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ABSTRACT

Two methods are given for generating sets of vectors
with properties which approximate those of a multivariate normal
distribution.

The first method, which applies to any number of
dimensions, forces the univariate marginal distributions of a
set of points to approximate N(0,1) with low correlations between
the components.

The second method applies to 2-dimensional normal random
vectors with identity covariance matrix: it attempts to distri-
bute the points in circles of constant density.

These methods are being considered as replacements for
pseudo-random number generators in certain types of Monte Carlo
problems.
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1.0 INTRODUCTION

Various methods for generating; pseudo-random samples
from uniform and normal populations by computer techniques are
in common use. Numerous studies have been made of these methods,
and standard tests such as those for goodness-of-fit, indepen-
dence, and length-of-run are generally performed on the numbers

generated by them. (Chambers Ell and Hull and Dobell [21 give
excellent surveys with extensive bibliographies.) The results
vary, and as is to be expected, some properties are satisfied
much better than others.

Use is made of pseudo-random numbers in Monte Carlo
simulations, where they are taken as input variables and prop-
agated through a series of processes in order to study the
distribution of the resulting quantities. If it were possible
to determine this resulting distribution by operating on the in-
put normal random variables analytically, there would be no need
for Monte Carlo. The difficulties in working analytically with
a theoretical distribution are bypassed in Monte Carlo simula-
tions by producing a finite number of points which, hopefully,
represents the distribution. In many studies which now make use
of pseudo-random numbers, it would therefore be more appropriate
to use a set of numbers which had been forced to resemble the
parent population as much as possible. The notion of replacing
pseudo-random numbers by a sequence designed to meet the needs of
a specific problem has been discussed by several authors. Hull
and Dobell state: "We must expect that the very best sequences
for a particular purpose may be so carefully tailored to that
purpose, that they are no longer random." Approaches taken by

Kahn C31 and Hammersley and Handscomb [41 in producing such se-
quences are given in section 2.0.

A finite number of points can obviously not satisfy
all the properties of a normal population. It is possible,
however, to generate points which are forced to meet certain
properties and to hope that other properties will be more or
less satisfied in the process.
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In Section 2.0 a method is given for constructing a set
of N k-dimensional vectors with univariate marginals which closely
approximate N(0,1) and with low correlations between all pairs of
components. It is too often assumed by persons using random number
generators that if these properties are satisfied, the N points will

behave like the multivariate normal distribution N(pkxlI Ikxk).*

This is not necessarily the case. Feller C51 (page 99) gives two ex-
amples of bivariate distributions which are not normal, but whose
marginals are N(0,1). Using his second example we can construct a

bivariate distribution which is not N(p2x1, I2x2), but which has
covariance matrix I2x2 and marginals N(0,1). The distribution is
given by

2 
N(02x1^ 

1

2x2 ) + N(O2x1	 2x2)1
IX 2 	 1

=	 1 -cam
[-c 1,2

where

= f 1 c
L c 1,1

and c satisfies the conditions cX0, -1<c<l.

The N points generated by the method of section 2.0 are
therefore examined to see how well they satisfy certain properties of
N(Okxl^ Ikxk). In section 3.0, vectors are constructed to satisfy the

property that X 1 has circles of constant density when IXl is dis-2	 2
tributed as N(p2x1^ I2x2). The marginals are then tested against
N(0,1). This particular property was chosen to make the marginals
relatively insensitive to orthogonal transformations.

* -►kxl	 kxk
Nlu	 , denotes a k-dimensional distribution with mean,

kx k
vector ukxl and covariance matrix 	 A random vector Xkxl

EXl ,••.,Xk IT is said to be distributed as N(u,X) if X l ,..., Xk have
the ,joint probability density

(2^r)-k/2,,-1/2 eXp [{x _ u) T	 -1(xl
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Sets of numbers which are forced to obey certain properties
of a given distribution are referred to by Hammersley and Handscomb
as "quasi-random". Kahn uses the expression "systematic sampling" for
the same purpose. In this study such numbers are said to represent or
approximate the parent population to emphasize that the points are
used as a substitute for the theoretical population, and that we have
no interest in random sampling. For the same reason, tests which de-
pend on the order in which the sample is drawn and which are usually
performed on pseudo-random numbers are not performed here. They have
relevance to random sampling but not to this study.

