

https://ntrs.nasa.gov/search.jsp?R=19690022279 2020-03-12T03:31:56+00:00Z

NASA CR-72564 APS-5286-R

FINAL REPORT 1200-HZ BRAYTON ELECTRICAL RESEARCH COMPONENTS

Prepared Under Contract NAS3-9427 by AiResearch Manufacturing Company of Arizona

A Division of The Garrett Corporation

for

National Aeronautics and Space Administrat

N69-31657 THRU NUMBER 2 (CODE) NASA CR OR T CATEGORY OR AD N 10P-1

NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration Office of Scientific and Technical Information Attention: ATSS Washington, D.C. 20546

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

NASA CR-72564 APS-5286-R 4

FINAL REPORT 1200-HZ BRAYTON ELECTRICAL RESEARCH COMPONENTS

Prepared Under Contract NAS3-9427 by AiResearch Manufacturing Company of Arizona A Division of The Garrett Corporation March 19, 1969 for National Aeronautics and Space Administration Lewis Research Center

Technical Management

Space Power Systems Division James H. Dunn GARNETT

11

AIREBEARCH MANUFACTURING COMPANY DF ARIZONA

ABSTRACT

The AiResearch Manufacturing Company of Arizona, A Division of The Garrett Corporation, designed and fabricated the electrical components for a 1200-Hz Brayton energy conversion system. These components consist of a high efficiency Rice four-pole brushless 10.5-KW alternator, a voltage regulator/exciter, and a parasitic load-type speed control. Together, these three units comprise the alternator research package (ARP). The alternator was designed with oil-mist lubricated ball bearings. However, the specifications require the minimization of the magnetic load unbalance on the bearings to permit the future application of gas lubricated bearings.

Both series and shunt field control are provided in the voltage regulator/exciter to maintain steady-state regulation within ±1 percent of rated voltage with loads from 10 to 100 percent at 0.75 lagging power factor. The speed control is designed to maintain speed (frequency) regulation of 1200 Hz ±1.0 percent under steadystate conditions.

17

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT CORPORATION

TABLE OF CONTENTS

ALTERNATOR RESEARCH PACKAGE FINAL REPORT

1

t

			Page
	SUMMARY		1-1
1.0	INTRODU	CTION	1-2
2.0	SPECIFI	CATIONS	2-1
	2.1	Alternator Specifications	2-1
	2.2	Voltage Regulator/Exciter (VRE) Specifications	2-2
	2.3	Speed-Control Specifications	2-3
3.0	DESCRIP	TION OF ALTERNATOR	3-1
	3.1	Electrical Analysis of the Alternator	3-7
	3.1.1	Summary of Electromagnetic Force Considerations as Related to Gas Bearing Application	3- 16
	3.2	Mechanical Analysis	3-22
	3.2.1	Rotor Fabrication	3-32
	3.3	Test Results	3-43
	3.3.1	Alternator Research Package Rotor Spin Test Rig	3-43
	3.3.2	ARP Alternator Evaluation	3-43
	3.3.3	Functional Test of the Components	3-50
4.0	DESCRIF	TION OF THE VOLTAGE REGULATOR/EXCITER (VRE)	4-1
	4.1	Series Field Controller (Exciter) Analysis	4 - 5
	4.1.1	Design of the Series Field Controller	4-17
	4.2	Shunt Field Voltage Regulator Analysis	4-19
	4.2.1	Detail Design of the Shunt Field Regulator	4-27
	4.2.2	Detail Circuit Description	4-30
	4.2.3	Worst-Case Analysis	4-35
	4.2.4	Failure Rate Analysis	4-41
	4.3	Mechanical Description	4-52

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

TABLE OF CONTENTS (Contd.)

۰ ۲

ŧ

÷.

1

			Page
5.0	DESCRIP	FION OF THE SPEED CONTROLLER	5-1
	5.1	Design of the Speed Controller	5-7
	5.2	Reliability Study and Failure Analysis	5-18
	5.3	Mechanical Analysis	5-24
6.0	SYSTEMS	ANALYSIS	6-1
7.0	CONCLUS	ION	7 – 1

F

٠

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE DARRETT CORPORATION

LIST OF FIGURES

t

ŧ

		Page
3-1	Alternator Sketch	3-2
3-2	Alternator Research Package Components	3-3
3-3	Rice Alternator	3-4
3-4	Alternator Rotor Assembly, B.R.U.	3-6
3-5	Predicted Alternator Electrical Characteristics	3-14
3-6	Total Loss vs KVA Output B.R.U. Alternator Preliminary Design	3- 15
3-7	Symmetrical Relationship of Windings to Rotor, Four-Pole Rice Alternator	3-18
3-8	Percent Voltage Unbalance versus Negative Sequence Reactance at Various Load Impedances	3-20
3-9	Alternator Research Package Rotor	3-23
3-10	Alternator Research Package	3-25
3-11	System Assumed in Critical Speed Analysis of BRU Alternator Test Package	3-27
3-12	Critical Speed for Alternator Research Package	3-28
3-13	Alternator Research Package First and Second Critical Definition	3-29
3-14	Bearing System Life for NASA BRU Alternator Research Package Using CEVM M-50	3-30
3-15	Bearing Power Loss for NASA BRU Alternator Research Package	3-31
3-16	Alternator Research Package Main Frame Assembly Detail Parts Prior to Brazing	3-33
3-17	Alternator Thermal Analysis Isotherms with Output of 10.5 KW at 0.85 pf	3-34
3-18	Alternator Stator Thermocouple Locations for Research Package and Dynamic Simulator	3-35
3-19	Rotor Poles and Separator Prior to Brazing	3-37
3-20	Alternator Research Package Brazed Rotor Assembly	3-38
3-21	Alternator Research Package Rotor Part No. 699531-1, Serial No. 7X102 Shown in Rotor	3-39
	Spin Test Rig	3-39

ų,

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE BARRETT CORPORATION

LIST OF FIGURES (Contd.)

ı

ł

¢

		Page
3-22	No-Load Saturation Characteristics Alternator Research Package at 100 Percent Speed (36000 RPM)	3-45
3-23	Electromagnetic Test Rig	3-46
3-24	Saturation Characteristics for BRU Alternator Part 518606 Tested 6-27-60	3-47
3-25	Total Flux at the Auxiliary Gap versus Total Field Excitation BRU Alternator Part 518606	3-48
4-1	Block Diagram, Brayton Rotating Unit Voltage- Regulator/Exciter Unit	4-2
4-2	Alternator Electrical Characteristics	4 4
4-3	Series Field Circuit	4-6
4-4	Series Field Wave Forms	4-7
4-5	Current Transformer Magnetizing Current	4 - 1.0
4-6	Series Field Static Control Characteristics	4-12
4-7	Waveforms for Nonsinusoidal Line Currents	4-13
4-8	Series Field Surge Voltage	4-15
4-9	Block Diagram of Shunt Field Regulator	4-22
4-10	Battery Assisted Start Up	4-23
4-11	Switching Regulator	4-24
4-12	Shunt Field Waveforms	4-26
4-13	Shunt Field Regulator Wiring Schematic	4-31
4-14	Field Current and Output Voltage During Start-Up	4-34
4-15	Regulator-Exciter Outline, Voltage, Alternator	4-54
4-16	Regulator-Exciter Assembly, Voltage, Alternator	4~55
4-17	Voltage Regulator/Exciter Assembly	4-56
4-18	Voltage Regulator/Exciter Assembly	4-57
4-19	Voltage Regulator/Exciter Assembly	4-58
4-20	Wiring Diagram (Schematic), Brayton Cycle System	4-59
5-1	Wiring Diagram (Schematic), Control Assembly, Speed, Turbine Generator	5-2
5-2	NASA Proposed Speed-Control Override Circuit	5-4
5-3	Modification Required to Remove Filters	5-18

Ï

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARNETT CONFORATION

LIST OF FIGURES (Contd.)

t

2

5-4	Speed Control, B.R.U.	<u>Page</u> 5 - 27
5-5	BRU Speed-Control Assembly Three Subassemblies Required	
5-6	BPIL Should Control Color	5-29
	BRU Speed-Control Subassembly Front View	5-30
5-7	BRU Speed-Control Subassembly Rear View	5-31

APS-5286-R Page v GARRETT

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRIETT CORPORATION

LIST OF TABLES

1

(

1

		Page
3-1	Alternator Electromagnetic Weights	3-8
3-2	Pole Configuration Effect Upon Harmonic Content	3-10
3-3	Magnetic Circuit Data	2-11
3-4	Series and Shunt Field Characteristics	3-12
3-5	Alternator Losses, Percent	3-13
3-6	Loss Parameter Effects	3-13
3-7	Alternator Long Summary	3-16
3-8	Rotor Material Data After Representative Braze and Heat Treatment Cycles	3-41
3-9	Alvernator Material	3-42
4-1	Field Excitation Requirements	4-3
4-2	VRE Component Tolerances	4-37
4-3	VRE Component List	4-42
4-4	Failure Rate Calculation for Diodes	4 - 4 4
4-5	Failure Rate Calculation for Transistors	4-45
4-6	Failure Rate Calculation for Capacitors	4-46
4-7	Failure Rate Calculation for (Wire Wound) Resistors	4-47
4-8	Failure Rate Calculation for Metal Film Resistors	4-48
4-9	Failure Rate Calculation for Power Resistors and Potentiometers	4-49
4-10	Failure Rate Calculation for Transformers	4-50
4-11	Summary of Failure-Rate Calculations for Voltage-Regulator/Exciter	4 - 51
5-1	Component Data	5-5
5-2	Speed-Control Critical Components (Fail-On)	5-20
5-3	Speed Control Critical Components Operating Characteristics	5 - 21
5-4	Speed Controller Heat Load Analysis	5-26
5-5	Speed Control Drawings (Breadboard Unit)	5-28

GARRETT

ť

 γ_1

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

LIST OF APPENDICES

t.

t

.

Appendix I	Glossary of Terms and Symbols
Appendix II	Drawings
Appendix III	Unbalanced Magnetic Forces
Appendix IV	Voltage Regulator/Exciter Optional Wiring Procedure
Appendix V	Transient Analysis and Voltage Regulation of a Synchronous Generator
Appendix VI	Active Filter Considerations
Appendix VII	Systems Analysis

FINAL REPORT

1200-HZ BRAYTON ELECTRICAL RESEARCH COMPONENTS by AiResearch Manufacturing Company of Arizona

SUMMARY

The electrical components for a 1200-Hz Brayton energy conversion system have been designed and fabricated. The components consist of a brushless alternator having a rated output of 10.5 KW and the electrical power system controls, consisting of an alternator voltage regulator, a series controller, and a parasitic-type speed controller.

The alternator is a 36,000 rpm four-pole Rice machine designed for a power output range of 2.25 to 10.5 KW. The magnetic load unbalance in the alternator has been held to a minimum to permit the future use of gas lubricated bearings. However, the bearings incorporated into this machine are oil-mist lubricated.

The control devices which utilize static components were designed and fabricated as breadboard units. The control units are designed to provide system voltage regulation of ± 1 percent, speed regulation of ± 1 percent, maximum response times for voltage and speed of 1/4 and 1 sec., respectively. The voltage regulator operates in a switching mode. Multiple-speed controllers are provided. The components were designed to operate at the highest practical efficiency.

> APS-5286-R Page 1-1

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARNEYT CORPORATION

1.0 INTRODUCTION

NASA is currently engaged in a program to develop a prototype Brayton energy conversion system. The electrical components, as discussed in this report, were designed and fabricated to facilitate early evaluation of components of this energy conversion system. The purpose of this program is to establish the performance characteristics of an alternator and associated electronic controls which would electrically and magnetically satisfy the needs of a space power conversion system.

This power conversion system utilizes electrical components similar in configuration to those used in previous systems with the exception that the rotor speed and gas characteristics are different. These differences tend to increase the alternator windage losses.

For instance, the system gas pressure, compared to the previous two-spool Brayton conversion system, is approximately four times greater; the gas molecular weight is twice as large, and the speed is three times greater at basically the same power level. These differences result in a need for a rotor design which minimizes the windage loss. The alternator design used is based on the Rice patent. Windage losses are reduced to approximately 30 percent of those which would result were the homopolar induction alternator design used. This latter type of alternator has been used in various power conversion systems developed at NASA-Lewis. The electrical components were designed by the AiResearch Manufacturing Company, A Division of The Garrett Corporation, while the component development is being conducted at the NASA-Lewis Research Center.

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A Division of the garrett conformation

2.0 SPECIFICATIONS

Specifications for the electrical components were established by NASA Contract NAS 3-9427, Exhibit "A", as revised in Supplemental Agreement dated July 6, 1967.

2.1 Alternator Specifications

- (a) Alternator to be radial-gap type with stationary excitation coil
- (b) Alternator to be capable of motoring
- (c) Unbalanced magnetic forces to be minimized
- (d) Rated frequency: 1200 Hz at 36,000 rpm (four poles)
- (e) Maximum operating speed: 43,200 rpm (120 percent of design)
- (f) Continuous rating:

12.6 KVA at 0.85 pf

14.3 KVA at 0.75 pf

(g) Five-second rating:

21.3 KVA at 0.75 pf

- (h) Voltage: three-phase, 120/208 V ±1 percent from 10 to 100 percent load.
- (i) Requirements of MIL-G-6099A (ASG) apply to:
 - (1) Waveform, paragraph 4.5.16, except total RMS harmonic content of line-to-neutral voltage with 10 to 100 percent pure resistive load shall be less than 5 percent
 - (2) Phase Balance, paragraphs 4.5.10, 4.5.10.1, and
 4.5.10.2, except individual phase voltage deviation is
 1.5, 3, and 6 percent as appropriate in paragraph
 4.5.10.1.
 - (3) Output Voltage Modulation, paragraph 4.5.13, except limit is 0.5 percent.

2.2 Voltage Regulator/Exciter (VRE) Specifications - The following paragraphs define the requirements for the voltage regulator/ exciter:

- (a) <u>Voltage Regulation</u> Plus or minus 1 percent for combined
 10 to 100 percent load and ±10 percent speed variation at
 0.75 lagging power factor.
- (b) <u>Voltage Drift</u> The voltage drift is specified as 1.0 V maximum at any fixed load between 10 and 100 percent at 0.75 lagging power factor (voltage to remain within the 2 percent band defined in the preceding paragraph).
- (c) Applicable Requirements of MIL-G-6099A <u>Voltage Excursion</u> - In accordance with Figure 3 of MIL-G-6099A except that the recovery time to within 5 percent of nominal voltage may be 0.25 sec. <u>Voltage Adjustment</u> - In accordance with paragraph 3.3.5.1 of MIL-G-6099A. <u>Short-Circuit Capacity</u> - In accordance with paragraph 4.5.12 of MIL-G-6099A.
- (d) <u>Abnormal Operating Conditions</u> Electrical components shall perform as specified in the following under abnormal operating conditions indicated. Under abnormal system operating conditions, the VRE shall not be the limiting element. The system shall operate for at least 5 sec. at an overload of 21 KVA at rated voltage, 0.75 lagging power factor, applied at rated speed and at stabilized rated-load temperature. At 1800 Hz (1.5 times rated speed) and zero to rated load, the output voltage is to differ from nominal by no more than 5 percent. At 600 Hz (half-rated speed) and zero load, the output voltage is to differ from nominal by no more than 40 percent.

Temperature was not specified for the research VRE package. A temperature range of -25° to +75°C was selected. The upper limit was selected on the basis of an expected future cold-plate temperature of 65°C. The lower limit was chosen arbitrarily, based on the -18°C specifications commonly used for this type of equipment in other space programs.

- (e) <u>Components</u> Components are to be selected to be replaceable with types suitable for flight without circuit changes. Actual hardware is to be fabricated of military components and of high-quality, reliable commercial parts.
- (f) <u>Electrical Interference</u> The VRE shall be designed to meet the requirements of MIL-STD-826.
- (g) <u>Parts Interchangeability</u> All parts shall be interchangeable in accordance with the requirements of paragraph 3.4 of MIL-G-6099A (ASG).
- (h) <u>Packaging</u> The VRE shall be mounted on a chassis attached to standard 19-in. rack panels. Components and terminations shall be readily accessible for modification, repair, and instrumentation. Although the package will essentially be a breadboard, all components shall be based on flight environmental requirements stated herein--notably heat transfer. In subsequent flight models, all heat shall be transferred by conduction to heat sinks which shall not exceed 150°F.

2.3 Speed-Control Specifications

- (a) <u>Speed-Control Type</u> The speed (frequency) control shall be of the parasitic-loading type.
- (b) <u>Frequency Regulation</u> Frequency regulation shall be as specified in the following:
 - (1) Steady-state regulation shall be 1200 Hz ±1 percent for a change in load from 10 percent to full load.
 - Under transient conditions, regulation shall be 1200 Hz
 ±2 percent with a recovery time of 1.0 sec. (the

1,

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

frequency shall return and remain within the 2-percent band specified in paragraph (1)), with no sustained oscillations, when tested under step application and removal of one per unit-load.

- (3) Modulation shall not exceed ±2 Hz under any load condition from 10 to 100 percent, under all environmental conditions. The frequency shall remain within the 2-percent band specified in paragraph (1).
- (4) The drift shall not exceed ±2 Hz at any fixed load from
 10 to 100 percent load. The frequency shall remain
 within the 2-percent band specified in paragraph (1).
- (c) <u>Electrical Interference</u> The speed-control shall be designed to meet the requirements of MIL-STD-826.
- (d) <u>No-Load Losses</u> Special effort shall be made to minimize losses in the control device when the demand for parasitic load is zero.
- (e) <u>Harmonic Distortion</u> Special effort shall be made to minimize the effect of the control device on the harmonic content of the alternator voltage and current.
- (f) <u>Control Characteristics</u> In addition to the frequency regulation specified in paragraph (b) above, the control shall permit the system to start and reach operating speed and shall provide full load to the system for all speeds up to at least 150 percent of design speed to ensure control in case of an accidental overspeed condition.
- (g) <u>Voltage Sensitivity</u> The speed-control sensing device shall be independent of voltage at any steady-state or transient voltage within specifications.
- (h) Parts Interchangeability All parts shall be interchangeable in accordance with the requirements of paragraph 3.4 of MIL-G-6099A (ASG).

(i) <u>Packaging</u> - The speed-control device shall be mounted on a chassis attached to standard 19-in. rack panels. Components and terminations shall be readily accessible for modification, repair, and instrumentation. Although the package will be essentially a breadboard, all components shall be based on flight environmental requirements stated herein-notably heat transfer. In subsequent flight models, all heat shall be transferred by conduction to heat sinks which shall not exceed 150°F.

1

3.0 DESCRIPTION OF ALTERNATOR

The objective in developing this alternator was to create a component for a practical space power system capable of operating on gas bearings for support of the rotating elements. The running gear is designed for low bearing losses and the package includes complete temperature and pressure instrumentation for performance evaluation. This alternator, however, used an oil-mist lubricated ball bearing system. System considerations established these design criteria for the alternator:

- (a) High efficiency (to reduce overall system weight)
- (b) Minimum rotor size (to reduce windage loss and bearing load)
- (c) Maximum reliability

Evaluation of the applicable system specifications and the various design criteria pertaining to the application of this alternator led to the selection of the Rice configuration (Figures 3-1 and 3-2). AiResearch has considerable experience with the fabrication of Rice alternators. The physical configuration of the alternator is shown on Drawings 699650 and 699651, Appendix II.

The Rice alternator is a brushless, nonrotating coil synchronous alternator (Figure 3-3). The stator has a conventional three-phase winding. In the normal synchronous machine, the field winding is on the rotor and produces a multipolar d-c rotating field. The d-c power is brought to the rotor by slip rings or a rectified rotary exciter. Because of its wound rotor construction, the normal synchronous machine is speed-limited.

The Rice Machine also has a d-c multipolar construction. However, to improve the speed characteristics, the field excitation coil is stationary, and the flux is carried to the rotor through two auxiliary

 $^{\prime\prime}$

FIGURE 3-1

, r

.1

 $\overline{}$

ALTERNATOR RESEARCH PACKAGE COMPONENTS

FIGURE 3-2

APS-5286-R Page 3-3

H

ł

t

air gaps at each end of the rotor (Figure 3-1). The north and south pole elements of the rotor conduct flux to the stator windings; the main flux flows through paths of least-magnetic reluctance. The flux is established by the magnetomotive force of stationary excitation coils in the frame of the machine. The magnetically conductive portions of the rotor are separated by a nonmagnetic separator which is primarily a structural element to provide strength, or rigidity, and pole separation in the rotor (Figure 3-4). The separator has secondary functions of windage loss reduction and electromagnetic damping to minimize the flux variations.

The stator laminations are supported in a copper cage to:

- (a) Achieve good heat removal to the frame, which is fluidcooled.
- (b) Minimize flow of flux from the stator to the frame and, thus, reduce the possibility of magnetic unbalanced forces arising due to unsymmetrical flux distribution in the air gap.
- (c) Hold the stack laminations together without the use of bonding cement or back-iron weldment.

Other significant features of the Rice configuration are:

(a) The alternator frame serves both as a structural member and as a part of the magnetic circuit. The frame and end plates have two functions in addition to their structural function. First, they provide the necessary low-reluctance magnetic circuit for the excitation coils conducting the flux around the fields to the flux collectors or auxiliary gaps at each end of the rotor. Second, they provide a means of conducting heat from the alternator parts to the cooling fluids.

- Field coils are located adjacent to the frame and stator, (b) facilitating heat transfer of the field losses. The field or excitation coils at each end of the alternator are simple bobbin-wound coils. Each coil has two sections -- a series section and a control (shunt) section. The series coils provide excitation from current transformers in the leads to This excitation is proportional to load current. the load. The control coils provide excitation from the voltage regulator as necessary to maintain constant voltage regardless of load, speed, or temperature variation in the system. The excitation coils are supported in copper bobbins which provide good heat conduction from the coils to the frame. The copper bobbins also facilitate cooling at the end turns of the stator winding.
- (c) The rotor is a composite structure of magnetic and nonmagnetic materials. Both casting and brazing techniques are readily available for ensuring high strength for this member. The nonmagnetic material between the poles acts as an electromagnetic damper during motor and generator action.

3.1 Electrical Analysis of the Alternator

One of the primary design objectives for the alternator is maximum efficiency. Because of this, the electromagnetic weight of the alternator (Table 3-1) is rather high when compared to lower efficiency machines where minimum weight has been emphasized. To obtain high efficiency, the current densities in the windings must be low. Thus, the heat generation and resultant temperature rises should be low, even at the 21-KVA overload conditions, since the densities at that condition are:

Armature winding current density	9350 amp/in ²
Field current density	2900 amp/in ²

GARRETT

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

TABLE 3-1 ALTERNATOR ELECTROMAGNETIC WEIGHTS

Component	Lbs.
Rotor	10.70
Stator Back-Iron	3.67
Teeth	1.19
Windings	1.88
Field Coils	6.59
End-Bells and Frame	9.75
Core Spacer	1.00
TOTAL	34.78

Another design objective was that the rotor should be small. A minimum-sized rotor is desirable to provide lower windage losses for bearing design considerations. However, in establishing rotor proportion, judgment must be used to allow adequate separation of the rotor poles to maintain an acceptably low leakage permeance in the rotor structure.

The flux leakage was determined by flux plotting. Because the accuracy of these determinations may be in error by as much as 20 percent, tolerance factors of 1.2 and 1.25 were applied to these permeances, respectively. Since the rotor iron is operated at less than 86 kilolines/in² for all conditions except 21 KVA, the design is conservative for all steady-state load conditions. At 21 KVA, the rotor pole and shaft densities are both 100 kilolines/in². These are easily within the capabilities of the excitation system and the selected materials.

Pole Shape Determination - A harmonic analysis of various pole configurations was undertaken, with results as shown in Table 3-2. For rectangular poles, the lowest tabulated harmonic content is 0.268 at 135°, corresponding to a pole embrace of 0.75. For trapezoidal poles with a pole embrace of 0.667, the lowest harmonic content is 0.215 at 120° ±10°. This data is a useful guide to establish a practical pole configuration in conjunction with other criteria. Excessive leakage between the poles in the rotor can be caused by a large pole embrace; thus, in the interest of obtaining the minimum rotor size, it is believed that a pole embrace of 0.667 would be the better choice. Fringing is present from the pole sides up to the stator, causing the effective pole embrace to be higher than 0.667; the more optimum value is approached without incurring the higher rotor leakage.

The evaluation shows that the trapezoidal pole shape is evidently quite effective in reducing harmonic distortion. However, the trapezoidal shape increases the effective air gap and/or tooth saturation because all of the flux from the wide section of a pole cannot enter the correspondingly narrow section of the adjacent pole. Thus, part of the pole flux must traverse axially across the back-iron. This feature is undesirable because the iron stacking factor is only 90 percent; that is, an air gap of 0.1 in. must be traversed by the axial component of the flux for every inch of the axial path.

All factors considered, it was decided that a good compromise would be a trapezoidal pole shape of 120° ±5. This minimizes slot ripple, and the axial flux component in the stator is relatively low.

Magnetic circuit data is presented in Table 3-3 and demonstrates the conservative flux densities expected in the unit operation. A noload saturation voltage of 1.3 p.u. V is shown. Performance above this voltage level was not predicted because magnetizing data for AL 4750 stator iron was not readily available at higher densities. In

POLE CONFIGURATION EFFECT UPON HARMONIC CONTENT

0

Pole Configuration

GARRET

4

Harmonic Distortion

$$= \frac{1}{a_1} \sqrt{a_2^2 + a_3^2} = ---- a_n^2$$

t

I RECTANGULAR

θ	=	100°	0.389
		105	0.356
		110	0.328
		120	0.288
		135	0.268
		140	0.272

II	TRAPEZOIDAL	$\begin{array}{c c} & 120^{\circ} - \alpha \\ \hline & 120^{\circ} \\ \hline & 120^{\circ} \\ \hline & 120^{\circ} + \alpha \end{array}$
	120° ±1.735°	0.2837
	120° ±5.0°	0.2614
	120° ±7.5°	0.2380
	120° ±10.0°	0.2150

GARRETT

4

AIRESEARCH MANUITACTURING COMPANY OF ARIZONA

TABLE 3-3

MAGNETIC CIRCUIT DATA--KILOLINES PER SQUARE INCH

Load Conditions	No-Load 1.0 p.u. V	No-Load 1.3 p.u. V	7210 VA 0.85 pf	12,600 VA 0.85 pf	14,300 VA 0.75 pf	21,300 VA 0.75 pf
Main Gap	33.5	-	34.8	36,5	39.2	42.5
Teeth	75	-	78	81.8	87.9	95 . 3
Back-Iron	59	-	61.1	64.5	68.9	75
Pole	61.5	86.2	70.1	79.3	86.5	100
Shaft	59.4	86.4	68.5	78.4	85.5	100
Auxiliary Gap	24.1	33.4	27.8	31.8	34.6	40.5
Frame	57.8	80.1	67.5	77.5	84.6	100

the determination of pole flux under load conditions, only 93 percent of the direct axis voltage drop was subtracted from the total internal generated voltage. This conservatively allowed for the possibility of flux wave distortion at high saturation density in the teeth. In establishing flux density in the back iron, pole flux was used. Since low weight was not a prime requirement, the refinement of subtracting the armature winding leakage flux in the back iron (due to slot permeances) was neglected. This provided a more conservative design.

Series and shunt field characteristics for the stator are shown in Table 3-4 for the load and short-circuit conditions.

Criteria for the selection of the structural and magnetic materials were availability, previous successful usage, and compatibility with the design for high efficiency. GARNETT

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

TABLE 3-4 SERIES AND SHUNT FIELD CHARACTERISTICS

Load	Field Series	NI Shunt	Load Amps I _L	Watts Series Shunt	
					1000 Birring - 11000 Birring
No-Load	0	1102	0	0	35.4
3 p.u. short circuit	3300	0	105	300	0
7,210 VA (0.85 pf)	629	995	20	10.8	29
12,600 VA (0.85 pf)	1100	1036	35	33.2	31.3
14,300 VA (0.75 pf)	1250	1194	39.7	43	41.7
21,300 VA (0.75 pf)	1860	1650	59.2	95	79.5

An evaluation of certain variations in the alternator configuration was undertaken to determine if some trade-offs could be established to provide a relatively constant efficiency versus load. Some drop in efficiency at light loads is unavoidable in view of the relatively fixed iron losses. For the design under consideration, losses expressed as a percent of the output are shown in Table 3-5.

Variations in the configuration of the alternator were evaluated for areas where certain losses are predominant, such as back-iron, tooth, and pole losses. The effects are described in Table 3-6.

Predicted Alternator Performance- Figure 3-5 presents the predicted electrical characteristics of the alternator design at no-load, short-circuit, overload, and at three design-point conditions. Table 3-7 gives the calculated alternator losses in watts and the electromagnetic efficiencies, predicted from the loss analysis for this design, at various load conditions. Total losses plotted against the KVA output are shown in the graph of Figure 3-6. It can be seen that there is potential margin in the design efficiency which is in the range of

ļ

4

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

TABLE 3-5 ALTERNATOR LOSSES, PERCENT

	2.25 KW	10.7 KW
Back-Iron	3.690	0,890
Tooth	2.044	0.542
Armature Copper	0.356	1.600
Fields	1.070	0.598
Pole Face	5.780	1.400
Strays	0.266	1.170
TATOT	13.206	6.200

TABLE 3-6

LOSS PARAMETER EFFECTS

Loss		Effect
Parameter	Action	
Tooth	Reduce to 1% at 2.25-	Increases copper losses by 0.7
	KW load condition	percent. Creates net efficiency
		loss of 1.33 percent at 10.7 KW.
		Almost doubles the temperature
		rise, reducing reliability and the
		expected winding life.
Back-Iron	Increase section	Little or no reduction in losses
		when the theoretical core density
		is reduced below 60 kilolines (de-
		sign value). Adds weight. In-
		creases thermal conduction path and
		results in a greater temperature
		rise.
Pole Face	a. Bridge slot openings	Reduces slot ripple
	b. Increase main gap	Increases excitation power
		requirement
	c. Increase pole sur-	Reduces the damping of the magnetic
	face resistance	variations due to eccentricity of
		the rotor.

APS-5286-R Page 3-13

PER UNIT VOLTS

 $I_B = 35 \text{ AMPS}$

PREDICTED ALTERNATOR ELECTRICAL CHARACTERISTICS

FIGURE 3-5

APS-5286-R Page 3-14

TOTAL LOSS - WATTS

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

FIGURE 3-6

APS-5286-R Page 3-15

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

TABLE 3-7

ALTERNATOR LOSS SUMMARY (All Losses in Watts)

Loss	No-Load	2.650 KVA 0.85 pf	7.210 KVA 0.85 pf	12.600 KVA 0.85 pf	14.300 KVA 0.75 pf	21.300 KVA 0.75 pf
Back-Iron	80	83	85	96	118	114
Teeth	43	46	51	58	71	86
Armature Copper	c 0	8	56	171	220	490
Field Copper	17	24	37	64	84	174
Pole Face	126	130	136	150	172	203
Stray Load	0	6	41	126	162	360
Total	266	297	406	665	827	1,457
Input	266	2547	6536	11,370	11,530	11,460
Output	0	2250	6130	10,700	10,700	16,000
E.M. Efficienc	y 0	υ.88 3	0.938	n .94 1	0.927	0.916
System Rating, KW	0	2.250	6.000	10.500		

0.85 to 0.92 E.M. efficiency over a power-output range of 2.25 to 10.7 KW, respectively.

3.1.1 <u>Summary of Electromagnetic Force Considerations as Related</u> to Gas Bearing Application - The ultimate use of this alternator is in the BRU, which is gas-bearing-supported. The primary concern, therefore, is that the gas bearings are capable of supporting not only the dynamic loads but also the electromagnetic loads. Studies of the

> APS-5286-P Page 3-16

> > $\overline{}$

unbalanced electromagnetic forces have now been completed for the following conditions:

- (a) Normal alternator operation at full speed
- (b) Unbalanced electrical loads
- (c) Short-circuit conditions
- (d) Operation as a motor

It has been concluded that bearing loads due to magnetic unbalance should not be a problem within the normal range of operating speeds.

Evaluation of the Effect of Unbalanced Alternator Electrical Load - The studies to date on unbalanced magnetic forces have been based on the assumed worst-case condition of no-load, 1.3 p.u.V. A survey was conducted of the effect of unbalanced electrical loads on the machine in accordance with MIL-G-6099, paragraph 4.5.10.1.

The symmetry of the machine was first evaluated. The location and distribution of the stator windings in the four-pole alternator is designed so that, when energized, they create a symmetrical magnetomotive force (MMF). With Figure 3-7 considered as typical of the machine under consideration, it may be noted that even if an unbalanced load is applied to the three-phase winding, symmetry is still maintained with respect to the rotor, and this is true for any position of that rotor. Each phase thus creates symmetrical MMFs around the rotor, but variations in load in the phases will vary the total MMF in the relative windings. Thus, it may be deduced that there will be no significant magnetic unbalance because of symmetry and, therefore, the magnitude of the MMFs in the windings at unbalanced load conditions is the important consideration.

MMF magnitudes were determined by the vectorial method for symretrical components and then compared to known balanced-load conditions.

> APS-5286-P Page 3-17

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

t

SYMMETRICAL RELATIONSHIP OF WINDINGS TO ROTOR. 4-POLE RICE ALTERNATOR

FIGURE 3-/

Since the amplitude of the resultant MMF of a symmetrical three-phase system is 1.5 times the amplitude of a single-phase system, the inphase sum of the vectors of the unbalanced system does not exceed unity and, thus, does not exceed the MMF at rated balanced-load.

Since the rated balanced-load condition is not the "worst-case" condition for electromagnetic unbalance, it can be confidently concluded that unbalanced electrical loads will have much less effect upon the gas bearing system than the no-load, 1.3-p.u.V condition previously reviewed.

Effects of Negative Sequence Reactance on Voltage Unbalance with Unbalanced Loads - The effect of unbalanced load on unbalanced voltage as a function of negative sequence reactance was investigated, and the results are shown in Figure 3-8. The method of solution utilized unbalanced load impedance rather than unbalanced load currents, and in consequence a slightly optimistic result is presented. This method avoided the use of a difficult iterative analysis, yet provided adequate results.

The maximum permissible value of X_2 , the negative sequence reactance, is 0.3 p.u. or 2.38 X_1 , where X_1 is the armature winding leakage reactance. While this appeared to lie in the range of X_2 attainable in solid pole-face machines without the use of damper bars, a test on the ARP resulted in an X_2 value of 0.38 p.u. Unless absolutely necessary, the use of pole-face dampers should be avoided in order to simplify construction of the unit. However, if it is determined that the voltage unbalance is higher than anticipated, pole-face dampers can be added without much difficulty to overcome the problem. Motor starting and unbalanced magnetic forces are two other considerations that could also require rotor modification to include damping.

PERCENT VOLTAGE UNBALANCE VS. NEGATIVE SEQUENCE REACTANCE AT VARIOUS LOAD IMPEDANCES

FIGURE 3-8

Evaluation of Electrical Short-Circuit Effects on the Electromagnetic Forces Imposed on the Bearings - Under conditions specified by MIL-G-6099, paragraph 4.5.12, at 3-p.u.V short-circuit current, the flux in the main air gap is proportional to the voltage drop $(I_{sh.c}Z_a)$ in the armature winding and approaches 50 percent of rated voltage. Auxiliary air-gap flux under the same conditions is increased because the field winding ampere-turns are almost at the maximum value, and leakage flux is also a considerable portion of this air-gap total flux at short-circuit. In the analysis of the alternator, 1624 field ampere-turns are present at short-circuit. At overload conditions, 1755 ampere-turns are present at 21.3 KVA, 1.0 p.u.V.

Thus, it may be concluded that the short-circuit condition does not represent an electromagnetic force problem for the bearings and will be considerably less severe than the no-load 1.3 p.u.V case chosen.

Evaluation of Electromagnetic Forces on the Bearings Due to Operation of the Alternator as a Motor - Initial studies of the electromagnetic effect on the loading of the gas bearings have indicated that, when utilizing the alternator as a motor for starting purposes, loads were established as follows:

Main flux gap	2.3 lbs.
Auxiliary flux gaps	0.54 lb. each

The above represents a distributed load, per bearing, of 1.69 lbs. Assumed conditions were as follows:

- (a) Across-the-line start at 600 Hz and rated volts per cycle i.e., 60 V
- (b) No eddy-current damping
- (c) Rotor is considered stationary
- (d) 0.002-in. magnetic rotor eccentricity

One additional check-point was taken at a low rotational speed, and the loads indicated a diminishing trend as was expected. Further studies will be undertaken in this area, and these will include various starting frequency levels. However, it is considered that the initial trends, as established, signify that bearing forces should not create problems of operation during motor-start conditions.

Motoring Start Capability - The performance of the MTU as a motor was investigated. Under locked-rotor conditions, the torque was 5 to 7 lbs.-in. at 35 amps stator current, 16.5 V a-c, 400 Hz. The torque variation was due to rotor saliency.

This data can be projected to show 34 lbs.-in. at rated volts per cycle (40 V, 400 Hz) with stator current of 83.5 amps (2.38 p.u. based on 35 amps rated-load current). This would indicate that the alternator, as a motor, would perform much more satisfactorily than initially expected.

3.2 Mechanical Analysis

Dynamic Analysis of the ARP (Critical Speed Analysis) - The rotor of this machine (Figure 3-9) is a furnace-brazed bimetallic, solidmetal part having a smooth, compact configuration possessing stiffness and strength required for this rotational speed and bearing application.

Ball bearings were selected on the basis of digital computer analysis. The bearings should meet the design objective of a TBO of 300 hrs. minimum when using an oil-mist lubrication (MIL-L-7808). The major characteristics of the bearings are:

Bore diameter	25	mm
Outside diameter	47	mm

ŧ

4

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

٠

· · · · · · ·

ALTERNATOR RESEARCH PACKAGE ROTOR

FIGURE 3-9

12 mm Width 13 Number of balls 1/4 in. Ball diameter 52-53 percent of ball diameter Inner-race curvature 52-53 percent of ball diameter Outer-race curvature 20° Contact angle Consumable-electrode vacuum-Ring and ball material melted M-50 tool steel Iron-silicon-bronze, silver-Separator material plated

The axial length of the main and auxiliary flux gaps, rotor flux leakage considerations, and requirements for instrumentation and bearing supports defined the bearing center-to-center distance and acted as restraints in analysis of critical speed performance for the shaft. The stator end-plates were utilized to mount the speed sensing and orthogonal proximity probes and to mount the bearing carrier supports.

Operating clearances at the main and auxiliary flux gaps (Figure 3-1) were designed to be 0.020 in. A limited radial travel of 0.002 in. was allowed between shaft and stator centers. This minimized the unbalanced electromagnetic loads on the bearings, yet imposed design restraints on the method of mounting the bearings.

Figure 3-10 presents a cross-sectional view of the alternator research package (ARP). The unit consists basically of the same alternator electromagnetic configuration and cooling system that is to be utilized in the Brayton rotating unit (BRU) but mounted on oil-mistlubricated ball bearings. A buffer seal arrangement at the rotor cavity and an external gas supply fitting is provided so that BR alternator cavity ambient conditions can be simulated during alternator performance evaluation. Drawings of the bearings and seal arrangement are included in Appendix II. The ARP is driven with a turbine assembly

FOLDOUT TRANE

u

FULDUUT

. . . .

through a special, balanced coupling as shown in Figure 3-10. This coupling is detailed in Drawing 699667, Appendix II.

The hole through the axial center of the alternator rotor simulates the tie-bolt hole, which is required in the BRU. A nonmagnetic tie-bolt is used in the BRU to avoid the magnetic leakage that a magnetic bolt would create.

The elastic and mass models of the rotating assembly used for the critical speed analysis are shown in Figure 3-11. The rotating assembly critical speeds plotted as a function of bearing resilient-mount spring-rate are shown in Figure 3-12. This shows that the use of 20,000-ppi resilient mounts at each bearing mounting will permit operation at the design operating speed of 36,000 rpm. Bearing loads at 36,000 rpm, with the 20,000 ppi resilient mounting system, are shown to be in the order of 5 to 7 lbs. at an assumed rotor c.g. eccentricity of 0.0002 in. (Figure 3-13).

The bearing system life, B₁, for a preferred preload of 30 lbs., a 6.6-lbs. unidirectional radial load per bearing, and dynamic loads of 5 to 7 lbs. is shown to be in excess of 2400 hrs. (Figure 3-14). The horsepower loss per bearing under these conditions (Figure 3-15) is approximately 0.215. The bearing requirements are shown in AiResearch Source Control Drawing 358498, Appendix II.

The proposed carbon-face contact seal for the alternator package application is shown on AiResearch Source Control Drawing 699652, Appendix II.

<u>Thermal Analysis</u> - A thorough thermal analysis was performed on the alternator research package. Journal bearing heat losses utilized the auxiliary gaps to transfer their shaft heat, by convection, to the end-plates. Rotor heat was removed at the main gap. Windage and convection shields were attached to the inside of the end plates to direct

¢

ļ

ł

t

 \sim

(**1**) NOTES:

GENERATOR SPEED RPM x 1)⁻¹ 17 **-** -

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

APS-5286-R Page 3-29

4

 \square

DEFINITION

GARRETT

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

APS-5286-R Page 3-31

П

the heat to the flux gaps mentioned. The cooling jacket around the stator was thus employed to remove the generated waste heat and also limit the heating of the stator coils to safe operating levels.

The liquid-coolant heat exchanger utilized for cooling the alternator consists of a double helix machined onto the outer frame assembly of the alternator stator (Figure 3-16).

The coolant passage cross-sectional dimensions are 0.20 in. wide by 0.25 in. deep and the thread lead is 0.667 in. Each helical passage is independently supplied with coolant to provide the required coolant system redundancy.

The specified coolant is Dow-Corning 200, blended to yield, at 770°F, a viscosity of 2.0 centistokes. The recommended coolant flow rate, determined from heat-transfer analysis on the BRL, is 0.12 lb./ sec. Estimated pressure drop, including inlet and discharge disturbances, is 7.5 psi.

Results of the thermal analysis are presented in Figure 3-17. Based on these results, thermocouple locations in the ARP were assigned as in Figure 3-18.

3.2.1 <u>Rotor Fabrication</u> - The major problems encountered during the fabrication of the alternator were the development of a satisfactory braze technique for the rotor and an acceptable heat-treatment procedure.

In its final form, the rotor is a solid structure made by brazing three separate pieces together. Figure 3-4, SKP 18036, depicts the rotor and shows the nonmagnetic metal separator (Inconel 718) that is brazed to the two magnetic (SAE 4340) pole pieces. As shown, the mating surfaces have a complex shape, and development of the proper

GARRETT

•

M

,

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

¢

I

n

ALTERNATOR RESEARCH PACKAGE MAIN FRAME ASSEMBLY DETAIL PARTS PRIOR TO BRAZING

FIGURE 3-16

ALTERNATOR WINDAGE LOSS TURBINE JOURNAL BEARING LOSS COMPRESSOR JOURNAL BEARING LOSS ALTERNATOR COOLANT - DOW CORNING 200 0.12 LB SEC COOLANT FLOW RATE 70°F COOLANT INLET TEMPERATURE

FIGURE 3-17

ALTERNATOR THERMAL ANALYSIS ISOTHERMS WITH OUTPUT OF 10.5 KW AT 0.85 PF

A33193. Rev.1

45 WATTS

45 WATTS

APS-5286-R Page 3-34

.

GARRETT

Į

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

FIGURE 3-18

ALTERNATOR STATOR THERMOCOUPLE LOCATIONS FOR FESEARCH PACKAGE AND DYNAMIC SIMULATOR •

1

,

ŧ

1

١

ير ا

¢

 $\overline{}$

APS-5286-R Page 3-35

brazing technique was required. In this respect, metallurgical and process problems were resolved and sound rotors were produced.

The rotor pole pieces are machined from bar stock. The Inconel separator is first cast and then finish-machined to match the pole pieces using the "Elox" process. The three parts of the rotor, prior to brazing, are shown in Figure 3-19. The brazed rotor prior to final machining is shown in Figure 3-20. Figure 3-9 shows a typical spin test rotor after final machining. Spin testing (on the test rig, Figure 3-21) at speeds up to 50,000 rpm is used as a method of determining braze integrity.

A considerable effort was expended in developing the brazing procedure. Sample parts were prepared and brazed in accordance with a schedule of different techniques. These parts were subsequently sectioned to permit inspection of the integrity of the braze for evaluation of the process.

To determine the heating and cooling cycles required for brazing the rotors, a dummy assembly was prepared. This was made of SAE 4340 bar-stock identical in size and shape with the braze assembly. The dummy assembly was then provided with thermocouples at eight locations throughout its mass. It was run through a trial cycle in the brazing furnace. During the entire cycle, an eight-point recorder continuously monitored and recorded the temperatures. Since the furnace used was of the vacuum-hydrogen-purged, sealed-retort type, very close control could be maintained over the rate of heating and cooling by regulating the flow of hydrogen purge through the sealed retort as well as by controlling the furnace heaters. Response time of the heavily thermocoupled dummy assembly determined the heating rates to which actual assemblies would be subjected. The spread between readings of the eight thermocouples monitoring the temperatures was held to ±10°F.

, [

11

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

ROTOR POLES AND SEPARATOR PRIOR TO BRAZING

FIGURE 3-19

APS-5286-R Page 3-37

n

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

ŧ.

1

ţ

¢.

 $\overline{}$

ALTERNATOR RESEARCH PACKAGE BRAZED ROTOR ASSEMBLY

FIGURE 3-20

M-1720.

