General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

$$
\frac{\mathrm{t}}{\mathrm{E}-1453 \mathrm{U}}
$$

MATH MODELS FOR NASA/HUNTSVILLE

 STRAPDOWN SYSTEM TESTSMay 27, 1968

Prepared for
George C. Marshall Space Flight Center National Aeronautics and Space Administration

Huntsville, Alabama

Generated under
Contract No. NAS8-21366

Prepared by
William H. Fincke
Senior Systems Analyst
Approved by
Dr. Robert H. Nelson, Jr. Manager, Systems Analysis and Design Group

TABLE OF CONTENTS
PGGE

1. INTRODUCTION 1
2. GENERAL DEVELOPMENT OF MATH MODELS 2
2.1 Test Configuration and Philosophy 2
3. 2 Coordinate Transformations 3
4. 3 Instrument Yoke Rates and Accelerations 7
5. SAP MATH MODELS 13
3.1 General Form of SAP Equations of Motion 13
3.2 SAP IA Parallel to Table Axis 15
3.3 SAP IA Normal to Table Axis 17
6. PIGA MATH MODELS 22
4.1 General Form of PIGA Equations of Motion 22
7. 2 PIGA Equations for Test Program 23
8. REFERENCES 26
APPENDIX A: List of Symbols 27

1. INTRODUCTION

The purpose of this report is to derive math models that characterize the SD-53 Strapdown System during laboratory system tests. The tests are designed to measure primarily the misalignments between the strapdown system optical cube reference axes and the input axes of the three Single-AxisPlatforms (SAP) and three Pendulous Integrating Gyro Accelerometers (PIGAs). The tests contemplated also provide estimates of bias and scale factor error in each SAP and PIGA, and for each of the SAP gyros, the eight g-sensitive drift rates and the two internal misalignment components between gyro IA and platform yoke axis.

Preliminary test considerations are contained in Ref. 5.1, including development of the form of the math models. As mentioned in Ref.5.1, two series of tests are proposed (with and without rotation of the test table), for a minimum of three orientations of the strapdown system with respect to the test table. This report extends the analysis to include all contemplated test positions, as well as various yoke angles (head positions) of the SAP's whose input axes are nominally perpendicular to the test table axis of rotation. Consideration of required optical measurements and test stand alignment errors is also included. However, specific test sequences, test table and head positions, error analyses, and other test conditions are not included. Subsequent reports will cover those areas.

The coordinate systems, definitions of symbols, etc. defined in Appendix A are compatible with those in Ref. 5.1.

2. GENERAL DEVELOPMENT OL MATH MOIELS

2.1 TLST CONFIGURATION AND PHILOSOPHY

The functional relationships of the system test configuration are shown in Fig. 2-1. The test table base, defined by the test stand elevation axis and the table rotational axis, is oriented with respect to the local geographical coordinate system (East and vertical) by the azimuth and elevation angles, A and E, respectively. It is assumed that errors in this alignment can be made "sufficiently small" to justify the neglecting of second order terms. The test stand is capable of driving the test table at a precise rate $(\dot{\alpha})$ through an angle α.

The strapdown system is mounted to the table and tested in each of three positions, as indicated in Fig. 2-3. Outputs of the system consist of yoke angle readings (β) from each of the three SAPs and three PIGAs. Tests associated with the SAPs are conducted with the test table driven at a precise, constant rate. The table is not rotated during the PIGA tests.

The outputs of the instruments (i.e., SAPs and PIGAs) contain misalignment information only relative to the test stand elevation and rotational axes since the test conditions are changed relative to these axes. However, it is required to determine the misalignments relative to the strapdown system reference axes (as defined by the optical cube). Therefore, the relationship between the test stand coordinate systems and the strapdown system optical cube must be neasured accurately for each mounting position of the strapdown system.

[^0]Certain misalignments of the test stand coordinate systems contribute to errors in estimating the required calibration terms. These error sources must either be made negligible or else separated from the desired terms by obtaining additional measurements, either as part of the system tests or separately. The analysis in this report is sufficiently flexible to handle any of these alternatives.

The test philosophy is to obtain sufficient test measurements to allow accurate estimation of the required calibration terms. To do this, multiple measurements in various test configurations are necessary.

2.2 CCCRDINATE TRANSFORMATIONS

The relationships between the various coordinate systems are shown graphically in Figs. 2-1 and 2-2. The mathematical relations derived in this section are used to express the inertial rates and accelerations at the inputs to both the SAP and PIGA instruments, for the test conditions contemplated. Development of the equations for the specific applications, considering the dynamics of each instrument, are contained in Sections 3 and 4. All errors are assumed to be sufficiently small to justify the neglecting of second order terms.

The sequence of coordinate transformations is indicated in Fig. 2-2. Considering the misalignments, (η_{s} and ν_{s}) in aligning the test stand elevation axis (y_{s}) from east and vertical, the relationship between the test stand base and the geographical coordinate system is as follows:

$$
\left[\begin{array}{c}
x_{s}^{\prime} \tag{2-1}\\
\mathrm{y}_{\mathrm{s}}^{\prime} \\
\mathrm{z}_{\mathrm{s}}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \eta_{\mathrm{S}} & 0 \\
-\eta_{\mathrm{S}} & 1 & \nu_{\mathrm{S}} \\
0 & -\nu_{\mathrm{S}} & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \mathrm{A} & \sin \mathrm{~A} & 0 \\
-\sin A & \cos A & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{N} \\
\mathrm{E} \\
\mathrm{~V}
\end{array}\right]
$$

The relationship between the test table base and test stand base, including the misalignment ($\nu_{\mathrm{T}}, \psi_{\mathrm{T}}$) of the table axis of rotation relative to the test table base is as follows:

$$
\left[\begin{array}{l}
x_{\mathrm{b}}^{\prime} \tag{2-2}\\
\mathrm{y}_{\mathrm{b}}^{\prime} \\
z_{\mathrm{b}}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -\psi_{\mathrm{T}} \\
0 & 1 & \nu_{\mathrm{T}} \\
\psi_{\mathrm{T}} & -\nu_{\mathrm{T}} & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \mathrm{E} & 0 & -\sin \mathrm{E} \\
0 & 1 & 0 \\
\sin \mathrm{E} & 0 & \cos \mathrm{E}
\end{array}\right]\left[\begin{array}{c}
\mathrm{x}_{\mathrm{s}}^{\prime} \\
\mathrm{y}_{\mathrm{s}}^{\prime} \\
\mathrm{z}_{\mathrm{s}}^{\prime}
\end{array}\right]
$$

The quantity ψ_{T} is in essence the misalignment associated with the desired elevation angle E .

Next, a set of rotating axes $\left(x_{T}, y_{T}, z_{T}\right)$ fixed to the test stand table is defined by

$$
\left[\begin{array}{c}
\mathrm{x}_{\mathrm{T}} \tag{2-3}\\
\mathrm{y}_{\mathrm{T}} \\
\mathrm{z}_{\mathrm{T}}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \left(\alpha+\eta_{\mathrm{O}}\right) & \sin \left(\alpha+\eta_{\mathrm{O}}\right) & 0 \\
-\sin \left(\alpha+\eta_{\mathrm{O}}\right) & \cos \left(\alpha+\eta_{\mathrm{o}}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{x}_{\mathrm{s}}^{\prime} \\
\mathrm{y}_{\mathrm{s}}^{\prime} \\
\mathrm{z}_{\mathrm{s}}^{\prime}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\mathrm{~K}_{\mathrm{T}} \dot{\alpha}
\end{array}\right]
$$

The last term in Eq. (2-3) will be used subsequently when angular rate and acceleration vectors along the coordinate axes are considered. The term η_{0} represents the inaccuracy in reading out the table angle (α) . It will be
assumed that the test stand errors are either measured separately from the strupdown system tests and corresponding compensations applied, or that the exrors will be estimated as part of the system test program and used to justify the assumption to be made that the errors are sufficiently small to neglect second order terms.

The misalignments (ν_{0} and ψ_{o}) between the strapdown system optical cube and the table axis, about the x_{T} and y_{T} axes respectively, are used to define the coordinate system of the optical surfaces, as follows:

$$
\left[\begin{array}{c}
x_{\mathrm{T}}^{\prime} \tag{2-4}\\
\mathrm{y}_{\mathrm{T}}^{\prime} \\
z_{\mathrm{T}}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -\psi_{0} \\
0 & 1 & \nu_{0} \\
\psi_{0} & -\nu_{0} & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{\mathrm{T}} \\
\mathrm{y}_{\mathrm{T}} \\
z_{\mathrm{T}}
\end{array}\right]
$$

To relate the $\left\{\mathrm{x}_{\mathrm{T}}^{\prime}, \mathrm{y}_{\mathrm{T}}^{\prime}, \mathrm{z}_{\mathrm{T}}^{\prime}\right\}$ axes to fixed axes on the optical cube, it is necessary to define a resolution matrix $\left(R_{4}\right)$ since three orientations of the strapdown system relative to the test stand table axes $\left\{\mathrm{x}_{\mathrm{T}}, \mathrm{y}_{\mathrm{T}}, \mathrm{z}_{\mathrm{T}}\right\}$ are contemplated. Hence,

$$
\left[\begin{array}{l}
x_{0} \tag{2-5}\\
y_{0} \\
z_{0}
\end{array}\right]=R_{1}\left[\begin{array}{c}
x_{T}^{\prime} \\
y_{T}^{\prime} \\
z_{T}^{\prime}
\end{array}\right]
$$

Defining mounting position \#1 such that the optical cube axes are identical to the $\left\{x_{T}^{\prime}, y_{T}^{\prime}, z_{T}^{\prime}\right\}$ coordinate system, the three mounting positions are defined by matrix R_{1} as follows:

Mounting Position $\#$	Matrix R_{1}	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	4	3
	$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right]$			

Next, the relationships between the bases of the three SAls and PIGAs are defined in terms of the optical cube by resolution matrix R_{2}, as follows:

$$
\left[\begin{array}{l}
x_{r} \tag{2-7}\\
y_{r} \\
z_{r}
\end{array}\right]=R_{2}\left[\begin{array}{c}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]
$$

The subscript r is used to designate a particular instrument and mounting position.

