was satisfactory, but for additional margin a fan was included in the rack. For $10-\mathrm{ft}{ }^{3} / \mathrm{min} . f 10 \mathrm{w}, \theta_{\mathrm{s}-\mathrm{a}}=0.75^{\circ} \mathrm{C} / \mathrm{W}$.

$$
\begin{aligned}
\Delta T_{s-a} & =11 . \times 0.75=8.25^{\circ} \mathrm{C} \\
T_{j} & =8.25+46+18.7+2.2=75.2^{\circ} \mathrm{C}
\end{aligned}
$$

For a heat-sink of $66^{\circ} \mathrm{C}$,

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{C}} \text { to } \mathrm{s} & =11 \times 0.2=2.2^{\circ} \mathrm{C} \\
\mathrm{~T}_{j} & =66+2.2+18.7=86.9^{\circ} \mathrm{C}
\end{aligned}
$$

## AIREGEARLH MANUFACTURING COMFAINY DF ARIZONA

a mivigion of the matratid biderumalion

Table 5-4 lists the estimated heat losses for tho various (:)mponents.

### 5.3 Mechanical Analysis

Packaging of the spond eontrol is in acoorlaned with the applजablo spocifications. Componont sizo and arrangomont is: abown wh
 (figure 2), design caloulations for tho oompononts assumo an ambiont fomperaturo of $115^{\circ} \mathrm{F}$ and a hat-sink of $150^{\circ} \mathrm{F}$. Th this dosign, tho foks are the only componodes requirime a hoat-sjnk in a lifop atmosphere. A blower is provided in cach chassis for cooling tho sck wader breadboard test conditions.

Weight - Each system weighs approximatoly 105 lb ., or $35 \mathrm{lb} . /$ section. This weight includes filters C9 and LI, which are to be disabled as previously discussed.

AiResearch Drawing 305444 (Figure 5-4) is a layout of one of three identical sections comprising a speed control. Table 5-5 presents a list of AiResearch drawings pertaining to the speed control. Figuro $\mathrm{j}-5$ shows the three modules comprising the complete control package. A view from the front of one of the three speed-control modules is shown in Figure 5-6. The components mounted on the circuit board, located in the right-front of the photo, form the detector or discriminator. l'he three small components, a transformer (Tl.), and two saturable reactors ( 21 and 22 ), mounted on the left-front of the chassis, comprise the amplifier section. The remainder of the components at the rear of the package make up the firing circuit. The three large cans .und the incuctor immediatoly to the loft of each can form the filtor. More than half the size and woight of the control system is due to the filier components. Figure $5-7$ shows a raar view of a speed-control.

AIRE日EAREH MANUFACTURING CQMPANY DF ARIZDNA
a diviginn df the barkitt raremeation
module. The elcotrical connectors mounted on the rear of the chassis and the heat exchangers for the SCRs are soen in this view. Not shown are the front pancl, the blower, and the SCRs.

AIREGEARC:H MANUFAGTITRING GLMMPANY DF ARIZIINA



```
#, whi i, - G.J., !OJ (!S!
```



```
    |ry :OF#|
```






(:1, 10, 11

リ1 alld ;



$7.1131!$
(i) allu 11

10
1119
$1 \because$ annl 13
14 amd 15
1029

Ress subtotal 27!
Masmetics
11
$1,1,2$ and 3

$$
0.75 \mathrm{~W} / \mathrm{phata}: 3 \text { phat;os }
$$

: . ' ${ }^{i}$ :
7 W/ind $x 9$ ind
C] and !
(O.), 3, 4 and 6
(.7 amd 8
(1R-1
(2)2-14
$\because 1$
$\because:$
解, 1 and

2 W/phase 83 phatsus


1.91






## AIRESEARCH MANUFACTURING CIMPANY QF ARIZINA

a division of the garrett corforation

TABLE 5-5
SPEED CONTROL DRAWINGS (BREADBOAPD UNIT)

| Drawing No. | Title |
| :--- | :--- |
| 303749 | Terminal Board Assembly |
| 303750 | Terminal Board Assembly Electriial |
| 303751 | Terminal Board Assembly |
| 303752 | Terminal Board Assembly Electrical |
| 303753 | Electronic Component Mounting Plate |
| 303754 | Moaule Assembly (Firing Circuit) |
| 303755 | Instrument Panel Assembly |
| 303756 | Chassis Assembly |
| 303757 | Air Blower Inlet |
| 303758 | Instruction - Warning - Plate |
| 305444 | System Outline |
| 305445 | Control Assembly |
| 305506 | Control Outline |
| 43534 | Schematic Wiring Diagram |
| 43574 | Wiring Diagram (Pictorial) |



AIRESEARCH MANUFACTURING CIMPANY DF ARIZINA


BRU SPEED-CONTROL ASSEMBLY THPEE SUBASSEMBLIES REQUIRED

FIGURE 5-5

```
APS-5286-R
Page 5-29
```

airesearch manufacturing company of arizgna


BRU SPEED-CONTROL SUBASSEMBIY
FRONT VIEW
FIGURE 5-6

APS-5286-13
Page 5-30


### 6.0 SYSTEMS ANALYSIS

An analog study was performed to determine the transient characteristics and stability margins for the NASA BRU components; namely, turbine, compressor, and alternator. The study included the VRE and speed controller performance characteristics.

The compressor and turbine maps which were incorporated in the analog simulation are also employed with the AiRescarch, Phoenix system start-up analysis programmed for the digital computer. These maps represent the predicted aerodynamic performance of both components. The speed-control transfer functions were obtained by analytical and experimental methods. Iransfer functions and constraints representing the alternator with VRE were derived, and equivalent circuits were generated which described the combined alternator and VRE dynamic response for this application. I'his analysis is included in Appendix VII.

AIRESEARCH MANUFACTURING CDMPANY DF ARIZUNA
a divibign dr the garaett isirmgratian

### 7.0 CONCLUSION

The electrical components designed and fabricated by the AiResearch Manufacturing Company are satisfactory for use in a 1200-11z Brayton energy conversion system. The alternator delivers design output for all specified operating conditions by l-p.u. load, 2-p.u. load, and 3-p.u. short circuit. The alternator is suitable for application in a gas bearing system. The electrical control packages enable the system output to remain within the design tolerances regarding voltage regulation, speed regulation, voltage and speed recovery times, and short-circuit operation.

The operating mode of the speed controller generates additional voltage harmonics on the system and will require further analysis. The voltage regulator and speed controllers interact when operating in a system; this will be analyzed further.

AIRESEAREH MANUFACTURING CDMPANY DF ARIZDNA

APPENDIX I
GLOSSARY OF TERMS AND SYMBOLS
(7 pages)


## AIRESEAREH MANLFACTURING CDMPANY DF ARIZDNA

A DIvigitin ur the garnett marfaration

## GLOSSARY OF TERMS AND SYMBOTAS

| $\mathrm{A}_{\mathrm{C}}$ | Core area |
| :---: | :---: |
| $\mathrm{a}-\mathrm{c}$ | Alternating current |
| AG | Auxiliary flux gap |
| ARP | Alternator Resoarch Package |
| $\mathrm{BA}_{\mathrm{C}}$ | Flus density in the core area |
| $B_{M}$ | Flux density - kilogauss |
| BRU | Brayton rotating unit |
| ${ }^{\text {B }}$ S | Flux saturation |
| C | Capacitance |
| C.g. | Center of gravity |
| cm | centimeters |
| C.T. | Current transformer |
| $\mathrm{d}-\mathrm{c}$ | Direct current |
| E | Electromagnetic force - volts |
| e | Incremental voltage |
| $E_{B}$ | Feedback d-c level |
| $e_{B}$ | Feedback signal |
| $E_{F F}$ | Field forcing voltage |
| E.M. | Electromagnetic |
| EMI | Electromagnetic interference |
| (ET) | Transformer voltage |
| (ET) | Core volt seconds |



AIREGEAREH MANUFACTURING GDMPANY AF ARIZDR:A

## GLOSSARY OF TIERMS AND SYMBOLS (Contd.)




```
AIRESEARCH MANUFACTURING CRAPANY GF ARIZINA
a biviainm in the barmett robabiration
```

GIOSSARY OF TERMS AND SYMBOLS (Contd.)

```
\begin{tabular}{|c|c|}
\hline j & Vector \\
\hline K & Gain or proportionality constant \\
\hline ksi & Thousand pounds pror square inch \\
\hline KVA & 'lihousand volt amperos \\
\hline KW & Kilowatte \\
\hline \(J\) & Inductanco \\
\hline \(\ell\) & Mean magnotic longth of coro-contimetors \\
\hline 1bs. & Pounds \\
\hline m & Mass \\
\hline ma & Milliamps \\
\hline min. & Minutes \\
\hline mm & Millimeter \\
\hline MMF' & Magnetomotive force \\
\hline MTBF & Mean time between failure \\
\hline MTU & Electromagnetic test unit \\
\hline mv & Millivolt \\
\hline mW & Milliwatts \\
\hline n & Speed perturbations \\
\hline N & Number of turns \\
\hline Ng & Number of gate turns \\
\hline NI & Number of ampere turns \\
\hline Np & Number of primary turns \\
\hline \(N \sqrt{\theta}\) & Corrected speed \\
\hline
\end{tabular}
```



AIREGEARCH MANUFACTURINE CDMPANY OF ARIZDPA a bivision of the lanert tt dinapgation

## GLOSSARY OF TERMS AND SYMBOLS (Contd.)

pf
pr
$P_{J}$
pk
$P_{p}$
$P-P$
ppi
$P_{r}$
psi
psia Pounds per square inch absolute
p.u.

Q
QC
R
$r$

RMS
rpm
${ }^{\circ} \mathrm{R}$
Spacecraft preferred components
Actual operating power
Power dissipation
Power factor
picofarad
Junction powor rating
Peak
Parasitie: load (KW)
Peak-to-peak
Pounds per inch
Rated power
Pounds per square inch

Per unit
Charge in coulombs
Corrected torque
Resistance - ohms
ripple
Root mean square
Revolutions per minute
Degrees Rankine

## AIRESEAREH MANUFACTURING CUMPANY GF ARIZGNA

## GLOSSARY OF 'RERMS ANL SYMBOLS (Conta.)

| 6 | Laplace Operator ( $\sec ^{-1}$ ) |
| :---: | :---: |
| sat. | Saturation |
| SCR | Silicon controlled rectifier |
| sec. | second |
| sq. in. | Square inch |
| T | Turns (Page 4-2) |
| T | Time |
| T | Total |
| t | Incremental time |
| $\mathrm{T}_{\mathrm{A}}$ | Ambient temperature |
| $\mathrm{T}_{\mathrm{C}}$ | Case temperature |
| $\mathrm{T}_{\mathrm{C}}$ | Capacitor time constant |
| $\mathrm{T}_{\mathrm{d}}$ | Junction temperature at which component derating begins |
| $\mathrm{T}_{J}$ | Junction temperature |
| Tjom | Maximum allowable junction temperature |
| ${ }^{T} \mathrm{R}$ | Rated temperature rise |
| $\mathrm{T}_{s}$ | Sink temperature |
| V | Qualified vendor rating (Table 5-1) |
| V | Volts |
| VA | Volt amps |
| $\mathrm{V}_{\mathrm{a}}$ | Actual operating voltage |
| VAC | Volts alternating current (RMS) |
| $V_{B B}$ | Base-to-base voltage |



## AIRESEARCH MANUFACTURING CDMPANY OF ARIZGNA

a divigion of the garrett corparation

TABLE 5-5
SPEED CONTROL DRAWINGS (BREADBOARD UNIT)

| Drawing No. | Title |
| :--- | :--- |
| 303749 | Terminal Board Assembly |
| 303750 | Terminal Board Assembly Electri:al |
| 303751 | Terminal Board Assembly |
| 303752 | Terminal Board Assembly Electrical |
| 303753 | Electronic Component Mounting Plate |
| 303754 | Moale Assembly (Firing Circuit) |
| 303755 | Instrument Panel Assembly |
| 303756 | Chassis Assembly |
| 303757 | Air Blower Inlet |
| 305444 | Instruction - Warning - Plate |
| 305445 | Systen Outline |
| 305506 | Control Assembly |
| 43534 | Control Outline |
| 43574 | Schematic Wiring Diagram |
| 4377 | Wiring Diagram (Pictorial) |

$$
\begin{aligned}
& \text { APS-5236-P } \\
& \text { Page } 5-28
\end{aligned}
$$



AIRESEAREH MANUFACTURING COMPANY OF ARIZDNA

## GLOSSARY OF TEPMS A:ZD SYMBOLS (Contd.)

$\because 30$
$\because C E$
$\because \Sigma-L$
VRE
$\because$
$\mathrm{V}_{\mathrm{S}}$
12
$\because$
$\because a$
$\because 11 / 8$
$\because$
$\because_{i}$
$\therefore ?$
$\because$,
$i$
$\therefore 1$

1

S:
,
い
$\because$

Base-to-emitter voltage
Collestor-to-cmitter ?oltage
Volts line-to-line (ams:
Voltage reguiator esciter
Rated voltage
Bridge supply voltage
Zener reforence roltage
Watts
Window area
Corrected weight flow
Capacitiverometance
barbey bract :aCt


Irferiatice
sratiare irponance
reoporticaml
Mrasfre function
painal lisplacrant ar ": ire" - incores
Error
ars $s$
3.760 rati: = : ! - ........i
$110 \%$

```
AFS-7ar-:
\thereforeEP!:O|! i
! !`:` '
```



## AIRESEARCH MANIIFACTURINE LQMPANY OF ARIZONA

GLOSSARY OF LUNIS MU SYlIBOCS (Conta.)

| $\theta$ | Angle |
| :--- | :--- |
| $\mu f$ | Microfarad |
| ${ }^{\prime}$ | Specific heat ratio |

AIRESEARCH MANUFACTURING COMPANY OF ARIZINA

APPENDIX II
DRAWINGS

| 307594 | 521246 | 699650 |
| :--- | :--- | :--- |
| 307595 | 521247 | 699651 |
| 307596 | 521258 | 699652 |
| 307597 | 521259 | 699667 |
| 358498 | 521260 |  |

APS-5286-P



```
NOTE: A LINE DRAWN THQOUGH ANY REQUIREMENT SHOWN ON THIS DRAWING INDICATES NO REQUIREMENT
1. GENERAL NOTES
1.1 PROCUREMENT SOURCE (S) PER ASL_307594.
```



```
1.3 ALL DESIGN AND PART NO. CHANGES REQUIRE PRIOR AIRESEARCH APPROVAL.
1.4 ONLY THE ITEMS LISTED ON THIS DRAWING AND IDENTIFIED BY VENDORS NAMES, ADDRESSES, AND PART NO. ON ASL 307594 HAVE BEEN TESTED AND APPROVED FOR USE IN THE END UNIT. A SUBSTITUTE PART SHALL NOT BE USED WITHOUT PRIOR TESTING AND APPROVAL BY AIRESEARCH.
1.5 IDENTIFY PACKAGING WITH AIRESEARCH PART NO. 307594-1.
1.6 PARTS PROCURED BY VENDOR PART NO. SHALL BE PROCURED IN ACCORDANCE WITH THIS AIRESEARCH SOURCE CONTROL DRAWING AND ASL 307594.
1.7 MARKING REQUIREMENTS.
1.7.1 MARKINGS TO BE PER MIL-T-27 PARA. 3.20 AS APPLICABLE.
1.7.2 MARKING TO BE IOCATED AS SHOWN IN FIGURE 1.
1.7.3 MARKINGS TO BE A MINIMUM OF . 031 INCH FRCM ANY CORNER, TERMINAL OR EDGE UNLESS OTHERWISE SPECIFIED.
1.7.4 HEIGHT OF MARKINGS SHALL BE A MLNIMUM OF . 12 INCH UNLESS OTHERWISE NOTED.
1.7.5 (1) MARKINGS TO BE PER MIL-STD-130 EXCEPT ACID ETCHING AND ERANDING NOT PERMITTED.
(2) OTHER
1.7.6 MARKINGS TO BE OF A CONTRASTING COLOR.
1.7.7 INK TO BE PER TT. 1.558 AS APPLICABLE.
1.7.8 MARKINGS TO BE COVERED WITH ONE COAT OF CLEAR 三FCXY AS APPLICABLE.
1.8 DETAILS OF DESIGN AND CONSTRUCTION OTHER THAN SHOWN SHALL BE AT THE OPTION OF THE VENDOR.
```

SEE SHEET I FOR CONTROLLING REV LTR



SOLDER PERMIL-5•6872 USING QQ:S-571 COMPSNGOSOLDER.

AS SHOWN WITH $\qquad$ - IF CUP OR BOX IS USED MATERIAI TO BE PER $\qquad$ -

TOP
OF TERMINALS TO BE FREE AND CLEAR OF POTTING COMPOUND FOR EXTERNAL WIRES.
1.13 DUTY CYCLE: (1) CONTINUOUS (2) OPHER

OTHER
2. PHYSICAL CONSTRUCTION REQUIREMENTS
2.1

CORE: NO. REQ'D SEE PARA. (1) PART NO. EI.27.6H MFG. BY $\qquad$
(2) $\frac{\text { BUTL }}{\text { PARTNO. }}$ MFG. BY
(3) PART NO. MFG. BY
2.2 * WRAP CORE (S) WITH $\qquad$
2.3 * WIND EACH CORE WITH GATE WINDING. SECTOR $\qquad$ -.
2.4 ** PLACE WOUND CORES TOGETHER AND WIND ON CONTROL WINDINGS.
2.5 WINDINS SEQUENCE -1, ᄂ2, -3,-4, 5 ELL

DEVICES WITH WINDINGS WRAPPED DIRECTLY ON CORE ONLY SATURABLE KULTICORE DEVICES ONLY

SEE SHEET I FOR CONTROLLING REV LTR

| 512 E | COOF lotnt mo | OWG No. |  |  | Rev |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 99193 |  |  | $c+$ | - |
| SCALE | - | WT | - | SHEET |  |

2.6 WIRE INSULATION SHALL BE IN ACCORDANCE WITH MIL-T-27 AND BE SUFFICIENT TO WITHSTAND VOLTAGES LISTED IN PARAGRAPH 4.
2.7 UNLESS OTHERWISE SPECIFIED ON THIS DRAWING, FABRICATION OF THIS ITEM SHALL BE IN ACCORDANCE WITH AIRESEARCH SPECIFICATION SC-5535, STANDARD DRAWING INTERPRETATIONS.
3. SPECIFICATIONS
3.1 CLASSIFICATION: TYPE TF5SXO3RZ PER MIL-T-27 EXCEPT AS NOTED IN PARAGRAPH 3.1.1.
3.1 .1
3.2 INSULATION RESISTANCE PER MIL-T-27, PARA. 3.10. MEASURE USING A D-C SOURCE OF 1000 VOLTS, WINDING TO NORMAL MOUNTING MEANS 1000 MEGOHMS, WINDING TO WINDING $\qquad$ MEGOHMS .
3.3 MAXIMUM WORKING VOLTAGE 12OVRMS.

