
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19690023344 2020-03-12T05:00:55+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/85240669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EELLCOMM, INC.	 8 6 W024
955 VFNFANT PLAZA NORTH, S.W.	 WASHINGTON, D. C. 20024

SUBJECT: Accounting of Computer System Use
	 DATE: June 5, 1969

in EXEC 8 - Case 803
FROM: A. L. Rothstein

ABSTRACT

Multiprogramming systems should be required to log in
detail all user activity because each user is willing to pay
only for what he uses. This capability is easily extended
to logging system characteristics for purposes of analysis
of system behavior.

The UNIVAC EXEC 8 system logs only CPU time for
each run. This is largely irrelevant. It is impossible
to use this time estimate as a basis for priority assign-
ment (as is done in EXEC II) since the impact of a run on
system throughput is dominated by its core requirements and
I/O characteristics as well as CPU time.

We have modified EXEC 8 to log the number of I/O
operations as well as the core-time product used by the run.
In computing core-time a run is assessed 80 milliseconds of
elapsed time for every I/O operation. Let C be the core-
seconds (8192 words of core for one second), T the CPU time,

and I the number of I/O operations. Charge
ti

6U + 30 + 1000'
The time field on the run card is used to estimate the charge
and is the basis of priority assignment. The charge is biased
against core use tc induce greater use of the less critical
facilities of CPU and I/O. Because of this bias, charge/hour
processed by the system cannot be used as a measure of system
throughput.

The current implementation charges the same for all
devices and makes no allowance for concurrent operations. Thus,
the user has no measure for the effect of changing file
residence and multiprogramming within his own run and certainly
no inducement to do so. We are suggesting a fairly simple
modification to correct this deficiency.

The accounting system should be extended to include a
charge for every service provided to the user.

V#I .V 72.2
IACCtt01 N NYMO[RI	 RNRYI

O

t	 VAOt01
	

(Coon

OR TMX OR AD NUMBS !	 ICAT[OORYI

3

BELLCOMM. INC.
	 8 69 06024

955 VENFANT PLAZA NORTH, S.W.	 WASHINGTON, D. C. 20024

SUBJECT: Accounting of Computer System Use	 DATE: June 5, 1969
In EXEC 8 - Case 803

FROM: A. L. Rothstein

MEMORANDUM FOR FILE

I. Introduction

Accounting for computer use in batch systems is
a straightforward process. Only one user program can execute
at any time and concurrent system activity, such as spooling
of input and output, has negligible effect on user throughput.
The entire computing facility is assigned to a user for the
duration of his run (joo) - a logical entity defined by
the user by means of system control cards which consists of
a sequence of program executions and system service functions.
The charge for a run is proportional to the length of time it
is on the computer. The fairness of this procedure is based
on the following considerations:

1. Identical runs have equal running
times - measured from the time of
day that a run begins until it
ends.

2. It is impossible to use part of the
system without preempting all of it.
This makes it fair to charge in
proportion to time on the machine
without considering which facilities
a run is actually using.

Both of the above are no longer true to multiprogrammed
systems. Since several runs may be processed concurrently, the
interval between the starting and ending times of a run
varies with the mix in which it is processed. Furthermore, since
any facility not being used currently by a run is theoretically
available to other runs, each user'feels that he should be
charged only for precisely those facilities he uses and only
for the time that he is using them. This feeling is reinforced
by the fact that whereas the capacity (and hence the cost) of
a batch system is designed to meet the needs of the largest
problem one expects to run on the machine, the capacity of
multiprogrammed systems - because of the expectation of con-
current operations - tends t^ =---A)— fn" *1— —Am ^f
any indivieual run.

BELLCOMM. INC. 	 - 2 -

Therefore, it has become necessary for multiprogrammed
systems to keep more detailed records of the activity of
each run. It is no longer possible to record that a user
got on the machine at 3:15 and off at 3:23. It is necessary
to record for what part of that interval the run actually
had control of the CPU, how many I/O operations it performed,
how much memory it used, etc. The level of detail will depend
on a trade-off between the cost of accumulating the data and
the difference it makes in charges passed on to the user. For
example, suppose that the size of data records read from
tape varies between 5 and 10,000 words with a mean of 250 words
and a small standard deviation. Under those conditions,
most users won't object to being charged for 250 words of
channel time for every tape I/O operation. So unless the
cost of gathering more detailed data is very small, it does
not pay to record the actual number of data words transferred
for each I/O operation. In considering the cost of the data
recording, the cost for the programming effort will in general
be greater than the machine cost incurred b y the execution of the
data gathering code over the entire life of the system.