Choosing the reference axes of SAP \#1 and PIGA \#1 to be ide rical to the optical cube, matrix R_{2} is equal to the following:

SAP \#	1	1	2
Matrix R_{2}	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$	$\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$

The above relationships are summarized in Fig. 2-3, including the various $\mathrm{R}_{2} \mathrm{R}_{1}$ matrix products

Having defined reference axes for each instrument (viz., SAPs and PIGAs), the effect of instrument yoke axis misalignments (ν_{r}, ψ_{r}) are defined as follows:

$$
\left[\begin{array}{c}
x_{r}^{\prime} \tag{2-!!}\\
y_{r}^{\prime} \\
z_{r}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \psi_{r} \\
0 & 1 & \nu_{r} \\
\psi_{r} & -\nu_{r} & 1
\end{array}\right]\left[\begin{array}{l}
x_{r} \\
y_{r} \\
z_{r}
\end{array}\right]
$$

The final eoordinate trunsformation is used to dutine axers on the rotating instrument yoke, to which the inertial reference units (gyros) are referenced. Henee,

$$
\left[\begin{array}{c}
x_{Y r} \tag{1-10}\\
y_{Y r} \\
z_{Y r}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \left(\beta_{r}+\eta_{r}\right) & \sin \left(\beta_{r}+\eta_{r}\right) & 0 \\
-\sin \left(\beta_{r}+\eta_{r}\right) & \cos \left(\beta_{r}+\eta_{r}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{r}^{\prime} \\
y_{r}^{\prime} \\
z_{r}^{\prime}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
K_{I}^{\prime} \beta_{r}
\end{array}\right]
$$

The last term in Eq. (2-10) will be used subsequently when angular rate and acceleration vectors along the coordinate axes are considered. The term η_{r} represents the inaccuracy in reading out the yoke angle (3).

2. 3 LNS'TRUMENT Y(FHE RATHS AND ACCELERATIONS

Equations (2-1) through (2-10) can be combined into three groups. They are the transformations from (a) geographical coordinates \{iN, E, V\} to test stand table axes $\left\{\mathrm{X}_{\mathrm{T}}^{\prime}, \mathrm{y}^{\prime} \mathrm{T}^{\prime}, \mathrm{z}_{\mathrm{T}}^{\prime}\right\}$, (b) table axes to Instrument Base $\left\{\mathrm{X}_{\mathrm{r}}, \mathrm{y}_{\mathrm{r}}, z_{\mathrm{r}}\right\}$ and $\left(\mathrm{c}\right.$) Instrument Base to axes on the rotated yoke $\left\{\mathrm{X}_{\mathrm{Yr}}, \mathrm{y}_{\mathrm{Yr}}, \mathrm{z}_{\mathrm{Yr}}\right\}$.

The respective equations are: (a) (2-1) through (2-4), (b) (2-5), (2-7) and (c) (2-9), (2-10).

Since angular rate and linear acceleration vectors acting on the instruments are ultimately desired, the matrices will be combined for rates and accelerations separately, using the following inputs:

$$
\left[\begin{array}{l}
N \\
\mathrm{E} \\
\mathrm{~V}
\end{array}\right]_{\text {rates }}=\left[\begin{array}{c}
\omega_{e} \cos \mathrm{~L} \\
0 \\
-\omega_{e} \sin L
\end{array}\right] \text { for rates and }\left[\begin{array}{l}
\mathrm{N} \\
\mathrm{E} \\
\mathrm{~V}
\end{array}\right]_{\text {accel }}=\left[\begin{array}{l}
0 \\
0 \\
g
\end{array}\right] \text { for accelerations }
$$

In Eqs. $(2-3)$ and (2-10), the constants K_{T} and K_{Y} are set equal to unity when rates are considered and to zero for accelerations.

The results are summarized in Table $2-1$. Aithough second order terms were neglected in combining the various matrices, no terms were eliminated that may ultimately yield second order effects when the specific SAP and PIGA configurations are considered. The test stand azimuth angle (A) is assumed to be equal to zero so that the test table rotational axis may be oriented anywhere in the plane defined by local vertical and the earth's rotational axis.

NOTE:
Misalignments of the coordinate systems are not shown in this figure.

Figure 2-1 Functional Relationships of Test Configuration, Showing Major Coordinate Systems

NOTES: (1) The $R_{2} R_{1}$ matrix products are summarized in Fig. 2-3.
(2) $A=0^{\circ}$.

Figure 2-2
Summary of Coordinate Transformations

Instrument \#3 Instrument \#2 Instrument \#1

NOTES: (1) Matrices shown are equal to $R_{2} R_{1}$.
(2) Instrument \#1 reference axes are chosen to be identical to optical cube axes.
(3) Optical cube axes are nominally same as table axes in position \#1.

Figure 2-3 Instrument Reference Axes and Associated Resolution Matrices

$$
\begin{aligned}
& \text { sIngular Rates }
\end{aligned}
$$

$$
\begin{align*}
& {\left[\begin{array}{c}
\omega_{\mathrm{xr}}^{\prime} \\
\omega_{\mathrm{yr}} \\
\omega_{\mathrm{zr}}^{\prime}
\end{array}\right]=\mathrm{R}_{2} \mathrm{R}_{2}\left[\begin{array}{c}
\omega_{\mathrm{XT}}^{\prime} \\
\omega_{\mathrm{yT}}^{\prime} \\
\omega_{\mathrm{zT}}^{\prime}
\end{array}\right]} \tag{2-13}
\end{align*}
$$

where

$$
\begin{aligned}
& \delta_{10} \\
& \delta_{12} \\
& \triangleq-\epsilon_{\mathrm{S}}+\left[\nu_{\mathrm{T}} \sin (\mathrm{~L}-\mathrm{E})\right] \sin \alpha+\left[\psi_{\mathrm{T}} \sin (\mathrm{~L}-\mathrm{E})\right] \cos \alpha \\
& \left.\delta_{12} \triangleq \nu_{\mathrm{T}} \sin (\mathrm{~L}-\mathrm{E})\right] \cos \alpha-\left[\psi_{\mathrm{T}} \sin (\mathrm{~L}-\mathrm{E})\right] \sin \alpha \\
& \epsilon_{\mathrm{S}} \triangleq \psi_{\mathrm{T}} \cos (\mathrm{~L}-\mathrm{E}) \\
& \triangleq \eta_{\mathrm{s}} \cos \mathrm{~L}+\nu_{\mathrm{s}} \sin \mathrm{~L}
\end{aligned}
$$

X

NOTES: (1) The $R_{z} R_{2}$ matrix produc
(2) Second order terms have b
(3) $\mathrm{A}=0^{\circ}$

$$
\begin{align*}
& \text { Interar Aercelerations } \\
& {\left[\begin{array}{l}
\mathrm{g}_{\mathrm{x}^{\prime} \mathrm{I}}^{\prime} \\
\mathrm{g}_{\mathrm{y}^{\prime} \mathrm{I}}^{\prime} \\
\mathrm{g}_{\mathrm{Z}^{\prime} \mathrm{I}}^{\prime}
\end{array}\right]=\mathrm{g}\left[\begin{array}{c}
-\sin \mathrm{E} \cos \alpha+\left[\delta_{H}+\eta_{0} \sin \mathrm{E} \sin \alpha-\psi_{0} \cos \mathrm{E}\right] \\
\sin \mathrm{J} \sin \alpha+\left[\delta_{5}+\eta_{0} \sin \mathrm{E} \cos \alpha+\nu_{0} \cos \mathrm{E}\right] \\
\cos \mathrm{F}+\left[\delta_{7}-\sin \mathrm{E}\left(\psi_{0} \cos \alpha+\nu_{0} \sin \alpha\right)\right]
\end{array}\right](2-1!1)} \\
& {\left[\begin{array}{l}
g_{\mathrm{xr}} \\
g_{\mathrm{yr}} \\
\mathrm{~g}_{\mathrm{zr}}
\end{array}\right]=\mathrm{R}_{2} \mathrm{R}_{2}\left[\begin{array}{l}
\mathrm{g}_{\mathrm{xT}}^{\prime} \\
\mathrm{g}_{\mathrm{yT}}^{\prime} \\
\mathrm{g}_{\mathrm{zT}}^{\prime}
\end{array}\right]} \\
& \text { (2-20) } \\
& {\left[\begin{array}{l}
\mathrm{g}_{\mathrm{X}} \\
\mathrm{~g}_{\mathrm{y}} \\
\mathrm{~g}_{\mathrm{Yr}} \\
\mathrm{Y}_{\mathrm{Yr}}
\end{array}\right]=\left[\begin{array}{l}
\cos \beta_{\mathrm{r}}\left(\mathrm{~g}_{\mathrm{xr}}-\psi_{\mathrm{r}} \mathrm{~g}_{\mathrm{zr}}+\eta_{\mathrm{r}} \mathrm{~g}_{\mathrm{zr}}\right)+\sin \beta_{\mathrm{r}}\left(\mathrm{~g}_{\mathrm{yr}}+\nu_{\mathrm{r}} \mathrm{~g}_{\mathrm{zr}}-\eta_{\mathrm{r}} \mathrm{~g}_{\mathrm{xr}}\right) \\
-\sin \beta_{\mathrm{r}}\left(\mathrm{~g}_{\mathrm{xr}}-\psi_{\mathrm{r}} \mathrm{~g}_{\mathrm{zr}}+\eta_{\mathrm{r}} \mathrm{~g}_{\mathrm{zr}}\right)+\cos \beta_{\mathrm{r}}\left(\mathrm{~g}_{\mathrm{yr}}+\nu_{\mathrm{r}} \mathrm{~g}_{\mathrm{zr}}-\eta_{\mathrm{r}} \mathrm{~g}_{\mathrm{xr}}\right) \\
\psi_{\mathrm{rr}} \mathrm{~g}_{\mathrm{xr}}-\nu_{\mathrm{r}} \mathrm{~g}_{\mathrm{yr}}+\mathrm{g}_{\mathrm{zr}}
\end{array}\right]} \tag{2-21}\\
& \text { where } \delta_{7} \triangleq \mathrm{~T}^{\sin \mathrm{E}} \tag{2-22}\\
& \delta_{\mathrm{B}} \triangleq\left(\nu_{\mathrm{T}} \sin \alpha-\psi_{\mathrm{T}} \cos \alpha\right) \cos \mathrm{E}+\nu_{\mathrm{S}} \sin \alpha \tag{2-23}\\
& \delta_{\text {ヨ }} \triangleq\left(\psi_{\mathrm{T}} \sin \alpha+\nu_{\mathrm{T}} \cos \alpha\right) \cos \mathrm{E}+\nu_{\mathrm{S}} \cos \alpha \tag{2-24}
\end{align*}
$$

products are summarized in Fig. $2-3$.
have been neglected.
Tuble 2-1
Summary of lates and Accelerations within Test Configurations