DIELECTRIC STRENGTH PER MIL-T-27 PARA. 4.7.5. TEST BY APPLYING SOQ RMS VOLTS AT $60 H Z$ GRS FOR 5 SECONDS BETWEEN WINDINGS AND BETWEEN EACH WLNDING AND THE BASE OR NORMAL MOUNTING MEANS .
3.4 TEMPERATURE RISE PER MIL-T-27 PARA. 4.7.10. MAX TEMPERATURE RISE $30^{\circ} C$ OPERATING AT AN AMBIENT TEMPERATURE OF $85^{\circ}$

MAXIMUM OPERATING ALTITUDE $\qquad$ 80,000 FEET.

ENVIRONMENTAL REQUIREMENTS:
3.6
3.6 .1

MOISTURE RESISTANCE:
(1) MIL-T-27 PARA. 4.7.11.4
(2) OTHER
3.6.2 SALT SPRAY:
(1) MLL-E-5272 PROCEDURE $\qquad$
(2) OTHER
3.6.3 VIBRATION REQUIREMENTS:
(1) MIL-T-27 PARA. 4.7.12
(2) OTHER

SEE SHEET I FOR CONTROLLING REV LTR

3.6.4 SHOCK REQUIREMENTS:
(1) MIL-T-27 PARA. 4.7.13
(2) OTHER
3.6.5 AMBIENN. TEMPERATURE RANGE:
(1) OPLRATING -55 ${ }^{\circ} \mathrm{C}$ MIN, $70 \quad{ }^{\circ} \mathrm{C}$ MAX.
(2) NON OPERATIIG - $55^{\circ}{ }^{\circ} \mathrm{CMIN}$, _- 70 C MAX.
(3) OTHER
3.7 LIFE:
3.7.1 OPERATING: $\qquad$ HOURS AT $\qquad$ 85 -C WITH POWER APPLIED PER PARA. 4.6.
3.7.2 STORAGE: 5 YEARS AT $\qquad$ - C AND $\qquad$ $\%$ RELATIVE HUMIDITY.
3.8 ALLOW UNIT TO STABILIZE TO ROOM TEMPERATURE BERORE EXPOS ING TO OPPOSITE TEMPERATURE EXTREME.
3.9 OTHER

SEE SHEET I FOR CONTROLLING REV LIR

SEE SHEET I FOR CONTROLIING REV LTR


PHYSICAL SIZE
FIGURE 1


2．NOUTING MOLE LOATIONS ARE TO BE AS SHOWN．OTHER DIMENSIONS AND OUTLINE CONFIGUFATON ARE MAXIMUM ALLOWABLE AND ARE NOT INTENDEDTO DEFNE $\angle C T$ AL PHYSICAL SHAPE．PHYSICAL PACKAGE STU BE AS SMALl AS PRACTICAL WITHIN LIMITS SPECIFIED．
1．LEAD WIEE TOEE NO 24 AWG PER MLLWUGRTE TYPE E EXCEPT IS STRAND．LEAD COLOR CODInG DER SCHEMATIC GEIG 21．LEAD ENDS TO EE STRI二ビ二 $3 / \mathrm{s}$ NEH ANE TINNED．

SEE SHEET 1 FOR CONTROLLING REV LIR NOTES：

SEE SHEET I FOR CONTROLLING REV LTR




## NOTE: A LINE DRAWN THROUGH ANY REQUIREMENT SHOWN ON THIS DRAWING INDICATES

 NO REQUIREMENT1. GENERAL NOTES
1.1 PROCUREMENT SOURCE (S) PER ASL
1.2 PART TO BE PERMANENTLY MARKED WITH AIRESEARCH PART NO. 20 -
1.3 ALL DESJGN AND PART NO. CHANGES REQUIRE PRIOR AIRESEARCH APPROVAL.
1.4 ONL: THE ITEMS LISTED ON THIS DRAWING AND IDENTIFIED BY VENDORS NAMES, ADDRESSES, AND PART NO. ON ASL S- 95 HAVE BEEN TESTED AND APPROVED FOR USE IN THE END UNIT. A SUBSTITUTE PART SHALL NOT BE USED WITHOUT PRIOR TESTINC AND APPROVAI BY AIRESEARCH.

1.6 PARTS PROCURED BY VENDOR PART NO. SHALL BE PROCURED IN ACCORDANCE WITH THIS AIRESEARCH SOURCE CONTROL DRAWING AND ASL
1.7 MARKING REQUIREMENTS.
1.7.1 MARKINGS TO BE PER MIL-T-27 PARA. 3.20 AS APPLICABLE.
1.7.2 MARKING TO BE LOCATEN AS SHOWN IN FIGURE 1.
1.1.3 MARKINGS TU BE A MINIMUM OF . 031 INCH FROM ANY CORNER, TERMINAI OR EDGE UNLESS TTHERWISE SPECIFIED.
1.7.4 HEIGHT OF MARKINGS SHALL BE A MINIMUM OF . 12 INCH UNLESS OTHERWISE NOTED.
1.7.5 (1) MARKINGS TO BE PER MIL-STD-130 EXCEPT ACID ETCHING AND BRANDING NOT PERMITTED.
(2) OTHER
1.7.6 MAKKINGS TO BE OF A CONTRASTING COLOR.
1.7.7 LHK TO BE PER $T T^{\top} 1=58$ AS APPLICABLE.
1.7.8 MARKINGS TO BE COVERED WITH ONE COAT OF CLEAR EتCXY AS APPLICABLE.
1.8 DETAILS OF DESIGN AND CONSTRLCTION OTHER THAN SHOWN SHALL BE AT THE OPTION OF THE VENDOR.

SEE SHEET I FOR CONTROLLING REV LTR

row llan:
(1) VAGUUTM EXPREGAATE $\qquad$ (2) OTHER
1.10 SOLDER PER MIL.S. 6872 USING OMP SNOO PEREO S S7ISOLDER. AS SHOWN WITH $\qquad$ - IF CUP OR BOX IS USED MATERIAI TO BE PER $\qquad$ .

TOP $\qquad$ OF TERMTNALS TO BE FREE AND CLEAR OF POTTING COMPOUND FOR EXTERNAL WLRES.
1.13

DUTY CYCLE
(1) CONTIINUOUS
(2) OTHER
1.14 OTHER
2. EHYSICAL CONSTRUCTION REQUIREMENTS
2.1

CORE: NO. REQ'D $\qquad$ SEE PARA. MFG. BY $\qquad$
(1) PART NO. $52=2$ MFG. BY
(2) PART NO. $\qquad$
(3) PART NO. MFG. BY
$Z . Z \cdots \cdots H^{2}$ GORE $(G)$ WITH $\qquad$
2.3 * WIND EACH CORE WITH GATE WINDING. SECTOR $\qquad$ .
$2.4 * *$ PLACE WOUND CORES TOGETHER AND WIND ON CONTROL WINDINGS.
2.5 WINDINS SEQUENCE $\qquad$ $-2,-3,-4,45$

DEVICES WITH WINDINGS WRAPPED DLRECTLIY ON CORE ONLY SATLRABLE MULTICORE DEVICES ONLY

SEE SHEET I FOR CONTROLLING REV I.TR


| 2.6 | WIRE INSULATION SHALL BE IN ACCORDANCE WITH MIL-T-27 AND BE SUFFICIENT TO WITHSTAND VOLTAGES LISTED IN PARAGRAPH 4. |
| :---: | :---: |
| 2.7 | UNLESS OTHERWISE SPECIFIED ON THIS DRAWING, FABRICATION OF THIS ITEM SHALL BE IN ACCORDANCE WITH AIRESEARCH SPECIFICATION SC-5535, STANDARD DRAWING INTERPRETATIONS. |
| 3. | SPECIFICATIONS |
| 3.1 | CLASSIFICATION: TYPE TFSSX4OZZ PER MIL-T-27 EXCEPT AS NOTED IN PARAGRA.PH 3.1.1. |
| 3.1 .1 |  |
| 3.2 | insulation resistance per mil-T-27, para. 3.10. measure using a D-C SOURCE OF 1000 VOLTS. WINDING TO NORMAL MOHNTING REANS- $\qquad$ MEGORS, WINDING TO WINDING $\qquad$ MEGOHMS . |
| 3.3 | MAXIMUM WORKING VOLTAGE OVEMS. |
| 3.3 .1 | DIELECTRIC STRENGTH PER MIL-T-27 PARA. 4.7.5. TEST BY APPLYING $\qquad$ RMS VOLTS AT GO HE GPS FOR 5 SECONDS BETWEEN $\qquad$ WINDINGS AND BETWEEN EACH WINDING AND THE BASE OR NORMAL MOUNTING MEANS . |
| 3.4 | TEMPERATURE RISE PER MIL-T-27 PARA. 4.7.10. MAX TEMPERATURE RISE $\qquad$ OPERATING A'T AN AMBIENT TEMPERATURE OF $\qquad$ |
| 3.5 | MAXIMUM OPERATING ALTITUDE S0-x FexT. |
| 3.6 | ENVIRONRENTAL REQUIRENENTS : |
| 3.6 .7 | MOISTURE RESISTANCE: <br> (1) MIL-T-27 PARA. 4.7.11.4 <br> (2) OTHER |
| -3.6.2 | SALI' SPRAY: <br> (1) MIL-E-5272 PROCEDURE $\qquad$ <br> (2) OTHER |
| 4.6 .7 | VIBRATION REQUIRENENTS: <br> (1) MIL-T-27 PARA. 4.7.12 <br> (2) OTHER |

SEE SHEET I FOO CONTROLLING REV LTR

| s12\% | bent mo. | - |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 99193 |  |  | 95 |  |  |
| SCAL | - | WT | - | SHEET | 4 |  |




-PIGURE-3

SEE SHEET I FOR CONTROLLING REV LTR


TEST EIREVIT \& INSPECTIQN INFORNATIOAN FGLARE ミ


| $\pm I_{1}$ | $\pm V_{\text {I }}$ |
| :---: | :---: |
| MICRO AMP | DCNOTS |
| 0 | $0 \pm .75$ |
| 150 | $5 \pm .75$ |
| 900 | $0 \pm 1.0$ |


| $\overline{\operatorname{size}}$ | CODE IDENT NO. 99193 | DWG NO. <br> 307595 |  |  |  | REV <br> $B$ <br> ITR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCALE | - | WT | - | SHEET | 8 |  |

## PHYSICAL SIZE

## FIGURE 1



NOTE :
LEAD WIRE TO BE 22 AWG PER MIL.W. 16878 TYPE 'E'
EXCEPT IO STRANO
IEAD COLOR CODING TO BE AS SHOWN IN SCHEMATIC. LEAD ENDS TO BE STRIPPED 3/8 INCH AND TINNED.

SEE SHEET I FOR CONTROLLING REV LTR

| SIZE | CODE IDENT NO. | DNG NO. |  | REY |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | 99193 |  |  |  |  |
| SCALE NONE |  |  |  |  |  |



THIS DRAWING CONTAINS DEE'GNE AND OTHER INFORMATION WHICH ARE THE PROPERTY OF THE GARRETT CORPORATION. EXCEPT THIS DRAWING CONTAIN DEEIGNE AND OTHER INFORMATION WHICH ARE THE PROPERTY OF THE GARRET Y CORP RE DUPLICATED UR DISCLOSED OR USED FO


See tab block (upper left corner) for PART NUMBER

SOURCE CONTROL DRAWING



| NOTE: | A LINE DRAWN THROUGH ANY REQUIREMENT SHOWN ON THIS DRAWTNG INDICATES NO REQUIREMENT |
| :---: | :---: |
| 1. | GENERAL NOTES |
| 1.1 | PROCUREMENT SOURCE (S) PER ASL 307596 |
| 1.2 | PART TO BE PERMANENTLY MARKED WITH AIRESEARCH PART N0. 307596.1 |
| 1.3 | ALl design and part no. Changes require prior airesearch approval. |
| 1.4 | ONLY THE ITEMS LISTED ON THIS DRAWING AND IDENTIFIED BY VENDORS NAMES, ADDRESSES, AND PART NO. ON ASL 307596 HAVE BEEN TESTED and approved for use in the end unit. a substitute part shall hot BE USED WITHOUT PRIOR TESTING AND APPROVAL BY AIRESEARCH. |
| 1.5 | IDENTIFY PACKAGING WITH AIRESEARCH PART NO. $307596-1$. |
| 1.6 | PARTS PROCURED BY VENDOR PART NO. SHALL BE PROCURED IN ${ }^{2}$ ACCORDANCE WITH THIS AIRESEARCH SOURCE CONTROL DRAWING AND ASL $307590^{\circ}$. |
| 1.7 | MARKING REQUIREMENTS. |
| 1.7 .1 | MARKINGS TO BE PER MIL-T-27 PARA. 3.20 AS APPLICABLE. |
| 2 | MARKING TO BE LOCATED AS SHOWN IN FIGURE 1. |
| 1.7 .3 | MARKINGS TO BE A MINIMUM OF . 031 INCH FROM ANY CORNER, TERMINAL OR EDGE UNLESS OTHERWISE SPECIFIED. |
| 1.7 .4 | HEIGHT OF MARKINGS SHALL BE A MINIMUM OF . 12 INCH UNLESS OTHERWISE NOTED. |
| 1.7 .5 | (1) MARKINGS TO BE PER MIL-STD-130 EXCEPT ACID ETCHING AID BRANDING NOT PERMITTED. <br> (2) OTHER |
| 1.7 .6 | MARKINGS TO BE OF A CONTRASTING COLOR. |
| 1.7 .7 | INK TO BE PER TT-1-558 AS APPLICABLE. |
| 1.7 .8 | MARKINGS TO BE COVERED WITH ONE COAT OF CLEAR $\qquad$ AS APPLICABIE. |
| 1.8 | details of design and construction other than shown shall be at the OPTION OF THE VENDOR. |

SEE SHEET 1 FOR CONTROLLING REV LTR


2.6 WIRE INSULATION SHALL BE IN ACCORDARGE WITH MIL-T-27 AND BE SUFFICIENT TO WITHSTAND VOLTAGES LISTED IN PARAGRAPH 4.
3. SPECIFICATIONS
3.1 CLASSIFICATION: TYPE TFSSXOAZZZ PER MIL-T-27 EXCEPT AS NOTED IN PARAGRAPH 3.1.1.
3.1 .1
3.2 INSULATION RESIS'TANCE PER MIL-T-27, PARA. 3.10. MEASURE USING A D-C SOURCE OF 1000 VOLTS, WINDING TO NORMAL MOUNTING MEANS

3.3

MAXIMUM WORKING VOLTAGE_IZO VRMS
3.3.1 DIELECTRIC STRENGTH PER MIL-T-27 PARA. 4.7.5. TEST BY APPLYING 500 RMS VOLTS AT $60 H 2$ EPG FOR 5 SECONDS BETWEEN WINDINGS AND BETWEEN FIACH WINDING AND THE BASE OR NORMAL MOUNTING means.
3.4 TEMPERATURE RISE PER MIL-T-27 PARA. 4.7.10. MAX TEMPERATURE RISE 30 OPERA'TING AT AN AMBIENT TEMPERATURE OF $\qquad$ .
3.5 MAXIMUM OPERATING ALTITUDE 80,00 FEET.
3.6 ENVIRONMENTAL RECUIREMENTS:
3.6.1 MOISTURE RESISTANCE:
(1) MIL-T-27 PARA. 4.7.11.4
(2) OTHER
3.6.2 SALT SPRAY:
(1) MIL-E-'j272 PROCEDURE
(2) OTHER
3.6.3 VIBRATION REQUIREMENTS:
(1) MIL-T-2.7 PARA. 4.7.12
(2) OTHER

SEE SHEET 1 FOR CONTROLLING REV LTR

3.6.4 SHOCK REQUIREMENTS :
(1) MIL-T-27 PARA. 4.7.13
(2) OTHER
3.6.5 AMBIENT TEMPERATURE RANGE:
(1) OPERATING $-55{ }^{\circ} \mathrm{C}$ MIM, $70 \quad{ }^{\circ} \mathrm{C}$ MAX.
(2) NON OPERATIIG - 53 _C MIN, 70 "C MAX.
(3) OTHER
3.7 LIFE:
3.7.1 OPERATLNG: 10,000 HOURS AT $85{ }^{\circ} \mathrm{C}$ WITH POWER APPLIED PER PARA. 4.6.
3.7.2 STORAGE: $\qquad$ YEARS AT $\qquad$ ${ }^{\circ} \mathrm{C}$ AND $\qquad$ \% RELATIVE HUMIDITY.
3.8 ALLOW UNIT TO STABILIZE TO ROOM TEMPERATURE BEFORE EXPOSING TO OPPOSITE TEMPERATURE EXTREME.
3.9 OTHER

SEE SHEET I FOR CONTROLIING REV LTR

4. ELECTRICAL REQUIREMENTS (SEE FIGURE 2)

|  | WINDINGS | L1 | L2 | L3 | 14 | L5 | L6 | L7 | L8 | L9 | L10 | L11 | L12 | L13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.1 | WIRE GAGE NO. (AWG) | 10 |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.2 | NO. OF TURNS | 27 |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.3 | WINDING TOLERANCE (TURNS) | $\pm 0$ |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.4 | MAX D.C. RESISTANCE (OHMS) | . 015 |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.5 | WORKING VOLTAGE TO GROUND | 120 |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.6 | RATED VOLTAGE (RMS) | 120 |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.7 | FREQUENCY (GPS) H (2 | 1200 |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.8 | FREQUENCY TOLERANCE (CPS) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.9 | OPERATING POWER LEVEL (WATTS) | 10 |  |  |  |  |  |  |  |  |  |  |  |  |
| *4. 10 | MAX CONTROL CURRENT (AMPS) | - |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.11 | RATED CURRENT (AMPS) | 16 |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.14 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.15 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.17 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.18 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4.19 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

[^2]SEE SHEET I FOR CONTROLLING REV L.TR


## PHYSICAL SIZE

FIGURE 1

TERMINALS, 2 REQ'D, TO BE IN APPROXIMATE L,OCATION SHOWN. MIN. SPACING BETWEEN TERMINALS TO BE . 81 INCH MIN. EDGE DISTANCE TO BE OG INCH MIN. TIEMTNAL PART NOT - OR ROUXV. MFG. TH TERMINAL TO BE $\qquad$
EORMED EROM WINDING WIRE (AWG 1O) SEE DETAIL

SCHEMATIC DIAGRAM \& PART NO. TO APPEAR ON THIS SURF'ACE PER MIL-T-27. (SHALL SHOW PICTORLAL DIAGRAM TERMINAL NO. AND POLARITY.) LETTERING MAY BE REDUCED IN SIZE BUT MUST BE CLEAR AND LEGIBLE.