While cost accounting has provided the incentive
for the inclusion of detailed recording (logging) capabilities
in the design of multiprogrammed systems, the information
once gathered can be used to evaluate the technical performance
and efficiency of the system. Furthermore, once the basic
logging mechanism is available, the incremental cost of
gathering technical (non-accounting type) information about
system characteristics is very small. This behavioral picture
of the system can be used to:

1. Isolate those parts of the software in
which an increase in efficiency would
yield the greatest return,

2. Spotlight goofs and inappropriate algorithms,

3. Suggest cost-effective hardware modifications
or additions to the system.

II. Objectives

We would like to use the logging/charging system
in the following ways:

1. Apportion the costs of running the computer
facilities.

BELLCOMM, INC. 	 - 3 -

2. Control of programming errors. We
will require the user to give a
maximum to the amount of charge units
his run is allowed to accumulate and
terminate the run when this is exceeded.

3. Minimize the mean turnaround time for runs
by giving high priority to runs with low
charge estimates.

4. Help the user to program efficiently. A
reduction in charge should be indicative
of an increase in efficiency.

5. Use the charge/hour processed by the
system as a measure of efficiency.
While each individual user is trying to
reduce the charge for his run, the system
should attempt to maximize its charge
capacity.

6. Control of programming practices. By charging
more for overloaded facilities we hope to
achieve a more balanced load on the system.
Since computer charges are formal rather
than real in our environment, we hope to
achieve this by offering higher priorities
to users with low-charge jobs.

In order to attain these goals the logging system
and the charge generated by it must truly reflect the cost
and impact a run is making on system throughput. Every
decrease in charge by a run should represent an increase
in efficiency and programmers should be urged to take all
reasonable measures to reduce the charge of their runs.
The charge must be computed dynamically instead of at run
termination in order to attain goals (2) and (3). If the
priority algorithm is to be meaningful, (2) is a prerequisite
for (3). The charge for a run must be the same regardless
of the other activities of the system at the time. This is
necessary both for psychological reasons as well as to attain
goals (2) , (3) , and (4) .

BELLCOMM, INC.	 - 4 -

Having the charge reflect true cost and keeping
it invariant for a given run are to some extent conflicting
objectives. For example, if a user does I/O on a saturated
channelt the request takes longer and hence the user's core
is tied up for a longer time than if the I/O had taken place
on a little used channel. Hence, we should charge more for
use of saturated channels. Hove- e::, this charge cannot vary
with the condition of the char... ' -it the time the request
was made but must be based upon the statistical characteristics
of channel use.

The important part of this effort is the logging.
Once this has been done, the method used to generate the
charge can be varied according to installation objectives.
There is in fact no reason why several different charges
cannot be generated. For example, Cl could be used to
drive the priority algorithm, C2 for billing purposes and
C3 as a measure of system throughput. In order to provide
a proper base, the following information must be logged:

1. The amount of CPU time used by each
program. This should include the CPU
time used by the system in processing
user requests.

2. The channel time used by the program.
For many devices, this time will vary
with the state of the device when the
request is submitted. In order to keep
the charge to the user invariant, we must
log the average time that this request
will keep the channel busy. In order to
do this properly, it is necessary to log
the number of words processed by the channel.

3. The core-time product used by the run. In
a multiprogrammed system, a run is often
in core but doing nothi:ig because the system
is busy processing other runs. Hence, it
is not sufficient to simply charge a user for
elapsed time in core. Instead, we must keep
careful track of when he is actually using his
core space. This will be the case if he is
either using the CPU or if a channel is actively
transferring data into or out of his core area.