3. SAP MATH MODELS

3.1 GLNERAL FORM ()F゙ SAP EQUATICNS (JW MCTICN

The gyro (measuring head) equations of motion derived in Ref. 5. 2 (Eq. 2-1.8b) is simplified considerably when the present SAP test conditions are considered. Justification for omitting certain terms is contained in Ref. 5. 2 and additional considerations will be included in the error analysis report on the strapdown system test program. The resulting SAP equation is given by Eq.(1) in Ref. 5.3 (repeated as Eq. (3-1) below) and is based on the summation of torques on the gyro gimbal/rotor cylinder about its OA being equal to zero. Since the SAP is intended to measure rates relative to inertial space, the gyro torque generator signal $\left(\omega_{t g}\right)$ is zero and the gyro signal generator output is used to drive the SAP yoke such that the inertial rate of the yoke (ω_{z}) acting about the input axis of the gyro is nominally zero. Considering internal gyro errors, Eq. (1) of Ref. 5.3 is as follows:

$$
\begin{align*}
& \omega_{z}+x_{1}\left(g_{x_{Y r}} / g\right)\left(g_{y_{Y r}} / g\right)+x_{2}\left(g_{x_{Y r}} / g\right)\left(g_{z_{Y r}} / g\right)+x_{3}\left(g_{y_{Y r}} / g\right)^{2} \\
& +x_{4}\left(g_{y_{Y r}} / g\right)\left(g_{z_{Y r}} / g\right)+x_{6}\left(g_{z_{Y r}} / g\right)^{2}+x_{6}\left(g_{X_{Y r}} / g\right)+x_{7}\left(g_{y_{Y r}} / g\right) \\
& +x_{8}\left(g_{z_{Y r}} / g\right)+x_{9}\left(\omega_{X_{Y r}} / \omega_{\mathrm{e}}\right)+x_{10}\left(\omega_{y_{Y r}} / \omega_{\mathrm{e}}\right)+x_{11}=0 \tag{3-1}
\end{align*}
$$

The term ω_{z} above is equal to $\omega_{Z_{Y r}}$ and the internal gyro misalignments θ_{x} and θ_{y} contained in x_{9} and ${ }^{Z} Y r x_{10}$ are reinterpreted for the SAP to be referenced to the yoke axis (see Appendix A of Ref. 5.1 and the definitions of θ_{x} and θ_{y} in this report.) Equation (3-1) can be expressed in the

SAP base coordinate system, using the appropriate equations of Table 2-1, as follows:

$$
\begin{align*}
& \dot{-}_{r}=\omega_{z r}+\psi_{r} \omega_{\mathrm{xr}}-\nu_{r} \omega_{\mathrm{yr}} \\
& +\frac{x_{1}}{2}\left[-\left(g_{\mathrm{xr}}^{3} / \mathrm{g}^{2}+\mathrm{g}_{\mathrm{yr}}^{2} / \mathrm{g}^{2}\right) \sin 2 \beta_{\mathrm{r}}+2\left(\mathrm{~g}_{\mathrm{xr}} \mathrm{~g}_{\mathrm{yr}} / \mathrm{g}^{3}\right) \cos 2 \beta_{\mathrm{r}}\right] \\
& +\left[x_{3}\left(g_{z r} / g\right)+x_{\mathrm{b}}\right]\left[\left(g_{\mathrm{yr}} / g\right) \cos \beta_{r}+\left(g_{\mathrm{yr}} / g\right) \sin \beta_{\mathrm{r}}\right] \\
& -\left[x_{4}\left(g_{\mathrm{zr}} / g\right)+\mathrm{x}_{7}\right]\left[\left(\mathrm{g}_{\mathrm{xr}} / \mathrm{g}\right) \sin \beta_{\mathrm{r}}-\left(\mathrm{g}_{\mathrm{yr}} / g\right) \cos \beta_{\mathrm{r}}\right] \\
& +\frac{x_{3}}{2}\left[\left(g_{x r}^{2} / g^{2}+g_{y r}^{2} / g^{2}\right)-\left(g_{x r}^{2} / g^{2}-g_{y r}^{2} / g^{2}\right) \cos 2 \beta_{r}\right. \\
& \left.-2\left(g_{x r} g_{y r} / g^{2}\right) \sin 2 \beta_{r}\right] \\
& +\mathrm{x}_{5}\left(\mathrm{~g}_{\mathrm{zr}} / \mathrm{g}\right)^{2}+\mathrm{x}_{3}\left(\mathrm{~g}_{\mathrm{zr}} / \mathrm{g}\right)+\mathrm{x}_{11} \\
& +x_{9}\left[\left(\omega_{\mathrm{xr}} / \omega_{\mathrm{e}}\right) \cos \beta_{\mathrm{r}}+\left(\omega_{\mathrm{yr}} / \omega_{\mathrm{e}}\right) \sin \beta_{\mathrm{r}}\right] \\
& +\mathrm{x}_{10}\left[\left(\omega_{\mathrm{yr}} / \omega_{\mathrm{e}}\right) \cos \beta_{\mathrm{r}}-\left(\omega_{\mathrm{xr}} / \omega_{\mathrm{e}}\right) \sin \beta_{\mathrm{r}}\right] \tag{3-2}
\end{align*}
$$

Note that the term η_{r} occurs only as products with other small quantities and therefore has been neglected.

Expressions for the ω and g terms are contained in Table 2-1 (Eqs. 2-12, 2-13, 2-19 and 2-20). Since the g terms are in every case multiplied by a small quantity (the $\mathrm{x}^{\prime} \mathrm{s}$), Eq. (2-10) can be simplified:

$$
\left[\begin{array}{l}
\mathrm{g}_{\mathrm{XT}}^{\prime} \tag{3-3}\\
\mathrm{g}_{\mathrm{y}^{\prime} \mathrm{I}}^{\prime} \\
\mathrm{g}_{\mathrm{ZT}}^{\prime}
\end{array}\right]=\mathrm{g}\left[\begin{array}{l}
-\sin \mathrm{H} \cos \alpha \\
\sin \mathrm{E} \sin \alpha \\
\cos \mathrm{E}
\end{array}\right]
$$

Applying Eq. (3-2) to each SAP in each of the three mounting positions, the resulting equations are determined to be functions of the dependent variable β and trigonometric functions of α, β and $(\alpha+\beta)$. There are two forms of the equations, corresponding to SAP input axes parallel and normal to the test table axis. Each is considered in the following sections in order to solve the transcendental, differential equations in β.

3.2 SAP IA PARALLEL TO TATBLE AXLS

Whenever a SAP input axis (z) is nominally parallel to the test table axis, $\dot{\beta}$ is a function of the independent variables, $\dot{\alpha}, \alpha$ and $(\alpha+\beta)$. Letting δ represent the rate error equal to the various misalignment and x terms, the resulting equations are of the form:

$$
\begin{align*}
\dot{-}= & \dot{\alpha}-\omega_{e} \sin (L-E)+\dot{\delta} \\
& +x_{k} f[\sin (\alpha+\beta), \cos (\alpha+\beta), \sin 2(\alpha+\beta), \cos 2(\alpha+\beta)] \tag{3-4}
\end{align*}
$$

Integrating Eq. (3-4) from $t=0$ to $t=t$,

$$
\Delta \alpha+\Delta \beta=\left(\omega_{e} t\right) \sin (L-E)-\Delta \delta-x_{k} \int_{0}^{t} f[] d t
$$

where Δ represents change in the corresponding quantity.

Rowranging termb,

$$
\begin{equation*}
(\alpha+\beta)=\gamma-\Delta 6^{\prime} \tag{3-5}
\end{equation*}
$$

where

$$
\begin{aligned}
\gamma & =\gamma_{0}+\omega_{e} t \sin (L-E) \\
\gamma_{0} & =\alpha_{0}+\beta_{0} \\
\Delta \delta^{\prime} & =\Delta \delta+x_{k} \int_{0}^{t} f[] d t
\end{aligned}
$$

and α_{0} and β_{0} are the initial values of α and β. Since $\Delta \sigma^{\prime}$ is a small quantity, Eq. (3-5) can be substituted back into Eq. (3-4), with the following approximation:

$$
\begin{align*}
\sin (\alpha+\beta) & \cong \sin \gamma \\
\cos (\alpha+\beta) & \cong \cos \gamma \\
\sin 2(\alpha+\beta) & \cong \sin 2 \gamma \\
\cos 2(\alpha+\beta) & \cong \cos 2 \gamma \tag{3-6}
\end{align*}
$$

Note that the $\left(\Delta \sigma^{\prime}\right) \mathrm{x}_{\mathrm{k}}$ products have been neglected. The final form of the SAP math model, for the SAP IA parallel to the table axis, is as follows:

$$
\begin{align*}
{\left[\frac{\dot{\beta}_{r}}{S_{S r}^{o}}+P_{r}\right]=} & -L_{r}-I_{r} \sin \gamma-C_{r} \cos \gamma-D_{r} \sin 2 \gamma-E_{r} \cos 2 \gamma \\
& -\left[Q_{d r} \sin \alpha+\left(Q_{f r} \cos \alpha\right] \omega_{e} \cos (L-E)\right. \tag{3-7}
\end{align*}
$$

where

$$
\begin{aligned}
& \gamma=\gamma_{0}+\omega_{e}^{t \sin (1--1:)}
\end{aligned}
$$

The quantities on the left side of the equation are moasurable, whereas the constants A_{r} thru $\mathrm{F}_{r^{\prime}} Q_{a r}, Q_{b r}$, and $Q_{f r}$ on the right side are to be estimated from inputs of the independent variables $\dot{\alpha}$ and t. Table 3-1 contains a tabulation of the renstants as a function of the various terms to be calibrated.

It will be noted that the test stand misalignment errors $\left(\eta_{g}, \nu_{s}, \nu_{T}, \psi_{T}\right)$ are included in the Q terms. Although the test stand alignment may be sufficiently precise to make the terms negligible, they were incorporated in order to evaluate the possibility of allowing a less precise alignment without effecting the accuracy of estimating the desired calibration terms. If the misalignments are measured accurately, they can be transferred to the left hand side of Eq. (3-7) and incorporated with the p terms.