SEE NOTE 1
 BELOW)
SEE PARA. 2.7

$\qquad$
TEKMINAL
 $.148-143$ DIA THRU 4 PLACES

NOTES:

1. BCBIIN \& WINDING ASSY PROVIDED BY MANUFACTURER.
2. MOUNTING BASE MAT'L \& FINISH: $\triangle$ L $\triangle$ LLLOY TURCOAT 4178-6 OR IRIDITE PER MIL.C-5541

SEE SHEET I FOR CONTROLLING REV LTR

| SIZE | CODE IDENT NC. | DWG NO. |  | REV |
| :---: | :---: | :---: | :---: | :---: |
| $A$ | 99193 |  |  |  |
| SCALE | NOHE | WT | - | SHEET |




NOTE: A LINE DRAWN THROUGH ANY REQUIREMENT SHOWN ON THIS DRAWING INDICATES NO REQUIREMENT

1. GENERAL NOTES
1.1 PROCUREMENT SOURCE (S) PER ASL 307597. .
1.2 PART TO BE PERMANENTLY MARKED WITH AIRESEARCH PART NO. $307597-1$.
1.3 ALL DESIGN AND PART NO. CHNNGES REQUIRE PRIOR AIRESEARCH APPROVAL.
1.4 ONLY THE ITEMS LISTED ON THIS DRAWING AND IDENTIFIED BY VENDORSNAMES, ADDRESSES, AND PART NO. ON ASL 3 O 7597 have been TESTLDAND APPROVED FOR USE IN THE END INIT. A SUBSTITUTE PART SHALL NOTbe used without prior testing and approval by airesearch.
1.5 Identify packaging with atresearch part no.

$\qquad$


-
1.6 PARTS PROCURED BY VENDOR PART NO. SHALL BE PROCURED IN ACCORDANCEWITH THIS AIRESEARCH SOURCE CONTROL DRAWING AND ASL 307597.1.7 MARKING REQUIREMENTS.
1.7 .1 MARKINGS TO BE PER MIL-T-27 PARA. 3.20 AS APPLICABLE.
1.7 .2 MARKING TO BE LOCATED AS SHOWN IN FIGURE 1.
1.7.3 MARKINGS TU BE A MINIMUM OF . 031 INCH FROM ANY CORNER, TERMINAL OREDGE UNLESS OTHERWISE SPECIFIED.
1.7.4 HEJGHT OF MARKINGS SHALL BE A MINIMUM OF . 1.2 INCH UNLESS OTHERWISE NOTED.
1.7 .5 (1) MARKINGS TO BE PER MIL-STD-130 EXCEPT ACID ETCHING AND BRANDINGNOT PERMITTED.
(2) OTHER
1.7.6 MARKINGS TO BE OF A CONTRASTING COLOR.
1.7.7 INK TO BE PER TT. 1.558 AS APPLICABLE.
1.7.8 MARKINGS TO BE COVERED WITH ONE COAT OF CLEAR
EpOXY
$\qquad$ AS APPLICABLE.
1.8 DETAILS OF DESIGN AND CONSTRUCTION OTHER THAN SHOWN SHALL BE AT THE OPTION OF THE VENDOR.

SEE SHEET I FOR CONTROLLING REV CTR


2.6 WIRE INSULATION SHALL BE IN ACCORDANCE WITH MIL-T-27 AND BE SUFFICIENT TO WITHSTAND VOLTAGES LISTED IN PARAGRAPH 4.
2.7 UNLESS OTHERWISE SPECIFIED ON THIS DRAWING, FABRICATION OF THIS ITEM SHALL BE IN ACCORDANCE WITH AIRESEARCH SPECIFICATION SC-5535, STANDARD DRAWING INTERPRETATIONS.
3. SPECIFICATIONS
3.1 CLASSIFICATION: TYPE TFSSX4OZZ PER MIL-T-27 EXCEPT AS NOTED IN PARAGRAPH 3.1.1.
3.1 .1
3.2 INSULATION RESISTANCE PER MIL-T-27, PARA. 3.10. MEASURE USING A D-C SOURCE OF SOO VOLTS, WHMEIVG-TO-NORMA MOTNTING MEANS IEGOMA, WINDING TO WINDING_ 1000 MEGOHMS.
3.3 MAXIMMM WORKING VOLTAGE 120 VEMS.
3.3 .1

DIELECTRIC STRENGTH PER MIL-T-27 PARA. 4.7.5. TEST BY APPLYING 500 RMS VOLTS AT $60 H_{1}$ OPG FOR 5 SECONDS BETWEEN WINDINGS AND BEIWEEN EACH WLNDIIG AITD THE BASE OR NORMAL MOUNTING MEANS .
3.4 TEMPERATURE RISE PER MIL-T-27 PARA. 4.7.10. MAX TEMPERATURE RISE $30^{\circ} \mathrm{C}$ OPERATING AT AN AMBIENT TEMPERATURE OF $\qquad$ $85^{\circ} \mathrm{C}$ .

MAXIMUM OPERATING ALTITUDE BO,QQO FEET.
3.5 MAXIMUM OPERATING ALTITUDE $\qquad$
3.6 ENVIRONMENTAL REQUIREMENTS :
3.6.1 MOISTURE RESISTANCE:
(1) MIL-T-27 PARA. 4.7.11.4
(2) OTHER
3.6.2 SALT SPRAY:
(1) MIL-E-5272 PROCEDURE $\qquad$
(2) OTHER
3.6.3 VIBRATION REQUIREMENTS :
(1) MIL-T-27 PARA. 4.7.12
(2) OTHER

SEE SHEET I FOR CONTR.OI_LING REV LTR

3.6.4 SHOCK REQUIREMENTS:
(1.) MIL-T-27 PARA. 4.7.13
(2) OTHER
3.6.5 AMBIENT TEMPERATURE RANGE:
(1) OPERATING $-55 \quad{ }^{\circ} \mathrm{CMIN}$,
(2) NON OPERATING - -55 $\qquad$ ${ }^{\circ} \mathrm{C}$ MAX.
(3) OTHER
3.7 LIFE:
3.7.1 OPERATING: 10,000 HOURS AT $85{ }^{\circ} \mathrm{C}$ WITH POWER APPLIED PER PARA. 4.6.
3.7.2 STORAGE: $\quad 5 \quad$ XEARS AT $\qquad$ -C AND $\qquad$ $\%$ RELATIVE HUMIDITY.
3.8 ALLOW UNIT TO STABILIZE TO ROCM TEMPERATURE BEFORE EXPOSING TO OPPOSITE TEMPERATURE EXTREME.
3.9 OTHER

SEE Sheet I for controlling rev ltr

| SIZE | COUE IDENT NO. 99193 | OWS NO. | REV $\qquad$ <br> L.Th |
| :---: | :---: | :---: | :---: |
| $C$ |  | W |  |




$$
\begin{array}{ll}
4.20 & \text { SELF INDUCTION: WITH } \quad \text { RMS VOLTS } \\
\text { THE RESULTING EXCITATION CURRENT SHALI BE_CPS APPLIED ACROSS } \\
*
\end{array}
$$

*SATURABLE MULTICORE DEVICES ONLY
SEE SHEET I FOR CONTROLLING REV LTR


| $\frac{\text { SCHEMATIC DIAGRAM }}{\text { PIGURE } 2}$ | WINDINGS |  | TERMINAL |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | FROM | T0 |
|  | $\begin{aligned} & 1400 \\ & T h \text { Rens } \end{aligned}$ | L1 | BRN | RED |
| RN | $\begin{array}{\|l\|} \hline 1400 \\ \text { THNS } \\ \hline \end{array}$ | L2 | ORN | YEヒ |
|  | $\begin{aligned} & 1000 \\ & \text { TuRNS } \end{aligned}$ | L3 | GRN | BLU |
| ORN |  | 24 |  |  |
|  |  | L5 |  |  |
|  |  | 26 |  |  |
| $\begin{array}{ll} 2 & J \\ 0 & J \end{array}$ |  | L7 |  |  |
| 0 (1) |  | L8 |  |  |
|  |  | L9 |  |  |
|  |  | L10 |  |  |
|  |  | 211 |  |  |
|  |  | Li2 |  |  |
| - TERMINALS TO be of Same polarity |  | 213 |  |  |


EIGURE-3-3

FOF TEST GIFZCLUT \& NSFECTION INEOFMATIONSEOESENT \&

SEE SHEET I FOR CONTROLI.ING REV LTR

| SILE | CODE IDENT NK. | DWE NO |  | REV |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A$ | 99793 |  |  |  |  |
| SCALE | - |  |  |  |  |



## PHYSTCAL SIZE

FIGURE 1


NOTE:
LEAD WIRE TO BE 22 AWG PER MIL.W. 16878 TVPE •E (EXCEPT IS STRAND)

LEAD COLOR CODING TO BE AS SHOWN IN SCHEMATIC. LEAD ENDS TO BE STRİPPED 3/8 INCH AND TINNED.

SEE SHEET I FOR CONTROLLING REV LTR

| $512 E$ | CODE IDENT NO. 99193 | DWG NO. | REV |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| CA | NOMAE | $W$ |  |





## 1. SCOPE

1.1 SCOPE. THIS SPECIFICATION COVERS TAI DETAIL. RHGUREARNTS FOR A SILICON NP POWER TRANSISTOR. IT IS A REPACKMGGU VERSION OF COMMERCIALLY AVAILABLE MHO 7004 AND IS INTINDED FOR HIGHT RF I IABII.ITY APPLICATIONS.
1.2 PHYSICAL DIMENSIONS. PHYSICAL DIMENGIONS SHALL BE PER FIGURE 1.
1.3 ABSOLUTE MAXIMUM RATINGS. THE VALUES SPLIITIED IN TABLE I (WITH EXCEPTION OF THE THERMAL TIME CONSTANT) ARE LIMITING VALUES A HOVE WHICH THE SERVICEABILITY of the device may be tmínirfd.
1.4 GGECAITIONS. DURIH: HANDLING, INSIAIIATION, DR OPERATION, THE APPLICABLE RATINGS OF TABLE II MAY NOT BE EXCeEDED.
2. APPLICABLE DOCUMENTS
2.1 THE FOLLOWING DOCUMENTS FORM A PARI OF THIS ؛PPECFFICATIGN TO THE EXTENT SPECIFIED HEREIN:

MIL-S-195000 .. SEMICONDUCTOR DEVICES, GENERAL SPECIFICATION FOR
MIL-STD-750A - TEST METHODS FOR SEMICONDUCTOR DEVICES
3. REQUIREMENTS
3.1 MANUFACTURER' S PROCESSING. THE MANUFACTURER'S FACTORY PROCESSING FOR DEVICES FURNISHED TO. THIS SPECIFICATION SHALL INCLUDE BUT NOT BE LIMITED TO THE FOLLOWING PROCEDURES UNLESS OTHERWISE SPECIFIED ON THE PURCHASE ORDER:
3.1.1 HIGH TEMPERATURE STABILIZATION BAKE FOR A MINIMUM OF 60 HOURS AT A MINIMUM TEMPERATURE OF $200^{\circ} \mathrm{C}$.
3.1.2 HIGH TEMPERATURE REVERSE BIAS TEST FOR A MINIMUM OF 12 hOURS AT A MINIMUM TEMPERATURE OF $150^{\circ} \mathrm{C}$.
3.1.3 APPLICATION OF AT LEAST 5 (FIVE) POWER PULSES AT A 60 HZ REPETITION RATE:

$$
I_{c}=7.5 \text { AMPS } \quad V_{\text {ce }}=75 \text { VOLTS } \quad P W=100 \text { MICROSECONDS }
$$

AT StART OF TEST THE CASE TEMPERATURE SHALL. BE $25^{\circ} \mathrm{C}$
3.1.4 X-RAY INSPECTION IN THREE ORTHOGONAL AXES. THE X-RAY FILMS SHALL BE SHIPPED TO AI RESEARCH AND SHALL. BE TRACEABLE TO EACH DEVICE:
3.2 DESIGN CHANGES. ALL DESIGN CHANGES SUBSEQUENT TO SHIPMENT OF THE FIRST LOT FURNISHED TO THIS SPECIFICATION REQUIRE AIRESEARCH ENGINEERING APPROVAL.
3.3 MARKING. EACH PART SHALL be permanently harked with the following:
3.3.1 THE AIRESEARCH PART NUMBER AS SHOWN:


1


3.3.2 THE MANUFACTURER'S LOT CODE. THE SUPPIIER SHALL PROVIDE TRACEABILITY FROM THE LOT CODE TO ALI MATERIALS AND PROCESSFS IISED DURING DEVICE FABRICATION.
3.3.3 SERIAL NUMBER. THE SERIAL NUMBER SHALL BE OMITTED WHEN THE PURCHASF ORDER deletes the requirements for y.may f:xaminntion and variables data.
3.3.4 THE MANUFACTURER'S IDENTIFICATION.
3.4 PERFORMANCE. THE PERFORMANCE OF THE TRANSISTOR SHALL BE AS SPECIFIED IN TABLES I, II, III, IV AND IN FIGURE 2.
3.4.1 DEFINITIONS, SYMBOLS AND ABBREVIATIONS ARE PER MIL-S-19500.
3.5 RELIABILITY CONDITIONING. IUNIESS OTHERWISE SPECIFIED ON THE PURCHASE ORDER, each device procured to this spleification shall be proces:ied as follows and IN THE ORDER SHOWN.
3.5.1 TEMPERATURE CYCLING. A MINIMUM OF 5 (FIVE) CYCLES T(HIGH) * $200.200^{\circ} \mathrm{C}$ T(LOW) - $-65+10^{\circ} \mathrm{C}$ HOLD AT EXTREMES FOR AT I.EAST 20 MINUYES AND AT ROOM AMBIENT (DURING TRANSFER) FOR NOT LONGER THAN 5 MINUTES. SPECIFIED AMBIENT TEMPERATURE SHALL BE REACHED WITHIN 2 MINUTES OF TRANSFER.
3.5.2 SHOCK. 1 (ONE) BLOW, 1500 G MINIMUM 0.3 HILLISECOND DURATION, Y, AXIS ONLY.
3.5.3 VIBRATION. VARIABLE FREQUENCY PER MIL-STD-750, METHOD 2056, EXCEPT THAT I (ONE) CYCLE IS REQUIRED IN EACH OF THREE ORTHOGONAL AXES.
3.5.4 ACCELERATION. 15000 G MINIMUM FOR AT LEAST.I MINUTE, $Y$, ORIENTATION ONLY.

### 3.5.5 HERMETIC SEAL

3.5.5.1 FINE LEAK. (VEECO). MIL-STD-202C. METHOD II2, TEST CONDITION C, PROCEDURE IIIa. MAXIMUM LEAK RATE $1 \times 10^{-0}$ ATM CC/Sf.C. PROCEDURE IV IS ACCEPTABLE
3.5.5.2 GROSS LEAK (BUBBLE TEST). MIL-STD-202C, METHOD 112 , TEST CONDITION A. FLUID TO BE POLYETHYLENE GLYCOL AT A MINIMUM TEMPERATURE OF $125{ }^{\circ} \mathrm{C} .11$
3.5 .6 BURN-IN. ALL DEVICES ARE TO BE OPERATED FOR AT LEAST 168 HOURS BUT NOT MORE THAN 240 HOURS UNDER THE FOLLOWING CONDITIONS:

| $V_{c e}=10 \mathrm{VDC}$ MIN | $I_{c}=1.0 \mathrm{ADC}$ MIN |
| :--- | :--- |
| $T_{c}=95^{\circ} \mathrm{C}$ MIN | $P_{T}=40 \mathrm{~W}$ MIN |

3.5.6.1' VARIABLES DATA!. THE DATA INDICATED IN TABLE $V$ SHALL BE RECORDED BEFORE AND AFTER THE BURN.-IN TEST. THIS INFORMATION SMALL BE SHIPPED TO AIRESEARCH together wi th the devices and shall be traceable to each device.
3.5.7 END POINTS. AT THE CONCLUSION OF THE RELIABILITY CONDITIONING THE DEVICES SHALL MEET THE REQUIREMENTS OF TABLE III AND TABLE V.

4. QUALITY ASSURANCE PROVISIONS
4.1 QUALIFICATION TESTING. NOT APPLICABLE
4.2 ACCEPTANCE INSPECTION
4.2.1 ACCEPTANCE INSPECTION SHALL BE IN ACCORDANCE WITH PARAGRAPIS 3.1.4, 3.5.5, 3.5.6 AND 3.5.7.
4.2.2 LOT REJECTION. WHEN MORE THAN IO\% OF THE DEVICES IN A I.OT SHOW PARAMETER CHANGES in excess of tife values specififd in tabie $v$, the entire lot shall be rejected.
4.3 DEVIATIONS. WHEN THE REQUIREMENTS TOR BURN-IN (3.5.5) AND/OR FOR X-RA'\% INSPECTION (3.1.4) ARE DELETED THE MARKING SHALL BE IN ACCORDANCE HITH PARAGRAPH 3.3.3.
4.3.1 NO OTHER DEVInTIONS ARE. PERMITIFD. WHEN THE PURCHASE ORDER CALLS FOR THE delivery of electricalliy equIValent devices such devices shall be identified by their commercial part, number, only.
5. GÉNERAL NOTES
5.1 PROCUREMENT PER AVI 521240-1. ONLY THE ITEMS LISTED ON THE AVL AND TDENTIFIED by venioors name, address and part numbers have been tested and approved for use IN THE ENL UNIT. SUBSTITL."E ITEM SHALL NOT BE USED PRIOR TO TESTING AND APPROVAL BY AIRESEARCII ENGINEERING.
5.2 PART TO BE PERMANENTLY MARKED WITH THE FOLLOWING: "ALPESEARCH PART NUMBER $521246^{\prime \prime}$ 。
5.3 ALL DESIGN AND PART NUMBER CHANGES' REQUIRE AIRESEARCH ENGTNEERING APPROVAL.
5.4 IDENTIFY PACKAGING WITH AIRESEARCH PART NUMBER:

5:5 PA'RTS PROCURED BY VENDOR PART NUMBER SHALL BE PROCURED IN ACCORDANCE WITH THIS SUURCE CONTROL DRAWING.


DIMENSIONS IN INCHES.

11 NOTES:

1. COMPLETE THREADS EXTEND TO WITHIN $2 \%$ THUS OF SEATING PLAN.
2. THIS TERMINAL MAY BE HOON TYPE OP FLATTENED AND PIERCED.
3. POSITION OF TERMINALS WITH RESPECT TO. HEXAGON 15 NOT CONTROLLED.
4. COLLECTOR, 15 ELECTRICALLY COMMON TO CASE.
5. NOMINAL WEIGHT 158.4 GM.



