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1. INTRODUCTION

The purpose of this report is to derive math models that characterize
the SD-53 Strapdown System during laberatory system tests. The tests are
designed to measure primarily the misalignments between the strapdown
system optical cube reference axes and the input axes of the three Single-Axis-
Platforms (SAP) and three Pendulous Integrating Gyro Accelerometers (PIGAs).
The tests contemplated also provide estimates of bias and scale factor error
in each SAP and PIGA, and for each of the SAP gyros, the eight g-sensitive
drift rates and the two internal misalignment components between gyro IA and

platform yoke axis.

Preliminary test considerations are contained in Ref, 5.1, including
development of the form of the math models. As mentioned in Ref.5.1, two
series of tests are proposed (with and without rotation of the test table), for
a minimum of three orientations of the strapdown system with respect to the
test table. This report extends the analysis to include all contemplated test
positions, as well as various yoke angles (head positions) of the SAP's whose
input axes are nominally perpendicular to the test table axis of rotation. Con-
sideration of required optical measurements and test stand alignment errors is
also included. However, specific test sequences, test table and head positions,
error analyses, and other test conditions are not included. Subsequent reports

will cover those areas.

The coordinate systems, definitions of symbols, etc. defined in
Appendix A are compatible with those in Ref. 5. 1.
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2, GENERAL DEVELOPMENT OI' MATH MODELS
2,1 TEST CONFIGURATION AND PHILOSOPIIY

The functional relationships of the system test configuration arc shown
in Fig. 2-1».‘ The test table base, defined by the test stand elevation axis and
the table rotational axis, is oriented with respect to the local geographical
coordinate system (East and vertical) by the azimuth and elevation angles, A
and E, respectively. It is assumed that errors in this alignment can be made
"sufficiently small' to justify the neglecting of second order terms. The test
stand is capable of driving the test table at a precise rate (&) through an

angle « .

The strapdown system is mounted to the table and tested in each of
three positions, as indicated in Fig. 2-3, Outputs of the system consist of yoke
angle readings (B) from each of the three SAPs and three PIGAs. Tests asso-
ciated with the SAPs are conducted with the test table driven at a precise,

constant rate. The table is not rotated during the PIGA tests.

The outputs of the instruments (i. e. , SAPs and PIGAs) conta,in misalign-
ment information only relative to the test stand elevation and rotational axes
since the test conditions are changed relative to these axes. However, it is
required to determine the misalignments relative to the strapdown system
reference axes (as defined by the optical cube). Therefore, the relationship
between the test stand coordinate systems and the strapdown system optical
cube must be .neasured accurately for each mounting position of the strapdown

system.

s
For reader convenience, Chapter 2 Figures and Tables are located at

end of chapter,
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Certain misalignments of the test stand coordinate systems contribute
to errors in estimating the required calibration terms, These error sources
must cither be made negligible or else scparated from the desired terms by
obtaining additional measurements, either as part of the system tests or
separately, The analysis in this report is sufficiently flexible to handle any

of these alternatives.

The test philosophy is to obtain sufficient test measurements to allow
accurate estimation of the required calibration terms, To do this, multiple

measurements in various test configurations are necessary.
2, 2 CCORDINATE TRANSFGRMATIONS

The relationships between the various coordinate systems are shown
graphically in Figs. 2~1 and 2-2, The mathematical relations derived in this
section are used to express the inertial rates and accelerations at the inputs
to both the SAP and PIGA instruments, for the test conditions contemplated.
Development of the equations for the specific applications, considering the
dynamics of each instrument, are contained in Sections 3 and 4. All errors
are assumed to be sufficiently small to justify the neglecting of second order

terms.

The sequernce of coordinate transformations is indicated in Fig, 2-2,
Considering the misalignments,(@7S and vs) in aligning the test stand elevation
axis (y,s) from east and vertical, the relationship between the test stand base

and the geographical coordinate system is as follows:




:::; B Mg 0] [cosa sina 0] [N]
y'S *|mg 1 v | |-sinA  coeA 0 I
z's 0 Vs 1 0 0 1 \% (2-1)

The relationship between the test table base and test stand base,
including the misalignment (vT, ¥p) of the table axis of rotation relative to

the test table base is as follows:

1 T - 1 [ ceintal e
rxb 1 0 z,bT cos E 0 sin 1 X'
Y= 0 1 Vip 0 1 0 Yy
l-z b, _‘_p'l’ Vi 1_ _smE 0 cos E_J Lz s | (2-2)

The quantity 'pT is in essence the misalignment associated with the desired

elevation angle E,

Next, a set of rotating axes (x o Yoo zT) fixed to the test stand tahle

is defined by

- = — , ! .’
X cos(a + no) sin(a + no) 0| x5 0
- -g1 ’ +
Yp | = sin(a + no) cos(a + no) 0|l|y 5 0
z 0 0 1{]z2° K, o
L T.—n L— — S-- L. T —

The last term in Eq. (2-3) will be used subsequently when angular rate
and acceleration vectors along the coordinate axes are considered. The term

"o represents the inaccuracy in reading out the table angle () . It will be

e an— ™
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assumed that the test stund errors are either measured separately from the
strapdown system tests and corresponding compensationg applied, or that
the errors will be estimated as part of the system test program and used to
justify the assumption to be made that the errors are sufficiently small to
neglect second order terms,

The misalignments (u0 and a,bo) between the strapdown system optical
cube and the table axis, about the X and Y axes respectively, are used to

define the coordinate system of the optical surfaces, as follows:

%1 [1 0 -JJJ x|

T T
y’l‘ =10 L Vo yT
Z wo -vo 1 ZT (2-4)

d — hnamen ool b mard

To relate the {x'T, y:r, z’T} axes to fixed axes on the optical cube,
it is necessary to define a resolution matrix (R,) since three orientations of
the strapdown system relative to the test stand table axes {xT, Yo zT} are

contemplated. Hence,

<1 [
yo = R yT
LZO.J _ZT_ (2-5)

Defining mounting position #1 such that the optical cube axes are iden-

tical to the {x7, y,'l,, z:r} coordinate system, the three mounting positions are

T
defined by matrix R, as follows:




e

ot g3

Mounting Position # 1 4 3
0 1 0} 0

Matrix R, 0 1 0 0 0 ~-1 0 1 0

0 0 1 0 1 ¢ -1 0 0

(2~0)

Next, the relationships between the bases of the three SAVPs und

PIGAs are defined in terms of the optical cube by resolution miatrix Ry, as

follows: ] e
r 0
yr o ;RE yo
z 2 (2-7)
L L L ©

The subscript r is used to designate a particular instrument and mounting

position,

Choosing the reference axes of SAP #1 and PIGA #1 to be ide °tical to

the optical cube, matrix Ry is equal to the following;

SAP # 1 2 3
1 0 O 1 0 O 0O 1 0
Matrix Rz 0O 1 0 0O 0 1 0 0 1
0 0 1 0 -1 0 1 0 0 (2-8)

The above relationships are summarized in Fig. 2-3, including the various

Rz R; matrix products

Having defined reference axes for each instrument (viz., SAPs and
PIGAs), the effect of instrument yoke axis migalignments (vr,wr) are defined

as follows:




aad vy r ! ] By e —y
x’ 1 0 - X
r r r
#
v 0 1 v .
L 5 l‘s l} :!Il
r i §
Z v, 1 2 2-4
r v r r ‘:r ( )
hn WJ Mw— i buoe: e "

The final eoordinate transformation is used to define axes on the
rotuting instrument yoke, to which the inertial reference units (gyros) are

referenced, lence,

-~ 7 T _, i b e N s B aP
Xerp cc:s(sr 4 nr) sin(g nr) 01} =% 0
Yyp | = |-8in(, +n,) cos(B +n.) Oy )| 0
Pve | | ° ’ 5] By

{"~10)

The last term in Lig. (2-10) will be used subsequently when angular
rate and acceleration vectors along the coordinate axes are considered. The

term 7 = represents the inaccuracy in reading out the yoke angle (,S‘)

2.3 INSTRUMENT YORKXE RATES AND ACCELERATIONS

Equations (2-1) through (2-10) can be combined into three groups.
They are the transformations from (a) geographical coordinates {27, E, V} to

test stand table axes {xfr, y'T, zﬁr} , (b) table axes to Instrument Base

{xr, Y zr] and (c) Instrument Base to axes on the rotated yoke {er, er, er}.
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‘The respective equations are: (a) (2-1) through (2-4), (b)(2-5), (2-7)
and (¢) (2-9), (2-10).

Since angular rate and linear acceleration vectors acting on the instru-
ments are ultimately desired, the matrices will be combined for rates and

accelerations separately, using the following inputs:

j ™ ™ ™
N wecosl, N 0
Bl = 0 for rates and I = 0 | for accelerations
v rates we'smL LV- accel L..g . (2"11)

In Egs. (2-3) and (2-10), the constants KT and KY are set equal to unity

when rates are considered and to zero for accelerations,

The results are summarized in Table 2-1. Aithough second order
terms were neglected in combining the various matrices, no terms were eli-
minated that may ultimately yield second order effects when the specific
SAP and PIGA configurations are considered. The test stand azimuth angle
(A) is assumed to be equal to zero so that the test table rotational axis may
be oriented anywhere in the plane defined by local vertical and the earth's ro-

tational axis.




Measuring Head

Yoke Axis N };3

Base of Typical Optical Cube

Instrument
(SAP or PIGA)

——-—""”XO

Test Table

Test Table
Rotational
Axis

Test Tab}ed>\

Base

\é
/ y-— (Elevation Axis of

f é Test Stand)
V, z
S z,

NOTEL:
Misalignments of the coordinate systems are not shown in this figure.

Figure 2-1 Functional Relationships of Test Configuration, Showing
Major Coordinate Systems
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Coordinate {

Transfor- N p vV o, [/ ) l/ ot V,w n
%y z r'r z, 2, 27 o' Yo 2 ¢

mations r |
L - L — L . L L
Axes on Yoke Instru-  QOptical Cube Gptical Axes on
Rotated Axis ment {axes same Surfaces Rotated
“Yoke N Base as SAP#1) Table
(‘
i - — - - - -
cos (,Bn-* nr) sxn(8r+ nr') 0 1 0 -¢1P 1 0 4 cos (a Ny
. Transfor- ]
mation {|~stn (Br-l- ", ) cos (ﬁr + nr) 0 0 1 v, 0 1 v, -gin (a +no)
Matrices
0 0 1 g',P - Ur 1 :LO ”Vo l 0
L_. . L. - | . L

NOTES: (1) The Ry Ry matrix products are summarized in Fig, 2-3.
(2) A = 0°,
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Summary of Coordinate Transformations
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Mounting
Position #1

Mounting
Position #2

Mounting
Position #3

Instrument #3

%3

X31

Zap

Yaz

Z33
1 O
o 0
o 1

Instrument #2

Zz
Y21
B
0 0
o -1
Z>
1 0 0
0 1 O
0 1
Zas
Yaa
X2
-
0O 0 1
-1 0 O
0 -1 O

NOTES: (1) Matrices shown are equal to Ry R; .