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT CORPORATION

ALTERNATOR RESEARCH PACKAGE ROTOR PART NO. 699531-1, SERIAL NO. 7X102 SHOWN IN ROTOR SPIN TEST RIC

FIGURE 3-21

From metallurgical examination and spin testing of sample rotors, a process specification was developed. Briefly, the specification calls for preparation of the braze joint surfaces of all three pieces by a steel grit blast. They were then given a nickel-plated flash, which was followed by plating with 0.0002-in. electrolytic gold. Due to its excellent wetting and strength characteristics for the type of alloy under consideration, Palnioro-7 was used for the braze alloy. Pieces of the alloy, formed from foil, were preplaced over the entire joint area prior to assembly of the rotor pieces. Intimate fit of the foil to the Eloxed joint surfaces, and of the pieces to each other, was accomplished by subjecting the three assembled parts to the force of a hydraulic press. Additional filler alloy in the form of wire and powder supplemented the in-joint foil.

The investigation into the rotor heat treatment required to produce satisfactory rotors involved some seven different heat-treat cycles. These cycles ranged over the austenizing temperature range of the 4340 material. It was determined that the length of time at 1200°F during the heat-treat cycle was a critical factor. Too short a time at this temperature allowed a significant amount of austenite to be retained at room temperature, which was then transformed into martensite or bainite. The resultant structure was notch-sensitive and subject to crack propagation.

To summarize, the brazing and heat-treat sequence involves the following steps:

- (a) Heat to 1980°F at 350 to 400 deg/hr.
- (b) Hold at 1980°F for 15 min. brazing time
- (c) Furnace-cool to 1700°F at 200 deg/hr.
- (d) Furnace-cool to 1400°F as fast as the furnace will permit
- (e) Hold at 1400°F for 5 hrs. minimum heat-treat time for Inconel 718

- (f) Furnace-cool to 1165°F at 100 deg/hr.
- (g) Hold at 1165°F for 8 hrs. heat-treat time for wrought 4340
- (h) Rapid-cool to room temperature

Table 3-8 indicates the latest available data obtained on the rotor materials following subjection to representative braze and heat-treat cycles. In the case of the wrought 4340, the heat-treat cycle was generated by sample test to provide the results tabulated. Minimum rotor requirements are based upon design analysis, experience in braze development, and the stresses to be incurred in overspeed tests (50,000 rpm). The overspeed tests are required for quality control purposes.

Materials selected for the alternator construction are tabulated in Table 3-9.

TABLE 3-8

ROTOR MATERIAL DATA AFTER REPRESENTATIVE BRAZE AND HEAT TREATMENT CYCLES

	Minimum Rotor Requirements	Wrought <u>4340</u>	Cast Inco 718
Retained Austenite - %	1.0	0.3	-
Yield Strength - ksi	50	65.4	110
Ultimate Strength -ksi	100	114.4	143.6
Elongation - %	10	23.5	11.0
Hardness - Rockwell C	15-20	17-18	-
Notch Sensitivity -			
Charpy V - ftlb.	20	22-24	-
Heat-treat		8 hrs. at	5 hrs. at
		1165° ±15°F	1400°F plus
			8 hrs. at
			1165°F

TABLE 3-9

¢

t

n

Component	Material	Basis for Selection
Frame and End Plates	Annealed Ingot Iron	High saturation-density at relatively low magnetizing intensity; good availability.
Rotor	4340 Nickel Chrome Alloy Steel and Inconel 718	The 4340 has desirable magnetic and struc- tural properties. The nonmagnetic Inconel 718 is a good thermal match for use in this bimetallic structure. Previous good experi- ence in furnace-brazing Rice rotors of smaller size using these materials was an all-important factor in this selection.
Laminations	AL* 4750, 0.004 in.	This 48 percent nickel alloy was selected to obtain low tooth and core loss. Since saturation density is lower than for sili- con steels, a weight disadvantage is incur- red. Laminations were treated to produce a No. 11 oxide film.
Magnetic Wire	Heavy ML Insulated Copper	Class 220°C insulation provides reliable, long-life operation with good margin for thermal overloads.
Stator Winding Varnish	Westinghouse Doryl B109-3	Class 220°C varnish with good build and toughness.
Field Coil Impregnant	Epoxylite 108	Class 180°C impregnant. Successfully used in similar applications.
Slot Insulation	Triple Ply (3-3-3) of Nomex, H-Film, and Nomex	Class 220°C materials with good physical and dielectric properties.
Top Stick		Micarta Doryl laminate

*Allegheny Ludlum

Figure 3-2 shows the ARP disassembled. The calculated weight of the electromagnetic components of the ARP is tabulated in Table 3-1.

3.3 Test Results

By contract, the usual component development tests would be performed by NASA rather than by the contractor. Under these conditions, it was also the intent of NASA to match the alternator with the first VRE and speed-control. However, to assure proper functioning of the components, certain functional tests were performed.

3.3.1 <u>Alternator Research Package Rotor Spin Test Rig</u> - A simple test rig (Figure 3-21) utilizing antifriction bearings for support was designed and fabricated for rotor spin testing. This rig was designed to accommodate all rotors, whether for BRUs or the research package. Before use in machines, all rotors were subjected to this spin test to demonstrate integrity. Overspeed of 50,000 rpm subjects the rotor to approximately twice the design stress levels and was used to prove rotor integrity.

3.3.2 <u>ARP Alternator Evaluation</u> - Prior to the system tests using the Alternator Research Package, the voltage-regulator/exciter, and the speed control, a performance scan test was run on the ARP alternator unit. To obtain an early assessment of the electromagnetic performance of the alternator components, a magnetic test unit (MTU) was fabricated early in the development program. The stator, field coils, and rotor were magnetically the same as their counterparts in the ARP and BRU. The frame and end-plates were magnetically similar to the ARP and BRU counterparts, but differed physically because of design simplifications. Low-speed bearings were substituted for the oil-mist or gas bearings.

The load and short-circuit characteristics for the ARP are shown in Figure 3-22 which compares the test data with the design predictions. These tests reveal appreciable differences between the predicted ARP alternator performance and the results of low-speed tests undertaken previously on the MTU (Figure 3-23). The saturated no-load voltage obtained with the MTU (Figure 3-24) was 1.82 p.u. as compared to 1,4 for the ARP (30-percent low). The no-load performance of the ARP was rechecked at 36,000 and 3600 rpm to rule out the possibility of test-meter error and also to determine if there was a speed effect on saturation voltage due to poor interlamination resistance of the stator stack. Results indicated that initial saturation data results for the ARP were valid and also that the speed effect was slight. At the same time, a no-load saturation test was again conducted on the MTU, using different instruments. These results confirmed the original MTU value. In addition to the above-mentioned dynamic tests, static tests were made to obtain a flux survey of the machine. These tests check the accuracy of the leakage flux calculations. Results showing the total flux crossing the auxiliary gap plotted against excitation are shown in Figure 3-25. Hence, it was concluded that there were, in fact, performance differences between the MTU and ARP magnetic systems.

A review of possible causes for the indicated discrepancy disclosed the following three items worthy of consideration:

(a) The rotor used in the MTU was one of the first three ever made. Although defective in the brazed joint, the rotor had been satisfactorily heat-treated and considered safe to spin in the MTU test fixture up to 6000 rpm. The ARP rotor had been subjected to a revised heat treatment, then finish-machined. Metallurgical examination of later rotors (double-braze group) showed that following the second braze cycle, approximately 8 percent austenitic iron had been

ARMATURE SHORT CIRCUIT CURRENT -- AMPS

Page 3-45

ELECTROMAGNETIC TEST RIG

FIGURE 3-23

1

APS-5286-R Page 3-47

 \square

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE BARRETE CORPORATION

TOTAL FLUX AT THE AUXILIARY GAP

 \Box

FIGURE 3-25

retained. To obtain removal of the retained austenite in the ARP rotor would have required tempering. Since the rotor had been finish-machined, tempering was not attempted because it was believed that distortion might occur. A cold-soak to -30°F for 1 hr. and subsequent heating to +350°F had been undertaken in order to physically stabilize the rotor as much as possible with minimum distortion.

- (b) Stator laminations had been heat-treated in two groups, and the MTU and research package stacks differed in this respect. Poor annealing or handling abuse during stacking could have affected the performance.
- (c) Investigation of the laminations in the two groups also indicated that the insulation resistance of the No. 11 film was poor, particularly on those representative of the ones used in the research package.

Because all of the above possible causes were determined on the basis of the tests conducted on the ARP, further investigation and corrective action was initiated as follows:

<u>Rotor</u> - To determine the effect of retained austenite, the backup rotor, ARP Serial No. 2 (with identical fabrication processes and heat treatment) was adapted to fit the MTU. Comparison check runs were made. (A replacement rotor is in process for the delivery ARP. Note that in Section 3.2.1 in the discussion of the rotor heat treatment, processing was established for all future rotors, insuring the percentage of retained austenite is held to an acceptably low level.)

These tests showed that the Serial No. 2 rotor had a saturation voltage of only 1.63 p.u. compared with 1.82 for the original MTU rotor. Tempering of Serial No. 2 rotor at 1200°F for 2 hrs. was then successfully attempted with only slight growth or distortion of the part. When the Serial No. 2 rotor was again tested in the MTU, the

saturation voltage increased to 1.76 p.u. This indicated that the basic cause of poor performance (low saturation voltage) was austeniteretention in the rotor. This problem should not exist in future units.

Stator Laminations - Future stator laminations will receive a high-temperature insulating film treatment in lieu of the No. 11 oxide film originally specified.

With the design and fabrication of the ARP completed and the unit due to be delivered, the ARP was shipped to the NASA-Lewis Research Center where development tests could indicate other areas of possible deficiency in that unit. In its present condition, the ARP is expected to display a lower overall efficiency than predicted, and additional excitation power will be required at the 21.3-KVA overload condition. A replacement rotor to correct these deficiencies will soon be available for installation in the ARP.

3.3.3 <u>Functional Test of the Components</u> - Prior to the acceptance of the alternator research package, the VRE and speed-control were connected with the ARP and briefly checked to assure compatibility between the components. This could not be determined conclusively, however, because of the filter problem noted in the speed-control section. When the VRE and the alternator were connected and the speed-control disconnected, the operation was stable. When the speed-control was connected without filtering, there was some interaction between the VRE and the speed-control at conduction angles near 90° due to the transient noise generated. Proper filtering probably would remove this interaction.

The VRE and the alternator were stable when an air turbine drive system was used. The speed control demonstrated capability of attaining the specified limits of 1200 Hz ±1 percent from zero to 10.5 KW with 0.75 pf lagging vehicle load. It cannot be concluded from this,

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

however, that the entire system will be stable when operated with a much stiffer drive system.

<u>ARP Acceptance Test</u> - The ARP was operated through the entire speed range while the bearing temperatures, vibration levels, and operational characteristics were observed. The acceptance test was witnessed and approved by NASA representatives. Included in the tests were a critical speed survey, 30 min. operation at the design speed of 36,000 rpm, and 10 min. operation at 120-percent speed (43,200 rpm). During these tests, temperatures and vibration levels were recorded.

4.0 DESCRIPTION OF THE VOLTAGE REGULATOR/EXCITER (VRE)

The voltage regulator/exciter is designed as a breadboard unit utilizing high reliability components. It is designed for maximum flexibility during development testing and includes such features as provisions for either internal or external voltage sensing and a removable series field module.

A block diagram of the VRE and of its loops is shown in Figure 4-1. This diagram is also used to define the major symbols used in this report. Capital letters denote d-c or rms quantities, as appropriate, and lower case letters denote instantaneous quantities.

For all specified lagging load conditions the excitation provided by the series field is less than the total required alternator excitation. The shunt field regulator supplies the required incremental excitation upon demand as determined by the voltage loop. Operation at leading power factors, when the series field excitation may be in excess of the total requirement, is not within the capability of this system.

Table 4-1 is a summary of the alternator field excitation requirements. This information is derived from the predicted alternator performance curves shown in Figure 4-2. Total excitation requirements at short circuit and various other operating points are obtained directly from the graph. The available series field excitation is linearly extrapolated from the short-circuit requirements, and the difference is then assigned to the shunt field.

It may be noted that, for example, at 12.6 KVA and 1800 Hz (equivalent to 0.667 p.u. voltage on Figure 4-2), the total excitation requirement is only 1500 ampere turns, of which at least 1100 ampere turns are supplied by the series field. Clearly the overspeed

							TITS CHART IS CHANGED	NGEL FROM
		Ι	T TUNI (IIII	TARLE 4-1 EXCITATION PROUTHINGS	<i>S</i> ,	, , , ,		
	řFL	= 364T R _{FH} = 4.(RESISTANCES AT 177°C TLRUINAL VOI		EV 1 = 20 V 1	356T FR 356T FR 6 FOF 22°C Y	C		
KVA P.F.	01	2.65 0.85	7.21 6.85	12.6 0.85	() () • [S •] •] • [S •]] • [S •]] • [S •]] • [S •]] • [S •]] • [S •]] • [S •]]] • [S •]]]]]]]]]]]]]]]]]]]	51:5 5:15 5:15	1 0::	
ц Ч	0	7.37	50°∪	35.0	39.7	ក។ ឲា ហ	ю 5 Н	SX4 V
NI at 1.2 FC (X1) _R I _{FR} 177°C E _{FR} , 22°C	0 0 0 11 0	1300 232 0.647 2.85	1625 629 1.76 7.75	2136 1100 3.07 13.5	*** C Cs ** ** 15 ** ** C1 * 16 C1 ** 60 **	C. (C. G. 121 Ste C] → 131 G. → C] 151 G. → C] 151 G. (]	3300 3300 40.51 15.3	AT AT ANC VDC VDC
(::I) _H I _{FE} E _{FE} , 177°C E _{TH} , 22°C	1100 3.02 12.2 (7.56)	1068 2.94 11.8 (7.35)	2005 2073 10.0 (1.82)	1036 2.84 11.4 (7.10)			сссо	AT VIC VIC
NI at 1.08 KC ('') _H I _{FH} E _{FH} , 177°C E _{FH} , 22°C	1225 1225 3.36 13.4	1530 1318 3.62 14.5	1996 1271 14 • 6 14 • 6	2500 3400 3460 3465			(3632) 	AT A A A A A A A A A A A A A A A A A A
::I at 1.32 KC (::I) _H Γ _{FH} :77°C Γ _{FH} :77°C	1000 1000 2.75 11.0	1206 968 2.66 14.7	1450 521 2.26 <u>2.65</u> (5.65)	1000 8000 1000 1000 1000				81 81 81 81 81 81 81 81 81 81 81 81 81 8
1 - 101 - 101 - 1 - 101 - 101	тт (сот	reol, FILL,	5 (1) 5 (1) 5 (1) 5 (1) 5 (1) 6 (1)	in the second seco				

GARRETT

ĉ

ļ

4

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

.

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETY CORPORATION

operational requirement is only marginally controllable, and only a bare minimum of excess series field capacity may be allowed to cover design tolerances.

4.1 Series Field Controller (Exciter) Analysis

The series field circuit is schematically shown in Figure 4-3. The output of three line current transformers is rectified and fed to the field. The purpose of the capacitor is to eliminate the high voltage pulses which, in its absence, would appear across the field and the rectifiers; it also serves to control the magnitude of transient field voltage resulting from a step-load application. The required design equations are derived below and are followed by detail numerical information.

Figure 4-3 is used to define the nomenclature. The symbol I $_{\rm L}$ is used for the rms magnitude of the line currents.

<u>Current Transformer Derivations</u> - The rectifier output current is shown in Figure 4-4c. It is assumed that its a-c component flows in the capacitor only. By inspection, the d-c component is the field current, given by:

$$I_{FR} = \frac{3}{\pi} \int_{\pi/3}^{2\pi/3} \sqrt{2} \frac{I_{L}}{N} \sin \theta \, d\theta = 1.35 \frac{I_{L}}{N}$$
(4-1)

where N is the turns ratio (number of secondary turns) of the transformer. The d-c voltage is simply given by

$$E_{FR} = I_{FR} R_{FR} = 1.35 \frac{I_L}{N} R_{FR}$$
 (4-1a)

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE BARRET' COMPORATION

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE BARRETT CORPURATION

FIGURE 4-10a PRIMARY LINE CURRENTS OR SECONDARY PHASE CURRENTS

FIGURE 4-10b CONDUCTING RECTIFIER

FIGURE 4-10c RECTIFIER OUTPUT CURRENT. i_{FR}, AND ITS COMPOSITION

FIGURE 4-10d SECONDARY VOLTAGE OF PHASE A TRANSFORMER SCALED WITH RESPECT TO D-C FIELD VOLTAGE

FIGURE 4-10e FLUX OF PHASE A TRANSFORMER

FIGURE 4-4 SERIES FIELD WAVE FORMS

GARRETT

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

Although the transformer secondary currents are essentially sinusoidal, the secondary voltages are not. The secondary voltages are determined by the series field voltage, as the secondaries are sequentially clamped to the field by the rectifiers. For ideal rectifiers, zero magnetizing current and a large filter capacitor, the transformer secondary voltage is as shown in Figure 4-4d.

The transformer flux, as related to the voltage, is shown in Figure 4-4c. From Faraday's Law:

$$adt = 10^{-8} N d\phi \qquad (4-2)$$

Dividing both sides of the equation by the half-period T/2 and integrating between appropriate limits:

$$\frac{2}{T} \int_{t_0}^{t_1} edt = \frac{2}{T} \int_{-\phi_M}^{+\phi_M} 10^{-8} Nd\phi \qquad (4-3)$$

The left-hand member of this expression is recognized to be the halfcycle average value of the voltage; and, thus, by inspection (Figure 4-4d):

$$\frac{4}{9} E_{FR} = \frac{2}{T} \times 10^{-8} N \times 2\phi_{M}$$

The total flux is replaced by $\phi_{M} = B_{M}^{A} A_{C}$ and the expression is solved for A_{C} :

$$A_{\rm C} = \frac{10^8 E_{\rm FR}}{9N B_{\rm M}f}$$
(4-4)

where f is in Hertz, B_{M} in kilogauss, and A_{C} in square centimeters.

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

By substituting Eq. 4-1 into 4-4, another form is obtained:

$$A_{\rm C} = \frac{10^8 \times E_{\rm FR} \times I_{\rm FR}}{12.15 \times B_{\rm M} \times I_{\rm L} \times f}$$
(4-5)

which simply states that, for a given line current, the crosssectional area of the core is determined by the series field power requirement. In practical computation, the 2-V drop of the rectifiers is lumped into the $E_{\rm FR}$ of the above equations.

The waveform shown in Figure 4-4d is not seen in practice due to the superposition of a ripple voltage generated by the a-c component of the rectifier output current. When the peak of this ripple voltage is smaller than E_{FR} , its average over the integration period is zero, and the results are not affected. If E_{FR} tries to go negative during parts of a cycle due to high ripple voltage, the rectifier free-wheels at those times. The effect is an increase in average field current, approaching the peak of the a-c current. In a three-phase circuit, this effect is negligible since the peak a-c current is less than 5 percent higher than the average.

The magnetizing current of the CT is considered with the aid of Figure 4-5 in which the usual B-H curve is replaced by the flux-current loop of the particular transformer. The idealized loop shown is considered sufficiently accurate for the materials used. The peak magnetizing current, referred to the secondary, is then given by:

$$I_{M} = \frac{H_{c}l_{c}}{0.4\pi N}$$
(4-6)

where H_{c} is the coercive force in question, and l_{c} is the magnetic path length in centimeters.

 \mathbf{i}_{t}

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

I.

¢

CURRENT TRANSFORMER MAGNETIZING CUPRENT

FIGURE 4-5

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

This magnetizing current is accounted for by adding it to the field current required by the alternator.

<u>Series Field Transfer Function</u> - Figure 4-6 depicts the static transfer function of the series field during a three-phase shortcircuit. The shunt field contributes nothing during a short. The "required" curve shows the alternator short-circuit test characteristics. This curve does not pass through the point of origin due to residual magnetism. The "supplied" curve indicates the design requirements. To provide short-circuit current capability, the two curves must intersect above the minimum specified fault-current.

<u>Nonsinusoidal Alternator Load</u> - It is instructive to look at a condition of nonsinusoidal alternator loading. Figure 4-7 presents waveforms associated with a rectifier load having a large choke input filter. The amplitude of the line current is equal to the d-c load current I_D . Clearly, if N is the current transformer (C.T.) turns ratio

$$I_{FR} = \frac{I_D}{N}$$
(4-7)

However, the RMS line current is given by:

$$I_{T} = 0.816I_{D}$$
 (4-8)

Thus,

$$I_{FR} = \frac{1.225 I_L}{N}$$
 (4-9)

The transformer voltage waveform is shown in Figure 4-7c. Clearly, the transformer has to support only one-third of the half-cycle field

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

t.

SERIES FIELD STATIC CONTROL CHARACTERISTICS

FIGURE 4-6

GARRETT

i 2

Ì

Ĩ

i

 \cdot_{1}

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A Division of the garrett corporation

FIGURE 4-14a

PRIMARY LINE CURRENTS OR SECONDARY PHASE CURRENTS •

1

FIGURE 4-14b CONDUCTING RECTIFIER

FIGURE 4-14c PHASE A TRANSFORMER SECONDARY VOLTAGE

FIGURE 4-7

WAVE FORMS FOR NON-SINUSOIDAL LINE CURRENTS

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

volt-seconds as compared to four-ninths in the sinusoidal case. The corresponding transformer equations become

$$A_{C} = \frac{10^{8} \times E_{FR}}{12N B_{M}f} = \frac{10^{8} \times E_{FR} \times I_{FR}}{14.7 \times B_{M} \times I_{L} \times f}$$
(4-10)

Evidently, if the transformer is sized for the sinusoidal case, there is now more field current flowing per RMS line current--i.e., the shunt field has less work. Moreover, the core can support a higher short-circuit current due to the reduced volt-second demand.

<u>Capacitor Derivation</u> - The function of the capacitor is to limit the surge voltage upon application of transient loading. A simplified analysis is based on the equivalent circuit and waveforms shown in Figure 4-8. Initial conditions are assumed to be zero. When a stepcurrent is applied to the circuit, the field voltage will tend to ring up sinusoidally to a peak determined by the surge impedance and the magnitude of the current. At the time t_1 , however, the current transformer saturates and ceases to supply current. Whatever current has been established in the inductor by that time "free-wheels" down by way of the rectifiers.

The field volt-seconds represented by the shaded area are approximately

$$(ET)_{FR} = \frac{E_{pk} \cdot t_1}{2}$$
 (4-11)

9

.

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

ŧ.

SERIES FIELD SURGE VOLTAGE

FIGURE 4-8

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A Divibion of the Garrett Corporation

If the flux in the transformer traversed from negative to positive saturation during this time, then according to the transformer equation, it absorbed the following volt-seconds:

$$(ET)_{T} = 2NA_{C}B_{S} \cdot 10^{-8}$$
 (4-12)

However, as previously shown, each core absorbs only four-ninths of the field volt-seconds; thus:

$$\frac{4}{9} \cdot \frac{E_{pk} \cdot t_1}{2} = (ET)_T$$
 (4-13)

During the first part of the cycle the majority of current flows into the capacitor. Therefore, one can write

$$E_{pk} = \frac{I_{FR}}{C} \cdot t_1 \qquad (4-14)$$

or

$$t_{1} = \frac{E_{pk} \cdot C}{I_{FR}}$$
(4-15)

Substituting Eq. (4-15) into (4-13):

$$E_{pk} = \sqrt{\frac{9}{2} \cdot (ET)}_{T} \cdot \frac{I_{FR}}{C} \qquad (4-16)$$

or

$$C = \frac{4.5 \cdot (ET)_{T} \cdot I_{FR}}{E_{pk}^{2}} \qquad (4-17)$$

$$APS-5286-R$$
Page 4-16

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

Since $(ET)_T$, the transformer volt-seconds, is determined by other considerations, Eq. (4-16) and (4-17) establish a trade-off between surge voltage and capacitor value.

Ripple current (or voltage) rating must be considered during capacitor selection. Since the waveforms are analogous to those shown for standard rectifiers, the following is presented without further proof.

For X_{C} much smaller than X_{L} (at the ripple frequency), the total RMS current in the capacitor is given by

$$I_{r}$$
, (RMS) = 0.042 I_{FR} (4-18)

If ripple voltage is desired, it can be approximated by its fundamental:

$$E_r$$
, (RMS) = $\frac{0.040 I_{FR}}{12\pi fC}$ (4-19)

where f is the line frequency. Equations (4-18) and (4-19) assume a balanced three-phase system.

It should be noted that the series field module contains no protection in case of open-circuit series field wiring. A protective circuit can be added in the future; however, due to the high energy levels and high transient voltages involved, such a circuit is not simple.

4.1.1 Design of the Series Field Controller

DATA: I_{FR} = 9.2 amps minimum at 105 amps short-circuit line current R_{FR} = 4.4 ohms maximum at 177°C

GARRETT

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

The series field resistance R_{FR} was predicted at 4.1 ohms. However, a value of 4.4 ohms is used to provide a 7-percent safety factor for tolerances and bus drops. A similar safety factor is used for the control field.

Allowing a 10-percent margin to assure an intersection (Figure 4-6), the secondary turns are, by Eq. (4-1):

$$N = \frac{1.35 I_{\rm L}}{I_{\rm FR}} = \frac{1.35 \times 105}{1.1 \times 9.2} = 14 \text{ turns}$$

The average d-c voltage at 177°C, including a 2-V allowance for the rectifiers, is:

$$E_{FR} = I_{FR}R_{FR} + V_D = [1.1 \times 9.2 \times 4.4] + 2 = 46 V$$

Selecting a 4-mil-grain oriented silicon steel toroid for the current transformer core, $B_{(SAT)}$ is 17.6 kilogauss; and according to Eq. (4-4), the required cross-sectional area is

$$A_{c} = \frac{10^{8} E_{FR}}{9 N B_{M} f} = \frac{10^{8} \times 46}{9 \times 14 \times 17.6 \times 10^{3} \times 1.2 \times 10^{3}} = 1.75 \text{ cm}^{2}$$

With allowance for a stacking factor of 90 percent, the gross core area becomes 1.95 cm² minimum. Since standard cores having such an area are large, a special core was designed. It is specified in AiResearch Drawing 521258 (Appendix II) and has a magnetic path length of 7.6 cm. The coercive force is estimated at 1.0 oersted; thus, the magnetizing current, referred to the secondary, is given by Eq. (4-6):

$$I_{M} = \frac{H_{c}I_{c}}{0.4\pi N} = \frac{1.0 \times 7.6}{0.4\pi \times 14} = 0.43 \text{ amp}$$

$$APS-5286-R$$
Page 4-18

Į

Į

11

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

The maximum cross-sectional area of the core is 2.2 cm^2 and the maximum saturation flux density is estimated to be 20 kilogauss. According to Eq. (4-12), the volt-seconds are

$$(ET)_{C} = 2NA_{C}B_{S} \times 10^{-8} = 2\times 14\times 2.2\times 20\times 10^{3}\times 10^{-8} = 1.23\times 10^{-2}$$

For a capacitor of 2 Mfd and a step current of 10 amps, the surge voltage, per Eq. (4-16), is:

$$E_{PK} = \sqrt{\frac{9}{2} \times (ET)}_{C} \times \frac{T_{FR}}{C} = \sqrt{\frac{9}{2} \times 1.23 \times 10^{-2}} \times \frac{10}{2 \times 10^{-6}} = 525 V$$

This is within the capability of the selected rectifiers and within the surge rating of the capacitor.

The RMS ripple current is computed by Eq. (4-18) for a 3.1-amp field current (nominal condition):

$$I_r(RMS) = 0.042 I_{FR} = 0.13 \text{ amp}$$

which also is well within the continuous rating of the selected capacitor.

4.2 Shunt Field Voltage Regulator Analysis

The alternator output voltage is regulated by controlling the average shunt field current. This is accomplished by a transistorized switching regulator (chopper). The average field current is determined by the duty cycle (ON-time with respect to the OFF-time) of the chopper, which, in turn, is a function of the error voltage.

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DEVISION OF THE GARRETT CORPORATION

The normal field supply voltage is supplied by rectifiers taking power from the alternator output. The system battery is gated into the field circuit by a diode and supplies field current until the rectifier output ($E_{\rm FF}$) exceeds the battery voltage, thereby reversebiasing the diode. Since the battery by itself can supply the rated 1.0 p.u. excitation requirements, no field-flashing is needed to assure build-up. The excess $E_{\rm FF}$ over battery voltage provides a source for field-forcing.

The dynamic response of the alternator output is principally determined by the simple shunt field time-constant and, to a lesser degree, by the machine subtransient response. The contribution of the feedback signal rectifier filter $F_{(s)}$ is small. The response to load application is faster than the response to load removal due to the availability of field-forcing voltage. Response to load removal can be improved at the expense of extra power dissipation.

Provisions are made for the injection of a hold-off bias derived from the battery which disables the shunt field regulator during alternator acceleration in order to minimize prime mover loading. It should be noted that some excitation will still be available from the series field unless an external short circuit is placed across the series field terminals by the system controller.

The switching regulator also incorporates a current limit designed to protect the field against overheating during prolonged fault conditions. It should be noted that this feature will not protect the VRE output transistor in case of a shorted shunt field bus because the circuit depends upon the field inductance to limit the rate of current rise. Protection against a bus short, however, can be added if so desired.

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

A block diagram of the shunt field regulator is shown in Figure 4-9. Briefly, the regulator consists of the following functional sections:

- (a) A transformer-rectifier/filter circuit to provide power for the shunt field regulator
- (b) A transformer-rectifier/filter circuit to sense the alternator output voltage
- (c) A shunt field current switching circuit to meter power from the power supply to the shunt field
- (d) A voltage reference and error detector
- (e) A shunt field current level detector and a circuit to protect the switching transistors as well as the field by providing a current limited mode of operation
- (f) An OR-gate circuit to provide a smooth transition from voltage regulation to the current limit mode of operation
- (g) An auxiliary power supply for the regulator electronics
- (h) A battery gating-circuit to assure alternator buildup in lieu of field flashing (Figure 4-10)

Shunt Field Transfer Function - The shunt field transfer function is derived with the aid of Figure 4-11. Symbols and terminology correspond with the definitions presented in Figure 4-1. The switch (SW) represents the action of the solid-state regulator.

When the switch is closed, the total supply voltage is applied to the field, causing current to build up. Diode D is reverse-biased and nonconducting. When the switch is opened, current continues to flow in the field circuit due to the effect of the field inductance. This current is in the direction of diode forward conduction; thus, the voltage across the field terminals becomes reversed in polarity and limited in magnitude to the forward voltage drop of the diode. The current then decays according to the field time-constant until the

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT CORPORATION

GARRETT

•

ŧ

ļ

i

n

FIGURE 4-9

BLOCK DIAGRAM OF SHUNT FIELD REGULATOR

.

,

AIRESEARCH MANUFACTURING CUMPANY OF ARIZONA

PATTERY ASSISTED START UP

FIGURE 4-10

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT CORPORATION

¢

SWITCHING REGULATOR

FIGURE 4-11

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

switch is again closed to initiate a current buildup. The duty cycle of this switching action determines the average field current. The resultant field voltage and current waveforms are shown in Figures 4-12c and 4-12d, respectively, drawn with the free-wheeling diode and switch considered ideal. By inspection, it can be seen that the average field voltage is given by:

$$E_{\rm FH} = E_{\rm FF} \cdot \frac{T_{\rm C}}{T} \qquad (4-20)$$

and that the average field current is given by

$$I_{FH} = \frac{E_{FH}}{R_{FH}}$$
(4-21)

If the current ripple is very low, then I_{FH} is also equal to the peak value of the power supply current pulse, i_s .

The switching action is controlled at the summing junction in the manner shown by Figure 4-12a. This point has two inputs: a d-c reference (E_R) , and a feedback signal (e_B) . The feedback signal consists of a d-c level (E_B) , with a proportional superimposed ripple at three times line frequency if α is the constant of proportionality:

$$e_{B} = E_{B} + [\alpha E_{B}] (t) \qquad (4-22)$$

This signal is obtained from the alternator output voltage by the sensing transformer rectifier; since $E_B = \beta E_T$, one can write

$$e_{B} = \beta \left\{ E_{T} + [\alpha E_{T}]_{(t)} \right\} \qquad (4-23)$$

FIGURE 4-12

APS-5286-R

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

The switch is actuated by the relationship between E_R and the instantaneous level of e_B as shown in Figure 4-12b. The switch is open for $e_B > E_R$ and closed for $e_B < E_R$. The error (ϵ) indicates that, at the illustrated operating point, closed-loop equilibrium demands that $T_O > T_C$ for $E_{FF} > 2 E_{FH}$; this is the "gain error" of a Type-Zero loop. The triangular ripple is a close approximation to actual circuit waveforms. In fact, the detail design of the voltage sensing circuit filter shapes the ripple to this desired waveform. The field supply voltage is proportional to the alternator line voltage; thus, it can be written (referring to Figure 4-1)

$$E_{FF} = K_{T}E_{T} \qquad (4-24)$$

The transfer function can now be derived. When the error is positive and equal to half the peak-to-peak amplitude, the troughs of e_B cease intersecting with E_R , and E_{FH} goes to zero. When the error is negative and equal to half the peak-to-peak amplitude, the <u>peaks</u> of e_B cease intersecting with E_R and the switch goes fully on--i.e., $E_{FH} = E_{FF}$. For the triangular ripple this change is linear; thus, if $\left[\alpha E_B \right]_{(t)}$ is the peak-to-peak ripple, then:

$$\frac{\Delta E_{FH}}{\Delta \epsilon} = \frac{E_{FF} - 0}{\left[\alpha E_{B}\right](t)} = \frac{K_{T}E_{T}}{\alpha \beta E_{T}} = \frac{K_{T}}{\alpha \beta} \qquad (4-25)$$

Equation (4-25) is the open-loop gain (K_A) of the amplifier. K_T is fixed by the field voltage requirements, and β is simply the ratio between E_R and E_T . Obviously, the gain is a function of the ripple amplitude only--whence the name "ripple regulator".

4.2.1 Detail Design of the Shunt Field Regulator - According to Table 4-1, the shunt field voltage requirement at rated-overload and

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

177°C copper temperature is 18 V. For fast response, twice this voltage should be available for field forcing. If a 2-V series drop is assigned to the regulator,

$$E_{FF}$$
 (MIN) = 2 x 18 + 2 = 38 V

Allowing a 10-percent design tolerance on this supply, $E_{\rm FF}$ becomes

$$E_{FF}$$
 (NOM) = 42 V

From Eq. (4-24),

$$K_{\rm T} = \frac{E_{\rm FF}}{E_{\rm T}} = \frac{42}{120} = 0.350$$

which determines the design of the field supply transformer-rectifier,

The selected zener reference voltage is 6.2 nominal, thus

$$\beta = \frac{E_R}{E_T} = \frac{6.2}{120} = 0.052$$

According to Paragraph 2.2a, a total operating band of 2-percent is permitted. This corresponds to 124 mv referred to the reference. The 1.0 V allocated for drift corresponds to 52 mv referred to the reference. Thus the regulation error becomes 72 mv.

AIREBEARCH MANUFACTURING COMPANY OF ARIZON/A

According to Table 4-1, between zero and 12.6 KVA and \pm 10-percent speed, the shunt field has to swing a maximum of 6.4 V (at 177°C) for zero error. From this,

$$K_{A} = \frac{\Delta E_{F11}}{\Delta \epsilon} = \frac{6.4}{72 \times 10^{-3}} = 89$$

A design gain of 100 is chosen to allow for worst-case $K_{\rm T}$ and $E_{\rm R}$. The required ripple can now be computed from the gain expression (4-25) and from the ripple definition (4-22)

 $\alpha \beta = \frac{K_{\rm T}}{K_{\rm A}} = \frac{0.35}{100} = 0.0035$ $\beta \left[\alpha E_{\rm T} \right](t) = 0.0035 \times 120 = 0.420 \text{ V P-P}$

In practice, a ripple of exactly triangular waveform cannot be realized. To compensate for the resultant rounded corners, a smaller ripple amplitude is required. From experience, a factor of 0.7 applies and, thus, the required ripple becomes 300 mv P-P. This defines the filter of the feedback rectifier and also its frequency dependence $F_1(s)$. Due to the low open-loop gain, the lags associated with $F_1(s)$ and with the switching transport lag are negligible in comparison with the principal time constant, e.g., the field L/R; therefore, the regulator loop is stable. Provisions have to be made to add a stabilizing network if such is required to enhance system stability.

Due to lack of pertinent data, it is difficult to predict conformance to the drift specification of paragraph 2.2b. However, the drift due to field warmup corresponds to and estimated $\Delta E_{\rm FH}$ of 4.3 V, which would reflect to the alternator output as a line voltage shift of approximately 1.0 V RMS.

GARRETT

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

4.2.2 Detail Circuit Description

The schematic of the shunt field regulator is shown in Figure 4-13.

Voltage Regulator Power Supply - Power for the shunt field regulator is derived from an unregulated power supply comprising transformer T1, bridge rectifier CR1, and filter capacitor C5. The transformer was designed in the delta-delta configuration to increase the reliability of the unit, should it be forced to operate in the opendelta configuration due to an open-type failure in one of the coils. The transformer was designed to have tightly balanced coils to minimize circulating currents.

<u>Switching Circuit</u> - The basic field current switching function is performed by Transistor Q5. Transistor Q4 is a Darlington driver to increase the gain of the switching circuit. Resistor R13 provides the base current drive for Transistor Q4, which is normally in the ONcondition when Q3 is OFF. Transistor Q3 is driven ON by Q2. This drive can be overridden by the inhibit circuit comprising R34, R35, CR7, and CR8 permitting the shunt field to be shut off during engine start-up. Zener Diode CR7 provides approximately 6 V of noise immunity for the inhibit circuit.

Voltage Loop - Voltage regulation is performed by comparing a d-c feedback voltage to a reference voltage. The resulting error voltage is amplified and used to control the basic switching function. The feedback voltage is derived from the voltage sensing transformer T2 and the bridge rectifier CR3, CR4, and CR5. This feedback voltage is fed into the "left" base of the differential amplifier Q1 and is compared to the reference voltage established by zener diode CR10. Potentiometer R3 adjusts the level of the feedback voltage and, therefore, determines the alternator output voltage. Capacitors C1, C2,

 \sim

X

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

and C3 filter high-frequency noise spikes on the sensing transformer output windings. Resistor R8, which is coupled from the output of the OR-gate (Q2) to the input to the differential amplifier, provides positive feedback that decreases the rist time of the switching transistors and gives a more positive switching action by the introduction of a small amount of hysteresis. Resistor R5, the final value of which has not been determined, is used to match the diode temperature coefficient to the temperature coefficient of the transformer winding resistance; theoretically a value can be chosen to make the net temperature coefficient zero. Capacitor C4 controls the ripple amplitude and hence the loop gain.

<u>OR-Gate Circuit</u> - Transistor Q2 is an OR-gate that is driven from the voltage level detector when the alternator voltage is in the normal regulation band but is overridden by the current detector circuit whenever the output voltage is substantially below normal.

<u>Current Level Detector</u> - During a cold start, the shunt field resistance can be as low as half the hot resistance. The fact that the resistance is low and that a two-times forcing voltage is provided would require the switching transistor to be capable of conducting several times the normal operating current. The current limit circuit protects the shunt field winding and the switching transistors from a possible overcurrent condition when a low output voltage would otherwise command maximum available current flow.

The shunt field current is detected by measuring the voltage developed across Resistor R16. This voltage is compared to a reference voltage determined by Resistors R29 and R30. The peak voltage across R16 is coupled to the "left" base of the differential amplifier Q9. If the voltage exceeds a preset level, the "left" transistor turns ON and, thus, the "right" transistor is turned OFF. A positive feedback current is coupled back to the "left" base through C8 and R22. This

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

holds it in the ON-condition for a period determined by the timeconstant of C8 and R22. As the "left" transistor of Q9 is turned ON, the OR-gate (Q2) is also turned ON, which turns the field current switch (Q5) OFF. The field current free-wheels down due to the winding inductance until the end of the above-mentioned one-shot period. At that time the "left" transistor of Q9 turns OFF, allowing Q5 to turn ON again. When Q5 turns ON, field current increases until it reaches the current limit point, and the cycle repeats. Operation of this circuit requires a certain minimum of series inductance and will not provide field bus short-circuit protection unless an inductor is added inside the VRE. Capacitor C7 filters the high-frequency clearing spike generated by the free-wheeling diode CR11 at the instant it recovers from a free-wheeling condition. Diode CR15 provides a fast recovery path for the one-shot timing circuit.

Figure 4-14 depicts the field current and the alternator output voltage for a typical start-up condition. The internal ΔT_1 (Figure 4-14) is the time-constant of the current limit circuit. During this time, the field current is decaying according to the L/R time constant of the shunt field. Interval ΔT_2 is the time required for the current to build back-up to the current limit point. The slope of the current ripple is a function of the field inductance and the supply voltage and is determined by

$$\frac{di}{dt} = \frac{E_{FF}}{E_{FH}}$$
(4-26)

As the output voltage crosses the 106-percent point (Point A on Figure 4-14), the field current control shifts to the voltage loop and decreases to the normal operating current. The output voltage can overshoot somewhat due to the excess stored energy in the field, but this is small compared to the overshoots seen in the absence of current

FIGURE 4-14

 \sim

(

FIELD CURRENT AND OUTPUT VOLTAGE DURING START-UP

T IME ------

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

limiting. The current limit point is adjusted by potentiometer R-18.

Logic Power Supply - The current-limit circuit is sensitive to power-supply changes; and in order to assure operation of the power transistor well within its safe operating area, reasonably accurate power supply performance is required. This power supply accuracy also contributes the basic simplicity of the overall circuit and minimizes the use of zener diodes.

The logic power supply is composed of Transistors Q7 and Q8 and their associated components. The output voltage is compared to zener reference CR10 by differential amplifier Q8. Field effect diode CR9 supplies a constant base drive current to the series regulating Transistor Q7. With the assumption that the differential amplifier is operating normally, an increase in the power supply output voltage will cause the "right"-hand transistor of Q8 to increase its collector current, which reduces the available base drive current to Q7. The output voltage will therefore decrease to the normal value. Resistor R24 is used to adjust the power-supply voltage.

Although the field effect diode is a new and unproven device, the simplifications afforded by its use make it an excellent candidate for widespread future application. The diodes shipped in the VRE have been subjected to a fairly severe screening and burn-in program at AiResearch and are, therefore, considered sufficiently reliable for this application. The worst-case analysis of the power supply allows for a 2:1 change in the field effect diode characteristics without degradation of the power supply performance.

4.2.3 Worst-Case Analysis

This section provides a brief summary of the voltage regulator worst-case analysis and the ground rules on which it is based. The

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

analysis shows the maximum and minimum limits of major circuit parameters due to component tolerances, temperature effects, and aging.

The basic design of the shunt field regulator, in conformance to the established ground rules, does not lend itself readily to a failsafe "fail-off" configuration. In a "HI-REL" end application, additional external protection devices are mandatory.

<u>Ground Rules</u> - Supply voltage is 42 nominal, with 80 V transient peaks, transient dips to 22 V; the ambient temperature range is established as -25°C to +75°C. In general, component design tolerances are derived from MIL-HDBK-217A. Some component tolerances are shown in Table 4-2, and include long-term drifts when available.

<u>Current Limit Circuit</u> - The worst-case analysis of the current limit circuit shows the change in the current limit as a result of temperature, power supply drift, and aging of components. Due to the method used to sense the control field current, differential voltage changes between the voltage reference divider and the current sense divider are reflected directly to the current sense resistor. The current limiter has a sensitivity of 5 ma/mv. Since the actual current limit is not critical, this circuit was preferred over more accurate ones because of its simplicity and the small number of components.

	Current Change, 	Percent* Change ±
Variable		
Power supply drift (±0.5 V)	0.2	3.2
Temperature Effects		
Voltage reference	0.055	0.9
Current sense circuit	0.075	1.2

TABLE 4-2 VRE COMPONENT TOLERANCES

1. Resistors

Specification	MIL-R-10509	MIL-R-22684		MIL-R-93	MIL-R-27208	T/C	2°/%	±0.001		V _{BE} (sat)	тах	1.0	1. 2	1.2	
	TIM	MIL		MIL	MIL	Dynamic	mpedance	10Ω							<i>1</i> /°C
T/C, PPM/°C	200	200	50	30	50	Test	비	7.5 ma		V _{CE} (sat)	max	1.2	1.0	0.7	5 mv and 10 μ V/°C
Design Tol., ^{&} *	±5	±6	±7	+1	1 3		V Max	6.6							amplifier: ^{ΔV} BE
<u>Tol., 8</u>	+]	+2	±1	±0.1	ļ			5.8		H _{FE} min	at -25°C	30	35	60	
Type	Metal film	Metal film	Wire Wound, power	Wire Wound, precision	Wire Wound, variable	2. Reference Diode	Type	IN827A	3. Signal Transistors		Type	2N2060	2N2219	2N3251	Supplemental data 2N2060 differential H _{FE2} /H _{FE1} : 9 min. 1.0 max

GARRETT

11

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

APS-5286-R Page 4-37 *Initial tolerance plus allowances for aging and temperature coefficients.

4

1

2

П

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

	Current Change, 	Percent* Change ±
Temperature Effects (CONT)		
Differential amplifier		
base emitter cffset voltage	0.003	
Differential amplifier		
base current offset	0.018	0.3
Aging Effects		
Voltage reference resistors	0.35	5.6
Current sense circuit resistors	0.55	8.8
TOTAL Drift	±1. 25	±20.0

Curmont

The minimum current limit is established at 5 amp to allow some margin with respect to the 4.5-amp maximum required field current. Consequently, the initial setting must be 5.00 + 1.25 = 6.25 amp and the maximum current is 6.25 + 1.25 = 7.5 amp.

<u>Power Amplifier</u> - The current handling capability of the output Transistor Q5 and of its drive Q4 is analyzed with respect to transistor parameter changes, power supply voltage extremes, temperature fluctuations, and resistor tolerances. Power dissipation in the main power transistor, Q5, is calculated under worst-case operating conditions; however, data to derive worst-case switching losses is not available and, thus, these losses were estimated from breadboard measurements.