TABLE III
electrical inspection ( 1 ,

|  | $\begin{aligned} & \text { METHOD } \\ & \text { MIL-STD }-750 \end{aligned}$ | CONDITIONS | LIMITS |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER |  |  | NOTES | MIN | MAX |  |
| $\mathrm{BV}_{\text {CEO }}(\mathrm{SUS})$ | 3011.1 | $I_{c}=100 \mathrm{ma} \quad I_{b}=0 \quad 1$ | 2 | 120 |  | Vdc |
| ${ }^{1}$ CES | 3041.1 | $V_{E B}=0 \quad V_{C E}=120 \mathrm{~V}$ |  |  | 1.0 | $\mu \mathrm{Adc}$ |
| ${ }^{\text {L CEOI }}$ | 3041.1 | $I_{b}=0 \quad V_{C E}=120 \mathrm{~V}$ |  |  | , $100 \cdot 1$ | MAdc. |
|  | 3041.1 | $I_{b}=0 \quad V_{C E}=120 V T_{c}=15013{ }^{\circ} \mathrm{C}$ |  |  | 500 | $\mu \mathrm{Acc}$ |
| $I_{\text {EBO }}$ | 3061.1 | $V_{E B}=5 \mathrm{Vdc} \quad I_{c}=0$ |  |  | 0.50 | $\mu \mathrm{Adc}$ |
| $\mathrm{H}_{\text {FEI }}$ | 3076.1 | $I_{C}=5 \mathrm{~A} \quad \mathrm{~V}_{\text {CE }}$ : 2 V | 2 | 40 | 120 |  |
| $\mathrm{H}_{\text {FE2 }}$ | 3076.1 | $I_{G}=50 \mathrm{~mA} V_{C E} \mathrm{~F} \cdot 2 \mathrm{~V}$ |  | 60 | 240 |  |
| $\mathrm{H}_{\text {FE3 }}$ | 3076.1 : | $\begin{aligned} & I_{c}=50 \mathrm{~mA} \quad V_{C E}=2 \dot{\mathrm{~V}} \\ & T_{c}=-55 \pm 3^{\circ} \mathrm{C} \end{aligned}$ |  | 30 | $\cdot{ }^{\circ}$ |  |
| $\mathrm{H}_{\text {fe }}$ | , | $\begin{aligned} I_{c}=1 \mathrm{~A} \quad V_{C E} & =10 \mathrm{~V} \\ \mathbf{f} & =10 \mathrm{~m} \mathrm{~Hz} \end{aligned}$ |  | $\|2\|$ | $\|12\|$ | $\cdots$ |
| $V_{C E}(S A T)$ | 3071 | $I_{c}=5 \mathrm{~A} \quad I_{b}=0.5 \mathrm{~A}$ | 2 |  | 0.50 | Vdc |
| $V_{B E}(S A T)$ | 3066.1 | $I_{c}=5 \mathrm{~A} \cdot I_{b}=0.5 \mathrm{~A}$ | 2. |  | 1.50 | Vdc |
| ${ }^{\theta} \mathrm{J}-\mathrm{C}$ | 3151 |  |  |  | 2.5 | ${ }^{6} \mathrm{C} / \mathrm{W}$ |

NOTES: 1. Unless otherwise s;ecified all test are to be performed at a case. temperature of $25 \pm 3^{\circ} \mathrm{C}$.
2. Pulse Test. Pulse Width $300 \pm 100 \mathrm{ml}$ croseconds, nominal duty cycle $2 \%$.

TABLE IV
PULSE RESPONSE

| Parameter | SYMBOL | METHOD AND CONDITIONS | LIMITS |
| :---: | :---: | :---: | :---: |
| Turn-on Time | td + tr | $\left[\begin{array}{l} \text { MIL-STD-750, Method } 3251 \\ \text { Vcc }=30 \mathrm{vdc} \end{array}\right.$ | 0.5 usec max |
| Storage Time. | ts | $\left\{I_{c}=5 A(\text { nominal })\right.$ | 1.5 usec max |
| Fall Time | $t_{f}$ | $I_{b 2}:-0.5 A(\text { max })$ | 0.5 hsec max |

TABLE V
PARAMETER VARIATIONS (1)

| PARAMETER | CONDITIONS | PRE <br> BURN-IN <br> VALUE | POST <br> BURN-IN <br> $V A L U E ~$ | REJECTION LEVEL | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $I_{\text {CES }}$ | $V_{C E}=120 \mathrm{Vdc}$ <br> $V_{B E}=0$ |  | $\Delta> \pm 0.5 \mu A d c$ | HAdc |  |
| $H_{\text {FE }}$ | $V_{C E}=2.0 \mathrm{Vdc}$ <br> $I_{C}=5.0 A$ |  |  | $\Delta>-20 \%,+30 \%$ |  |

(1) Measuiements at $T_{C}=25^{\circ} \mathrm{C}$ nominal





1. AFTER WINDING AS SHONN, TRANSFORMERS SHALL EE WRAPPED WITH 2 LAYERS OF TAPE (ITEM 2), VACIIUM IMPREG*IATE AND CURE PER RS Co.
NOTES: UNLESS OTHEPWISG SFECITIED.
YOLDOL: H:



2. DAFTS PFOCUEED BY VENDOF DAFT NUMBER SHALL BE DROCURED INACCORDANGE WITH THIS BOUFREE CONTROL DFRAWINAT:
S.IDENTIFY' DACKAGIWG WITH AIFESEARCH PART NUMBERE.
3. ALL DESIGN AND DART NUMBEFR CHANGES REQUIRE AIFESEAFCH GNGINEERING AFPROVAL.
4. DAFTS TO EE FERMANEINTLY MARKEO WITH THE FOLLOWING: "AIRESLARCH DART NUMFER SZIZSB-1"
5. FOCUREMENT PER AVL SZIZ5S-1.ONIV TIJE ITEMS LISTED ON TIFE AVL AND IDENTIFIEA PGT VENDORS NAME, AODRESS AND PART NLMEER I IAVE BEEM
 SUBSTITUTE TEMS SHNLL NOT BEUSたD PFEIOR TO TESTINA AMD APrDFOUAL BT AIRESEARCH ENGINEERIMG.
6. FART TO RECEVE ACOA $\because$ ORVIENOOFA PROD--
 INAREGNATION, OISNOMMIAL BLILO UF OVEPR DIMS SHOWN.



SOUFCF
-
0



SOUFCE COWTROL DRAWING


FOLDOUT FKAME



## SPECIFICATION

1. SCOPE
1.1 SCOPE. THIS SPECIFICATION COVERS THE DETAIL REQUIREMEMTS FOR A 3-PHASE POWER:. TRANSFDRMER.
1.2 RATING.
1.2.1 PRIMARY: 208 VRMS LINE-TO-LINE
1.2.2 SECONDARY: 32 VRMS LINE-TO-LINE, NO-LOAD
1.2.3 POWER: 220 VA
1.2.4 FREQUENCY: 1200 HZ
1.3 SCHEMATIC, TERMINATIONS, AND DIMENSIONS SHAZL BE PER FIGURES (1) AND (2).
2. REQUIREMENTS
2.1 CONSTRUCTION. CCNSTRUCTION SHALL BE PER MIL-T-27B GRADE 5, CLASS T, FAMILY 02.
2.2 LIFE EXPECTANCY. DESIGN LIFE SHALL BE 20 YEARS MINIMUM.
2.3 ENVIRONMENT. THE UNIT SHALLL BE DESIGNED TO OPERATE IN A VACUUM WITH ALl HEAT TRANSFER TAKING PLACE AT THE MOUNTING PLATE. THE MOUNTING BASE TEMPERATURE WILL BE MAINTAINED AT $70^{\circ} \mathrm{C}$ MAXIMUH.
2.4 VIBRATION, HTGH FREQUENCY. THE TRANSFORMER SHALL BE DESIGNED TO MEET THE HIGH FREQUENCY VIBRATION REQUIREMENTS OF MIL-T-27B.
2.5 DESIGN INFORMATION.
2.5.1 CORE: CTL-22 MANUFACTURED BY CARSTEDT RESEARCH INC., LONG BEACH, CALIFORNIA, OR EQUIVALENT.

CORE SHALL BE LAPPED TO MINIMIZE AIR GAPS.
2.5.2 PRIMARIES: 350 士2. TURNS HEAVY ML OR AI 220 WIRE.
2.5.3 SECONDARIES: 54 ti TURNS HEAVY Mi OR AI 220 WIRE.
2.5.4 FLUX DENSITY (REF): 7400 GAUSS.
2.5.5 COILS USED IN ANY ONE TRANSFORMER SHALL HAVE MATCHED TURNS RATIOS IN ORDER TO AVOID FUNDAMENTAL FREQUENCY CIRCULATING CURRENTS.

### 2.6 MATERIALS.

2.6.1 INSULATION: ISOMICA
2.6.2 ENCAPSULANT: STYCAST 1090 WITH CATALYST NO. 9, MANJFACTURED BY EMERSON AND CUMMINGS, GARDENA, CALIFORNIA.
2.6.3 MOUNTING BASE: BLACK ANODIZED ALUMINUM.
2.6.4 PAINT WITH CORLAR EPOXY ENAMEL 585 BLACK E. I. DU PONT DE NEMOURS AND COMPANY, WIEMIHGTON, DELAWARE.

### 2.7 TERMLNATIONS.

2.7.1 TERMINATIONS SHALL BE BY MEANS OF DOUBLE TURRET SOLDER TERMINALS, LERCO TYPE 4045 OR EQUIVALENT.
2.7.2 INTERNA! TERMINATIONS SHALL NOT BE DAMAGEABLE BY NORMAL' SOLDERING OPERATIONS AS ASSOCIATED WITH THE INSTALLATION OF THE TRANSFORMER.

### 2.8 MARKING:

2.8.1 THE MARKING INK SHALL BE TYPE MFR-73X, WHITE OR ORANGE, MANUFACTURED BY INDEPENDENT INK COMPANY.
2.8.2 THE MARKING SHALL INCLUDE AS A MINIMUM THE FOLLOWING:
2.8.2.1 THE AIRESEARCH PART NUMBER (SEE GENERAL NOTES)
2.8.2.2 TERMINAL IDENTIFICATION (SEE DRAWING)
2.8.2.3 THE MANUFACTURER'S IDENTIFICATION
2.8.2.4 THE DATE CODE AND SERIAL NUMBER CONSISTING OF A NINE OIGIT NUMBER AS FOLLOWS:

| FIRST TWO DIGITS: | YEAR |
| :--- | :--- |
| SECOND TWO DIGITS: | MONTH |
| THIRD TWO DIGITS: | DAY |
| LAST THREE DIGITS: | SERIAL NUMBER |

## 3. RELIABILITY CONDITIONING

EACH TRANSFORMER SHIPPED TO THIS SPECIFICATION SHALL BE SUBJECTED TO THE PROCEDURE DEFINED BY MIL-STD-2O2, METHOD 107B, TEST CONDITION A, EXCEPT LOW TEMPERATURE LIMIT SHALL BE $-55 \pm 5^{\circ} \mathrm{C}$, HIGH TEMPERATURE LIMIT SHALL BE $+120 \pm 5^{\circ} \mathrm{C}$. AFTER THIS PROCEDURE EACH TRANSFORMER SHALL BE INSPECTED TO THE REQUIREMENT OF PARAGRAPH \& OF THIS SPECIFICATION.
4. ACCEPTANCE INSPECTION

### 4.1 ACCEPTANGE INSPECTION SHALL INCLUDE AS A MINIMUM THE FOLLOWING TEST AND MEASUREMENTS PERFORMED TO THE APPLICABLE REQUIREMENTS AND METHODS OF MIL-T-27B EXCEPT AS NOTED HEREIN.

4.1.1 VISUAL AND MECHANICAL INSPECTION.
4.1.2 DIELECTRIC WITHSTANDING VOLTAGE AT ATMOSPHERTC PRESSURE ONL.Y.
4.1.3 INSULATION RES ISTANCE FOLIOWING PROCEDURE OF PARAGRAPH 4.1.2. MINIMUM RESISTANCE 10,000 MEGOHMS.
4.1.4 TURNS RATIO AND PDLARITY.
4.1.5 DC RESISTANCE. DC RES ISTANCE SHALL BE MEASURED BETWEEN THE FOLLOWING TERMINAL PAIRS AT AMBIENT ROOM TEMPERATURE.

4.1.6 EXCITING, CURRENT. THE EXCITING CURRENT SHALL BE MEASURED BY MEANS OF THE TEST SETUP SHOWN BETWEEN TERMINALS 1 AND 2 , 2 AND 3, 3 AND 1.


THE VOLT METER SHALL BE HEWLETT PACKARD MODEL $400 H$ OR EQUIVALENT. LIMIT: 50.0 MILLIVOLTS RMS MAXIMUM.
4.2 DATA. THE DATA OBTAINED FROM THE TEST OF PARAGRAPH 4. 1 SHALL BE RECORDED ON A SUITABLE FORM AND SHIPPED TO AIRESEARCH TOGETHER WITH THE PARTS. THE OATA FORM SHALL IDENTIFY ALL INSTRUMENTS INCLUDING SERIAL NUMBERS AND THE NEXT CALIBRATION DUE.DATE.

5. GENERAL NOTES
5.1 PROCUREMENT PER AVL 521259-1. ONLY THE ITEMS LISTED TON THE AVL AND IDENTIFIED BY VENDOR'S NAME, ADDRESS, AND PART NUMBER HAVE been tested and approved for use in the end item. substitute ITEMS SHALL NOT BE USED PRIOR TO TESTING AND APPROVAL BY AIRESEARCH ENGINEERING.

512 ALI DESIGN AND PART NUMBER CHANGES REQUIRE AIRESEARCH ENGINEERING APPROVAL.
5.3 IDENTIFY PACKAGING WITH AIRESEARCH PART NUMBER, 521259..1.
5.4 PARTS PROCURED BY VENDOR PART NUMBER SHALL BE PROCURED IN Ar, CORDANCE WITH THIS SOURCE CONTROL DRAWING.




SCHEMATIC DIAGRAM

AIRESEARCH MANLFACTURING GOMPANY a divimonartmathancti sqmanatian

AV $52120-1$

## APPROVED VENDOR LIST




## SPECIFICATION

1. SCOPE
1.1 SCOPE. THIS SPECIFICATION COVERS THE DETAIL REQUTREMENTS FOR A 3-PHASE SENSING TRANSFORMER.

### 1.2 RATIMG.

1.2.1 PRIMARY: 208 VRISS LINE-TO-LINE
1.2.1 SECONDARY: 25 VRMS LINE-TO-NEUTRAL, NO-LOAD :
1.2.3 POWER:* 4.4 VA
1.2.4 FREQUENCY: 1200 HZ
1.3 SCHEMATIC, TERMINATIONS, AND DIMENSIONS SHALL. BE PER' FIGURES (1) AND (2).
2. REQUIREMENTS

### 2.1 CONSTRUCTION. CONSTRUCTION SHALL BE PER MIL-T-27B GRADE 5, CLASS T, FAMILY 02.

2.2 LIFE EXPECTANCY. DESIGN LIFE SHALL BE 20 YEARS MINIMUM.
2.3 ENVIRONMENT. THE UNIT SHALL BE DESIGNED TO OPERATE IN A VACUUM WITH ALL HEAT TRANSFER TAKING PLACE AT THE MOUNTING PLATE. THE MOUNTING BASE TEMPERATURE WILL BE MAINTAINED AT $70^{\circ} \mathrm{C}$ MAXIMUM.
2.4 VIBRATION, HIGH FREQUENCY. THE TRANSFORMER SHALL BE DESIGNED TO MEET THE HIGH FREQUENCY VIBRATION REQUIREMENTS OF MIL-T-27B.
2.5 DES IGN INFORMATION.
2.5.1 CORE: CTL-8 MANUFACTURED BY CARSTEDT RESEARCH INC., LONG BEACH; CALIFORNIA, OR EQUIVALENT:

CORE SHALL BE LAPPED TO MINIMIZE AIR GAPS.
2.5.2 PRIMARIES: $1900 \pm 20$ TURNS HEAVY ML OR AI 220 WIRE.
2.5.3 SECONDARIES: $229 \pm 2$ TURNS HEAVY ML OR AI 220 WIRE.
2.5.4 FLUX DENSITY (REF): 7400 GAUSS.


### 2.6 MATEREALS.

2.6.1 INSULATION: ISOMICA.
2.6.2 ENCAPSULANT: STYCAST 1090 WITH CATALYST NO. 9, MANUFACTURED BY EMERSON AND CUMMINGS, GARDENA, CALIFORNIA.
2.6.3 MOUNTING BASE: BLACK AMODIZED ALUMINUM.
2.6.4 PAINT WITH CORLAR EPOXY ENAMEL 585 BLACK E. I. DU PONT DE NEMOURS AND COMPANY, WILMINGTON, DELAWARE.
2.7 TERMIMATIONE.

1,
2.7.1 TERMINATIONS SHALL BE BY MEANE CF DOURLE TURRET SOLDER TERMINALS, LERCO TYPE 5010 OR EQUIVALENT.
2.7.2 INTERNAL TERMINATIONS SHALL HOT BE DAMAGEABLE BY NORMALL:

- SOLDERING OPERATIONS AS ASSOCIATED WITH THE INSTALLATION OF THE TRANSFORMER.
2.8 MARKING.
2.8.1 THE MARKING INK SHALL BE TYPE MFR-73X, WHITE OR ORANGE, MANUFACTURED BY INDEFENDENT INK COMPANY.
2.8.2 THE MARKING SHALL INCLUDE AS A MINIMUM THE FOLLOWING:
2.8.2.1 THE AIRESEARCH PART NUMBER (SEE GENERAL NOTES)
2.8.2.2 TERMINAL IDENTIFICATION (SEE ORAWING)
2.8.2.3 THE MANUFACTURER $S$ IDENTIFICATION
2.8.2.4 THE DATE CODE AND SERIAL NUMBER CONSISTING OF A NINE DIGIT NUMBER AS FOLLOWS:
FIRST TWO DIGITS: YEAR
SECOND TWO DIGITS: - MONTH
THIRD TWO DIGITS: DAY
LAST THREE DIGITS: SERIAL NUMBER


## 3. RELIABILITY CONDITIONING

EACH TRANSFORMER SHIPPED TO THIS SPECIFICATION SHALL BE SUBJECTEU TO THE PROCEDURE DEFINED BY IIL-STD-202, METHOD 107B, TEST CONDITION A, EXCEPT LOW TEMPERATURE LIMIT SHALL BE $-55 \pm 5^{\circ}$ C , HIGH TEMPERATURE LIMIT SHALL BE + $120 \pm 5^{\circ} \mathrm{C}$. AFTER THIS PROCEDURE EACH TRANSFORMER SHALL BE INSPECTED TO THE REQUIREMENT OF PARAGRAPH 4 OF THIS SPECIFICATION.