3.3 SAP IA NORMAL TO TABLE AXIS

The second form of the β equations occurs when the SAP input axis (z) i.s nominally normal to the table axis. Representing the rate error equal to the various misalignment and x terms by $\dot{\delta}$, the resulting equations are of the form:

$$
\begin{equation*}
-\dot{\beta}=\omega_{e} \cos (L-E) \sin \alpha+\dot{\delta}+x_{k} f[\sin \beta, \cos \beta, \sin 2 \beta, \cos 2 \beta] \tag{3-8}
\end{equation*}
$$

Integrating Eq. (2-8) from $t=0$ to $t=t$,

$$
\Delta \beta=\frac{-\omega_{\mathrm{e}} \cos (\mathrm{~L}-\mathrm{E})}{\dot{\alpha}}(1-\cos \alpha)-\Delta \delta-\mathrm{x}_{\mathrm{k}} \int_{0}^{\mathrm{t}}[[] \mathrm{dt}
$$

where Δ represents change in the corresponding quantity.

Rearranging terms,

$$
\begin{equation*}
\beta=\beta_{0}-\Delta \delta^{\prime} \tag{3-9}
\end{equation*}
$$

where

$$
\Delta \delta^{\prime}=\frac{\omega_{\mathrm{e}} \cos (\mathrm{~L}-\mathrm{E})}{\dot{\alpha}}(1-\cos \alpha)+\Delta \delta+\mathrm{x}_{\mathrm{k}} j_{0}^{\mathrm{t}} \mathrm{f}[] \mathrm{dt}
$$

and β_{0} is the initial value of β. The quantity $\Delta \delta^{\prime}$ will be small providing $\omega_{e} \cos (\mathrm{~L}-\mathrm{E}) / \dot{\alpha}$ is small. Assuming this to be the case, Eq. (3-0) can be substituted back into Eq. (3-8) with the following approximations:

$$
\begin{align*}
& \sin \beta \cong \sin \beta_{0} \\
& \cos \beta \cong \cos \beta_{0} \\
& \sin 2 \beta \cong \sin 2 \beta_{0} \\
& \cos 2 \beta \cong \cos 2 \beta_{0} \tag{3-10}
\end{align*}
$$

Note that the $\left(\Delta \delta^{\circ}\right) x_{k}$ products have been neglected. The final form of the SAP math model, for the SAP IA normal to the table axis, is as follows:

$$
\begin{equation*}
\left[\frac{\dot{\beta}_{r}}{S_{s r}^{\circ}}+P_{r}\right]=-L_{r}-M_{r} \sin \alpha-N_{r} \cos \alpha-D_{r} \sin 2 \alpha-E_{r} \cos 2 \alpha \tag{3-11}
\end{equation*}
$$

where

$$
\begin{align*}
& -M_{r} \triangleq-3_{r}-Q_{c r}\left[\omega_{e}\right]-Q_{d r}\left[\omega_{e} \cos (I-I)\right] \\
& -N_{L^{\prime}} \triangleq-C_{r}-Q_{e r}\left[\omega_{e}\right]-Q_{\mathrm{fr}}\left[\omega_{e} \cos (I-I)\right] \tag{3-11}
\end{align*}
$$

and P_{r} and L_{r} are given with Eq. (3-7). The quantities on the left side of the equation are measurable, whereas the constants A_{r} through E_{r} and $Q_{a r}$ through $Q_{f r}$ on the right side are to be estimated from inpuis of the independent variables $\dot{\alpha}$ and t. Table 3-1 contains a tabulation of the constants us a function of the various terms to be calibrated.

The remarks $a i$ the end of Section 3.4 pertaining to the test stand misalignments also applies here.

			Values of Constants		
SAP	Coelf. X Constants		Position ${ }^{1} 1$	Position *2	Position \#3
-	$\begin{aligned} & {\left[\dot{\alpha}_{r}-\omega_{e} \sin (L-E)\right]} \\ & \sin \alpha\left[\omega_{e} \cos (L-E)\right] \\ & \cos \alpha\left[\omega_{e} \cos (L-E)\right] \end{aligned}$	$\begin{aligned} & P_{a} \\ & P_{b} \\ & P_{c} \end{aligned}$	$\begin{aligned} & 1 \\ & v_{01} \\ & \psi_{01} \end{aligned}$	$\begin{gathered} \nu_{02} \\ -1 \\ -\eta_{02} \\ \hline \end{gathered}$	$\begin{gathered} \psi_{03} \\ \eta_{03} \\ -1 \end{gathered}$
	$\begin{aligned} & {\left[\dot{\alpha}_{r}-\omega_{e} \sin (L-E)\right]} \\ & {\left[\omega_{e} \cos (L-E)\right]} \\ & \sin \alpha\left[\omega_{e}\right] \\ & \sin \alpha\left[\omega_{e} \cos (L-E)\right] \\ & \cos \alpha\left[\omega_{e}\right] \\ & \cos \alpha\left[\omega_{e} \cos (L-E)\right] \end{aligned}$	$\begin{aligned} & Q_{a} \\ & Q_{b} \\ & Q_{c} \\ & Q_{d} \\ & Q_{e} \\ & Q_{f} \end{aligned}$	$\begin{gathered} \delta \mathrm{S}_{\mathrm{s} 1} / \mathrm{S}_{\mathrm{S} 1}^{\circ} \\ \psi_{\mathrm{T} 1} \\ - \\ \nu_{1} \\ - \\ \psi_{1} \\ \hline \end{gathered}$	$\begin{gathered} \nu_{1} \\ 0 \\ -\psi_{\mathrm{T} 2} \sin (\mathrm{~L}-\mathrm{E}) \\ -6 \mathrm{~S}_{\mathrm{S} 1} / \mathrm{S}_{\mathrm{S} 1}^{\circ} \\ -\epsilon_{\mathrm{S}}-\nu_{\mathrm{T} 2} \sin (\mathrm{~L}-\mathrm{E}) \\ \psi_{1} \\ \hline \end{gathered}$	$\begin{gathered} \psi_{1} \\ 0 \\ -\epsilon_{\mathrm{S}}-\nu_{\mathrm{T} 3} \sin (\mathrm{~L}-\mathrm{E}) \\ \nu_{1} \\ -\psi_{\mathrm{T} 3} \sin (\mathrm{~L}-\mathrm{E}) \\ -6 \mathrm{~S}_{\mathrm{S} 1} / \mathrm{S}_{\mathrm{s} 1}^{\circ} \end{gathered}$
	$\begin{aligned} & {\left[\dot{\alpha}_{r}-\omega_{e} \sin (L-E)\right]} \\ & \sin \alpha\left[\omega_{e} \cos (L-E)\right] \\ & \cos \alpha\left[\omega_{e} \cos (L-E)\right] \end{aligned}$	$\begin{aligned} & P_{a} \\ & P_{b} \\ & P_{c} \end{aligned}$	$\begin{aligned} & \nu_{01} \\ & 1 \\ & \eta_{01} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & \nu_{02} \\ & \psi_{02} \end{aligned}$	$\begin{aligned} & -\nu_{03} \\ & 1 \\ & \eta_{03} \\ & \hline \end{aligned}$
2	$\begin{aligned} & \quad\left[\dot{\alpha}_{r}-\omega_{e} \sin (L-E)\right] \\ & {\left[\omega_{e} \cos (L-E)\right]} \\ & \sin \alpha\left[\omega_{e}\right] \\ & \sin \alpha\left[\omega_{e} \cos (L-E)\right] \\ & \cos \alpha\left[\omega_{e}\right] \\ & \cos \alpha\left[\omega_{e} \cos (L-E)\right] \end{aligned}$	$\begin{array}{\|l\|} \hline Q_{a} \\ Q_{b} \\ Q_{c} \\ Q_{d} \\ Q_{e} \\ Q_{f} \end{array}$	$\begin{gathered} -\nu_{2} \\ 0 \\ -\psi_{\mathrm{T} 1} \sin (\mathrm{~L}-\mathrm{E}) \\ \delta \mathrm{S}_{\mathrm{s} 2} / \mathrm{S}_{\mathrm{s} 2}^{\circ} \\ \epsilon_{\mathrm{s}}+\nu_{\mathrm{T} 1} \sin (\mathrm{~L}-\mathrm{E}) \\ \psi_{2} \\ \hline \end{gathered}$	$\delta \mathrm{S}_{\mathrm{s} 2} / \mathrm{S}_{\mathrm{s} 2}^{\circ}$ $\psi_{\mathrm{T} 2}$ ν_{2} ψ_{2}	ψ_{2} 0 $\psi_{\mathrm{T} 3} \sin (\mathrm{~L}-\mathrm{E})$ $-\delta \mathrm{S}_{\mathrm{s} 2} / \mathrm{S}_{\mathrm{s} 2}^{a}$ $\epsilon_{\mathrm{S}}+\nu_{\mathrm{T} 3} \sin (\mathrm{~L}-\mathrm{E})$ ν_{2}
	$\begin{aligned} & \quad\left[\dot{\alpha}_{r}-\omega_{e} \sin (L-E)\right] \\ & \sin \alpha\left[\omega_{e} \cos (L-E)\right] \\ & \cos \alpha\left[\omega_{e} \cos (L-E)\right] \end{aligned}$	$\begin{aligned} & P_{a} \\ & P_{b} \\ & P_{c} \end{aligned}$	$\begin{aligned} & -\psi_{01} \\ & -\eta_{01} \\ & 1 \end{aligned}$	$\begin{aligned} & -\psi_{02} \\ & -\eta_{02} \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & \nu_{03} \\ & \psi_{03} \\ & \hline \end{aligned}$
3	$\begin{gathered} {\left[\dot{\alpha}_{r}-\omega_{e} \sin (L-E)\right]} \\ {\left[\omega_{e} \cos (L-E)\right]} \\ \sin \alpha\left[\omega_{e}\right] \\ \sin \alpha\left[\omega_{e} \cos (L-E)\right] \\ \cos \alpha\left[\omega_{e}\right] \\ \cos \alpha\left[\omega_{\mathrm{e}} \cos (L-E)\right] \end{gathered}$	$\begin{aligned} & Q_{\mathrm{a}} \\ & Q_{\mathrm{b}} \\ & Q_{\mathrm{c}} \\ & Q_{\mathrm{d}} \\ & Q_{\mathrm{e}} \\ & Q_{\mathrm{f}} \end{aligned}$	$\begin{gathered} -\nu_{3} \\ 0 \\ -\epsilon_{\mathrm{s}}-\nu_{\mathrm{T} 1} \sin (\mathrm{~L}-\mathrm{E}) \\ -\psi_{3} \\ \psi_{\mathrm{T} 1} \sin (\mathrm{~L}-\mathrm{E}) \\ -6 \mathrm{~S}_{\mathrm{s} 3} / \mathrm{S}_{\mathrm{S} 3}^{\circ} \end{gathered}$	$\begin{gathered} -\psi_{3} \\ 0 \\ -\epsilon_{\mathrm{S}}-\nu_{\mathrm{T} 2} \sin (\mathrm{~L}-\mathrm{E}) \\ \nu_{3} \\ \psi_{\mathrm{T} 2} \sin (\mathrm{~L}-\mathrm{E}) \\ \delta \mathrm{S}_{\mathrm{s} 3} / \mathrm{S}_{\mathrm{S} 3}^{\mathrm{o}} \end{gathered}$	$\begin{gathered} \delta \mathrm{S}_{\mathrm{s} 3} / \mathrm{s}_{\mathrm{s} 3}^{\circ} \\ \psi_{\mathrm{T} 3} \\ - \\ \\ \\ \psi_{3} \\ - \\ \\ \\ \nu_{3} \end{gathered}$

