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Adaptive Pattern Recognition By Using
a Predictive Model in Construction of Similarity Sets

Abstract

Automatic classification of remote sensed data is a necessity
since satellite remote sensors currently on the design are expected to
gather more data each hour than could be analyzed by traditional methods
in a year. A machine which could determine the structure of the sensed
environment by grouping together similar data signals and relabeling these
signals with the same label would reduce both storage requirements and
transmission times of remote sensor in addition to doing pattern recognition
in space or on the ground.

An adaptive predictive model is a model which generalizes and
induces the similarity set (category) which a sample of given data belong
and then assuming given the similarity set from which the data came it
predicts or deduces the characteristics of the data. When the predictions
are in error the parameters in the model adapt to make it more likely that
the predictions will be correct for the next sample of data. By continuing
this process iteratively, it should be possible to generate the natural
categories or similarity sets which reflect the structure of the environment.

The paper is introduced by a discussion concerning how adaptive
predictive models of an environment can be generated. This discussion
then leads into a precise mathematical description of such a model using
as the similarity criterion the ratio of the conditional odds ratio.



One of the most striking aspects of life is its organization. Life
can only exist in an ordered fashion in a world where there are continually
repeated and relatively unchanging sequences of phenomena (i.e. stationary
and/or ergodic processes) . The general pattern recognition problem involves
finding what are the continually repeated and relatively unchanging sequences
in measurements of an environment, whether this environment be sets of photo-
graphs, voice recordings, scientific data or the stock market.

Man has been consciously or unconsciously concerned with pattern
recognition from time immemorial. Primitive man was concerned with agricul-
ture: how to get enough to eat. This meant recognizing and using successful
agricultural patterns. Biblical man was concerned with ethics: how to act
in a way best to increase the harmony of the community. The patterns of
behaving which did increase the harmony and organization of the community
came to be known as the commandments. The early Greeks were concerned
with understanding the patterns of the world: how to find the regularities
and organization of the world. The things which Plato saw as steady and
regular he called "ideas ." Today we are still concerned with understanding
the world, but our understanding has become so complicated that we need
automated machines which can develop, so to speak, their own understand-
ing of the world. The categories or concepts in which an understanding of
the world is embodied are so complex, and the scientific measurements from
which '.':!e characteristic or typical patterns must be found, are so numerous
that man is not adequately equipped to undertake the pattern recognition pro-
cess alone. Thus in the last few years a search has been undertaken to de-
scribe abstractly the pattern recognition process in the hopes that such a
description will aid both man and machine to better interpret and understand
the world.

What is the pattern recognition process? Suppose we are given some
environment, a particular part of the real world, in which we are interested.
Our interest might be in finding specific geological rock formations or faults,
finding expected crop yield, determining behavioral models of groups of peo-
ple or societies, or recognizing camouflaged objects such as tanks and guns.
D-cpending upon our interests, we make appropriate measurements of the
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environment, i.e.  we record patterns (a pattern is any ordered set of items,
facts, or measurements from a pattern group) , and we examine the resulting
pattern samples, classifying similar patterns as the same and/or . ^r 3nizing
to which pre-assigned category each sampled pattern is most similar. This
examination of patterns we call the pattern-recognition process. Usually
the environment is complex, allowing a multitude of possible iron-dependent
patterns. When the investigator says he would like to know the relationships
which exist between the patterns--which patterns generally occur together,
which patterns follow one another, etc. he is, in effect, saying that he is
interested in finding the regularities which reflect themselves in the organ-
ization of the environment. When the investigator says he would like to
understand the structure of an environment, he is searching for the respective
kinds of regularities in the environment, i.e. similarity sets.

Similarity sets are the equivalence classes formed by a similarity
equivalence relation in the pattern group. Thus the similarity sets form a
partition over the pattern group. Each pattern belonging to a similarity set
is similar to or means the same as any other pattern in the similarity set. The
fundamental problem is, then, to define precisely what this similarity equiva-
lence relation is. Since :different investigators call different kinds of relations
similar, we are at a loss to choose a unique definition. However, it also
might be that different investigators would respond to a common denominator
of similarity in a given pattern group, even though they themselves remain
unaware of it. If this common denominator exists, then we may be able to
define a similarity equivalence relation so that its equivalence classes form
a refinement of the partitions formed by other similarity equivalence relations.
Thus we would have similarity sets which are precisely defined and indepen-
dent of the particular interests of the investigator.