## 4. ACCEPTANCE INSPECTION

4.1 ACCEPTANCE INSPECTION SHALL INCLUDE AS A MINIMUM THE FOLLOWING TEST; and measurements performed to the applicable requirements and methods OF MIL-T-27日 EXCEPT AS NOTED HEREIN.
4.1.1 VISUAL AND MECHANICAL INSPECTION.
4.1.2 DIELECTRIC WITHSTANDING VOLTAGE AT ATMOSPHERIC PRESSURE ONL'Y.
4.1.3 INSULATION RESISTANCE FOLLOWING PROCEDURE OF PARAGRAPH 4.1.2. MINIMUH RESISTANCE 10,000 MEGOHMS.
4.1.4 TURNS RATIO AND POLARITY.
4.1.5 DC RESISTANCF. DC RESISTANCE SHALL BE MEASURED BETWEEN THE FOLLOWING TERMINAL PAIRS AT AMBIENT ROOM TEMPERATURE.
1 AND 2. 2 AND 3 AND 1
LIMIT: $180 \therefore \pm 30$ ohms
4 AND 55 AND 0
6 AND 4
LIMIT: $18 \pm 3$ OHMS
4.1.6 EXCITING CURRENT. THE EXCITING CURRENT SHAILL BE MEASURED BY MEANS OF THE TEST SETUP SHOWN BETWEEN TERMINALS 1 AND 2, 2 AND 3, 3 AND 1.


THE VOLT METER SHALL BE HEWLETT PACKARD MODEL 400 H OR EQUIVALENT: LIMIT: 10 MILLIVOLTS RMS MAXIMUM.
4.2 DATA. THE DATA OBTAINED FROM THE TEST OF PARAGRAPH 4.1 SHALL BE RECORDED ON A SUITABLE FORM AND SHIPPED TO AIRESEARCH TOGETHER WITH THE PARTS. THE DATA FORM SHALL IDENTIFY ALL INSTRUMENTS INCLUDING SERIAL NUMBERS AND THE NEXT CALIBRATION DUE DATE.


## 5. GENERAL NOTES

5.1 PROCUREMENT PER AVL 521200-1. ONLY THE ITEMS LISTED ON THE AVL .YD IDENTIFIED BY VENDOR'S NAME, ADDRESS, AND PART NUMBER HAVE BEEN TESTED AND APPROVED FOR USE IN THE END ITEM. SUBSTITUTE ITEMS SHALL NOT BE USED PRIOR TO TESTING AND APPROVAL BY AIRESEARCH ENGINEERING.
5.2 ALL DESIGN AND PART NUMBER CHANGES REQUIRE AIRESEARCH ENGINEERING APPROVAL.
5.3 IDENTIFY PACKAGING WITH AIRESEARCH PART NUMBER 521200-1.
5.4 PARTS PROCURED BY VENDOR PART NUMBER SHALL BE PROCURED IN ACCORDANCE WITH THIS SOURCE CONTROL DRAWING.



AVL 5212601

## APPROVED VENDOR LIST

| vendor |  |  |  | cismin | RLISIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| mmma nov aooasss |  | coinemer |  |  |  |
| MAGNETIKA INC SANTA MONICA. CALIF. | $\begin{array}{\|c\|} 3 \text { PHASE } \\ \text { SENSING XMFR } \\ 01999 \end{array}$ | 15639 | Pumik |  | ${ }^{\text {B }}$ |
|  |  | 9-67 |  |  | D |
|  |  |  |  |  | $E$ |
|  |  |  |  |  | $f$ |
|  |  |  |  |  | 0 |
|  |  |  |  |  | H |
|  |  |  |  |  | 1 |
|  |  |  |  |  | $k$ |
|  |  |  |  |  | 2 |
|  |  |  |  |  | M |
|  |  |  |  |  | N |
|  |  |  |  |  | P |
|  |  |  |  |  | R |
|  |  |  |  |  | s |
|  |  |  |  |  | 1 |
|  |  |  |  |  | 0 |
|  |  |  |  |  | $v$ |
|  |  |  |  |  | $w$ |
|  |  |  |  |  | $\gamma$ |
|  |  |  |  |  | $z$ |
| memato or R R Remi |  |  | AVL |  |  |



-











COURCE CONTEQ QFAWIM


## AIRESEARCH MANUFACTURING CQMPANY QF ARIZONA

A DN.S:GN UFTME GARNET: ELHPDAATION

## APPENDIX TIT

(6 pages)

## AIRESEARCI MANUFACTURING CIMPANY QF ARIZINA

A DVESAM OU PMEANEE CERPDAATION

## UNBALANCED MAGNLTIC FORCES

The two auxiliary and main flux gaps in the alterrator are defined as 0.020 in . The maximum electromagnetic unbalance force occurs the instant that the displacement of the rotor relative to the stator is unidirectional and maximuni. Table I presents the most recent calculations of the electromagnetic forces. An assumed radial aisilacemert of 0.002 in. (l0 percent of the gap) ir each gap was used in the calculation for the various operating conditions. Speed effects were neglected that would substantially reduce the forces described herein. A survey of these conditions indicates that the no-load, 1.3 ?.u.V condition can be chosen as the "worst-case" for evaluation purposes, as the $21.3-\mathrm{KVA}$ overload, $1.0-\mathrm{p} . \mathrm{u} . \mathrm{V}$ condition neglects to consicer saturation, whicin tends to diminish the load.

TABLE I

Load Condition (rotor at standstill)

## $\because o-10 a d, 1.0$ p.u.v

12.6 KVA, ful.1-10ad, 1.0 p.u.V
21.3 KVA, overioad, 1.0 p.u.v
$\mathrm{F}_{\mathrm{ss}}, \mathrm{i} \mathrm{is}$.
Each Auxiliary Gap
Gain Gap
13.4
8.93
5.06
2.94
2.88

With the rotational effect of the alternator rotor on the flux distribution taken into account, the magnetic force at ather ef ine auxiliary gaps or the main gap, for small displacements of the magnetic or shaft centers, can be defined by the followincs equation:

$$
F=\left[\frac{1}{1+j u t}\right] \frac{F_{s s} \Delta g}{0.002} 1 b s .
$$

## AIREGEAREH MANUFACTURING CDMPANY OF ARIZロNA

where

$$
\begin{aligned}
\omega & =\frac{2 \pi N}{60}=3.768 \text { rad/sec. } \\
t & =\text { time constant of the magnetic circuit, sec. } \\
\Delta g= & \text { raidal displacement of "center," in. } \\
F_{s s}= & \text { the standstill maximum unbalance force with } 0.0 c \text { n-in. } \\
& \text { radial displacement, lbs. }
\end{aligned}
$$

Since the time-conscat of the yoke iron-flux change is belioved to be typically in the ra:dy oE 1 to 10 msec , the caiculated frecs for a stationary rotor, as in mable II, are thus modified rotation, and Table II defines the results of varying the time corstant for thic chosen worst-case concition of a radial dirpiamment rfo. $00<$ in.

MABLE IT


| $\begin{gathered} t_{1} \\ \sec . \end{gathered}$ | $\left[\frac{1}{1+3 . i t}\right]$ | $\begin{aligned} & A F^{*}, \\ & 1:, S . \end{aligned}$ |
| :---: | :---: | :---: |
| 0.010 | 0.0258 | 0.923 |
| 0.005 | 0.0507 | 1.810 |
| 0.002 | 0.1170 | 4.170 |
| 0.001 | 1.2100 | 7.480 |

```
APS-5286-R
ZPPINNDIX III
page 2
```


## AIRESEARCH MANUFACTURING CIMPANY OF ARIZQNA

A DIV:SIDN OF THE GARHETT COFPORATION
(Therefore, $\Delta F$ represents the total unbalanceu elcctromagnetic forces on the rotor assembly to be shared by the bearings. These forces are effective in both the unidirectional displacerent case and in the rotating case where the rotor appears to have a lobing action with respect to the stator.

With reference to Figure 1, the conditions creating the overall worst-case electromagnetic forces may be established for machine operation at full speed $(36,000 \mathrm{rmm})$. Both fixed and synchronous displacements of the rotor with respect to the stator must be considered, as follows:
(a) Fixed displacement of the rotor $Z$-axis in the $Y$-axis direction can be represented by two concitions if it is assunced that a "perfect" rotor is available--i.e., the mass center and magnetic center coineicde witi the geometric center.
(1) A physical displacement of the perfect rotor axis to create a nagnetic eccentricity $\Delta g$ between the rotor magnetic conter, $A$, and the stato: niagnotic conter, 0 , as shown in rigure $1(b)$.
(2) A construction of the stator assenbly such that its magnetic center, 0 , is eccentric $\Delta y$ from the rotor magnetic center, $A$, of a perfect rotor, as shown in Figure $1(c)$.
(b) Synchronous displacement of the rotor in an orbit about its Z-axis can also be represented by two conditions in tice rotor:
(1) A rotor having both mass and geometric centers coincident but a displaced magnetic senter.
'2.) A rotor having coincident magnetic and geonctric centers but with a displaced mass center.

AIRESEARCH MANLFACTLRING CIMPANY OF ARIZONA
A Division of the garrett corporation
$\mathrm{F}_{\mathrm{AGI}}$


FIGURE 1
LOCTMION OF EIECJROABGNENIC CENTERS
ATA UIRNCTIO: OF PORCIS
a revicu of tiose four conditiors sinows tiat (a) il) is of particular inpertance in the niachine whero translotion of the ro ir is to bo expected due to the bearing mounting systum. Conditior (a) (2) was discounted as having an effect ciue to the general accuracy of construction of the stator. BCth Conitions (i) (i) ara (\%) sionid be
 ments or eccentricities vere presc:ted:

| Condition (a)(1) | - | 0.002 in. |
| :--- | :--- | :--- |
| Condition (b) (1) | - | 0.0002 in. |
| Conditjon (b)(2) | - | 0.000 in. |





```
APS-5286-1:
i:PPI:A1;TX ITJ
Fa!r!:4
```


## AIREGEARCH MANUFACTURING COMPANY DF ARIZGNA

a division of the garmeit coapgration
shown in Figure 2. Utilization of this data, with the application of a factor of 2 for a possible step-change in flux (an extremely transient condition), was defined for each journal bearing:
(a) A unidirectional load of 3.62 lbs . must be supported.
(b) A rotational load due to a total eccentricity of 0.0003 in. at a constant value of 0.27 lb . must also be supported.

An angular displacement between the direction of displacement anci direction of application of these forces is a function of the location of the eddy currents being generated in the alternator components. The force shifts ahead of the member containing the eddy currents-i.e., in the direction of the relative motion, or that of the moving member. The following describes the angular displacements:

| Condition | Iocation of <br> Eddy Currents | Force Action |
| :--- | :---: | :---: |
| Fixed displacement | Rotor | Leads the rotor |
| Synchronous displacement | Stator | Lags the rotor |

The angular displacement depends upon the impedance of the conductor where, in the extreme, the superconductor tends toward 0 deg, and as damping is added, it approaches 9! deg.

For the purposes of the bearing study, experience indicates that an estimated value of 15 deg would be representative and was thus applied to the force for the fixed-displacement case. However, 0 deg was applied to the synchronous displacemert case since any force lagging the rotcr would tend to improve the bearing stability and thus reduce the worst-case condition.

AIRESEARCH MANUFACTLRING CIMPANY QF ARIZGNA


VARIATION IN MATN AND AUXILIARY GAP ORCES
ATi SYMCHRONOUS SPLED
FIGURL 2
APS-5286-R
APPENDIX III
Page 6


## AIRESEARCH MANLFACTURING CGMPANYGFARIZDNA

APPE:.iIX TV<br>VOLMAGE REGUEAGOR/LXCIPTR UPOIO:VIL WIPERG PBOCEDERE




REGULATION IN THE POWER.SYSTEM。
2. 1 DISCONNECT THE LEADS SPECIFIED IN THE FOLLOWING TABULATION. ${ }_{3}$.

| FROM | TO | SIZE | COLOR |
| :---: | :---: | :---: | :---: |
| TB2-Eb | TBI-Fd | 16 | GRN |
| TB2-Ed | TBI-FII | 16 | BLUE |
| TB2-Eg | TBI-FW | 16 | ORG |

2. 2 USING THE JUMPER WIRES SHOWN IN THE PARTS LIST OF DRWG. NO. 543937 MAKE THE CONNECTIONS PER THE FOLLOWING TABULATION.

| WIRE NUMBER | FROM | TO |
| :---: | :---: | :---: |
| $521300-4$ | TB2-Eb | TB2-Fb |
| $521300-5$ | TB2-Ed | TB2-Fd |
| $52,1300-6$ | TB2-Eg | TB2-Fg |

2.3 NO ALTERNATE WIRING PLAN IS SUPPLIED OR ADVISED.
2.4 TO DISCONNECT EXTERNAL SENSE REVERSE THIS PROCEDURE.
3. CONTROL FIELD POWER CIRCUIT CONNECTED FQR EXTERNAL POWER. $\because$ THIS CONFIGURATION IS NECESSARY IF THE MAIN POWER LINES ARE NOT FED THROUGH THE VRE. PARTICULARLY USEFUL IN COMBINATION WITH OPTION NUMBER 1. $\because$
3.1 DISCONNECT THE LEADS SPECIFIED IN THE FOLLOWING TABULATION.



# APPENDIX V <br> TRANSIENI ANALYSIS AND VOLTAGE REGULATION OF A SYNCHRONOUS GENERATOK <br> AIRESEARCH REPORT 6,6-1300 

(38 pages)

AIRESEARCH MANUFACTLRINE CDMPANY ロF ARIZQNA
L. Irtroduction
'lhis report attempts to outline a method to analyze the transient behaviour of a synchronous genorator.
.'he two-roactance metinod is used in this analysis. deae armature voltage, curront and flux equations aro first derived. A soparato set of equations is given for cach of the too axes - diroct and quacirature.

The damper circuit at the rotor is noxt takcn into consideration. The current equations for the daliiper and field circuits are thon obtained. 'inis completes the set of equations, the solutions of vhich describe the steady-state as well as the trarsient behaviour of a syncinronous generator.

This set of equations is then applied to a voltage regulating system. Due to the presence of two fields (series and shunt), the field equation is modified to take the effect of loth fields into consideration. The final result is presented in a block diagram whicn is readily programned for an analog computer.
2. Machine Equations Relating Rotor and Siazor Circuits


Figure 1

APS-5286-R
APPENLIX V
Page ?

## AIRESEARCH MANLFACTHRING CDMPANY DF ARIZANA












 lence of ridure $1 A$ is shown in Figurr il：


Figure ：
for any one winciang as sinown ja riogure $\therefore$ ，the relutimashib of the ancured volloge ${ }_{i}$ anci curront i is：

$$
\begin{equation*}
\epsilon_{i}=-i R+p \lambda \tag{1}
\end{equation*}
$$

where


AIRESEAREH MANUFADTURING GOMFA•JY GF ARITIJNA

Applying lquation 1 to the thre: phases $A, h$ and $c$, we have

$$
\begin{align*}
& L_{A}=-I_{\Lambda} R_{a}+p \lambda_{A}  \tag{2}\\
& E_{B}=-I_{B} R_{a}+p \lambda_{1}  \tag{3}\\
& I_{C}=-I_{C} R_{a}+p \lambda_{C} \tag{4}
\end{align*}
$$

the gencrator condition is applied to Fquations 2,3 and 4, i.e., armature voltage is tho goneratied voltage and armature current is out of the winding and produces negative amature and ficeld linkacges.

From Appendix $I$ using transformation matrix (I), wo obtain

$$
\begin{equation*}
\mathrm{E}_{\mathrm{ad}}=2 / 3\left[\mathrm{E}_{\mathrm{A}} \operatorname{Cos} \theta+\mathrm{E}_{\mathrm{B}} \operatorname{Cos}(\theta-2 \pi / 3)+\mathrm{E}_{\mathrm{C}} \operatorname{Cos}(0-4 \pi / 3)\right] \tag{5}
\end{equation*}
$$

Substituting Equations 2,3 and 4 into Equation 5 and roarrangjng, we have

$$
\begin{align*}
E_{a d}= & -R_{a} \frac{2}{3}\left[I_{a} \cos \theta+I_{B} \operatorname{Cos}(\theta-2 \pi / 3)+I_{C} \operatorname{Cos}(\theta-4 \pi / 3)\right] \\
& +\frac{2}{3}\left[p \lambda_{A} \cos \theta+p \lambda_{B} \operatorname{Cos}(\theta-2 \pi / 3)+p \lambda_{C} \operatorname{Cos}(\theta-4 \pi / 3)\right]  \tag{6}\\
= & -I_{a d} R_{a}+f(p \lambda) \tag{6a}
\end{align*}
$$

where $\mathrm{f}(\mathrm{p} \lambda)$ is the second part of liquation 6.