2.0 METHOD OF FORCED MARGINALS

A method often used for generating pseudo-random numbers
from N(0,1) consists of solving for x i in the equation F(xi)
- yi(i=1,...,N) where F(x) is the standard normal distribution function

and {yl ,...yNI are pseudo-random numbers from a uniform distribution
over the interval (0,1). An analogous technique can be used to force
a set of N points to have a distribution closely approximating N(0,1).

In place of the pseudo-random numbers^y1,...yN}, the points 1-1/2or
i

N+1 (i=1,...,N) may be equated to F(x). Because these points have an

empirical cumulative distribution function closely resembling the uni-
form over (0,1), the empirical cumulative distribution of the corre-
sponding points {xl ,...xN} will closely approximate the standard normal.

To produce points representing the k-dimensional normal pop-

ulation N(Okxl, Ikxk), the vectors

X1	 x2

xi11 	 xi12

xi21 	 xi22

x i k 1 9 1 	 L xik-1, 2.

x 

x
i1N

x
---	 i2N

x
ik-1,N

may be taken where {xi
J1 , xi J2 2 ... x i JN } (J-1,2,...k-1) is the jth

random permutation of the sequence {xl,...,xN1. Here the univariate
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marginals are forced to approximate N(0,1) and the random permutations
give some semblance of independence between the components. Kahn
discusses this method, which he refers to as "systematic sampling".

A method discussed by Hammersley and Handscomb makes 4t
possible to arrange for independence between the components r,.'.h_-r
than to leave this `o the chance of a random permutation. This method,

due to van der Cor ut [61 and expanded b Halton C7,p	 p	 y	 ^, produces a set of
h

	

	 vectors with marginals which are approximately independent and uniform-
ly distributed, as follows:

Let the positive integers be expressed in a system of base
R. i.e.,

n = a m R m + am-1Rm-1 + ... + a 1 R + a 

(o<ai<R). Writing the digits of these numbers in reverse order, pre-

ceded by a point gives

^ R(n) = a0R-1 + a 1R-2 + ... + amR-m-1	 .

For example, if R - 2,

_ decimal R = 2 R = 2 decimal

n= 1 1 ^2(n)

2 10 .01 .25

3 11 .11 .75

4 100 .001 .125

5 101 .101 .625

R3
decimal R= 3 R 3 decimal

n= 1 1 ^3(n) _	 .1 .33...

2 2 .2 .66...

3 10 .01 .11...

4 11 .11 .44...

5 12 .21 .77...
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It is clear that the function 0 R(n) distributes points uni-

formly over the interval (0,1). If Rl , R 29 ... ,Rk are relatively prime,
T

the sequence of vectors (OR
1	 2
(n), 0R (n),...,	

k
OR (n),	 (n=1,...,N) will

have some semblance of independence between pairs of components for
sufficiently large N. For small N. 0R (n) and 0R (n) (n=1,...,N) are

linearly correlated. There is an exact linear relationship between
the two for N=R i- 1 (Ri<RJ ), but this dependence fades as N becomes

larger. Figure 1 shows this for the case of R i=5, Ri =7. For this case

the points Ex 5 (n), x 7 (n)] lie on a straight line for n = 1,2,3,4. For

n>4, the points no longer lie on the same straight line. Larger values
of R  and R  require higher values of N to drive the correlation down.

It should be noted that the distribution of points 0R (n)i
(n=1,...N) will be biased to the left in (0,1) unless N=R p-1 where n
is any positive integer. In figure 2 the case of R i=3 is shown for a

few points. The distribution is clearly biased except for N=2 and N=8.

Choosing a value of N equal to RP -1 eliminates the bias of

OR (n) (n=1,...,N) but causes other difficulties. For large values of

Ri ionly large, widely spread values of N would be acceptable, and then

OR (n) (J¢i) would be biased. If the value of N (the number of simu-

lations to be run) is known in advance, ways can be found to reduce or
eliminate the bias. Studies are being continued on this problem.
Knowing N in advance would also allow us to make other improvements in
the approximation to the multivariate uniform distribution. These
topics will be examined in a future study.

In this report it is assumed that N is not known in advance,
and therefore the methods and results given are for the most general
case.