The results of the analysis may be summarized as follows:

<u>Q5</u>			
(a)	Steady state	7.5	amp
(b)	Transient peak	11.5	amp

*Based on 6.25 amp nominal current limit.

~ ~

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

unsight peak is 0.2-used long during	recovery of CR11
_	3.5 W
-	6.4 W
	9.9 W
Maximum steady-state voltage drop	, collector to emitter:
1.32 V	
All switching transitions are est	imated as less than 6- μ sec
duration and thus, well within sa	fe-operating regions of
second breakdown curves.	
Maximum collector current:	
	0.5 amp
-	11.5 amp
-	-
	collector to emitter:
0.2 V	
) All switching transitions are wel	ll within the safe operating
area of second breakdown curves.	
) Maximum collector current: 96 ma	a
) Minimum overdrive	
βΙ	
$\frac{1}{2} = 2.7$	
^I C	
)))	All switching transitions are est duration and thus, well within sa second breakdown curves. Maximum collector current: Steady state Transient peak Maximum steady-state voltage drop 0.2 V All switching transitions are well area of second breakdown curves. Maximum collector current: 96 ma

Nominal overdrive = 5.3

Error Detector and Amplifier - The stability and sensitivity of the error amplifier (comprising Transistors Ql and Q2 and associated circuitry) are analyzed with respect to variations of critical circuit parameters, including initial parameter variations within manufacturer tolerances and changes due to aging and temperature effects.

> APS-5286-R Page 4-39

GARRETT

4

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

Changes in the d-c feedback voltage at the input to the amplifier are expressed as percentages of nominal and are reflected as changes in the a-c output voltage on a 1:1 basis.

	Percent Chanc	ge in Input
Variable	Due to Time and Temp, %	Due to Temp Only, 8
Resistor-divider ratio	+2.26, -2.17	±0.26
Combined input cfiset Reference diode voltage changes	±0.15	
as function of: (a) Bias and load changes (b) Temperature coefficient	±0.16	±0.42
of reference diode Amplifier gain change	±0.08 ±0.032	
TOTAL (sum of changes)	+2.68 -2.59	±0.68

<u>Sensing Transformer</u> - The sensing transformer presents a rather complex picture as a function of temperature. The change in copper resistance drop is opposite to the change in diode voltage drop. In addition, since the magnetizing and iron loss currents are significant with respect to the load current, they reflect an additional component into the primary voltage drop. This is further complicated by the discontinuous nature of the load current. It is often possible to select a load resistor to minimize the net effects of temperature variations. A "ball-park" value has been calculated and was used to establish the voltage divider resistors; it requires experimental verification and adjustment. Provisions have been made for additional loading for compensation purposes (R5).

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

Power Supply - The logic power supply analysis is based on a 50-ma essentially constant load and includes combined effects of temperature and aging. The correct initial setting is 15.0 V.

Variables	Output Vo	ltage, mv
Input line voltage	± 50 (es [.]	timate)
Gain and current source variations	± 100	
Reference and ΔV_{BB}	- 10	
Bridge resistors	+310,	-350
TOTAL Design Tolerance:	+470,	-510

4.2.4 Failure Rate Analysis

Wherever feasible, components have been initially selected from the "JPL Approved Parts List". However, following an investigation into the availability and cost of such components, the selection requirements were clarified and redirected. For fabrication purposes, "commercial equivalent" or military parts were used. Table 4-3 is a list of the parts actually used for the regulator.

Potentiometers have been selected for use where adjustment is needed for component tolerances, since the values are unknown until final adjustment. "Select at Test" procedures would have resulted in excessive procurement delays.

A failure rate analysis for the shunt field is summarized in Tables 4-4 through 4-11. It is based on the following criteria:

- (a) Data in accordance with MIL-HDBK-217A when available
- (b) Ambient and mounting-base temperature of 70°C
- (c) No allowance for increased reliability due to screening of the power transistors, transformers, and the constant current

Distriguie Interfaction Interfaction Shunt Field Sprague PB54CE698POF 698Ω, 0.05W, 1% MTL-P=63L P2 Sprague PB54CE698POF 1500Ω, 0.25W, 1% MTL-P=63L P3 Bourns 224L=500=202 2000Ω, 0.5W, MTL-P=93B P3 Bourns 224L=500=202 2000Ω, 0.5W, MTL-P=93B P4 Sprague PB54CE750POF 750Ω, 0.25W, 1% MTL-P=93B P5 Sprague RW69V (1) 3W STL-P=26C P6 Corning Glass RL07S272G 2700Ω, 0.25W, 2% TL-P=22634B P7 Corning Glass RL07S562G 5600Ω, 0.25W, 2% MTL-P=22634B R9 Corning Glass RL07S621G 620Ω, 0.25W, 2% MTL-P=22684B R10, 12 Corning Glass RL07S102G 1000Ω, 0.25W, 2% MTL-P=22684B R11 Corning Glass RL20S162G 1600Ω, 0.25W, 2% MTL-P=22684B R13 Sprague RW67V911 910Ω, 6.5W, 5% MTL-P=20C R14 Corning Glass		P.100	TABLE 4-3		
Component Designation Manufacturer Part Number Parting Approved Class Bhont Field Sprague PR54000000 0.0007, 0.0007, 1% MIL-P-500 2 Sprague R65400150000 10002, 0.007, 1% MIL-P-500 2 Sprague R65400000 20002, 0.007, 1% MIL-P-500 24 Sprague R65400000 20002, 0.007, 0%, 0% MIL-P-500 25 Sprague R65400000 20002, 0.007, 0%, 0% MIL-P-500 26 Sprague R650020 20002, 0.007, 0%, 0% MIL-P-500 26 Sprague R6075626 56002, 0.025W, 2% MIL-P-200 27 Corning Glass RL0756261 56002, 0.25W, 2% MIL-P-200 210, 12 Corning Glass RL0756261 56002, 0.25W, 2% MIL-P-200 211 Corning Glass RL07516261 16002, 0.5W, 2% MIL-P-200 211 Corning Glass RL0758216 8200, 0.25W, 2% MIL-P-200 213 Sprague R854026620000 2200, 0.25W, 2% MIL-P-200 <th></th> <th></th> <th>VRE COMPONENT</th> <th>LIST</th> <th></th>			VRE COMPONENT	LIST	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Part 543936-1	-1	
11 SpraguePD54CE698P0F $608\Omega_{1}$ $0.050N_{1}$ 110 MIL-Re536 22 SpragueM054CE15000F100052 $0.50N_{1}$ NIL-Re536 23 BOUTUS2241-500-202200022 $0.5N_{1}$ NIL-Re536 241 Sprague1804CE750N0F756 Ω_{1} $0.25N_{1}$ NIL-Re536 244 Sprague1804CE750N0F756 Ω_{1} $0.25N_{1}$ NIL-Re536 244 Corning Glass800785626560002 $0.25N_{1}$ NIL-Re5266 $2700\Omega_{2}$ $0.25N_{1}$ 22 AIL-Pe-224541NIL-Pe-224541 240 Corning GlassRL0785626160002 $0.25N_{1}$ NIL-Pe-224541 89 Corning GlassRL0781026100002 $0.25N_{2}$ NIL-Pe-224541 811 Corning GlassRL0781026100002 $0.25N_{2}$ NIL-Pe-224641 811 Corning GlassRL0781016100002 $0.25N_{2}$ NIL-Pe-224641 811 Corning GlassRL0781016100002 $0.25N_{2}$ NIL-Pe-224641 811 Corning GlassRL078216 $820\Omega_{2}$ $0.25N_{2}$ NIL-Pe-224641 811 Corning GlassRL078216 $820\Omega_{2}$ $0.25N_{2}$ NIL-Pe-224641 812 Corning GlassRL078226 $2200\Omega_{2}$ $0.25N_{2}$ NIL-Pe-2268418 819 29SpragueRB54CE18000B $1800\Omega_{2}$ $0.25N_{2}$ NIL-Pe-33* 812 20Corning GlassRL078226 $2200\Omega_{2}$ $0.25N_{2}$ NIL-Pe-36*		Manufacturer	Part Number	Pating	Approved Standars
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Shunt Field				
C2 Intrinsition Intrinsition Intrinsition Intrinsition C3 Bourns 2241-500-22 20002, 0.5W, 1% Mill-P=03B P4 Sprague BW60V (1) 3W SDL-P=26C P5 Sprague BM60V (1) 3W SDL-P=26C P6 Corning Glass BL0785272G 27002, 0.25W, 2% Mill-P=22034B P7 Corning Glass BL0785272G 56002, 0.25W, 2% Mill-P=22034B P7 Corning Glass BL078521G 56002, 0.25W, 2% Mill-P=22034B R9 Corning Glass RL078521G 62002, 0.25W, 2% Mill-P=22034B R11 Corning Glass RL0785102G 10000, 0.25W, 2% Mill-P=2084B R11 Corning Glass RL0785102G 10000, 0.25W, 2% Mill-P=2084B R13 Sprague RW67911 9102, 6.5W, 2% Mill-P=2084B R14 Corning Glass RL078510E 7502, 0.25W, 2% Mill-P=2064B R15 Corning Glass RL078521G 7502, 0.25W, 0.1% Mill-P=2264B	[1]	Sprague	RB54CE698ROF	,	
Add Sprague FP64CE750R0F 756\$, 0, 25₩, 1½ M1L=b=0.05 p64 Sprague RW69V (1) 3W M1L=b=0.20 p7 Corning Glass BL078272G 2706\$, 0, 25₩, 2% M1L=b=0.20 p7 Corning Glass BL078572G 2706\$, 0, 25₩, 2% M1L=b=0.20 p7 Corning Glass BL0785626 5600\$, 0, 25₩, 2% M1L=b=0.20 p8 Corning Glass BL078102G 470K, 0.5₩, 2% M1L=b=0.20 p89 Corning Glass RL078102G 1000\$, 0, 25₩, 2% M1L=b=0.20 p81 Corning Glass RL078102G 1000\$, 0, 25₩, 2% M1L=b=0.20 p81 Corning Glass RL078102G 1000\$, 0, 25₩, 2% M1L=b=0.20 p81 Corning Glass RL078101G 100\$, 0, 25₩, 2% M1L=b=0.20 p81 Corning Glass RL078101G 100\$, 0, 25₩, 2% M1L=b=0.20 p81 Dale RE70NR200 0, 20\$, 0, 25₩, 2% M1L=b=0.20 p81 Dale RE50K216 0, 20\$, 0, 25₩, 2% M1L=b=0.20	-2	Spraque	RB54CE15000F		M111/-9338
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	143	Bourns	2241-500-202		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	P4	Sprague	PB54CE750POF	750 <u>2</u> , 0.25W, 1%	
PrimeCorning GlassRL0765626S6004, 0.25W, 2*MIL-P=22634BR9Corning GlassRL0765626S6004, 0.25W, 2*MIL-P=22634BR9Corning GlassRL0766216 $620\Omega, 0.25W, 2*$ MIL-P=22684BR10, 12Corning GlassRL026126 $1000\Omega, 0.25W, 2*$ MIL-P=22684ER11Corning GlassRL2051626 $1600\Omega, 0.25W, 2*$ MIL-P=22684ER13SpragueRW67V911 $910\Omega, 6.5W, 5*$ MIL-P=22684ER14Corning GlassRL0751016 $100\Omega, 0.25W, 2*$ MIL-R=22684ER15Corning GlassRL0758216 $820\Omega, 0.25W, 2*$ MIL-R=22684ER16DaleRE70NR200 $0.2\Omega, 0.25W, 2*$ MIL-R=22684ER17Corning GlassRL0757516 $750\Omega, 0.25W, 2*$ MIL-R=22684ER19, 29SpragueRB54CE16000B $1800\Omega, 0.25W, 2*$ MIL-R=22684BR20SpragueRB54CE562R0F $562\Omega, 0.25W, 2*$ MIL-R=93ER21, 23Corning GlassRL078362G $3600\Omega, 0.25W, 2*$ MIL-R=22684BR22Corning GlassRL078362G $3600\Omega, 0.15W, 1*$ MIL-R=22684BR24, 18Bourns $224L=500-102$ $1000\Omega, 0.5W$ MIL-R=22684BR25, 26SpragueRB55CE12100F $1210\Omega, 0.15W, 1*$ MIL-R=93BR30SpragueRB54CE12100B $1210\Omega, 0.25W, 0.1*$ MIL-R=93BR32, 33SpragueRB54CE12100B $1210\Omega, 0.25W, 2*$ MIL-R=34BR32, 33SpragueRB54CE12100B $1210\Omega, 0.25W, 2*$ MIL-R=266<	R5	sprague	RW69V	(1) 3W	
P/ Corning Glass RL2034746 470K, 0.5W, 27 M11-P-22684B R9 Corning Glass RL0736216 620Ω, 0.25W, 28 M11-P-22684B R10, 12 Corning Glass RL0736216 620Ω, 0.25W, 28 M11-P-22684B R11 Corning Glass RL0731026 1000Ω, 0.25W, 28 M11-P-22684B R13 Sprague RW67V911 910Ω, 6.5W, 5% M11-P-22684B R14 Corning Glass RL0731016 100Ω, 0.25W, 28 M11-P-22684B R14 Corning Glass RL07351016 100Ω, 0.25W, 28 M11-P-22684B R15 Corning Glass RL0757516 750Ω, 0.25W, 28 M11-P-22684B R17 Corning Glass RL0757516 750Ω, 0.25W, 28 M11-P-22684B R19, 29 Sprague RB54CE18000B 1800Ω, 0.25W, 0.1% M11-P-2664B R20 Sprague RB54CE18000B 1800Ω, 0.25W, 0.1% M11-P-2684B R21, 23 Corning Glass RL0753226 2200Ω, 0.25W, 2% M11-P-2684B R24, 18 Bourns 2241-500-102 1000Ω, 0.5	P.6	Corning Glass	PL07\$272G	2700 % , 0.25W, 2%	
R8Conning GlassR0.70621G $620\Omega_{2}$ 0.25W, 2% $311P-2:263.1$ R9Corning GlassRL075102G $1000\Omega_{2}$ 0.25W, 2% $M11P-2:26841$:R10, 12Corning GlassRL205162G $1600\Omega_{2}$ 0.5W, 2% $M11P-2:26841$:R11Corning GlassRL205162G $1600\Omega_{2}$ 0.5W, 2% $M11P-2:26841$:R13SpragueRW67V911 $910\Omega_{2}$ 6.5W, 5% $M11P-2:26841$:R14Corning GlassRL075101G $100\Omega_{2}$ 0.25W, 2% $M11P-2:26841$:R15Corning GlassRL075821G $820\Omega_{2}$ 0.25W, 2% $M11P-2:26841$:R16DaleRE70NR200 $0.2\Omega_{2}$ 0.25W, 2% $M11P-2:26841$:R17Corning GlassRL075751G $750\Omega_{2}$ 0.25W, 2% $M11P-2:26841$:R19, 29SpragueRB54CE562R0F $562\Omega_{2}$ 0.25W, 0.1% $M11P-2:26841$:R20SpragueRB54CE562R0F $562\Omega_{2}$ 0.25W, 2% $M11P-9:31$:R21, 23Corning GlassRL07S362G $3600\Omega_{2}$ 0.25W, 2% $M11R-2:26841$:R24, 18Bourns $224L-500-102$ $1000\Omega_{2}$ 0.15W, 1% $M11R-2:26841$:R25, 26SpragueRB55CE12100F $1210\Omega_{2}$ 0.15W, 1% $M11R-9:31$:R28SpragueRB55CE27100B $2700\Omega_{2}$ 0.15W, 1% $M11R-9:31$:R30SpragueRB55CE27100B $210\Omega_{2}$ 0.25W, 0.1% $M11R-9:31$:R32, 33SpragueRB500152 $1500\Omega_{2}$ 0.25W, 2% $M11R-9:31$:R34SpragueRB5010529075B2 $100\Omega_{2}$ 0.25W, 2% M	P7	Corning Glass	RL078562G	5600 \$2, 0.25W, 2%	
RefConning GlassRibbit Ribbit	R8	Corning Glass	RL208474G	470K, 0.5W, 29	MT1-R-22684B
R10, 12Corning GlassRL205162G1600\$, 0.5W, 2%MTL-R-22684FR13SpragueRW67V911910\$, 6.5W, 5%MTL-R-22684FR14Corning GlassRL076101G100\$, 0.25W, 2%MTL-R-22684FR15Corning GlassRL07821G820\$, 0.25W, 2%MTL-R-22684FR16DaleRE70NR200 0.20 , $0.25W$, 2%MTL-R-22684FR17Corning GlassRL075751G750\$, 0.25W, 2%MTL-R-22684FR19, 29SpragueRB54CE16200B1800\$, 0.25W, 0.1%MTL-P-93FR20SpragueRB54CE562R0F562\$, 0.25W, 2%MTL-R-93FR21, 23Corning GlassRL075362G3600\$, 0.25W, 2%MTL-R-22684FR24, 18Bourns224L-500-1021000\$, 0.5WMTL-R-22684FR25, 26SpragueRB55CE2100F1210\$, 0.15W, 1%MTL-R-2684FR27SpragueRB55CE2100F1210\$, 0.15W, 1%MTL-R-93FR30SpragueRB55CE2100F1210\$, 0.15W, 1%MTL-R-93FR30SpragueRB54CE12100B1210\$, 0.25W, 0.1%MTL-R-93FR32, 33SpragueRW69V(1)MTL-R-93FR34SpragueRW69V(1)MTL-R-26CR34SpragueRW69V1MTL-R-26CR34SpragueRM69V1521500\$, 3W, 5%MTL-R-26CR35Corning GlassRL07S202G2000\$, 0.25W, 2%MTL-R-26CR35Corning GlassRL07S202G200\$, 0.25W, 2%MTL-R-26CR35Corning Glass <td>R9</td> <td>Corning Glass</td> <td>RL078621G</td> <td>6202, 0.25W, 2%</td> <td>M116-R-226841</td>	R9	Corning Glass	RL078621G	620 2, 0.25W, 2%	M116-R-226841
R11 Corning Glass RL20S162G 1600Q, 0.5W, 2% MTL-R-22684h R13 Sprague RW67V911 910Q, 6.5W, 5% MIL-P-20C R14 Corning Glass RL073101G 100Q, 0.25W, 2% MIL-P-20C R15 Corning Glass RL07S821G 820Q, 0.25W, 2% MIL-R-22684h R16 Dale RE70NR200 0.2Q, 0.25W, 2% MIL-R-22684h R17 Corning Glass RL07S751G 750Q, 0.25W, 2% MIL-P-2664h R17 Corning Glass RL07S751G 750Q, 0.25W, 2% MIL-P-18546 R19, 29 Sprague RB54CE18000B 1800Q, 0.25W, 0.1% MIL-P-93h R20 Sprague RB54CE562R0F 562Q, 0.25W, 0.1% MIL-P-93h R21, 23 Corning Glass RL07S22G 2200Q, 0.25W, 2% MIL-R-22684B R24, 18 Bourns 224L-500-102 1000Q, 0.5W MIL-R-22684B R27 Sprague RB55CE27100F 1210Q, 0.15W, 1% MIL-R-93B R30 Sprague RB54CE12100F 1210Q, 0.15W, 1% MIL-R-93B R32, 33 Sprague RW69V 1) MIL-	R10, 12	Corning Glass	RL07S102G	1000Ω , 0.25W, 2%	M11/-R-226840
R13 Sprague RW67V911 910Q, 6.5W, 5% MIL-P-26C R14 Corning Glass RL07S101G 100Q, 0.25W, 2% MIL-R-22684r R15 Corning Glass RL07S821G 820Q, 0.25W, 2% MIL-R-22684r R16 Dale RE70NR200 0.2Q, 0.25W, 2% MIL-R-22684r R17 Corning Glass RL07S751G 750Q, 0.25W, 0.1% MIL-P-22684r R19, 29 Sprague RB54CE18000B 1800Q, 0.25W, 0.1% MIL-P-03P R20 Sprague RB54CE562R0F 562Q, 0.25W, 0.1% MIL-P-03P R21, 23 Corning Glass RL07S22G 2200Q, 0.25W, 2% MIL-R-22684B R22 Corning Glass RL07S362G 3600Q, 0.25W, 2% MIL-R-22684B R24, 18 Bourns 224L-500-102 1000Q, 0.5W MIL-R-22684B R27 Sprague RB55CE2100F 1210Q, 0.1SW, 1% MIL-R-93B R30 Sprague RB55CE27100B 2710Q, 0.1SW, 1% MIL-R-93B R32, 33 Sprague RW69V (1) MIL-R-93B		Corning Glass	RL20S162G	1600 \$2, 0.5W, 2%	MTL-R-2268010
R14 Corning Glass RL073101G 100Ω, 0.25W, 2% MIL-R-22684r R15 Corning Glass RL07S821G 820Ω, 0.25W, 2% MIL-R-226.84r R16 Dale RE70NR200 0.2Ω, 0.25W, 2% MIL-R-226.84r R17 Corning Glass RL07S751G 750Ω, 0.25W, 2% MIL-P-22684B R19, 29 Sprague RB54CE18000B 1800Ω, 0.25W, 0.1% MIL-P-22684B R20 Sprague RB54CE562R0F 562Ω, 0.25W, 2% MIL-P-03P R21, 23 Corning Glass RL07S362G 3600Ω, 0.25W, 2% MIL-R-22684B R22 Corning Glass RL07S362G 360ΩΩ, 0.25W, 2% MIL-R-22684B R24, 18 Bourns 224L-500-102 100ΩΩ, 0.15W, 1% MIL-R-22684B R27 Sprague RB55CE27100F 1210Ω, 0.15W, 1% MIL-R-93B R30 Sprague RB54CE12100F 1210Ω, 0.25W, 0.1% MIL-R-93B R32, 33 Sprague RW69V (1) MIL-R-26C R34 Sprague RW69V 1 MIL-R-26C		Sprague	RW67V911	910\$2, 6.5W, 5%	MTD-P-26C
R15 Corning Glass RL07S821G 820Ω, 0.25W, 2% MIL-R-220.F4R R16 Dale RE70NR200 0.2Ω, 0.25W, 1% MIL-R-18546 R17 Corning Glass RL07S751G 750Ω, 0.25W, 1% MIL-P-22684B R19, 29 Sprague RB54CE18000B 1800Ω, 0.25W, 0.1% MIL-P-22684B R20 Sprague RB54CE562R0F 562Ω, 0.25W, 2% MIL-P-93P R21, 23 Corning Glass RL07S22G 2200Ω, 0.25W, 2% MIL-R-22684B R22 Corning Glass RL07S362G 3600Ω, 0.25W, 2% MIL-R-22684B R24, 18 Bourns 224L-500-102 1000Ω, 0.5W R25, 26 Sprague RB55CE2100F 1210Ω, 0.15W, 1% MIL-R-22684B R27 Sprague RB55CE27100B 2710Ω, 0.15W, 1% MIL-R-93B R30 Sprague RB54CE12100B 1210Ω, 0.25W, 0.1% MIL-R-93B R32, 33 Sprague RW69V (1) MIL-R-26C R34 Sprague RW69V 1 MIL-R-26C R35 <td></td> <td></td> <td>RL075101G</td> <td>100Ω, 0.25W, 2%</td> <td>MTL-R-226840</td>			RL075101G	100Ω, 0.25W, 2%	MTL-R-226840
R16DaleRE70NR200 $0.2\Omega, 0.25W, 1\%$ MIL-R-18546R17Corning GlassRL07S751G $750\Omega, 0.25W, 2\%$ MIL-P-22684BR19, 29SpragueRB54CE18000B $1800\Omega, 0.25W, 0.1\%$ MIL-P-93PR20SpragueRB54CE562ROF $562\Omega, 0.25W, 2\%$ MIL-P-93PR21, 23Corning GlassRL07S222G $2200\Omega, 0.25W, 2\%$ MIL-R-22684BR22Corning GlassRL07S362G $3600\Omega, 0.25W, 2\%$ MIL-R-22684BR24, 18Bourns $224L-500-102$ $1000\Omega, 0.5W$ MIL-R-22684BR25, 26SpragueRB55CE12100F $1210\Omega, 0.15W, 1\%$ MIL-R-22684BR27SpragueRB55CE20000B $2000\Omega, 0.15W, 0.1\%$ MIL-R-93BR30SpragueRB55CE27100B $2710\Omega, 0.15W, 1\%$ MIL-R-93BR32, 33SpragueRW69V(1)MIL-R-93BR34SpragueRW69V(1)MIL-R-26CR34SpragueRU07S202G $2000\Omega, 0.25W, 2\%$ MIL-R-2684BC1, 2, 3SpragueIS0D105X9075B21 MFD, 75V, 10%C5GE69F116G2440 MFD, 100VC-23269C6Corning GlassCY10G221J $220pF, 300V$ MIL-C-23269		_	RL07S821G	820Ω, 0.25W, 2%	M11,-R-22684B
R17 Corning Glass RL07S751G 750Ω, 0.25W, 2% MIL-P-22684B R19, 29 Sprague RB54CE18000B 1800Ω, 0.25W, 0.1% MIL-P-93P R20 Sprague RB54CE562R0F 562Ω, 0.25W, 0.1% MIL-P-93P R21, 23 Corning Glass RL07S222G 2200Ω, 0.25W, 2% MIL-R-93B R22 Corning Glass RL07S362G 3600Ω, 0.25W, 2% MIL-R-22684B R24, 18 Bourns 224L-500-102 1000Ω, 0.5W MIL-R-22684B R25, 26 Sprague RB55CE2100F 1210Ω, 0.15W, 1% MIL-R-93B R28 Sprague RB55CE27100B 2710Ω, 0.15W, 1% MIL-R-93B R30 Sprague RB54CE12100F 1210Ω, 0.25W, 0.1% MIL-R-93B R32, 33 Sprague RB54CE12100B 1210Ω, 0.25W, 0.1% MIL-R-93B R34 Sprague RW69V (1) MIL-R-26C R34 Sprague RW69V 1 MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-26C		-	RE70NR200	0.2Ω, 0.25W, 1%	MIL-R-18546
R19, 29 Sprague RB54CE18000B 1800Ω, 0.25W, 0.1% MIL-P-93P R20 Sprague RB54CE562R0F 562Ω, 0.25W, 2% MIL-R-93B R21, 23 Corning Glass RL07S222G 2200Ω, 0.25W, 2% MIL-R-22684B R22 Corning Glass RL07S362G 3600Ω, 0.25W, 2% MIL-R-22684B R24, 18 Bourns 224L-500-102 1000Ω, 0.5W MIL-R-22684B R25, 26 Sprague RB55CE12100F 1210Ω, 0.15W, 1% MIL-R-22684B R27 Sprague RB55CE27100B 2000Ω, 0.1% MIL-R-93B R28 Sprague RB55CE27100B 2710Ω, 0.15W, 1% MIL-R-93B R30 Sprague RB54CE12100B 1210Ω, 0.25W, 0.1% MIL-R-93B R32, 33 Sprague RW69V (1) MIL-R-93B R34 Sprague RW69V (1) MIL-R-26C R34 Sprague RW69V 1500Ω, 3W, 5% MIL-R-26C R35 Corning Glass RL07S202G 200Ω, 0.25W, 2% MIL-R-22684B C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% L <t< td=""><td></td><td>Į.</td><td>RL07S751G</td><td>750Ω, 0.25W, 2%</td><td>MIL-P-22684B</td></t<>		Į.	RL07S751G	750Ω, 0.25W, 2%	MIL-P-22684B
R10 Sprague RB54CE562ROF 562Ω, 0.25W, 2% MIL-R-93B R21, 23 Corning Glass RL07S222G 2200Ω, 0.25W, 2% MIL-R-22684B R22 Corning Glass RL07S362G 3600Ω, 0.25W, 2% MIL-R-22684B R24, 18 Bourns 224L-500-102 1000Ω, 0.5W MIL-R-22684B R25, 26 Sprague RB55CE12100F 1210Ω, 0.15W, 1% MIL-R-93B R27 Sprague RB55CE20000B 2000Ω, 0.15W, 0.1% MIL-R-93B R28 Sprague RB55CE27100B 2710Ω, 0.15W, 1% MIL-R-93B R30 Sprague RB54CE12100B 1210Ω, 0.25W, 0.1% MIL-R-93B R32, 33 Sprague RW69V (1) MIL-R-93B R34 Sprague RW69V (1) MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-22684B C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% MIL-R-22684B C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% C			RB54CE18000B	1800Ω, 0.25W, 0.1%	MIL-P-93P
R21, 23 Corning Glass RL07S222G 2200Ω, 0.25W, 2% MIL-R-22684B R22 Corning Glass RL07S362G 3600Ω, 0.25W, 2% MIL-R-22684B R24, 18 Bourns 224L-500-102 1000Ω, 0.5W MIL-R-22684B R25, 26 Sprague RB55CE12100F 1210Ω, 0.15W, 1% MIL-R-22684B R27 Sprague RB55CE20000B 2000Ω, 0.15W, 0.1% MIL-R-93B R28 Sprague RB55CE27100B 2710Ω, 0.15W, 1% MIL-R-93B R30 Sprague RE54CE12100B 1210Ω, 0.25W, 0.1% MIL-R-93B R32, 33 Sprague RW69V (1) MIL-R-26C R34 Sprague RW69V152 1500Ω, 3W, 5% MIL-R-26C R35 Corning Glass RL07S202G 200Ω, 0.25W, 2% MIL-R-26C R35 Corning Glass RL07S202G 200Ω, 0.25W, 2% MIL-R-22684B C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% MIL-R-22684B C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% C C5 GE 69F116G2 440 MFD, 100V MIL-C-23269 <td></td> <td></td> <td></td> <td></td> <td>MIL-R-93B</td>					MIL-R-93B
R22 Corning Glass RL07S362G 3600Ω, 0.25W, 2% MIL-R-22684B R24, 18 Bourns 224L-500-102 1000Ω, 0.5W MIL-R-22684B R25, 26 Sprague RB55CE12100F 1210Ω, 0.15W, 1% MIL-R-22684B R27 Sprague RB55CE20000B 2000Ω, 0.15W, 0.1% MIL-R-93B R28 Sprague RB55CE27100B 2710Ω, 0.15W, 1% MIL-R-93B R30 Sprague RB54CE12100B 1210Ω, 0.25W, 0.1% MIL-R-93B R32, 33 Sprague RW69V (1) MIL-R-26C R34 Sprague RW69V152 1500Ω, 3W, 5% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-22684B C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% IL-R-22684B C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% C C5 GE 69F116G2 440 MFD, 100V C					MTL-R-22684B
R24, 18 Bourns 224L-500-102 1000Ω, 0.5W R25, 26 Sprague RB55CE12100F 1210Ω, 0.15W, 1% MIL-R-22684B R27 Sprague RB55CE20000B 2000Ω, 0.15W, 0.1% MIL-R-93B R28 Sprague RB55CE27100B 2710Ω, 0.15W, 1% MIL-R-93B R30 Sprague RE54CE12100B 1210Ω, 0.25W, 0.1% MIL-R-93B R32, 33 Sprague RW69V (1) MIL-R-93B R34 Sprague RW69V 1500Ω, 3W, 5% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-22684B C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% MIL-R-22684B C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% C C5 GE 69F116G2 440 MFD, 100V MIL-C-23269 C6 Corning Glass CY10G221J 220pF, 300V MIL-C-23269	-	-			MTL-R-22684B
R24, 16DoumleDoumleDoumleDoumleDoumleMIL-R-22684BR25, 26SpragueRB55CE12100F1210Ω, 0.15W, 1%MIL-R-22684BR27SpragueRB55CE20000B2000Ω, 0.15W, 0.1%MIL-R-93BR28SpragueRB55CE27100B2710Ω, 0.15W, 1%MIL-R-93BR30SpragueRB54CE12100B1210Ω, 0.25W, 0.1%MIL-R-93BR32, 33SpragueRW69V(1)MIL-R-93BR34SpragueRW69V1521500Ω, 3W, 5%MIL-R-26CR35Corning GlassRL07S202G2000Ω, 0.25W, 2%MIL-R-22684BC1, 2, 3Sprague196P10492S40.1 MFD, 200V, 10%MIL-R-22684BC5GE69F116G2440 MFD, 100VCC6Corning GlassCY10G221J220pF, 300VMIL-C-23269		-			
R25, 26 Sprague RB55CE1100F 2000Ω, 0.15W, 0.1% MIL-R-93B R27 Sprague RB55CE20000B 2000Ω, 0.15W, 0.1% MIL-R-93B R28 Sprague RB55CE27100B 2710Ω, 0.15W, 1% MIL-R-93B R30 Sprague RE54CE12100B 1210Ω, 0.25W, 0.1% MIL-R-93B R32, 33 Sprague RW69V (1) MIL-R-93B R34 Sprague RW69V (1) MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-22684B C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% MIL-R-22684B C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% 440 MFD, 100V C6 C5 GE 69F116G2 440 MFD, 100V MIL-C-23269 MIL-C-23269 C6 Corning Glass CY10G221J 220pF, 300V MIL-C-23269			1		MIL-R-22684B
R27 Splague RBSSCE2000R 20000, 0.000,					
R28 Sprague RBSSCH17100B L120Ω, 0.25W, 0.1% MIL-R-93B R30 Sprague RW69V (1) MIL-R-26C R34 Sprague RW69V152 1500Ω, 3W, 5% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-22684B C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% MIL-R-22684B C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% MIL-C-23269 C5 GE 69F116G2 440 MFD, 100V MIL-C-23269 C6 Corning Glass CY10G221J 220pF, 300V MIL-C-23269					
R30 Sprague RMS4CH12100B ILLON, FORMUL R32, 33 Sprague RW69V (1) MIL-R-26C R34 Sprague RW69V152 1500Ω, 3W, 5% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-22684B C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% MIL-R-22684B C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% MIL-C-23269 C5 GE 69F116G2 440 MFD, 100V MIL-C-23269 C6 Corning Glass CY10G221J 220pF, 300V MIL-C-23269	1			, ,	
R32, 33 Sprague RW05V R1, 1500Ω, 3W, 5% MIL-R-26C R34 Sprague RW69V152 1500Ω, 3W, 5% MIL-R-26C R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-26C C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% MIL-R-22684B C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% MIL-R-23269 C5 GE 69F116G2 440 MFD, 100V MIL-C-23269 C6 Corning Glass CY10G221J 220pF, 300V MIL-C-23269					
R34 Sprague R00V102 L0000, 0.25W, 2% MIL-R-22684B R35 Corning Glass RL07S202G 2000Ω, 0.25W, 2% MIL-R-22684B C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% MIL-R-22684B C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% MIL-C-23269 C5 GE 69F116G2 440 MFD, 100V MIL-C-23269 C6 Corning Glass CY10G221J 220pF, 300V MIL-C-23269	1				
R35 Conning Glass RH0752020 Looch, F02010 C1, 2, 3 Sprague 196P10492S4 0.1 MFD, 200V, 10% C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% C5 GE 69F116G2 440 MFD, 100V C6 Corning Glass CY10G221J 220pF, 300V MIL-C-23269 MIL-C-23269 MIL-C-23269 MIL-C-23269 MIL-C-23269					
C1, 2, 5 Bplugue DBDL05X9075B2 1 MFD, 75V, 10% C4 Sprague 150D105X9075B2 1 MFD, 75V, 10% C5 GE 69F116G2 440 MFD, 100V C6 Corning Glass CY10G221J 220pF, 300V MIL-C-23269 NIL-C-23269 100007E 200V MIL-C-23269	1				
C5 GE 69F116G2 440 MFD, 100V C6 Corning Glass CY10G221J 220pF, 300V MIL-C-23269 MIL-C-23269 10000pF 200V MIL-C-23269				-	
C6 Corning Glass CY10G221J 220pF, 300V MIL-C-23269 C6 NIL-C-23269 10000-F 200V MIL-C-23269					
Coming Glass Chicazzio Desperiore MtL-Co-23269				1	MTL-C-23269
C7 Corning Glass CY30G103J 10000pr, 3000 MIL-CM25209		-		-	i i i i i i i i i i i i i i i i i i i
	C7	Corning Glass	CY30G103J	10000051, 3000	MID=C=C360.2

•

...•

(

C

1

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

		TABLE 4-3 (CC VRE COMPONENT Part 543936-1	LIST	
Component Designation	Manufacturer	Part Number	Rating	Approved Standard
Cß	Sprague	196P2239254	0,022 MFD, 200V	
C9	Spraque	137D946X0050A2	94 MFD, 50V	
C10	Spraque	137D	(1)	
c11	Sprague	137D	(1)	
CR1	Varo	45524-200	250V, 15 amp	
CR2, 6, 11, 13	GE	JAN IN 1206	600 V, 12 amp	MIL-S-19500/160
CR3, 4, 5, 8,				
12, 15, 16		JAN IN 485B	180 V, 1 00 ma	MIL-S-19500/118B
CR7	Motorola	JAN IN 753A	6.2V ±5%	MIL-S-19500/127
CR9	Motorola	IN5308	100V, 2.7 ma	
CRIO	Motorola	IN827A	6.2V, ±5%	MI1-S-19500/159
Q1, 8, 9	FAS, TI	JAN 2N2060	Silicon NPN Dual	
Q2	Motorola	JAN 2N3251A	Silicon PNP	
Q3	Motorola	JAN 2N2219	Silicon NPN	
Q4, 5, 7	AiResearch	521246-1	Silicon NPN Power	
Tl	AiRescarch	521259-1		
Τ2	AiResearch	521260-1		
Series Field				
C1, 2	Marshall	HL4-105(ISC)	1 MFD, 400V	
CR1, 2, 3, 1,				
5,6		IN4507	400V, 12 amp	
T1, 2, 3	AiResearch	521247-1		

•

,t

I.

ŧ

NOTE: (1) Component values to be selected as required during development tests at Lewis Research Center.

TABLE 4-4

BRU Module

FAILURE RATE CALCULATION FOR DIODES (FIG. 7.4.3 MIL-HDBK-217A)

IJ

1										T									
Total Failure Rate (10 ⁻⁵)	3.720	0.005	0.372	0.372	0.372	0.340	0.670	0.333	0.870	0.980	0.515	0.435	ŧ	0.333	0.333	9.650			
X	6.0	1.0	1.5	1.5	1.5	1.0	1.0	1.5	1.0	1.0	1.0	1.5	1	1.5	1.5				
Base Failure Rate (10 ⁶)	0. 6 20	0.005	0.255	0.255	0.255	0.340	0.670	0.222	0.870	0.980	0.515	0.290	1	0.222	0.222				
$T_n = \frac{T_J - T_g}{T_J max - T_g}$	0.39	0.26	0.28	0.28	0.28	0.26	0.26	0.26	0.37	0.37	0.36	0.36	Ì	0.026	o. œ6				
$\mathbf{T}_{\mathbf{J}}^{=} \mathbf{T}_{\mathbf{A}}^{+\theta} \mathbf{J} \mathbf{A}^{\mathbf{P}} \mathbf{J}$	110	70	1rb	tr2 •	41	20	70	70	90	. 06	62	87.5	ł	70	70				
	70	70	70	70	70	20	70	70	70	10	20	70	8	70	70				
^θ JA TJmax ^{-TS} PJmax ^{-TS} (°C/mW)	5°c/W		0.875°¢/MA						0.250	0.44	3°C/W	0.875°C/MA	1	1	ľ				
C C C C C C C C C C C C C C C C C C C	75	25	25	25	25	25	52	25	25	25	25	52	t	25	25				
T Jmax oc	165	200	200	200	200	200	200	200	8	200	200	500	(200	200				
		0	ۍ *	* •	Ċ,	0	0	0	80	S A	R	5 N	ı	0	0				
X	ЧЦ ⁻	I	200*	200	200 *	,	004	200 *	1	004		500 *	ł	*000	*000				
	NO. 15524-	200 TN1206	TN485B	IN485B	IN485B	TN1206	M753A	IN485B	TNEADB	A798MT	YUCIAL	IN485B	J OCINI	TNLASE	TWARE			_	
	CR1	G												2 Iau	Y and	CNTO			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Type P_{Jmax} P_{Jmax} P_{Jmax} T_{M} T_{Jmax} T_{g} T_{g} T_{Jmax} T_{g} T_{g} T_{Jmax} T_{g} T_{Jmax} T_{g}	Type P_{Jmax} P_{Jmax} T_{Jmax} T_{g} T_{Jmax}^{-Tg} T_{Jmax}^{-Tg} T_{Jmax}^{-Tg} T_{alluxe} T_{alluxe} T_{alluxe} T_{Jmax}^{-Tg} T_{alluxe} <td>Type P_J P_J T_M T_g P_J T_J <th< td=""><td>Type P_{Jmax} P_{J} T_{Jmax} T_{s} <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Type P_{Jmax} P_{J} T_{Jmax} T_{a} T_{Jmax} T_{a} T_{Jmax} T_{a} P_{Jmax} P_{a} P_{ad} P_{ad}</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Type P_{Jinax} P_{Jinax} T_{Jinax} T_{Jinax} T_{Jinax} T_{Base} $Rate Lambda Mase Martin Marti Martin Martin Marti Marti Martin Martin Martin Marti$</td><td>Type and build and build and build build and and build and and build and and and and and and and and and an</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Type P_{Jmax} P_{J} T_{Jmax} T_{a} P_{a} T_{Jmax} T_{a} P_{Jmax} T_{a} P_{a} P_{Jmax} P_{a} P_{a}</td></t<><td>Type Panel Panel Falling Rate Rate</td><td></td><td>Type P_{anax} P_{anax} T_{anax} P_{anax} T_{anax} P_{anax} P_{anax}<!--</td--></td></td></th<></td>	Type P_J P_J T_M T_g P_J T_J <th< td=""><td>Type P_{Jmax} P_{J} T_{Jmax} T_{s} <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Type P_{Jmax} P_{J} T_{Jmax} T_{a} T_{Jmax} T_{a} T_{Jmax} T_{a} P_{Jmax} P_{a} P_{ad} P_{ad}</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Type P_{Jinax} P_{Jinax} T_{Jinax} T_{Jinax} T_{Jinax} T_{Base} $Rate Lambda Mase Martin Marti Martin Martin Marti Marti Martin Martin Martin Marti$</td><td>Type and build and build and build build and and build and and build and and and and and and and and and an</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Type P_{Jmax} P_{J} T_{Jmax} T_{a} P_{a} T_{Jmax} T_{a} P_{Jmax} T_{a} P_{a} P_{Jmax} P_{a} P_{a}</td></t<><td>Type Panel Panel Falling Rate Rate</td><td></td><td>Type P_{anax} P_{anax} T_{anax} P_{anax} T_{anax} P_{anax} P_{anax}<!--</td--></td></td></th<>	Type P_{Jmax} P_{J} T_{Jmax} T_{s} <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Type P_{Jmax} P_{J} T_{Jmax} T_{a} T_{Jmax} T_{a} T_{Jmax} T_{a} P_{Jmax} P_{a} P_{ad} P_{ad}</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Type P_{Jinax} P_{Jinax} T_{Jinax} T_{Jinax} T_{Jinax} T_{Base} $Rate Lambda Mase Martin Marti Martin Martin Marti Marti Martin Martin Martin Marti$</td><td>Type and build and build and build build and and build and and build and and and and and and and and and an</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Type P_{Jmax} P_{J} T_{Jmax} T_{a} P_{a} T_{Jmax} T_{a} P_{Jmax} T_{a} P_{a} P_{Jmax} P_{a} P_{a}</td></t<> <td>Type Panel Panel Falling Rate Rate</td> <td></td> <td>Type P_{anax} P_{anax} T_{anax} P_{anax} T_{anax} P_{anax} P_{anax}<!--</td--></td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Type P_{Jmax} P_{J} T_{Jmax} T_{a} T_{Jmax} T_{a} T_{Jmax} T_{a} P_{Jmax} P_{a} P_{ad}	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Type P_{Jinax} P_{Jinax} T_{Jinax} T_{Jinax} T_{Jinax} T_{Base} $Rate Lambda Mase Martin Marti Martin Martin Marti Marti Martin Martin Martin Marti $	Type and build and build and build build and and build and and build and and and and and and and and and an	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Type P_{Jmax} P_{J} T_{Jmax} T_{a} P_{a} T_{Jmax} T_{a} P_{Jmax} T_{a} P_{a} P_{Jmax} P_{a}	Type Panel Panel Falling Rate Rate		Type P_{anax} P_{anax} T_{anax} P_{anax} T_{anax} P_{anax} </td

Integrated bridge, six rectifiers Redundant pair Field eifect constant current diode.

<u>H</u>am

_

┥

Used Zener failure rate.

APS-5286-R Page 4-44

ł

•

n

1

t

ţ

t

1

TABLE 4-5

,

FAILURE RATE CALCULATION FOR TRANSISTORS (FIG. 7.4.4 MIL-HDBK-217A)

,

. 1

ļ

		-	T		a turnen a			_				ملية بين المواجد بيني ال		
Total Failure Rate (10 ⁶)	. 333	1.005	.015	.510	820	.510	.487	.337	4.617	 				
×	1.5	1.5	1.5	1,0	1.0	1.0	1.5	1.5					 	
Base Fallure Rate (10 [°] s)	0.222	0.670	0.410	0.510	0.820	0.510	.325	.255						
$T_{\rm II} = \frac{T_{\rm J} - T_{\rm g}}{T_{\rm Jmax} - T_{\rm g}}$	0.27	0.30	0.48	0.28	0.51	0.29	0.39	0.31				7	 	
T _J =T _A + ^θ JA ^P J	73	11	110	412	411	76	91	62						
د م ۲	70	70	70	70	70	70	70	70					 <u></u>	
9.14 TJmex-T Jmex (°C/WH)										 				
се Ч	25	25	25	25	25	25	25	25		 	بعق حصي المعيد		 	
T Sec	200	200	200	200	200	200	200		- - -				 	<u>2</u>
۲. ۵. •		IS	180	1.	-11	1.5*	8	70	i 	 			 	
Parex	0.5	У.	0.8	70	70	20	5 0		5				 	
Type and Mo		283251A	2N2219	521246	5010AG	521246	Cylicate			 			 	
Lover Car Darr	61	42	Q 3	10	У С) e	8	3	Ş					

 Γ

ł

ŧ

TABLE 4-6

FAILURE RATE CALCULATION FOR CAPACITORS

,

Base App. Base K Failure Rate Rate (10 ⁻⁶) (10 ⁻⁶)			. 0079 1.3 0.01027	.0079 1.3 0.01027	.0270 3x.07 0.00567		.2300 0.51 V. 10 2300	.0002 1.0 0.00020	. 0002 1.0 0.00020		. 0024		0.2400							
Stress Factor V_V		.20	.20	.20	ŗ.		2 4 -	રું	8)	.075	.30		 					 	
V Solts		#Ov pk	40v pk	40v pk	25		42	15	۲ ۲	2	Ŀ	15				 				
V. LE Volta	AUTE	2007	2000	2000	75		100							 		 			 	
		0.1 Mfd	0.1 Mfd	0 1 Mfd	Mfd		A40 MEd	220 pF		Topon br	.0£2 Mfd				, ,	 			 	
	Type	196 p paper	. c		Ido p paper.	Solid sent.	rt ger (Tant Slug)			CY 306 (Glass) (2)	196 p (paper)	137 D (Tant Slug)								
	Part	5	; ;	<u> </u>	ញ	đ U			3	5	g		2			 	-		 	

1

٩

¢

(

C ī.