By tho same tramsformation matrix ('l'),

$$
\begin{align*}
& \lambda_{\mathrm{ad}}=\frac{2}{3}\left[\lambda_{\lambda} \operatorname{Cos} \theta+\lambda_{\mathrm{B}} \cos (0-2 \pi / 3)+\lambda_{\mathrm{C}} \cos (\theta-4 \pi / 3)\right] \\
& \left.\lambda_{a q}=-\frac{2}{3}\left\{\lambda_{\Lambda} \operatorname{Gin} 0+\lambda_{13}(3 i n(0)-? \pi / 3) \div \lambda_{(6 i n}(0)-1 \pi / 3\right) \right\rvert\, \tag{7}
\end{align*}
$$

dhe time dorivative of $A$ an in

$$
\begin{align*}
& -p \theta\left(\frac{2}{3}\right)\left[\lambda_{\lambda} \sin 0+\lambda_{13} \operatorname{iin}(\theta-2 \pi / 3)+\lambda_{(i \operatorname{in}(0)-4 \pi ; i)}\right]  \tag{8}\\
& =f(p \lambda)+\omega \lambda a q \tag{8a}
\end{align*}
$$

where

$$
\omega=p^{0}=\text { speed of genorator }
$$

From Equation 8a we can solve for $f(p \lambda)$ and puting it into Equation $6 a$ we have

$$
\begin{equation*}
\mathrm{E}_{\mathrm{ad}}=-\mathrm{I}_{a d_{a}} \mathrm{R}_{a}+\mathrm{p} \lambda_{a d}-\omega \lambda_{a \mathrm{a}} \tag{9}
\end{equation*}
$$

proceeding in the samo manmer with Jag, we have

$$
\begin{equation*}
I_{a q}=-I_{a q} R_{a}+p \lambda_{a q}+u \lambda_{a d} \tag{10}
\end{equation*}
$$

To complete tho sut, wo have

$$
\begin{equation*}
r_{0}=-T_{0} R_{a}+p_{0} \tag{11}
\end{equation*}
$$

AIREGEARCH MANUFALTURING GDMPANY DF ARIZDNA
where

$$
\begin{aligned}
& \text { fad, l:aq }=\text { Diroct and quad axis armature voltago } \\
& { }^{1} \text { ad, }{ }^{\text {I aq }}=\text { Direot and quad axjs armature ourront }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1inkige } \\
& k_{a}=\text { Armatars rosisitanos } \\
& \omega=\text { spoesd of gonconatos }
\end{aligned}
$$




Figure 3

APS-5286-R
APPENDIX V
Page 5
A.IREGEAFIGH MANIJFACTHXING GQMPANY DF ARIZONA
a Divisitin de thf iafteftt tianporation

The terms $p \lambda_{a d}$ and $p \lambda_{\text {ad }}$ are transformer voltages and re generally small compared with speed voitages $\omega \lambda_{\mathrm{aq}}$ and $\omega \lambda_{\mathrm{ad}}$. (ror . wter understanaing of the speed voltage, see page 62 of "Power y:tri stability,
 9 and 10 zan bo approximatod ats

$$
\begin{align*}
& \mathrm{S}_{\mathrm{ad}} \because^{-1} \mathrm{ad} \mathrm{P}_{\mathrm{a}}-\omega \lambda_{\mathrm{ad}}  \tag{12}\\
& H_{i q} \because-1 \cdot M R_{a}+\cdots \lambda_{\text {ad }} \tag{1.3}
\end{align*}
$$


ly the twe menetances Iheny,

$$
\begin{align*}
& i_{a}:: H_{i d!}-j L_{a d}=\sqrt{1 i_{a d}^{2}}+H_{a d}^{2}  \tag{1.1}\\
& I_{a}: T_{a d}-j I_{a d}=\sqrt{r_{a d}^{2}}+1_{a d}^{2} \tag{1.5}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{E}_{\mathrm{a}} & =\text { Generator armature (terminal) voltage } \\
\mathrm{I}_{\mathrm{a}} & =\text { Gencrator armature current } \\
j & =\sqrt{-1}=\text { inatinary axis unity vector }
\end{aligned}
$$

Lquations 14 and 15 are so written to be consistent. with the convention used in pigure 13 where the two axes are rotated through 90 deg.

AIRESEAREH MANUFALTIJRING ELIMPANY OF ARIATNA

From Equations 12, 13 and Figure 3 the total induced voltage Ep is
$E_{i}=$ Terminal voltage $+I_{a}$ Ra voltage drop + armature reaction voltage + voltage due to armature leakage.
then

$$
\begin{align*}
& E_{i d}=E_{a d}+I_{a d} R_{a}+I_{a q} X_{a q}+I_{a q} X_{a l}  \tag{16}\\
& E_{i q}=E_{a q}+I_{a q} R_{a}+I_{a d} X_{a d}+I_{a d} X_{a l} \tag{17}
\end{align*}
$$

where

$$
\begin{aligned}
X_{a l} & =\text { Armature leakage reactance due to } \lambda_{a l} \\
X_{a i^{\prime}} X_{a q} & =\begin{array}{l}
\text { Direct and quad-axis mutual reactance between stator } \\
\\
\text { and rotor }
\end{array} \\
E_{i d}, X_{i q}= & \text { Direct and quad axis induced voltage }
\end{aligned}
$$

From Appendix II,

$$
\begin{align*}
& x_{d}=x_{a l}+x_{a d}  \tag{18}\\
& x_{q}=x_{a 1}+x_{a q} \tag{19}
\end{align*}
$$

where
$X_{d}, X_{q}=$ Direct and quad axis synchronous reactance.

AIRESEARCH MANUFACTURING COMPANY GF ARIZONA

Since there is no applind voltage in the q-axis of the field, $\mathrm{E}_{\text {id }}=0$. Utilizing Equations 18 and 19 , Equations 16 and 17 can be expressed as

$$
\begin{align*}
& \mathrm{L}_{\mathrm{i} . \mathrm{d}}=\mathrm{F}_{\mathrm{id}}+\mathrm{I}_{\mathrm{ad}} \mathrm{R}_{\mathrm{a}}+\mathrm{I}_{\mathrm{iq}} \mathrm{X}_{\mathrm{q}}=0  \tag{2.0}\\
& \mathrm{E}_{j q}=\mathrm{Haq}_{\mathrm{aq}}+\mathrm{I}_{\mathrm{aq}} \mathrm{R}_{\mathrm{a}}+\mathrm{T}_{a d^{X}} \mathrm{X}_{\mathrm{a}}
\end{align*}
$$

The phasor diagram of Equations 20 and 21 is shown in figuro 1.


Figure 4
3. Machine Equations Relating Field, Armature and Damper Circuits

In a salient pole synchronous machine, generally there is a damper, or amortisseur, circuit on rotor to produce torque which helps to damp out oscillations of the rotor about its equilibrium position. It is formed by bars or cage windings embedded in the pole faces and connected at their ends by short-circuiting end rings.

The damper circuit has its own resistance, self and mutual inductance and should be treated as one unit when we consider its effect on the current-voltage performance of the machine following a disturbance.

## AIRESEAREH MANIJFAGTURING CIMPANY IIF ARIZINA



In the machine transiont prexiod, since the damper cirouit has a highor rosistance to inductance ratio, the damper current has a smaller decay time constant; honce jts offect on tho induced voltacge is shorter. the short time effect of: the damper current is called the subtransient poriod and the longor time effoct of the fiold curront is ealled tho transiont period. Hence the transient varjables that inchude the effect of the damper eirouit havo the subseript $D$ and are called the subtransiont variablos.

Tn a round rotor synchronous machine, which is the typo dosoribod in this report, there iss no damper circuit. Howover, the transjent envelope of tho induced voltage is not in a pure exponontial decay form due to the multiple flux paths between the N-G poles in the rolide rotor. but this envelope can be approximated to have two time constants, $T_{1}$ and $\mathrm{I}_{2}$.

(assume a load is applied)

Figure 5

$$
\begin{equation*}
f(t) \cong(B-C)^{-t / T_{1}} 1+(A-B) c^{-t / T_{2}} 2+c \tag{22}
\end{equation*}
$$

## AIRESEAREH MANLFACTIIRING LDMPANY DF ARIZONA <br> 

We can see that ${ }^{\prime \prime}{ }^{2}>\mathrm{I}_{1}$. Like the salient pole machine, we can refer the first torm of equation 22 to the offect of the transient circuit and refor the socor! if:n oroivilont io the effoct of a damper
 subtransiont time constants. Figure 3 is then modified to Figuro 6 to include the damper circuit.


Let us first consider the field circuit by itsclf. Ihe equivalent circuit is shown below in Figure 7.


Figure 7

## AIREGFAREH MANLFARTIIRINIB GTMPANY DF ATRIZIINA


!ho field ourront, $f_{f}$, ita $\because \cdot \theta \quad \because$

$$
\begin{equation*}
I_{f}=\frac{1}{R_{f}+p L_{1}} \tag{23}
\end{equation*}
$$

whore

$$
\begin{aligned}
& r_{f}=\text { Fiold applifed vollago } \\
& R_{f}=\text { riold resistance: } \\
& \text { 1.f }=\text { Ficeld inductance }
\end{aligned}
$$

Equation 23 can be re-arranged as

$$
\begin{align*}
r_{f} & =\frac{1}{R_{f}} \frac{E_{f}}{\left(1+\mathrm{F}_{f} / R_{f}\right)} \\
& =\frac{E_{f}}{J+\rho^{\prime} I} \tag{24}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{T} & =\mathrm{L}_{\mathrm{f}} / \mathrm{R}_{\mathrm{f}} \\
\mathrm{R}_{\mathrm{f}} & =1 \text { p.u. }
\end{aligned}
$$

Applying equation 24 to the $d$ and q-axis, we have

$$
\begin{equation*}
\underline{\mathrm{T}}_{\mathrm{fd}}=\frac{\mathrm{E}_{\mathrm{fd}}}{1+\mathrm{p}_{\mathrm{do}}^{\mathrm{T}}} \tag{25}
\end{equation*}
$$

*llhe asterisk cienotes the equation is valid only in the por unit system

```
APS-528G-R
APPENDIX V
page 11
```

AIREGEARLH MANUFAETLIRING LIMMPANY OF ARIZIONA

(26)*
whore

$$
\begin{aligned}
& \text { conasidmt. }
\end{aligned}
$$

 damper comrant as
where

$$
\begin{aligned}
& I_{\text {fd }} I_{\mathrm{Eq}}=\text { Direct and Max-anis field current } \\
& R_{D}=\text { Damper circuit resustance }
\end{aligned}
$$

The negative sign in equation 28 is chosen to conply with the concept that positive field ourront induces ree !1ve voltign.

Since $R_{D}$ and $r_{i}$ are 1 p.u. and (quating with equat jons 20 and 21 , we have:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{ac}}+\mathrm{T}_{a d_{a}} \mathrm{~B}_{a}+\mathrm{I}_{\mathrm{ac}_{\mathrm{a}}} \lambda_{\mathrm{a}}=\mathrm{I}_{\mathrm{ic}}+\mathrm{I}_{\mathrm{fu}} \tag{29}
\end{equation*}
$$



$$
\begin{aligned}
& \text { APS-5 } 286-R \\
& \therefore \text { DPMivis V } \\
& \text { 1路: ? }
\end{aligned}
$$

AIREEEAREH MANLFACTLIRING CDMPANY OF ARIZINA


$$
\begin{equation*}
\mathrm{F}_{\mathrm{aq}}+I_{a d} \mathrm{R}_{\mathrm{a}}+I_{a_{d}} \mathrm{X}_{\mathrm{d}}=I_{\mathrm{Bd}}-\mathrm{I}_{\mathrm{fd}} \tag{30}
\end{equation*}
$$

From equations 12 and 13

$$
\begin{align*}
w \lambda_{a d} & =\mathrm{E}_{\mathrm{aq}}+I_{a q^{R}} a_{a}  \tag{31}\\
-\omega \lambda_{a d} & =\mathrm{H}_{\mathrm{ad}}+I_{a d^{2}}{ }_{a} \tag{32}
\end{align*}
$$

since tho fiold quadrature path has a vory high jmpodance $I_{\text {fog }}$ is small. 'rhus

$$
\begin{equation*}
\mathrm{T}_{\mathrm{fY}} \cong 0 \tag{33}
\end{equation*}
$$

'lo simplify the analysis, the field quadrature circuje is conpletely eliminated.

Substituting equations 31 and 32 into equations 29 and 30 and assuming equation 33 is valid, we have

$$
\begin{gather*}
-\omega \lambda_{\mathrm{aq}}+\mathrm{I}_{\mathrm{aq}} X_{\mathrm{q}} \cong I_{\mathrm{Dq}}  \tag{34}\\
\omega \lambda_{\mathrm{ad}}+I_{\mathrm{ad}} X_{\mathrm{d}}=I_{\mathrm{Dd}}-I_{\mathrm{fd}} \tag{35}
\end{gather*}
$$

Equations 34 and 35 relate the damper, field and armature currents with the armature mutual flux linkage.

Equation 24 can be written as

$$
\begin{equation*}
\mathrm{E}_{\mathrm{fd}}=\mathrm{T}_{\mathrm{fd}}\left(1+\mathrm{pT}^{\prime} \mathrm{do}^{\prime}\right) \tag{36}
\end{equation*}
$$

*lhe asterisk denotes the equation is valid only in the per unit system

```
APS-5286-R
APPENDIX V
Page 13
```



## AIREGEARLH MANUFACTURING GロMPANY DF ARIZGNA

If the effects of the armature and dampor circuits are included, equation 36 is then

$$
\begin{equation*}
\mathrm{E}_{\mathrm{fd}}-\mathrm{M}_{\mathrm{af}} \mathrm{pI}_{\mathrm{ad}}-\mathrm{M}_{\mathrm{Df}} \mathrm{pI}_{\mathrm{Dd}}=\mathrm{I}_{\mathrm{fd}}\left(1+\mathrm{pT}_{\mathrm{do}}\right) \tag{37}
\end{equation*}
$$

where
$M_{a f}=$ Mutand induetanon botweon armaturo and fireld
$M_{D f}=$ Mutuna inductanco betwoon damper and fireld

Lquation 37 can bo ro-arrangod as:

Ihe coefficients of $I_{a d}$ and $I_{D d}$ are cvaluated by a separate method given in the next section. Equation 38 silfply dumonstrates the form of field current equation to be expected.

## 4. Evaluation of Field, Damper and Armature Currents

Since there is no applied voltage in the field quadrature, damper direct and quadrature circuits,

$$
\begin{equation*}
\mathrm{E}_{\mathrm{fq}}=\mathrm{E}_{\mathrm{Dd}}=\mathrm{E}_{\mathrm{Dq}}=0 \tag{39}
\end{equation*}
$$

The set of equations describing the four circuits (1) to (4) in Figure 6 is then

$$
\begin{equation*}
\mathrm{F}_{\mathrm{fd}}=\mathrm{I}_{\mathrm{fd}}+\mathrm{p} \lambda_{\mathrm{fd}} \tag{40}
\end{equation*}
$$

*The asterisk denotes the equation is valid only in the per unit system

```
APS-5286-R
APPENDIX V
Page 14
```

$$
\begin{align*}
& 0: \mathrm{I}_{\mathrm{fq}}+\mathrm{p} \lambda_{\mathrm{fq}}  \tag{41}\\
& 0=\mathrm{I}_{\mathrm{Dq}}+\mathrm{p} \lambda_{\mathrm{Dql}}  \tag{12}\\
& 0=I_{\mathrm{Dq}}+\mathrm{p} \lambda_{\mathrm{fq}} \tag{4.3}
\end{align*}
$$

1:putation 40 givos

$$
\begin{equation*}
\lambda_{\mathrm{Ed}}=\frac{\mathrm{Efd}_{\mathrm{fl}}-\mathrm{Ifl}_{\mathrm{fl}}}{\mathrm{P}} \tag{44}
\end{equation*}
$$

Whe rolationship betwoen fiold, dampor and armature currents and Hwi: induced flux linkage:i is given by:


[^3]AIRESEARQH MANUFAZTURING GIIMPANY DF ARIZIINA


Ihe derivation of Fquations 15 and 46 is quito todious and is not given in tais roport.
from liquation 45 , wo obtisn
simer

$$
\begin{equation*}
\ddot{x}_{11}-\ddot{n}_{1}^{\prime} \quad-\quad \frac{x_{i, 1}^{\prime}}{x_{1,1}+\cdots} \tag{.18}
\end{equation*}
$$

(sene Appomolix 13 fors: derivotion)
 by ill (i) kic have
fiquation 49 is in tino same form as Ladion 38 yiven ia fortion 3. Similarly solving liquations il. to 4.j, we have


$$
\begin{aligned}
& \text { AP: }-5286-12 \\
& \text { APP }: N \mathrm{~N}) I X \mathrm{~V} \\
& \text { Page } 16
\end{aligned}
$$

AIFE:GEARLH MANUFALTLRING GDMPANY DF ARIZINA

where
ald
since $X_{\text {fid }}$ is vory large, (to give a very smadl If )

$$
\begin{aligned}
I_{D q O} & \cong q_{q O}^{\prime \prime} \frac{X_{f q}\left(X_{a q}+X_{D q}\right)}{X_{a q} X_{f q}}+X_{f q} X_{D q} \\
& \cong q_{q O}^{\prime \prime}
\end{aligned}
$$

where

*he asterisk donotes the equation is valid only in the per unit system

```
APS-5286-R
APPENDIX V
Page 17
```


## AIREEEARLH MANUFACTURING GIMPANY DF ARIZDNA

a givibitim of the bafheticobrimation

## T'do and Tro are related to tho short eircuit parameters by tho following

$$
\begin{align*}
& { }_{d}{ }_{d}^{\prime}=\frac{x_{d}^{\prime}}{X_{d}} \mathrm{I}^{\prime} \mathrm{do}^{\prime}
\end{align*}
$$

whore
${ }^{\prime \prime}{ }^{\prime}{ }^{\prime}{ }^{\prime \prime \prime}{ }^{\prime}=$ Diroct and quat-axis short cirouit transjont time constant.

## 5. Voltage Regulation

If a load is suddenly applied or removed from the generator, its terminal voltage will gradually decay or increase to another steady state level and will never return to its initial value. However, in almost all applications of synchronous gerierators, it is desirable that the terminal voltage remains substantially constant regardless of load. This can be accomplished by a voltage regulating system (with negative feedback) to change the field excitation whonever therc is a change in terminal voltage.

A typical regulated response of a generator terminal voltage envolope when the load is completely or partially removed is shown in Figure 8. In the case of load application, the same characteristic response occurs except it is turned upside down with respect to the 1 p.u. line.

## AIRESEARCH MANUFACTURING CQMPANY OF ARIZONA

A DIVISION GE THE GARAETt CURPGEATION


Figure 8

The response of the unregulated gererator terminal voltage can ve : i.ted by the phasor diagram in Figure 9. It shows the relationship 'w subtransient ( $E_{i}^{\prime \prime}$ ), transient ( $E_{i}^{\prime}$ ) and steady-state ( $E_{i}$ ) induceci wiges. It is a more detailed representation of Figure 4.


Figure 9

APS-5286-R
APPEivDIX V

AIREGEARCH MANLIFACTURING CIMPANY IIF ARIZIINA
A. Voltage Regulating System- with Srrios and ihunt Fiolds and Constant Speed

The regulating system to be studiod in fhis report ha: foth series and shunt ficld feedbactis. It: is shown in Fiour. lu.


Figure 10

The power transformer has the following transfor function:

$$
\frac{1}{1+\mathrm{pT}_{\mathrm{p}}}
$$

Where $T_{p}$ is the time constant of the transformer.

## Effect of Shunt and Series Fields

The analysis of the regulator system is just like that of a toodback system except the complication of the two fields.
*'rio asterisk denotes the equation is rulis! only in tho per mit oreter

$$
\begin{aligned}
& \text { MPS-5206-R } \\
& \text { ARHMHTK } \\
& \text { Page } 20
\end{aligned}
$$

## AIRE日EAREH MANUFACTURING GGMPANY DF ARIZGNA

First consider the current transformer as shown in figide di.