BELLCOMM, INC. 	 - 5 -

The information logged should be invariant for
a given run. In some cases this is not possible. For
example, the only way to measure CPU time is by means of
the real-time clock which has a granularity of 1/5000 of
a second. The amount of over-charge (or under-charge
depending upon the algorithm) caused by this granularity
depends upon system activity. Furthermore, the number of
cycles actually available to a run for the duration of the
time it is logically in control of the CPU is a function
of the rate of I/O transfers. In addition, the number of
cycles used by an instruction is one more if the data is
in the same memory bank as the instruction than if it is
in a different one. The difference in CPU time can be as
great as 30% for typical programs. Whether this is the case
or not depends upon what other programs have to fit in core
concurrently with this one.

In deciding how much channel time to charge to
a run for I/O activity, it is important to consider not
only the device on which a user file resides but also the
manner in which it was placed there. Suppose that a system
has both high speed FH432 drums and the slow FASTRANDs.
Suppose the user allowed the system to all-,cate the file to
whichever device was free and the system allocated his
file space on the FH432. It would be wrong to charge him
the lesser channel time for the high speed drums because the
next time this run is made it may be necessary to place the
file on FASTRAND. Instead, the system must consider the
probabilities of the file being placed on each device and
charge a weighted average of the actual channel time for
each device as the channel time for that file. This is
particularly crucial when it comes to computing the core-
time product. On the other hand, if the file was placed on a
device because the run specifically required that this be done
(if space was not available the run would wait until it was)
then it should be charged the channel time appropriate to that
device.

In general, the core-time product logged against
a run for I/O activity will depend upon the channel time
needed by the request. However, it need not be restricted to
this. The statistical characteristics of the channel should be
taken into account. The average wait time in the queue should
be added to the channel time in figuring the core-time product.
This must be done independently of the state of the queue at
the time the request is made since the core-time logged
against a run must remain invariant.

BELLCOMM, INC.	 - 6 -

In computing the core-time product, it is
important to keep track of concurrent operations. In
the above discussions, we have assumed that CPU and I/O
generate an interval during which the run has effective
use of core and that it is appropriate to charge for the
use of core during that interval. However, the core charge
should be no greater if two or more such activities are taking
place simultaneously. Hence, if any of these intervals over-
lap (i.e., the operations are concurrent) it is important
that we use their union rather than their sum in the core-
time product for otherwise we would be charging twice for
the same core use. Without this feature in the logging system,
the user has no way of knowing the effect of multiprogramming
within his own run.

in considering the charge to be made for the use
of the different facilities, it is important to remember
that the effects of a run are not restricted to the facilities
actually used. By its very presence in the system, it has
Preemptive effects. In batch systems, this was obvious.
Each run had total control of the system. In a multiprogrammed
system, it is a lot harder to determine just what this effect
is. For example, the probability of the CPU being idle
increases as the number of runs in core decreases. For each
run, the amount of core it uses decreases the probability of
their being enough runs in core to use the CPU and hence that
portion of CPU idle time ought to be assessed to that run.
The limiting case is reached when one run uses all the available
core. In this case, it should be charged for all CPU idle
time just as it would have been in the batch system. The
same considerations apply to idle channel time. So the cost
of core-time use should be based not only upon the cost of
core, but also on its effcc:t on the probability of being able
to utilize the other facilities.

The extent to which a run inhibits the multiprogramming
of other runs depends on the environment. In a system where
two runs saturate the I/O channels, the size of a program is
not very important. If the system is compute-bound, then I/0-
bound runs have very little impact if sufficient memory is
available. The converse is also true.

BELLCOMM, INC.	 - 7 -

III. The UNIVAC System

The EXEC 8 operating system delivered '.,y
UNIVAC for the 1108 does a very poor Job of gathering
information for the purposes discussed above. At the
current time, EXEC 8 keeps track only of the central pro-
cessing unit (CPU) time used by each job. There is no logging
or control over I/O activity or core size. It is possible
for a large program in an I/O loop (due to program error) to
dominate the system for hours and drastically reduce
efficiency. Furthermore, it has long been the practice at
Bellcomm to reduce the mean turnaround time by giving higher
priority to runs with shorter running times. However, in
a multiprogrammed system, the effect a program has on through-
put and hence on the mean turnaround time depends more upon
its size and elapsed time (measured when running by itself)
than the CPU time. This is especially true at Bellcomm where
the mix of programs is I/O bound so that there is very little
correlation between CPU and elapsed time. This makes it
unreasonable to apportion computer costs and futile to
assign priorities as a function of CPU time.