$$
\begin{array}{r}
\frac{\dot{\beta}_{r}}{\left[\frac{\text { For } r=11,22,33}{S_{s r}^{0}}+P_{r}\right]=} \\
-L_{r}-B_{r} \sin \gamma-C_{r} \cos \gamma-D_{r} \sin 2 \gamma-E_{r} \cos 2 \gamma \\
-Q_{d r}\left[\omega_{e} \cos (L-E)\right] \sin \alpha-Q_{f r}\left[\omega_{e} \cos (L-E)\right] \cos \alpha
\end{array}
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{\beta}_{r} \\
S_{s r}^{o}
\end{array}+P_{r}\right] } & =-L_{r}-M_{r} \sin \alpha-N_{r} \cos \alpha-D_{r} \sin 2 \alpha-E_{r} \cos 2 \alpha \quad(3-11) \\
P_{r} & \triangleq P_{a r}\left[\dot{\alpha}_{r}-\omega_{e} \sin (L-E)\right]+\left[P_{b r} \sin \alpha+D_{c r} \cos \alpha\right] \omega_{e} \cos (L-E) \\
-L_{r} & \triangleq-A_{r}-Q_{a r}\left[\dot{\alpha}_{r}-\omega_{e} \sin (L-E)\right]-Q_{b r}\left[\omega_{e} \cos (L-E)\right] \\
-M_{r} & \triangleq-B_{r}-Q_{c r}\left[\omega_{e}\right]-Q_{d r}\left[\omega_{e} \cos (L-E)\right] \\
-N_{r} & \triangleq-C_{r}-Q_{e r}\left[\omega_{e}\right]-Q_{f r}\left[\omega_{e} \cos (L-E)\right] \\
\gamma & \triangleq\left(\alpha_{0}+\beta_{0}\right)+\omega_{e} t \sin (L-E) \\
\epsilon_{G} & \triangleq \eta_{s} \cos L+\nu_{s} \sin L
\end{aligned}
$$

NOTES:

(1) Subscripts on ($\eta_{0}, \nu_{0}, \psi_{0}$) and (ν_{T}, ψ_{T}) refer to mounting position number.
(2) Subscripts on (ν, ψ, and $6 \mathrm{~S}_{\mathrm{s}} / \mathrm{S}_{\mathrm{s}}^{\circ}$) refer to SAP numbers.

Table 3-1
Tabulation of SAP Coefficients

$\left\lvert\, \begin{gathered} \mathrm{s} A P \\ * \end{gathered}\right.$	$\left.\begin{array}{c} \operatorname{con} \cdot \\ \operatorname{tant} t \end{array}\right]$	Position * 1					Position*2				
		$\operatorname{mmp} 0_{0}$	cosis_{0}	$\sin 2 \beta_{n}$	$\cos ^{2} \beta_{0}$	Unity	$\sin \beta_{0}$	cosk_{0}	sin $2 \beta_{0}$		
1	A	-	-	-	-	$\begin{aligned} & +\frac{x_{3}}{2} \sin ^{2} E+x_{5} \cos ^{2} E \\ & +x_{9} \cos E+x_{11} \end{aligned}$	$\begin{aligned} & -x_{\theta} \cos E \\ & -x_{\theta} \mathrm{R}_{\omega} \end{aligned}$	$-\mathrm{x}, \cos \mathrm{E}$ $-x_{10} \mathrm{H}_{\omega}$	$+\frac{x_{1}}{8}(1+3 \cos 2 \mathrm{E})$	$+\frac{x_{3}}{8}($	
	13	-	-	-	-	$+\frac{x_{4}}{2} \sin 2 \mathrm{E}+\mathrm{x}_{7} \sin \mathrm{E}$	$-x_{2} \sin 2 \mathrm{E}$	$-x_{4} \sin 2 \mathrm{E}$	-		
	C	-	-	-	-	$-\frac{x_{2}}{2} \sin 2 \mathrm{E}-\mathrm{x}_{\mathrm{G}} \sin \mathrm{E}$	$+x_{7} \sin E$	$-x_{6} \sin E$	- $\frac{x_{3}}{2} \sin 2 \mathrm{E}$	$+\frac{x_{1}}{2}$	
	I)	-	-	-	-	$-\frac{\mathrm{X}_{2}}{2} \sin ^{3} \mathrm{E}$	$+\frac{x_{4}}{2} \sin ^{2} \mathrm{E}$	$-\frac{x_{2}}{2} \sin ^{3} \mathrm{E}$	-		
	E	-	-	*	-	$-\frac{x_{3}}{2} \sin ^{2} \mathrm{E}$	-	-	$-\frac{x_{2}}{4} \sin ^{2} \mathrm{E}$	$-\frac{x_{3}}{4}$	
2	A	$\left\lvert\, \begin{aligned} & +x_{B} \cos E \\ & +x_{\theta} R_{\omega} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & +x_{7} \cos \mathrm{E} \\ & +\mathrm{x}_{10} \mathrm{R}_{\omega} \\ & \hline \end{aligned}$	$+\frac{x_{i}}{8}(i+3 \cos 2 E)$	$+\frac{x_{3}}{8}(1+3 \cos 2 \mathrm{E})$	$\begin{aligned} & +\frac{x_{3}}{8}(3+\cos 2 E) \\ & +\frac{x_{b}}{2} \sin ^{2} E+x_{11} \\ & \hline \end{aligned}$	-	-	-		
	B	$-x_{2} \sin 2 E$	$-\frac{x_{4}}{2} \sin 2 \mathrm{E}$	*	-	- $x_{0} \sin \mathrm{E}$	-	-	-		
	C	$\mathrm{x}_{7} \sin E$	$-x_{8} \sin E$	$+\frac{x_{3}}{2} \sin 2 \mathrm{E}$	$-\frac{x_{2}}{2} \sin 2 \mathrm{E}$		-	-	-		
	D	$-\frac{x_{4}}{2} \sin ^{3} \mathrm{E}$	$\frac{x_{2}}{2} \sin ^{2} \mathrm{E}$	-	-		-	-	-		
	E	-	-	$-\frac{x_{2}}{4} \sin ^{2} \mathrm{E}$	$-\frac{x_{3}}{4} \sin ^{2} \mathrm{E}$	$\left(\frac{x_{3}}{2}-x_{5}\right) \frac{\sin ^{2} \mathrm{E}}{2}$	-	-	-		
3	A	$\\|+x_{5} \cos E$	$\begin{aligned} & +x_{7} \cos E \\ & +x_{20} R_{\omega} \end{aligned}$	$+\frac{X_{2}}{8}(1+3 \cos 2 \mathrm{E})$.	$+\frac{x_{3}}{8}(1+3 \cos 2 \mathrm{E})$	$\begin{aligned} & +\frac{x_{3}}{8}(3+\cos 2 E) \\ & +\frac{x_{5}}{2} \sin ^{2} E+x_{11} \end{aligned}$	$\begin{aligned} & +x_{7} \cos E \\ & +x_{10} R_{\omega} \end{aligned}$	$\begin{aligned} & -x_{8} \cos E \\ & -x_{g} H_{\omega} \end{aligned}$	$-\frac{x_{2}}{8}(3+\cos 2 \mathrm{E})$	$-\frac{x_{3}}{8}$	
	B	$-\mathrm{x}_{7} \sin \mathrm{E}$	$+x_{e} \sin E$	$-\frac{x_{3}}{2} \sin 2 \mathrm{E}$	$+x_{1} \sin 2 \mathrm{E}$.-.	$+x_{8} \sin E$	$+\mathrm{x}_{7} \sin \mathrm{E}$	$+\frac{x_{3}}{2} \sin 2 \mathrm{E}$	- $\frac{x_{1}}{2}$	
	C	- $\frac{x_{2}}{2} \sin 2 \mathrm{E}$	$-\frac{x_{4}}{2} \sin 2 \mathrm{E}$	-	-	$-x_{\theta} \sin E$	$-\frac{x_{4}}{2} \sin 2 \mathrm{E}$	$+\frac{x_{2}}{2} \sin 2 \mathrm{E}$	-		
	D	$+\frac{x_{4}}{2} \sin ^{2} E$	$-\frac{x_{2}}{2} \sin ^{2} \mathrm{E}$	-	-	--	$-\frac{x_{2}}{2} \sin ^{3} \mathrm{E}$	$-\frac{\mathrm{x}_{4}}{2} \sin 2 \mathrm{E}$	-		
	E	-	-	$\frac{x_{1}}{4} \sin ^{2} \mathrm{E}$	$+\frac{x_{3}}{4} \sin ^{3} \mathrm{E}$	$-\left(\frac{x_{3}}{2}-x_{5}\right) \frac{\sin ^{2} \mathrm{E}}{2}$	-	-	$-\frac{x_{2}}{4} \sin ^{2} \mathrm{E}$	$-\frac{x_{3}}{4}$	

NOTES: (1) All table entries to be multiplied by corresponding column headings.
(2) Constants of second column equal sum of terms in corresponding row for each position.
(3) β_{0} is the initial value of measurement head yoke angle.
(4) The term H_{ω} equals $1 \frac{\dot{\dot{\alpha}}}{\omega_{e}}-$ sit