Å

ł ٩

~

 $\overline{}$

FAILURE RATE CALCULATION FOR WIRE WOUND, RESISTORS

TABLE 4-7

,

App. Fallure Rate (10⁻⁶) 1.13 1.13 1.13 1.13 1.13 1.13 i. 13 1.13 1.13 1.13 12.43 1.13 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 × Base Fallure Rate (10⁻0) l.13 1.13 1.13 1.13 1.13 1.13 **1.13** 1.13 1.13 I. 13 1.13 Stress Factor Pg Pr .063 . 125 . 029 . 065 .065 .056 .056 .061 .05 .037 8. . 030 . of 8 .18 .ઝા . <u>0</u> 014 .032 .018 S10. . 032 ы Э́С т<u>а</u> з а^нз+ 64. 64. 64. 64. 64 .49 .81 .81 .81 81 .81 **1.80K** 1.21K 1.21K 2.00K 2.71K 1.21K 1.8K Value Ohms 750 1500 562 698 Type RB54C **RB55C R**B55C RB55C **RB55C F.B54C HB54C** RB54C RB54C **RB55**C RB55C Part R1 R2 R19 R25 R25 R25 R25 R26 R26 R28 R28 R28 R28 R28 R28 R28

from 125 Rating to 7.1 C base temperature. Used for stress calculation only. ·Extrapolated

 \sim

•

1

ł

t

	FAIL	FAILURE RATE (ALCULATI	CALCULATION FOR METAL FILM RESISTORS	FILM RESIS	10KS			r
PART	TYPE	VALUE OHMS	а ^н ж	ع لى م	ST RESS FACT OR P p i	BASE FAILURE RATE 10- ^o)	ж	APP. FAILURE RATE (10-0)	
R6	MIL-R-22664	2.7K	0.25	•	(0.1)	0.250			
R.		5. 6K	0.25	0- 0064	0.026	0.250			
R 11		470K	0.50	•	(0.1)	0.250			
к 9		620	0.25	1	0.10	0.250			
210		0001	0.25	ú. ủê	0. 32	0.310			
RII		1600	0.50	u. 12	0.24	0. 300			
Ř. 2		1000	0.25	0.001	(0.1)	0.250			
RIH		100	0.25	0. 05	0.20	0.300			
RIF		820	0.25	110.0	0.176	0.300			
Ri		750	0.25	9 8	(0.1)	0.250			
R21		2.2K	0.25	1	0.1	0.250			
K 22		3. 6K	0.25	0.0045	0.016	0.250			
R23	•	2.2K	0.25	1 1	0.1	0.250			
. 35 X		ي. ر	ŋ. 25	0	0	0 3.46	0.3	1.0 <u>38</u>	
Normally -	not stressed. For signaliny	n. i se	an i comer i c	niv.					

TABLE 4-E FAILURE RATE CALCULATION FOR METAL FILM RESISTORS 9

ł . .

.

i

Į

* - + - =

t

 $\overline{}$

l

•

ŧ

ſ

I

J.

٩

APP.	FAILURE RATE (10-°)		0. 160		0.068	0.068	0.068 0.364	
	×		10					
BASE	FAILURE RATE (10-°)		0.016	0	0.068	0.068	0.068	
STRESS	FACTOR P_/P_		0.31	0	0.260	0.026	0.050	
STRESS BASE	d. :		2.0	0	0.130	0.013	0.025	
	а ¹ в		6. 5W	3-0	0.5	0.5	0.5	
	VALUE OHMS	(1)	910	1500	2000	1000	1000	
FAILURE RAIE CALCULATION	TYPE	MIL-R-26	mil-r-26	MIL-R-26	POT, 224L	POT, 224L	POT, 224L	
	PART	R5	813	K34 (1)	R3	RIÅ	R24	

TABLE 4-9 ILURE RATE CALCULATION FCP POWER RESISTORS AND POTENTIOMETERS

;

١

•

Failure does not affect normal operation.

n

. •

."

ł

j erre		
	лАрр. (10-с)	0. 30 0. 00 0. 00 0. 00
	×	цц Гц
	, Base (10- ⁶)	0.20
	ACTUAL TEMP. $T_{B} = T_{Bmb}^{+} + \Delta T_{OC}^{+}$	110°C 110°C
TRANSFORMERS SEC. '. '. F MIL-HDBK-217A)	ACTUAL TEMP. RISE ^O U ACTUAL (*)	ESTIM.) 40°C MAX. ESTIM.) 40°C MAX.
SFORMERS	ACTUAL VOLT AMP. VA	220 VA 4.4.VA
TRAN	RATED Volt Amp. Va _r	220 VA 4.4 VA
	TEMP. RISE AT RATED LOAU ATR. ³ C	ວ _ດ ດາ
	INSU- LATION CLASS	
	TRANS- FORMER	521260

i

TAILURE RATE CALCULATION FOR

1

!

t

.

n,

GARRETT

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

TABLE 4-11 SUMMARY OF FAILURE-RATE CALCULATIONS FOR VOLTAGE-REGULATOR/EXCITER

Part	Name			1	Tot Fai	tal Applic Lure Rate	ation (10 ⁻⁶)
Resistors	(Table	4-8)				1.038	
Resistors	(Table	4-7)				12.430	
Resistors	(Table	4-9)				0.364	
Capacitors	(Table	4-6)				0.240	
Transformers	(Table	4-10)				0.600	
Transistors	(Table	4-5)				4.617	
Diodes	(Table	4-4)				9.650	
TOTAL				λ	=	28.939 x	10 ⁻⁶ /hr.
			MTB	F	н	34,550	hr.

dicde. (It should be noted that the screening has proven very effective in removing weak power transistors and constant current diodes.)

The resultant overall failure rate is 29×10^{-6} /br., corresponding to an MTBF of 34,500 hrs. This appears encouraging, since it is based on standard military and commercial components. With flighttype components, at least a tenfold improvement is anticipated. The two largest contributors to the present failure-rate evaluation results are the diodes (including rectifiers), and the precision wire-wound resistors. Simple semiconductor screening to Jan TX specifications is claimed to reduce failure rates by one order of magnitude. In addition, if the precision wire-wound resistors are replaced by precision, established-reliability film resistors purchased to Level P of

> APS-5286-R Page 4-51

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

MIL-R-55182, a 40-times reduction in the predicted failure rate may well be possible.

4.3 Mechanical Description

The VRE is packaged in a 19-in. rack panel chassis. The chassis is mounted on slides to provide convenient access to the electrical components. The basic mechanical concept was to provide a packaged breadboard where components are conveniently located and, at the same time, to maintain quality workmanship. The series field module can be removed from the VRE chassis and located remotely if desired. Terminal junctions are located on the inside of the back panel to allow for the following optional wiring configurations:

- (a) Local or remote voltage sensing
- (b) Local or remote power pickup
- (c) Local or remote series field location

The optional wiring schedule, Drawing 521301 (Appendix IV) contains detailed instructions for reconnecting the terminal junctions. A set of jumper leads and special tools for wire installation and removal are provided with each unit. Note that in order to use the "Local" wiring option, the alternator output must be routed through the VRE chassis. The VRE is delivered prewired in the local configuration.

CAUTION: The machine may not be operated under any circumstance with P2 and/or P7 disconnected (Series Field Open) when current flows in the current transformer primary. This primary consists of three wires routed through holes in the series field module.

11

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

The physical configuration of the VRE is shown on Drawing 543936 (Figure 4-15) and the location of the various components and modules is shown on Drawing 543937, Figure 4-16. Photographs of the actual hardware are presented in Figures 4-17, 4-18, and 4-19. Figure 4-20 is the system wiring diagram of the BRU alternator, VRE, and speed control.

¢

 $^{\prime}$

 \mathbf{u}

FIGURE 4-15

APS-5286-R Page 4-54

- 14A

↓	APPLICATION	<u> </u>		/		[SCALE	1/2		SHEET / OF
NOTES: ULLESS OTHERWISE SPECIFIED	FINAL REGD NEXT ASSY USED ON				OTHER ACT		D	70210	543	3936
, FOR SCHEMATIC DIAGRAM SEE ORAWING 521169.					AMESLANC	man 6.20.67	1/1/ 1/1	CODE ADENT NO. D	ゼク	
ZRAWING 521219.		HEAT TREATM		PROCESS	NPJ -	Fair 677-67	•	VOLTAGI	E, ALTERN	NATOR
. FOR SYSTEM WIRING DIRGRAM SEE		L DIMENSION LINE	THE HE	LD ATTER PLATING INCLA INCLASSING AND ATTING	THUR DR	Halan 6-28-17	R		R-EXCITER	
		UNLESS UTHER DIMENSIONS AR MACHINE FILLET SURFACE ROUGH SURR CONTROL	HE IN P T RADII HINESS PER 1	NGAL 1 (15—18) FTR MILETD-10 1040	67/P	5-16-67		AIREBEA	RCH MANUFA	
			AS	SY			LIS	T OF MATERIAL		
		QTY REQD	TEM NO.	PART NO.	SYM	DESCRIPTION		CODE	MATERIAL	
							_	<u> </u>		
		PART NO	_	ASSY NO						·
,		54 39 36-		543937-1						

FULDOUT FRAME

•

Person and a second

FIGURE 4-16

APS-5286-R Page 4-55

FCIDOUT FRAME

 Γ

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

VOLTAGE REGULATOR/EXCITER ASSEMBLY

FIGURE 4-17

APS-5286-R Page 4-56

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT CORPORATION PHOENIX, ANIZONA

FRONT VIEW WITH PANEL REMOVED

REAR VIEW

VOLTAGE REGULATOR/EXCITER ASSEMBLY

FIGURE 4-18 APS-5286-R Page 4-57

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

5.0 DESCRIPTION OF THE SPEED CONTROLLER

The speed control system is a parasitic-load-type using dissipative resistive load to balance real load changes and/or variations in net turbine shaft power input to the alternator. The speed control requirements include the following:

- (a) Capability of controlling speed using a frequency error signal.
- (b) Capability of maintaining the alternator frequency at 1200 Hz to within the specified limits.
- (c) Minimizing the effect of the control device on harmonic content of the alternator voltage and current.
- (d) Minimizing the losses in the control device when the demand for parasitic load is zero.
- (e) Provide capability for loading the alternator to 150 percent of design rating.

The speed-control system schematic is shown on Drawing 43534, Figure 5-1. This system utilizes three control circuits (one to sense each phase of the 1200-Hz, 120-V, 10.5-KW alternator) to apply or remove parasitic loading to maintain a constant frequency under varying vehicle load and alternator input conditions. Three control circuits are utilized to improve system reliability. Each control circuit loads all three phases simultaneously. The parasitic loads were established at 2 KW each to provide a total of 6 KW per control circuit. As the maximum parasitic load required is 10.5 KW, one control circuit may fail in the OFF-condition without affecting overall system performance.

Each control circuit consists of a frequency detector, an amplifier section, and a firing circuit. The frequency detector converts the frequency error to a d-c signal. This signal is amplified by two stages of push-pull magnetic amplifiers. The output from the magnetic

H

G

F

Æ

D

.

2

n

n

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

amplifiers is a monopolarity pulse that occurs at the center of each half-cycle. The duration of each pulse is proportional to the frequency error. (This signal could also be used for transistor control of the parasitic load at such time as a 600-V, 10-amp transistor of proven reliability is available.) For use with the SCR circuit shown, additional signal conditioning is required. This is accomplished with saturable reactors Z_3 , Z_4 , and Z_5 .

Variable-frequency and variable-gain controls, located on the front panel, are incorporated in each control circuit.

A filter circuit has been incorporated in the design to reduce the effect of the speed control on the generator output.

NASA has requested incorporation of a scheme to allow manual or automatic full-on/full-off parasitic load control, Figure 5-2. This control system is not to be furnished by AiResearch. However, a tiein point is provided as shown on the schematic, Wiring Diagram 43534, Figure 5-1. For the full-off mode, a negative bias was suggested. As discussed below, this would not be satisfactory for linear control. Grounding the tie-lead through a controlled impedance would satisfy the requirement. The circuit in the full-on mode serves to override the speed-control signal to the saturable reactors by providing sufficient current to saturate the saturable reactors for full-on, and grounding short-circuits the signal for full-off. For automatic control, the speed control normally is not affected by the manual control circuit. The control logic circuit is to be provided by NASA to turn the speed control on or off, based on other system requirements.

Table 5-1 lists the components shown on Schematic 43534, Figure 5-1, together with ratings, manufacturer, and reliability information.

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DEVISION OF THE DAMAGET COMPANIEN A DEVISION OF THE DAMAGET COMPANIEN

APS-5286-R Page 5-4 FIGUPE 5-2

 \int

		COMPONENT D	TABLE 5-1 DATA (Reference D	Dwg No. 43534)		
Comp.	Manufacturer	Part No.	<u>Rating l</u>	Design 1 Condition	JPL Rating ²	App. MIL-STD
Q5, 6	GE	C35M	rjm/Td 125°C	Tj 75°C	V for 600 V	MIL-S-19500 108A
Q1, 3	IL	2N2222A	тјт/тd 175°С/ 25°С	Tj 55°C	ф.	I
Q2, 4	11	2N2907A	Tjm/Td 200°C/ 25°C	Tj 53°C	<u>д</u>	ł
Tl	AiResearch	307594	Insul Cl A	Top 66°C	No	MIL-T-27
г2	AiResearch	307596	Irsul Cl A	Top 76°C	NO	MIL-T-27
гл	UTC	MQA9	Insul Cl A	Top 56°C	Λ	MIL-T-27B
c1, 5	GE	74F01BA105	200 V	50 V	Λ	I
C2, 3, 4, 6	Sprague	350D156X9075S2	75 V	25 V	H for 6-50 volts	I
c7	Mallory	XTH256U180POC	180 V	50 V	Λ	MIL-C-39658B1
6.0	GE	28F959	600 VDC/ 330 VAC	120 V	Λ	I
CR1	Motorola	IN978B	Тјm/Td 170°C/ 50°C	Tj 46°C	H and P	I
CR2-14	TRW	IN485B	Tjm/Td 200°C/ 25°C	Tj 46°C	II and P	I
z1, 2	AiResearch	307595	Insul Cl A	56°C	NO	MIL-T-27
53	AiRcsearch	307597	Insul Cl A	56°C	NO	MIL-T-27
R1, 5	ABC/OHMITE	EB/RC20GF	2.2K, 1/2 W	0.125 W	<u>م</u>	MIL-R-38101
R2, 3	Dale	AGS-5	820/620/4 W	0.76 W	Ъ	MIL-R-38101
R4	Bourns	3500-1	500 Ω 2 W	0.460 W	Λ	1
R6	Dale	AGS-5	150Ω 4W	0.665 W	ų	∷IL-R-38101
87, 9, 12, 13	Angstrom Frec. Inc.	RN60E	82K ±1/8 W	0.001 W	Ŵ	MIL-R-10509

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A Division of the Garnett Componation

11

GARRETT

1

,

ι.

APS-5286-P Page 5-5

n

		COMPONENT	TABLE 5-1 (CONT) DATA (Reference Dwg	J No. 43524)		
c moo	Manufacturer	Part No.	Ratingl	Design _l Condition	JPL Rating ²	App. MIL-STD
-diii0-1	Dale	AGS-5	470 +1%	0.850 W	д	MIL-R-38101
	ABC/OHMITE	EB/RC20GF	5.1 K ±5% 1/2 W	0.0785 W	ሲ	MIL-R-11
R14. 15	Dale	AGS-5	100Ω±1% 4 W	1.50 W	۵,	MIL-R-38101
	Angstrom Prec. Inc.	RN60E	11K ±1/8 W	W 600.0	۰. ۲	MIL-R-10509
617	ABC/OHMITE	EB/RC20GF	750Ω ±5% 1/2 W	0.041 W	<u>م</u>	NIL-R-11
R20, 23	ABC/OHMITE	EB/RC20GF	510Ω ±5% 1/2 W	0.056 W	ρ,	NIL-R-IL
R21, 22	ABC/OHMITE	EB/P.C20GF	100Ω ±5% 1/2 W	0.011 W	۴۹	MIL-R-LI
5 18	ABC/OHMITE	EB/RC20GF	33K ±5% 1/2 W	0.01 W	P4	NIL-R-11
619	J. IMHO	CLU 1041	100K 2 W	M 10.0	V (ABC)	MIL-R-94B
NOTES: 1. Op	Operating temperatures a	assume a maximum	ambient temperature	of 46°C	(115°F) per Speci	Specification
2. К 20 К 20	P0055-2. Refers to Jet Propulsion Laboratory Preferred rating, "P" indicates spacecraft preferred ra	ı Laboratory Pref bacecraft preferr	Parts List, ting, and "V"	dated L July 1956 ' indicates qualif.	に に に に に に に に に に に に に に	indicates HiRel dor.
а. Ча С	Tjm = Max allowable junction temperature Tc = Junction temperature at which component	ction temperature ire at which comp	: conent derating begins	.ns		
גרוי גרי ד] ייי ייי	<pre>= Junction temperature ! and C9 will be changed .</pre>	rre ed as the filter	design is revised.			
•						

ł

n

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

.

-

9

GARRETT

APS-5286-P Page 5-6

Speed Controller Transfer Function

The effects of transients such as those specified in 2.3b are dependent upon the total system. An analog study (included as Appendix V), investigating such system effects, has been completed. The transfer function of the speed control is as follows:

V	н		24 KW/percent	of speed c	hange
IV.		$(1+0.00082 \text{ s})^2$	$(1+0.0157 \text{ s})^2$	(1+0.010 S)	$(s^2+3x10^4s+2.25x10^8)$
				\sim	
		Frequency detector	2 mag-amps	Saturable reactor	Line filter

The above relationship is based upon adding the phase-control sections sequentially. For example, the 6-KW load controlled by Phase A will be added as required for the first 1/4-percent error; the 6-KW load controlled by Phase B will be added as required for the next 1/4-percent error; and the 6-KW load controlled by Phase C will be added as required for the next 1/4-percent error should either Phase A or Phase B control section fail. The possibility of loading with all three control sections simultaneously (72 KW/percent of change in frequency) is being investigated. This would allow complete interchangeability of modules (refer to Drawing 43534, Figure 5-1).

5.1 Design of the Speed Controller

As shown on the block diagram section of AiResearch Drawing 43534, there are three basic sections to the speed control. These are

- (a) The frequency detector
- (b) Magnetic amplifier
- (c) The firing circuit

GARRETT

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

The design of these sections was based upon considerable previous experience with the frequency detector and with similar magnetic amplifier arrangements. In the following paragraphs, details of the design are discussed. For component call-outs, refer to the wiring schematic, Drawing 43534, Figure 5-1.

The speed-control is designed for a parasitic load speed-control power loss of less than 24 W when no parasitic load is being applied. Large derating factors have been used for components that would cause loading if the component failed (see Paragraph 5.2, Reliability Study and Failure Analysis).

Frequency Detector

The circuit consists of a bridge with two active and two resistive legs. The active element consists of two charging capacitors in series, C's 2 and 3 and C's 4 and 6, around which there is a twotransistor switch (Q's 1 and 3 and Q's 2 and 4). The transistors are complementary NPN and PNP so that when one transistor is turned on, the other one is turned off. A timing capacitor (C's 1 and 5) is connected from the junction of the two series charging capacitors to the junction of the two emitters of the switching transistors. The collectors are tied to the extremes of the charging capacitors. With this arrangement the timing capacitor is switched, on alternate half cycles, from one end of the charging condensors to the opposite end. This action removes a charge from these charging condensors, with the result that there is continual charging current through the fixed resistive legs of the bridge. The bridge must be balanced at the reference frequency. With a bridge supply voltage V_s, the voltage drop across R_2 (or $R_3 + R_4$) is $V_s/2 = IR_2$, where

 $I = \frac{Q}{t} = Qf = \frac{V_s}{2}C_1f$

APS-5286-R Page 5-8

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

therefore

$$R_2 = \frac{V_s}{2I} = \frac{1}{C_1 f}$$

The change in the detector output, V_c , per percent frequency change or detector gain, by voltage loop equations is

5.2 millivolt x V_s Percent frequency change

Before determining C₁ and V_s, it is necessary to determine the preamplifier input requirements. The gain cf the frequency detector must be large enough to minimize the drift level of the first stage of amplification. This drift is difficult to accurately predict; however, from experience with similar magnetic amplifiers, it has been found that if the ambient temperature is kept below 130°C and the core material is well-matched Mo-Permalloy, a worst-case drift figure of 0.033-ma turn/°C/100 gate turns can be expected.

It is obvious that since all the drift is not the fault of the gate diodes, the drift level is not directly proportional to gate turns; however, for a number of turns between 200 and 1000, this figure will suffice. In the case in question, there are 670 gate turns; therefore, the worst-case drift will be 6.7 x 0.033 or 0.221 ma turns/°C. For a $\pm 50^{\circ}$ C change, this represents 11.1-ma turns drift. With 2000 turns on the control, this represents $\pm 5.5 \ \mu$ a. Since the control range of this device will be approximately 1/4 percent, the gain should be much larger than 22 μ a/percent of change in frequency. In addition to this, the impedance of the detector should be high with respect to the d-c resistance of the control winding. This will minimize the gain change as a function of ambient-temperature change. For 2000 turns control,

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT CORPORATION

the minimum resistance (R_c) will be approximately 100 ohms; therefore, the impedance of the frequency detector should be approximately 1000 ohms.

If R_2 must be approximately 1000 ohms,

$$C_1 = \frac{1}{R_2 f} = \frac{1}{(1.2) \times (10^6)} = 0.83 \ \mu f$$

If $C_1 = 1 \ \mu f$, R_2 adjusts to

$$\frac{1}{C_1 f} = 830 \text{ ohms}$$

For the gain to just equal the drift of 22 μ a/percent of change in frequency, from Ohm's Law, the d-c voltage change must be current x ($R_2 + R_c$) or 22 x 10⁻⁶ x (830 + 100) = 20.5 mv. From the gain relationship for the detector, the supply voltage required would be:

$$V_{s} = \frac{20.5 \text{ mv/\%f change}}{5.2 \text{ mv/\%f change}} = 3.9$$

By setting $V_s = 50$ V, the gain due to drift from temperature change is negligible, and medium voltage transistors ($V_s/2$ is seen by the transistor) may be used for switching. The 2N2222A and 2N2907A transistors listed in the JPL Preferred Parts List are adequate. The charging capacitors C_2 , C_3 , C_4 , and C_6 must be large with respect to C_1 and C_5 and are set at 15 μ f.

A V of 50 V results in a frequency detector gain of 260 mv/ percent of frequency change or 65 mv/1/4 percent.

Ĩ

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

The only components that would cause drift due to temperature are C_1 , C_5 , R_2 , and R_3 (Drawing 43534, Figure 5-1). Precision components have been selected for these requirements as shown in Table 5-1. At this time, it is assumed that R_4 will be eliminated from the flight package.

Magnetic Amplifiers

From the previous discussion, it can be seen that the magnetic preamplifier design must be tailored to the frequency detector characteristics. The gate voltage, which is an arbitrary value, was selected as 20 V RMS. Even though the value of this voltage is arbitrary, once it has been selected, it determines the number of gate turns and the gain of the amplifier per given number of control turns. It also has an effect on the time-constant of the amplifier. From the standard transformer equation, i.e.,

 $N_{g} = \frac{(E)(10^{8})}{4.44 \text{ f BA}_{c}}$

the gate turns are 670 turns for a standard core (Part 52002-2D, Magnetics Inc.). For control, 2000 turns were selected on an arbitrary basis; however, there are factors that limit this selection. The time constant of the amplifier is proportional to the number of control turns squared and is divided by the resistance of the control circuit. Gain is directly proportional to the number of turns, while the d-c resistance of the control winding is related to the number of turns squared. Of course, the number of windings establishes the minimum window area of the core.

Gain of this device can be calculated by using some of the fundamental equations that express the relationship between NI, gausses,

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

Oersteds, and volts. These relationships must also include such things as ratio of ID to OD and the incremental permeability in the control region. However, from past experience, it has been found by empirical means that the gain of this device is approximately 0.003 V/ma control/ control turn/volt gate. Therefore, with a gate voltage of 20 and 2000 control turns, the gain will be 0.003 x 20 x 2000 or 120 V/ma. This figure includes the degenerative action that results from self-bias.

Self-bias is the next consideration in the design and, as in the case of control, the following relationship expresses the bias current, $I_B = Hlc/0.4\pi N$, where H is the drive required to reset the core to the mid-point or the 90-deg firing point. The voltage available is 1.5 times the gate voltage. By using these relationships, the selfbias resistance is equal to 82,000 ohms. From the frequency-detector analysis, the current for 1/4-percent frequency error will be 80 μ a; and the gain through the magnetic preamplifier is 9.6 V/0.25 percent change in frequency. Response time of the amplifier can be expressed as follows:

$$T = \frac{KN^2}{R}$$

where

N = number of control turns

R = bridge resistance

 $K = (V/AT)/(2N_{a}f_{a})$

and

V/AT = gain of the amplifier (volts per ampere turn) N_g = number of turns on the gate f_g = frequency of gate

....

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT COMPORATION

Solving for K:

$$V/AT = 60, N_g = 670, f_g = 1,200$$

Therefore,

$$K = 3.73 \times 10^{-5}$$
$$T = \frac{(37.3)(4)}{950} = 0.1575$$

Since

$$T = \frac{1}{W} \text{ and } f = \frac{W}{2\pi}$$
$$W = 6.35 \text{ radian/sec.}$$
$$f = 1.10 \text{ Hz}$$

Where f is the high-frequency cutoff, it becomes obvious that the bandwidth must be expanded at least 10 times by negative feedback. With this much feedback, the 80 μ a for 9.6-V output now becomes 800 μ a, with all but 80 being cancelled by the feedback. Therefore,

$$R_{fb} = \frac{(8.0)(10^3)}{0.72} = 11,000 \text{ ohms}$$

A complete description of the transfer function for this amplifier is (12 V/ma)/(1 + 0.0157S). The second stage of magnetic amplification is identical with the first stage except that the coupling resistance is 10 times the impedance of the frequency detector, (12V/V)/(1+0.0157S).

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

By multiplying the gains of the three elements, for 1/4-percent change in frequency, the voltage out is 9.22 d-c. From a transfer-function standpoint, there is a double lag at 63 rad/sec.

Transformer

Transformer T-1 provides power to the frequency detector and the magnetic amplifiers. It is assumed that the saturated condition of the generator will supply full voltage at 60-percent speed (120 V RMS at 720 Hz). The primary current is found by summing the reflected secondary currents and the excitation current. Starting with the magnetic amplifiers, two will reflect a total of 13 ma to the primary while the frequency detector will reflect 35 ma, which will make a total of 48. The exciter current cannot be calculated until the magnetic core is selected. However, with the excitation of 10 percent or less, the primary wire size of 33 was chosen. This gives a circular area of 50 mills. It is assumed that the maximum flux density is 10,000 gauss.

From the standard transformer equation, an expression for the primary turns can be found, $N_p = 58/A_c$, where A_c is the cross-sectional area of the magnetic path, in inches. The number of primary turns can also be expressed as a function of window area and wire size. It can be assumed that half the window area will be filled with copper and that half of this area will be the primary. Therefore, the window area $(W_a) = (N \times 50 \times 10^{-6})/(0.25 \text{ or } N = 5 \times 10^3 W_a$. By equating the two relationships, $5 \times 10^3 W_a = 58/A_c \text{ or } W_a A_c = 0.0116 - in^4$ From the manufacturer's catalog, a core can be selected (E127) that has a W_A_ of 0.0176. This is more than required, according to the previous a c calculation. A for this case is 0.141 in², from which N $_{\rm p}$ = 411 turns and requires less than 0.25 of the available window area. Solving for the excitation, $I_c = Hc \ell c / 0.4 \pi N$. Let Hc = 0.60, then $I_c = 6.7$ ma. The resistance of this winding is found to be approximately 12 ohms; however, an arbitrary maximum limit of 18 ohms was

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

chosen. This should allow for production tolerances and, from a regulation and heat-generation standpoint, should cause no problems. The secondaries were designed by using 1000 circular mils per ampere wire. Resistance values were calculated and all other design details were considered (see AiResearch Drawing 307594, Appendix II).

Firing Circuit - A magnetic amplifier was originally considered; however, from a reliability standpoint, a saturable reactor would be preferable. In the case of zero control signal, the parasitic load will go to zero if a saturable reactor is used. In the design of the gate windings, the volt-second integral should accommodate the saturation of the generator--that is, $120 \vee RMS$ at $720 \parallel z$. With the use of a standard Magnetics Inc., Case 52106-2A, the

 $N_{\rm G} = \frac{0.45\Omega}{(f)(2B_{\rm m}\Lambda_{\rm C})(10^{-8})} = 1,400 \text{ turns}$

Solving for the excitation current gives $I_c = Hc \ell c/0.4N = 1.68$ ma. The gain of this device is expressed through the basic relationship of the ampere turns of the gates must equal the ampere turns of the control. When these devices are used in a parallel configuration, as in this case, the gates then carry twice the NI that the control does. The final design configuration and considerations are shown on AiResearch Drawing 307597, Appendix VII.

The SCRs (Q5 and Q6) must handle the current for half of the 2-KW loads or

 $\frac{2000}{(2)(120)} = 8.33 \text{ amp RMS}$

GARRETT

11

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

and a peak voltage of 170. Initially, General Electric C35M SCRs were selected because they are included on the JPL Preferred Parts List. Consideration was given to the use of Type Cl35 SCRs because of a higher dv/dt* rating. However, the gate current requirement for the Cl35 is greater than that available from the control circuit. An analysis was made to determine the worst-case dv/dt that could occur with this design. It was calculated with the filter in the firing circuit, as

$$\frac{d\mathbf{v}}{dt}$$
 = 2.15 V/sec.

without the filter in the firing circuit,

$$\frac{\mathrm{d}v}{\mathrm{d}t} = 3.0 \, \mathrm{V/sec}.$$

C35M rating

$$\frac{dv}{dt}$$
 = 10 V/sec.

From this it is seen that the C35M SCRs have adequate design margin, either with or without the filter. C35Ms rated at 600 V peak and 35 amp RMS are used in the breadboard controls. The thermal and reliability analysis shows the device to be satisfactory for this design. However, care is required when mounting the SCRs on a 150°F heat-sink.

The saturable reactor firing circuit for the SCRs should be carefully evaluated when operated at rated-load. Some additional development may be required to obtain balanced loading of the phases and to assure adequate gate current to the SCRs.

*dv/dt is the rate of rise of forward blocking voltage that will not turn on the SCR.

Ç

9

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

Filter Circuit

As indicated in 2.3c, the system is to be designed to control EMI to meet the requirements of MIL-STD-826 and to minimize harmonic distortion of the alternator output resulting from speed-control switching (Paragraph 2.3e).

Because the configuration of the controls supplied to NASA were of the open-breadboard type, not the configuration planned for the flight units, and because the controls would not be located in the system as finally proposed, the EMI analysis has been postponed until the system is flight-packaged.

Included in the speed control is a passive filter for harmonic distortion caused by the application of pulsed loads. However, it has been determined that the voltage regulator/exciter (VRE) will not function satisfactorily with a leading power factor such as produced by this filter.

NASA agreed to accept the speed-control to the approved design with the filters connected. Prior to operation with the VRE, NASA will disable the filters. This will be accomplished by lifting the ground on capacitor C9 and connecting a jumper around L2 as shown in the schematic section of Figure 5-3.

The modification below is required for all three phases in all three modules to render the filters inoperative.

Additional analysis and development will be performed by NASA to determine the optimum type and location of the filter.

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

14

RRET

FIGURE 5-3

Because the generator output contains about 4-percent distortion, AiResearch has recommended that the filter be placed in the vehicle load-line and that an active filter be considered. (One is described in Appendix VI.) VRE regulation and interaction is improved by placing a filter between the speed-control and the VRE voltage-sense leads.

5.2 Reliability Study and Failure Analysis

For the reliability study performed on the speed-control, three sources of data were used:

(a) MIL-HDBK-217A, Reliability Stress and Failure Rate Data for Electronic Equipment, dated December 1965.

1

(b) BuWEPS Failure Rate Data Program.

APS-5286-R Page 5-18

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

(c) Reliability Application and Analysis Guide by D. R. Earles, The Martin Company, dated July 1961.

The results of this study were separately reported in Reliability Report, RC-5199-R, dated October 14, 1966.

Because the reliability data were for a class of components rather than for specific items, the results of this study did not appear to be particularly applicable to design improvement. In addition, the data were not applicable for the specific high-reliability components contemplated for use in the flight package. Further reduction in the usefulness of the analysis results from the fact that only limited rating characteristics were considered.

In view of the unsatisfactory study, the system requirements were reviewed to establish a better reliability approach.

Reliability was the primary consideration for establishing the speed-control philosophy. The control consists of three sections that apply up to 2 KW/phase/section. As the design power rating of the BRU is 10.5 KW_e maximum, only two sections (12-KW capacity) are required to fully load the BRU. Therefore, one section serves as a backup for failure of a section in the full-off condition. Also, a speed-control override is available to control the firing circuit.

From a system standpoint, a failure is the condition where the system fails "on". Table 5-2 lists those failures that will result in a failure in the "on" mode. Table 5-3 lists the critical components with their operating and rated parameters.

AIREBEARCH MANLIFACTURING COMPANY OF ARIZONA

 μ

TABLE 5-2 SPEED-CONTROL CRITICAL COMPONENTS (FAIL-ON)

Component	Failure Mode	Effect on Circuit	Remarks
Q1, Q2, Q3, Q4	Shorted	Full on	
Q5, Q6	Shorted	Related Phase on	Note 1
C2, C3, C4, C6, C9	Shorted	Full on	
R7, R13	Open	Full on	
R16, R18, R19	Open	Full on or Full off	Note 2
R20, R23	Open	Related Phase 1/2 on	Note 1
CR8, CR9	Shorted or open	Full on	
Z1, Z2	Shorted or open	Full on	
Z 3	Shorted	Related Phase on	

NOTES

- 1. Not corrected by customer-furnished speed control override circuit shown in Figure 5-2.
- 2. Full-on with any input signal from speed-detector (with speed above the set-point) section as negative feedback is removed.

•

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

TABLE 5-3

SPEED CONTROL CRITICAL COMPONENTS OPERATING CHARACTERISTICS

	Q1, Q3 2N2222A	Q2, Q4 2N2907A	Q5, Q6 C35M
V _{ce} rated, V	40	60	600
V _{ce} operating, V	25	25	1.70
P _D max at 46°C, mw	430	350	
$P_{\rm D}$ operating, mw	20	20	
I max	800 ma	600 ma	35 amp RMS
I _c operating	30 ma	30 ma	8.5 amp RMS
T max, °C	175	200	125
T, operating, °C	52	55	75

Capacitors

	C2, C3, C4, C6	C9
Volts rated/operating	75/25	330/170 RMS
Current-rated, amp		43 at 50°C,
		25 at 80°C
Current-operating, amp		15 at 46°C

Resistors

For power ratings, see Table 5-1.

Reactors

Z1, Z2, Z3 - See AiResearch Drawings 307595, 307596, and 307597, Appendix II.

APS-5286-R Page 5-21 GARRETT

11

AIREBEARCH MANIJFACTURING COMPANY OF ARIZONA

Heat-transfer calculations for these devices follow:

Junction Temperatures

Q5 and Q6, G.E. C35M (2N690) Selected from JPL list, 600 V, 35 amp RMS Max OP = 125°C (derating temp 30°C) = T_j max Average current for 2 KW and 120 V RMS

 $I = \frac{2,000}{120} = 16.7 \text{ amp RMS}$

 $I_{avg} = 0.9 \times I_{RMS} = 0.9 \times 16.7 = 15 \text{ amp}$

Each SCR conducts for 1/2-cycle

Therefore, $I_{avg}/SCR = 7.5$ amp for 180-deg conduction.

From the G.E. curve for forward dissipation, Pd = 11 W. From the G.E. curve for maximum case temperature to 7-1/2amp, T_c max = 100°C. From the work statement, 150°F (66°C) is the heat-sink and 115°F (46°C) is the maximum ambient temperature.

Based upon Wakefield NC 303 dissipation data for natural convection (for research package):

 $T_{s} = 28 \circ C \text{ (11 watts)} + Ta = 28 + 46 = 74 \circ C$ $T_{j} = T_{s} + P (\theta_{s \text{ to } c}^{\circ} + \theta \text{ to } j)$

GARRETT

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT CORPORATION

where

c = case
s = sink
j = junction
a = ambient

From the GE data,

 θ_c to j = 1.7°C/W max

 ΔT_{c} to j = 11 x 1.7 = 18.7°C

 ΔT_{C} to x is very low, when using joint compound, assume 2.2°C.

 $T_{1} = 74 + 18.7 + 2.2 = 95^{\circ}C$

Conclusion

 $T_j < T_j$ and was satisfactory, but for additional margin a fan was included in the rack. For 10-ft³/min.flow, $\theta_{s-a} = 0.75^{\circ}C/W$.

 $\Delta T_{s-a} = 11. \times 0.75 = 8.25^{\circ}C$ $T_{i} = 8.25 + 46 + 18.7 + 2.2 = 75.2^{\circ}C$

For a heat-sink of 66°C,

 ΔT_{c} to s = 11 x 0.2 = 2.2°C

 $T_{i} = 66 + 2.2 + 18.7 = 86.9$ °C

APS-5286-R Page 5-23

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

Table 5-4 lists the estimated heat losses for the various components.

5.3 Mechanical Analysis

Packaging of the speed control is in accordance with the applicable specifications. Component size and arrangement is shown on brawing L305444, Figure 5-4. Based upon NASA Specification P0055-2 (Figure 2), design calculations for the components assume an ambient temperature of 115°F and a heat-sink of 150°F. In this design, the SCRs are the only components requiring a heat-sink in a 115°F atmosphere. A blower is provided in each chassis for cooling the SCR under breadboard test conditions.

<u>Weight</u> - Each system weighs approximately 105 lb., or 35 lb./ section. This weight includes filters C9 and Ll,which are to be disabled as previously discussed.

AiResearch Drawing 305444 (Figure 5-4) is a layout of one of three identical sections comprising a speed control. Table 5-5 presents a list of AiResearch drawings pertaining to the speed control. Figure 5-5 shows the three modules comprising the complete control package. A view from the front of one of the three speed-control modules is shown in Figure 5-6. The components mounted on the circuit board, located in the right-front of the photo, form the detector or discriminator. The three small components, a transformer (T1), and two saturable reactors (21 and 22), mounted on the left-front of the chassis, comprise the amplifier section. The remainder of the components at the rear of the package make up the firing circuit. The three large cans and the inductor immediately to the left of each can form the filter. More than half the size and weight of the control system is due to the filter components. Figure 5-7 shows a rear view of a speed-control

 $^{\prime\prime}$

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT CORPORATION

module. The electrical connectors mounted on the rear of the chassis and the heat exchangers for the SCRs are seen in this view. Not shown are the front panel, the blower, and the SCRs. GARRETT

9

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

тдил. 5-4 Срнд. сотреддля ньят тоар улугдата.

	Full Days
ob and 6 - G.E. SCP C35: From G.E. data sheets for 7.5 amp average current 11 watts per SCP z 18 of through 4 The current through each transistor will be that through resistors 12 and 13 and 14 or	, 6 Ú - 'A

$$P_{\rm D} = -\frac{1}{2}$$
 EF g duty cycle z $\frac{4}{\phi}$ = 3 ϕ (4.25 W)

<u>eo, 10, 11</u>	15 amp \mathbf{x} discipation factor is 9	1.4
RT and S	0.125 W/res x 2 res/phase x 3 phases	12 . / 1
2 and 3	0.75 W/res x 2 res/phase x 3 phases	с Г.
4	0.5 W/res x 1 res/phase x 3 phases	Ι.
(,	1.0 W/res x l res/phase x 3 phases	1 - 1
7 and 9	neg	1 .1
8 and 11	$1.0 = W/res = 2 \pm es/phase = 3 \pm phases$	۰.
10	1103	
12 and 13	neg	
14 and 15	1.5 W/res x 2 res/phase x 3 phases	
16 29	neg	
	Res subtotal 279	
Magnetics		
'T1	0.75 W/phase x 3 phases	
11, 2 and 3	7 $W/ind \times 9$ ind	ŧ: ;
C1 and 5		
$C_{2}, 3, 4 \text{ and } 6$		
C_{7} and 8	2 W/phase x 3 phases	6.00
CR-1		
CR2-14		
21.	0.25 W/phase x 3 phases	0.75
0.1. 0.1.	0.75 W/phase x 3 phases	
23, 4 and 5	0.75 W/reactor x 9 reactors	6.75
asp a dia s	Subcotal 81	
	<u>227.9</u>	
	360 - К	

,

n

FOLDOUT FRAME

FOLDOUT HLANE

 Γ

GARRETT

.

+

1

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

TABLE 5-5

SPEED CONTROL DRAWINGS (BREADBOARD UNIT)

Drawing No.	Title
303749	Terminal Board Assembly
303750	Terminal Board Assembly Electrical
303751	Terminal Board Assembly
303752	Terminal Board Assembly Electrical
303753	Electronic Component Mounting Plate
303754	Module Assembly (Firing Circuit)
303755	Instrument Panel Assembly
303756	Chassis Assembly
303757	Air Blower Inlet
303758	Instruction - Warning - Plate
305444	System Outline
305445	Control Assembly
305506	Control Outline
43534	Schematic Wiring Diagram
43574	Wiring Diagram (Pictorial)
43577	System Wiring Diagram

APS-5286-R Page 5-28

i

1

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

BRU SPEED-CONTROL ASSEMBLY THREE SUBASSEMBLIES REQUIRED •

FIGURE 5-5

APS-5286-R Page 5-29 GARRETT

M1-1070.

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

4

Į.

ł

BRU SPEED-CONTROL SUBASSEMBLY FRONT VIEW

FIGURE 5-6

APS-5286-R Page 5-30

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

BRU SPEED-CONTROL SUBASSEMBLY REAR VIEW

FIGURE 5-7

APS-5286-R Page 5-31

Million (Second

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

6.0 SYSTEMS ANALYSIS

An analog study was performed to determine the transient characteristics and stability margins for the NACA BRU components; namely, turbine, compressor, and alternator. The study included the VRE and speed controller performance characteristics.

The compressor and turbine maps which were incorporated in the analog simulation are also employed with the AiResearch, Phoenix system start-up analysis programmed for the digital computer. These maps represent the predicted aerodynamic performance of both components. The speed-control transfer functions were obtained by analytical and experimental methods. Transfer functions and constraints representing the alternator with VRE were derived, and equivalent circuits were generated which described the combined alternator and VRE dynamic response for this application. This analysis is included in Appendix VII.

1,

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

7.0 CONCLUSION

The electrical components designed and fabricated by the AiResearch Manufacturing Company are satisfactory for use in a 1200-Hz Brayton energy conversion system. The alternator delivers design output for all specified operating conditions by 1-p.u. load, 2-p.u. load, and 3-p.u. short circuit. The alternator is suitable for application in a gas bearing system. The electrical control packages enable the system output to remain within the design tolerances regarding voltage regulation, speed regulation, voltage and speed recovery times, and short-circuit operation.

The operating mode of the speed controller generates additional voltage harmonics on the system and will require further analysis. The voltage regulator and speed controllers interact when operating in a system; this will be analyzed further.

APS-5286-R APFENDIX I

APPENDIX I

GLOSSARY OF TERMS AND SYMBOLS

(7 pages)

IJ,

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

9

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARNETT CORPORATION

GLOSSARY OF TERMS AND SYMBOLS

ſ

1

¢

A _C	Core area
a-c	Alternating current
AG	Auxiliary flux gap
ARP	Alternator Research Package
BAc	Flux density in the core area
^в м	Flux density - kilogauss
BRU	Brayton rotating unit
^B s	Flux saturation
С	Capacitance
c.g.	Center of gravity
cm	centimeters
C.T.	Current transformer
d-c	Direct current
Ε	Electromagnetic force - volts
е	Incremental voltage
^Е в	Feedback d-c level
e _B	Feedback signal
E _{FF}	Field forcing voltage
Ε.Μ.	Electromagnetic
EMI	Electromagnetic interference
(ET)	Transformer voltage
(ET) _C	Core volt seconds

•1

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

GLOSSARY OF TERMS AND SYMBOLS (Contd.)

t

4

١

~

¢

F	Magnetic force
٥F	Degrees Fahrenheit
f	Frequency-hertz
Fg	Main flux gap
fq	Gate frequency
FH	Shunt field
FR	Series field
^F (s)	Feedback signal - see e _B
Fss	Magnetic force - no rotation
ft.	foot
н	HiRel rating
н _с	Coercive force - oersteds
H _{FE}	d-c base input voltage; common emitter
hr.	Hour
Hz	Hertz
I	Current-amperes
i	Incremental current
I _B	Base current
гc	Collector current
in.	Inch
IL	Load current
Ip	Polar moment of inertia
is	Pulse current from power supply
^I sh.c	Short circuit current
	APS-5286-R

14

GLOSSARY OF TERMS AND SYMBOLS (Contd.)

t

¢

j	Vector
К	Gain or proportionality constant
ksi	Thousand pounds per square inch
κνν	Thousand volt amperes
KW	Kilowatts
T.	Inductance
l	Mean magnetic length of core-centimeters
lbs.	Pounds
m	Mass
ma	Milliamps
min.	Minutes
mm	Millimeter
MMF	Magnetomotive force
MTBF	Mean time between failure
MTU	Electromagnetic test unit
mv	Millivolt
mW	Milliwatts
n	Speed perturbations
N	Number of turns
Ng	Number of gate turns
NI	Number of ampere turns
Np	Number of primary turns
$N\sqrt{\Theta}$	Corrected speed

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVIBION OF THE DARRETT CORPORATION

GLOSSARY OF TERMS AND SYMBOLS (Contd.)