What is similarity? We can talk about similarity in at least two use-
ful ways: perceptual similarity or equivalence similarity. By perceptual sim-
ilarity, we mean here similarity with respect to various transformations, such
as rotation, translation and scaling. By equivalence similarity, we mean sim-
ilarity with respect to prediction. Given that a pattern P occurs, what other
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the relative frequency of the patterns determined from a sample of S.
Or suppose we are observing the behavior of an organism. We first deter-
mine the kind of actions in which we are interested, watch the organism

•	 and after every interval. of time-1 sec, 1 minute, etc .-we record its actions.
After M intervals of time we have recorded a sequence S = { s il M where

i = 1

si - ( 1' ..9N) and each i, is a measurement of the i th action in which we
are interested. In either case, we would like to formulate a concept which
can tell us which patterns (^ 1 , g 2 .. ' . 9N) are similar by equivalence. To
do this we must now rephrase the pattern recognition problem to see its
relationship to intelligent cehavior and to abstracting. We will then see in
what way they are all founded on similarity.

So far the best objective definition of intelligent behavior has been
the behavioral one. I Briefly it goes like this: if an organism acts in an
effective way to achieve a relatively complicated goal, we call its behavior
intelligent. Thus,if a six-year-old child can solve elementary algebra
problems,we say the child is intelligent. In ordinary everyday usage,in-
telligent behavior implies self-actuated, internal goal-directed, self-organ-
izing behavior. The child who can work algebra problems has not gotten
this ability out of thin air. He has been trained or educated; he has been
directed by his teacher or his environment. Either he had been shown how
to work the problems or his environment provided him with enough cl ues so
he could figure out how to work the problems. In either case, the fact that
he could work algebra problems is surprising and unexpected. It is this
unexpected ability to perform a relatively complicated task which we usually
call intelligent behavior. Thus intelligent behavior is relative to average
behavior. We call behavior intelligent when it is more effective than the
currently existing average behavior which cannot solve relatively complicated
tasks.

1Hartley and Hartley, Outside Readings in Ps chol • , Thomas
Crowell Company (New York, 1957), P. 243.
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Now why is it that complicated tasks exist, which have a solution,
but which can not be solved now? By what process do we eventually solve
problems which are presently too complicated to be solved? Clearly, the
answers to both these questions are closely related.

Let us take some examples. Suppose our environment is the surface
of the earth, with all the processes which exist upon it. Our interest is
transportation; we would like to go by car from A to B but we cannot, since
we do not know which roads to take--nor, in fact, where the roads are which
we could take. We solve the problem by obtaining, by means of our own
research or by others' experience, a map which i.s a homomorphic copy of the
earth's surface, and, with respect to main roads and highways of interest, an
isomorphic copy of the earth's surface. Once we have such a map our route is
a simple problem

Suppose our environment is mathematics and we would like to learn
about algebra. Again we wish to obtain a map. This time the m pip is a set
of definitions and axioms by which the theorems of algebra can be derived.
A map in the form of definitions and axioms is a compact isomorphic copy
of the world of algebra. In this case the map may not be unique, since there
may be equivalent axioms and/or definitions which lead to the same theorems.

Suppose our environment is people, and we are interested in group
behavior. Again we seek a map. Here the map is usually some sort of model
describing the group, and is thus an isomorphic copy of it.

Suppose our environment is the universe. We send rockets with
various remote sensors to sense the planets, stars, galaxies etc. The
rocket telemeters back huge amounts of data that we wish to analyze. To
analyze the data means to reduce it, determining the different objects which
it represents. Again, these obj ect g , recognized and placed according to
their coordinates, map the universe and are a homomorphic copy of it. This
problem of analysis is of course the problem of pattern recognition.

=

	

	 In each case, in order to achieve a solution to the problem, we construct
a map which is homomorphic to the environment and isomorphic to the process
of interest. Once we have such a map, straightforward applied engineering
can solve the problem. Now we are in a position to answer our two initial

F

questions. Relatively complicated problems exist precisely because we do
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not have at hand an isomorphic copy of the kind of processes (it such pro-
cesses exist) by which the problem may be solved. Thus,we solve such
problems by obtaining an isomorphic copy of the processes of interest.

The big problem,of course,is to discover how we can obtain or con-
struct a map homomorphic to the environment and isomorphic to those process-
es and things in the environment of interest. We can do this by abstracting.