(2) Instrument #1 reference axes are chosen to be identical
to optical cube axes.

Instrument #1

(3) Optical cube axes are nominally same as table axes

Figure 2-3

in position #1,
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Angular Rates

-Lui % - sin(l. - E)] + (cosa - nosina)cos(L - )+ 614
»
S R L S I ; . o).
* uo[x(‘ sin(l. - L)} (sina +n cos a)cos(l. - E)+ 64,
. [%« - sin(l - E)] + (uosina +zpocosa)ccs(L - )+ 6,2 (2-12)
L ¢
~ -
‘l
Cbx,l.
v
REBl Uay.l\
W, (2-13)
e o
- -
-y <1 3 + - 3
cOsﬁr(wxr' Ypr ™ nrwyr) " smﬂr(u'yr S T e W
-smﬁr (wxr i w?.‘wzr ¥ nrwyr) " Cosﬂr(wyr TV T My xr)
buw - vw v+ B (2-14)
roxr royr Zr r
L. l e
\\ ‘ . '
where 810 | = €, +Iypsin(L - E)lsina + [p .sin(L - E)lcosa (2-15)
\
\
613 % -€ +[VTsin(L - E)]cos ~[z,stin(L - E)lsina  (2-16)
b & wcos(L - E) (2-17)
€ 8 \n cosL + v _sinL (2-18)
s s s
NOTES: (1) The R, R; matrix produc
\ (2) Second order terms have b
N ' (3) A = 0°
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Linear Accelerations

B -8inls coso b (64 A n ik sine - § cos 1:]
8Ly |7 g sinlisina + [6g 4 m sink cosa 4 v cos 12]
P a " - P o : 2-—1!!
B cos I i [6, sinkE() cosa + v sin a)] | ¢ )
L . - -
P — P , -T
gxr ng
— ’
gyr Rz2R, gy'l‘ .
Eyr EoT (2-20)
- - n -
Y - e + -
ngr Cosﬁr(gxr wrgzr * 77rgzr) * smBr(gyr VrBar nrgxr}
= | ~-g1 - + + -
ngr Smﬁr(gxr Vrlor ¥ nrgzr) cosﬁr(gyr YrBor 77rgxr)
- (2-21)
&2 Y pByr Vrgyr Ear
Yr
L. - L. -
where §, 2 s»:;&,l,sinE (2-22)
2 ina - D ' 2-9:
g (stma qucosa)cosL + v _sina (2-23)
6y = (szsina +vTcosa)cos B+ v _cosa (2-24)

roducts arc summarized in Fig. 2-3.
have been neglected.
Table 2-1

summary of Rates and Accelerations
within Test Configurations

Fozpoy, FRay 2
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3. SAP MATH MODELS
3.1 GENERAL FORM OIF SAP EQUATIONS Gl MGTION

The gyro (measuring head) equations of motion derived in Ref. 5.2

(lXq. 2-18b) is simplified considerably when the present SAP test conditions
are considered, Justification for omitting certain terms is contained in
Ref. 5. 2 and additional considerations will be included in the error analysis
report on the strapdown system test program. The resulting SAP equation
is given by Eq.1)in Rel, 5. 3 (repeated as Eq. (3-1) below) and is based on the
summation of torques on the gyro gimbal/rotor cylinder about its OA being
equal to zero. Since the SAP is intended to measure rates relative to iner-
tial space, the gyro torque generator signal (wtg) is zero and the gyro signal
generator output is used to drive the SAP yoke such that the inertial rate of
the yoke (wz) acting about the input axis of the gyro is nominally zero. Con-

sidering internal gyro errors, ¥.q.(1)of Ref. 5.3 is as follows:

w o+ ox (g leMg. lg) + x2a(g. leMeg. lg) * xalg. [g)?
2 S S "Ny ; “Yr ; Yyr

+ x4(gy /eNg, 8 + xslg, /g)z+ xe (g,

/g) + x.(g. /g
Yr Yr Yr Y

Yr Yr

+ Xg (gZ [g) + xg(w_ /we) + xm(wy /we) + Xy = 0

Yr r Yr (3_1)

The term w, above is equal to w, and the internal gyro misalign-
ments ex and Gy contained in xg and xr Xj10 are reinterpreted for the
SAP to be referenced to the yoke axis (see Appendix A of Ref. 5.1 and the defi-

nitions of Gx and Gy in this report.) Equation (3-1) can be expressed in the

-13-
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SAP bage coordinate system, using the appropriate equations of Table 2-1,

as follows:

B 0= w . tYpw - VW
r Ay roXxr royr

+ %L [-—(g?_\;][‘/ga + g*;r/gz)sin 28,4 2(;.>;mg:w/fz,“ax )eos EBrJ
4 [xg (gzx,/g) + xﬂl[(g},r,/g)CDSﬁr + (gyr/g)sinﬁr]
- [xalg, . /8) t %, ]g, [g)sing , - (gyr/g)COSﬂI,]
ek, e® el et) - (g, /8% - 8%, g®cos 2

- (g, &, /8" )sin28 ]
+ Xg (gzr/g)2 + x‘3(gzr/g) + X,

+ xg[(wxr/we)cosﬁr + (wyr/we)SinBr]

+ xlo[(wyr/we)cosﬁr - (wxr/we)SinBr] {3-2)

Note that the term n, occurs only as products with other small quantities

and therefore has been neglected.
Expressions for the w and g terms are contained in Table 2-1