IV. The Bellcomm Implementation

Because of these problems, we have modified EXEC 8
to log core-time and I/O operations as well as CPU time.
Core-time is a product of the amount of core a run is currently
using and the amount of time for which it has effective use
of it. The decision as to what use is effective is made
within the design constraints of the system. For example,
suppose that a program that occupies 30,000 words of core
wants to write a block of 250 words to tape. It informs the
system of this need and defines the tape file and location of
the data to the executive system. At this point the executive
takes control, performs the operations, and gives control back
to the program when the I/O operation is complete. Now
theoretically the program needs not all 30,000 but only 25n
words of core while the operation is taking place. However,
the system design is such that the program must remain in core
while I/O is taking place. Furthermore, even using the high
speed drums it takes longer to swap out the unneeded 29,750
words of core and load another program than it does to write the
250 words of data to tape so that it is physically impossible for anr
other run to use this memory space while the I/O is taking
place. Bence, the use of all 30,000 words of core is considered
effective for the duration of the I/O operation. Suppose, however,
that the I/O operation cannot be performed immediately because
some other run is currently using that channel. The time that

BELLCOMM, INC.	 - 8 -

the request waits in the I/O service queue does not constitute
an effective use of the program's core space since it would
not ha,7e occurred had the program been executing alone.

The units of core-time are rather arbitrary.
In the current implementation, one core-second is the use
of 8192 words for one second. The use of core-time is
incremented in units of 1/5000 of a core-second. CPU time
is measured by the system in increments of 1/5000 0'_ a second
so the effective core-time use due to CPU activity can be
calculated easily. It is much herder to determine the
effective elapsed time to be charged for an I/O operation
since this varies with:

1. the device on which the file resides,

2. the number of words being processed,

3. the state of the device at the time
the operation is initiated.

In case (1), it is desirable to charge different
rates only in those instances where the user has control over
file residence. For example, a tape file as opposed to a drum
file. If the file is a catalogued file, he should not be
charged less because the system fortuitously allocated him
space on the fast FH432 instead of the slower FASTRAND drums.
On the other hand, a user should receive credit for assigning
scratch files to specially reserved FH432 areas (see the drum
@ASG Statement, Section 5.5.1.5 of the EXEC 8 Programmer
Reference Manual, UNIVAC publication UP-4144 Rev. 1).

In case (2), it is obvious that a user should be
charged more for larger data transfers. The precise relationship
depends upon the device. In the case of tape, one can calculate
the number of inches needed for a given number of words, add
on the size of the interrecord gap and charge on that basis
In the case of drum I/O there is a large initial cost per record
and then a small increase in cost per word. For example, a
record of 400 words written on tape takes about 5/3 as long as one
of 200 words, whereas on FASTRAND the ratio is about 1.43.

Case (3) should not be reflected in charging
effective elapsed time to the user since the state of the I/O
devices (e.g., tape moving or not, positio. of FASTRAND boom)
depends to a large extent on the mix of jobs being multiprogrammed.

BELLCOMM, INC.	 - 9 -

In addition to the elapsed time charge for core
during an I/O operation, there is also a charge for the use of
the I/O channels and device controllers. Theoretically, this
should also vary with the number of words being processed
and the device being used.

In the actual implementation we came nowhere near
following these recommendations. The reasons for this are that:

1. It was important to quickly get some
accounting on the system that was not
totally restricted to CPL' time so we
made some shortcuts for speed of imple-
mentation.

2. We do not know enough about EXEC 8 to
implement some of these features at
this time.

3. In some cases, the game is not worth the
candle. For example, almost all tape I/O is
done in blocks of 224-256 words. If we
charge each user on the basis of 250 words
per tape operation nobody will complain and
we will be sufficiently close to estimating
the real cost so that it would not pay to
measure the number of words actually tranG-
ferred during a tape I/O operation. What
we have done at the moment is to assess a
run for 80 milliseconds of useful elapsed
time for I/O operations. This is probably
too little for FASTRAND I/O and too much
for tape operations.