Figure lj
$I_{1}, I_{2}=$ Primary and scoondary current
$R_{f r}, L_{f r}=$ Geries field resistance and induclanco

$$
E_{f r}=\text { Series ficld voltage }
$$

Ideally when the primary current $i_{1}$ makes a step change, the secondary current $I_{2}$ should also make the same change. However, $I_{2}$ cannot change abruptly because of the series ficld inductance $L_{f r}$. Thus, most of the excess primary current will be used as magnetizing current, causing a high saturation and a high forcing voltage across the series field. The transfer function is quite complicated.
'lo make the calculation practical, we can assume $I_{2}$ changes exponentially due to a step change of $I_{1}, i . e .$, the current transformer is replaced by a potential transformer with the voltage across the series field proportional to the primary current. (See Figure l.2)
let the equivalent field current be composed by two parts

$$
\begin{equation*}
I_{\mathrm{f}} \cong I_{\mathrm{fd}}=I_{\mathrm{fdr}}+I_{\mathrm{fdh}} \tag{.58}
\end{equation*}
$$

```
APS-5286-R
APPENDIX V
Page 21
```

AIREGEARCH MANUFACTLRINB EGMPANY DF ARIZGNA
where
$I_{\text {far }} J_{\text {fal }}=$ Serios and shunt fiola diroct-axis curront. The quad-axis transiont oureonts aro assumed nogligiblo.
 armature volltage.
 $l_{f}$ at steady state.

1 p.u. armature curront $I$ will produco $r$ p.u. $l_{\text {fir }}$ ariel op.u. $\mathrm{E}_{\mathrm{fr}}$ at steady state. Thus
$\sigma=\frac{\text { series field ampore turns with } 1 \text { p.u. } t_{a} \text { at stoad; stato }}{\text { baso shunt ficld arpore turns }}$

Let
$M_{h r}=$ Mutual inductance between the shunt anci series fields

When there is a rate of change of $I_{f r}$ of 1 p.u./scc, the voltage induced in the shunt field is Mhr $\mathrm{p} . \mathrm{u}$.

Thus the field current Lquation 49 should be modified to include the effect of both fields. Assuming:

$$
\begin{equation*}
X_{f d x}=X_{f d h} \tag{59}
\end{equation*}
$$

where

$$
\ddot{x}_{\text {far }} \dot{x}_{\text {fail }}=\operatorname{serjes} \text { and shunt fitha reaclance. }
$$

AIRESEARCH MANLFACTURING CIMPANY OF ARIZGIVA

Wo have a soparate equation for ouch field current:

$$
\begin{align*}
& \frac{V_{f h}-I_{f d h}}{p q_{d o h}^{\prime}}=I_{f d h}+M_{h r} I_{f d r}-\left(x_{d}-x_{d}^{\prime}\right) T_{a d}+\frac{x_{a d}}{x_{a d}+X_{f d l}} T_{\text {da }}  \tag{60}\\
& \frac{\sigma T_{a}-I_{f d r}}{p^{\prime} T_{d o r}^{\prime}}=I_{f d r}+M_{h r} I_{f d h}-\left(x_{d}-x_{d}^{\prime}\right) T_{a d}+\frac{x_{a d}}{X_{a d}+X_{f d}} T_{D d}
\end{align*}
$$

where

$$
\begin{aligned}
& { }^{\text {'dor }}{ }^{\prime \prime}{ }^{\prime} \text { don }=\text { Borios and shunt fiold open cireuil time constant } \\
& \mathrm{E}_{\mathrm{fh}}=\text { shunt ficld excitation voltago }
\end{aligned}
$$

Equation 58 links the two field curronts $I_{\text {fuh }}$ and $I_{\text {for }}$ vinder the above assumptions, other equations in section 4 will remain the same.

*The asterisk denotes the equation is valid only in the per unit systom

## 



Although $E_{\text {fr }}$ is approximatod $1, \operatorname{curva}$ b in Figure 1213 , lon acelual voltage levol for the first fow oyclos is C wou. whioh is o/(1 + a) times highor than the approximater lovel. Hones whon wo daloulithe tio time corstant of the sedjes liedel, the ffect of this higl: forcing
 Br approximated as

$$
\begin{equation*}
\lim _{i r, r}^{\prime}=\frac{\mathrm{H}_{\mathrm{fr}}}{\mathrm{~F}_{\mathrm{fr}}} \tag{1,2}
\end{equation*}
$$

whore:
$k=$ forcing factor
$=\frac{\text { initial voltage across ecrios ficld }}{\text { steady state voltage across series fiold }}$

In the example given in Figure 12,

$$
k=\frac{c}{d}
$$

3. Voltage Regulating System - with Series and Shunt Fields and

Variable Speed

When rotor speed changes, the electrical frequency changes correspondingly and all the reactances $X_{a d}, X_{f d}$, etc. will have no meaning, nor can they bo expressed as $\omega L_{\text {ad, }} \omega L_{f d}$, etc. All inductance voltage drops should be given as $p(L I)$. The generator equations vill be more complicated.

## AIRESEAREH MANUFAGTURING GIMPANY QF ARIZGNA

To make the analysis simple for praction purpose, all the inducLance will be expressed as whad, ete, using the average or hase frequoncy for $w$ and assulle the change in frequency is small onough so that the reactancos stay about constant. only the spoed voltage wh is ussumed to vary with speod.

## 6. Conclusion

In the reguliting systom, tho load is assunced to have tho following impodance function:

$$
\begin{equation*}
z_{L}=k_{L}+j X_{I} \tag{63}
\end{equation*}
$$

where

$$
Z_{L}, R_{L}, X_{L}=\text { Load impedance, resistance and reactance. }
$$

Since

$$
\begin{equation*}
E_{a}=I_{a} Z_{L} \tag{64}
\end{equation*}
$$

and substituting Equations 14, 15 and 63 into 64, we have

$$
\begin{aligned}
\mathrm{E}_{\mathrm{aq}}-j \mathrm{E}_{\mathrm{ad}} & =\left(I_{a q}-j I_{a d}\right)\left(R_{L}+j X_{L}\right) \\
& =\left(I_{a q} R_{L}+I_{a d} X_{L}\right)-j\left(I_{a d} R_{J}-I_{a q} X_{L}\right)
\end{aligned}
$$

Hence

$$
\begin{align*}
& \mathrm{E}_{\mathrm{ad}}=\mathrm{I}_{\mathrm{ad}} \mathrm{R}_{\mathrm{L}}-I_{a q} X_{\mathrm{L}}  \tag{65}\\
& \mathrm{E}_{\mathrm{aq}}=I_{a q} R_{L}+I_{a d} X_{L} \tag{66}
\end{align*}
$$

AIRE日EARCH MANUFACTURING COMPANY OF ARIZONA

Equations 65 and 66 relate armature voltage and current. With the following assumptions:

1. No saturation occurs in the generator
2. Quadrature field current is negligible

$$
I_{f q} \cong 0
$$

we have derived a sot: of 13 equations for tho 13 unknowns:

| $L_{a}$ | $L_{\text {ad }}$ | $i_{i a q}$ |
| :--- | :--- | :--- |
| $I_{a}$ | $I_{a d}$ | $I_{a q}$ |
| $I_{\text {fd }}$ | $I_{\text {far }}$ | $I_{f d h}$ |
|  | $I_{\text {Dd }}$ | $I_{\text {Eq }}$ |
|  | $\lambda_{\text {ad }}$ | $\lambda_{\text {aq }}$ |

The 13 equations are:

$$
\begin{gathered}
E_{a d}+r_{a} I_{a d}+\omega \lambda_{a q}=0 \\
E_{a q}+r_{a} I_{a q}-\omega \lambda_{a d}=0 \\
\lambda_{a d}+I_{a d} X_{d}=I_{D d}-I_{f d} \\
\lambda_{a q}+I_{a q} X_{q}=I_{D q} \\
\frac{e_{f h}-I_{f d h}}{\mathrm{pT}_{\mathrm{doh}}}=I_{f d h}+M_{h r} I_{f d r}-\left(X_{d}-X_{d}^{\prime}\right) I_{a d}+\frac{X_{a d}}{X_{a d}+X_{f d}} I_{D d}
\end{gathered}
$$

$$
\begin{aligned}
& J_{f d}=I_{f d h}+I_{f d r}
\end{aligned}
$$

$$
\begin{aligned}
& E_{a q}=I_{a d d_{L}}+I_{a q^{2} L_{I}} \\
& I_{a}=\sqrt{I_{a d}^{2}}+I_{a d}^{2} \\
& \mathrm{E}_{\mathrm{a}}=\sqrt{\mathrm{E}_{\mathrm{ad}}^{2}+\mathrm{E}_{\mathrm{aq}}^{2}}
\end{aligned}
$$

With the aid of the 13 equations, a mathematical model of voltage ablating system shown in Figure 10 is given by the blocks diagram

Fたa: ミ


AIREGEARCH MANUFACTURING COMPANY OF ARIZONA


## NOMI:NOLATUUP1:

$\therefore$ ad $=$ (ionoration terminal. voluarse





$I^{r}{ }^{\prime}$ aq $=$ direct and quadrature axis components of armature current

If' $f_{\text {fa }}:=$ discos and quadrature axis field currant of generator
$I_{D^{\prime}} \mathrm{I}_{\mathrm{H}_{\mathrm{I}}}=$ direct and (quadrature axis subtransiont current
$\mathrm{p}=$ differential operator $\mathrm{d} / \mathrm{dt}$
 constants
'l 'do' $\mathrm{T}_{\mathrm{qo}}^{\prime \prime}=$ direct and quadrature axis open circuit sabtransjant time constants
$T^{\prime}, T_{q}^{\prime}=\underset{\text { constant }}{ }=\underset{\text { direct and quadrature axis short circuit transient tine }}{ }$
$R_{a}=$ generator armature resistance

## AIREGEARGH MANUFARTHRING GDMFAANY OT ARIZONA

## HOMTNCLATUURE: (COHt.)

$r_{\mathrm{L}_{1}}=$ load rosistanor
$x_{\mathrm{L}}=$ lond reastanco
$X_{0]}=$ armature leakago reartanod
$X_{d} \ddot{a d}_{q}=$ diroct and quadrature axiz; synchronems; reactameds
$x_{a d}, x_{a q}=$ direct and quadrature axjs mutual reactances betwon stator and rotor circuits, reforred $1 ;$ stater.
$X_{d}^{\prime}, X_{q}^{\prime}=$ direct and quadrature axiss trarsis nt ractinco $;$
$x_{d}^{\prime \prime}, x_{q}^{\prime \prime}=$ direct and quadrature axis subtramsisent reardarcos
$X_{f d}, X_{f q}=$ direct and quadrature axis fiold circait loakogr reactances
$\begin{aligned} X_{D C i} & X_{D q}= \\ & \text { direct and quadrature axis danper circuit lances }\end{aligned}$
$Z_{L}=$ load impedance
$\lambda_{\text {ad, }}, \lambda_{a q}=$ direct and quadrature axis stator flu; linkdr: $\omega=$ speed of the generator

The additional subscript hand $r$ in tho fiole: vircuit vainukles denotes shunt or series field.
 and flu: Jinkuges aro pr mit guantitios.

A以PRN: $\because$
Pare: 31,

## APPLNDIX $A$

## Biondel's lwo-Reactance Method



Figure $\mathrm{A}-1$

Ghe phasor diagrar: of a bahanced three-phase current at any instinu of tirie $t$ is shom: in Figure $A-1$.

הncte
$\theta=.2 t$
$\therefore=$ Frequenci of the current or speer of generator

Since the araature variables are exbressed in three axes (iemoter

 b ance f), it is usirabde to find a transformation to emposs the Sirve-pimse variables by the twe-axis variables.

Let wo curronts $I_{\text {ad }}$ and $I_{\text {ay }}$ flow through two fictitious coils oodtex at the d anc: 4 axis and each iaving the sare number of turis





```
2PS-5286-0
APPENILIS A
page 1
```


## AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

a division of the rianhett conformation

The d-axis component of $M M F$ in the phase coils due to the $I A$ is:

$$
\operatorname{MMF}_{\Lambda d}=N I_{A} \operatorname{Cos} \theta
$$

where
$\mathrm{N}=$ Number of turns in the coil.

The d-axis component of the resultant MMF wave due to the threephase currents is therefore:

$$
\mathscr{M M F _ { \mathrm { d } }}=I_{\mathrm{A}} \operatorname{Cos} \theta+I_{\mathrm{B}} \operatorname{Cos}(\theta-2 \pi / 3)+I_{(C} \operatorname{Cos}(\theta-4 \pi / 3) \quad(I-3)
$$

The M MF wave due to current $i$ ad in the axis coil is

$$
\mathrm{MMF}_{\mathrm{d}}=3 / 2 \mathrm{NI}_{\mathrm{ad}} \quad(7 .-4)
$$

The factor $3 / 2$ is inserted to take into account the change in unit of $I_{d}$ just mentioned. Equating $A-3$ with $A-4$ and cancelling the factor $i$, we nave:

$$
I_{a d}=\frac{2}{3}\left[I_{A} \cos \theta+I_{B} \cos (\theta-2 \pi / 3)+I_{C} \cos (\theta-4 \pi / 3)\right] \quad(1-5)
$$

Similarly the q-axis current $I_{q}$ is given by:

$$
\left.I_{a q}=-\frac{2}{3}\left[I_{A} \sin \theta+I_{B} \sin (\theta-2 \pi / 3)+I_{C} \operatorname{Sin}(\theta)-4 \pi / 3\right)\right] \quad(A-6,)
$$



## AIRESEEARCH MANLFAGTURING CIMPANY QF ARIZINA



If tho thromphase currents are lo br eliminatod, throw substitutr visiables will be required. Hence jt is necossany to introduco a thime variable ' ${ }_{0}$, whide is called the zero-souponeo current in symmetriond oomponont theory, and

$$
I_{0}=\frac{1}{3}\left(I_{R}+I_{1}+I_{0}\right)
$$

Since $l_{0}$ produces no flux linking the rotor, it is arsoociatod wit... libe statol loakage inauctance. In thr balanced thror-phato eondition, the sum of the phase currents is zoro, lence

$$
I_{0}=0
$$

lifuations $A-5,6$ and 7 can be written in tho matris forl: ass

$$
\left[\begin{array}{l}
I_{\mathrm{ad}}  \tag{x-9}\\
I_{\mathrm{aq}} \\
I_{\mathrm{o}}
\end{array}\right]=\left[\begin{array}{l}
I_{\mathrm{a}} \\
I_{\mathrm{b}} \\
I_{\mathrm{c}}
\end{array}\right]
$$

whore ( $\mathbb{F}$ ) is the transformation matrix given by
$(T)=\frac{2}{3}\left[\begin{array}{cc}\cos \theta & \cos (\theta-2 \pi / 3) \\ -\sin \theta-\sin (\theta-2 \pi / 3)-\sin (\theta-4 \pi / 3) \\ \frac{1}{2} & \frac{1}{2}\end{array}\right](\lambda-10)$
'Ihe same (I') can be applied to the voltage equations botwoon liad' $L_{a q}, L_{o}$ ard i,hase voltages $E_{A}, E_{B}, E_{C}$ as well as betweon $\lambda_{a d \prime} \lambda_{a d}{ }^{\prime} \lambda_{0}$ and phase flux $\lambda_{A}, \lambda_{B}$, $\lambda_{C}$.

## AIRESEAREH MANUFACTIRRING GDMPANY DF ARIZGNA

In the balanoed eordition

$$
E_{0}=0
$$

$$
(\Lambda-11)
$$

$$
\lambda_{0}=0
$$

$$
(\text { ( }
$$

## APPENDIX Is

Ihe complete generator circuit is shown in figure $\Lambda-2$ bolow.


Figure $\wedge$-2

The equivalent direct axis reactance circuit is shown in Figure $A-3$.


When a load is removed or applied to a generator, a transient condition occurs before steady-state is reached. For the first few cycles we have subtransient condition due to the subtransient reactance $X_{d}^{\prime \prime}$. The total reactance is

$$
x_{t d}=x_{d}^{\prime \prime}
$$

AIREGEARCH MANUFAETURINLI CDMPANY DF ARIZDNA



$$
\begin{aligned}
& \because_{d}=\ddot{x}_{a 1}+\frac{1}{5 / x_{a d}+1 \ddot{x}_{11}+1 / x_{\mathrm{Dal}}}
\end{aligned}
$$

 The total reactance becomes

$$
x_{t d}=\because_{d}^{\prime}
$$

$X^{\prime}{ }_{d}$ is defined in Figure $A-3$ witin switich $S_{1}$ closed.

$$
\begin{align*}
x_{\mathrm{d}}^{\prime} & =x_{\mathrm{al}}+\frac{1}{\left[7 x_{a d}+1 / x_{\mathrm{fd}}\right.} \\
& =x_{a l}+\frac{\ddot{x}_{a c i} x_{f d}}{x_{a d}+x_{f d}}
\end{align*}
$$

In steady-state

$$
x_{t d}=x_{d}
$$

$X_{d}$ is defined in Figure $A-3$ with both switches $S_{1}$ and $S_{2}$ open.

$$
x_{\mathrm{d}}=\mathrm{x}_{\mathrm{al}}+x_{\mathrm{act}}
$$



$$
\begin{aligned}
& x_{d}^{\prime}=\left(x_{d}-x_{a d}\right)+\frac{x_{a d} \ddot{C}_{f}}{x_{a d}+\frac{x_{0,1}^{\prime}}{a}}
\end{aligned}
$$

$$
\begin{align*}
& =x_{c}-\frac{x_{a d}^{2}}{x_{a d}+X_{f d}} \\
& =x_{d}-\Delta I \tag{h-ji}
\end{align*}
$$

 ロビ：かa．
 $\therefore 1$

$$
\begin{align*}
& =\dot{x}_{d}-\frac{x_{a d}^{2}\left(X_{f d}+X_{D d}\right)}{\left.X_{f\left(l^{X}\right.}\right) d+X_{u d} X_{f d}+X_{a d} X_{D d}} \\
& =x_{d}-\Delta 2
\end{align*}
$$

$\Delta 2$ is the increase in reactance from subtransicnt to stauy $\because$ tute 1 ricd.

```
APS-5286-1:
\PPENDIS: B
Page 3
```


## AIREEEAREH MANIFFACTHRINB CDMPANY DF ARIZDNA

a Divigion df the gamafit compiomation

The equivalent quadrature axis reactance circuit is shown in Figure A-4.


Figure $\Lambda-4$
Figure $A-4$ is similar to Figure $A-4$ except $X_{f q}$ is very large (open circuit). Following the previous procedure, we obtain

$$
\begin{align*}
& x_{q}^{\prime \prime}=x_{a l}+\frac{x_{a q} x_{D q}}{x_{a q}+x_{D q}}  \tag{A-18}\\
& x_{q}=x_{q}^{\prime}=x_{a l}+x_{a q} \tag{A-19}
\end{align*}
$$

(GAMRETK

## AIREGEARCH MANHFACTURING LIDMPANY GF ARIZINA

APPENDIX VI
ACMJVE FILTER CONSIDERAITONS
(5 pages)

APS-5286-R
APPENDIX VI

AISI: :EARCH MANUFACTHRING RIMPANY UF ARIZDNA


NGTVE FIIMPR COHSTDERATTON:



(i) Who wavoform to tine vandolo load shoula be sinusoidal.
f) 'mo ixwoform somsed by the VRE: musti be simmoidal.