(Egs.2-12, 2-13, 2-19 and 2-20). Since the g terms are in every case mul-

tiplied by a small quantity (the x's), Eq. (2-19) can be simplified:

-14-
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#
xg“ »

=] [Csinlcosq]
8 sinlicos
g;,,l. = g|sinkE sina
’ -
cos ls 3-3
ngrl* _ (3-3)

Applying I5q. (3-2) to each SAP in each of the three mounting positions,
the resulting equations are determined to be functions of the dependent variuble
B. and trigonometric functions of «, B and (o+B). There are two forms of the
cyuations, corresponding to SAP input axes parallel and normal to the test
table axis, Ilach is considered in the following sections in order to solve the

transcendental, differential equations in B .
3.2 SAP IA PARALLEL TO TABLE AXIS

Whenever a SAP input axis (z) is nominally parallel to the test table
axis, B is a function of the independent variables, o , o and (a+p). Letting
0 represent the rate error equal to the various misalignment and x terms,

the resulting equations are of the form:

[3

-B = o -~ wesin(L-E) + b

+x f[sin(@+B), cos@+8), sin2(a+p), cos2io+p)]

(3-4)
Integrating Eq. (3-4) from t=0to t=t,
t
+ = 31 - ] o - A
ho + AB (w, t) sin (L -1) - 6 .xkjo £ ]dt

where A represents change in the corresponding quantity.

-15-




Rearranging terms,
(+B) = y - 86’ (3-5)

where

Y T vy tw! sin(l. - I3)

Yo T % T Po
t
A6° = AD xkfof[]dt

and O and [30 are the initial values of o and B . Since A6’ is a small
quantity, Xq.(3~5) can be substituted back into Eq. (3-4), with the following

approximation:

sin (o + B) = sin v
cos(a+B) = cosy
sin2(@ +8) = sin2y
cos2(a+B) F cos2y - (3-6)

Note that the (A87)x, products have been neglected. The final form of the
SAP math model, for the SAP IA parallel to the table axis, is as follows:

B,
— 4+ Pl = -L - A - (Y - D si - 10 6os©
5 Pl L, - Bsiny - Crcosy - Dsin2y - E cos2y
- [Qy sina + Q; cosa]w cos(L - E) (3-7)
~-16-
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where

PP

- -} -+ 3 i -+ 3 . ] ' .- :
r apl%p wesin(l. )] llbrama Jﬂ,x oaa]wux os(l. - 1)

"A:‘ - Le”[ar - w('sm(l. -1 - Qbr[wcn“oq(l' - 1]
rA " wetsin(l. - 1J)

The quuntitics on the left side of the equation are measuruble, whercus the

constuants A_thru li , « ¢ und ¢ 1 the right side are to be esti-
) r pr oy Wy Uy O ’ gh

mated from inputs of the independent variubles o and t, ‘Table 3-1

containg a tabulation of the constants us a function of the various terms to

be culibrated,

It will be noted that the test stand misalignment errors (n,, V., Voo b.p)
are included in the Q terms, Although the test stund alignment may he suffi-
clently precise to make the terms negligible, they were incorporated in order
to evaluate the possibility of allowing a less precise alignment without effecting
the accuracy of estimating the desired calibration terms. If the misalignments
are measured accurately, they can be transferred to the left hand side of

Eg. (3-7) and incorporated with the P terms.
3.3 SAP IA NORMAL TO TABLL AXIS

The second form of the 8 equations occurs when the SAP input axis
(z) is nominally normal to the table axis, Representing the rate error equal
to the various misalignment and x terms by 0 , the resulting equations are

of the form:

f[sinB, cosB, sin2B, cos 28]

-B = w_cos (L - E)sina + 6 + %)
(3-8)

-17-




Integrating Eq. (2-8) from t=0 to t=1t,

-wecos(l,-»lﬂ) t
M = . (1 - cosa) -~ A - xlf £ Jat
o 0

where A represents change in the corresponding quantity.

Rearranging terms,

B = By - 66 ¢ (3-9)
where
w_cos(L - 1) t
pd = . (1 - cosa) +ad + ka £ ]dt
o -0

and B, is the initial value of 8. The quantity Ab * will be small providing
wecos(L -E)a is small. Assuming this to be the case, IEq.(3-9) can

be substituted back into kqg. (3-8) with the following approximations:

sinf = sinB0

cosf = cosBO

sin 28 = sin 28,

cos28 =  cos 28, (3-10)

Note that the (aAd ')xk products have been neglected. The final form of the
SAP math model, for the SAP IA normal to the table axis, is as follows:

[

B,
X +P ] = -L - M sina - N cosa - D sin2x - E cos 2«
S p r r r r r r

(3-11)

-18-
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where

- b 13 - - (1 - |
M I%P ch[wej er[wec:oa(l, 15)]

ne>

I Qulw,] - W lw cos(l. - 1)) (3-11)
and Pr' and I"r are given with Xqg. (3-7). The quantities on the left side of

the equation are measurable, whereas the constants Ar through Er and (‘)'ar

through er on the right side are to be estimated from inputs of the indepen-
dent variables o and t. Table 3-1 contains a tabulation of the constunts

as a function of the various terms to be calibrated.