We generally begin abstracting from a field of imprecise, elementary,
irreducible characterist«5, used daily but usually not well understood. This
field of characteristics, which we call the phenomenal field, enables us to
describe our environment as we perceive it or as we measure it. Examples
of some of these characteristics might be velocity, temperature, charge,
mass, shape, permitt.7 •.=ity, permeability, reflection of electromagnetic wa"3es
as a function of frequency, radioactivity, material strength, chemical compo-
sition,etc. The process of abstracting develops from our phenomenal field
an axiomatic field,which is a field of irreducible characteristics, definitions
of concepts involving these characteristics, and axicm-,• which show the assumed
relationship between the characteristics. The basic property of the axiomatic
field is that from it we can derive a set of theorems which are a description
(a homomorphic copy) of the environment.

The set of axioms, definitions,and derived theorems constitutes what
we usually call an explanation of the environment. Such an explanation is
no more than the coherence or agreement of our observations, which are made
by measuring the elementary irreducible characteristics, with the predictions
made by the derived theorems. In other words, we explain our environment
when we have a set of principles which are descriptions of the order and struc-
ture (i.e. constraints) in the environment.

In the process of abstracting,we adaptively develop, on the basis of past
and current observations and our present axiomatic field, a new axiomatic
field which better explains the environment. The reason for such a develop-
ment is that we find our present axiomatic field inconsistent or incomplete:

`	 that is, the copy of the environment derived from the axiomatic field may
be logically contradictoo► or homomorphic when we wish it to be isomorphic
with respect to our interests. We illustrate this in Figure 3,where a new
axiomatic field is developed by:

1) deriving theorems which are true on the basis of the axioms pres-
ently existing in the axiomatic field;

7
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2) interpreting these theorems to predict other measurements of the
environment, to which the axiomatic field is to be isomorphic;

3) observing the environment, to make new measurements; and
4) changing the ,axiomatic field, if necessary, so that all the acceptable

measurements made are measurements which have been predicted.
A survey into the history of science easily reveals this kind of process.

We examine one instance: consider the phlogiston theory widely held in the
eighteenth century to be the axiomatic field.

The phlogiston theory. gave order to a large number of
physical and chemical phenomea. It explained why bodies
burned--they were rich in phlogiston--and why metals had
so many more properties in common than did their ores. The
metals were all compounded from different elementary earths
combined with phlogiston, and the latter, common to all
metals, produced common properties. In addition, the phlo-
giston theory accounted for a number of reactions in which
acie.s were formed by the combustion of substances like
carbon and sulfur. Also, it explained the decrease of
-olume when combustion occurs in a confined volume of
air--the phlogiston released2 by combustion spoils the
elasticity of a steel spring.

For a great number of instances, the phlogiston theory was an adequate
description or map of actual reality. However, when men, from Black through
Scheele claimed the phlogiston theory to be an adequate map for all actual
reality, anomalies appeared; for example, some objects increased in weight
when burned. Thus, when the phlogiston theory was interpreted to predict
certain measurements and observations which did not in fact occur, scientists
were led to do further research and thinking which eventually led to the oxygen
theory of combustion, a new axiomatic field.

To summarize: the key in understanding the abstracting process lies
in our understanding of the structure of the axiomatic field. The structure of
the axiomatic field is homomorphic to the structure of the environment. In a
conceptual sense, we have . --)artial copy of the environment in the axiomatic
field. The process of abstracting is an adaptive translating process from the

• set of measurements to a formal axiomatic language which describes these
measurements. The important characteristic of this translating process is
that It preserves similarity. Similarity is preserved when the axiomatic

2Kuhn, Thcmas S., The Structure of Scientific Revolutions, The Univer-
sity of Chicago Press, (Chicago, 1962), p. 98.
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field leads to theorems which indeed predict the set of currently available
measurements from the environment.

We now more precisely formulate a definition of the pattern recog-
nition process.

	

Pattern	 Set of
Environment	 Sensor	 Group	 ransformation

	

P	 similarity sets
G	 T	 H

Model of Pattern P.ecognition Process

An environment is measured with various sensors. The set of these
measurements we define as the pattern group G. The pattern recognition pro-
cess is a transformation T of G onto H, T:G —*H, where H is a set of similar-
ity subsets of G. The order of the set G is much larger than the order of the
set H, and, for its order, H represents the best copy of the set of patterns G.
Transformation T is a decision rule which minimizes the expected risk.

Some examples of thib process would be the Bayes' Decision approach
and the Linear Hyperplane approach. In either case the investigator before-
hand sets up training regions or finds good patterns typical of the categories
he is interested in. This immediately limits the effectiveness of the pattern
recognition process, since it is not known beforehand what the set H should
con:lst of if it is to be a representative copy of G. Since the transformation T
in the Linear Hyperplane case is a linear transformation, even if good represen-
tative patterns have been chosen, linear hyperplanes will not be the best bound-
aries between different similarity sets--unless G is such that the best copy of
it consists of a set of convex subsets. In the Baye's Decision rule case,
further a priori assumptions on the probability distribution of the similarity
sets are required. It would be nice to have both a minimum-risk decision
rule, such as the Baye's approach, with the ability to adaptively construct
the set H so that it is a good copy of G.