Vevious: approachos inoluded:
(i) 1 spoed eontrol filtor for roduction of harmonioe refioctart back on the altornator output duc to loan-switehing (rofer (e) skotci, below). This will not complotely satisfy reguiroments (a) anc (b) above because the harmionic content of the output of the goncrator, due to the generator itself, can bo 5 percent.

(b) The VKI could be modified to incorporate a snall filter or a scheme for sensing RMS voltage. This could be accomplished with a relatively small lightweight package.


APS-05286-R
APPENDIX VI
Page 1

## AIRE日EARCH MANUFAGTURING CQMPANY DF ARIZ.INA

A Divinton qe the gaidekt conapohation

This approach satisfied requiroment (b) but not (a). Without knowledge of the dotails of the entire electrical system and the nature of the vehicle load, judgment cannot be made regarding the adequacy of this approach.

A more direct approach which doos satisfy both of tho basic roquirements is placing a filter on the vehicle load linos with sensing leads for the VRE downstrcam from this filtor.


One approach to this filter would be the insertion of reacti.. components in series and parallel with the load. This would moriir. an accurate description of the load and the design becomes quite difincult if the load power factor is variable. furthermo:, this approach is unattractive because this type of filter must andle the funuamental voltage and load current. There.on, si\% ind weight bocome quite large.

IL should be noted that the purpose of the fillur is to ranor the harmonics which, in tilis case, are all odd and total about 7 precent of the fundamental. An effective approach, utilized by the ontractor in production equipment, is to monitor the output and to induce complementary altares on the line to oppose the rarmonien
a Divition of the gapitet curporation

By using an active as opposed to a passive element filter, the overall size, weight, and effectivity can be greatly improved. The block diagram (Figure 1 ) shows the arrangement for an active filter. In this case the harmonic content ( (istortion) is reduced in proportion to the amplifjcation factors $K_{1}$ and $K_{2}$. The prcamplifier, $K_{1}$, i.s in the audio range and easily kept at a low power level. A high open-lcop gain results in a high rejection of the harmonic content. In the power section of this device, the fundamental is not attenuated; the only action of the filter is to oppose the higher harmonics.

Analysis of failure modes show two possibilities. The first and nore probable would be a shorted output. This type of failure results in loss of filter action only, that is, no attenuation of the terminal voltage. In the second type of failure, which is an open circuit, thexe would also be a loss of filter action and a small reduction in tine terminal voltage. The actual change in terminal voltage, for this type of failure, would be a function of the volt-second integral of the transformer. This is a constant which is the sum of the voltsecond integrals of the harmonic content.

The present distortion is a small fraction of the fundaricntal (about 7 percent) and consists of odd harmonics.

In reference to this same logic, the power amplifier will only furnish power necessary to eliminate the harmonic content. This is a relatively small amount and can be accurately expressed by the following relationship:



## AIREGEARCH MANUFACTURING CQMPANY UF AKIZGNA

a division ge the babhetit torponation
where "n" represents the odd harmonics and $R_{L}$ is the bus-bar load. It is assumed that the wave shape is symmetrical about the $0-V$ axis which eliminates the d-c component and even harmonic distortion.

This type of filtering can be made very efficient for several reasons. First, the filter is designed as an impedance-matching device which offers no rejection to the fundamental. This means a reduction in the magnetics since the flux densities are related to harmonic content only. Second, a different type of magnetics can be used, such as square hysteresis loop material. This fact alone will reduce weight and size as well as increase the efficiency of power trinsfer. The effective series resistance which results from this filter will be muci less because the magnetic requirements are far less demanding than for a passive element.

This type of filter has been used in other applications and represents a prover concept.

AIREGEAREH MANUFAITTURING LGMPANY QF ARIZCIFA


## APPENDIX VII

SYSTEMS ANALYSTS
(20 pages)

AIRESEAREH MANUFAGTURING GQMPANY DF ARIZGNA


## SYSTEMS ANALYSIS

System Description - Systems at three power levols were simulated, consisting of the complete BRU, VRL, and speed control. Each component was lincarized about the appropriate steady-state oporating point. 13RU

The BRU unit is described dynamically by deriving linearized perturbation equations about a steady-state operating point. The system under consideration is shown below in Figure 1.


FIGURL 1

The compressor and turbine are described by two maps each. They are corrected-torque ( $Q / \delta$ ) and corrected-weight flow ( $\quad(\sqrt{\theta / \delta}$ ) versus pressure ratio $\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)$ and corrected-speed $(\mathrm{N} / \sqrt{0})$. Differentiation using lower case letters for perturbated quantities yields:

$$
\begin{align*}
q_{c} & =\frac{\partial Q_{c}}{\partial \mathrm{P}_{1}} p_{1}+\frac{\partial Q_{c}}{\partial \mathrm{P}_{2}} p_{2}+\frac{\partial Q_{c}}{\partial \mathbb{N}} n  \tag{1}\\
W_{12} & =\frac{\partial W_{12}}{\partial \mathrm{P}_{1}} p_{1}+\frac{\partial W_{12}}{\partial \mathrm{P}_{2}} p_{2}+\frac{\partial W_{12}}{\partial \mathrm{~N}} \mathrm{n} \tag{2}
\end{align*}
$$

for the compressor and

$$
\begin{align*}
q_{t} & =\frac{\partial Q_{t}}{\partial P_{1}} p_{1}+\frac{\partial Q_{t}}{\partial \mathrm{P}_{2}} p_{2}+\frac{\partial Q_{t}}{\partial N} n  \tag{3}\\
w_{69} & =\frac{\partial W_{69}}{\partial \mathrm{P}_{1}} p_{1}+\frac{\partial W_{69}}{\partial \mathrm{P}_{2}} p_{2}+\frac{\partial W_{69}}{\partial N} n \tag{4}
\end{align*}
$$

for the turbine, assuming $p_{1}=p_{9}$ and $p_{2}=p_{6}$. Two additional equations relate pressures and flow between components; they are:

$$
\begin{align*}
& \mathrm{p}_{1}=\frac{\gamma_{\mathrm{R}}}{(\mathrm{~V} / \mathrm{T})_{1}} \frac{\left[w_{69}-w_{12}\right]}{\mathrm{S}}  \tag{5}\\
& \mathrm{p}_{2}=\frac{\gamma_{\mathrm{R}}}{(\mathrm{~V} / \mathrm{T})_{2}} \frac{\left[w_{12}-w_{69}\right]}{\mathrm{S}} \tag{6}
\end{align*}
$$

$$
\begin{aligned}
& (V / T)_{1}=\frac{V_{1}}{T_{1}}+\frac{V_{9}}{T_{9}}+\frac{V_{11}}{T_{11}} \\
& (V / T)_{2}=\frac{V_{2}}{T_{2}}+\frac{V_{5}}{T_{5}}+\frac{V_{6}}{T_{6}}
\end{aligned}
$$

$\gamma=$ specific heat ratio
$R=$ gas constant
$\mathrm{V}=\mathrm{volume}$
$\because=$ absolute temporature

Contsaing Eq. (2), (4), (5), and (6) yields:

$$
\begin{align*}
& \left(T_{1} S+1\right) p_{1}=\frac{\partial \mathrm{P}_{1}}{\partial \mathrm{P}_{2}} \dot{\mathrm{~F}}_{2}+\frac{\partial \mathrm{P}_{1}}{\partial N} \text { in }  \tag{7}\\
& \left(\tau_{2} G+1\right) F_{2}=\frac{\partial F_{2}}{\partial F_{1}} p_{1}+\frac{\partial P_{2}}{\partial 1 H}:
\end{align*}
$$

- Aly, the turbite, compensor, ane absorkw-icer toraio u ar er...tied by:

$$
n=\frac{1}{\bar{J}} \bar{S}\left[q_{t}-q_{c}-q_{a}\right]
$$

$\therefore=r o t o r i s u r i a$
: = tu! lise ofut to?

$$
\begin{aligned}
& \text { Rpl:.:T: } \\
& \text { Fas. }
\end{aligned}
$$

AIREEEARCH MANUFACTURING GQMPANY GF ARIZロNA
a divigion or the anrrett corpdration

The block diagram illustrated in Figure 2 is the result of combining Eq. (1), (3), (9), and then (7), (8), and (9). An analog diagram is shown in Figure 3.

## Alternator and VRE

The alternator and VRE are represented in block diagram form in Fjgure 4. The system consists of series- and shunt-field loops which influence the alternator voltage output. The series ficld includes a inachine characteristic which internally tends to compensate for alternator load fluctuations. The shunt field circuit is the controi loop which modulates the ampere turns (NI) in an effort to maintain constant terminal voltage. The total of alternator ampere turns is physically constrained within limits. The input to this portion of the system is in terms of the alternator perturbation, $\Delta \mathrm{KVA}$. The corresponding analog computer diagram is shown in Figure 5.

## Speed Control

The speed-control dynamics included in the simulation are given as:

$$
\begin{equation*}
\frac{p_{p}}{n}=\frac{10.5 / 360}{(0.05 s+1)(0.01575+1)^{2}(0.0008255+1)^{2}} \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
p_{p} & =\text { parasitic load change }(\mathrm{KW}) \\
n & =\text { BRU speed perturbation (rpm) } \\
S & =\text { Laplace operator }\left(\sec ^{-1}\right)
\end{aligned}
$$



| pripanio | GM - $4-6 i$ | BLOCK DIAGRAM NASA BRU | A40480 |
| :---: | :---: | :---: | :---: |
| wnitren |  |  |  |
| appmoved |  | AiReseaich Manufacturing Company of Arizona |  |

$\tau$ สะกอI』
FORM P7e3A-1



APS-5286-R
APPENDIX VII
Page 6

| pripanto |  |  | ANALOG DIAGRAM NASA BRU | A40481 |
| :---: | :---: | :---: | :---: | :---: |
|  | GM | 4-67 |  |  |
| Whitien |  |  |  |  |
| approvtio | m | 4-67 | AiResearch Manufacturing Company of Arizona |  |

$--$


$\frac{E_{d / 2}^{\prime \prime}}{E_{g}}$


333

Fn Sn
z~アur


AIRESEARCH MANUFACTURINT C:QMPANY OF ARIZONA
a division dr the garrett corpgration

The parasitic load consists of three $6-\mathrm{KW}$ modules incorporated with negligible deadband or overlap. The analog diagram is shown in Figure 6.

## Analog Computer Results

The analog computer transient analysis was conducted for three power levels. They were the $10.5-\mathrm{KW}$ full-capacity system and offdesign points at 6.0 and 2.25 KW . BRU component parameters at each of these design points are summarized below:

| Net Generator Output, KW | 2.25 | 6.0 | 10.5 |
| :--- | :--- | :--- | :--- |
| Turbine Inlet Temperature, ${ }^{\circ} \mathrm{R}$ | 2060 | 2060 | 2060 |
| Compressor Inlet Temperature, ${ }^{\circ} \mathrm{R}$ | 540 | 540 | 540 |
| Shaft Speec, rpm | 36,000 | 36,000 | 36,000 |
| Compressor Mass Flow, 1b/sec | 0.377 | 0.756 | 1.28 |
| Compressor Inlet Pressure, psia | 6.76 | 13.5 | 22.9 |
| Compressor Pressure Ratio, 1b/sec. | 1.9 | 1.9 | 1.9 |
| Turbine Inlet Pressure, psia | 12.45 | 25.0 | 42.1 |
| Turbine Pressure Ratio | 1.75 | 1.75 | 1.75 |

Results of this study are shown in Figures 7 through 13. These curves show line current ( $I_{a}$ ), terminal voltage ( $E_{t}$ ), alternator ampere turrs (ごNI), speed ( $n$ ), and parasitic load ( $P_{p}$ ) as a function of time following a step-load change. Speed is given in terms of a perturbated quantity where zero corresponds to $36,000 \mathrm{rpm}$ or 100 percent. In each case, the system was subjected to full-load step-changes. A discussion on the computer traces follows.



AP'S-5286-R ,
Page 10



CONTROI. GATN: $=10.5 \mathrm{KW}$ PER 1 PERCENT SPEED ERROR



CONTROL GAIN $=10.5 \mathrm{KW}$ PER 1 PERCENT SPEED ERROR

| Patpanco |  |  | NASA BRU WITH VPE ANDSPEED CONTROL | A40486 |
| :---: | :---: | :---: | :---: | :---: |
|  | UM | 4-67 |  |  |
| waittan |  |  | 10.5. KW SYSTEM |  |
| appmoveo | m,k. | 4-67 | AiResearch Manufacturing Company of Arizona | APS- 5286 |
|  | min. | 4-42 |  | Page 12 |


10.5 KW STEP-LOAD DECREASE



```
CONTROL GAIN 31.5 KW PER 1 PERCENT SPEED ERROR
```

| pmaranti |  |  | NASA BRU WITH VRE AND SPEED CONTROL 10.5-KW SYSTEM | A40488 |
| :---: | :---: | :---: | :---: | :---: |
|  | GM | 4-67 |  |  |
| waitren |  |  |  |  |
| appnoveo | mu | 4-62 | AiResearch Manufacturing Company of Arizona |  |
| renn moper |  |  | $\begin{aligned} & \text { APS }-5286-R \\ & \text { Page } 14 \end{aligned}$ | IGURE 10 |




CONTROL GAIN $=7.0 \mathrm{KW}$ PER 1 PERCENT SPEED ERROR


2.25 KW STEP-LOAD DECREASE

| PnEPaned |  |  | NASA BRU WITH VRE AND SFEED CONTROL 2.25-KW SYSTEM | A40491 |
| :---: | :---: | :---: | :---: | :---: |
|  | GM | 4-67 |  |  |
|  |  |  |  |  |
| whittem |  |  | AiResearch Manufasturing Company of Arizona | $\begin{aligned} & \text { APS-5286-R } \\ & \text { Page } 17 \end{aligned}$ |
| approver | medr | 4-67 |  |  |
| monm miosa. |  |  |  | GURE 13 |

## AIRESEARCH MANLFACTURING GOMPANY OF ARIZONA

## 10.5-Kilowatt System

The system response to instantanecus full-1oad (10.5 KW) change is shown in Figure 7. The maximum speed excursion is equal to 0.9 percent for increasing and decreasing load. Steady-state is attainea within 1.0 sec . following load removal and within 3.2 sec following load addition. The system responds very quickly to load removals because the parasitic load changes to regulate speed without saturation. When full-load is added, the parasitic joad is recucer? proportionally to speed error. fon saturation of the control at 0 Ki, the vehicle response then restanir that of rioper-loop systeri. the transient voltage pulse $\vdots= \pm 50.0$ for a duration of less than 0.08 sec . The steady-state voltage cror is ingerceptinize

Figure 8 illustrates spoed transients following lo.5-kW step-icad decreases, assuming one of the three speed control modules has failed. Initially, the vehicle loar is jo. KH ard :arasitic load is 0 Kif. When the vehicle load is relucta to zero the parasitic load saturates at 12.0 KW, -s the speed is sufficiently large bien the following speed reduction is sufficion= to deman? less thit: 2.0-kt parasitic load, the control functions ir, his moral rancin arriving at a staciostate value of 10.5 kW . Ge swe ? rusomsu is ensistryt with the
 error is well witilis tie 2-boccnt uesicin gral, and the time to attain steady-state is less than 1.0 see.

The effect of control rain js illustraterin Figury g. Each sostem is subjected to a $10.5-\mathrm{KH}$ load conmal. Ghe higher gain systur: (10.5 KW/i percent speed-errer) limits .he raximm speca-error to


 state speed-error is 0.9 peremet comeded with opproximately u. 5 prcent. Seven lif/i porcat spmeterror control a.in appeared to be

```
AS-5286-R
ADPDMJI: YIT
#age 18
```

AIKLSEARLH MAINUFACTURING CDMPANY GF ARIZロNA
A oIvision of thf GAanEt! (DRPORATIUN
atirum wilh rogord to minimum settling time without yielding oroossive speed overshoots. It would be advantageous to fabrivite the breuribara speod control so that this gain is adjustable and an opitmum value is obtained by experimentation with the arecual harciwase.

Limit-cycle operation is shown in Figure 10 with a control gain of $31.6 \mathrm{WW} / \mathrm{l}$ percent speci-cror. Ihis gain is just sufficiert to cause the system to become unstable. The gain margin is, therefore, $31.5 / 10.5=3.0 \mathrm{~kW}$. The period for one cycle is 0.3 sec . which corresponds to a łrequency of 3.33 Hz .

## 2.5- and $6.0-\mathrm{Kil}$ owatt System

Generally, the above comments also apply to the $6 . c-$ and 2.25 KW-systerus. Speed overshoots, voltage fluctuations, and response times at the lower power levels are less than those existing at the 10.5-5iw level. Typical transient responses of the 6.0-kW system are shown in Figures 11 and 12.

Figure 13 illustrates the full-load transiont specd response for the 2.25 -fin system with gains of 10.5 and $2.25 \mathrm{KW} / \mathrm{l}$ percent siocederror. This system is characterized by minor voltage fiuctuations as a result of small-load perturbations. The speed response is reasonably fast when the standard $10.5-\mathrm{Ki} / \mathrm{l}$ percent gain is enployed ami substantially ovordamped and slow with the $2.25-\mathrm{KW} / 1$ percent spuedcontrol gain.

AIREGEARCH MANUFACTURING CDMPANY DF ARIZGNA
A DIVIRION DF THE GARRETT LGRPDRATION

Conclusions

The transient analysis of the speed control, including the effect of interactions between the specd-control and the VRF systems, has been completed and the results are very encouraging. It appears that the system, as presently defined, will meet the design sperification; namely, "Transient frequency excursions shall romain within $\pm 2$ percont of 1200 Hz with a recovery time of 1 sec., with no sustained oscillations, when step-load changes of one per unit-load are rade."

To summarize the results of the study:
(a) For the 10.5-KW system, having a speed-control gain in the range of 10.5 to $7.0 \mathrm{KW} / 1$ percent speed-error, the transient specification can be met.
(b) The $10.5-\mathrm{KW}$ system is the worst-case over the power level range of interest.
(c) Although the specification does not cover speed-control module faults, they were investigated in the study. It was found that the speed excursion remained within 2 percent of the nominal, even though a fault should occur in any one of the three speed-control modules.
(d) The speed-control gain can be increased to about $31.5 \mathrm{KW} /$ 1 percent speed-error before system instability results. However, for speed-control gain values above $10.5 \mathrm{KW} / 1$ percent speed-error, oscillations are sustained for increasing lengths of time.


[^0]:    Integrated bridge, six rectifiers
    3. Field eifect constant current diode. Used Zener failure rate.

[^1]:    

[^2]:    CPS APPLIED ACROSS
    RRENT SHALL BE
    RRENT SHALI
    \% FOR GAIN USING AIEE $\frac{25 \cdot 0}{20}$ - TO BE AT AN AMBIENT OF
    

[^3]:    *Whe asterisk denotes the equation is valid only in the per unit system