T
The vectors OR 1 (n),..., 0R k (n) I (n=1,...,N) representing a

L 

multivariate uniform distribution are easily transformed into vectors

representing N(pkxl" Ikxk). If F(x) is the standard normal distribu-
tion function, solution of the equation F(x i (n)) _ 0R (n) for xi(n)

and formation of the vectors 	 i



BELLCOMM, INC.	 - 6 -

x 	 x1(N)

X ' (1)	 x2 ( 2)	 x2 (N)

(1)

xk (1)	 xk(2)	 xk(N)

gives the desired set.

Set (1) noted above was constructed for k=6, N=100 and for
k-20: N-500; 1000. Ri (i-1,... , k) was taken to be the first k

prime numbers.

The empirical marginal distributions, the means of the
marginals, and the correlation coefficients of certain pairs of com-

ponents of the vectors in these sets were tested against N(pkx19 Ikxk).
The empirical distributions of the sums of certain components and of
the sums of squares of these components were also tested against their
hypothetical distributions. It seemed reasonable to demand that the
vectors of set (1) give good fits to their hypothetical distributions
under these simple transformations if they are to be used in simula-
tions involving more complicated operations. Some of these tests
might also be considered as goodness -of-fit tests of the N k-dimensional

points against N ( ^kxl, Ikxk). The test on the sum of squares, for
example, may be thought of as comparing the observed to expected
number of points in hyperspheres of successively larger radii. A good-
ness-of-fit test using subintervals of the k-dimensional space would
be useless because of the relatively small values of N and large
values of k.

A description of the tests and the results are discussed in
Sections 4.0 and 4.1.

3.0 METHOD OF FORCED CIRCLES

If 1kxl is distributed as N(^kxl' Ikxk ) , it is known that

for any orthogonal transformation TW, Y is also distributed as
wkxl " Ikxk 	 Thus the univariate marginals of both I a,,d Y are
distributed as N(0,1). In Section 2:0 the marginals in set (1) were
forced to approximate N(0,1) in the hope that any orthogonal trans-
formation T on the set (i.e., rotation of the coordinate system) would
yield vectors with the same property. Tables 	 4, 6 give a measure
of the goodness-of-Pit of certain marginals for a small number of ro-
tations. The distribution of X1 + X2 , for example, is equivalent to
trhat of Y 1 (except for a change in variance) where
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1	 1 0 . . . 0	 X1
T2 f L

1 -
	

1 0 . . . 0	 X2
^ 

1

1	 .

0
1	 x 

In this section, vectors reprczenting N(C2x1, I2x2) are gen-
erated without giving the marginals for one orientation of the coordi-
nate system priority over all others. This is done by attempting to

-' 2x1	 2x2duplicate the property that N(0	 , I	 ) has circles of constant den-

sity with radii r such that r 2 is distributed as X2

Application of the notions of the first paragraph of Sec-

tion 2.0 allows us to generate q points r i (i=1,...,q) representing

the X2 distribution. Solution of the equation G(x) 	
i-q12

(i=12...,q) where G(x) is the X2d istribution function gives the value

of r i . Let R points be spaced at equal intervals on the circumference

of each circle of radius r i . Then the N=Rq points to be generated are

given by

xl(i,J)	 ri cos +0 i + 2^	 i=l,...,q

x2 (i,J)	 ri sin (0 + 2I

where the 0 i are generated by van der Corpi.t's method with R=2 over the

interval (0,2n). Thus 0 1 - .5(2n), 0 2 - .25(2n), 0 3 _ .75(2n),

0 4 - .125(2n), etc. Distributing the values of 0 1 uniformly on (0,2n)

causes the marginal distributions to be relatively insensitive to rota-
tion of the coordinate system.

Yl

Y2

Y 
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Let us consider the case of R-l. The points may be thought
of as being generated as follows: N(-q) points are distributed at
equal intervals on the circumference of a circle of any radius by
van der Corput's method. The i-th point is then projected radially
onto the circumference c'L' a circle of radius r i . Extension of this

method to higher dimensions would require a way of distributing points
uniformly on the surface of a hypersphere. There are well-known ran-
dom methods for doing this, but use of a random method would defeat the
purpose of this study. The techniques of this section have not yet
been extended to more than 2 dimensions.

The methods of this section were used to generate sets of
100, 500, and 1000 2-dimensional vectors for different values of Z.
Tests which were performed on the vectors are discussed in Section. 4.2.