We will now try to apply our insight of adaptive abstracting to the
pattern recognition process. On the basis of the flow chart for the adaptive
abstracting process (Figure 3) , we might suggest the flow chart shown in
Figure 4 for adaptive pattern recognition.

One of the problems with a probability matrix, as shown in Figure 4,
is its storage problem. Storage requirements grow exponentially as the
dimensionaligy of the pattern increases linearly. This can be seen immed-
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iately if we think of the storage requirements of the conditional probabil-
ity of g = (X I ,X2 , .. . Xd, given category H i , P(g/H i),where each Xi is an

integer 0 < Xj < 9. For N equals one we need ten storage cells, for N equals-
two  we need one hundred,etc.

An analogous problem exists when we try to represent (store) three
dimensional objects on two-dimensional paper. However, we usually find
we can represent them adequately by drawing six or fewer principal views.
Perhaps in a similar manner we could choose a measure, related to con-
ditional probability, where storage requirements would grow linearly with
the dimensionality of the patterns.

Let G = { gl be the pattern group (finite) , g = (X I ,X2 , ...XD) , XiEZ =

R{Lil	 a finite alphabet or numeric set. G is thus the set of all possible
i= 1

patterns which might result from a measurement. Associated with each pattern g is a

probability P({g}) where P is the probability distribution over the pattern
group G. It is P ({gl) which has exponentially-growing storage requirements.

Let A be a subset of G; ACG . Define

A b =	 A if and only if b = 1
Ac if and only if S = -1

Now suppose there exists a set E of subsets E  of G;

E = {E i `EiC G} N such that for every g E G there exists a unique sequence
i=1	 N

{ S 1(g)IN	 such that {g} = in E16 (g) . Clearly the order of the set E
i= 1

will grow linearly with increasing dimensionality of g,and Storing P(Ed will
not heavily tax available system storage.

The existence of the set E, whose order grows linearly with a linear
increase in dimension of g, is assured. We show this by construction.

Let E= { Eij i, Eij = {gEGIg = (XI,X2 .... XD) , Xi = Li l l i= 1,2,...,D,

12
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Clearly {g} = 1 1	 n

	

i= 1	 j = 1

th
1 if and only if the i

coordinate is the j th
alphabetic or numeric
symbol

-1 otherwise.

E ij 6 i (g) for every gEG. Let H = {Hj}M
j = 1

j = 1 , 2 .... R. Define for every gcG 8 1j (g) =

be the set of similarity sets H. where H.CG.

If gEHk then we classify the pattern g as the k th category.

Let gEG. Consider P(Eis (g)nH j ) which is the conditional odds ratio for
i

NECi(g)nHj)

the i th characteristic, given that g is classified as the jth category.. This
odds ratio is a measure of the liklihood that g has the i th characteristic against
g not having the ith characteristic.

similarly P(E C (g)nH^) is the conditional odds ratio for not the ith
1	 characteristic,

P(Eis {g)nHj )i
given that g is classified as not the jth category. Given that g is classified
as not the jth category, this odds ratio is a measure of the liklihood that g
does not have the ith characteristic against g having the ith characteristic.

P(E (gPHj P(Eibi(g)nHc) is the product of the odds ratio. We should notice

P(E16 (g1 ' Hj)P ^isi (g)	 j )

the symmetry between Ei and Hj for this ratio. This implies it is the ratio
of the odds ratio for the j category given the i characteristic, as well as
for the ith characteristic given the j th category.

Considering the meaning of the ratio,we may easily formulate a
reasonable decision rule T. We classify a pattern g as the k th category if

13



and only if

	

P(E 16i (g)nHo :' ^`'iSi(gT -_ k1 _ max	 , P(E16i(g)nH j)P (Eibi(g)nHl!

i'='1 P ^ib.{g)nHk)P ^ib (g)()H - 
j=l'2' ...M .1
	 P(Eib (

g )nH j )P(E ib.(g1 'Hci	 i	 i	 i

where we choose the smaller k if k is not unique. Define for every gEG , j = 1 .... M,
n. (g) = 1 if and only if g is classified as the jth category,

f-1 otherwise.