The remarks &t the end of Section 3. 4 pertaining to the test stand

misalignments also applies here,

~19-




Values of Constants

Coeff, X Constants Position #1 Position #2 Position #3

[d;r - W, &ln (L~ E)] P, 1 Yoz Yos
sino |w cos (L - )] B, Vo -1 M3
cos o[w cos (L - E)] P ¥o1 T -1

[dr - wesin (L. - E)] Q 65, /S°&1 vy ¥

[w cos (L - E)] Q ¥py 0 0
sin o [we] Qc - -gb,msin (L - E) -€g " v,rssin (L - E)
silo [wecos (L ~E)] Qy v -6851/ 5 v
Ccog a[wﬂ] Qe - -, - V,I,zsin (L - E) -¢T3sin (L - E)
cosalw cos (L - E)] Qp ¥ ¥ -85,/ 8°,

—"*———————-———3-——6_—,_________*______1

[dr - wesin (L -E)] P You 1 Vo3
sinq [wecos (L -E)] B 1 Yoo 1
cosa[wecos (L - E)] PC o1 %2 Mo3

6 -wsin(L-B)] |Q v, 65,/ 5", b,

2 [w cos (L - E)] Q 0 $rg 0
sina {w_] Q| - $pySin (L - E) - $pgsin (L - E)
sina [wecos (L -E)] Qy 5582/ S v, - 6852/ 5,
cosa[we] Q. € *Vr, sin(L - E) - € *Vpgsin(L -E)
cosafw cos (L - E)] Q, ¥y by v,

[a'zr - wesin (L -E)] . .4,01 -%2 1
sina [w_cos (L - E)] B o1 o2 Vo3
cosa[wecos (L - E)] P, 1 1 'pOB

[@, - wsin(L-E)] | Q Vg s 65 4/ 8°q

3 [wecos (L -E)] Q, 0 0 :st
sina [we] Qc - €= Vg sin (L'- E) -€ - ”'rzsm (L -E) . -
sina [wecoé (L-E)] Qy ¥, Vg ¥y
cosa[we] Qe :p,m sin(L - E) szsin (L -E) -
r:osal'u.v:f:os (L -E)] Qg -5SS3/ .3 6853/ S“S3 Vs
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For r =11, 22,33

B
r . — ) , i
[—g‘;r'% Pl L - Bsiny - C cosy - D sin 2y - E cos 2y
- er[ w cos (L - E)]sina - er[wecos (L - E)]cosa
(3-7)
. For r = 21,31,12,32,13,23
B
r 2 - - i - - i - -
[ggr + Pr] L - M sina N.cosa - D sin 20 - E cos 2 (3-11)
é y - i - Y iney + D -
Pr Par[ar wesm(L E)] +[Pbrsmq . +crcosa]wecos(L E)
4 A - ¢ - w sin(L -~E) - -
-Lr Ar Qar[ @, -w.sin (L - E)] Qbr[wecos (L - E)]
A g - - -
-M G Br ch[ we] er[ w_cos (L - E)]
4 ;
-Nr = —Cr Qer[ we] er[ w_cos (L - E)]
¥ 4 (a0+50)+wetsin(L-E)
€ 4 cosL + v _sinL
5 3 S
NOTES:

(1) Subscripts on (no.vo, .po) and (VT,IbT) refer to mounting

position number.

(2) Subscripts on (v, ¢, and GSS/S"S) refer to SAP numbers.

Table 3-1

Tabulation of SAP Coefficients
..20..
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(2) Constants of second column equal sum of terms in corresponding row for each position,

(3) BO is the initial value of measurement head yoke angle,

FOLDOUT FRAML /

(4) The term Rw

W

[S]

..&,&.KTM PP e .
Position #1 Pogition #2
RAP| Conell -
=i i I i ¢ g 4 ni o . s
mr” t:.mt’ mﬁo o ;30 sin 2;30 Con [30 Unity ﬁlnﬁo cus ;30 8in .2;3n ¢
+-’-;-§ sin®E + x5 cos”E || - xgcos E - %Xsco8T |+ %3-(1 + Jeos2E) |+ %9-(
A - - d hd
+ xpeos E o+ oxpy ~ Xo Rw = X0 RUJ
B - - - - + 1\-{5“—5111 2E + xy8inE -~ %p8in 2E ~ X4 8in 2L -
M . Xa . P i xa N Xa 11 21,
i C - - - -—2—ssz-xasmL * Xq8inE -~ XgSinE --;:-sin 25 e
X . y X Ko
- - - - v 2L A 24, g | . 22 an -
I 5 8in B + 5 sin“E 0) sin® I3
K - - - - - -)—‘,{2-‘1 sin®E - - - 21 gin%g - %{ﬁ
+ %508 E |+ Xyc08E +-’-gl(i + 3cos 2B) +§83-(1 + 3cos 2E) +%1(3 + cos 2E) - - -
A
+ Xy Rw + Xip Rw + -}52-9 Bin®E + xy,
B ||-xgsin2E --’;:Asin AD - - - xgBin E - - -
2 C Xo8ink |- xg8ink *’%‘lsm 2E - -’-{Z-Lsin 2E - - -
D ||-%tsin®E | Z2sin®E - - - - -
. x X3 . B X 5in?E - -
E - - - -,f-sin'E - -—f-sm"’ﬁ, ( —,23- o) =5~ -
+ Xgco8E [+x,c08E + i1'-(1 + 3cos 2E) |+ 22(1 + 3cos 2K) + i‘-“-(3 + cog 2E) + x,co8E - %g 005K - 2(—L(:j + cos 21) - Xy
A 8 8 8 8 B
Xg .
*+ %R + X0 R, .~ +»245-sm3E + Xy + ¥R, - %e R
B ||- x,8inE |+ xg8inE | - 32 sin2E + %, 8in 2E - + X SinE | +x,8inE | +22sin2K - &
» 2 1 -] 2 2
3 C ~§;—51an —:"ié&stE - - - Xg SinE - Z45in2FE +=“§’-sin2E -
D (+ZtsinE | - 225in%E - - - -Xa4in%g | - Asinog -
2 2 2 2
[ |
E - - 5%— sin®E + 5{"— sin®E -(-%"— - xs)-s—lﬂé-g - - - %—L 51k - —Xf
NOTES: (1) All table entries to be multiplied by corresponding column headings, equals [-‘l— - sit