(1) \#		Position \#3				
$\cos 2 \beta_{0}$	Unily	sın β_{0}	$\cos \beta_{0}$	$\sin 2 \beta_{0}$	$\cos 2 \beta_{0}$	Unity
- $\frac{x_{3}}{8}(1+3 \cos 2 \mathrm{E})$	$\begin{aligned} & +\frac{X_{3}}{3}(3+\cos 2 E) \\ & +\frac{x_{6}}{2} \sin ^{2} E+x_{11} \end{aligned}$	$\begin{aligned} & -x \cdot \cos \mathrm{E} \\ & -\mathrm{x}_{1} \mathrm{R}_{\omega} \mathrm{l} \end{aligned}$	$\begin{aligned} & +x_{0} \cos \mathrm{H} \\ & +x_{\theta} R_{\omega} \end{aligned}$	$-\frac{x_{1}}{8}(1+3 \cos 2 \mathrm{E})$	$-\frac{x_{3}}{8}(1+3 \cos 2 \mathrm{E})$	$\begin{aligned} & +\frac{x_{3}}{8}(3+\cos 2 E) \\ & +\frac{x_{6}}{2} \sin ^{3} \mathrm{~F}_{4}+x_{21} \end{aligned}$
-	$+x_{A} \sin k$	+ X, $\sin \mathrm{E}$	$+\mathrm{X}_{7} \sin \mathrm{E}$	$-\frac{x_{3}}{2} \sin 21:$	$+\frac{x_{1}}{2} \sin 2 \mathrm{~L}$	=
$+\frac{x_{3}}{2} \sin 2 \mathrm{E}$	-	$-\frac{x_{4}}{2} \sin 2 \mathrm{E}$	$+\frac{x_{2}}{2} \sin 2 \mathrm{E}$	-	*	$+X_{B} \sin E$
-	-	$+\frac{x_{2}}{2}: \ln ^{2} \mathrm{E}:$	$+\frac{x_{4}}{2} \sin ^{2} \mathrm{~L}$	-	-	\cdots
- $\frac{x_{3}}{4} \sin ^{2} E$	$\left(\frac{x_{3}}{2}-x_{L}\right) \frac{\sin ^{2} E}{2}$	-	-	$-\frac{x_{2}}{4} \sin ^{3} \mathrm{E}$	$-\frac{X_{3}}{4} \sin ^{2} \mathrm{E}$	$-\left(\frac{x_{3}}{2}-x_{b}\right) \frac{\sin ^{2} E}{2}$
-	$\begin{aligned} & +\frac{x_{3}}{2} \sin ^{2} \mathrm{E}+\mathrm{x}_{5} \cos ^{2} \mathrm{E} \\ & +\mathrm{x}_{4} \cos \mathrm{E}+\mathrm{x}_{11} \end{aligned}$	$\begin{aligned} & -x_{\eta} \cos \mathrm{E} \\ & -x_{20} R_{\omega} \end{aligned}$	$\begin{aligned} & +x_{B} \cos b: \\ & +x_{g} R_{\omega} \end{aligned}$	$-\frac{X_{1}}{8}(1+3 \cos 2 E)$	$-\frac{X_{3}}{8}\left(1+3 \cos 2 E^{\circ}\right)$	$\begin{aligned} & +\frac{x_{3}}{3}(3+\cos 2 E) \\ & +\frac{x_{B}}{2} \sin ^{2} E+x_{12} \end{aligned}$
-	$+\frac{x_{4}}{2} \sin 2 \mathrm{E}+\mathrm{X}_{7} \sin \mathrm{E}$	$+\frac{x_{4}}{2} \sin 2 \mathrm{E}$	$-\frac{x_{2}}{2} \sin 2 \mathrm{E}$	-	-	$-x_{\theta} \sin \mathrm{E}$
-	$-\frac{X_{2}}{2} \sin 2 \mathrm{E}-\mathrm{x}_{5} \sin \mathrm{E}$	$+\mathrm{x}_{5} \sin \mathrm{E}$	$+x_{7} \sin \mathrm{E}$	$-\frac{x_{3}}{2} \sin 2 \mathrm{E}$	$+\frac{x_{1}}{2} \sin 2 \mathrm{E}$	-
-	$-\frac{y_{1}}{2} \sin ^{2} \mathrm{E}$	$-\frac{x_{2}}{2} \sin ^{2} \mathrm{E}$	$-\frac{x_{4}}{2} \sin ^{2} E$	-	-	-
-	$-\frac{X_{3}}{2} \sin ^{3} \mathrm{E}$	-	-	$+\frac{x_{1}}{4} \sin ^{2} E$	$+\frac{\mathrm{X}_{3}}{4} \sin ^{2} \mathrm{E}$	$+\left(\frac{\lambda_{3}}{2}-x_{6}\right) \frac{51 n^{2} E}{2}$
$-\frac{X_{3}}{8}(1+3 \cos 2 E)$	$\begin{aligned} & +\frac{x_{3}}{3}(3+\cos 9 F) \\ & +\frac{x_{0}}{2} \sin ^{2} E+x_{11} \end{aligned}$	-	-	-	-	$\begin{aligned} & +\frac{x_{3}}{2} \sin ^{2} E+x_{5} \cos ^{2} E \\ & +x_{4} \cos E+x_{21} \end{aligned}$
$-\frac{x_{2}}{2} \sin 2 \mathrm{~L}$	-	-	-	-	-	$+\frac{\mathrm{X}_{2}}{2} \sin 2 \mathrm{~L}+\mathrm{X}_{5} \sin \mathrm{E}$
-	- $\operatorname{seg} \sin \mathrm{E}$	-	-	*	-	$+\frac{x_{4}}{2} \sin 2 \mathrm{E}+\mathrm{x}_{7} \sin \mathrm{E}$
-	-	-	\cdots	-	-	$+\frac{x_{1}}{2} \sin ^{2} \mathrm{E}$
$-\frac{x_{3}}{4} \sin ^{2} 4$	$-\left(\frac{x_{3}}{2}-x_{5}\right) \frac{51 n^{2} y}{2}$	-	-	-	-	$\div \frac{x_{3}}{2} \sin ^{2} \mathrm{E}$

$-\sin (L, E)]$

Tabie 3-1
Tabulation of SAP Coefficients (cont'd)

4. PIGA MATH MODILLS

4.1 GENLERAL FORM OF PIGA JQUATIONS (OF゙ MOTION

The PIGA equation of motion derived in Ref. $5 . \pm(\mathrm{Li}$. 14) can be simplified when the present PIGA test conditions are considered. Justification for omitting certain terms will be included in the error analysis report on the strapdown system test program. The resulting PIGA equation is given by Eq. (23) in Ref. 5.4 (repeated as Liq. (4-1) below) and is based on the summation of torques on the gyro gimbal/rotor cylinder about its ()A being equal to zero. Therefore,

$$
\begin{equation*}
m \ell \ddot{z}-M_{u}=\omega_{z} H \tag{4-1}
\end{equation*}
$$

where \ddot{z} and ω_{z} are along the input axis of the gyro itself (not the PIGA yoke). Considering internal gyro alignment errors ν_{P} and ψ_{P}, Eq. (4-1) can be expressed in the PIGA yoke axis coordinate system, as indicated by Eqs. (21) and (22) in Ref. 5.4. The resulting equation is:

$$
\begin{equation*}
\dot{\beta}_{r}=A_{r} \cos \beta_{r}+B_{r} \sin \beta_{r}+C_{r} \tag{4-2}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{r} \triangleq\left(S_{p r}^{\prime} g_{x r}^{\prime}-S_{p r}^{\prime \prime} \omega_{x r}^{\prime}\right) \nu_{p}-\left(S_{p r}^{\prime} g_{y r}^{\prime}-S_{p r}^{\prime \prime} \omega_{y r}^{\prime}\right) \psi_{p} \\
& B_{r} \triangleq\left(S_{p r}^{\prime} g_{x r}^{\prime}-S_{p r}^{\prime \prime} \omega_{x r}^{\prime}\right) \psi_{P}+\left(S_{p r}^{\prime} g_{y r}^{\prime}-S_{p r}^{\prime \prime} \omega_{y r}^{\prime}\right) \nu_{p} \\
& C_{r} \triangleq S_{p r}^{\prime} g_{z r}^{\prime}-S_{p r}^{\prime \prime} \omega_{z r}^{\prime}-B_{p r}
\end{aligned}
$$

and $S_{p r}^{\prime}$ and $S_{p r}^{\prime \prime}$ are the PIGA acceleration and angular velocity scale factors, respectively. The PIGA velocity scale factor $\left(S_{v}\right)$ equals $2 \pi / S_{p}^{\prime \prime}$ where indicated velocity $=S_{\mathrm{v}} \Delta \beta$, with $\Delta \beta$ in revolutions. Note that the term η_{r} occurs only as products with ν_{P} and ψ_{P} and therefore has
been neglected. Eq. (4-2) can be expressed in the PIGA base coordinate system, using the appropriate equations of Table 2-1, as follow,

$$
\begin{equation*}
\dot{\beta}_{r}=A_{r} \cos \beta_{r}+I_{r} \sin \beta_{r}+C_{r} \tag{4-3}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{r}=\left(S_{p r}^{\prime} g_{x r}-S_{p r}^{\prime \prime} \omega_{x r}\right) \nu_{p}-\left(S_{p r}^{\prime} g_{y r}-S_{p r y r}^{\prime \prime} \omega_{y r}\right) \psi_{p} \\
& B_{r}=\left(S_{p r}^{\prime} g_{x r}-S_{p r}^{\prime \prime} \omega_{x r}\right) \psi_{p}+\left(S_{p r}^{\prime} g_{y r}-S_{p r}^{\prime \prime} \omega_{y r}\right) \nu_{p} \\
& C_{r}=S_{p r}^{\prime}\left[\psi_{p r} g_{x r}-\nu_{p r} g_{y r}+g_{z r}\right]+S_{p r}^{\prime \prime}\left[-\psi_{p r} \omega_{x r}+\nu_{p r} \omega_{y r}-\omega_{z r}\right]-T_{p r}
\end{aligned}
$$

and products of small quantities have been neglected. Expressions for the ω and g terms are contained in Table 2-1 (Eqs.2-12, 2-13, 2-19 and 2-20).

4. 2 PIGA EQUATIONS FOR TEST PROGRAM

A solution of the transcendental, differential cquation (4-3) is given by Eq. (35) of Ref. 5.4 , which can be approximated by the following equation:

$$
\begin{equation*}
\dot{\beta}_{r}=C_{r}+\sqrt{A_{r}^{2}+B_{r}^{2}} \sin \left(C_{r} t+\phi\right) \tag{4-4}
\end{equation*}
$$

The solution is based on A_{r}, B_{r}, and C_{r} being equal to constants, which requires $\dot{\alpha}=0$, and that second degree terms of $X=\sqrt{\left(A^{2}+B^{2}\right) / C^{2}}$ are negligible. Further simplification of the test program is possible if full revolution tests are specified. In this case, the integral of the sine term in Eq. (4-4) is zero and

$$
\begin{equation*}
\Delta \beta_{r}=C_{r} \Delta T \tag{4-5}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta \beta_{r}= & 2 \pi \text { radians } \\
\Delta T= & \text { time to complete one revolution of } \\
& \text { the PIGA yoke }
\end{aligned}
$$

and C_{r} is given with Eq. $(4-3)$. The quantity C_{r}, which is a function of the calibration terms to be estimated, is simply determined from $E(1,(4-5)$ by measuring the time i equired to complete one revolution of the PIG.I yoke.