4.0 DISCUSSION OF TESTS PERFORMED ON FORCED-1MARGINALS GENERATOR

The vectors in set (1) were examined for certain properties

which are satisfied by a random vector distributed as N(pkxl, Ikxk
The properties examined were:

i) Each of the k-components has the marginal distribu-
tion N(0,1).

ii) The correlation coefficient of any pair of components
is zero.

iii) The sum of any v components is distributed as N(O,v).

iv) The sum-of-squares of any v components is distributed

as x2.
In each of the tables which follow, a measure P is used to

indicate how well set (1) satisfies the property being considered. P

is the probability that a random sample of size N from N(Gkxl, Ikxk)
would give a better result than set (1) gave for the property being
examined. P might be thought of an the probability that a hypotheti-
cal, perfect pseudo-random number generator would give better results
than set (1).

The following notation is used in the tables. (All quanti-
ties and distributions refer to set (1)).

N	 - is the number of k-dimensional vec-
tors in the set.

xi(i-1,...,k) - refers to the empirical distribution
of the i-th marginal i.e., the dis-
tribution of the points {xi(1),x1(2),

...,xi(N)).
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m 	 - is the mean of the i-th marginal.

p ij	 - is the correlation coefficient be-
tween the i-th and J-th components.

xi and Ex2 - refer to the empirical distributions
of the sum and sum-of-squares of the
components. The tables show which
components are included in the sum-
mation.

Thus in Tables 1, 3, 5, the mean m  of the i-th marginal

is given. The corresponding P-value is the probability that a random,
samle of size N from N(0,1) would y1eld a mean less in absolute value than
lmi^ The P-values associated with the p ij give the probability that a

random sample of size N from N(^2x1 , I 2x2 ) would yield a correlation co-
efficient less in absolute value than (p ij j . For p ij P is given by the

probability that the absolute value- of a t-variable with N-2 degrees of

freedom is less than p ij V(72 )11 - p iJ 2 . Because N is sufficiently

large, the normal approximation to the t-distribution was used.

In deter,nining the P-values of the empirical distribu-

tions xi, 
Z 

xi , and Ex I2 , the Kolmogorov-Smirnov statistic was used. For

example, in Table 4 the P-ve.lue associated with x 10+x11 +x12 is .66.

This means that the probability is .66 that a random sample of size 500
drawn from N(0,3) would yield a smaller value of the Kolmogorov-Smirnov
statistic than that obtained from the empirical distribution of x10+x11{x12'

Similarly the probability is less than 10-3 that a random sample drawn,

from X2 would yield a smaller value of the statistic than that obtained

from x102+x11 2+x122.

Tables from Owen [181 were used in all of the above-mentioned
cases.

4.1 Results of Testing Forced Marginals Oenerator

From Tables 1-6 a few patterns emerge:

a) mi <0 for all cases.

b) P increases as the indices of the tabled quantities
increase.
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c) P increases wits: the number of x i involved in the

transformation.

d) P decreases with increasing N.

Except for a), these are general trends which are not always
clear. b) and c) can be seen in Tables 3-6, but are not always evident
in Tables 1 and 2. The occurrence of a) was foreseen in Section 2.0
from the bias in the distribution of ^R (n) (n=1,...,N). Statement b)i
also seems reasonable in view of the linear dependence between 0R (n)

and 4R (n),also mentioned in Section 2.0	 i

It should be noted that even in cases where P becomes large,
the corresponding values of m  and 

pij 
remain close to zero. For ex-

ample, in Table 3 the values of m  (i=10,...,20) might be acceptable

for many problems even though the associated P-values are large.

4.2 Results of Testing Forced-Circles Generator

The tests described in Section 4.0 were also performed on
vector set (2) of section 3.0. The results are given in Table 7,
where the notation is the same as that used in Tables 1-6. The only
difference in Table 7 is that R, the number of points placed on the
circumference of each circle is given, and the distribution of xl-x2

is examined.

The values of m  and P12 are not shown for the cases of

1=4,10,20. These had to be zero by the manner in which the vectors
were constructed. The values of m  and a12 and corresponding P-values

are given,however, for L=1. It is seen that as X increases, the

P-value of the empirical distribution of x 2 + x2 increases. k=4 seems

to give the best results for all the quantities examined. The only
possible advantage in taking larger values of k would be to make the
vectors less sensitive to orthogonal transformation.