n#e Pogition #3
cos 28 Unity sy o8 f, $in 28 o8 28, Unity
T - S ” X ; o L 23 s 5 + 22 (3 + cos 21
: %«_(1 + dcos BE) +%§-(3 + cos 2K) - %.COBE |+ xgco8k -57“(1 + 3cos 2E) 5 (1 + 3cos 2K) 5 (3 +cos 2K)
, Xp oindya
+ 52 8inB 4 2y “ %R, |t X R + Beain'B + xy
: + xe8inld [+ X, BINE - X3 ginon + Bginon -
- + %q 8inki Xp “ p 5 5 : 5
Xy o - X8 g |+ ¥ ginan - - + xp8inE
' —-élvsm 2F - 5 Sk 5 4

+ ?—;-?-mn’]::

X4 .: R
+ S gin®L

~

- -

- 22 5in’E

o]

™
Xa sin“H
( 5 %4) —"'"“‘2

X H N
- -41- sin® B

-%"—sinalﬂ

sin®L
- (359. - xﬁ)—-ﬁ—,——-—

+ %‘-‘-sm"’]:‘: b % co82E

% - Xo COS IS

+ %gcos

- %‘-(1 + 3cos 2E)

- %(1 + 3c0s 2E) + 3{-}(8 + cos 21)

FOLDOUT PRAME

Xp oo @
+ XgvosE + xq - %R, |*XR, + Z2sin’E + xy
X4 . Xg .. - . "
- +%"-sin2E + x,8inE || +5* sin2E - S sin2E - %g 8in I
A o X . Xy o .
- __’%asmgl.; - %g8inkE || + %sSINE |+ x,8ink --2—"’sm2E +-§¥sm2E
-
- . ZQ.L sin®E - %%sinaE -—%—‘sinaE - - -
a1
- s XL gin?K RECY. PN 11110 1
_ %g_ sIn*E - - + 5k sin®E + 32 sin’E t (5 - %) =5
Xg %a I + 38 5in? B + %, cos® B
- :5..(1 +3 cos2E) | + -5-(3 + cos L) 5 S %
+Eegin® B + xp + %3 co8E + Xn
: - - - .-}i?— 21 . 8in E
- 2‘% sin 2k - - t5-sindli 4 %5 sinE
X4 ’ i n
- - g rink - - - - + —éi'-sinZE + xy s5inE
Xi ....3 ;
- - - - - - + - sin 1B
X3 . 3 Xa gin1 c 38 g
- Fsin’E - (5 - xs) =5 . - - . T 5 sint B
- sin(L - E)]
Table 3-1
Tabulation of SAP Coefficients
(cont'd)

-91-




4, PIGA MATI MODILS
4.1 GENERAL FORM Ol PIGA KQUATIONS Ol MOTION

The PIGA equation of motion derived in Ref. 5, 4 (liq, 14) can be
simplificd when the present PIGA test conditions are considered, Justifica-
tion for omitting certain terms will be included in the error analysis report
on the strapdown system test program, The resulting PIGA equation is given
by Iiq. (23) in Ref. 5. 4 (repeated as 1iq. (4-1) below) and is based on the summa-
tion of torques on the gyro gimbal/rotor cylinder about its UA being equal to

zero. Therefore,
miz - M, = wH (4-1)
u z
where Z and w, are along the input axis of the gyro itself (not the PIGA

P and zpp , Eqg. (4-1)
can be expressed in the PIGA yoke axis coordinate system, as indicated by

yoke). Considering internal gyro alignment errors v

Eqgs. (21) and (22) in Ref. 5. 4. The resulting equation is;

3 = ‘ + B si + C » -
B, A cosB B sing C. (4-2)
where
é ’ , - I ’ L4 é 1 ’
Ar ) (Sprg Xr S prw xr)UP (3 prgyr S prwyrw P
5 & (8’ g’ ~-8" w Y, + (5 g’ -8" w v
r pr® xr pr xr'"P 'prgyr pr yr P
~ A_—_ ’ , - 1 , -
('r Sprgzr Sprwzr Bpr

and S};r‘ and Sgr are the PIGA acceleration and angular velocity scale
factors, respectively. The PIGA velocity scale factor (SV) equals 27r/SI)
where indicated velocity = SVAB , with AB in revolutions. Note that

the term n, occurs only as products with Vp and sz and therefore has

99 .-




.

been neglected, kq. (4-2) can be expressed in the PIGA base cooridinate

system, using the appropriate equations of Table 2-1, uas follow.::

where

*y
»
n

B =

!
i

¥

= i Oy + . 1 . ] -t
Br Arc,os ﬁr Brsmﬁr + C, (4-3)
W, - 1 - ~ 8 _oan )
(5 prgxr 5 prwxr) Yp (5 prgyr > prwyr)w P
’ T « P 11
(8 prgxx‘ S pr‘wxr)¢13 " ('Sprg;rr‘ bpr'wyr)VP
G’ - o+ + S'" - o -
c)1:)1"[l’bpr£'§:a<:v Vprgyr gzr] Hpr[ 4)prwxr Vprwyr “s

and products of small quantities have been neglected. Iixpressions for the

w and g terms are contained in Table 2-1

(Egs. 2-12, 2~-13, 2-19 and 2-20).