If H is indeed a good partial copy of G, we would expect that,given that g is
classified as the kth category,we can predict g's characteristics -- i.e.,which
Ei 's g is in. Thus we want

	

c	 c

j^M P(EM (9) nH jr7. (g)) P ib (gY 'Hj n (g))
c l	

t	 i	
c t	 >y> 1

P(E ib i (g)nHj tlj (g^ P(Eibi(g)nHjrij(g,

for every i, i=1,2,...,N where y is a given prediction constant. If this is
not so we must modify the set H in a way that it is more probable that the
inequality will be satisfied next time a pattern is so classified. On the basis
of these ideas we now detail an adaptive pattern recognition scheme.

Let G = {g} be the pattern group with probability distribution P.
Let A be a subset of G, AcG . Define A S = A if and only if S =1

Ac if and only if b=-1

Let E={E I} N be a set of characteristic subsets of G, such that for every

i=1
N

pattern gEG there exists a unique sequence ^( bi (g)} N such that {g}=n 
Ei b (g) .

i=1	
i=1	 i

We have already noted the existence of the set E. Thus each pattern may be
completely described (represented) by listing its characteristics. If g has the
ith characteristic b 1 (g) = 1. If g does not have the i `h characteristic 6i(g)=-1.
Let M be the number of categories we wish to have.

We define arbitrarily the parameters aij , bij , cij , dij . 1= 1,. .. , N , j= 1, ... M

14



which are the zero h approximation to P(Eff j ), P(E cAH^^, P(EinHj ), P(EINH^ )

respectively. H  is the j th similarity set which we finally wish to construct;
we classify g in the j th category if and only if gEH..

0 0
Let qij =aij bij , i= 1, ... , N, j =1, ... , M. Since the parameters are

0 0cif dij

approximations to their respective probabilities, we must have 0<a ij , bij , cij , d ij Sl

and aij + bil + c0 + d0 = 1 for every i and j, since the sum of their respective
probabilities is 1.

Further,we must have for every j a0 + co = a  + co <1 for every i and k,ii	 ii	 kj	 kj

since P(EPH j ) + P(E5' )H j ) = P(Hj ) for every i. Also,for every i,a 0 + dij =
ii

a0+ do < 1 for every j and k, since P (Ei 1H j ) + P (EiAH^) = P (E i) for every j .

We define the process inductively, describing a complete cycle starting
from the nth sample and continuing to sample n + 1. Suppose we have defined

the parameters a ij , b J , cij , d ij ; 0<aij , bij , c
ij , 

dij <1 , i= 1, ... ,N , j = 1, ... , M;

aij + cij = a n + c n <1 for every i and k, j=1, ... ,M;

a id+dij = a n +dk<l for every j and k, i=1,...,N.
n n

Let qij= an bij	 i= 1 .... N, j=1,...,M and let
n ncij dij

N	 N
n	 ^ n bj (g)	 n

Hk = 9eG f I (qjk)	 =max	 (qjm)
j=1	 m	 j=1

m=1 .... M

bj (g) where we take the
smaller index k	 k = 1, ... M.
if k is not unique. ,

First we should note that H  = {H n} M is a partition of G since by taking the
k k=1

smaller index when k is not unique we have made H nM= pS for k¢j .
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VHk DG since for every gEG a maximum product 7 ' (q m) b j (g)
k=1	 j -1	 j

M
must exist for some m. 	 HnCG since H nCG for every k. This implies

k=

M
M Hk = G. Second, we should note that (q jk 

) 6  (g) is the nthUapproximation
k=1

^^N	 c	 c
to P(E ib i (gT _" j) p(E16 1 (gPH J )	 This is seen easily by considering

c	 ^^nn
P(E ibi (g)AH ) NEiSi(g)"Hj

P(E	 ^1H) P(E c	 P(EnHc)	 iAH1) P(Ei nH i )	 when b (g) =1
ib.(g 	j	 ib (g)	 j	 i

cl	 i ^n/^u^cc,, - P(ETH j) P(EiAHj)
P(E ib i (g) j) P(Eibi(gT'"j/	 P(EchH) P(E AH°)i j	 1 i	 when bi (g) =-1.

P(E iAHj ) P (Ec c,)

We sample a pattern gn+ l from G and classify it in the kth category,
,,

where k is the smallest index m which maximizes j! 1 (,, m ) 6  (gn+l) . Given

that gn+1 has been classified in the kth category, we try to predict the character-

istics for gn+1' We will positively reinforce when half or more of the predictors

91 (gn+ 1) are correct predictions, and negatively reinforce otherwise.

Let an epsilon oetween zero and one be given, 0 <e < l, such that 1/E
represents approximately the number of patter-9 over which we expect the
probability distribution to be stationary. The reinforcement is such that the
effects of early patterns (those earlier than 1/E from the present) tend to be
negligible.