Upon substituting expressions for the ω and g terms from Table 2-1 into the equation for C_{r} and allowing for errors in $S_{p r}^{\prime}$ and $S_{p r}^{\prime \prime}$, the quantity C_{r} can be represented as follows:

$$
\begin{equation*}
C_{r}+R_{r}=S_{r} \tag{4-6}
\end{equation*}
$$

or

$$
C_{r}+\left[R_{a r}+R_{b r} \sin \alpha_{r}+R_{c r} \cos \alpha_{r}\right]=\left[S_{a r}+S_{b r} \sin \theta_{r}+S_{c r} \cos \alpha_{r}\right]
$$

The term α_{r} is the constant angle of the test table and the R terms are functions of the table elevation angle and misalignments of the strapdown system optical cube relative to the test stand coordinates. Therefore, the quantities on the left side of Eq. (4-6) are measurable and can be used to estimate the S constants, which are functions of the calibration terms to be estimated. Table 4-1 contains a tabulation of the R and S terms for each PlGA in each mounting position of the strapdown system on the test table.

The remarks at the end of Section 3.4 pertaining to the test stand misalignments also applies to the PIGA tests.

$\begin{gathered} \text { Poration } \\ = \\ \hline \end{gathered}$	lleil	Constant	$\mathrm{R}_{\text {ar }}{ }^{\prime}{ }^{\text {r }}$ ur		
			Unity	$\sin \alpha$	
1	1	$\begin{aligned} & R_{r} \\ & S_{1} \end{aligned}$	$\begin{gathered} -\mathrm{A}_{z} \\ \delta \mathrm{~A}_{z 1}-\psi \mathrm{IN}_{1} \mathrm{~S}_{\mathrm{s}}-\mathrm{H}_{\mathrm{p} 1} \\ \hline \end{gathered}$	$v_{01} A_{x}$ ${ }^{-} \nu_{p 1} A_{x}$	
	2	$\begin{aligned} & R_{r} \\ & S_{r} \end{aligned}$	$\begin{array}{r} v_{01} A_{z} \\ -v_{p 2} A_{z}-3_{p 2} \\ \hline \end{array}$	$\begin{gathered} A_{\mathrm{x}} \\ -\delta A_{\mathrm{x} 2}-\psi_{\mathrm{J} 1} A_{z} \end{gathered}$	-4
	3	$\begin{aligned} & R_{r} \\ & S_{r} \end{aligned}$	$\begin{array}{r} \psi_{01} A_{z} \\ -\nu_{p 3} A_{z}-H_{p 3} \end{array}$	$\begin{gathered} -\eta_{01} A_{\mathrm{x}} \\ \psi_{\mathrm{p}: 3} A_{\mathrm{x}}+\nu_{\mathrm{rI} 1} A_{\mathrm{z}}+A_{\mathrm{y}} \end{gathered}$	-
2	1	$\begin{aligned} & \mathrm{R}_{\mathrm{r}} \\ & \mathrm{~S}_{\mathrm{r}} \end{aligned}$	$\begin{array}{r} -\nu_{02} A_{z} \\ \nu_{p 1} A_{z}-B_{p 1} \end{array}$	$\begin{gathered} -A_{x} \\ \delta A_{x 1}+\psi_{12} A_{z} \end{gathered}$	ψ_{4}
	2	$\begin{aligned} & R_{r} \\ & S_{r} \end{aligned}$	$\delta A_{z 2}-\psi_{z} \mathrm{~T}_{2} \mathrm{~A}_{\mathrm{x}}-\mathrm{B}_{\mathrm{p} 2}$	$\begin{array}{r} \nu_{02} A_{x} \\ -\nu_{p 2} A_{x} x \end{array}$	
	3	$\begin{aligned} & \mathrm{R}_{\mathrm{r}} \\ & \mathrm{~S}_{\mathrm{r}} \end{aligned}$	$\begin{gathered} \psi_{02} A_{z} \\ -\psi_{p, 3} A_{z}-B_{p 3} \end{gathered}$	$\begin{gathered} -\eta_{02} A_{x} \\ -\nu_{p 3} A_{x}+\nu_{\mathrm{T}, 2} A_{z}+A_{y} \end{gathered}$	- -
3	1	$\begin{aligned} & R_{r} \\ & S_{r} \end{aligned}$	$\begin{array}{r} -\psi_{03} A_{z} \\ \psi_{p 1} A_{z}-B_{p 1} \end{array}$	$\begin{gathered} \eta_{03} A_{x} \\ -\nu_{p 1} A_{x}-\nu_{13} A_{z}-A_{y} \end{gathered}$	6 A
	2	$\begin{aligned} & R_{r} \\ & S_{r} \end{aligned}$	$\begin{gathered} \nu_{03} A_{z} \\ \psi_{\mathrm{p} 2} \mathrm{~A}_{\mathrm{z}}-\mathrm{B}_{\mathrm{p} 2} \end{gathered}$	$\begin{gathered} A_{x} \\ -\delta_{A} A_{2}-\psi_{\mathrm{T} 3} A_{z} \end{gathered}$	-
	3	$\begin{aligned} & R_{r} \\ & S_{r} \end{aligned}$	$\delta A_{z 3}-\psi_{\mathrm{T} 3} A_{\mathrm{x}}-\mathrm{B}_{\mathrm{p} 3}$	$\begin{aligned} & \nu_{03} A_{x} \\ & \psi_{p 3} A_{x} \end{aligned}$	

	$\mathrm{R}_{\mathrm{ra}} \mathrm{r}^{\prime \prime} \mathrm{r}^{\text {r }}$
	cosic
	$\begin{aligned} & \psi_{01} A_{x} \\ & -\psi_{p 1} A_{x} \end{aligned}$
	$\begin{gathered} \eta_{01} A_{\mathrm{s}} \\ -\psi_{\mathrm{p} 2} A_{\mathrm{x}}=\nu_{11} A_{z}-A_{y} \end{gathered}$
$+A_{y}$	$\begin{gathered} A_{\mathrm{x}} \\ -\delta_{A_{X}^{\prime}}-\psi_{\mathrm{II} 1^{\prime}} A_{\mathrm{z}} \end{gathered}$
	$\begin{gathered} -\eta_{02} A_{x} \\ \psi_{02} A_{x}+\nu_{\Gamma 2} A_{z}+A_{y} \\ -\psi_{p 2^{A} x} \end{gathered}$
+ ${ }^{2} y$	$-\delta A_{x^{\prime} 3}-\psi_{1 \cdot u^{A}}$
$-A_{y}$	$\delta_{x 1}^{-A_{x}}+\psi_{\mathrm{TB}} A_{z}$
-	$\begin{gathered} \eta_{03} A_{x} \\ -\nu_{p 2} A_{x}-\nu_{\mathrm{T}} A_{z}-A_{y} \\ \psi_{03} A_{x} \\ -\nu_{p 3} A_{x} \end{gathered}$

$C_{r}=\Delta \beta_{r} / \Delta T_{r}$, where $\Delta \beta_{r}=2 \pi \quad(4-5)$

$$
\begin{equation*}
c_{r}+R_{r}=S_{r} \tag{4-6}
\end{equation*}
$$

$\left[\mathrm{C}_{\mathrm{r}}+\mathrm{R}_{\mathrm{ar}}+\mathrm{R}_{\mathrm{br}} \sin \alpha+\mathrm{R}_{\mathrm{cr}} \cos \alpha\right]=\mathrm{S}_{\mathrm{ar}}+\mathrm{S}_{\mathrm{br}} \sin \alpha+\mathrm{S}_{\mathrm{cr}} \cos \alpha$
$A_{x} \triangleq\left(S_{p}^{\prime} g\right) \sin E+\left(S_{p}^{\prime \prime} \omega_{e}\right) \cos (I-E)$
$A_{z} \triangleq\left(S_{p}^{\prime} g\right) \cos \mathrm{F}+\left(\mathrm{S}_{\mathrm{p}}^{\prime \prime} \mathrm{\omega}_{\mathrm{e}}\right) \sin (\mathrm{L}-\mathrm{F})$
$\delta A_{x r} \triangleq\left(\frac{\delta S_{p}^{\prime}}{S_{p}^{\prime}}\right)_{r}\left(S_{p}^{\prime g}\right) \sin E+\left(\frac{\delta S_{p}^{\prime \prime}}{\left.S_{p}^{\prime \prime}\right)_{r}}\left(S_{p}^{\prime \prime} \omega_{e}\right) \cos (L-K)\right.$
$\delta A_{z r} \triangleq\left(\frac{\delta S_{p}^{\prime}}{S_{p}^{\prime \prime}}\right)_{r}\left(S_{p}^{\prime} g\right) \cos E+\left(\frac{\delta S_{p}^{\prime \prime}}{S_{p}^{\prime \prime}}\right)_{r}\left(S_{p}^{\prime \prime} \omega_{e}\right) \sin (\mathrm{L}-\mathrm{E})$
$\Lambda_{y} \triangleq \nu_{s}\left(S_{p}^{\prime} g\right)+\epsilon_{s}\left(S_{p}^{\prime \prime} \omega_{e}\right)$
$\epsilon_{\mathrm{s}} \triangleq \eta_{\mathrm{s}} \cos \mathrm{L}+\nu_{\mathrm{s}} \sin \mathrm{I}$.

N(TLS:

(1) All table entries to be multiplied by corresponding column headings.
(2) R_{2}, and S_{r} constants equal sum of terms in corresponding row.
(3) Suhseripts on ($\eta_{0}, \nu_{0}, \psi_{0}$) refer to mounting position number.
(4) Subseripts on $\left(\nu_{p}, \psi_{p}, \delta \lambda_{\text {sr }}, H_{p}, \delta \lambda_{2 r}\right)$ retur 16 Plat number.