•

n

Р	Spacecraft preferred components
Pa	Actual operating power
P _D	Power dissipation
pf	Power factor
$\mathbf{p}\mathbf{F}$	Picofarad
\mathbf{p}^{1}	Junction power rating
pk	Peak
Р р	Parasitic load (KW)
P-P	Peak-to-peak
ppi	Pounds per inch
P _r	Rated power
psi	Pounds per square inch
psia	Pounds per square inch absolute
p.u.	Per unit
Q	Charge in coulombs
QC	Corrected torque
R	Resistance - ohms
r	ripple
RMS	Root mean square
rpm	Revolutions per minute
°R	Degrees Rankine

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRETT CORPORATION

GLOSSARY OF TERMS AND SYMBOLS (Contd.)

- S Laplace Operator (sec⁻¹)
- sat. Saturation
- SCR Silicon controlled rectifier
- sec. Second
- sq. in. Square inch
- T Turns (Page 4-2)
- T Time

1

Ţ

1

1

1

- T Total
- t Incremental time
- T_A Ambient temperature
- T_{C} Case temperature
- T_c Capacitor time constant
- T_d Junction temperature at which component derating begins
- T_J Junction temperature
- Tjm Maximum allowable junction temperature
- T_R Rated temperature rise
- T_s Sink temperature
- V Qualified vendor rating (Table 5-1)
- V Volts
- VA Volt amps
- V Actual operating voltage
- VAC Volts alternating current (RMS)
- V_{BB} Base-to-base voltage

.

:

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

TABLE 5-5

SPEED CONTROL DRAWINGS (BREADBOARD UNIT)

Drawing No.	Title
303749	Terminal Board Assembly
303750	Terminal Board Assembly Electrical
303751	Terminal Board Assembly
303752	Terminal Board Assembly Electrical
303753	Electronic Component Mounting Plate
303754	Module Assembly (Firing Circuit)
303755	Instrument Panel Assembly
303756	Chassis Assembly
303757	Air Blower Inlet
303758	Instruction - Warning - Plate
305444	System Outline
305445	Control Assembly
305506	Control Outline
43534	Schematic Wiring Diagram
43574	Wiring Diagram (Pictorial)
43577	System Wiring Diagram

APS-5286-R Page 5-28

 \square

.

•.

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

GLOSSARY OF TERMS AND SYMBOLS (Contd.)

ŧ

ŧ

1

ļ

~

 \cap

i

V _{BE}	Base-to-emitter voltage
CE	Collector-to-emitter voltage
VL-L	Volts line-to-line (PMS)
VRE	Voltage regulator exciter
Vr	Rated voltage
V _S	Bridge supply voltage
V _Z	Zener reference voltage
W	Watts
Wa	Window area
$\mathbb{W}_{\sqrt{2}} \oplus \mathbb{Z} 8$	Corrected weight flow
× _c	Capacitive reactance
N.	Inductive leadtance
×1	Armature winding leakage reacting
Х _р	Negative sequence reactance
4	In.pedance
	Armature impedance
(X	Proportional
, , ,	Transfer function
.\:	Padial lisplacement of "tenter" - inches
•	Error
(\cdot)	\odot $\mathbf{M}^{*}\mathbf{S}$
	3.768 radius for socord
(.)	Flux

APS-3296-P APPENDIX T Fade f

÷4

AIRESEARCH MANUFACTURING DOMPANY OF ARIZONA

GLOSSARY OF TERMS AND SYMBOLS (Contd.)

I.

Ł

П

- θ Angle
- μf Microfarad
- *v* Specific heat ratio

•

1

4

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

t

ſ

1

1

/* +

Ł

n

APPENDIX II

DRAWINGS

307594	521246	699650
307595	521247	699651
307596	52]25 8	699652
307597	521259	699667
358498	521260	

APS-5286-R APPENDIX II THIS DRAWING CONTAINS DESIGNS AND OTHER INFORMATION WHICH ARE THE PROPERTY OF THE GARRETT CORPORATION. EXCEPT FOR RIGHTS EXPRESSLY GRANTED BY CONTRACT TO THE UNITED STATES GOVERNMENT, THIS DRAWING MAY NOT, IN WHOLE OR IN PART, BE DUPLICATED OR DISCLOSED OR USED FOR MANUFACTURE OF THE PART DISCLOSED HEREIN, WITHOUT THE PRIOR WRITTEN PERMIS-SION OF THE GARRETT CORPORATION.

4

---- m

, .

PART N:		REVISIONS			
307594-1	LTR	DESCRIPTION	DATE	APPROVED	
	A ADDED CT. TO LEGLA SEE E.O. IL WILL THE AND B CHANGED DIM. ON BASE PLATE 1-31-67 (SEE E.O.) C ADDED POLARITY ON FIG. 2 4 (SEF. E.O.) CHANGED PAR. 4.10 D CHANCED A 711 (SEE E.O.)				
	Ð		1-31-67	Sterra	I
	С	ADDED POLARITY ON FIG. 2 4 (SEF. E.O.) CHANGED PAR. 4.10	1./	s towns	
	D	CHANGED 4.7, LI (SEE E.O.)	and the	e that was	
	E	CHANGED 4.7, LI+4,20 (SEE E.O.	11/22/67		Ī

					_																				
SHEET	REVISION LTR																								
INDEX	SHEET NO.																								
												-													
SHEET	REVISION LTR	E	—	-	-		ε	D	C	A															
INDEX	SHEET NO.	1	2	3	4	5	6	7	8	9															
SPECIF DRAWI TION	S OTHERW TED ON TH ING, FABRIC OF THIS IT	HIS CA- EM			31-11		N	11.3	TES .66	6 DV	WG TI		AIR	A	DIV	-	PH	THE	GARI X. AF		A	ORAT	ION		
DANC	BE IN ACCO E WITH AII CH SPECI	RE- FI-	APP APP		10	4.1E		14	21/6				N:						R	•		<u>`</u> \\			
STAND	ON SC-553 DARD DRA NTERPRET	W-		N AC	CTIVI	r +-1 17	<u> </u>			E Z		с	CDE 11 99	19		, , ,	5wg 30		7	50	9	4		RE	_
TIONS										SC	CAL	E	-		WT	•	•	•	S	SHE	ET		I OF	: 9	,
FORM P	10074											Bł	ر.												

Ч

¢

PCRM P25370-8					IG ORDER		EVISIO	<u>N</u>		SHEET	OF /	/ 		
DRAWING TITLE	TRADS	FORM	ER P	OWER		DWG NO	3	07	59	7	CHG LET.	E		
TO BE INCORP. YEA					INCORP CHRID. BY				DATE		ADV. CHG. LET.			
MANDATORY	1 DRAWING		VARIATIC	NC	VOID AFTER				DIS	TRIBUTION		L.A.		
PRICRITY	2 ADV. DWC	CHG.	SUBSTIT	UTION	VOID AFTER	NG (OF PART	NOF	NORMAL					
ROUTINE	3 EMERGEN	CY DWG.	REWORK		5.I.L.			YES N	RUS	6H				
MINOR	4 E.C.P. NO		MATL. RE	EV. ACT.	SERVICE BU	LLET	IN	YES N	TEL	ETYPE				
LET. TYPE			DESCR						PARTE	B	DISPOSI			
SHE	et 6									FNG	_			
PAR			Set HZ	A 6 1/01	TS SODA	/7								
	A_4.40				CURREN		NA							
		BE	8 MA	RMS	MAX						\`			
		. <u></u>					. <u></u>	·		<u> </u>	<u> </u>			
							<u> </u>							
										+				
											1			
				<u></u>										
									-	1	<u> </u>			
									_	<u> </u>	+	·		
										+	<u> </u>			
									1					
NEXT ASSY.	MODEL NO.	M E.O.	OUTLIN	£	<u></u>	EF	FECTIV	TY IN	STRUCT					
		3	10550	6-1 UNE	DELIVERED ITENS									
		_								*****				
						11	f/							
					IVERED ITEMS		<u></u>							
												.		
		-												
											ana a manga na siya sa sa			
				, 1	POINATED BY						15	57		
ATS LIST CHANGE CH-	NO LIFECT ON M				TLPC									
PLACE POP CHANSE	£ 11 G L 6		······································				ار خود کرد. در مربقه م	- 	* _ = = ~ ~ ~					
	n galanta aya ana in a Marin da Cola I					-				an a	.			
. <u> </u>	ട്ടുക്കെ പ്രജനം നിക്കുംകും	nana, ini 1984 ni ini ini ini ini ini ini ini ini ini	i o tio o tio antano	. an an that a statement						a. am m	10.000 a			
1 -2 C E S T F	1 CA'W /	I PREMALC .	ina linear i linearan IV	DATE	Carrier an		1	¥ /	1 4900	19 15 11		• •		

h

ų,

	X
NOTE :	A LINE DRAWN THROUGH ANY REQUIREMENT SHOWN ON THIS DRAWING INDICATES NO REQUIREMENT
1.	GENERAL NOTES
1.1	PROCUREMENT SOURCE (S) PER ASL <u>307594</u> .
1.2	PART TO BE PERMANENTLY MARKED WITH AIRESEARCH PART NO. $327594-1$.
1.3	ALL DESIGN AND PART NO. CHANGES REQUIRE PRIOR AIRESEARCH APPROVAL.
1.4	ONLY THE ITEMS LISTED ON THIS DRAWING AND IDENTIFIED BY VENDORS NAMES, ADDRESSES, AND PART NO. ON ASL <u>307594</u> HAVE BEEN TESTED AND APPROVED FOR USE IN THE END UNIT. A SUBSTITUTE PART SHALL NOT BE USED WITHOUT PRIOR TESTING AND APPROVAL BY AIRESEARCH.
1.5	IDENTIFY PACKAGING WITH AIRESEARCH PART NO. 307594-1
1.6	PARTS PROCURED BY VENDOR PART NO. SHALL BE PROCURED IN ACCORDANCE WITH THIS AIRESEARCH SOURCE CONTROL DRAWING AND ASL <u>307594</u> .
1.7	MARKING REQUIREMENTS.
1.7.1	MARKINGS TO BE PER MIL-T-27 PARA. <u>3.20</u> AS APPLICABLE.
1.7.2	MARKING TO BE LOCATED AS SHOWN IN FIGURE 1.
1.7.3	MARKINGS TO BE A MINIMUM OF .031 INCH FROM ANY CORNER, TERMINAL OR EDGE UNLESS OTHERWISE SPECIFIED.
1.7.4	HEIGHT OF MARKINGS SHALL BE A MINIMUM OF .12 INCH UNLESS OTHERWISE NOTED.
1.7.5	 (1) MARKINGS TO BE PER MIL-STD-130 EXCEPT ACID ETCHING AND BRANDING NOT PERMITTED. (2) OTHER
1.7.6	MARKINGS TO BE OF A CONTRASTING COLOR.
1.7.7	INK TO BE PER TT. 558 AS APPLICABLE.
1.7.8	MARKINGS TO BE COVERED WITH ONE COAT OF CLEAR EPCXY
1.8	DETAILS OF DESIGN AND CONSTRUCTION OTHER THAN SHOWN SHALL BE AT THE OPTION OF THE VENDOR. SEE SHEET 1 FOR CONTROLLING REV LTR
	SIZE CODE IDENT NO DWG NO. REV
	A 99193 307594
	SCALE - WT - SHEET 2

Ŧ

PORH PLAT -LA

Ę

Ч

ţ.

1.9	(1) VACUUM IMPREGNATE WOUND BOBBINWITH EPOXY CL F- LIF COAT ENTIRE ASSEMBLY WITH EPOXY
1.10	(2) OTHER SOLDER PERMIL-S. CB72 USING QQ. S. 571 COMPSNEOSOLDER.
1.11	AS SHOWN WITH IF CUP OR BOX IS USEE
1.12	TOPOF TERMINALS TO BE FREE AND CLEAR. POTTING COMPOUND FOR EXTERNAL WIRES.
1.13	DUTY CYCLE: (1) CONTINUOUS (2) OTHER
1.14	OTHER
2.	PHYSICAL CONSTRUCTION REQUIREMENTS
2.1	CORE: NO. REQ'D I SEE PARA. (1) PART NO. EI-27-GH MFG. BY MAGNETICS INC
	BUTLER PA.
	(3) PART NOMFG. BY
2.2 *	WRAP CORE (S) WITH
	WIND EACH CORE WITH GATE WINDING. SECTOR
	PLACE WOUND CORES TOGETHER AND WIND ON CONTROL WINDINGS.
	WINDING SEQUENCE
	ICES WITH WINDINGS WRAPPED DIRECTLY ON CORE ONLY URABLE MULTICORE DEVICES ONLY
	SEE SHEET 1 FOR CONTROLLING REV LTR
	SIZE CODE IDENT NO. DWG NO. A 99193 307594
	A 99193 30 73 94

.....

Ч

ł

t

2.6	WIRE INSULATION SHALL BE IN ACCORDANCE WITH MIL-T-27 AND BE SUFFICIENT TO WITHSTAND VOLTAGES LISTED IN PARAGRAPH 4.
2.7	UNLESS OTHERWISE SPECIFIED ON THIS DRAWING, FABRICATION OF THIS ITEM SHALL BE IN ACCORDANCE WITH AIRESEARCH SPECIFICATION SC-5535, STANDARD DRAWING INTERPRETATIONS.
3.	SPECIFICATIONS
3.1	CLASSIFICATION: TYPE TE55x0372 PER MIL-T-27 EXCEPT AS NOTED IN PARAGRAPH 3.1.1.
3.1.1	
3.2	INSULATION RESISTANCE PER MIL-T-27, PARA. 3.10. MEASURE USING A D-C SOURCE OF 1000 VOLTS, WINDING TO NORMAL MOUNTING MEANS 1000 MEGOHMS, WINDING TO WINDING 1000 MEGOHMS.
3.3	MAXIMUM WORKING VOLTAGE 120VRMS.
3.3.1	500 RMS VOLTS AT <u>60 H</u> CPS FOR 5 SECONDS BETWEEN WINDINGS AND BETWEEN EACH WINDING AND THE BASE OR NORMAL MOUNTING
1	MEANS.
3.4	TEMPERATURE RISE PER MIL-T-27 PARA. 4.7.10. MAX TEMPERATURE RISE 30° OPERATING AT AN AMBIENT TEMPERATURE OF 85° .
3.5	MAXIMUM OPERATING ALTITUDE <u>80,000</u> FEET.
3.6	ENVIRONMENTAL REQUIREMENTS:
3.6.1	MOISTURE RESISTANCE: (1) MIL-T-27 PARA. <u>4.7.11.4</u> (2) OTHER
3.6.2	SALT SPRAY: (1) MIL-E-5272 PROCEDURE (2) OTHER
3.6.3	VIBRATION REQUIREMENTS: (1) MIL-T-27 PARA. <u>4.7.12</u> (2) OTHER
	SEE SHEET 1 FOR CONTROLLING REV LTR
	SIZE COLVE IDENT NO. DWG NO. REV
	A 99193 307594 -
	SCALE WT SHEET 4

(

!

h

 $^{\prime\prime}$

	T
3.6.4	SHOCK REQUIREMENTS: (1) MIL-T-27 PARA. <u>4.7.13</u> (2) OTHER
3.6.5	AMBIENT TEMPERATURE RANGE: (1) OPERATING -55 °C MIN, 70 °C MAX. (2) NON OPERATING -55 °C MIN, 70 °C MAX. (3) OTHER
3.7	LIFE:
3.7.1	OPERATING: 1000 HOURS AT 85 °C WITH POWER APPLIED PER PARA. 4 6.
3.7.2	STORAGE: 5 YEARS AT 50 °C AND 50 % RELATIVE HUMIDITY.
3.8	ALLOW UNIT TO STABILIZE TO ROOM TEMPERATURE BEFORE EXPOSING TO OPPOSITE TEMPERATURE EXTREME.
3 .9	OTHER

SEE SHEET 1 FOR CONTROLLING REV LTR

SIZE	CODE IDENT NO.	DWG NO.				REV
A	9 9193	30	075	94		
SCAL	E —	WT		SHEET	5	

t

Ч

÷

	<u></u>							الأحد نزره			التدبائي				1	/														لہ
	L13								Ī	T	T								-]										
	L12			+	+		+	-+	-+	+		-+	-+	+ 		-+		-+-	-			•				•				
	L11 I							-+	+	+	-+		-+		-+	-+		-+-	-				A TEE		(
	L10 I										-+	- †			-+	-+	-+	-+	-	-	-				0 1					
															-+			+	+	-	U				(V				
	T8 T6									-								-+	+-	-	SOUDY USI IGOV	X.			Ģ	 5				
	L7										_					-+					۰ ۲	MA RMS MAX		•						
	T6]	38	52		0	S	Ū	,	1	<u>.</u>		ō					+				100	A RM	ц 6	CORES NO	i i i	AMB LENT				
	L.5			 #	0	5	Ū	۱	•	ы. Г		ō														AN A				
	1.4	34	140	 +	0	20	40	۱	•	ġ		40.	ę										Ę			AT 1				
	L 3	9 4	- 4	+	0	20	40	1	•	60.		٠	5							_	7 7 7	BE S		C AMPLIFIER	l	BE MET				
E 2)	L2	32	206	シャ	2	0 9	0 9	۱	١	3.0		.065										SHALL BE								
FIGURE	L1	30	411	± 2	Ø	120	120	1200	۰	U		.05												MAGNETIC		ARE TO				
4. ELECTRICAL REQUIREMENTS (SEE F	MINDINGS	4.1 WIRE GAGE NO. (AWG)	E 4.12)	ت. ا	.4 MAX D.C. RESISTANCE (OHMS)	.5 WORKING VOLTAGE TO GROUND	.6 RATED VOLTAGE (RMS)		FREQUENCY TOLERANCE (C	9 OPERATING POWER LEVEL	MAX CONTROL CU	11 RATED CURRENT (AM	4.12 CENTER TAP & TURNS	4.13	4.14	4.15	4.16	4.17	•	4.19		4.20 SELF INDUCTION: WITH 120 OR		TEST PROCEDURE FOR TOROIDAL		4.22 ALL ELECTRICAL REQUIREMENTS		*SATURABLE MULTICORE DEVICES ONLY		
										_								S	EE	SH	EET	1 F	OR	CON	NTR	OLI.	ING	REV L		
									ſ	SIZ	E							ſ)WG	_		,	70			1			RE'	✓
										A	_		-	<u>א</u> לא	219	13 				2			/]					<u> </u>		- R
										SC,	AL	E		_		Γ-		Ľ	W1	-			•		15	SHE	T	6		
FORM P180"-6	-																													

ĺ

Ц

TORN #1507-14

Į

11

 \Box

THIS DRAWING CONTAINS DESIGNS AND OTHER INFORMATION WHICH ARE THE PROPERTY OF THE GARRETT CORPORATION. EXCEPT FCR RIGHTS EXPRESSLY GRANTED BY CONTRACT TO THE UNITED STATES GOVERNMENT, THIS DRAWING MAY NOT, IN WHOLE OR IN PART, BE DUPLICATED OR DISCLOSED OR USED FOR MANUFACTURE OF THE PART DISCLOSED HEREIN, WITHOUT THE PRIOR WRITTEN PERMIS-SION OF THE GARRE T CORPORATION.

,

3

=	LRT N	J⊊			Τ										/ISI	ON	S								
						LTR					(DESC	RIP	TION	1					D	ATE			ROVE	
	07595	5-1				A		El'								56.			1	5%	de la	-	+-	С.,	5
						B	R	?EV	150	ED	70	ES;	r c	K7		56	?E	ΕĊ	>	11-1	1 5	•	~		
					ŀ		1												ļ			1			
																									i
1																									1
1																									
													S•		ha h	ы		k (- 1 -	ft			
													Se	•	tab	ы	οc	k (υp	p•'		oft			
													S e cor	e (nur	tab) fo	ЪI pr	oc PA	k (.RT	ль И	₽●/ U/	r le MBE	oft ER			
	P E 14 151 194				1	Ţ		I		1	1	1	Se cor	e (nur	tab) fo	Ъl pr	oc PA	k (.RT	л Г Г	р•/ U/		oft ER		1	
5+4F F T	LTR												S• cor	nur	tab) fo	Ы pr	PA	k (RT	ч Ч Г			oft ≣R			
SHAFFT LMQ7FA													Se cor	nur	tab) fo	Ы pr	PA	k (RT	م م م			oft ER			
	LTR SHFFT												S e cor	nur	ab) fo	bl pr	PA	k (RT	μZ			oft ER			
	LTR SHFFT												S • cor	nur	b) fo	bl pr	PA	k (RT	ק ק ג			ft ER			
IMETER SHEET	LTR SHEET NO PEVISION LTP	B			-	-	-	-	B				S e cor	nur	b) fo	bl pr	PA	k (RT	ع ح			oft ER			
154£3F.K.	LTR SHEET NO PEVISION	B	- 2		•	- 10	- 15		B				S • cor		b) fo	Ы pr	PA	k (RT	υ Δ Ζ			ft R			
UNICIER SHEET IMDEX	LTR SHFFT NO PEVISION LTP SHFET NO	1		З	<u>i </u>	<u> </u>	1		8	9			S e cor	nur) fo	bl pr	PA	k (ع ح Z			oft ER			
SHEET INDEX UNLES	LTR SHFFT NO LTP SHFET NO	I ISE		3		URE	S		<u>† – – – – – – – – – – – – – – – – – – –</u>	9						bl pr								PAN	
SHEET HADEX UNLES	LTR SHIFT NO LTP SHIET NO SS OTHERW FIED ON TH	I ISE		3		URE	S	DA	8	9						or C H								PAN	
SHEET HOEK UNLES SPECTI DRAW	LTR SHIFT NO LTP SHIET NO SS OTHERW FIED ON TH VING, FABRIO	I ISE HIS CA-	OF T	3 SIGI	NAT		1 5 0/1		8 TES 21 6	9						or C H								PAN	
SHEET HOEX UNLES SPECIF DRAW TION	LTR SHIFT NO LTP SHIET NO SS OTHERW FIED ON TH	I ISE HIS CA. EM	OF T	3 SIGI	NAT	URE	1 5 0/1	DA	8 TES 21 6	9	WGT											B C	ION		
SHEET HOEX UNLES SPECIF DRAW TION SHALL	LTR SHIFT NO LTP SHIET NO SS OTHERW FIED ON TH VING, FABRIC OF THIS IT	I ISE HIS CA EM OR-	OFT CHR APP	3 SIGI	NAT		s ani		8 TES 21 6	9	WGT											B C	ION		
SHEET HOEX UNLES SPECIN DRAW TION SHALL DANC SEAR	LTR SHIFT NO LTP SHIET NO SS OTHERW FIED ON TH GS OTHERW FIED ON TH GS OTHERW FIED ON TH GF THIS IT BE IN ACCO CE WITH AI CH SPECT	I ISE HIS CA EM OR RE FI	DF T CMR	3 SIGI	NAT		s ani		8 TES 21 6	9	WGT	Ē										B C	ION		
SHEET HOEK UNLES SPECIF DRAW TION SHALL DANC SEAR CATIC	SHEET NO EFFISION LTP SHEET NO SS OTHERW FIED ON TH VING, FABRIC OF THIS IT BE IN ACCO CH SPECTON ON SC-55	I ISE HIS CA- EM OR- RE- FI- 35,	CFT CHK APP	3 SIGI BL	NAT		s ani		8 TES 21 6	9) fc		PA MA PHO PHO						ION BL	RE	-
SHEET HOEX UNLES SPECIF DRAW TION SHALL DANC SEAR CATIC STAN	LTR SHIFT NO LTP SHIET NO SS OTHERW FIED ON TH GING, FABRIC OF THIS IT BE IN ACCO E WITH AL CH SPECT ON SC-55 DARD DRA	 	CFT CHK APP	3 SIGI BL	NAT JSH M		s ani		8 TES 21 6) fc		PA MA PHO PHO						ION BL	RE	-
SHEET HOEX UNLES SPECIN DRAW TION SHALL DANC SEAR CATIC STAND ING I	EVISION ETT SHIFT NO ETT SHIFET NO SS OTHERW FIED ON TH SHIFET NO SS OTHERW FIED ON TH OF THIS IT BE IN ACCO OF THIS IT BE IN ACCO OF THIS IT CH SPECI ON SC-55 DARD DRA INTERPRET	 	CFT CHR APP SGI	BI.	NAT JSH M		s ani		8 TES 21 6) fo		PA MA PHO PHO						JON B	RE LT	1.) >M.
SHEET HOEX UNLES SPECIF DRAW TION SHALL DANC SEAR CATIC STAN	EVISION ETT SHIFT NO ETT SHIFET NO SS OTHERW FIED ON TH SHIFET NO SS OTHERW FIED ON TH OF THIS IT BE IN ACCO OF THIS IT BE IN ACCO OF THIS IT CH SPECI ON SC-55 DARD DRA INTERPRET	 	CFT CHR APP SGI	BI.			s ani		8 TES 21 6) fc		PA MA PHO PHO						JON B	RE	1.) >M.
SHEET INDEX UNLES SPECIN DRAW TION SHALL DANC SEAR CATIC STAND ING I	SHEET NO EFFISION LTP SHEET NO SS OTHERW FIED ON TH OF THIS IT OF THIS IT BE IN ACCO CH SPECI ON SC-55 DARD DRA INTERPRET	 	CFT CHR APP SGI	BI.			s ani		8 TES 21 6) fo		PA MA PHO PHO						JON B	RE LT	1.) >M.

Ч

¢

NOTE :	A LINE DRAWN THROUGH ANY REQUIREMENT SHOWN ON THIS DRAWING INDICATES NO REQUIREMENT
1.	GENERAL NOTES
1.1	PROCUREMENT SOURCE(S) PER ASL 307595
1.2	PART TO BE PERMANENTLY MARKED WITH AIRESEARCH PART NO. 307595 .
1.3	ALL DESIGN AND PART NO. CHANGES REQUIRE PRIOR AIRESEARCH APPROVAL.
1.4	ONLY THE ITEMS LISTED ON THIS DRAWING AND IDENTIFIED BY VENDORS NAMES, ADDRESSES, AND PART NO. ON ASL 307595 HAVE BEEN TESTED AND APPROVED FOR USE IN THE END UNIT. A SUBSTITUTE PART SHALL NOT BE USED WITHOUT PRIOR TESTING AND APPROVAL BY AIRESEARCH.
1.5	IDENTIFY PACKAGING WITH AIRESEARCH PART NO. 307395-
1.6	PARTS PROCURED BY VENDOR PART NO. SHALL BE PROCURED IN ACCORDANCE WITH THIS AIRESEARCH SOURCE CONTROL DRAWING AND ASL
1.7	MARKING REQUIREMENTS.
1.7.1	MARKINGS TO BE PER MIL-T-27 PARA. <u>3.20</u> AS APPLICABLE.
1.7.2	MARKING TO BE LOCATED AS SHOWN IN FIGURE 1.
1.7.3	MARKINGS TO BE A MINIMUM OF .031 INCH FROM ANY CORNER, TERMINAL OR EDGE UNLESS OTHERWISE SPECIFIED.
1.7.4	HEIGHT OF MARKINGS SHALL BE A MINIMUM OF .12 INCH UNLESS OTHERWISE NOTED.
1.7.5	(1) MARKINGS TO BE PER MIL-STD-130 EXCEPT ACID ETCHING AND BRANDING
	NOT PERMITTED. (2) OTHER
1.7.6	MARKINGS TO BE OF A CONTRASTING COLOR.
1.7.7	INK TO BE PER TTHE SOB AS APPLICABLE.
1.7.8	MARKINGS TO BE COVERED WITH ONE COAT OF CLEAR EPCXY AS APPLICABLE.
1.8	DETAILS OF DESIGN AND CONSTRUCTION OTHER THAN SHOWN SHALL BE AT THE OPTION OF THE VENDOR. SEE SHEET 1 FOR CONTROLLING REV LTR
	SIZE CODE IDENT NO DWG NO.
	A 99193 307595 -
	SCALE - WT - SHEET 2

ŧ

FORM #1411-24

.,

h

1.9	(1) VACUUM IMPREGNATEWITH
	(2) OTHER
1.10	SOLDER PER_MIL-5-6872 USING COMP SNGO PER 20 551 SOLDER.
1.11	AS SHOWN WITH IF CUP OR BOX IS USED MATERIAL TO BE PER
1.12	TOPOF TERMINALS TO BE FREE AND CLEAR OF POTTING COMPOUND FOR EXTERNAL WIRES.
1.13	DUTY CYCLE: (1) CONT'INUOUS (2) OTHER
1.14	OTHER
2.	FHYSICAL CONSTRUCTION REQUIREMENTS
2.1	CORE: NO. REQ'D 4 SEE PARA. 421 (1) PART NO. 52002-20 MFG. BY MAGNETIS NO. BUTLER MA.
	(2) PART NOMFG. BY
	(3) PART NOMFG. BY
2.2 *	
	WIND EACH CORE WITH GATE WINDING. SECTOR
2.4 **	PLACE WOUND CORES TOGETHER AND WIND ON CONTROL WINDINGS.
2.5	WINDING SEQUENCE
	ICES WITH WINDINGS WRAPPED DIRECTLY ON CORE ONLY URABLE MULTICORE DEVICES ONLY
	SEE SHEET 1 FOR CONTROLLING REV LTR
	SIZE CODE IDENT NO. DWG NO. REV
	A 99193 307595

	<u> </u>
2.6	WIRE INSULATION SHALL BE IN ACCORDANCE WITH MIL-T-27 AND BE SUFFICIENT TO WITHSTAND VOLTAGES LISTED IN PARAGRAPH 4.
2.7	UNLESS OTHERWISE SPECIFIED ON THIS DRAWING, FABRICATION OF THIS ITEM SHALL BE IN ACCORDANCE WITH AIRESEARCH SPECIFICATION SC-5535, STANDARD DRAWING INTERPRETATIONS.
3.	SPECIFICATIONS
3.1	CLASSIFICATION: TYPE TESSX4022 PER MIL-T-27 EXCEPT AS NOTED IN PARAGRAPH 3.1.1.
3.1.1	
3.2	INSULATION RESISTANCE PER MIL-T-27, PARA. 3.10. MEASURE USING A D-C SOURCE OF <u>1000</u> VOLTS. WINDING TO NORMAL MOUNTING MEANS MEGOHMS, WINDING TO WINDING 1000 MEGOHMS.
3.3	MAXIMUM WORKING VOLTAGE 10 VRM5.
3.3.1	
	THE AND BETWEEN EACH WINDING AND THE BASE OR NORMAL MOUNTING MEANS.
3.4	TEMPERATURE RISE PER MIL-T-27 PARA. 4.7.10. MAX TEMPERATURE RISE 30^2 OPERATING AT AN AMBIENT TEMPERATURE OF 55^2 .
3.5	MAXIMUM OPERATING ALTITUDE <u>6000</u> FEET.
3.6	ENVIRONMENTAL REQUIREMENTS:
3.6.1	MOISTURE RESISTANCE: (1) MIL-T-27 PARA. <u>4.7.11.4</u> (2) OTHER
3.6.2	SALT SPRAY: (1) MIL-E-5272 PROCEDURE (2) OTHER
3.6.3	VIBRATION REQUIREMENTS: (1) MIL-T-27 PARA. <u>4.7.12</u> (2) OTHER
	SEE SHEET 1 FOP CONTROLLING REV LTR
	SIZE CODE IDENT NO. DWG NO. REV
	A 99193 307595 -
	SCALE - WT - SHEET 4
FORM #180 -4A	

 \mathcal{T}

3.6.4	SHOCK REQUIREMENTS: (1) MIL-T-27 PARA. <u>4.7.13</u> (2) OTHER
3.6.5	AMBIENT TEMPERATURE RANGE: (1) OPERATING <u>-55</u> °C MIN, <u>70</u> °C MAX. (2) NON OPERATING <u>-55</u> °C MIN, <u>70</u> °C MAX. (3) OTHER
3.7	LIFE:
3.7. 1	OPERATING: 0,000 HOURS AT <u>65</u> °C WITH POWER APPLIED PER PARA. 4.6.
3.7.2	STORAGE: <u>5</u> YEARS AT <u>50</u> °C AND <u>50</u> % RELATIVE HUMIDITY.
3 .8	ALLOW UNIT TO STABILIZE TO ROOM TEMPERATURE BEFORE EXPOSING TO OPPOSITE TEMPERATURE EXTREME.
3.9	OTHER
• • •	
	SEE SHEET 1 FOR CONTROLLING REV LTR
	SIZE CODE IDENT NO. DWG NO. REV
	A 99193 307595 -
	SCALE - WT - SHEET 5
FORM \$1807-5A	

Ч

R

Ì

ł

ł

*4.21 CCRES TO BE MATCHED TO 5 % FOR BLAS AND 10 % FOR GAIN USING AIEE TEST PROCEDURE FOR TOROIDAL MAGNETIC AMPLIFIER CORES NO. 432 4.22 ALL ELECTRICAL REQUIREMENTS ARE TO BE MET AT AN AMBIENT OF 250 *SATURAPLE MULTICORE DEVICES ONLY	POWER LEVEL OL CURRENT (A RENT (AMPS)	NO. (AWC) RNS OLERANCE (TUR ELESISTANCE (O OLTAGE TO GRO TAGE (RMS) (GPS) \rightarrow Z	WINDINGS L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13
		ATING POWER LEVEL (WATTS) .5 .5 .5 .5 CONTROL CURRENT (AMPS) .015 .015 .015 .015 .015 CONTROL CURRENT (AMPS) .040 .040 .040 .040 .040	CAGE NO. (AWC) $\exists 4 \exists 34 $
SELF INDUCTION: WITH RMS VOLTS CPS APPLIED ACROSS THE RESULTING EXCITATION CURRENT SHALL BE MA RMS MAX.		ATING POWER LEVEL (WATTS) 5 5 5 5 CONTROL CURRENT (AMPS) .015 015 015 015	CAGE NO. (AWC) \exists 4 \exists 4 \exists 4 \exists 4OF TURNS \exists 70 (670 (670 (670 (670 (670 (670 (670 (

¢.

Ч

n

		•				_													
	PA	RTN	46										VISIO	NS					Ē
						LTR						IPTION		103	SEE		ATE		
	50	7590	<u>- </u>			A	RE	<u>V.</u>	PG.	G PA		4.2,4	1.4,4	1,23	SEE E.O		367		 -
						B	RE	<u>V.</u>	PG.	6 P/	RA	4.2	4.2	3 5	LE E.	J.]] [*]	1		 ر
I																			
-																			
																	_		
											S	ne ta	ab b	lock	(up	per	lef	Ł	
											S	ee ta orner)	ab b for	lock PAI	(up RT 1		lef: ABER	t 2	
											co	rner)	for	PA	RT N	107	ABER	t Q	
				0			20	E	C	01	co	rner)	for	PA	RT N	107	ABER	۲ ۲	
	SHEFT	REVISION LTR		8			201		C	ON	co	rner)	for	PA	RT N	107	ABER	₽ 2	
	SHEET	LTR SHEET		0			201		C		co	rner)	for	PA	RT N	107	ABER	₽ ₹	
		LTR		0							co	rner)	for	PA	RT N	107	ABER		
		LTR SHEET NO.									co	rner)	for	PA	RT N	107	ABER		
		LTR SHEET	6	0			20				co	rner)	for	PA	RT N	107	ABER		
		LTR SHEET NO. REVISION LTR SHEET	E	-			- B		-		co	rner)	for	PA	RT N	107	ABER		
	INDEX SHEET INDEX	LTR SHEET NO. REVISION LTR SHEET NO.	1	- 2			- B - B	- 7	- 8		co	rner)	for	PA					
	INDEX SHEET INDEX	LTR SHEET NO. REVISION LTR SHEET NO.	I	- 2			- B - B	- 7	-		co	rner)	for						
	SHEET INDEX UNLES SPECI	LTR SHEET NO. REVISION LTR SHEET NO. S OTHERV FIED ON T	I VISE THIS	- 2	- · B SIGN	 	- B 5 G RES	- 7 DA	- 8		co	rner)	for						
	INDEX SHEET INDEX UNLES SPECII DRAW	LTR SHEET NO. REVISION LTR SHEET NO. SS OTHERV FIED ON T VING, FABR	I VISE THIS ICA-		B SIGN	 	- B 5 G RES	- 7 D/											
	SHEET INDEX UNLES SPECII DRAW TION	LTR SHEET NO. REVISION LTR SHEET NO. SS OTHERV FIED ON T VING, FABR OF THIS I	I VISE THIS ICA- TEM		- B SIGN	 	- B 5 G RES	- 7 D/	- B ATES			rner)							
	SHEET INDEX UNLES SPECII DRAW TION SHALL	LTR SHEET NO. REVISION LTR SHEET NO. SS OTHERV FIED ON T VING, FABR OF THIS I BE IN ACC	I HIS ICA- TEM COR-		B SIGN	 	- B 5 G RES	- 7 D/											
	SHEET INDEX UNLES SPECII DRAW TION SHALL DANC SEAR	LTR SHEET NO. REVISION LTR SHEET NO. SS OTHERV FIED ON T VING, FABR OF THIS I BE IN ACC CE WITH A CH SPEC	I HIS ICA- TEM COR- IRE- IFI-		- B SIGN US		- B 5 G RES	- - - - - - - - - - - - - - - - - - -		DWG									
	SHEET INDEX UNLES SPECI DRAW TION SHALL DANC SEAR CATI	LTR SHEET NO. REVISION LTR SHEET NO. S OTHERV FIED ON T VING, FABR OF THIS I BE IN ACC E WITH A	I VISE THIS ICA- TEM COR- IRE- IFI- 535,		B SIGN		- B G RES AN	- - - - - - - - - - - - - - - - - - -											R

Ч

 $^{\prime}i$

Į

Ч

AFICCTS SHEETS 1-4 6 AiResearch Manufacturing Company of Arizona ENGINEERING OPDED

DRAWING TIT	/ 175.0 N	REACTOR	- AUL	010, IN				DWG NO	30	75	96		LET.	8	
IN DHAWING AANDATORY RIORITY OUTINE	┶╍┥╸				1						the second s				
		- 11 · ·			DATE	INCOR					DATE		ADY. CHO. LET	r	
OUTINE		DRAWING	CHG.		TION	VOID	AFTER	DATE			DIST	RIBUTION		L.A.	
		2 ADV. DWG	CHG.	รบธรา	TITUTION	VOID	AFTER	NO 01	F PARTS		NOR	MAL			\mathbf{D}
AINOR	0	EMERGEN	CY DWG.	REWO	RK	S.I.L.			Y R	NO	RUSI	4			
		E.C.P. NO.		MATL.	REV. ACT.	SERV	ICE BUI	LETI	N ye	B NO	TELE	TYPE			
LET. TYPE				DF	SCRIPTION						SPARE PARTS	AUTHORITY	DISPO		
NE SUB CHG.	EVIS	ED PAGE	5 6								CODE	DRN			
	F	ARA. 4.	2 2	7 TUR	IS WAS	5 3.4						15699			
	P	ARA. 4.	<u> </u>	002 AI	RGAP, T RGAP, T	OTAL	<u>0F.(</u> 0F.($\frac{204}{2/2}$	WA	<u>></u>	+				-
								.							_
		<u></u>										<u> </u>	+		_
											1		1		
															_
									·····				+		
									·······			 	-		_
													-+		
-+						anggang mananggi ang pag-					+				
													+		
·															
											<u></u>				
╺╺┿╸╼╸┝┈╍╸╎┈╍╸											+		+		
											ļ				
-+													+		
											1				
		····													
		MODEL NO.	M E.O.	OUT					ECTIVIT			CIN S			
NEXT ASSY		MODEL NO.		30550			ITEMS								
								. /							
							N	12							
						DELIVERED IT				·					
													· ·····		
					A										
				\rightarrow	10/3			, <u></u>						-7.	
		ALOOD	A Real Property lies of the left of the le		O MEET	COORDINATED	ST (250	ILIPE	MAR	NTS	CATE	11.1.	<u></u>	:
EABON FOR CHANG	ne V	ENDOR	ICCQUI	= 3/ /		<u> </u>		<u>cy</u>	U1756	17/6		, 			• •
				· · · · · · · · · · · · · · · · · · ·				<u> </u>							
HAUSMAN	• /	DATE	PREPARED	•	N 10-12-	CHALS	ED BY		DATE	1.	125	272	0	A78	.