Since gn+l has been classified in the kth category, we define 17k(gn+1)=1

and n j (gn+ l)-- 1 , JA ' j=1, ... , M . Given the kth category, we now try to predict

16



the characteristics for g n+1 . We predict for i= 1, ... , N

%1

S (g +1 ) =	 1 if I1 (q	 .>nj gn+1) >y>1
i n	 )	 i

-1 otherwise.

y is a chosen prediction constant greater than one.
Once a pattern has been classified and the sequence{ 6i(gn+1)l has

been determined, there are - ight possibilities for each i and j:

1) gn+lEEj(jHj and b i (gn+l ) = 6i(gn+1)'

2) gn+l EE iAH j and b1 (gn+1 ) sign+1)

3) gn+lEEij cand b i (gn+l ) - bi(gn+l)'

4) gn+l EEiAH i
nc and 61(gn+1) 61(gn+1),

5) gn+1EEinH j and 6i (g n+1 ) - 61(gn+1)

6) gn+1EEc	 and b1(gn+1) ^ 6i(gn+1)'

7) gn+lEEil1H j ° and 6 1(gn+1 ) = bi(gn+l)'

8) gn+1 EE	 j c and Ei(gn+l) 7( 61 (gn+1)'
For each of the possibilities we indicate the reinforcement which

satisfies the following conditions for the n+1 iteration given,that the parame-
ters satisfy these conditions for the nth iteration.
For all i and j:
1) 0<a n+1

, b	
, 

c	 ,n+ln+1 do+1
<1,ii 	 ij 	 ij	 ij

2) an+1 + bn+l + cn+l + do+1_1,ij	 ii
3) an+l+ cn+1_ an+l+  ,n+1<1 far all k,ij	 ij	 kj	 kj

4) aii 1 + din+l aik l+ dik l<1 for all k.
17



n+

aii
n+

bij

n+

iii
n+

dii

18

E is chosen so that 1/E is approximately the number of patterns
over which the probability distribution of G is stationary. c* may be a
few orders of magnitude higher than E. Positive reinforcement is used

when

2:I6ii9n+l) - bi (gn+1)1 < N

Negative reinforcement is used otherwise.

Positive Reinforcement Scheme

If gn+1 EE{1Hj	 then:

,n+1  ( 1 -E) + E= an
ij

bn+ 1 = bij (1-E)

cij l
= cii (1-E)

dn+ 1 = dii (1-E)

If gn+ ,EEinHi c then:

aijl = aij (1"E)

bij 1 = an (1-E) + E

cn+ 1 = cn (1-E)

dij 1 = do (1 -E)

If g , eE i/^ Hnc then:
n+ 1



If 9ri+lfEinHj	 then:

aid+1 =aij

bn +1 = b 	 (1 -E)iju

-	 cn + lii = cn 0-0 + E

'	 do+l = d o (1 -E)

Negative. Reinforcement Scheme

If gn+1€EinHn or gn + IEEi11 Hi °	 then:

n+1aij n=aij * n	 n	 n(1 + E bij cij d ij )

n+l
bij

_	 n
_ bij

* n	 n n
(I + € aij cij d ij )

n+lcii n= cij * n n	 n(l - €	 aij bij dij )	 .

n+l
dij

n
= dij * n n	 n

(I - € aij bij cij )

If gn+1€Ei(1Hj c or gn+l€Ei/IHi then:

n+1	 n	 * n n naij =aij (1 - € bij cij dij )

n+1	 n	 * n n nbij = bij (1 - € aij cij dij )

n+1	 n	 * n n n
cij = cij (I + € aij bij dij )

n+1	 n	 * n n ndij = dij (I + € aijbijcij)

19



The motivation for positive reinforcement is illustrated by the following

example. Suppose we are determining the probability of rain. Each

day we check to see if it rains. By the N th day the probability that

it rains may be expressed as:

P (rain) = number of days it rained	 - M
N	 total number of days observed - N

Suppose that it rains on the N+ 1 st day.
M+l	 NPN (rain) +1 	 N	 1FN+I (rain) = N+1	 N+1	 N+1 PN (rain) + N+1

Suppose that it does not rain on the N+1 st day. Then

PN+1 (rain) = N+1 N+1 PN (rain) . If we let E = N+ 1 then N+1 = 1-E

Thus if it rains on the N+1 st day, PN+1(rain) = PN (rain) (1-E) + E,and if it

does not rain,then PN+1 (rain) = P  (rain) (1-0. This is the same format

as the positive-reinforcement scheme. We should note that in each case

this reinforcement satisfies the conditions on page 18.