In addition to logging this information, a charge
is computed fcr each run. Let C be the number of core-seconds
(in the current implementation this is the use of 8192
wards for one second) used by the run, T the CPU-seconds,
and I the number of I/O operations. Then in the current
implementation

charge 00 + 30 + 1000'
In addition to the core-time logged to a run for every I/O
operation, the I/1000 represents a charge for use of the
channels, controllers, tape drives, cycle-stealing, et:. This
charge should vary with the channel. used, the number of words

BELLCOMM, INC.	 - 10 -

transferred, etc. However, a standard charge was chosen for
just about the same reasons we discussed above for assessing
a standard charge of 80 milliseconds effective core use for
each I/O operation.

The charge is computed dynamically. For every
increment to CPU-time, core-time, or I/O activity, a
corresponding increment is made to the current charge.
Charge is incremented in quanta of 1/300000 of a unit. CPU-
time logging is done in quanta of 200 microseconds so that
the minimum increment of core-time is for the use of 8192
words of core for 200 us. The charge for this is 1 charge-
quantum. The charge for the use of the CPU for 200 us
is 2 charge-quanta. The charge for each I/O operation is
325 quanta.

The maximum allowable charge for a run is
specified in the time field (now the charge field) of the run
card. This field was chosen for the following reasons:

1. An estimate of CPU use is of little
importance to an installation such as
ours which is predominantly core and I/O bound.

2. we wish to assign priority to a run in
inverse proportion to the charge estimate.
The system already contains modifications
to do this using the time field.

3. The system already contains facilities for
terminating a run when the current value
associated with this field exceeds the
estimate. This is a necessary feature for
enforcement of the priority algorithm.

The reason for incrementing the charge in quanta of 1/300000
of a unit is that the time field was represented in this way.
The real-time clock increments every 200 us so that each
minute of the time field is most naturally represented by
300,000 such increments.

At present charge is computed by

aC+ST+yI.	 (1)

This constitutes a charge for the dynamic facilities only.
Since the FASTRANDs account for a substantial portion of the
computer system cost, any bill presented to the user should

BELLCOMM, INC.	 - 11 -

include charges for track-hours of file residence on FASTRAND.
This charge is a function of file size and is in no way related
to the dynamic charge for accessing the file nor to the number
of times it was used. The rationale for apportioning priority
as a function of charge is that giving priority to runs that
demand least of the system is the best way to minimize mean
turnaround time. This is true only for dynamic use of facilities.
Static use, such as size of files, has no effect on turnaround
and therefore should not be included in any charge parameter
that is used as a priority distributor.

In Table I, the first line gives the approximate cost/
month of the devices considered in the charge parameter. The
second gives the approximate availability in terms of what is
left to the user after the system takes what it needs. The
third line is an estimate of the fraction of that facility
which is actually used at Bellcomm. The fourth line-adjusted
cost is the cost factor assigned to that device. The values of
a,S,Y in equation (1) were adjusted so as to contribute to the
total charge in the ratio of the fourth line of Table I.

Core	 CPU	 I/O Devices

Cost/Month	 $20K	 $14K	 $20K

Availability/Sec. 100K work-sec. 1 CPU-sec. 40 operations

Fraction Used 1.0 .50 .50

Adjusted Charge 40K 10K 10K

TABLE I

COST OF SYSTEM FACILITIES

BELLCOMM, INC. 	 - 12 -

The system is most efficient if all its facilities -
core, CPU, I/O - are being used to full capacity. If a facility
becomes saturated, we would like to provide an inducement to
switch from that facility to another. However, we don't want
them coming over in droves to tip the scale in the other
direction. The adjusted charge line of Table I is our first
attempt to provide this balance. Since we have two facilities -
CPU, and I/O devices - which are not being used to capacity and
hence not paying for themselves we must make up the cost
somehow. This we did by raising the price of our saturated
resource, core, to the point where we break even. At the same
time, we are providing an inducement for our people to write
smaller programs and use more CPU or I/O instead.

In assessing charges for good runs, it is important
to remember that they are so only because of the environment.
If we charge too little then, the users will tend to program
so as to give their runs good characteristics. Eventually
this will cause a change in the environment which may reverse
the goodness characteristics. If everyone starts writing
compute-bound programs because they are cheaper, the system
will very quickly lose its I/O-bound characteristics. It is
very important to strike a correct balance in assessing charges.