<u>NOTE :</u>	A LINE DRAWN THROUGH ANY REQUIREMENT SHOWN ON THIS DRAWING INDICATES NO REQUIREMENT
1.	GENERAL NOTES
1.1	PROCUREMENT SOURCE(S) PER ASL 307596
1.2	PART TO BE PERMANENTLY MARKED WITH AIRESEARCH PART NO. 307596-1.
1.3	ALL DESIGN AND PART NO. CHANGES REQUIRE PRIOR AIRESEARCH APPROVAL.
1.4	ONLY THE ITEMS LISTED ON THIS DRAWING AND IDENTIFIED BY VENDORS NAMES, ADDRESSES, AND PART NO. ON ASL ろつうちん HAVE BEEN TESTED AND APPROVED FOR USE IN THE END UNIT. A SUBSTITUTE PART SHALL NOT BE USED WITHOUT PRIOR TESTING AND APPROVAL BY AIRESEARCH.
1.5	IDENTIFY PACKAGING WITH AIRESEARCH PART NO. 307596-1
1.6	PARTS PROCURED BY VENDOR PART NO. SHALL BE PROCURED IN ACCORDANCE WITH THIS AIRESEARCH SOURCE CONTROL DRAWING AND ASL 307596.
1.7	MARKING REQUIREMENTS.
1.7.1	MARKINGS TO BE PER MIL-T-27 PARA. <u>3.20</u> AS APPLICABLE.
1.7.2	MARKING TO BE LOCATED AS SHOWN IN FIGURE 1.
1.7.3	MARKINGS TO BE A MINIMUM OF .031 INCH FROM ANY CORNER, TERMINAL OR EDGE UNLESS OTHERWISE SPECIFIED.
1.7.4	HEIGHT OF MARKINGS SHALL BE A MINIMUM OF .12 INCH UNLESS OTHERWISE NOTED.
1.7.5	 (1) MARKINGS TO BE PER MIL-STD-130 EXCEPT ACID ETCHING AND BRANDING NOT PERMITTED. (2) OTHER
1.7.6	MARKINGS TO BE OF A CONTRASTING COLOR.
1.7.7	INK TO BE PER558 AS APPLICABLE.
1.7.8	MARKINGS TO BE COVERED WITH ONE COAT OF CLEAR EPOxy
1.8	DETAILS OF DESIGN AND CONSTRUCTION OTHER THAN SHOWN SHALL BE AT THE OPTION OF THE VENDOR. SEE SHEET 1 FOR CONTROLLING REV LTR
	SIZE CODE IDENT NO. DWG NO. REV
	A 99193 307596 -
1	SCALE - WT - SHEET 2

Ц

ľ

Ī

	t
1.9	(1) VACUUM IMPREGNATE WOUND BOBBINWITH CLASS'F RESIN. DIP COAT ASSY WITH EPOKY
	(2) OTHER
1.10	SOLDER PER MIL-S-6872 USING QQ. 5.571, COMP SNGC SOLDER.
1.11	AS SHOWN WITH IF CUP OR BOX IS USED MATERIAL TO BE PER
1.12	TOP .40 OF TERMINALS TO BE FREE AND CLEAR O POTTING COMPOUND FOR EXTERNAL WIRES.
1.13	DUTY CYCLE: (1) CONTINUOUS (2) OTHER
1.14	OTHER
2. 2.1	PHYSICAL CONSTRUCTION REQUIREMENTS CORE: NO. REQ'D 1 SEE PARA. (1) PART NO. AL·12 MFG. BY ARNOLD ENG C= MARENGO ILL. MFG. BY
	(3) PART NOMFG. BY
2.2 *	WRAP CORE(6) WITH USE & BOBBIN
2.3 *	WIND EACH CORE WITH GATE WINDING. SECTOR
2.4 ***	PLACE WOUND CORES TOGETHER AND WIND ON CONTROL WINDINGS.
2.5	WINDING SEQUENCE
	ICES WITH WINDINGS WRAPPED DIRECTLY ON CORE ONLY URABLE MULTICORE DEVICES ONLY
	SEE SHEET 1 FOR CONTROLLING REV LTR
	A 99193 307596
ſ	SCALE WT SHEET 🙁

Į

I

ł

- 2.6 WIRE INSULATION SHALL BE IN ACCORDANCE WITH MIL-T-27 AND BE SUFFICIENT TO WITHSTAND VOLTAGES LISTED IN PARAGRAPH 4.
- 2.7 UNLESS OTHERWISE SPECIFIED ON THIS DRAWING, FABRICATION OF THIS ITEM SHALL BE IN ACCORDANCE WITH AIRESEARCH SPECIFICATION SC-5535, STANDARD DRAWING INTERPRETATIONS.
- 3. <u>SPECIFICATIONS</u>
- 3.1 CLASSIFICATION: TYPE TF55X0422 PER MIL-T-27 EXCEPT AS NOTED IN PARAGRAPH 3.1.1.
- 3.1.1
- 3.2 INSULATION RESISTANCE PER MIL-T-27, PARA. 3.10. MEASURE USING A D-C SOURCE OF 1000 VOLTS, WINDING TO NORMAL MOUNTING MEANS 1000 MEGOHMS, WINDING TO WINDING MECOHMS.
- 3.3 MAXIMUM WORKING VOLTAGE 120 VRMS.
- 3.3.1 DIELECTRIC STRENGTH PER MIL-T-27 PARA. 4.7.5. TEST BY APPLYING <u>SOO</u> RMS VOLTS AT <u>GO HZ</u> CPS FOR 5 SECONDS BETWEEN WINDINGS AND BETWEEN EACH WINDING AND THE BASE OR NORMAL MOUNTING MEANS.
- 3.4 TEMPERATURE RISE PER MIL-T-27 PARA. 4.7.10. MAX TEMPERATURE RISE 3.4 OPERATING AT AN AMBIENT TEMPERATURE OF 35° .
- 3.5 MAXIMUM OPERATING ALTITUDE <u>80,000</u> FEET.
- 3.6 ENVIRONMENTAL REQUIREMENTS:
- 3.6.1MOISTURE RESISTANCE:
(1) MIL-T-27PARA. 4.7.11.4(2) OTHER
- 3.6.2 SALT SPRAY: (1) MIL-E-5272 PROCEDURE (2) OTHER
- 3.6.3 VIBRATION REQUIREMENTS: (1) MIL-T-27 PARA. 4.7.12
 - (2) OTHER

SEE SHEET 1 FOR CONTROLLING REV LTR SIZE CODE IDENT NO. DWG NO. A 99193 307596 --LTR SCALE W1 -- SHEET 4

П

	SIZE CODE IDENT NO. DWG NO. RE'
	SEE SHEET 1 FOR CONTROLLING REV LTR
3.9	OTHER
3.8	ALLOW UNIT TO STABILIZE TO ROOM TEMPERATURE BEFORE EXPOSING TO OPPOSITE TEMPERATURE EXTREME.
3.7.2	STORAGE: <u>5</u> YEARS AT <u>50</u> °C AND <u>50</u> % RELATIVE HUMIDITY.
3.7.1	OPERATING: 10,000 HOURS AT 85 °C WITH POWER APPLIED PER PARA, 4.6.
3.7	LIFE:
3.6.5	AMBIENT TEMPERATURE RANGE: (1) OPERATING <u>-55</u> °C MIN, <u>70</u> °C MAX. (2) NON OPERATING <u>-55</u> °C MIN, <u>70</u> °C MAX. (3) OTHER
	(1) MIL-T-27 PARA. <u>4.7.13</u> (2) OTHER

			-			-																							
CTRICAL REQUIREMENTS (SEE FIGURE 2)	WINDINGS L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13	GAGE NO. (AWG)	OF TURNS	UING	LING VOLTAGE TO GROUND	DLTAGE (RMS)		TOLERANCE (CPS)	UNER LEVEL (WALL	NT (AMPS)									LF INDUCTION: WITH RMS VOLTS CPS APPLIED ACROSS	REGULTING EXCITATION CURRENT SHALL BE	C	PROCEDURE FOR TOROIDAL MAGNETIC AMPLIFIER CORES NO.	AND TO BE VET AT AN AUDIENT	LELECTRICAL REQUIREMENTS ARE TO BE MET AT AMBLENT OF 20 (A 0.002 NUL GAD - NAK	POOT (4 MILS) FOR THE TOTAL PATH.			
(SE	MINDINGS		rurns	TOLERANCE (TU DECICTANCE	VING VOLTAGE TO GI	JLTAGE (RMS)	(GPS) Hz	TOLERANCE (CPS)	DENT /AMPS)	NT (AMPS)										RESULTING EXCITATION CU		FOR		ULKEW して	N 0.005 N	DO4 (4 MILS) FO			
[년]		3	N	33		: ~		F4 (Ľ			<u>_</u>		<u>م</u>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						· •^					
4.		4.1		4.3		• • •	•	. . .	4 t . 4 4 . 1 0	4.11 4.11	4.12	4.13	4.14	4.15	•		4. Lð	•	4.20		i S	X4.21		4.22 4.23			TWC		
									1	¢						SE	ES	SHE	ET	1 F		r CON	ITR		ING		V L	TR	
									SIZE	Т	C0	DE	IDEN	IT I	10.	Þ	WG	NO.				, .						RI	v
									A			99	219	9 3				3	C).	7	5	9) (6			E	
								s	ĊĀ	LE						╈	٨T			<i>~</i> ~			S	HE	ET		j G	L1	
FORM \$1807-	6A			**		·								F								·							

ł

しろう

 \Box

PHYSICAL SIZE

FIGURE 1

	ARRETTC	ORPOR	ATION	рон м . 		.GT9#1		CH ARE ATATE The PA												
ONE	ZT NI	9					_				_	5101	15			DA	TE T	AD	PPO	VED
				LTR				<u></u>	ESCR	IPTIC							16			V 61-
	597-			1	ļ											•	ļ	ļ		
									Se	• 2:	a b	Ыа	ock	(u	ppe	er le	əft			
									Se	e ti ner)	ab fo	blo r P	ock PAR	(u 2T	^{pp€} NU	er le MB1	əft ER			
		 1				1	rŢ		Se cor	e ti ner)	ab fo	blo or P	ock PAR	(u 2T	ppe NU	ar le MBI	eft ER			1
SHEET	REVISION LTR								Se cor	e ti ner)	a b fo	blo or P	ock PAR	(u 2T	pp NU	n le MBI	eft ER			
SHEET	LTR SHEET								Se cor	e ti ner)	a b fo	bla r P	ock PAR	(u 2T	PP NU	er le MBI	eft ER			
	LTR								Se cor	e ti ner)	a b fo	blo r P		(u 2T	PP NU	m le MBI	eft ER			
	LTR SHEET NO.								Se cor	e ti ner)	a b fo	blo r P	AR	(u 2T	PP NU	or le MBI	aft ER			
	LTR SHEET								Se cor	e ti ner)	a b fo	blo r P	AR	(u T	PP NU	er le MBI	eft ER			
	LTR SHEET NO. REVISION		2 3	4 5	56	7	0	0	Se cor	e ti ner)	a b fo	blo r P		(u 2T	PP NU					
INDEX SHELT INDEX	LTR SHEET NO. REVISION LTR SHEET NO.				_		ATES		Se cor	ner)	fo							N G R		
INDEX SHEET INDEX	LTR SHEET NO. REVISION LTR SHEET NO. OTHERW	ISE	SIG		RES	D/	TES		S. cor	ner)	fo							N G R POR		
SHELT INDEX UNLESS SPEC!FIE DRAWIN	LTR SHEET NO. REVISION LTR SHEET NO. OTHERW ED ON T IG, FABRI	ISE HIS D CA-	SIGI	NATU BHh	RES	D/	ATES				fo			MA				RPOR	ATION	
SHEET INDEX UNLESS SPEC!FIE DRAWIN TION OF	LTR SHEET NO. REVISION LTR SHEET NO. OTHERW ED ON TI IG, FABRI F THIS IT	HIS D CA-	SIGI		RES	DA 11:2	ATES 50.61				fo			MA				RPOR	ATION	
SHEET INDEX UNLESS SPEC!FIE DRAWIN TION OF SHALL B	LTR SHEET NO. REVISION LTR SHEET NO. OTHERW ED ON T IG, FABRI F THIS IT IG IN ACC	ISE HIS D CA- IEM OR-	SIGI	NATU BHh	RES	DA 11:2	ATES				fo			MA				RPOR	ATION	
SHEET INDEX UNLESS SPEC!FIE DRAWIN TION OF SHALL B DANCE SEARC	LTR SHEET NO. REVISION LTR SHEET NO. OTHERW ED ON TI IG, FABRI F THIS IT SE IN ACC WITH AI H SPEC	ISE HIS CA- TEM OR- IRE- IFI-		NATU BHIN YU 24	RES	DA 11:2	ATES 50.61							MA PHO				RPOR	ATION	
SHEET INDEX UNLESS SPEC!FIE DRAWIN TION OF SHALL B DANCE SEARC CATION	LTR SHEET NO. REVISION LTR SHEET NO. OTHERW ED ON T IG, FABRI F THIS IT IG IN ACC	ISE HIS D CA- TEM OR- IRE- IFI-	SIGI	NATU BHIN YU 24	RES MAN An	D/ 11:2 //:"	ATES 30.61 30.61 30.6							MA PHO 7					B	LE

ļ

<u>NOTE :</u>	A LINE DRAWN THROUGH ANY REQUIREMENT SHOWN ON THIS DRAWING INDICATES NO REQUIREMENT
1.	GENERAL NOTES
1.1	PROCUREMENT SOURCE (S) PER ASL 307597
1.2	PART TO BE PERMANENTLY MARKED WITH AIRESEARCH PART NO. 307597-1.
1.3	ALL DESIGN AND PART NO. CHANGES REQUIRE PRIOR AIRESEARCH APPROVAL.
1.4	ONLY THE ITEMS LISTED ON THIS DRAWING AND IDENTIFIED BY VENDORS NAMES, ADDRESSES, AND PART NO. ON ASL <u>307597</u> HAVE BEEN TESTED AND APPROVED FOR USE IN THE END UNIT. A SUBSTITUTE PART SHALL NOT BE USED WITHOUT PRIOR TESTING AND APPROVAL BY AIRESEARCH.
1.5	IDENTIFY PACKAGING WITH AIRESEARCH PART NO. 207597-1
1.6	PARTS PROCURED BY VENDOR PART NO. SHALL BE PROCURED IN ACCORDANCE WITH THIS AIRESEARCH SOURCE CONTROL DRAWING AND ASL 307597.
1.7	MARKING REQUIREMENTS.
1.7.1	MARKINGS TO BE PER MIL-T-27 PARA. <u>3.20</u> AS APPLICABLE.
1.7.2	MARKING TO BE LOCATED AS SHOWN IN FIGURE 1.
1.7.3	MARKINGS TO BE A MINIMUM OF .031 INCH FROM ANY CORNER, TERMINAL OR EDGE UNLESS OTHERWISE SPECIFIED.
1.7.4	HEIGHT OF MARKINGS SHALL BE A MINIMUM OF .12 INCH UNLESS OTHERWISE NOTED.
1.7.5	 (1) MARKINGS TO BE PER MIL-STD-130 EXCEPT ACID ETCHING AND BRANDING NOT PERMITTED. (2) OTHER
1.7,6	MARKINGS TO BE OF A CONTRASTING COLOR.
1.7.7	INK TO BE PER TT. 1.558 AS APPLICABLE.
1.7.8	MARKINGS TO BE COVERED WITH ONE COAT OF CLEAR $\Xi P \odot \times \gamma$ AS APPLICABLE.
1.8	DETAILS OF DESIGN AND CONSTRUCTION OTHER THAN SHOWN SHALL BE AT THE OPTION OF THE VENDOR. SEE SHEET 1 FOR CONTROLLING REV LTR
	SIZE CODE IDENT NO. DWG NO. REV
	A 99193 307597 -

Ŧ

-

WT

-

SHEET

2

SCALE

1.9	(1) VACUUM IMPREGNATE WITH
	(2) OTHER DIP COAT COMPLETED UNIT WITH EPOXY.
1.10	SOLDER PER MIL. S. 6672 USING COMP. SN60 PER QQ. 5571SOLDER.
1.11	AS SHOWN WITH IF CUP OR BOX IS USED MATERIAL TO BE PER
1,12	TOP OF TERMINALS TO BE FREE AND CLEAR POTTING COMPOUND FOR EXTERNAL WIRES.
1.13	DUTY CYCLE: (1) CONTINUOUS (2) OTHER
1.14	OTHER
2.	PHYSICAL CONSTRUCTION REQUIREMENTS
2.1	CORE: NO. REQ'D 2 SEE PARA. 4.21
	(1) PART NO. 52106-2A MFG. BY MAGNETICS INC.
	(2) PART NO. MFG. BY
	(3) PART NO. MFG. BY
2.2 *	WRAP CORE(S) WITH
2.3 *	WIND EACH CORE WITH GATE WINDING. SECTOR
9 /4 ***	PLACE WOUND CORES TOGETHER AND WIND ON CONTROL WINDINGS.
2.5	WINDING SEQUENCE <u>L1, L2, L3</u>
* DEVI	CES WITH WINDINGS WRAPPED DIRECTLY ON CORE ONLY
** SATU	JRABLE MULTICORE DEVICES ONLY
	SEE SHEET 1 FOR CONTROLLING REV LTR
	SIZE CODE IDENT NO. DWG NO. R
	A 99193 307597 -
	SCALE - WT - SHEET 3

الرداندي ومحمد محمد وابتجارها	
2.6	WIRE INSULATION SHALL BE IN ACCORDANCE WITH MIL-T-27 AND BE SUFFICIENT TO WITHSTAND VOLTAGES LISTED IN PARAGRAPH 4.
2.7	UNLESS OTHERWISE SPECIFIED ON THIS DRAWING, FABRICATION OF THIS ITEM SHALL BE IN ACCORDANCE WITH AIRESEARCH SPECIFICATION SC-5535, STANDARD DRAWING INTERPRETATIONS.
3.	SPECIFICATIONS
3.1	CLASSIFICATION: TYPE TESSX4022 PER MIL-T-27 EXCEPT AS NOTED IN PARAGRAPH 3.1.1.
3.1.1	
3.2	INSULATION RESISTANCE PER MIL-T-27, PARA. 3.10. MEASURE USING A D-C SOURCE OF <u>500</u> VOLTS, WINDING TO NORMAL MOUNTING MEANS <u>MEGOHMS</u> , WINDING TO WINDING <u>1000</u> MEGOHMS.
3.3	MAXIMUM WORKING VOLTAGE 120 VRMS.
3.3.1	DIELECTRIC STRENGTH PER MIL-T-27 PARA. 4.7.5. TEST BY APPLYING 500 RMS VOLTS AT <u>60 Hz</u> CPS FOR 5 SECONDS BETWEEN
	WINDINGS AND BETWEEN EACH WINDING AND THE BASE OR NORMAL MOUNTING MEANS.
3.4	TEMPERATURE RISE PER MIL-T-27 PARA. 4.7.10. MAX TEMPERATURE RISE 30° OPERATING AT AN AMBIENT TEMPERATURE OF 35° .
3.5	MAXIMUM OPERATING ALTITUDE <u>60,000</u> FEET.
3.6	ENVIRONMENTAL REQUIREMENTS:
3.6.1	MOISTURE RESISTANCE: (1) MIL-T-27 PARA. <u>4.7.11.4</u> (2) OTHER
3.6.2	SALT SPRAY: (1) MIL-E-5272 PROCEDURE (2) OTHER
3.6.3	VIBRATION REQUIREMENTS: (1) MIL-T-27 PARA. <u>4.7.12</u> (2) OTHER
	SEE SHEET 1 FOR CONTROLLING REV LTR
	SIZE CODE IDENT NO. DWG NO. REV
	A 99193 307597 -
1	SCALE - WT - SHEET 4

5

ı.

•

ļ

п

			<u> </u>			
3.6.4	SHOCK REQUIREMENTS (1) MIL-T-27 PARA (2) OTHER		.13		`	
3.6.5	AMBIENT TEMPERATUR (1) OPERATING - 5 (2) NON OPERATING (3) OTHER	E RAN	GE: CMIN, 55 CM	<u>70</u> °C 1 IN, <u>70</u>	мах. °С мах.	
3.7	LIFE:					
3.7.1	OPERATING: 10000 PARA. 4.6.	_HOUR	s at <u>85</u>	_°C WITH POWE	R APPLIED PER	
3.7.2	STORAGE: <u>5</u> RELATIVE HUMIDITY.	YEARS	AT <u>50</u>		<u>50 </u> %	
3.8	ALLOW UNIT TO STAB OPPOSITE TEMPERATU			PERATURE BEFO	RE EXPOSING T	0
3.9	OTHER					
	Ň					
			· . ·			
				SEE SHEET 1 FOR	CONTROLLING R	EV LTR
	1	SIZE	COUE IDENT NO.	DWG NO.		REV
		A	9919 3	307	597	LTR
		SCAL	E	WT -	SHEET	5

FORM P1807-5A

9

Į

													♥											
	L1 3							T						ĪT	T		•	,						
	L12 L		-			+	╏┈╂	- +-					+	┞╶┤	-						•			
			+				┥┥						+-		-			Î	ы	•				
	0 LII						-+						-						AIEE		U			
	L10						╏╷╏												US ING		ŝ			
	F.0													 				ß'	SU NS	432	(4			
	8 1								_				_		_			MAX.	GAIN	١ ٢	OF			
	L7								_		+							RMS Y	FOR	NO.	ENT			
	F 6															_		MA RWS N	52	CORES NO	AMB LENT			
	T2													╽╷╽		_			- UI		AN A			
	14							_									Ċ		e	EF LE	АТ			
	FI	37	800	4 1 1 1 1	<u>8</u>	21		1	1	Ś								BE	S AND	AMPL.IFIER	MET			
[2)	Г2	32	<u>8</u>	- 1	<u> </u>	202	200	1	0 I	80							8	VULTS SHALL			BE			
IGURE	I	32	1400			202	1 - 1	1	D I	0 0							1		FOR	MAGNETIC	TO			
Ц			-	- <u></u>		-		NC	2				-	╋╌╌╋				CURRENT			ARE			
AL REQUIREMENTS (SEE	MIND INGS	E NO. (AWG)		HI	RESISTANCE (OHMS)	(SMS)	(GPG) Hz		OL CURRENT	CURRENT (AMPS)								RESULTING EXCITATION C	BE MATCHEI	PROCEDURE FOR TOROIDAL	ELECTRICAL REQUIREMENTS		MULTICORE DEVICES ONLY	
ELECTRICAL		WIRE CAGE		MINDING	MAX D.C.	- 10	FREQUENCY	FREQUENCY	MAX CONTR	RATED CUI					-			THE R	CORES	TEST PRO	ALL		*SATURABLE MULT	
4		4.1	4.2	•	4 v 4 v		4.7	4 8 9	4.9 *4.10	4.11	4.12	4.13	4.14 4.15	•	4.17	4.18 4.19		07.4	*4.21		4.22		'SATU	
		-	-				-		¥	-					SE		HEET			ON		ING	≉ REV L	.TR
									SIZE	Г	co	DE ID	ENT	NO.	0	WG N	Ю.						<u> </u>	
									A			99 '	193	3		2	30	О,	7!	5	9	7		
								5	ĊAI	Ē				_		ŇΤ		_			SHE	ET	0	

·'

"

IJ

 μ

П

 \mathcal{H}

¥			· · · · · · · · · · · · · · · · · · ·				
1			<u> </u>		VISIONS		
			L'TR	DESCRIPTIC		DATE APPROVE	
			A 17°WA	5 2.4° SEE	E.O.	3-9-67 KATAdant	<u> </u>
1	······································						
. .							
							-
•							
1							
	·						
1							
1							
PART NUMBER AND SERIA	L NUMBER						
PER AIRESEARCH SPEC.				,			
				See tab blo	ck (upper	left	
				corner) for P.			
						بمحمد ويقتل فينعمن مجرد وجروهياني	
ſ	BEARING DESCRIPTION BALL, A	NGULAR CON	TACT, 7105		G	RADE ATRESEARCH 5	
-	INNER RING		OUTF	R RING	ASSEMBL	ED BEARING CHARACTERISTICS	5
	CEVM M-50 PER AMS	6400		O PER AMS 6490			
i	MATERIAL Rc 60-64		MATERIALI RC	<u>60-64</u>	TOTAL DIA	METRAL (1) CLEARANCE	I OF
2		PER/FT	ов, 1.8504 -1.8502	(47MM)	.0009	0013UNDER 2 LOS GAGE LO	GAO.
Į.						SPECIAL FEATURES	
	WIDTHI . 4724 4624 (12MM)	<u> </u>	FLANGE OD.	· · · · · · · · · · · · · · · · · · ·	+		
· ·	NACE DEPTH: 20 MIN	S BALL DIA	WIDTH . 4724-,467	<u>4 (12MM)</u>		MUST NOT CHANGE IN	
ſ	RACE CURVATURE: 52-53	% BALL DIA	FLANGE WIDTH:			ISION IN EXCESS OF 150 in/in when subjected	D
1					TO 75	O'F FOR 10 HOURS.	*
1	SEPARATOR FILOT LAND TO GROOVE RUNOUT:	TiR	RACE DEPTH: 16 M	N SHALL DIA		"A" TO BE FLUSH WITHIN D1 WITH 30 LBS. THRUST	A
4	SEPARATOR		RACE CURVATURE	-53 & BALL DIA	LOAD	APPLIED AS SHOWN.	
1	FORGED SILICON IN	RON BRONZE	SEPARATOR PILOT LAN	р "000 <u>5 —</u> тня	CIRCI	RATOR POCKET SURFACES	
			· • • • • • • • • • • • • • • • • • • •	ELEMENTS	AFT 2	TO BE AT BEARING P.D. Rator to be silver plati	'E'D
]	CONSTRUCTION: MACHINED		1	50 PER AMS 6490	.000	50020 THICK PER AMS24	
	ASSEMBLY, ONE-PIECE		MATERIALI RC	60-64		ACT ANGLE 170 (REF).	
	PILOTING SURFACE, OUTER RING I	LANDS		13-1/4" DIA.		LAR TO AIRESEARCH	
		···		SURES		358313. TREATMENT OF M 50 TO BI	IE.
	PILOT CLEARANCE: ,008-,016		<u> </u>		PER	AIRESEARCH PROCESS SPEC	
	OPERATIONAL LUBRICA		NUMBER: NONE		<u> </u>		
	NAME CAS TORBINEOBRI	CRAFT	TYPE:				
			MATERIAL				
ITICAL CHARACTERISTIC	MILITARY SPEC NO.MIL-L-7808						
JOR CHARACTERISTIC	PACKAGING PER AIR. SPEC CP-14		CONSTRUCTION		B FACK		
DECEMBER OF REAL				+		MIL-P-107	
RESEARCH SPEC SC 5354	PRESERVATIVE	MIL-L-6	5085	MIL-L-6085			
PART NUMBER SHALL BE PROCURED S AIRESEARCH SOURCE CONTROL	AIRESEARCH PART NUMBER,	3584		358498	<u> </u>	- 358498	
	SEPIN	8			-		
AIRESEARCH PART NUMBER.	PROCUREMENT PER ASL 35849						_
ER CHANGES SHALL RECEIVE PRIOR		SOURCE C	ONTROL DRAWING	GABRETT AIRES		ANUFACTURING COMPAN THE GARNETT CORPORATION IDENIX, ARIZONA	ŧΥ
HE ASL AND IDENTIFIED BY VENDOR	I'S NAMES, ADDRESSES AND PART	SIGNAT			PH	IOENIX, ARIZONA	
AND APPROVED FOR USE IN THE END UNIT. A SUBSTITUTE ITEM		DET	mgod 1/1467	DWG TITLE	– • • •	THOUST	
	ARY SPARES ORDERS, BEFORE IN-	APPD DE D	111-15 1/13/07	J BEARING,	BALL	, THRUST	
INGS ARE INTENDED TO FILL MILIT	PRESERVATIVE AND REPLACE WITH OPERATING LUBRICANT. AFTER		· B	4			
PRESERVATIVE AND REPLACE WITH	THE BEADINGS BECOME INTED.	APD .		4			
PRESERVATIVE AND REPLACE WITH TIFICATION IS CHANGED TO -1 ANI DUCTION BULK AND COMMERCIAL	SPARES PACK BEARINGS. THEY			The second s			
PRESERVATIVE AND REPLACE WITH TIFICATION IS CHANGED TO -1 ANI DUCTION BULK AND COMMERCIAL CTORY INSTALLATION'S BECAUSE OF	SPARES PACK BEARINGS. THEY THEIR RELATIVELY HIGH COST.	NIPOPPIJ		2722		والمسابق والمستعملة المستعد والترجيب بالتروي والمتعاولة والمستعد والمستعد	
ITIFICATION IS CHANGED TO -1 AND DUCTION BULK AND COMMERCIAL CTORY INSTALLATIONS BECAUSE OF BULK PACK PEARINGS ARE PREFERE	SPARES PACK BEARINGS. THEY THEIR RELATIVELY HIGH COST. RED FOR ALL FACTORY INSTALLA-	APPORTA J	Y APPD /				
PRESERVATIVE AND REPLACE WITH ITIFICATION IS CHANGED TO -1 ANI DUCTION BULK AND COMMERCIAL CTORY INSTALLATIONS BECAUSE OF BULK PACK PEARINGS ARE PREFERF PACK BEARINGS ARE INTENDED TO F	SPARES PACK BEARINGS. THEY THEIR RELATIVELY HIGH COST. RED FOR ALL FACTORY INSYALLA- ILL COMMERCIAL SPARES ORDERS.	NOPO PILL	2 10-67			358498	
PRESERVATIVE AND REPLACE WITH TIFICATION IS CHANGED TO -1 AND DUCTION BULK AND COMMERCIAL CTORY INSTALLATIONS BECAUSE OF BULK PACK PEARINGS ARE PREFERE	SPARES PACK BEARINGS. THEY THEIR RELATIVELY HIGH COST. RED FOR ALL FACTORY INSYALLA- ILL COMMERCIAL SPARES ORDERS.	APPORTA J	2 10-67	SIZE CODE IDENT N		358498	

4

ι

manager mai	intend thus need	h	to the fi	haltad (Cisiae C	CIVE / DIVIE	int 156	s drawii hout th	N# m12V	not. 10	whole	or in	DAR. DE C	for rights ex- uplicated or dis IT CORPORATIO
8744	·····		r		Þt	ACRIPTIO	N			2010 \$			DATE	APPROVAL
			,					•	•	•		•	1	•
							•	•	,				1	
							•							
				5011	DCF	. 00		001	ne	AW	NG			
			·		· ·	EMEN			1		• • •	46-	-/	
SHEET	REVISION			Π									· · ·	
INDEX	SHEET NO.	1	23	4	50	5 7	8	9	ŀ	ŀ				
	NATURES P. King Sillner		DATI 3-10- 3-10-	67					ng Corr	• •	1	.		
1.400 M	4. Chilles	~ ~	<u></u>	-67	Dwg 7		NS		TO		•	on	IER,	NPN,
APT			1			IDENT	· ·	size A	Dwa X J	•	12	24	6	REVIS
18	TIVITY APP					•			,-			- -		SY

ſ

,

ĩ

v

• .	SCOPE	
•	1-1	SCOPE. THIS SPECIFICATION COVERS THE DETAIL REQUIREMENTS FOR A SILICON NPN POWER TRANSISTOR. IT IS A REPACKAGED VERSION OF COMMERCIALLY AVAILABLE MHT 7604 AND IS INTENDED FOR HIGH RELIABILITY APPLICATIONS.
1	, .2	PHYSICAL DIMENSIONS. PHYSICAL DIMENSIONS SHALL BE PER FIGURE 1.
	1.3	ABSOLUTE MAXIMUM RATINGS. THE VALUES SPECIFIED IN TABLE I (WITH EXCEPTION OF THE THERMAL TIME CONSTANT) ARE LIMITING VALUES ABOVE WHICH THE SERVICEABILITY OF THE DEVICE MAY BE IMPAIRED.
•	1.4	PRECAUTIONS. DURING HANDLING, INSTATIATION, OR OPERATION, THE APPLICABLE RATINGS OF TABLE II MAY NOT BE EXCLEDED.
2.	APPLI	CABLE DOCUMENTS
	2.1	THE FOLLOWING DOCUMENTS FORM A PART OF THIS SPECIFICATION TO THE EXTENT SPECIFIED HEREIN:
		MIL-S-19500D - SEMICONDUCTOR DEVICES, GENERAL SPECIFICATION FOR
		MIL-STD-750A - TEST METHODS FOR SEMICONDUCTOR DEVICES
3.	REQUI	REMENTS
	3.1	MANUFACTURER'S PROCESSING. THE MANUFACTURER'S FACTORY PROCESSING FOR DEVICES FURNISHED TO THIS SPECIFICATION SHALL INCLUDE BUT NOT BE LIMITED TO THE FOLLOWING PROCEDURES UNLESS OTHERWISE SPECIFIED ON THE PURCHASE ORDER:
		HIGH TEMPERATURE STABILIZATION BAKE FOR A MINIMUM OF 60 HOURS AT A MINIMUM TEMPERATURE OF 200°C.
		HIGH TEMPERATURE REVERSE BIAS TEST FOR A MINIMUM OF 12 HOURS AT A MINIMUM TEMPERATURE OF 150°C.
•	3.1.3	S APPLICATION OF AT LEAST 5 (FIVE) POWER PULSES AT A 60 Hz REPETITION RATE:
		I = 7.5 AMPS V = 75 VOLTS PW = 100 MICROSECONDS
•	· .	AT START OF TEST THE CASE TEMPERATURE SHALL BE 25°C
• .	3.1.	4 X-RAY INSPECTION IN THREE ORTHOGONAL AXES. THE X-RAY FILMS SHALL BE SHIPPED TO AIRESEARCH AND SHALL BE TRACEABLE TO EACH DEVICE.
	3.2	DESIGN CHANGES. ALL DESIGN CHANGES SUBSEQUENT TO SHIPMENT OF THE FIRST LOT FURNISHED TO THIS SPECIFICATION REQUIRE AIRESEARCH ENGINEERING APPROVAL.
	3.3	MARKING. EACH PART SHALL BE PERMANENTLY MARKED WITH THE FOLLOWING:
	3.3.	1 THE AIRESEARCH PART NUMBER AS SHOWN: 521246-1
•	•	A 70210 X521246

4

1

с

¢

٢

П

ε,

3.3.2	THE MANUFACTURER'S LOT CODE. THE SUPPLIER SHALL PROVIDE TRACEABILITY FROM THE LOT CODE TO ALL MATERIALS AND PROCESSES USED DURING DEVICE FABRICATION.
3.3.3	SERIAL NUMBER. THE SERIAL NUMBER SHALL BE OMITTED WHEN THE PURCHASE ORDER DELETES THE REQUIREMENTS FOR X-RAY EXAMINATION AND VARIABLES DATA.
3.3.4	THE MANUFACTURER'S IDENTIFICATION.
3.4	PERFORMANCE. THE PERFORMANCE OF THE TRANSISTOR SHALL BE AS SPECIFIED IN TABLES I, II, III, IV AND IN FIGURE 2.
3.4.1	DEFINITIONS, SYMBOLS AND ABBREVIATIONS ARE PER MIL-S-19500
3.5	RELIABILITY CONDITIONING. UNLESS OTHERWISE SPECIFIED ON THE PURCHASE ORDER, EACH DEVICE PROCURED TO THIS SPECIFICATION SHALL BE PROCEUSED AS FOLLOWS AND IN THE ORDER SHOWN.
3.5.1	TEMPERATURE CYCLING. A MINIMUM OF 5 (FIVE) CYCLES T(HIGH) = 200 ±20°C T(LOW) = -65 ±10°C HOLD AT EXTREMES FOR AT LEAST 20 MINUTES AND AT ROOM AMBIENT (DURING TRANSFER) FOR NOT LONGER THAN 5 MINUTES. SPECIFIED AMBIENT TEMPERATURE SHALL BE REACHED WITHIN 2 MINUTES OF TRANSFER.
3.5.2	SHOCK. I (ONE) BLOW, 1500 G MINIMUM 0.3 HILLISECOND DURATION, Y AXIS ONLY.
3.5.3	VIBRATION. VARIABLE FREQUENCY PER MIL-STD-750, METHOD 2056, EXCEPT THAT I (ONE) CYCLE IS REQUIRED IN EACH OF THREE ORTHOGONAL AXES.
3.5.4	ACCELERATION. 15000 G MINIMUM FOR AT LEAST MINUTE, Y ORIENTATION ONLY.
3.5.5	HERMETIC SEAL
3.5.5.	I FINE LEAK (VEECO). MIL-STD-202C. METHOD 112, TEST CONDITION C, PROCEDURE IIIA. MAXIMUM LEAK RATE I × 10° ATM CC/SEC. PROCEDURE IV IS ACCEPTABLE
3.5.5.	2 GROSS LEAK (BUBBLE TEST). MIL-STD-202C, METHOD 112, TEST CONDITION A. FLUID TO BE POLYETHYLENE GLYCOL AT A MINIMUM TEMPERATURE OF 125°C.
3.5.6	BURN-IN. ALL DEVICES ARE TO BE OPERATED FOR AT LEAST 168 HOURS BUT NOT MORE THAN 240 HOURS UNDER THE FOLLOWING CONDITIONS:
	V = IO VDC MIN I = I.O ADC MIN
	$T_c = 95^{\circ}CMIN$ $P_T = 40 WMIN$
3.5.6.	I' VARIABLES DATA. THE DATA INDICATED IN TABLE V SHALL BE RECORDED BEFORE AND AFTER THE BURN-IN TEST. THIS INFORMATION SHALL BE SHIPPED TO AIRESEARCH TUGETHER WITH THE DEVICES AND SHALL BE TRACEABLE TO EACH DEVICE.
3.5.7	END POINTS. AT THE CONCLUSION OF THE RELIABILITY CONDITIONING THE DEVICES SHALL REPORT OF TABLE III AND TABLE V.
	SIZE CODE IDENT NO. DWG NO. REV
	A 70210 521246
1	SCALE NONE SHEET 3 OF 9

A

¢

ł

1

١

¢

٠,

-1

QUALITY ASSURANCE PROVISIONS

- 4.1 <u>OUALIFICATION TESTING</u>. NOT APPLICABLE
- 4.2 ACCEPTANCE INSPECTION
- 4.2.1 ACCEPTANCE INSPECTION SHALL BE IN ACCORDANCE WITH PARAGRAPHS 3.1.4, 3.5.5, 3.5.6 AND 3.5.7.
- 4.2.2 LOT REJECTION. WHEN MORE THAN 10% OF THE DEVICES IN A LOT SHOW PARAMETER CHANGES IN EXCESS OF THE VALUES SPECIFIED IN TABLE V, THE ENTIRE LOT SHALL BE REJECTED.

4.3 <u>DEVIATIONS</u>. WHEN THE REQUIREMENTS FOR DURN-IN (3.5.5) AND/OR FOR X-RAY INSPECTION (3.1.4) ARE DELETED THE MARKING SHALL BE IN ACCORDANCE WITH PARAGRAPH 3.3.3.

4.3.1 NO OTHER DEVIATIONS ARE PERMITTED. WHEN THE PURCHASE ORDER CALLS FOR THE DELIVERY OF ELECTRICALLY EQUIVALENT DEVICES SUCH DEVICES SHALL BE IDENTIFIED BY THEIR COMMERCIAL PART NUMBER, ONLY.

5. GÉNERAL NOTES

- 5.1 PROCUREMENT PER AVI 521246-1. ONLY THE ITEMS LISTED ON THE AVL AND IDENTIFIED BY VENDORS NAME, ADDRESS AND PART NUMBERS HAVE BEEN TESTED AND APPROVED FOR USE IN THE END UNIT. SUBSTITUTE ITEM SHALL NOT BE USED PRIOR TO TESTING AND APPROVAL BY AIRESEARCH ENGINEERING.
- 5.2 PART TO BE PERMANENTLY MARKED WITH THE FOLLOWING: "All'ESEARCH PART NUMBER 521246".
- 5.3 ALL DESIGN AND PART NUMBER CHANGES' REQUIRE AIRESEARCH ENGINEERING APPROVAL.

5.4 IDENTIFY PACKAGING WITH AIRESEARCH PART NUMBER:

5.5 PARTS PROCURED BY VENDOR PART NUMBER SHALL BE PROCURED IN ACCORDANCE WITH THIS SUURCE CONTROL DRAWING.

A	7021	NO. DIVIG NO. 0 \$521246	REV
SCALE	NONE	SHEET 4 O	F 9

Ч.

١,

म,च+ ं

TABLE I

RATINGS, FLECTRICAL

VCBO	Collector to Base Voltage, Emit ter Open	140 vdc max
VCEO	Collector to Emitter Voltage, Base Open	120 vdq max
VBEQ	Reverse Base to Emitter Voltage	8.0 vdc max
I _c	Continuous Collector Current	10 A dc max
Г _Ь	Continuous Base Current	2.0 A dc max
P t	Total Power Dissipation at 100°C Case	40 Watts max
Тј	Junction to Case Thermal Time Constant	.014 Sec. Typ
Tstg	Storage Temperature '	-65°C to +200°C
Tj	Operating Junction Temperature	-65°C to +200°C

TABLE II

	•	
	•	•
х., .		
50		•
-	•	
4.1		•
	. ·	•
		۰.
	K	•
)-750, M	ethod	1066
)-750, M	-750, Method

RATINGS, MECHANICAL

· /٦

_

¥

•		ELECTRICAL INSPECTION (1)	,			
PARAMETER	METHOD MIL-STD-750	CONDITIONS	NOTES	LIM	ITS MAX	UNITS
BV _{CEO} (SUS)	3011.1	$I_c = 100 \text{ ma}$ $I_b = 0$	2	120		Vdc
LCES	3041.1	V _{EB} = 0 V _{CE} ≡ 120V			1.0	#Adc
ICEOI	3041.1	I _b = 0 V _{CE} = 120V			1 00 11	/ µAdc
ICE02	3041.1	$I_b = 0 V_{CE} = 120V T_c = 150 \pm 3^{\circ}C$			500	μAdc
I _{EBO}	3061.1	V _{EB} = 5 Vdc I _c ≈ 0			0.50	µAdc
H _{FEI}	3076.1	I _c = 5A V _{CE} = 2 V	2	40	120	
H _{FE2}	3076.1	I _c = 50 mA V _{CE} = 2 V		60	240	
^H FE3	3076.1	$I_{c} = 50 \text{ mA} V_{CE} = 2 \text{ V}$ $T_{c} = -55 \pm 3^{\circ} \text{C}$		30		,
H _{fe}		$I_{c} = IA V_{CE} = IO V$ $f = IOm Hz$		2	12	
V _{CE} (SAT)	3071	$I_c = 5A$ $I_b = 0.5A$	2		0.50	Vdc
V _{BE} (SAT)	3066.1	$I_{c} = 5A I_{b} = 0.5A$	2		1.50	Vdc
θ _{J-C}	3151				2.5	^{*.} C/W

TABLE III

NOTES: I.

A.

1

Unless otherwise specified all test are to be performed at a case temperature of 25 $\pm 3^{\circ}$ C.

2. Pulse Test. Pulse Width 300 ±100 microseconds, nominal ' duty cycle 2%.

size	CODE IDENT NO.	dwg no.	REV
A	70210	X521246	
SCALE	NONE	SHEET 7 OF	9

.

ŧ.

Ľ

TABLE IV

PULSE RESPONSE

PARAMETER	SYMBOL	METHOD AND CONDITIONS	LIMITS
Turn-on Time	td + tr	$\frac{\text{MIL-STD-750, Method 3251}}{\text{Vcc} = 30 \text{ vdc}}$	0.5 µsac max
Storage Time.	ts,	$\int I_{c} = 5A \text{ (nominal)}$	l.5 µsec max
Fall Time	tf	II	0.5 µsec max

TABLE V

PARAMETER VARIATIONS (1)

PARAMETER	CONDITIONS	PRE BURN-IN VALUE	POST BURN-IN VALUE	REJECTION LEVEL	UNITS
ICES	V _{CE} = 120 Vdc V _{BE} = Ø			Δ > ±0.5 μAdc	µAdc
H _{FE}	$V_{CE} \approx 2.0 \text{ Vdc}$ $\tilde{I}_{c} \approx 5.0 \text{ A}$			Δ > -20%, +30%	- -

· .

(1) Measurements at $T_c = 25^{\circ}C$ nominal

1

وفيهورون			
BIZE	CODE IDENT NO	DWG NO. 521246	REV
Α	/0210	1221246	LTR
SCALE	NONE	SHEET & OF	9
		2	يببيا اغتلوه والمستعل

.

; (;

10 roirs · 1 5 100 VOLTS ł HILL FILLE C 1.2% 111 1 昰 N.38 T, 11 . jt Tim 8 6% 1 L _ 11-14 % ę٠, 10 ÷, <u>n tit</u> 100% 10 100 1111 ++++ (----₿Ŀ ++ |-| +++| || H 1.1 4.11 ī i SALE ORERATIVE CONCLATIONS TE CYCLES NFLA d T 1 - 100 :11: 7 111 ф. 165 1. 8 9 14 6 Ŧ ·· . . FIGURE 2 70210 DWG NO. REV SIZE Α ITR SCALE NONE SHEET 9 OF 9

11

AIREBEARCH MANUFACTURING COMPANY

Ŧ;

AVL 521246-1

П

APPROVED VENDOR LIST

VEND	PART NUMBER	CODE IDENT	ENGINEERING APPROVAL	OUALITY CONTROL & PURCHASING CONCURRENCE	LET	DATE
NAME AND ADDRESS	OR DESCRIPTION	NO,			A	
SOLITRON DEVICES INC RIVIERA BEACH, FLA.	TRANSISTOR, POWER-SILICON	21845	Kupita 3-10-67	6. 7.4/67 E. Fullion	B	
	NPN	·		CI / Trickey - F	c	·
					D	
		,			E	
					F	
					G	•
					н	
				•	L	
			1	•	K	
					L	
					M	
			• • • •	•	N	2
					P	,
					R	· · · ·
		•			S	
					T	
		····			U	
					V	
		4.			w	<u> </u>
				1	Y	
					z	
PREPARED BY K. R. King		10-67		212	1	5-1

Л

	¥					•	-
				R DESCRIPTIO	EVISIONS	DATE	APPROVED
	1		A SEC	FEY OF V		8 14-67	APPROVED
	i			•	· · · · · · · · · · · · · · · · · · ·		
		٠					
		-			-		
·						•	
							1
		ŧ					
3							
Ţ			•				
a)							
T							
		ł					1
	. · · ·						Ţ
							1
- 🕌				••-	•	Ŧ	
•		•					1
							1
		•	• • • • • • • • • • • •				, -1 -
•							
]
•							-
							-
ı	· .					· •	
,	•	•		-			· -
							-
	· · · · · · · · · · · · · · · · · · ·	.•			•*	-	
	-				· · · · · · · · · · · · · · · · · · ·		
		TSP X 1/2	TAPE, GLAS	55		PF 119	
		HML 521258-1	WIRE, 20GA	A, PER MIL-W-S	03, LL 220, M	<u>- 6 // 6</u>	
	QTY ITEM CODE	PART OR IDENTIFYING NO.		NOMENCLATUR	E OR DESCRIPTION		SYM
	REQD NO. IDENT NO.	IDENTIFYING NO.	L	PARTS LIST			
		CONTR	ACT NO.				
	UNLESS OTHERWISE SPECIFIED; DIMENSIONS ARE IN INCHES. MACHINE FILLEE TADII.015030 SURFA: E ROUGHNESS PER MIL-STD-10 DURDADERDERDERG ARCS	Diff		CARRETT AIRES	A DIMEIDI DE THE BA		
	I BURK CURIRUL PER SUB3	Serie March 1 and 1 and 1	6-28-67 6-21-67			· · · · ·	
	DIMENSION LIMITS HELD AFTER PLATIN IDENT MARKING PER MCI6 DIMENSIONING AND TOL PER MIL-STO-		·	L TRANS	SFORMER	ASSY,	
	HEAT TREATMENT PROCESS	LK ALA	dend 4. 24.67	SERIES	FIELD N	10DUL	E
	HARDNI SS AND SPEC NAME AND S	SPEC APPO OC	31. Mar 1. 2427	ት 1			
		APPO CA OIN	6-29-6-1	BIZE CODE IDENT N	O. DWG NG.		
						2.47	•
···) 52/243.1 549 092 ···	$F \setminus I \setminus$			C 7021	n 321	641	
() 521243-1 543936 GD NEAT ASSY USED ON		OTHER ACTIVITY APPO		C 70210	521	P.	
	FOLDOUT	<u> </u>		SCALE ///	OLDUUT FRAM	SHEET	/ OF /

6. PARTS PROCURED BY VENDOR PART NUMBER SHALL BE PROCURED IN ACCORDANCE WITH THIS SOURCE CONTROL DRAWING

S. IDENTIFY PACKAGING WITH AIRESEARCH PART NUMBER.

- 4. ALL DESIGN AND PART NUMBER CHANGES REQUIRE AIRESEARCH ENGINEERING APPROVAL.
- 3. Parts to be permanently marked with the FOLLOWING AIRESEARCH PART NUMBER 521258-1"
- 2. PROCUREMENT PER AVL SZIZES . I. ONLY THE ITEMS LISTED ON THE ANL AND IDENTIFIED BY VENDORS NAME, ADDRESS AND PART NUMBER HAVE BEEN TEGTED AND APPROVED FOR USE IN THE END UNIT SUBSTITUTE ITEMS SHALL NOT BE USED PRIOR TO TESTING AND APPROVAL BY AIRESEARCH ENGINEERING.
- I. PART TO RECEIVE A COAT OF VENDOR PROP-RIETARY "SUPER SEAL", OVER CERAMIC BOND IMPREGNATION, OIS NOMINAL BUILD UP OVER DIMS SHOWN.
- Notes: Unless of Lepwise specified

• 1			UNLESS OTHERWISE DIMENSIONS ARE IN MACHINE FILLET RAD SURFACE ROUGHNESS BURR CONTROL PER DIMENSION LIMITS H ICENT MARKING PER DIMENSIONING AND	INCRIES. III015030 PEIR MIL-STD-10 BOISS IELD AFTER PLATING MCM
			HEAT TREATMENT	PROCESS
			HARDNESS AND SPEC	NAME AND SPEC
(1)	5:1241.1	521240-	I / I	
REQD	NEXT ASSY	USED ON	I /	
	APPLICA	TION	}	Ľ
			TOLDOUT	FRAME

TOLDOUT TRAME

ł

ITEM NO.