The motivation for the negative reinforcement is as follows.
N

Suppose	 I bi (gn+l) - 6i (gn+l )l > N. This means that more than half
i=1

of the predictors 61(9n+1) predict wrong. Thus, we wish to change the

parameters aij , bij , cij IF dij so that more of the predictors 6̂ 1 (gn+1
predict right. Suppose gn+1cEI)Hj . Since 6  is the predictor for Si

+N

we want 6.I  bi = l,which implies that we want g ink (gn+1) ;>1.
^.t

We can negatively or correctively reinforce by increasing each term

( q ) nk in the product. Since gn+ 1 EEi11 H j we know nj = 1 and nk = -1

for k X j. Therefore when k X j,we increase cik and dik and decrease

aik and bik' When k = j,we increase a ik and b  and decrease c ik and

dik . The reasoning is similar for the other cases,and we should note

that in each case the negative reinforcement satisfies the four conditions

P	 3 20



on page 18: in addition, it was chosen so that the r ►+1st approximation to

P (H^) and P (E i) remains the same as the nth approximation. Thus
aii + cii w an + cn and ai

i + dij _ an + do . Only the relative
ii

weight between a id and cif and between a id and did is changed so that

it is more likely for 6  to be correct in the next iteration.

3	 '
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Similarity to Percepttons

We should also note that the adaptive method described here is similar
in structure to many two layer perceptror, schemes. Each associative unit is a
summer which responds to an input vector by way of a matrix of weighted conn-
ections Q = { qij }, where qij is the connection from the i th componert of the in-

put vector to the jth associative unii.

log q	 log q I	 bbl	 11	 1	
X11	

1	 1

log q 21	 log 12

log q	 log
S 2	2	 n2	 2	 b2

log q2N`

+	 :r)g q2M°g qN2

S N	M	 gM	 N	 6 
log qNM	 log qNM

input,;	 summers	 connections	 outputs
connections	 outputs	 summers

Perceptron Representation of Adaptive Machine

Now, using vector notation,we may easily describe the operation of the adap-
tive machine. First we define two vector operators. Let V be a vector,
V = v 1	 Define: Amax V = a 1 where a  = 1 if and only if k is the smallest

a2 index such that v  = max vi	and all
i,i=1,...N

vN	 a	 other ai I s are -1.
N

S g`n V = h 1 I where bi= 1 if and only if vi >0 and bi -1 otherwise.

b2

bN

22



bl

Let the input to the first associative layer be A = S2

n l	 6 
and the output be H = 17 2 	 If A is a matrix,then AT is A transpose.

n M	 S1
Therefore we have H = A max { log Q T} A and [3 = S 2 = Sgn { (log Q) H} .

AA

N

A further simplification results if we logarithmically transform all

parameters and the reinforcement schemes as follows. We might start

as before and arbitrarily define a° , b° , co , d o so that

	

a0 	b0 	 c0.	 d0
1) a ij + e i] + e i^ + e 'j = 1 and

	

0	 00	 0

2) eaij + eclj = eakj + eckj for all k

	

0	 0	 0	 0

3) eaij + edij = ea ik + edik for all k.

These three conditions are the transformed last three conditions on page

18. The first condition on page 18 does not need to be transformed, since

e raised to any real finite power is positive.

Next we must determine the transformed reinforcement schemes.

Consider the positive reinforcement scheme which has as a basic element

the equation xn+1 = xn+1(1- 
E) + E . This implies

log x
n+1 

= log xn + 109 (1-E +' )

	

x	
11

= log xn + log (1-E) (1 + --€
I	

(,_")xn )
J

= log xn + log (1-E) + log (( 1 +

	

`	 (1-E)xn

Since E 01,we may approximate log (1-E) "' - E and log 1 + E	 aaw

(1-10 xn

E	 00 —, . If we let yn = log xn and yn+1 = log xn+l,the(1 _E)xn	 xn

transformed equation becomes yn+
l = yn 	 -y

n .

	

_E
+E@ 	 Obviously the

equation xn+l = xn (1-E) will be transformed to yn+1 = yn _ C.



Positive Reinforcement Scheme:
N

^b i (g	 (g-i 
(gn+1) 

ISN

and c is chosen so that 1/c is approximately the number of

consecutive patterns in the sample over which the probability distribution

is expected to be stationary.