This is especially true if the charge estimate
is used as a priority distributor. This tends to group low-
charge runs together for multiprogramming. If all these runs
are compute-bound then in effect, the system becomes compute-
bound and the throughput will degrade accordingly. It is
important that the mix of low-charge runs retains the system
characteristics which made these runs candidates for small
charges in the first place.

An alternative way to make up the cost would be to
charge the unused CPU and I/O to overhead and distribute the
cost to all the users. This would have the precise opposite
effect of what we want. Users would tend to use as little of
these facilities as possible so as to get the general overhead
cost to pay for their runs.

V. System Throughput Evaluation

Let us suppose a fixed charge algorithm and a fixed
set of runs are to be used as a throughput test. As we pointed
out earlier, the charge to the user in a multiprogrammed environment
ought to be completely independent of system activity. Hence, we

BELLCOMM, INC.	 - 13 -

make the further assumption that for all the test runs the
charge remains invariant with respect to system changes.
Under these conditions it is obvious that any increase in
charge/hour processed by the system does reflect an increase
in throughput and conversely. It is immaterial whether this
increase is due to software or hardware changes. This is true
for biased as well as unbiased charge algorithms.

On the other hand, the cost effectiveness of a
change (for sake of simplicity lets suppose its a hardware
change) can be measured from the relative increase in charge/
hour only if the charge is an unbiased reflection of the
actual cost. In a biased system where we are overcharging
for the use of critical facilities, an addition to those
facilities will tend to show an apparent increase in charge/
hour which is greater than the actual increase in the throughput.

We have been considering jobs processed as a
measure of throughput. Suppose we reprogram the jobs in such
a way that we can get the same answers by using less of the
critical facilities. If the cost of the non-critical facility
is sufficiently low, we can actually increase the throughput
while decreasing the charge/hour processed by the system.
In particular, for biased charge algorithms where the purpose
of the bias is to change programming habits it is highly
probable that this will be the case. It would seem that it
is not possible to use the same measure both as an incentive
to change and as a measure of efficiency. Moreover, the use
of a single parameter to measure system efficiency does not
really tell us enough about system behavior. It is much better
to evaluate system performance with respect to a balanced use
of all system components and use the charge parameter as a
control.

VI. Recommendations for Further Development

The biasev charge algorithm needs constant monitoring
to insure that the bias iz producing the desired effect.
If the change in user habits is not sufficient, the bias must
be increased whereas if the swa_:_3 goes to far, we must reverse
the bias. The following factors should be monitored in the
current charge algorithm at Bellcomm:

1. The amount of elapsed core-time charge for
an I/O operation. The current setting of
80 milliseconds may be too low.

BELLCOMM, INC.	 - 14 -

2. The charge for CPU time may still be
too high to achieve a proper balance.

3. We need to examine the effect on turnaround
time of the priority categories. The
number of categories should be reduced
once the proper cutoff points are found
to insure reasonable turnaround time.

4. The limits of the priority categories should
be sufficiently large so that the jobs
within a category contain a representative
mix of I/O and compute-bound programs.

5. Is the charge for core-time high enough
to induce the segmentation of large programs?

More fundamental changes are also necessary.
The current algorithm which gives absolute priority to all
jobs having a given priority letter over all others with a
lower priority makes it very hard to achieve a proper balance
and to give reasonable turnaround time to all categories.
The behavior we would like to see from the system is that a
job whose charge is 20 takes about twice the time to get done
as one whose charge is 10. If the number of jobs in the
10-unit category is sufficiently large and is replenished at
a steady rate, then it is possible that 10-unit runs get 1/2 hour
turnaround while that for 20-unit runs is measured in hours.
Besides being inequitable and undesirable in terms of efficient
use of human resources (programmers in the 10-unit category
are getting more and those in the 20-unit are less than they
need to solve their problem), it induces the programmer to game
the system and thus decrease both his own efficiency and that of
the system. Someone running a 20-unit program may well spend
hours breaking his run up into three 10-unit runs to do the
same thing. And as long as we make it profitable for him to
do so, that is not only what he will but also what he should do.

A proper scheduling algorithm will consider not only
what priority category a run is in but also:

1. The length of time it was waiting in the
queue.

2. The turnaround time it would have received
had it been processed in a FIFO queue.

BELLCOMM, INC.	 - 15 -

3. The amount of services that this user
working on this problem has received
recently. No one individual should be
allowed to dominate the system, even if
all his runs are small and therefore
have high priority.