← ASSY

QTY REQD

Source

ð

SYM

DFT Q. C. J.

YALUC ENAN

144 Ser 71

WO a G.

APPO, T. A

AIRESEARCH /

OTHER ACTIV

n

ώπ

A.

SIGNA

321258-1

PART NO.

		· • • • • • • • • • • • • • • • • • • •						REVISIONS	DATE	
					A COUP F	REVISIO	EBCRIPTION	14Ê	DATE 6-16-6	APPROVED
•		•			•				-	1
-										
						•				
1										
ि सूर्व -	1217 e							~	••	
							·			
, ¹ ⇒ P				,				,		
	<u></u>	· · · · · · · · · · · · · · · · · · ·						1		
		l I						1		
	1.28									ï
	1.250									
	•									
						•				
~		• .		radia.	•	•		· ** ****		
		4		۲						
•		-		•	-	•			•	
		•	•	•		•				<u></u>
			•		. <i>.</i> •	٠				
			500	RCE CO	NTROL	DRA	WING	- -	•	
		·						-		
		•		·			-			
		[-]-]-	521258	I LOOKE	HEET X LENA			TUPE Z, SILE	CTRON CO	minL
		QTY REQD	EM PART NO.	SYM	DESCRIPTION		CODE IDENT		AND SPECIF	
		and the second					MATERIAL			
		In the second se second second se		SIGNATURES	DATES Pizelog		AIREBEA	RCH MANUF		
ł		NACHINE FILLET	RADII .015030 NESS PER MIL-STD-10	CHR	14° - 1° -			DIVIDION OF THE BAL	AGTURING	
		DINENSION LIMIT	ISE SPECIFIED IN INCHES. RADII .015030 NERS PER MIL-STD-10 PER SC33 PER MC14 PER MC14 ND TOL PER MIL-STD-0	YALUE ENCA	···· 6-12-67	Ł				
		HEAT TREATME		VE AULA	,	t C	ORE	, TORC	DID	
		HARDNESS AND SI		APPO A Sacurity		A CALL		• •		•
		- /		AIRESEARCH APPD		SIZE COO	E IDENT NO.			
EQD NEXT AS	1 521240.			OTHER ACTIVITY APPD		C 7	0210	X521	250	

DIDOUT FRAME

٠

11

FOLDOUT FRAME

П

		,	. •	>	•	•
AP	PROVED V	ENDO	DR LIST	+ . 1	**** **	
VENE	······································		ENGINEERING APPROVAL	QUALITY CONTROL & PURCHASING CONCURBENCE		VISION
NAME AND ADDRESS	PART NUMBER OR DESCRIPTION	CODE IDENT	OF FROMAL	PURCHASING CONCURBENCE	L.E.T.	ратк
CARSTEDT RESEARCH 2501 C. COM ST	CORE, TOROID	09797	Rudith	99 41.65	B	· · · · · · · · · · · · · · · · · · ·
LONG BEACH, CALIF	CR2-10-TM		13.7	6/6/67	Tc	
					D	• • • • • • • • • • • • • • • • • • •
					E	
					G	
					H	
					J	
					L	
					M	
					N	
				5	P	· · · · · · · · · · · · · · · · · · ·
					S	
		1			T	
					U	1 1075-yr
					W	
				ŀ		

ł

с

I

.,

ı

\$

•

1

This drawing contains designs and other information which are the property of the GARRETT CORPORATION. Except for rights expressly granted by contract to the United States Government, this drawing may not, in whole or in-part, be duplicated or disclosed or used for manufacture of the part disclosed herein, without the prior written permission of the GARRETT CORPORATION.

, REVISIONS		
DESCRIPTION	DATE	APPROVAL
SEE DRAWING REVISION NOTICE	9.29.67	Bountaine
SEE DRN	12-7-67	28-1
-	DESCRIPTION	DESCRIPTION DATE SEE DRAWING REVISION NOTICE \$29.67

-	***	, ,	· .		50 F	UK OK	?C. ?	E PR	C 0. 200		: TR REI	?0 ML	L	DR T	2A 5E	W, E	YN AV	(G 12 -	52	212	55				
	REVISION	8	Γ	A	B]	A.																_	<u> </u>	ļ
	SHEET NO.	1	2	3	4	5	6	7														Ì			:
				SIG	NAT	UR	ES		TES	-110			AIF	ES!			IN OF		GARR	ETT C	DRIC			1 PA 1	YP

t

-

ŧ

SHEET

LOB ANBELES, CALIF 67461 CHK L Spanes POWER TRANSFORMER, 6-19-67 APED RELADAT 0-27-4 3 PHASE 6-19-67 APP D ac CODE IDENT NO. DWG NO. PEV KK (-18.0) SIZE DSGN ACTIVITY 521259 B 70210 A 6.4 Amer 1.17 OTHER ACTIVITY 07 7 SHEET 🖊 SCALE NONE

のであるというである

ò

ť,

SPECIFICATION

SCOPE

I.I SCOPE. THIS SPECIFICATION COVERS THE DETAIL REQUIREMENTS FOR A 3-PHASE POWER TRANSFORMER.

1.2 RATING.

1.2.1 PRIMARY: 208 VRMS LINE-TO-LINE

1.2.2 SECONDARY: 32 VRMS LINE-TO-LINE, NO-LOAD

1.2.3 POWER: 220 VA

1.2.4 FREQUENCY: 1200 HZ

1.3 SCHEMATIC, TERMINATIONS, AND DIMENSIONS SHALL BE PER FIGURES (1) AND (2).

REQUIREMENTS

2.

. i | 1

- 2.1 <u>CONSTRUCTION</u>. CONSTRUCTION SHALL BE PER MIL-T-27B GRADE 5, CLASS T, FAMILY 02.
- 2.2 LIFE EXPECTANCY. DESIGN LIFE SHALL BE 20 YEARS MINIMUM.

2.3 <u>ENVIRONMENT</u>. THE UNIT SHALL BE DESIGNED TO OPERATE IN A VACUUM WITH ALL HEAT TRANSFER TAKING PLACE AT THE MOUNTING PLATE. THE MOUNTING BASE TEMPERATURE WILL BE MAINTAINED AT 70°C MAXIMUM.

2.4 <u>VIBRATION, HIGH FREQUENCY</u>. THE TRANSFORMER SHALL BE DESIGNED TO MEET THE HIGH FREQUENCY VIBRATION REQUIREMENTS OF MIL-T-278.

2.5 DESIGN INFORMATION.

2.5.1 CORE: CTL-22 MANUFACTURED BY CARSTEDT RESEARCH INC., LONG BEACH, CALIFORNIA, OR EQUIVALENT.

CORE SHALL BE LAPPED TO MINIMIZE AIR GAPS.

- 2.5.2 PRIMARIES: 350 ±2 TURNS HEAVY ML OR AI 220 WIRE.
- 2.5.3 SECONDARIES: 54 ±1 TURNS HEAVY ML OR AI 220 WIRE.
- 2.5.4 FLUX DENSITY (REF): 7400 GAUSS.

2.5.5 COILS USED IN ANY ONE TRANSFORMER SHALL HAVE MATCHED TURNS RATIOS IN ORDER TO AVOID FUNDAMENTAL FREQUENCY CIRCULATING CURRENTS.

SCALE NONE

CODE IDENT NO.

70210

521259

SHEET 2 OF

REV

LTR

7

ŧ.

SIZE

Α

	REBEA		UFACTURING CO. California	A			521259 SHE	EET 3
				SIZE		L	M NO.	
	THE	PROCEDU	RE DEFINED BY M TEMPERATURE LIM 20 ±5°C. AFTEN 0 THE REQUIREM	HIL-STD HIT SHAN R THIS N	-202, METH LL BE -55 Procedure	HOD 107B, ±5°C, HI(EACH TRAI	TEST CONDI Gh temperat Nsformer Sh	URE LIN ALL BE
3.	ca cu		CONDITIONING , DRMER SHIPPED 1	о тнт о	SPECIFIC	TION SHAL	L BE SUBJE	CTED TO
_			SE TH LA	COND TH	DIGITS: O DIGITS: DIGITS: E DIGITS:	DAY	-	
			2.8.2.4 TH Of	E DATE A NINE	CODE AND Digit Nu	SERIAL NU IMBER AS F	IMBER CONSIS	STING
			2.8.2.3 TH	E MANUF	ACTURER'S	IDENTIFI	CATION	•
		t i	2.8.2.2 TE	RMINAL	IDENTIFIC	ATION (SE	E DRAWING)	•
		•	2.8.2.1 TH	E AIRES	EARCH PAR	T NUMBER	(SEE GENER	AL NOTES
		2.8.2	THE MARKING	•				WING:
)		2.8.1	THE MARKING	INK SHA BY IND	LL BE TYPI EPENDENT	E MFR-73X Ink compa	, WHITE OR NY.	ORANGE,
	2.8	MARKIN	<u>a</u> .			•		•
r	·	2.7.2	INTERNAL TERM SOLDERING OPH OF THE TRANSI	RATION	IS SHALL A S AS Asso(NOT BE DAN CIATED WI	1AGEABLE BY TH THE INST	NORMAL
		2.7.1	TERMINATIONS TERMINALS, LE	ERCO TYP	PE 4045 OF	R EQUIVALI	ENT.	
	2.7	TERMIN	TIONS.					•
·		2.6.4	PAINT WITH CO E. I. DU PONT WILMINGTON, D	DE NE	OURS AND		. CK	
		2.6.3	MOUNTING BASE	BLA	CK ANODIZ	ED ALUMIN	UH.	
		2.6.2	ENCAPSULANT: MANUFACTURED GARDENA, CALI	BY EMER	SON AND C	ITH CATAL UMMINGS,	YST NO. 9,	
		2.6.1	INSULATION:	ISOMIC	A			

Ł

· r

ì

REV A LTR

7

٠,

1

.

		e	\		· · · ·		
• •							
· · ·							
4. AC	CEPTANCE	INSPECTION	•		•	•	
4.	TEST AN	ANCE INSPECTION S ND MEASUREMENTS P THODS OF MIL-T-27	ERFORMED TO THI	E APPLICABLE		• • •	
-	4.1.1	VISUAL AND MECH	ANICAL INSPECT	ION.	•	•	
	4.1.2	DIELECTRIC WITH Pressure only.	STANDING VOLTA	GE AT ATMOSPI	HERIC		
	4.1.3	INSULATION RESI 4.1.2. MINIMUM			· · · · ·		
	4.1.4	TURNS RATIO AND	POLARITY.		• · ·		
	4.1.5	<u>DC RESISTANCE</u> . Between the fol Room temperatur	LOWING TERMINA				
	•	I AND 2 2 AND	3 3 AND 1	LIMIT: 2	.5 - + .5 ohm	8	
•		4 AND 5 5 AND	6 6 AND 4	LIMIT: .0	s. = ±:.03 -oh	ma	
•	4.1.6	EXCITING CURREN BY MEANS OF THE 2 AND 3, 3 AND	TEST SETUP SH				
	70	1 2 VRMS	1.00 ± 1	1%	> TO	•••••	
		= 2 V RIAS = 20 HZ			TRANSFO		2
	•	J .		···	UNDER T	EST	
				······································	·····>	·	•
		THE VOLT METER EQUIVALENT. L		TT PACKARD M Livolts RMS		•	
4.	WITH T	THE DATA OBTAIN ED ON A SUITABLE HE PARTS. THE D ING SERIAL NUMBE	FORM AND SHIPP Ata form shall	ED TO AIRESE IDENTIFY ALL	ARCH TOGETHER Instruments	E	
· · · · ·	·		4	•	· · · ·	· 、	
	• •	•			· .	•	
•		• •			G NO 5212:	59	REV B LTR
			SCALE N/LA			4 OF	7
			A	and the statement of the statements			•

ł

I

1

¢

1

17

ı

1

I

1

1

, , I

1 •

.

•

,

• .

. .

.

.

.

•

١

•

. .

MANUFACTURING

AIRE

ŤŤ. FORM 2056 D

APPROVED VENDOR LIST

COMPANY

AVL 52125

VEND	OR ···		ENGINEERING	DUALITY CONTRC & FURCHASING CONCURPENCE	LET	/ISIONS
NAME AND ADDRESS	PART NUMBER OR DESCRIPTION	CODE IDENT NO.	APPROVAL	CONCURRENCE	A	
MAGNETIKA INC	3 PHASE	15634	Ludich	GC HIT 67	B	· · · · · · · · · · · · · · · · · · ·
SANTA MONICA. CALIF.	POWER XMFR			4. Jeans	C	
	anna ang sang ana ang sang sang sang san				D	
					E	
					F	
					G	
					H	
					J	
					K	
					L	
		•			M	
					N	
		•			P	
					R	
					5	
		•				
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
					W	
					Z	
COLORD BY K. R. Kusq	1	-14-67	- AVL		<u>, L</u>	·[

This drawing contains designs and other information which are the property of the GARRET¹ CORPORATION. Except for rights expressly granted by contract to the United States Government, this drawing may not, in whole or in part, be duplicated or disclosed or used for manufacture of the part disclosed herein, without the prior written permission of the GARRETT CORPORATION.

[REVISIONS		
LTR	DESCRIPTION	DATE	AF ROVAL
A	SEE DHAWING REVISION NOTICE	9.29.6	Boustance

SOURCE CONTROL DRAWING FOR PROCUREMENT SEE AVI 521260-1

-

SHEET	REVISION LTR	A		A	A		4									•] .	<u> </u>	T		ļ	1			
	SHEET NO.	1	2	3	4	5	6	7		<u> </u>			,		+	+	+	<u> </u>							
	•			_	NAT	URI	ES	DA	TES	512		2	<u>.</u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	[
	ł			Ki	Ku	ig		6-,	7-6	亚		2		ESI				(PU E. L		стт сі	DRPO	G C		PAN	IY
	•		CH	77. PD.F		ALAN GE Z		f	4-6		TRA	qN.	577	OR	M	FA	7.6	SEN	1.5	1	16-	5		· · ·	
				En. PDK	27	<u>EF:</u> h	L_{φ}		1-6	4	PHA	sz					<i>,</i> , ,				•	0			
			US	GN A	ctiv		5	<u> </u>	EZ.	. C.	SIZE	С	3.JC	IDEN	IT N	ð.	DWG	NQ.		_				R	EV
· ·		1		Bnx. HER	M.	VITY		6-	2724]	A		70	2	10		5	6		2	6	C	7	ן נז	
		:								S	CAL	N	ON	E					19	HE	ET	/	OF	 7	-

SPECIFICATION

I. SCOPE

I.I SCOPE. THIS SPECIFICATION COVERS THE DETAIL REQUIREMENTS FOR A 3-PHASE SENSING TRANSFORMER.

1.2 RATING.

1.2.1 PRIMARY: 208 VRMS LINE-TO-LINE

1.2.1 SECONDARY: 25 VRMS LINE-TO-NEUTRAL, NO-LOAD

1.2.3 POWER: * 4.4 VA

1.2.4 FREQUENCY: 1200 HZ

1.3 SCHEMATIC, TERMINATIONS, AND DIMENSIONS SHALL BE PER FIGURES (1) AND (2).

REQUIREMENTS

- 2.1 <u>CONSTRUCTION</u>. CONSTRUCTION SHALL BE PER MIL-T-27B GRADE 5, CLASS T, FAMILY 02.
- 2.2 LIFE EXPECTANCY. DESIGN LIFE SHALL BE 20 YEARS MINIMUM.
- 2.3 <u>ENVIRONMENT</u>. THE UNIT SHALL BE DESIGNED TO OPERATE IN A VACUUM WITH ALL HEAT TRANSFER TAKING PLACE AT THE MOUNTING PLATE. THE MOUNTING BASE TEMPERATURE WILL BE MAINTAINED AT 70°C MAXIMUM.
- 2.4 VIBRATION, HIGH FREQUENCY. THE TRANSFORMER SHALL BE DESIGNED TO MEET THE HIGH FREQUENCY VIBRATION REQUIREMENTS OF MIL-T-27B.

2.5 DESIGN INFORMATION.

2.5.1 CORE: CTL-8 MANUFACTURED BY CARSTEDT RESEARCH INC., LONG BEACH, CALIFORNIA, OR EQUIVALENT.

CORE SHALL BE LAPPED TO MINIMIZE AIR GAPS.

- 2.5.2 PRIMARIES: 1900 ±20 TURNS HEAVY ML OR AI 220 WIRE.
- 2.5.3 SECONDARIES: 229 ±2 TURNS HEAVY ML OR AI 220 WIRE.
- 2.5.4 FLUX DENSITY (REF): 7400 GAUSS.

SIZE A	CODE IDENT NO.	OWG NO. 521260	
SCALE	NONE	SHEET 2 OF	7

Z ,	LOS		CALIFORNIA	SCAL		t		B OF
	BEAR		UFACTURING C	io. A	TODE IDENT P	NO. DWG NO.	521260	F
PI EX	ROCEI XCEP	DURE DEF T LOW TE BE +120	INED BY HIL MPERATURE L 5 45°C. AFT	-STD-202, IMIT SHALI ER THIS PR	METHOD 107B.	, TEST COND C, HIGH TEM H TRANSFORM	ER SHALL BE	
3. Ri	ELIAI	BILITY C	ONDITIONING	`			-	
		1		THIRD TWO	DIGITS: O DIGITS: DIGITS: E DIGITS:	YEAR MONTH DAY SERIAL N	UMBER	• • •
			2.8.2.4	A NINE DI	GIT NUMBER A	S FOLLOWS:	CONSISTING	OF ·
			2.8.2.3	THE MANUE	ACTURER'S ID	ENTIFICATI	DN	
		I	2.8.2.2	TERMINAL	IDENTIFICATI	ON (SEE DR	WING)	
		. !	2.8.2.1	THE AIRES	EARCH PART N	UMBER (SEE	GENERAL NOT	ES)
		2.8.2	THE MARKIN	G SHALL I	NCLUDE AS A	MINIMUM THE	E FOLLOWING:	, '
		2.8.1	THE MARKIN MANUFACTUR	G INK SHA Ed by Ind	LL BE TYPE M Ependent Ink	FR-73X, WHI COMPANY.	TE OR ORANGE	E ,
2	. 8	MARKIN						
		2.7.2 •	INTERNAL T SOLDERING OF THE TRA	OPERATION	IS SHALL NOT 5 AS Associa" -	BE DAMAGEA Ted with th	ABLE BY NORMA IE INSTALLATI	L. ION
	٠	2.7.1	TERMINALS,	LERCO TY	PE 5010 OR E	QUIVALENT.	URRET SOLDER	
2	• 7	TERMINA			•		·····	
		2.6.4	PAINT WITH E. I. DU PO WILMINGTON	ONT DE NEM	OXY ENAMEL : Iours and con	585 BLACK 1PANY,		
		2.6.3	MOUNTING BA	ASE: BLA	CK ANODIZED	ALUMINUM.		•
		2.6.2	ENCAPSULANT MANUFACTURE GARDENA, CA	ED BY EMER	ST 1090 WITH Son and cump	I CATALYST	NO. 9,	,
		2.6.1	INSULATION	ISOMIC	A.			

.

ļ

Î

1

Ż

: :

4. ACCEPTANCE INSPECTION

- 4.1 ACCEPTANCE INSPECTION SHALL INCLUDE AS A MINIMUM THE FOLLOWING TEST. AND MEASUREMENTS PERFORMED TO THE APPLICABLE REQUIREMENTS AND METHODS OF MIL-T-27B EXCEPT AS NOTED HEREIN.
 - 4.1.1 VISUAL AND MECHANICAL INSPECTION.
 - 4.1.2 DIELECTRIC WITHSTANDING VOLTAGE AT ATMOSPHERIC PRESSURE ONLY.
 - 4.1.3 INSULATION RESISTANCE FOLLOWING PROCEDURE OF PARAGRAPH 4.1.2. MINIMUM RESISTANCE 10,000 MEGOHMS.
 - 4.1.4 TURNS RATIO AND POLARITY.
 - 4.1.5 DC RESISTANCE. DC RESISTANCE SHALL BE MEASURED BETWEEN THE FOLLOWING TERMINAL PAIRS AT AMBIENT ROOM TEMPERATURE.
 - | AND 2 2 AND 3 3 AND | LIMIT: 180 = 30 ohms
 - 4 AND 5 5 AND 6 6 AND 4 LIMIT: 18 ±3 OHMS

4.1.6 <u>EXCITING CURRENT</u>. THE EXCITING CURRENT SHALL BE MEASURED BY MEANS OF THE TEST SETUP SHOWN BETWEEN TERMINALS 1 AND 2, 2 AND 3, 3 AND 1.

THE VOLT METER SHALL BE HEWLETT PACKARD MODEL 400 H OR EQUIVALENT. LIMIT: 10 MILLIVOLTS RMS MAXIMUM.

4.2 DATA. THE DATA OBTAINED FROM THE TEST OF PARAGRAPH 4.1 SHALL BE RECORDED ON A SUITABLE FORM AND SHIPPED TO AIRESEARCH TOGETHER WITH THE PARTS. THE DATA FORM SHALL IDENTIFY ALL INSTRUMENTS INCLUDING SERIAL NUMBERS AND THE NEXT CALIBRATION DUE DATE.

		code iden 702	T NO.	DWG NO. 5212.50	REV A LTR
	SCALE	NONE		SHEET 4 OF	7

5. GENERAL NOTES

- 5.1 <u>PROCUREMENT PER AVL 521260-1</u>. ONLY THE ITEMS LISTED ON THE AVL . YD IDENTIFIED BY VENDOR'S NAME, ADDRESS, AND PART NUMBER HAVE BEEN TESTED AND APPROVED FOR USE IN THE END ITEM. SUBSTITUTE ITEMS SHALL NOT BE USED PRIOR TO TESTING AND APPROVAL BY AIRESEARCH ENGINEERING.
- 5.2 ALL DESIGN AND PART NUMBER CHANGES REQUIRE AIRESEARCH ENGINEERING APPROVAL.
- 5.3 IDENTIFY PACKAGING WITH AIRESEARCH PART NUMBER 521260-1.
- 5.4 PARTS PROCURED BY VENDOR PART NUMBER SHALL BE PROCURED IN ACCORDANCE WITH THIS SOURCE CONTROL DRAWING.

p

-

j

6

REV

LTR

7.

5212.60

SHEET 5 OF

CODE IDENT NO.

70210

SIZE

Α

SCALE NONE.

UFACTURING COMPANY AIRESE

2858.0

. . . .

÷.

FÓRM

AVL 52/260-1

APPROVED VENDOR LIST

VEN	Chicking China	QUALITY	REVISIONS				
NAME AND ADDRESS	PART NUMBER OR DESCRIPTION	CODE IDENT NO.	ENGINEERING APPROVAL	OUALITY CONTROL & PURCHASING CONCURRENCE	LET	л· у	
MAGNETIKA INC SANTA MONICA,	3 PHASE SENSING XMFR	15634	Ruchich	6.0 119/69	A B		
CALIF	01999			41. Later 10. 6/30/47	C		
					D		
					E		
			and the second sec		F		
					G		
					Н		
					L		
					κ		
					L		
					M		
					N		
					Ρ		
					R		
					S		
					T		
					U		
					V		
					W		
					Y		
					Z		
PREPARED BY K. King	DATE 6-1	9-67	AVL 🔄			- 1	

"

FOLDOUT FRAME

ų

FOLDOUT FRAME

 Γ_{2}

 \mathbf{u}

		- I	1	(- i		1		1 1				1 1					
					REC	<u>7</u>	ITEM	PART NO.	SYM	D	SCRIPTION		CODE	MAT	TRIAL AND	SPECIFICATION	ZONE	
		\square	-	Ļ 	+	+	-	-ASSY	<u>·</u>			LIS	T OF MATERIA	L				
		I	ļ		_						DATES		AIRESEARCI	HMANUF		COMPANY OF		
			ł		_				CHR L	1211 4	2 16 67	DING 1			PHOENIS, APO	IONA		
					_		25/*		MATL STREE				C E A I	έc	OTOR	SET		Α
				HEA	NT T	REA	TMENT	PROCESS	ALINO				MATCI	•		52 7		
LESS OTHERWISE SPEC					P.M. 198				APO -	ACTIVITY APPD,	-4-27	7 77 3 9728		DWE HO.		<u> </u>		
HIS DRAWING, FABRIC INS ITEM SHALL BE IN AC ITH AIRESEARCH SPEC	COR	DAN	RÆ						0-	1 Elliot	2.16.67	C	99193		6996	552		
S535, STANDARD DRA						Ţ			OTHER			SCAL	LE 2/,	WT		SHEET /	OF /	
<u> </u>		نىيىيەن.						IUL ERAX-	2						1	STR. OUL 1	ΛÁ.	

APS-5286-R APPENDIX III

(6 pages)

APPENDIX III

1

÷,

:

•

.

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

 \cdot

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

UNBALANCED MAGNETIC FORCES

The two auxiliary and main flux gaps in the alternator are defined as 0.020 in. The maximum electromagnetic unbalance force occurs the instant that the displacement of the rotor relative to the stator is unidirectional and maximum. Table I presents the most recent calculations of the electromagnetic forces. An assumed radial displacement of 0.002 in. (10 percent of the gap) in each gap was used in the calculation for the various operating conditions. Speed effects were neglected that would substantially reduce the forces described herein. A survey of these conditions indicates that the no-load, 1.3 p.u.V condition can be chosen as the "worst-case" for evaluation purposes, as the 21.3-KVA overload, 1.0-p.u.V condition neglects to consider saturation, which tends to diminish the load.

TABLE I

Load Condition	F _{ss} , ibs.	
(rotor at standstill)	Each Auxiliary Gap	Main Gap
No-load, 1.3 p.u.V	13.4	8.9 3
No-load, 1.0 p.u.V	7.0	5.06
12.6 KVA, full-load, 1.0 p.u.V	12.1	2.94
21.3 KVA, overload, 1.0 p.u.V	19.8	2.88

With the rotational effect of the alternator rotor on the flux distribution taken into account, the magnetic force at either of the auxiliary gaps or the main gap, for small displacements of the magnetic or shaft centers, can be defined by the following equation:

$$F = \left[\frac{1}{1 + j}\right] \frac{F_{ss}dg}{0.002} \text{ lbs.}$$

where

- $\omega = \frac{2\pi N}{60} = 3.768 \text{ rad/sec.}$
- t = time constant of the magnetic circuit, sec.
- $\Delta g = radial displacement of "center," in.$
- F_{ss} = the standstill maximum unbalance force with 0.002-in. radial displacement, lbs.

Since the time-constant of the yoke iron-flux change is believed to be typically in the range of 1 to 10 msec, the calculated forces for a stationary rotor, as in Table II, are thus modified by rotation, and Table II defines the results of varying the time constant for the chosen worst-case condition of a radial displacement of 0.002 in.

TABLE II

EFFECT OF TIME CONSTANT ON ELECTROMOGNETIC FORCES

t, <u>sec.</u>	$\left[\frac{1}{1+j\ldots t}\right]$	AF*, 155.
0.010	0.0258	0.923
0.005	0.0507	1.810
0.002	0.1170	4.170
0.001	0.2100	7.480

*Ease value for AF (standstill) = 35.73 lbs. total.

Therefore, ΔF represents the total unbalanced electromagnetic forces on the rotor assembly to be shared by the bearings. These forces are effective in both the unidirectional displacement case and in the rotating case where the rotor appears to have a lobing action with respect to the stator.

With reference to Figure 1, the conditions creating the overall worst-case electromagnetic forces may be established for machine operation at full speed (36,000 rpm). Both fixed and synchronous displacements of the rotor with respect to the stator must be considered, as follows:

- (a) Fixed displacement of the rotor Z-axis in the Y-axis direction can be represented by two conditions if it is assumed that a "perfect" rotor is available--i.e., the mass center and magnetic center coincide with the geometric center.
 - (1) A physical displacement of the perfect rotor axis to create a magnetic eccentricity \(\Delta\)g between the rotor magnetic center, \(\Delta\), and the stator magnetic center, \(\Delta\), as shown in Figure 1(b).
 - (2) A construction of the stator assembly such that its magnetic center, 0, is eccentric Δg from the rotor magnetic center, A, of a perfect rotor, as shown in Figure 1(c).
- (b) Synchronous displacement of the rotor in an orbit about its
 Z-axis can also be represented by two conditions in the rotor:
 - (1) A rotor having both mass and geometric centers coincident but a displaced magnetic center.
 - (2) A rotor having coincident magnetic and geometric centers but with a displaced mass center.

FIGURE 1

LOCATION OF ELECTROMAGNETIC CENTERS AND DIRECTION OF FORCES

A review of these four conditions shows that (a)(1) is of particular importance in the machine where translation of the rotor is to be expected due to the bearing mounting system. Condition (a)(2) was discounted as having an effect due to the general accuracy of construction of the stator. Both Conditions (b)(1) and (2) should be presented. Thus, for the worst-case condition, the following displacements or eccentricities were presented:

Condition	(a) (1)	-	0.002 in.
Condition	(b)(1)	-	0.0002 in.
Condition	(b) (2)	~	0.000: in.

Since 0.005-sec. is considered to more nearly represent the timeconstant for flux change in solid iron, the forces for the two types c our gaps were obtained for various radial dispreceests, ig, as

> APS-3286-R APPHIDIX III Page 4

ļ

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

shown in Figure 2. Utilization of this data, with the application of a factor of 2 for a possible step-change in flux (an extremely transient condition), was defined for each journal bearing:

- (a) A unidirectional load of 3.62 lbs. must be supported.
- (b) A rotational load due to a total eccentricity of 0.0003 in. at a constant value of 0.27 lb. must also be supported.

An angular displacement between the direction of displacement and direction of application of these forces is a function of the location of the eddy currents being generated in the alternator components. The force shifts ahead of the member containing the eddy currents-i.e., in the direction of the relative motion, or that of the moving member. The following describes the angular displacements:

Condition	Location of Eddy Currents	Force Action
Fixed displacement	Rotor	Leads the rotor
Synchronous displacement	Stator	Lags the rotor

The angular displacement depends upon the impedance of the conductor where, in the extreme, the superconductor tends toward 0 deg, and as damping is added, it approaches 90 deg.

For the purposes of the bearing study, experience indicates that an estimated value of 15 deg would be representative and was thus applied to the force for the fixed-displacement case. However, 0 deg was applied to the synchronous displacement case since any force lagging the rotor would tend to improve the bearing stability and thus reduce the worst-case condition.

1)

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

FIGURE 2

APS-5286-R APPENDIX III Page 6

n

L

į

1

ļ

:

1

, i

Ì

, , , 11

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GAMPENT LOWPORTON

APPELDIX IV

VOLTAGE REGULATOR/EXCITER OPTIONAL WIRING PROCIDURE

> APS-5286-R APPENDIX IV

-						;										
т. М	U [/]		•• •				*		•	•	• • •					
		· · · · · · · · · · · · · · · · · · ·	,						RE	VISIO	NS		a			
		ي. ج		ĻTŔ	•ر .		🆌 D	ESCRI	PTIO	N	4	· · ·	DA		' APP(F	ROVAL
		۰. ف	· ·													
						<u>i</u>			•		``````````````````````````````````````					
•								· · · ·	^{من م} ر بندر				:			
			- -				- -									
												-1.				1. "e
											~ 4)		a			
			•				ίς. L				• •		• •		•	
												•				
	1°).													(`		
														•	۱ ۲	
						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1										,
		8° . . •••				• • •							5 * (`			
	. 6	6 4									-					
														and the second se		
·		•													an a	
	N. C.						.:	•			`± ₹ &					
			•			n a'	20	1	1							. *
					Nh	5	3-9	712	. /					4		
			· •		J. Marcon	and no source		ہ د .			•	A CONTRACTOR		\$° -		1
-		÷						·	k.						. b .	
;	SULLEY						. /				-					
	SHEET	SHEET							-				ابيد .			
	ی روست د می و		со	NTRACT	NO.						· 0					
		DF	V D U	· /		7/		2 ^	RESE		ION OF	THE BA		IRPORA		PANY
		СН	C.R. Ka LC Ju	x. Oce	, IG	12/67	00	TIO	That		,					
		1	72.	-li f	~ 17	15		r I OI	VAL		RII NT	70 70-	FRC	ICE I TE		<Ζ,
			ESEARCH I		10	11.17	SIZE			DC.			EXCI	12		M .laV
			hards	wel.	je	24,6							30)/	· ·	
		OT	HER ACTIVI	TY APPD	ſ		SCAL						SHE		/	LTR
	•				• /		JUAL		VC							
					1		<i>i</i> ^									

OPTIONAL WIRING ARRANGEMENT FOR VARIOUS FUNCTIONS MAY BE ACCOMPLISHED BY JUMPER WIRING THE EQUIPMENT IN THE FOLLOWING MANNER. THE JUMPER WIRES SPECIFIED IN THE FOLLOWING CONFIGURATIONS ARE FOUND IN THE PARTS LIST OF DRAWING NUMBER 543937, REGULATOR-EXCITOR ASSY.

1 3

1 . . L

SERIES FIELD MODULE BYPASSED CONFIGURATION. THIS CONFIGURATION IS USED WHEN THE SERIES FIELD MODULE IS REMOVED FROM THE VRE CHASSIS AND LOCATED ELSEWHERE, SAY AT THE ALJERNATOR. 1.1 REMOVE SERIES FIELD MODULE CONNECTION BUT NOT J7.

1.2 INSTALL JUMPER WIRING PER FOLLOWING TABULATION.

WIRE NUMBER	FROM	TO
521300-1	TBI-E3	TBI-F3
521300-2	TBI-Ej	TBI-Fj
521300-3	TBI-E16	TBI-F16
	521300-1 521300-2	521300-1 TBI-E3 521300-2 TBI-Ej

1.3 REVERSE PROCEDURE TO RECONNECT SERIES FIELD MODULE.

1.4 IN CASES WHERE JUMPER WIRES ARE NOT AVAILABLE, THE ALTERNATE METHOD MAY BE USED.

1.4.1 REMOVE WIRE FROM TBI-Fa AND RECONNECT TO TBI-E3.

1.4.2 REMOVE WIRE FROM TBI-F8 AND RECONNECT TO TBI-F

1.4.3 REMOVE WIRE FROM TBI-Fr AND RECONNECT TO TBI-E16.

1.4.4 REVERSE PROCEDURE TO RECONNECT SERIES FIELD MODULE.

1.1243

SCALE

2. VOLTAGE SENSE CIRCUIT CONNECTED FOR EXTERNAL SENSE. THIS CONFIGURATION IS USEFUL IF THE VRE IS LOCATED REMOTELY FROM THE DESIRED POINT OF

600 E IDANI NO

NONE

12

SHEET

AIREBEARCH MANUFACTURING CO. Los Angeles, California

REGULATION IN THE POWER SYSTEM. DISCONNECT THE LEADS SPECIFIED IN THE FOLLOWING TABULATION. 2.1 6 COLOR Τ0 SIZE FROM TB2-Eb TBI-Fd. 16 GRN BLUE TBI-F11 16 TB2-Ed ORG TBI-Fw 16

f = I ,

TB2-Eg

• 1

USING THE JUMPER WIRES SHOWN IN THE PARTS LIST OF DRWG. NO. 2.2 MAKE THE CONNECTIONS PER THE FOLLOWING TABULATION. 543937

WIRE NUMBER	FROM	TO
521300-4	TB2-Eb	• TB2-Fb
521300-5	TB2-Ed	TB2-Fd
52,1300-6	TB2-Eg	TB2-Fg

NO ALTERNATE WIRING PLAN IS SUPPLIED OR ADVISED. 2.3

TO DISCONNECT EXTERNAL SENSE REVERSE THIS PROCEDURE. 2.4

CONTROL FIELD POWER CIRCUIT CONNECTED FOR EXTERNAL POWER. . THIS 3. CONFIGURATION IS NECESSARY IF THE MAIN POWER LINES ARE NOT FED THROUGH THE WRE. PARTICULARLY USEFUL IN COMBINATION WITH OPTION NUMBER 1.

3.1 DISCONNECT THE LEADS SPECIFIED IN THE FOLLOWING TABULATION.

-124:

SCALE

CODE IDENT NO.

NONE

DWG NO.

SHEET

:leV

LTR

OF

5

ARCH MANUFACTURING CO. ANGELES GALIFORNIA

 ▼ ↓ 			2	₩.			
, , <u>, , , , , , , , , , , , , , , , , </u>	• · · · · ·						,
	FROM	то	SIZĘ	COLOR	·		n N National Antonia
	ĴŤB2−Ej	TBI-F6	16	GRN	9 ⁻⁹⁻¹	• · · · ·	N
! • •	TB2-En	TBI-Fn	16	BLUE			
• •	TB2-Er	TBI-F19	16	ORG	- L	ب بر	
	. <i>I</i> .					· · · · · · · · · · · · · · · · · · ·	

3.2 USING THE JUMPER WIRES SHOWN IN THE PARTS LIST OF DRWG. NO.

543937. MAKE THE CONNECTIONS PER THE FOLLOWING TABULATION.

	×	2
WIRE NUMBER	FROM	то
521300-4	TB2-Ej	TB2-Fj
521300-5 ⁻	TB2-En	石B2-Fn
521300-6	TB2-Er	TB2-Fr

3.3 NO ALTERNATE WIRING PLAN IS SUPPLIED OR ADVISED.

3.4 TO DISCONNECT EXTERNAL POWER REVERSE THIS PROCEDURE

SCALE NONE

AIREBEARCH MANUFACTURING CO.

LOS ANGELES. CALIFORNIA

DWG NO. 521301

SHEET 4

LTR

4

OF

,

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

APPENDIX V

TRANSIENT ANALYSIS AND VOLTAGE REGULATION OF A SYNCHRONOUS GENERATOR

AIRESEARCH REPORT 66-1300

(38 pages)

APS-5286-R APPENDIX V

n

ł

ą

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

1. Entroduction

This report attempts to outline a method to analyze the transient behaviour of a synchronous generator.

The two-reactance method is used in this analysis. The armature voltage, current and flux equations are first derived. A separate set of equations is given for each of the two axes - direct and quadrature.

The damper circuit at the rotor is next taken into consideration. The current equations for the damper and field circuits are then obtained. This completes the set of equations, the solutions of which describe the steady-state as well as the transient behaviour of a synchronous generator.

This set of equations is then applied to a voltage regulating system. Due to the presence of two fields (series and shunt), the field equation is modified to take the effect of both fields into consideration. The final result is presented in a block diagram which is readily programmed for an analog computer.

2. Machine Equations Relating Rotor and Stator Circuits

The essential finitures of a three-phase synchronous machine from the analytical viewpoint are shown in Figure 1A. On the stator are three distributed windings A, B, and C, one for each phase. They are symbolized by the correspondingly tabled concentrated coils, the magnetic axes of the phase windings coinciding with the coil axes.

The rotor, shown in the denser, can two axes of symmetry, the polar, or direct, axis done the interpolar, or quadrature axis q. However, the stater has three axes of spemetry, one for each phase. The analysis is greatly sloplified if the three-phase carrent, voltage and flux linkage of the stater can be transformed into the done graxis components. This technique is sometimes referred to us the Blondel Two-reactance method and is given in Appendix A. The two-axes equivalence of Figure 1A is shown in Figure 18.

For any one winding as shown in Figure 2, the relationship of the induced voltage c_{i} and current i is:

$$e_{i} = -iR + p\lambda \tag{1}$$

where

- R = winding resistance
- $\Lambda = 11ux$ lickages with the winding
- provident and conduct doit

AIREBEARCH MANUFACTURING COMPARED OF ARIZONA A DIVISION OF THE BARRY COURSESSON

Applying Equation 1 to the three phases A, B and C, we have

$$E_{\Lambda} = -1_{\Lambda}R_{\alpha} + p\lambda_{\Lambda}$$
(2)

$$E_{B} = -I_{B}R_{a} + p\lambda_{B}$$
(3)

$$E_{C} = -I_{C}R_{a} + p\lambda_{C}$$
(4)

The generator condition is applied to Equations 2, 3 and 4, i.e., armature voltage is the generated voltage and armature current is out of the winding and produces negative armature and field linkages.

From Appendix I using transformation matrix (T), we obtain

$$E_{ad} = 2/3 \left[E_{A} \cos\theta + E_{B} \cos(\theta - 2\pi/3) + E_{C} \cos(\theta - 4\pi/3) \right]$$
(5)

Substituting Equations 2, 3 and 4 into Equation 5 and rearranging, we have

$$E_{ad} = -R_{a} \frac{2}{3} \left[I_{a} \cos\theta + I_{B} \cos(\theta - 2\pi/3) + I_{C} \cos(\theta - 4\pi/3) \right]$$

+ $\frac{2}{3} \left[p\lambda_{A} \cos\theta + p\lambda_{B} \cos(\theta - 2\pi/3) + p\lambda_{C} \cos(\theta - 4\pi/3) \right]$ (6)
= $-I_{ad} R_{a} + f(p\lambda)$ (6a)

where f (p λ) is the second part of Equation 6.

By the same transformation matrix (4),

$$\lambda_{\rm ad} = \frac{2}{3} \left[\lambda_{\rm A} \cos\theta + \lambda_{\rm B} \cos(\theta - 2\pi/3) + \lambda_{\rm C} \cos(\theta - 4\pi/3) \right]$$
$$\lambda_{\rm ad} = -\frac{2}{3} \left[\lambda_{\rm A} \sin\theta + \lambda_{\rm B} \sin(\theta - 2\pi/3) + \lambda_{\rm C} \sin(\theta - 4\pi/3) \right]$$
(7)

The time derivative of $\lambda_{\rm ad}$ is

$$p\lambda_{ad} = \frac{2}{3} \left[p\lambda_{A} \cos\theta + p\lambda_{B} \cos(\theta - 2\pi/3) + p\lambda_{C} \cos(\theta - 4\pi/3) \right]$$
$$-p\theta \left(\frac{2}{3} \right) \left[\lambda_{A} \sin\theta + \lambda_{B} \sin(\theta - 2\pi/3) + \lambda_{C} \sin(\theta - 4\pi/3) \right]$$
(8)
$$= f(p\lambda) + \omega \lambda_{A} q$$
(8a)

where

 $\omega = p\theta = speed of generator.$

From Equation 8a we can solve for f(p)) and putting it into Equation 6a we have

$$E_{ad} = -I_{ad}R_{a} + p\lambda_{ad} - \omega\lambda_{aq}$$
(9)

Proceeding in the same manner with E_{aq} , we have

$$E_{aq} = -I_{aq}R_{a} + p\lambda_{aq} + \omega\lambda_{ad}$$
(10)

To complete the set, we have

$$E_{O} = -T_{O}R_{A} + p\lambda_{O}$$
(11)
APS-5286-R
APPENDIX V
Page 4

 Γ

where

$$E_{ad}$$
, E_{aq} = Direct and quad axis armature voltage
 L_{ad} , L_{aq} = Direct and quad axis armature current
 λ_{ad} , λ_{aq} = Direct and quad axis stator and rotor mutual flux
 L_{ad} , λ_{aq} = Armature resistance

 $\omega \approx$ Speed of generator

Equations 10 and 11 are illustrated by Figure 3 below.

 $\lambda_{a1} =$ Leakage flux linkage (assumed the same magnitude in both axis)

Figure 3

APS-5286-R APPENDIX V Page 5

Г

The terms $p\lambda_{ad}$ and $p\lambda_{aq}$ are transformer voltages and ineigenerally small compared with speed voltages $\omega\lambda_{aq}$ and $\omega\lambda_{ad}$. (For a petter understanding of the speed voltage, see page 62 of "Power Typeer, Stability, Vol. III," by Edward Kimbark, John Wiley & Sons, The A. Thus Equations 9 and 10 can be approximated as

$$E_{ad} \approx -T_{ad}R_{a} - \omega\lambda_{aq}$$
(12)

$$E_{aq} \approx -i_{aq} R_{a} + \omega \lambda_{ad}$$
(13)

Ti the speed is constant, a set p.u. (per unit).

By the two-reactance theory,

$$E_a = E_{aq} - jE_{ad} = \sqrt{E_{aq}^2 + E_{ad}^2}$$
(14)

$$\mathbf{I}_{a} = \mathbf{I}_{aq} - \mathbf{j}\mathbf{I}_{ad} = \sqrt{\mathbf{I}_{aq}^{2} + \mathbf{I}_{ad}^{2}}$$
(15)

where

$$E_a =$$
 Generator armature (terminal) voltage
 $T_a =$ Generator armature current
 $j = \sqrt{-1} =$ imaginary axis unity vector

Equations 14 and 15 are so written to be consistent with the convention used in Figure 1B where the two axes are rotated through 90 deg.

From Equations 12, 13 and Figure 3 the total induced voltage E_{j} is E_{j} = Terminal voltage + $I_{a}R_{a}$ voltage drop + armature reaction voltage + voltage due to armature leakage.

then

$$E_{id} = E_{ad} + I_{ad}R_a + I_{aq}X_{aq} + I_{aq}X_{a1}$$
(16)

$$E_{iq} = E_{aq} + I_{aq}R_a + I_{ad}X_{ad} + I_{ad}X_{al}$$
(17)

where

$$X_{al}$$
 = Armature leakage reactance due to λ_{al}

X_{ad}, X_{aq} = Direct and quad-axis mutual reactance between stator and rotor

 E_{id} , X_{iq} = Direct and quad axis induced voltage

From Appendix II,

$$\mathbf{x}_{d} = \mathbf{x}_{a1} + \mathbf{x}_{ad} \tag{18}$$

$$X_{q} = X_{a1} + X_{aq}$$
(19)

where

 X_{d} , X_{q} = Direct and quad axis synchronous reactance.

11

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

Since there is no applied voltage in the q-axis of the field, $E_{id} = 0$. Utilizing Equations 18 and 19, Equations 16 and 17 can be expressed as

$$E_{id} = E_{ad} + I_{ad}R_a + I_{aq}X_q = 0$$
 (20)

$$E_{iq} = E_{aq} + I_{aq}R_{a} + I_{ad}X_{d}$$
(21)

The phasor diagram of Equations 20 and 21 is shown in Figure 4.