If gn+1 E Ei/'^ Hn then:

-all
ail+l- aj 

_E (1-e	 )

bj+l_ b; _E

n+1	 n
C ii	 - cij - E

do+1 _ do _ E
i]	 it

If gn+ 1 E E
i () Hj c then:

n+1 na ij = a ij - E

bi+1 = bij _ E (1 - e
n

-bij )

n+1 nc ij = cij - E

n+1d ij
n

= d ij - E

If gn+1 E Ei n lip 	 then:

n+ 1 n
a ij = aij - E

bn+l
ij

=bn_E
ij	 n

-c

ij ii

n+1
dij

n
= dij - E
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Now consider the negative reinforcement scheme. Here

equations such as an + 1 = an (1 + E * bncnd n) must be transformed.

This implies log a n+l = log an + log 1 + E * bncndn . Since E * bncndn-1,

we may approximate: log an+1 log an + E * bncndn . If we let xn+1=

log an+1 un = log bn , vn = log cn , yn = log do the transformed equation
n n n

becomes xn+ 1 = xn + E* eu +v +y

The entire transformed adaptive system may easily be described.

We define the process inductively, starting from the n th iteration and

continuing to iteration n+l . Suppose we have defined the parameters

aij bid , c if , dij such that:
3.

	

aij	 bij	 cij 	 dij
1) e + e + e + e

	

n	 n	 n	 n
2) eaii + eclj - e ki + eckl for every i and k, j =1, ... M.

	

n	 n	 n	 n
3) eaij + edij = eaik + edik for every j and k, i = 1, ...N.

Let qi) = aij +b - c j -dij , i = 1, ... lv , j = 1,...M and let

K
H  = [gEGI (q k̂) 6 j (g) = max	 (q j m) 6 1 (g) where we take the	 k = 1, ... M.

	

m	 smaller index k if
m=1, ... M	 k is not unique

Thus we sample a pattern gn+1 from G and classify it in the kth category

where k is the smallest index m which maximizes 	 (qjm) Sj (gn+1)
Given that gn+1 has been classified in the kth category, we try to predict

the characteristics for gn+ ,l . Since gn+l has been classified in the

kth category we define gk (gn+1) = 1 and' nj (gn+1 ) = -1, j # k, j= 1,...M.

Given the kth category, we now try to predict the characteristics for gn+1'
M

We predict for i = 1,...N bi (gn+1) -t-

1

if ^(gi) 'lj(gn+1)> y > 0

 otherwise .

y is a chosen prediction constant greater than one.
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If gn E Ein Hj c	 then:+1
n+l na ij = a ij - E

bii bij - E

n+l n
c ij = cij - E

do
ii

+l n
= dij _ E ^ 1 - e -d ii )

Negative Reinforcement Scheme:

=r
l'i (gn+1) - bi (gn+1)I>N

and E * is a few orders of magnitude higher than E

If gn+1 E E i r1Hj or gn+1 E Ei ()Hic 	 then:

an+1 = an + E* ebij+cij+diiij	 ii
bij = bn 

+ E* eaii+cii+diji^	 ij
n+l = n _ E* aii+bij+dc	 c	 ijij	 ij	

e

dij 1 = dij - E * e a ii
+b

ii+cii

If gn+1 E E ic 
r1Hj 

n 
or gn+l E E i nHj c then:

n n naij+l _ aij _ E* ebij+cij+dii

bij 1 = bij - E* eaii+cij+dii
n n ncij+1 = Cij + E* eaii+bij+dii

do+1 = do + E* e aii+bij+Cij 	+
ii	 ij

Of course qn+1 an+l + bn+l - cn+l - do+l
ij	 a ii	 ij	 ii	 ii

26



We may now summarize both transformed reinforcement

schemes in the following table.

.	 an+l _ an +	 ^^i 2 S i^	 (l+rd (l+bi) a-aJ -1 + b i2 b i^ nj biE* etas +c +dE

Ibi - bi ^	 (1-nj ) (1-b i)	 _b^	 Ibi+b^	 a" +c" +d"-

Ij

bii 1 = bij +E2 	 4	 e 9 -1 + 2 nj S iE* e U 'J 'J

b	 b	 (lfn) (1-S)	 ^ 	 16 +6
	 " +b°cij = cij +E ^ i 2 i^	

j 4 - 
i a-crj -1	

i-	
2	 nj b iE * a 

a ; i
	 d +d"J

n+1	 n	 ^ bi^ b ^ 	 (1- nj ) (l+bi) -d^	 ^bi+ bi^	 a" +b^ +cd ij	 = d ii +E	 2	 4	 e 'J -1 -	 2	 j S iE * e 'i	 '

The transformed matrix equations would be:

H = Amax [QT p]

I- Sgn[QT-4J
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