4, 2 PIGA EQUATIONS IFOR TEST PROGRAM

A solution of the transcendental, differential cquation (4-3) is given

by Eqg. (35) of Ref. 5.4, which can be approximated by the following equation:

B

C

I‘l

+‘\/Aj,+132r sin(Crt + @) (4-4)

The solution is based on Ar’ Br’ and Cr being equal to constants, which re-

quires o = 0, and that second degree terms of X =WA2+ B%/Cg‘ are

negligible. Further simplification of the test program is possible if full

revolution tests are specified.

q.(4-4) is zero and

In this case, the integral of the sine term in

(4-5)

1»]’1

3
pr



where

i

AB r 27 radians

i

AT time to complete one revolution of

the PIGA yoke

and Cr is given with Kq. (4-3). The quantity C.» which is o function of the
calibration terms to be estimuted, is simply determined from liq, (4-5) hy

measuring the time :equired to complete one revolution of the PIG:A yoke,

Upon substituting expressions for the w and g terms from Table 2-1
into the equation for Cr and allowing for errors in S;')r and S'I')r, the

quantity Cr can be represented as {follows:

@
+

=
1

S (4-6)

or

C +[R _+R,__sina +R_coso |=[8  +8 sine +85 cosa ]
r ar r r cr r br r cr r

b ar

The term o, is the constant angle of the test table and the R terms
are functions of the table elevation angle and misalignments of the strapdown
system optical cube relative to the test stand coordinates. Therefore, the
quantities on the left side of Eq. (4-6) are measurable and can be used to esti-
mate the S constants, which are functions of the calibration terms to be
estimated., Table 4~1 contains a tabulation of the R and S terms for each

P1GA in each mounting position of the strapdown system on the test table.

The remarks at the end of Section 3. 4 pertaining to the test stand mis-

alignments also applies to the PIGA tests.
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NOTLS:

(1)

(2)

(3)

(4)

+ ino + ] = 5+
R Sina+ R ¢ 50] $

ABP/M'P ,  where Mg = 2r (4~D)
C, * R v 8 (4-6)

i + 8 os
ar brs na cr o

(Ség)sin I+ (SI‘)'we)cos (1. - 1)

(S'g)cos F o+ (S”we)sin (L. -13)

65’ 6s"
~":E) (S'g)sin I+ (——rrE) H“w )cos (1.~ 13)

6&: 68"
(*-'-n—-) GM g)c os i + (-—nQ S“w )sin(l. -~ )
P P
i’ e ll
us(bpg) ko€ (Cip e)
n,c08 | P vssinI,

All table entries to be multiplied by corres-
ponding column heudings.

R, ahd %y consgtants cqual sum of terms in
ccwvnspondmg row,

suhseripts on (no,

Vo ¥) refer to mounting
position number,

subseripts on (v, v, 6.\
b} p NS

¥ [} [ 4 6 &\-
P VA
PLGA nuniher,

) refor 1o
II

Tuble 4-1
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Tabulution of PIGA Covllicients

FOI:DQU-. , b s
4 ,@% 2... 243



0.1

56&

5,4

9, REFERENCES

Nelson, R, ., Jr., "Preliminary Considerutions in 'l'esting the
NASA/Iuntsville Strapdown System', DRC Report [R-12590,
Dynamica Rescarch Corporation, Stoneham, Masgs, , Cctober 26, 1967,

Quagliata, L., "Lquations of Motion of the NANA Air Bearing Gyvro
in an Inertially Stabilized Contiguration and in o Strapdown Conlig-
uration", DRC Report E=-0401, Dynamiecs Rescareh Corporation,
Stoneham, Masgs, , September 6, 1066,

Merz, A.W,, "Gyro l'est Methods", DRC Report 1:-1170U, Dynamics
Regearch Corporation, Stoneham, Muss,, July 17, 1867,

Nclson, R,IL,Jr,, "liquations of Motion for a Pendulous Integrating

Gyro Accelerometer”, DRC Report 15-477, Dynamics Research Corp-
poration, Stoneham, Muss., November 14, 1064,

-26-



AT AT -

A, A

A thra B
r e

B
p

Exc’ gyc" Esc
[3)

ab

I\T 3 I‘.&Y

L.,M,
v’ r

N,P
rr

APPENDIX A
LIST OF SYMBOLS

azimuth angle of test stand, defined as desired angle from
true east to stand stand elevation axis, measured about local
vertical, Subscript zero indicates initial value.

functions of the SAP calibration terms to be estimated and
certain constant test conditions (see Table 3-1). A, , By, Cp
algo used in PIGA equations (see KEq. (4-2) ).

angular rate of PIGA yoke due to components of g and w,
relative to test .able base coordinates (xb, Ty zb)

PIGA bias ( = I\/Iu/H)

elevation angle of test stand, defined as desired angle from
local horizontal to normal to table axis of rotation, measured
about test stand elevation axis (yS)

function of

gravity

X,y and z components of gravity in ''coordinate system ¢ "
angular momentum of gyro wheel

gyro compliance coefficients (displacement along axis "a'

due to force along axis ''b")
constants used when angular rate and acceleration vectors
along coordinate axes are considered, K,.= K= 1 for rates

) T Y
and zero for accelerations.