Figure 4

3. Machine Equations Relating Field, Armature and Damper Circuits

In a salient pole synchronous machine, generally there is a damper, or amortisseur, circuit on rotor to produce torque which helps to damp out oscillations of the rotor about its equilibrium position. It is formed by bars or cage windings embedded in the pole faces and connected at their ends by short-circuiting end rings.

The damper circuit has its own resistance, self and mutual inductance and should be treated as one unit when we consider its effect on the current-voltage performance of the machine following a disturbance.

In the machine transient period, since the damper circuit has a higher resistance to inductance ratio, the damper current has a smaller decay time constant; hence its effect on the induced voltage is shorter. The short time effect of the damper current is called the subtransient period and the longer time effect of the field current is called the transient period. Hence the transient variables that include the effect of the damper circuit have the subscript D and are called the subtransient variables.

In a round rotor synchronous machine, which is the type described in this report, there is no damper circuit. However, the transient envelope of the induced voltage is not in a pure exponential decay form due to the multiple flux paths between the N-S poles in the solid rotor. But this envelope can be approximated to have two time constants, T_1 and T_2 .

(assume a load is applied)

Figure 5

$$f(t) \cong (B - C)^{-t/T} 1 + (A - B) e^{-t/T} 2 + C$$
 (22)

DRE

We can see that $T_2 > T_1$. Like the salient pole machine, we can refer the first term of equation 22 to the effect of the transient circuit and refer the second term equivalent to the effect of a damper circuit. Thus T_1 is called the transient time constant and T_2 the subtransient time constants. Figure 3 is then modified to Figure 6 to include the damper circuit.

Let us first consider the field circuit by itself. The equivalent circuit is shown below in Figure 7.

Figure 7

4

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE CARE OF CHERACOL

The field current, L_{\pm} , is given by

$$I_{f} = \frac{R_{f}}{R_{f} + pL_{f}}$$
(23)

where

 $E_{f} \approx$ Field applied voltage $R_{f} \approx$ Field resistance $L_{f} \approx$ Field inductance

Equation 23 can be re-arranged as

$$I_{f} = \frac{1}{R_{f}} \frac{E_{f}}{(1 + p L_{f}/R_{f})}$$

$$\approx \frac{E_{f}}{1 + pT}$$
(24)*

where

$$T = L_{f}/R_{f}$$
$$R_{f} = 1 \text{ p.u.}$$

Applying equation 24 to the d and q-axis, we have

$$T_{fd} = \frac{E_{fd}}{1 + pT_{do}}$$
(25)*

*The asterisk denotes the equation is valid only in the por unit system

APS-5	5286-	·R
APPEN	DIX	V
Page	11	

GARRETT

AIREBEARDH MANUFACTURING COMPANY OF ARIZONA

$$1_{fig} = \frac{fig}{1 + p_{ij}}$$
 (26)*

where

The induced collage in the dependence of the field and damper current is

$$\mathbf{E}_{1,3} = \mathbf{E}_{1,3} \mathbf{E}_{0} + \mathbf{E}_{1,3} \mathbf{R}_{0}$$
 (27)

$$\Gamma_{\rm d} = \Gamma_{\rm bg} \Gamma_{\rm b} = \Gamma_{\rm bg} \Gamma_{\rm b} \qquad (28)$$

where

 I_{pd} , I_{bq} = Direct and quad-oxis subtransiont current I_{fd} , I_{fq} = Direct and quad-oxis field current R_{p} = Damper circuit resistance

The negative sign in equation 28 is chosen to comply with the concept that positive field current induces needuce voltage.

Since R_D and Γ_{\pm} are 1 p.u. and equating with equations 20 and 21, we have:

$$\mathbf{E}_{ad} + \mathbf{I}_{ad}\mathbf{R}_{a} + \mathbf{I}_{aq}\mathbf{X}_{q} = \mathbf{I}_{bq} + \mathbf{I}_{fq}$$
(29)*

*The asterisk denotes the equation is valid only by the per unit system

APS-5286	-R
APPENDIX	V
Poge 12	

Ì

11

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

$$E_{aq} + I_{aq}R_{a} + I_{ad}X_{d} = I_{bd} - I_{fd}$$
(30)*

From equations 12 and 13

$$\omega \lambda_{ad} = E_{aq} + I_{aq}R_{a}$$
(31)

$$-\omega \lambda_{aq} = L_{ad} + L_{ad}^{R}$$
 (32)

Since the field quadrature path has a very high impedance I_{fq} is small. Thus

$$\mathbb{I}_{\text{fg}} \cong 0 \tag{33}$$

To simplify the analysis, the field quadrature circuit is completely eliminated.

Substituting equations 31 and 32 into equations 29 and 30 and assuming equation 33 is valid, we have

 $-\omega\lambda_{aq} + I_{aq}X_{q} \cong I_{Dq}$ (34)*

$$\omega \lambda_{ad} + I_{ad} X_{d} = I_{Dd} - I_{fd}$$
(35)*

Equations 34 and 35 relate the damper, field and armature currents with the armature mutual flux linkage.

Equation 24 can be written as

$$E_{fd} = I_{fd} (1 + pT_{do}^{\dagger})$$
 (36)*

*The asterisk denotes the equation is valid only in the per unit system

APS-5	5286-	-R
APPEN	DIX	V
Page	13	

4

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

If the effects of the armature and damper circuits are included, equation 36 is then

$$E_{fd} - M_{af} p I_{ad} - M_{Df} p I_{Dd} = I_{fd} (1 + p T_{do}^{\dagger})$$
(37)*

where

M_{af} = Mutual inductance between armature and field
M_{Df} = Mutual inductance between damper and field
Equation 37 can be re-arranged as:

$$\frac{E_{fd} - I_{fd}}{PT_{do}'} = I_{fd} + \begin{pmatrix} M_{af} \\ \overline{T_{do}'} \end{pmatrix} I_{ad} + \begin{pmatrix} M_{Df} \\ \overline{T_{do}'} \end{pmatrix} I_{Dd}$$
(38)*

The coefficients of I_{ad} and I_{Dd} are evaluated by a separate method given in the next section. Equation 38 simply demonstrates the form of field current equation to be expected.

4. Evaluation of Field, Damper and Armature Currents

Since there is no applied voltage in the field quadrature, damper direct and quadrature circuits,

$$E_{fg} = E_{Dd} = E_{Dg} = 0$$
 (39)

The set of equations describing the four circuits (1) to (4) in Figure 6 is then

$$E_{fd} = I_{fd} + p\lambda_{fd}$$
(40)*

*The asterisk denotes the equation is valid only in the per unit system

```
APS-5286-R
APPENDIX V
Page 14
```

٠,

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARNETT CORPORATION.

$$0 = I_{fq} + p\lambda_{fq}$$
(41)*

$$0 = \mathbf{I}_{\mathrm{D}\bar{\mathrm{d}}} + \mathrm{p}\lambda_{\mathrm{D}\mathrm{d}}$$
 (42)*

$$0 = I_{\rm Dq} + p\lambda_{\rm Dq} \tag{4.3}$$

liquation 40 gives

.

.

$$\lambda_{fd} = \frac{E_{fd} - T_{fd}}{p}$$
(44)*

The relationship between field, damper and armature currents and their induced flux linkages is given by:

*The asterisk denotes the equation is valid only in the per unit system

The derivation of Equations 45 and 46 is quite tedious and is not given in this report.

From Equation 45, we obtain

$$\lambda_{fd} \approx \Psi_{do}^{i} \left(\Gamma_{fd} + \frac{\lambda_{ad}}{Z_{ad} + \lambda_{1d}} \right)_{bd} - \frac{\lambda_{ad}^{i}}{Z_{ad} + \lambda_{fd}} \Gamma_{ad} \right)$$
(47)

since

$$x_{d} = x_{0}^{t} = \frac{x_{ad}^{2}}{x_{ad} + x_{fd}^{2}}$$
(48)

(See Appendix B for derivation)

after substituting $\lambda_{\mbox{fd}}$ in Equation 47 into Equation 44 and dividing by ${\mathbb T}^+_{\mbox{d0}}$ we have

$$\frac{\mathcal{B}_{fd} - \mathbf{I}_{fd}}{\mathcal{P}_{do}^{p} do} = \mathbf{I}_{fd} - (\mathbf{X}_{d} - \mathbf{X}_{d}^{\dagger}) \mathbf{1}_{ad} + \frac{\mathbf{X}_{ad}}{\mathbf{X}_{ad} + \mathbf{X}_{fd}} \mathbf{1}_{bd}$$
(19)*

Equation 49 is in the same form as Equation 38 given in Section 3. Similarly solving Equations 41 to 43, we have

$$-\frac{I_{fq}}{pT_{q0}} = I_{fq} - (X_{q} - X_{q}^{*}) I_{aq} + \frac{X_{ad}}{X_{aq} + X_{fq}} I_{bq} = 0 \quad (50)*$$

$$-\frac{\mathbf{I}_{\mathrm{Dd}}}{\mathbf{p}^{\mathrm{T}}_{\mathrm{Ddo}}} = \mathbf{I}_{\mathrm{Dd}} - \frac{\mathbf{x}_{\mathrm{ad}}^{2}}{\mathbf{x}_{\mathrm{ad}} + \mathbf{x}_{\mathrm{Dd}}} \mathbf{I}_{\mathrm{ad}} + \frac{\mathbf{x}_{\mathrm{ad}}}{\mathbf{x}_{\mathrm{ad}} + \mathbf{x}_{\mathrm{Dd}}} \mathbf{I}_{\mathrm{Ed}}$$
(51)*

*The asterisk denotes the equation is valid only in the per unit system

CARRETT

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

$$-\frac{\mathbf{I}_{bq}}{\mathbf{F}^{2}\mathbf{b}qo} = \mathbf{I}_{bq} - \frac{\mathbf{x}_{aq}^{2}}{\mathbf{x}_{aq} + \mathbf{x}_{bq}} \mathbf{I}_{aq} + \frac{\mathbf{x}_{aq}}{\mathbf{x}_{aq} + \mathbf{x}_{bq}} \mathbf{I}_{fq}$$
(52)*

where

 $^{\lambda}$ Ldf X iq = birect and quad axis field circuit leakage reactance X bdf X bq = birect and quad axis damper circuit leakage reactance

and

$$T_{\text{pdo}} = T_{\text{do}}^{\text{T}} \frac{(x_{\text{ad}} + x_{\text{fd}})(x_{\text{ad}} + x_{\text{pd}})}{x_{\text{ad}}x_{\text{fd}} + x_{\text{fd}}x_{\text{pd}} + x_{\text{pd}}x_{\text{ad}}}$$
(53)

$$\Psi_{\text{Dqo}} = \Psi_{\text{qo}}^{"} \frac{(x_{\text{aq}} + x_{\text{fq}})(x_{\text{aq}} + x_{\text{Dq}})}{x_{\text{aq}}^{2} fq + x_{\text{fq}}^{2} y_{\text{Dq}} + x_{\text{Dq}}^{2} x_{\text{aq}}}$$
(54)

Since x_{fq} is very large, (to give a very small T_{fq})

$$T_{Dqo} \cong T_{qo}^{"} \frac{X_{fq}(X_{aq} + X_{Dq})}{X_{aq}X_{fq} + X_{fq}X_{Dq}}$$
$$\cong T_{qo}^{"}$$

where

1

 $\frac{T}{do'} = Direct and quad axis open circuit subtransient time constant.$

*The asterisk denotes the equation is valid only in the per unit system

APS-!	5286-	-R
APPEI	VDIX	V
Page	17	

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

 ${\rm T}^{*}_{do}$ and ${\rm T}^{*}_{qo}$ are related to the short circuit parameters by the following

$$\mathbf{T}_{\mathbf{d}}^{\mathsf{T}} = \frac{\mathbf{X}_{\mathbf{d}}^{\mathsf{T}}}{\mathbf{X}_{\mathbf{d}}} \mathbf{T}_{\mathbf{d}\mathbf{o}}^{\mathsf{T}}$$
(55)

where

 $q^{(1)}, q^{(2)} =$ Direct and quad-axis short circuit transient time constant.

5. Voltage Regulation

If a load is suddenly applied or removed from the generator, its terminal voltage will gradually decay or increase to another steady state level and will never return to its initial value. However, in almost all applications of synchronous generators, it is desirable that the terminal voltage remains substantially constant regardless of load. This can be accomplished by a voltage regulating system (with negative feedback) to change the field excitation whenever there is a change in terminal voltage.

A typical regulated response of a generator terminal voltage envelope when the load is completely or partially removed is shown in Figure 8. In the case of load application, the same characteristic response occurs except it is turned upside down with respect to the 1 p.u. line.

Figure 8

The response of the unregulated generator terminal voltage can be explicited by the phasor diagram in Figure 9. It shows the relationship the subtransient $(E_{i}^{"})$, transient $(E_{i}^{"})$ and steady-state (E_{i}) induced costages. It is a more detailed representation of Figure 4.

Figure 9

٠,

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

A. Voltage Regulating System - With Series and Shunt Fields and Constant Speed

The regulating system to be studied in this report has both series and shunt field feedbacks. It is shown in Figure 10.

The power transformer has the following transfer function:

$$\frac{1}{1 + pT_p}$$
 (57)*

where T_p is the time constant of the transformer.

Effect of Shunt and Series Fields

The analysis of the regulator system is just like that of a feedback system except the complication of the two fields.

*The asterisk denotes the equation is valid only in the per anit system

First consider the current transformer as shown in Figure 11.

 $I_1, I_2 = Primary$ and secondary current

 R_{fr} = Series field resistance and inductance

E_{fr} = Series field voltage

Ideally when the primary current I_1 makes a step change, the secondary current I_2 should also make the same change. However, I_2 cannot change abruptly because of the series field inductance $L_{\rm fr}$. Thus, most of the excess primary current will be used as magnetizing current, causing a high saturation and a high forcing voltage across the series field. The transfer function is quite complicated.

To make the calculation practical, we can assume I_2 changes exponentially due to a step change of I_1 , i.e., the current transformer is replaced by a potential transformer with the voltage across the series field proportional to the primary current. (See Figure 12)

Let the equivalent field current be composed by two parts

$$I_{f} \cong I_{fd} = I_{fdr} + I_{fdh}$$
(58)

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARBETE COMPORATION

where

Ifdr' Ifdh = Series and shunt field direct-axis current. The quad-axis transient currents are assumed negligible.

At no load, 1 p.u. shunt field current I toh will induce 1 p.u. armature voltage.

l p.u. shunt field voltage ${\rm E}_{\rm fh}$ will produce l p.u. field current l_f at steady state.

1 p.u. armature current \mathbb{I}_a will produce σ p.u. \mathbb{I}_{fdr} and σ p.u. \mathbb{E}_{fr} at steady state. Thus

 $\sigma = \frac{\text{series field ampore turns with 1 p.u. I}_{a} \text{ at steady state}}{\text{base shunt field ampore turns}}$

Let

 M_{hr} = Mutual inductance between the shunt and series fields

When there is a rate of change of I_{fr} of 1 p.u./sec, the voltage induced in the shunt field is M_{hr} p.u.

Thus the field current Equation 49 should be modified to include the effect of both fields. Assuming:

$$X_{fdr} = X_{fdh}$$
(59)

where

 $x_{fdr'} x_{fah}$ = Series and shunt field reactance.

APS5	5286-R
APPEN	DIM V
Page	22

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARREET COMPORATION

We have a separate equation for each field current:

$$\frac{E_{fh} - I_{fdh}}{PT_{doh}} = I_{fdh} + M_{hr}I_{fdr} - (X_d - X_d^{\dagger}) I_{ad} + \frac{X_{ad}}{X_{ad} + X_{fd}} I_{bd}$$
(60)*

$$\frac{\sigma \mathbb{I}_{a} - \mathbb{I}_{fdr}}{p \mathbb{I}_{dor}^{\dagger}} = \mathbb{I}_{fdr} + \mathbb{M}_{hr} \mathbb{I}_{fdh} - (X_{d} - X_{d}^{\dagger}) \mathbb{I}_{ad} + \frac{\chi_{ad}}{\chi_{ad} + \chi_{fd}} \mathbb{I}_{bd}$$
(61)*

where

 $\frac{T^+}{dor}$, T^+_{doh} = Series and shunt field open circuit time constant E_{fh} = Shunt field excitation voltage

Equation 58 links the two field currents I_{fdh} and I_{fdr} . Under the above assumptions, other equations in Section 4 will remain the same.

*The asterisk denotes the equation is valid only in the per unit system

```
APS-5286-R
APPENDIX V
Page 23
```

GARRETT

Although E_{fr} is approximated by curve b in Figure 12B, the actual voltage level for the first few cycles is C p.u. which is $c/(1 + \sigma)$ times higher than the approximated level. Hence when we calculate the time constant of the series field, the effect of this high forcing voltage should be considered. The time constant Ψ_{dor}^{t} can therefore be approximated as

$$T_{dor} = \frac{L_{fr}}{k R_{fr}}$$
(62)

where:

k = forcing factor

= initial voltage across series field
steady state voltage across series field

In the example given in Figure 12,

$$k = \frac{c}{d}$$

B. Voltage Regulating System - with Series and Shunt Fields and Variable Speed

When rotor speed changes, the electrical frequency changes correspondingly and all the reactances X_{ad} , X_{fd} , etc. will have no meaning, nor can they be expressed as ωL_{ad} , ωL_{fd} , etc. All inductance voltage drops should be given as p(LI). The generator equations will be more complicated.

 \mathbf{u}

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

To make the analysis simple for practical purpose, all the inductance will be expressed as ωL_{ad} , etc., using the average or base frequency for ω and assume the change in frequency is small enough so that the reactances stay about constant. Only the speed voltage $\omega\lambda$ is assumed to vary with speed.

6. Conclusion

In the regulating system, the load is assumed to have the following impedance function:

$$\mathbf{z}_{\mathbf{L}} = \mathbf{R}_{\mathbf{L}} + \mathbf{j}\mathbf{X}_{\mathbf{L}}$$
(63)

where

 Z_{L} , R_{L} , X_{L} = Load impedance, resistance and reactance.

Since

$$\mathbf{E}_{a} = \mathbf{I}_{a}\mathbf{Z}_{\mathbf{I}} \tag{64}$$

and substituting Equations 14, 15 and 63 into 64, we have

$$E_{aq} - jE_{ad} = (I_{aq} - jI_{ad})(R_{L} + jX_{L})$$
$$= (I_{aq}R_{L} + I_{ad}X_{L}) - j(I_{ad}R_{L} - I_{aq}X_{L})$$

Hence

$$E_{ad} = I_{ad}R_{L} - I_{aq}X_{L}$$
(65)

$$E_{aq} = I_{aq}R_{L} + I_{ad}X_{L}$$
(66)

Equations 65 and 66 relate armature voltage and current. With the following assumptions:

- 1. No saturation occurs in the generator
- 2. Quadrature field current is negligible

 $I_{fq} \cong 0$

11

we have derived a set of 13 equations for the 13 unknowns:

 $E_{a} = E_{ad} = E_{aq}$ $I_{a} = I_{ad} = I_{aq}$ $I_{fd} = I_{fdr} = I_{fdh}$ $I_{Dd} = I_{Dq}$ $\lambda_{ad} = \lambda_{aq}$

The 13 equations are:

 $E_{ad} + r_a I_{ad} + \omega \lambda_{aq} = 0$ $E_{aq} + r_a I_{aq} - \omega \lambda_{ad} = 0$ $\lambda_{ad} + I_{ad} X_{d} = I_{Dd} - I_{fd}$ $\lambda_{aq} + I_{aq} X_{q} = I_{Dq}$

ţ

 $\frac{e_{fh} - I_{fdh}}{pT_{doh}} = I_{fdh} + M_{hr}I_{fdr} - (X_d - X_d^{\dagger}) I_{ad} + \frac{X_{ad}}{X_{ad} + X_{fd}} I_{Dd}$

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A Divibility of the Gardett Componition $\frac{1}{1 + \frac{1}{1 + \frac$ $I_{fd} = I_{fdh} + I_{fdr}$ $-\frac{\mathbf{I}_{\mathrm{pd}}}{\mathbf{p}\mathbf{T}_{\mathrm{pdo}}} = \mathbf{I}_{\mathrm{pd}} - \frac{\mathbf{X}_{\mathrm{ad}}^{2}}{\mathbf{X}_{\mathrm{af}} + \mathbf{X}_{\mathrm{pd}}} \mathbf{I}_{\mathrm{ad}} + \frac{\mathbf{X}_{\mathrm{ad}}}{\mathbf{X}_{\mathrm{ad}} + \mathbf{X}_{\mathrm{pd}}} \mathbf{I}_{\mathrm{fd}}$ $-\frac{\mathbf{I}_{\mathrm{Dq}}}{\mathbf{p}_{\mathrm{Dqo}}} = \mathbf{I}_{\mathrm{Dq}} - \frac{\mathbf{X}_{\mathrm{aq}}^{2}}{\mathbf{X}_{\mathrm{aq}} + \mathbf{X}_{\mathrm{Dq}}} \mathbf{I}_{\mathrm{aq}}$ $\mathbf{E}_{ad} = \mathbf{I}_{ad}\mathbf{R}_{L} - \mathbf{I}_{ag}\mathbf{X}_{L}$ $E_{aq} = I_{ad}X_{L} + I_{ad}R_{L}$ $I_a = \sqrt{I_{ad}^2 + I_{aq}^2}$ $E_a = \sqrt{E_{ad}^2 + E_{aq}^2}$

- K

With the aid of the 13 equations, a mathematical model of voltage reputating system shown in Figure 10 is given by the block diagram shown in Figure 13.

n

•7

GARRETT

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

NOMENCLATURE

- $E_a = Generator terminal voltage$
- E_{ad} , E_{aq} = Direct- and quadrature-axis components of E_{a}
 - $E_{\rm f}$ = generator field voltage
- E_{fd} , E_{fq} = direct and quadrature axis field voltage
- E_{id} , $E_{ig} = direct$ and quadrature axis induced voltage

 $I_a = generator$ armature current

- Tad' Tag == direct and quadrature axis components of armature current
- Ifd' Ifg = direct and quadrature axis field current of generator
- $T_{\rm Dd}$, $T_{\rm Dq}$ = direct and guadrature axis subtransient current
 - p = differential operator d/dt
- The The direct and quadrature axis open circuit transient time constants
- $T_{do}^{"}$ $T_{qo}^{"}$ = direct and quadrature axis open circuit subtransient time constants
 - T_d' , T_q' = direct and quadrature axis short circuit transient time constant

 $R_a = generator armature resistance$

GARRETT

 \mathbf{q}

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

NOMENCLATURE (Cont.)

- $R_{L} = load resistance$
- $X_{\rm L}$ = load reactance
- $X_{al} \approx$ armature leakage reactance

 $X_{d}, X_{q} = \text{direct}$ and quadrature axis synchronous reactances

- x_{ad} , $x_{aq} = direct$ and quadrature axis mutual reactances between stator and rotor circuits, referred to stator.
- X_{d}^{+}, X_{q}^{+} = direct and quadrature axis transient reactances
- X_{d}^{μ} , X_{d}^{μ} = direct and quadrature axis subtransient reactances
- X_{fd} , $X_{fq} \approx$ direct and quadrature axis field circuit leakage reactances
- X_{Dd}, X_{Dq} = direct and quadrature axis damper circuit beamage reactances
 - $Z_{T_{i}} = 1$ oad impedance
- λ_{ad} , λ_{ag} = direct and quadrature axis stator flux linkages

 ω = speed of the generator

The additional subscript h and r in the field dircuit variables denotes shunt or series field.

All voltages, currents, reactances, revisionce, upedence, speed and flue linkages are per unit quantities.

> APS-3280-0 APPENDIX V Page 36

•7

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

APPENDIX A

Blondel's Two-Reactance Method

Figure A-1

The phasor diagram of a balanced three-phase current at any instant of time t is shown in Figure A-1.

where

1

```
\theta = zt (A-1)

z = Frequency of the current or speed of generator
```

Since the anature variables are expressed in three axes (denoted by the capital letters λ , B and C), one axis for the phase, and the motor variables are expressed in two axes (denoted by the small letters λ and f), it is desirable to find a transformation to express the three-phase variables by the two-axis variables.

Let two currents I_{ad} and I_{aq} flow through two fictitious coils socuted at the d and q axis and each having the same number of turns as a phase coil, which would set up the same NMF wave as the actual currents J_A , I_B , I_C . Excause of the fact that the three actual coils are replaced by a system of two-axis ceils, the unit of current in the axis coils is 3/2 times that of the phase coils.

 \mathcal{D}

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

The d-axis component of MMF in the phase coils due to the T_{Λ} is:

$$MMF_{Ad} = N I_{A} \cos\theta \qquad (\lambda - 2)$$

where

N = Number of turns in the coil.

The d-axis component of the resultant MMF wave due to the threephase currents is therefore:

$$MMF_{d} = I_{A}Cos\theta + I_{B}Cos(\theta - 2\pi/3) + I_{C}Cos(\theta - 4\pi/3)$$
 (A-3)

The MMF wave due to current i ad in the axis coil is

$$MMF_{d} = 3/2 NI_{ad} \qquad (7.-4)$$

The factor 3/2 is inserted to take into account the change in unit of I_d just mentioned. Equating A-3 with A-4 and cancelling the factor N, we have:

$$I_{ad} = \frac{2}{3} \left[I_A \cos\theta + I_B \cos(\theta - 2\pi/3) + I_C \cos(\theta - 4\pi/3) \right] \quad (A-5)$$

Similarly the q-axis current I_q is given by:

$$I_{aq} = -\frac{2}{3} \left[I_A \sin\theta + I_B \sin(\theta - 2\pi/3) + I_C \sin(\theta - 4\pi/3) \right] \quad (A-\ell)$$

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARRENT CORPORATION

If the three-phase currents are to be eliminated, three substitute variables will be required. Hence it is necessary to introduce a third variable T_0 , which is called the zero-sequence current in symmetrical component theory, and

$$I_{O} = \frac{1}{3} (I_{R} + I_{B} + I_{C})$$
 (A-7)

Since I_O produces no flux linking the rotor, it is associated with the state leakage inductance. In the balanced three-phase condition, the sum of the phase currents is zero, hence

$$I_{O} = 0 \qquad (A-8)$$

Equations A-5, 6 and 7 can be written in the matrix form as

$$\begin{bmatrix} \mathbf{I}_{ad} \\ \mathbf{I}_{aq} \\ \mathbf{I}_{o} \end{bmatrix} = (\mathbf{T}) \begin{bmatrix} \mathbf{I}_{a} \\ \mathbf{I}_{b} \\ \mathbf{I}_{c} \end{bmatrix}$$
 (A-9)

where (T) is the transformation matrix given by

$$(T) = \frac{2}{3} \begin{bmatrix} \cos\theta & \cos(\theta - 2\pi/3) & \cos(\theta - 4\pi/3) \\ -\sin\theta - \sin(\theta - 2\pi/3) & -\sin(\theta - 4\pi/3) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
 (A-10)

The same (T) can be applied to the voltage equations between E_{ad} , E_{o} and phase voltages E_{A} , E_{B} , E_{C} as well as between λ_{ad} , λ_{aq} , λ_{o} and phase flux λ_{A} , λ_{B} , λ_{c} .

In the balanced condition

4

1

•

$$E_{0} = 0 \qquad (\Lambda - 11)$$

$$\lambda_{\rm O} = 0 \qquad (\Lambda - 1.2)$$

APS-5286-R APPENDIX A Page 4

17

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

APPENDIX B

The complete generator circuit is shown in Figure A-2 below.

The equivalent direct axis reactance circuit is shown in Figure A-3.

X_{td} = total direct-axis reactance in generator Figure A-3

When a load is removed or applied to a generator, a transient condition occurs before steady-state is reached. For the first few cycles we have subtransient condition due to the subtransient reactance $X_d^{"}$. The total reactance is

$$x_{td} = x_d^{"}$$

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA A DIVENSE DE DIE GARRETE CORPORATORE

 $X_d^{"}$ is defined in Figure A-3 with switches S_1 , S_2 closed.

$$X_{d}^{*} = X_{a1} + \frac{1}{1/X_{ad} + 1/X_{fd} + 1/X_{bd}}$$

$$= X_{a1} + \frac{\sum_{aa} \sum_{fd} \sum_{fd} \sum_{bd}}{X_{fd} \sum_{fd} \sum_{fd} \sum_{fd} \sum_{fd} \frac{1}{x_{fd} + 1/X_{bd}}}$$
(A-13)

Then we have transient condition due to the transient reactance X_{d}^{*} . The total reactance becomes

$$x_{td} = x_d^{\dagger}$$

 X'_d is defined in Figure A-3 with switch S_1 closed.

$$x_{d}^{+} = x_{a1} + \frac{1}{1/X_{ad} + 1/X_{fd}}$$

= $x_{a1} + \frac{x_{ad}}{x_{ad} + X_{fd}}$ (A-14)

In steady-state

$$x_{td} = x_d$$

 X_{d} is defined in Figure A-3 with both switches S_{1} and S_{2} open.

$$x_{d} = x_{a1} + x_{ad} \qquad (\Lambda - 15)$$

Combining equations A-14 and A-15, we can express $\mathbb{P}_{\mathcal{A}}^{*}$ is terms of $\mathbb{X}_{\mathcal{A}}^{*}$

$$x_{d}^{T} = (x_{d} - x_{ad}) + \frac{x_{ad}^{N}f_{a}}{x_{ad}^{T} + x_{fd}^{T}}$$

$$= x_{d} + \frac{-\lambda_{ad}^{2} - \lambda_{ad}^{T}f_{d}^{T} + x_{fd}^{T}}{x_{ad}^{T} + x_{fd}^{T}}$$

$$= x_{d} - \frac{x_{ad}^{2}}{x_{ad}^{T} + x_{fd}^{T}}$$

$$= x_{d} - \Delta 1 \qquad (A-16)$$

Al is the increase in reactance from translant to steady state period.

Combining equations A-13 and A-15, we can express x_d^{μ} in terms of x_d^{4}

$$X_{d}^{u} = (X_{d} - X_{ad}) + \frac{X_{ad}X_{fd}X_{Dd}}{X_{fd}X_{Dd} + X_{ad}X_{fd} + X_{ad}X_{ad}X_{ad}}$$
$$= X_{d} - \frac{X_{ad}^{2} (X_{fd} + X_{Dd})}{X_{fd}X_{Dd} + X_{ad}X_{fd} + X_{ad}X_{Dd}}$$
$$= X_{d} - \Delta 2 \qquad (\Lambda-17)$$

 $\Delta 2$ is the increase in reactance from subtransient to steady state period.

APS-5	5286-	-R
APPER	NDIX	В
Page	3	

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

The equivalent quadrature axis reactance circuit is shown in Figure A-4.

Figure A-4

Figure A-4 is similar to Figure A-4 except X_{fq} is very large (open circuit). Following the previous procedure, we obtain

$$x_{q}^{"} = x_{a\ell} + \frac{x_{aq}^{X} Dq}{x_{aq} + x_{Dq}}$$
(A-18)

 $x_{q} = x_{q}' = x_{al} + x_{aq}$ (A-19)

.

 $\cdot i$

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE CARNET'S COMPONATION

> APPENDIX VI ACTIVE FILTER CONSIDERATIONS

> > (5 pages)

APS-5286-R APPENDIX VI

AIRE GEARCH MANUFACTURING COMPANY OF ARIZONA

ACTIVE FILTER CONSIDERATIONS

Ausideration has been given we abe filter problem, since the encount tests were performed. It is felt that the system requirement of the be reduced to two basic items.

- (a) The waveform to the vehicle load should be sinusoidal.
- ()) The waveform sensed by the VRE must be sinusoidal.

Previous approaches included:

 (a) A speed control filter for reduction of harmonics reflected back on the alternator output due to load-switching (refer to sketch below). This will not completely satisfy requirements (a) and (b) above because the harmonic content of the output of the generator, due to the generator itself, can be 5 percent.

 (b) The VRE could be modified to incorporate a small filter or a scheme for sensing RMS voltage. This could be accomplished with a relatively small lightweight package.

This approach satisfied requirement (b) but not (a). Without knowledge of the details of the entire electrical system and the nature of the vehicle load, judgment cannot be made regarding the adequacy of this approach.

A more direct approach which does satisfy both of the basic requirements is placing a filter on the vehicle load lines with sensing leads for the VRE downstream from this filter.

One approach to this filter would be the insertion of reactive components in series and parallel with the load. This would megaine an accurate description of the load and the design becomes quite difficult if the load power factor is variable. Furthermore, this approach is unattractive because this type of filter must mandle the fundamental voltage and load current. Therefore, size and weight become quite large.

It should be noted that the purpose of the filter is to remove the harmonics which, in this case, are all odd and total about 7 percent of the fundamental. An effective approach, utilized by the contractor in production equipment, is to monitor the output and to induce complementary voltages on the line to oppose the harmonics.

By using an active as opposed to a passive element filter, the overall size, weight, and effectivity can be greatly improved. The block diagram (Figure 1) shows the arrangement for an active filter. In this case the harmonic content (distortion) is reduced in proportion to the amplification factors K_1 and K_2 . The preamplifier, K_1 , is in the audio range and easily kept at a low power level. A high open-lcop gain results in a high rejection of the harmonic content. In the power section of this device, the fundamental is not attenuated; the only action of the filter is to oppose the higher harmonics.

Analysis of failure modes show two possibilities. The first and more probable would be a shorted output. This type of failure results in loss of filter action only, that is, no attenuation of the terminal voltage. In the second type of failure, which is an open circuit, there would also be a loss of filter action and a small reduction in the terminal voltage. The actual change in terminal voltage, for this type of failure, would be a function of the volt-second integral of the transformer. This is a constant which is the sum of the voltsecond integrals of the harmonic content.

The present distortion is a small fraction of the fundamental (about 7 percent) and consists of odd harmonics.

In reference to this same logic, the power amplifier will only furnish power necessary to eliminate the harmonic content. This is a relatively small amount and can be accurately expressed by the following relationship:

2 \overline{R}_{L}

.

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DUISION OF THE GARRETT CORPORATION

FLAD CHATTER RECORDER AND CONTROL OF AND CONTROL CONTR

Ч

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

where "n" represents the odd harmonics and R_L is the bus-bar load. It is assumed that the wave shape is symmetrical about the 0-V axis which eliminates the d-c component and even harmonic distortion.

This type of filtering can be made very efficient for several reasons. First, the filter is designed as an impedance-matching device which offers no rejection to the fundamental. This means a reduction in the magnetics since the flux densities are related to harmonic content only. Second, a different type of magnetics can be used, such as square hysteresis loop material. This fact alone will reduce weight and size as well as increase the efficiency of power transfer. The effective series resistance which results from this filter will be much less because the magnetic requirements are far less demanding than for a passive element.

This type of filter has been used in other applications and represents a proven concept.

GARMET

4

ļ

9

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

APPENDIX VII SYSTEMS ANALYSIS (20 pages)

> APS-5286-R APPENDIX VII

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

SYSTEMS ANALYSIS

System Description - Systems at three power levels were simulated, consisting of the complete BRU, VRE, and speed control. Each component was linearized about the appropriate steady-state operating point.

BRU

The BRU unit is described dynamically by deriving linearized perturbation equations about a steady-state operating point. The system under consideration is shown below in Figure 1.

FIGURE 1

The compressor and turbine are described by two maps each. They are corrected-torque (Q/ δ) and corrected-weight flow (W $\sqrt{\theta/\delta}$) versus pressure ratio (P₂/P₁) and corrected-speed (N/ $\sqrt{\theta}$). Differentiation using lower case letters for perturbated quantities yields:

$$q_{c} = \frac{\partial Q_{c}}{\partial P_{1}} p_{1} + \frac{\partial Q_{c}}{\partial P_{2}} p_{2} + \frac{\partial Q_{c}}{\partial N} n \qquad (1)$$

$$W_{12} = \frac{\partial W_{12}}{\partial P_1} p_1 + \frac{\partial W_{12}}{\partial P_2} p_2 + \frac{\partial W_{12}}{\partial N} n \qquad (2)$$

for the compressor and

$$q_{t} = \frac{\partial Q_{t}}{\partial P_{1}} P_{1} + \frac{\partial Q_{t}}{\partial P_{2}} P_{2} + \frac{\partial Q_{t}}{\partial N} n \qquad (3)$$

$$w_{69} = \frac{\partial W_{69}}{\partial P_1} p_1 + \frac{\partial W_{69}}{\partial P_2} p_2 + \frac{\partial W_{69}}{\partial N} n \qquad (4)$$

for the turbine, assuming $p_1 = p_9$ and $p_2 = p_6$. Two additional equations relate pressures and flow between components; they are:

$$p_{1} = \frac{\gamma_{R}}{(V/T)_{1}} \frac{[w_{69} - w_{12}]}{S}$$
(5)

$$P_2 = \frac{\gamma_R}{(V/T)_2} \frac{[w_{12} - w_{69}]}{S}$$
(6)

 Γ

 \mathbf{u}

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA A DIVISION OF THE GARMETT CURPORATION

 $V \not : \mathcal{C} \land \mathcal{C}$

$$(V/T)_{1} = \frac{V_{1}}{T_{1}} + \frac{V_{9}}{T_{9}} + \frac{V_{11}}{T_{11}},$$
$$(V/T)_{2} = \frac{V_{2}}{T_{2}} + \frac{V_{5}}{T_{5}} + \frac{V_{6}}{T_{6}},$$
$$\gamma = \text{specific heat ratio}$$
$$R = \text{gas constant}$$
$$V = \text{volume}$$
$$T = \text{absolute temperature}$$

Combining Eq. (2), (4), (5), and (6) yields:

$$(\tau_1 S + 1)p_1 = \frac{\partial P_1}{\partial P_2}p_2 + \frac{\partial P_1}{\partial N}n$$
 (7)

$$(\tau_2 S + 1) P_2 = \frac{\partial F_2}{\partial P_1} P_1 + \frac{\partial P_2}{\partial N} P_1$$
 (d)

z cally, the turbine, compressor, and absorbed-lead torque $q_{\rm d}$ are equated by:

$$n = \frac{1}{JS} \left[q_t - q_c - q_a \right] \tag{9}$$

11.10

ł

C = rotor incrtia

- the Laplace open story
- APS-5280-8 APPENDIX 746 Fage 3

The block diagram illustrated in Figure 2 is the result of combining Eq. (1), (3), (9), and then (7), (8), and (9). An analog diagram is shown in Figure 3.

Alternator and VRE

The alternator and VRE are represented in block diagram form in Figure 4. The system consists of series- and shunt-field loops which influence the alternator voltage output. The series field includes a machine characteristic which internally tends to compensate for alternator load fluctuations. The shunt field circuit is the control loop which modulates the ampere turns (NI) in an effort to maintain constant terminal voltage. The total of alternator ampere turns is physically constrained within limits. The input to this portion of the system is in terms of the alternator perturbation, ΔKVA . The corresponding analog computer diagram is shown in Figure 5.

Speed Control

The speed-control dynamics included in the simulation are given as:

$$\frac{p_{p}}{n} = \frac{10.5/360}{(0.055 + 1)(0.01575 + 1)^{2}(0.0008255 + 1)^{2}}$$
(10)

where

- p = parasitic load change (KW)
 - n = BRU speed perturbation (rpm)
 - s = Laplace operator (sec.⁻¹)

Page 5

n

APS-5286-R APPENDIX VII Page 6

П

PREPARED	GM_	4-67	ANALOG DIAGRAM NASA BRU	A40481
WRITTEN				
APPROVED	m.K.	4-67	AiResearch Manufacturing Company of Arizona	

h

1

FIGURE 4

الاستعماد في المراجع مع المراجع

*1

FOLDOUT BRANC

FOLDOUR FRAKE

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

The parasitic load consists of three 6-KW modules incorporated with negligible deadband or overlap. The analog diagram is shown in Figure 6.

Analog Computer Results

The analog computer transient analysis was conducted for three power levels. They were the 10.5-KW full-capacity system and offdesign points at 6.0 and 2.25 KW. BRU component parameters at each of these design points are summarized below:

Net Generator Output, KW	2.25	6.0	10.5
Turbine Inlet Temperature, °R	2060	2060	2060
Compressor Inlet Temperature, °R	540	540	540
Shaft Speed, rpm	36,000	36,000	36,000
Compressor Mass Flow, lb/sec	0.377	0.756	1.28
Compressor Inlet Pressure, psia	6.76	13.5	22.9
Compressor Pressure Ratio, 1b/sec.	1.9	1.9	1.9
Turbine Inlet Pressure, psia	12.45	25.0	42.1
Turbine Pressure Ratio	1.75	1.75	1.75

Results of this study are shown in Figures 7 through 13. These curves show line current (I_a) , terminal voltage (E_t) , alternator ampere turns (NNI), speed (n), and parasitic load (P_p) as a function of time following a step-load change. Speed is given in terms of a perturbated quantity where zero corresponds to 36,000 rpm or 100 percent. In each case, the system was subjected to full-load step-changes. A discussion on the computer traces follows.

APS-5286-R · Page 10

n

PREPARED	GM	4-67	ANALOG DIAGRAM SPEED CONTROL	A40484
WRITTEN				
APPROVED	mick.	4-67	AiResearch Manufacturing Company of Arizona	

FIGURE 6

Priville hame

FUUDOUR ERAME

•

FIGURE 7

n

FIGURE 8

n

FORM PTRA-L

FIGURE 9

n

PREPARED GM 4-6		4-67	NASA BRU WITH VRE AND SPEED CONTROL 10.5-KW SYSTEM	A40488
APPROVED	m.K.	4-67	AiResearch Manufacturing Company of Arizona	
FORM 1788A-1	<u></u>		APS-5286-R Page 14	FIGURE 10

ſ

FIGURE 11

n

PENTH #7#8A-1

÷

FIGURE 12

h

E

AIREBEARCH MANUFACTURING COMPANY OF ARIZONA

10.5-Kilowatt System

The system response to instantaneous full-load (10.5 KW) change is shown in Figure 7. The maximum speed excursion is equal to 0.9 percent for increasing and decreasing load. Steady-state is attained within 1.0 sec. following load removal and within 3.2 sec. following load addition. The system responds very quickly to load removals because the parasitic load changes to regulate speed without saturation. When full-load is added, the parasitic load is reduced proportionally to speed error. Open saturation of the control at 0 KW, the vehicle response then resembles that of an open-loop system. The transient voltage pulse is ±50.0 for a duration of less than 0.08 sec. The steady-state voltage error is imperceptible.

Figure 8 illustrates speed transients following 10.5-KW step-load decreases, assuming one of the three speed control modules has failed. Initially, the vehicle load is 04.5 KW and parasitic load is 0 KW. When the vehicle load is reduced to zero the parasitic load saturates at 12.0 KW, as the speed is sufficiently large. When the following speed reduction is sufficient to demand less than 12.0-KW parasitic load, the control functions in its netral manuar, arriving at a steady-state value of 10.5 KW. The speel response is consistent with the control configuration as depicted under each trace. The maximum speed-error is well within the 2-percent design goal, and the time to attain steady-state is less than 1.0 sec.

The effect of control gain is illustrated in Figure 9. Each system is subjected to a 10.5-KW load removal. The higher gain system (10.5 KW/l percent speed-ervor) limits the maximum speed-error to 0.9 percent but does not attain steady-state until 1.0 sect has elapsed. The system with 7 KW/l percent gain overshouts to approximately 1.05 percent and reaches steady-state within 0.6 sect. However, the steadystate speed-error is 0.8 percent compared with approximately 0.5 percent. Seven EW/l percent speed-error control gain appeared to be

> APS-5286-R APPENDIX VII Page 18

AIRESEARCH MANUFACTURING COMPANY OF ARIZONA

optimum with regard to minimum settling time without yielding excessive speed overshoots. It would be advantageous to fabricate the breacboard speed control so that this gain is adjustable and an optimum value is obtained by experimentation with the actual hardware.

Limit-cycle operation is shown in Figure 10 with a control gain of 31.5 KW/l percent speed-error. This gain is just sufficient to cause the system to become unstable. The gain margin is, therefore, 31.5/10.5 = 3.0 KW. The period for one cycle is 0.3 sec. which corresponds to a frequency of 3.33 Hz.

2.5- and 6.0-Kilowatt System

Generally, the above comments also apply to the 6.0- and 2.25 KW-systems. Speed overshoots, voltage fluctuations, and response times at the lower power levels are less than those existing at the 10.5-KW level. Typical transient responses of the 6.0-KW system are shown in Figures 11 and 12.

Figure 13 illustrates the full-load transient speed response for the 2.25-KW system with gains of 10.5 and 2.25 KW/l percent speederror. This system is characterized by minor voltage fluctuations as a result of small-load perturbations. The speed response is reasonably fast when the standard 10.5-KW/l percent gain is employed and substantially overdamped and slow with the 2.25-KW/l percent speedcontrol gain.

Conclusions

The transient analysis of the speed control, including the effect of interactions between the speed-control and the VRE systems, has been completed and the results are very encouraging. It appears that the system, as presently defined, will meet the design specification; namely, "Transient frequency excursions shall remain within ±2 percent of 1200 Hz with a recovery time of 1 sec., with no sustained oscillations, when step-load changes of one per unit-load are made."

To summarize the results of the study:

- (a) For the 10.5-KW system, having a speed-control gain in the range of 10.5 to 7.0 KW/1 percent speed-error, the transient specification can be met.
- (b) The 10.5-KW system is the worst-case over the power level range of interest.
- (c) Although the specification does not cover speed-control module faults, they were investigated in the study. It was found that the speed excursion remained within 2 percent of the nominal, even though a fault should occur in any one of the three speed-control modules.
- (d) The speed-control gain can be increased to about 31.5 KW/ l percent speed-error before system instability results. However, for speed-control gain values above 10.5 KW/l percent speed-error, oscillations are sustained for increasing lengths of time.

APS-5296-R APPENDIX VII Page 20