Tuble a-1
Tabulation of Pled Combients
FOLDOU: 284242

5. REFFLRENCES

5.1 Nelson, R. H., Jr., "Preliminary Considerutions in lusting the NASA/Huntsvillo Strapdown System", DRC: Report li-12545, Dynamica Rescareh Corporation, Stoneham, Mass., (יtober 2(i, 1!1ti7.
5. 2 Quagliata, L., "Fquations of Motion of the NASA Air Beuring Gyro in an Inertially Stabilized Contiguration and in a Strapdown Contiguration", DRC Report E-640t, Dynamies Roscarch Corporation, Stoneham, Mass., Sieptember (i, 1 1!ti6.
5.3 Merz, A. W., "Gypo 'Test Methods", DRC Report Li-1170U, I)ynamikes Rescarch Corporation, Stoneham, Muss., July 17, 1967,
5.4 Nelson, R, II., Jr., "Equations of Motion for a Pendulous Integrating Gyro Accelerometer", IRRC Report Li-477, I)ynamiss Researeh Corporation, Stoneham, Mass., November 14, 1964.

APPENDIX A

LIST' ()F SYMBC)LS

A, A	azimuth angle of test stand, defined as desired angle from true east to stand stand elevation axis, measured about local vertical. Subscript zero indicates initial value.
A_{r} thrui E_{r}	functions of the SAP calibration terms to be estimated and certain constant test conditions (sec Table 3-1). $\mathrm{A}_{\mathrm{r}}, \mathrm{IB}_{\mathrm{r}}, \mathrm{C}_{\mathrm{r}}$ also used in PIGA equations (see Eq. (4-2)).
$A_{x^{\prime}} \hat{A}^{\prime}{ }^{\prime} z^{2}$	angular rate of PIGA yoke due to components of g and ω_{e} relative to test iable base coordinates ($\mathrm{x}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}}, \mathrm{z}_{\mathrm{b}}$)
B_{p}	PIGA bias ($=\mathrm{M}_{\mathrm{u}} / \mathrm{H}$)
E	elevation angle of test stand, defined as desired angle from local horizontal to normal to table axis of rotation, measured about test stand elevation axis $\left(y_{S}\right)$
f	function of
g	gravity
$g_{x c}, g_{y c}, g_{z c}$	x, y and z components of gravity in "coordinate system c "
H	angular momentum of gyro wheel
K_{ab}	gyro compliance coefficients (displacement along axis "a" due to force along axis " b ")
$\mathrm{K}_{\mathrm{T}},{ }^{*} \mathrm{Y}$	constants used when angular rate and acceleration vectors along coordinate axes are considered, $\mathrm{K}_{\mathrm{T}}=\mathrm{K}_{\mathrm{Y}}=1$ for rates and zero for accelerations.
L	local geodetic latitude
$\left.\begin{array}{l} L_{r^{\prime}}, M_{r^{\prime}} \\ N_{r^{\prime}}, P_{r} \end{array}\right\}$	coefficients used in final form of SAP math model

R_{r}, S_{r}
R_{a}, R_{b}, K_{c}
R_{ω}
S_{a}, S_{b}, S_{c}
S^{\prime}
$S_{p}^{\prime \prime}$
S
S_{s}, S_{s}^{O}
T
x_{1}
x_{2}
x_{3}
measurable constants used in SAP math model (functions of $\left.\eta_{0}, \nu_{0}, \psi_{0}\right)$
Q_{a} thru $Q_{f} \quad$ functions of constant SAP calibration terms ('ncludes test stand misalignments)
$\mathrm{R}_{1} \quad$ resolution matrix relating strapdown system optical cube axes to test stand table axes
resolution matrix relating $S A P$ and PIGA bases coordinate system to strapdown system optical cube axes
PIG uncertainty torque
mass of gyro gimbal/rotor cylinder. Also mass unbalance of PIG

North, East, Vertical orthogonal coordinate system coefficients used in final form of PIGA math model measurable constants used in PIGA math model (functions of $\eta_{0}, \nu_{o}, \psi_{o}, A_{x}, A_{y}$)
constant equal to $\left[\dot{\alpha}-\omega_{e} \sin (L-E)\right] / \omega_{e}$
functions of PIGA calibration terms and certain test conditions (includes test stand misalignments)
desired PIGA acceleration scale factor ($2 \mathrm{ml} / \mathrm{H}$)
desired PIGA angular velocity scale factor
desired PIGA velocity scale factor ($=2 \pi / \mathrm{S}_{\mathrm{p}}^{\circ}$)
SAP scale factor. Superscript zero denotes desired value.
time measured from start of test table rotation during SAP tests
coefficient relating $g_{x} g_{y} / g^{2}$ to SAP gyro drift rate $=-(m g)^{2} \mathrm{~K}_{\mathrm{zx}} / \mathrm{H}$
coefficient relating $g_{x} g_{z} / g^{2}$ to SAP gyro drift rate $=+(m g)^{2} K_{y x} / H$
coefficient relating g_{y}^{2} / g^{2} to SAP gyro drift rate $=+(\mathrm{mg})^{2} \mathrm{~K}_{\mathrm{zy}} / \mathrm{H}$

x_{4}	coefficient relating $\mathrm{g}_{\mathrm{y}} \mathrm{g}_{\mathrm{z}} / \mathrm{g}^{2}$ to SAP gyro drift rate $=$ $+(\mathrm{mg})^{\dot{b}}\left(\mathrm{~K}_{\mathrm{yy}}-\mathrm{K}_{\mathrm{zz}}\right) / \mathrm{H}$
x_{5}	coefficient relating $g_{z}^{2} / \mathrm{g}^{2}$ to SAP gyro drift rate $=+(\mathrm{mg})^{2} \mathrm{~K}_{\mathrm{yz}} / \mathrm{H}$
x_{8}	coefficient relating g_{x} / g to SAP gyro drift rate
x_{7}	coefficient r lating $\mathrm{g}_{\mathrm{y}} / \mathrm{g}$ ' to SAP gyro drift rate $=+4 \mathrm{mg} \delta_{z}$
x_{8}	coefficient relating $\mathrm{g}_{\mathrm{z}} / \mathrm{g}$ to SAP gyro drift rate $=-\mathrm{mg} \delta^{\mathrm{y}}$
x_{9}	SAP gyro drift rate $=\theta_{y} \omega_{\mathrm{e}}$
x_{10}	SAP gyro drift rate $=-\theta_{\mathrm{x}} \mathrm{\omega}_{\mathrm{e}}$
x_{11}	SAP gyro drift rate proportional to gyro bias error
x_{k}	general term representing x_{1} thru x_{11}
$\mathrm{x}, \mathrm{y}, \mathrm{z}$	gyro output, spin, and input axes, respectively
$\mathrm{x}_{\mathrm{b}}, \mathrm{y}_{\mathrm{b}}, \mathrm{z}_{\mathrm{b}}$	test table base coordinate axes
$\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{0}, \mathrm{z}_{0}$	strapdown system optical cube coordinate system
$\mathrm{x}_{\mathrm{r}}, \mathrm{y}_{\mathrm{r}}, \mathrm{z}_{\mathrm{r}}$	reference a ${ }^{\text {a }}$ of Instrument (SAP and PIGA) bases
$\mathrm{x}_{s}, \mathrm{y}_{s}, z_{s}$	test stand base coordinate axes
$\mathrm{x}_{\mathrm{T}}, \mathrm{y}_{\mathrm{T}}, \mathrm{z}_{\mathrm{T}}$	test table coordinate axes
$\mathrm{X}_{\mathrm{Y}}, \mathrm{y}_{\mathrm{Y}}, \mathrm{z}_{Y}$	instrument (SAP and PIGA) yoke coordinate axes
\dddot{z}	acceleration along input axis of gyro (measurement head)
α, α_{0}	test stand table angle, defined as desired angle between strapdown system optical cube "y surface" (${ }^{\prime}{ }_{\mathrm{T}}$) and test stand elevation axis $\left(y_{S}\right)$, measured about table rotational axis. Subscript zero indicates initial value.
α	rate of change of α with respect to test stand base
β, β_{0}	instrument (SAP or PIGA) yoke angle, defined as desired angle between inertial reference unit (gyro) spin axis and the strapdown system optical cube "y surface" (y_{r}), measured about the yoke axis. Subscript zero indicates initial value.

B	rate of change of B with respect to strapdown systems optical cube coordinate system
γ, γ_{0}	angle equal to integral of earth rate component along test table axis (nominally equal to $\alpha+\beta$). Subscript zero indicates initial value ($=\alpha_{0}+\beta_{0}$)
$\delta_{y} \mathrm{~m}, \delta_{z} \mathrm{~m}$	gyro pendulosity due to mass unbalance along spin and input ares, respectively (see x_{7} and x_{3})
δS_{p}^{\prime}	error in PIGA acceleration scale factor. True scale factor $=S_{p}^{\prime \prime}+\delta S_{p}^{\prime}$
$\delta s_{p}^{\prime \prime}$	error in PIGA angular velocity scale factor. True scale factor $=S_{p}^{\prime \prime}+\delta S_{p}^{\prime \prime}$
δS_{v}	error in PIGA velocity scale factor ($=S_{v} \delta S_{p}^{\prime} / S_{p}^{\prime}$)
$\Delta \beta$	change in β during system testing
$\Delta \mathrm{T}$	time during PIGA tests for one complete revolution ($\Delta \beta=2 \pi$)
ϵ_{S}	tilt of test stand elevation axis (y_{s}) about axis in earth's equatorial plane and normal to $y_{S}^{s}\left(=\eta_{S} \cos L+\nu_{S} \sin L\right)$
$\begin{aligned} & \left.\theta_{\mathrm{x}}, \theta_{\mathrm{y}}\right) \end{aligned}$	inertial reference unit (gyro) internal misalignment, defined as angle between gyro input axis (z) and yoke input axis (z 7 . θ_{x} is angle measured about output (x) axis and θ_{y} is angle measured about spin (y) axis.
η, ν, ψ	misalignments measured about z, x and y axes, respectively. Positive angles are measured about positive coordinate axes in accordance with the right hand rule. These terms represent quantities to be added to sired values to obtain actual values.
$\eta_{0}, \eta_{\mathrm{r}}, \eta_{\mathrm{s}}$	these terms are the misalignments associated with α, β, and A, respectively.
ν_{0}, ψ_{0}	misalignments between optical cube $\mathbf{z}_{\mathrm{T}}^{\prime}$ slirface and test table z_{T} axis, measured about x_{S} and y_{T}, respectively.
ν_{P}, ψ_{P}	PIG/PIGA misalignments between PIG input axis and yoke: input axis, about the PIG spin (y) and output (x) axes, respectively
ν_{r}, ψ_{r}	misalignment between SAP yoke axis (z_{r}^{\prime}) and optical cube z_{r} surface, measured about x_{r} and y_{r}, respectively

[^0]: *For reader convenience, Chapter 2 Figures and Tables are located at end of chapter.