local geodetic latitude

coefficients used in final form of SAP math model
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Mu PIG uncertainty torque

m mass of gyro gimbal/rotor cylinder. Also mass unbalance
of PIG

N, E,V North, East, Vertical orthogonal coordinate system

l‘«"a, Pb, Pc measurable constants used in SAP math model (functions of

N Vor ¥o)
Qathru Qf funciions of constant SAP calibration terms (‘ncludes test
stand misalignments)
Ry resolution matrix relating strapdown system optical cube
axes to test stand table axes
Rz resolution matrix relating SAP and PICA bases coordinate
system to strapdown system optical cube axes
R,,5, coefficients used in final form of PIGA math model
Ra, Rb’ HC meagurable constants used in PIGA math model
(functions ofn ,v ,¥ ,A_,A )
o’ 0’0o’ X' Ty
Rw constant equal to [ a - wesin (L -E)]/we
S 4,5, functions of PIGA calibration terms and certain test
a’ "b’"c i . s
conditions (includes test stand misalignments)
S;) desired PIGA acceleration scale factor (*m4/H)
S'I'3 desired PIGA angular velocity scale factor
Sv desired PIGA velocity scale factor ( = 27r/S;3)
Ss’ S(S) SAP scale factor. Superscript zero denotes desired value.
T time measured from start of test table rotation during
SAP tests
*1 coefficient relating z‘:fxgy/g3 to SAP gyro drift rate = -(mg)‘?sz/H
Xz coefficient relating gxgz/gz to SAP gyro drift rate = T(mg)®?K /H
NE:S
X3 coefficient relating ,«g‘;/g‘”= to SAP gyro drift rate = + (mg) 2sz/I-I
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33
S

X]_o
X11

k

XY, 2

b’ Vb’ Zp

X
X z
o’ yo’ o
X z
r* Y
X 7
s’ ys’ S

Fpe Yrpr Bip

vy fy

Ol, a

B. B

coefficient relating gygz/ga to SAP gyro drift rate =
+(mg) (Kyy - KZZ)/H

coefficient relating gaz /g® to SAP gyro drift rate = +(mg)® Ky

coefficient relating gx/g to SAP gyro drift rate
coefficient r lating gy/g ‘to SAP gyro drilt rate =+mgb
coefficient relating gz/g to SAP gyro drift rate =- :rng()y

0w
Y

L

i

SAP gyro drift rate

0]

Hi

SAP gyro drift rate A

SAP gyro drift rate proportional to gyro bias error
general term representing x; thru x;

gyro output, spin, and input axes, respectively

test table base coordinate axes

strapdown system optical cube coordinate system
reference a ..: of Instrument (SAP and PIGA) bases

test stand base coordinate axes

test table coordinate axes

instrument (SAP and PIGA) yoke coordinate axes
acceleration along input axis of gyro (measurement head)
test stand table angle, defined as desired angle between
strapdown system optical cube 'y surface' (y?.) and test
stand elevation axis (ys), measured about table rotational
axis. Subscript zero indicates initial value,

rate of change of o with respect to test stand base
instrument (SAP or PIGA) yoke angle, defined as desired
angle between inertial reference unit (gyro) spin axis and
the strapdown system optical cube "y surface" (y,), mea-

sured about the yoke axis. Subscript zero indicates initial
value,

-29-
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65
v

AB

AT

(6,,6,)

Y,y

rate of change of 8 with respect to strapdown systems
optical cube coordinate system

angle equal to integral of carth rate component along
test table axis (nominally equal to o+f8 ). Subscript
zero indicates initial value ( = o, +BO)

gyro pendulosity due to mass unbalance along spin and
input ares, respectively (see x, and x;)
error in PIGA acceleration scale lactor, True scale
factor = 8+ 68

P P
error in PIGA angular velocity scale factor. True
scale factor = Sg + 681'3’

error in PIGA velocity scale factor ( = SVGSI; /Sl;)
change in B during system testing

time during PIGA tests for one complete revolution
(0B = 27)

tilt of test stand elevation axis (ys) about axis in earth's
equatorial plane and normal to Vg (=m_cosL + ussin L)

inertial reference unit (gyro) internal misalignment, defined
as angle between gyro input axis (z) and yoke input axis (z’).
0y is angle measured about output (x) axis and 0y is angle
measured about spin (y) axis.

misalignments measured aboul z, x and y axes, respectively.
Positive angles are measured about positive coordinate

axes in accordance with the right hand rule. These terms
represent quantities to be added to ¥ sired values to obtain
actual values,

these terms are the misalignments associated with a, B,
and A, respectively.

misalignments between optical cube zr'r surface and test

table Zp axis, measured about x. . and Yo respectively.

PIG/PIGA misalignments between PIG input axis and yoke
input axis, about the PIG spin (y) and output (x) axes,
respectively

misalignment between SAP yoke axis (z;) and optical
cube Zr surface, measured about xr

-20 -
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OR—,

(1)

(2)

(3)

.

misalignment between test stand elevation axis (y') and local
horizontal, measgured about :as .

nonorthogonality of test table axis of rotation to test stand
elevation axis, measured about Xl; .

misalighment associated with desired elevation angle 12, such
that (E -+ ¢,.) is the actual angle from local horizontal to normal
to table axis of rotation, measured about test stand elevation
axis (ys)

earth rate

x, y and z components of inertial rates in ''coordinate
system ¢ "

angular velocity about input axis of gyro (measuring head).
angular velocity of PIGA yoke with respect to PIGA case

Miscellaneous Notes

References to optical surfaces are understood to mean the
normals to the surfaces.

Primes added to axes designations generally denotes small
perturbations from the basic coordinate system,

The following subscript designators are defined:

i - instrument (SAP or PIGA) number, i =1, 2,3
j - test configuration = {(E, as Bo’ a ), to be defined

m - mounting position of strapdown system relative
to test stand table, m =1, 2,3

r - combination of instrument number and mounting
position ({r = im)
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