It will be necessary to reserve a few priority categories for
jobs which are to have high priority and some categories at
the low end for jobs which are not to be started until all
others have been completed. This approach will also make
it easier to achieve a properly balanced use of system
facilities. For example, one could start one run from
category G for every two runs in the system which are from
categories D, E, or F.

The current charge for core increases linearly
with the amount of core use. It is not at all clear that
the effect on throughput is in fact linear. A careful
examination of this question is necessary.

The current charge for I/O is the same regardless
of the device or number of words being transferred. This is
not a true reflection of the cost to the system. Not only
are the FASTRANDs much slower than tape, but the FASTRAND
channel is saturated so that use of catalogued files
(assumed to be on FASTRAND) puts an additional burden on
throughput which is not charged to the user since he is not
charged for wait time in the I/O queues. The charge for
tape and word addressable drum I/O should be appropriately
reduced and that for catalogued files increased. This will
yield a more equitable distribution of I/O costs as well
as inducing users to move their files to tape or FH432 drum
when it is reasonable to do so. In the current system, not
only does the user have no incentive to change the residence
of a file, he has no way of telling which is best since the
charge remains the same regardless of what he does.

The same considerations apply to the measurement of
concurrency. There is no logging of concurrency and hence the
user gets no credit for overlapping of I/O and CPU processing
or overlapping of I/O on two channels. Not only is there no
inducement to try, but there is a way of telling how much is
gained by doing so. If a user is processing two data files,
he has no way of telling whether it pays to double buffer,
put one file on tape and one on FASTRAND, or both on tape.
A proper charge algorithm will help him decide.

BELLCOMM, INC.	 - 16 -

I would like to suggest the following algorithm
to accomplish this. Add a word (BCIOND) to the users PCT
which is the time that the current I/O operation will end.
Associate with each device - FASTRAND, tape, etc. - an
elapsed time Td. Let To be the current value of BCIOND, Tc
the current time, and E the elapsed core-time to be charged
to the run. Then E = min (Td, max (0, Tc + Td - To)) and
To = max (Tc + Td, To). That is, the remaining elapsed
time of the current operation is subtracted from the elapsed
time charge for this operation. If the result is non-positive,
then there is no elapsed time charge for core use. The end
time for the current I/O operation is then extended to include
the time necessary to complete the operation just submitted.
Similiarly, there is no core charge for any CPU time used
while the value of To is greater than Tc. The changes necessary
to include this algorithm (if you want to dignify it by that
name) as well as to charge different rates for the different
devices should be fairly easy to implement. While it may be
difficult to charge on the basis of words actually transmitted,
it should be fairly easy to vary the charge as a function of
the number of words requested for transmission.

This system logs (and charges for) only some of the
services provided by the system - namely the ER's to IO$, IOW$,
I01$, IOWI$, etc. It would be appropriate to include a charge
(and perhaps logging) for every ER request the user makes
to the system. This should cover at least the cost of
processing the interrupt as well as any additional servicing
time. For those ER's (such as TIME$) where the cost is
the same for each request it can be calculated directly in
the ER dispatcher (DISP). In those cases where the cost
varies (such as PRINT$) with the amount of processing, appropriate
changes will be necessary in the functions which process the
ER's.

f	 71'

1032-ALR-dmu	 A. L. Rothstein

Copy to
See Last Page

	GeneralDisclaimer.pdf
	1969023344.pdf
	1966021346A01.pdf
	1966021346A01a.pdf
	1966021346A01b.pdf
	1966021346A01c.pdf
	1966021346B02.pdf
	1966021346B03.pdf
	1966021346B04.pdf
	1966021346B05.pdf
	1966021346B06.pdf
	1966021346B07.pdf
	1966021346B08.pdf
	1966021346B09.pdf
	1966021346B11.pdf
	1966021346B12.pdf
	1966021346B13.pdf
	1966021346C01.pdf
	1966021346C02.pdf
	1966021346C03.pdf
	1966021346C04.pdf
	1966021346C05.pdf
	1966021346C06.pdf
	1966021346C07.pdf