5.0 CONCLUSIONS

The small values of P in the tables indicate that the gener-
ators of Sections 2.0 and 3.0 give excellent results for most of the
quantities examined. It is clear, however, that as k becomes large,

k
the P-values of i and xi are too high to make the "forced-marginals"

generator safe to use in simulations requiring vectors of large
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dimension. For the present this generator seems safe to use for the
following values of N and k:

i) 1<k<3, N=100

ii) 1<k<5, N=500

iii) 1<k<10, N=1000

It is possible that some pseudo-random number generators
k

could yield good fits for lxi and xi, but it is doubtful that all of

the k-marginals and correlation coefficients would be as good as those
produced here. In such a case a hybrid generator could be built using
the "forced-marginaAls" generator for low dimensions and an adequate
pseudo-random number generator for higher dimensions. This would ne-
cessitate the ordering of x l ,...,xk by importance so that the most

important variables would be generated by the methods presented here
and the remaining variables by a standard pseudo-random number
generator.

If the negative bias on all of the means m  is cause for

worry, this can be easily ? remedied by reversing the signs of all num-
bers in selected marginals. This would give the selected marginals
positive biases.

In problems involving only 2-dimensional vectors the "forced-
circles" generator of Section 3.0 is recommended. It appears to give
better results than the "forced-marginals" generator, especially for
small N.

It is often suggested in the literature that a generator be
tested on a problem similar to the one in question, but whose analytic
solution is known. Although this is usually difficult in practice, it
is also suggested for anyone considering the use of the generators pre-
sented here.

The generators presented in this paper were developed with
the type of problem mentioned in the introduction in mind. Problems
which are dependent on the order in w 1, 4ch numbers appear cannot be
handled by the methods given in this paper. It is for the person in
need of a random number generator to decide whether the nature of his
problem warrants the use of these special purpose "forced" generators.
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mi P-VALUE
OF mi

P -VALUE
OF xi

1 -.042 .33

2 .047 .36

3 -.035 .27

4 -.062 .46

5 -.060 .45

6 -.106 .71 .09

* DENOTES < 10-3)

i	 2	 3 1 4	 5 1 6

1	 -.053 -.020-.046 -.036 -.064
.40	 .16	 .35	 .28	 .47

2	
I .3^ 1 .49 1 .04 t .26

31 .51 1 1 -.042 1-020

4	 1-.009
.07 1 .4

5	 -.010
.08

UPPER ENTRY - Pi)
LOWER ENTRY - P-VALUE OF Pil

TABLE 1

FORCED MARGINALS

N-100 K=6



i' 2 3 1	 4 5 6

1 .04	 .04	 .04 .28 .32

.02	 .02	 .04 .007 .12

2 .02	 .10 .24 .10

•	 ' " .22

3 .07 .08 .53

.01 .001 .24

4 .12 .36

.002 .12

5 -23

.02
DENOTES <10-3)

UPPER ENTRY - P-VALUE OF x i + xi
LOWER ENTRY - P-VALUE OF x i2 + x?

xi , x2, X31 x 1 ,----,x4 x 1 ,----x5 x1,----x6

.38

.19

.91

.42

.84

.60

.81

.63

UPPER ENTRY - P-VALUE OF 2: xi

LOWER ENTRY - P-VALUE OF Exi2

TABLE 2

FORCED MARGINALS

N-100 K=6



i mi P-VALUE
OF mi

P-VALUE
OF xi

1 -.009 .17
2 -.011 .20
3 -.009 .17
4 -.024 .41
5 -.028 .47
6 -.023 .40
7 -.036 .58 .002
8 -.042 .65 .005
9 -.021 .36
10 -.056 .78 .09
11 -.056 .78 .05
12 -.075 .91 .43
13 -.071 .89 '.24
14 -.078 .92 .47
15 -.080 .92 .51
16 -.086 .94 .62
17 -.088 .95 .69
18 -.076 .91 .36
19 -.091 .96 .75
20 -.053 .77 .005

i

(* DENOTES < 10-3)

2	 510	 11 15	 16 20
1 -.015 -.011 -.009 -.018 -.015

.27 .19

0.10

.15 .31 .27
5 -.006 -.026 -.009

.44 .15
10 .045 -.010 -.008

.68 .17 .13
15 .058 .106

.81 .98
19 .050

.74
UPPER ENTRY - Pil

LOWER ENTRY - P-VALUE OF Pil

TABLE 3
FORCED MARGINALS

N=500 K=20



1
i 2	 56	 10	 11	 15	 18 20

1 *	 .10	 .08	 .36 .04
:	 *	 *	 * .001

5 .02	 .37	 .39 .04
1.002	 *	 * .004

10 .52	 .54 .16
.02	 * •

15 .70 .39
.46 .85

19 .61
.87

V DENOTES<10-3)
UPPER ENTRY - P-VALUE OF xi + x.

LOWER ENTRY - P-VALUE OF xi2 + x,2

X 1 , x2• x3 x 10• x 11 • x 12	 x 1& x 19• x20 x 1 • x 10• x20
.08 .66	 .Q .62
.02 *	 .58 .18

x 1•----•x5 x&...'x10 x11•_"x15 x1&-'x20 x 1• x5• x10• x15• x20
.36
.56

.68

.19
.98
.67

.87
.91

.86

.31

x1•"'-x10 ( x11 1...'x20 l x2• x4•°'-•x1& x20

	

.84	 .999	 .99

	

.63	 .47	 .46

x1•-»-x2O

.999
.95

UPPER ENTRY - P-VALUE OF Exi
LOWER ENTRY - P-VALUE OF Exit

TABLE 4
FORCED MARGINALS

N=500 K-20



i mi P-VALUE
OF mi

P-VALUE
OF xi

1 -.005 .14

2 -.008 .20

3 -.008 .20

4 -.009 .24

5 -.011 .28

6 -.011 .28

7 -.021 .50

8 -.021 .50

9 -.019 .45

10 -.026 .49 .002

11 -.016 .39

12 -.024 .56

13 -.044 .83 .16

14 -.044 .83 .13

15 -.049 .88 .22

16 -.045 .84 .08

17 -.039 .79 .01

18 -.059 .94 .49

19 -.042 .81 .03

20 -.046 1 .86 .06

(* DENOTES<10-3)

2 5 6 10 1	 11 1	 15 1	 16 1	 20

1 -.ON -.006 -.004 -.006 .005

.22 .16 .08 .16 .13

5 -.005	 " -.012 -.008

.13	 .01 .30 .21

-.00110	 .032	 .003

.68	 .07 .03

.05315	 .008

.21 .90

-.08319

.99

UPPER ENTRY - P	 t

LOWER ENTRY - P-VALUE OF Aid

TABLE 5
FORCED MARQINALS

N-1000  K-20



1

2 5 6 10 11 15 16 1	 20

1 " .01 .002 .23 .04

.001
5 .004	 .004	 .10 .02

10 .16	 .31 .18
.03	 "

15 .27 .39
.04 .63

19 .48

.75

DENOTES <10-3)
UPPER ENTRY - P-VALUE OF x i + x^

LOWER ENTRY - P-VALUE OF x i2 + x?

x1, x2, x3 x 10, x 11 , x 12 x 18, x 19, x20 x 1 I x 10, x20
.08

.006
.08
.17

.54

.57
.60
.24

x11----1 x5 x&`'-, x10 x11• "-• x 15 x 16,°-, x20 x 1 l x5, x 10, x 15, x2
.20
.26

.37
.22

.90

.23

.98

.99

.89

.55

x1,-.--, x10 1 x11 ....- x20 1 x2, x4%" x1& x20

	

.86	 .995	 .96

	

.72	 .79	 .43

x1 ,----, x20
.999

.98

UPPER ENTRY - P-VALUE OF Exi

LOWER ENTRY - P-VALUE OF E x!2

TABLE 6
FORCED MARGINALS

N - 1000 K - 20



BELLCOMM, INC.

TABLE 7

FORCED CIRCLES

1	 N - 100:	 ml = -.001 P = .01

m2 = -.011 P = .09

0 12 = -.027 P = .21

N - 500:	 ml P = *

M2 = -.003 P = .05

0 12 = -.009 P = .17

N = 1000:	 ml * P - .001

m2 = -.001 P = .03

0 12 = -•006 P - .14

P-values of x l , x 2 , x l + x 2 , xl - x2 , x 2 + x2 were found for

I = 1, 4, 10, 20

N = 100, 500, 1000

In all cases except x 2 + x2 fo r values of I and N given below,

P < 10-3.

k	 10,	 N - 100	 P - .04

	

t=20,	 N=100	 P= .73

	

20,	 N - 500	 P - .01

*(*) Denotes <10-3
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