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ABSTRACT

The dynamicsAof entry into a planetary étmosphere,
sensitivity_analfgis‘for control and for updating, and
efficient implementation of the prgpoSed guidance techniques
are studied. To simplify the description of the guidance
requirements, the trajectory equations are written with the
altitude as the independent variable. Retro-propulsion is
the assuﬁéd method of control.

In the main part of this thesis, the Martian entry
guidancé problem is found to be complicated by the great
uncertainty in the present definition of the Martian atmos~-
pheric parameters. A guidance scheme that will produce a
reference terminal condition whatever the actual atmosphere
encountered on Mars entry is suggested. The approach is
analytical. Sensitivity Analysis is applied to the entry
dynamics in order to compute the effects of both density
parameter deviations and control changes. After the
atmospheric parameters are tracked, the control is deter-
mined on-board by uéing'the sensitivity coefficients
previously compiled. Control updating is provided by intro-
ducing a new sensitivity equation which reduces the on-boa;d
computation since all the required terminal semsitivity

coefficients are now produced by the solution of one



equation. Numerical simulation assuming a VM-2 reference
density and VM-l actual density showed that the términal
velocity and range angle errors were reduced by at least 90%
in comparison with those resulting_from the uncontrolled
VM-1 trajectory. The effECts of delays in obtaining infor-
mation describing the actual atmosphere and of inaccuracies
in that information were also investigated.

“Second order sénsitivity functions are investi-
gated with a view towards improving guidance system per-
formancé in the case of large deviations in the atmospheric
parameters. Previous workers have derived higher order
sensitivity equations using a single n-th order differential
equation to model the phyéical system. However, the state
vector described by n first order equations gives a more
general approach for dynamical systems. A new vector-
matrix differential equation for the second order sensitivity
coefficients of a general system is oﬁtained. It is found
that the second order sensitiviﬁy forcing function depends
on the present altifude in a planetary entry problem in
contrast to the1first order sensgitivity forcing function
which is independent of the présent Qltitude. This point is
important in the calculation of the terminal values of the

second order sensitivity coefficients. With the first



xi

order coefficients, it was possible to describe all the
terminal values by using the adjoint sensitivity equation.
For the second order coefficients, this procedure is only

poésible for a certain approximation to the second order

sensitivity forcing function.



PART I

INTRODUCTION

A. Historical Review

1. Atmospheric Flight Mechanics

Before reviewing épecific efforts in the field of
atmospheric flight mechanics, the relationship between the
flight mechanics broblem and the problem of guidiﬁg a
capsule-lénder entering an uncertain planetary atmosphere
is considered. The essence of the guidance philosophy
developed herein makes considerable use of certain partial
derivatives ofuthe state variables. These derivatives,
called sensitivity coefficients, multiply the parameter or
initial condition deviations to give deviations in the state
variables. 'These sensitivity coefficients are usually found
by numefical solution of a set of linear differential
equations with variable coefficients. However, suppose
that analytic, closed-form solutions for the entry dynamics
were available. Then the sensitivity coefficients could be
obtained as algebraic functions by performing the indicated
partial differentiation. The difficulty with this approach
is the lack of a general solution of the dynamicai equations

uniformly valid for Mars entry over all the regions of



interest: Keplerian, Aero-gravity Perturbed, Aerodynami-
cally Dominated, and Sonic Velocity. Specific contributions
towards analytic.solutions of the entry dynamics are now
discussed.

Chapmanl contributed a certain set of transfor-
mations which enabled him to approximate the entry dynamics

(see Appendix A) by one nonlinear differential equation:

BV L -t ,
Mi} —j..;‘Z:.%;-.-%,.;:‘._cos‘fe (1-1)

_.maihl%§.Cu>§3€9

where the variables, Z and u, are given by

V Cos©
.

‘ .

It should be noted that the following assumptions were made

A= (1-2)

in developing Chapman's Equation:

(i) The percentage change in distance from the
center of the planet is small compared to the
percéntage change in velocity.

(i1) t (L7p) TTam® ‘<< |
(iii) Non~rotating, spherical planet with exponent-
ial atmospheric density distribution;

From the practical point of view, this effort does not



constitute an analytic solution of the entry dynamics.
However, it does show that combining the physical state
variables in_certaiﬁ different groups-may lead to a simpli-
fication of the equations of motion.

Loh's work?>3:%:5 constitutes an early approach
toward analytic solutions of the entry dynamics.

In addition to the assumptions made in developing
the time domain equations of motion (A-22,23,24,25) , the

density profile is written explicitly as
P e T .
where P" = gurface density
63 = inverse scale height
Noting that time doés not appear in the equations of motion,
the densitj is taken as the new independent variable result-

ing in

‘;c;‘ e-f (é;'g')(é;’g)(av% ""):il. (%)(g'%ﬁ) (1-5)

= CoA YaR,
5": [V/aa.}(%)ﬁ{__a_l - (-é%ﬁ)f,‘—

Loh then claims that the quantity

(5> S22 (-0

...must be insensitive to p or @ integration." 2 This




statement is supported by references to first order theories
and numerical simulation. Norman® also discusses this
assumption with specific reference to ballistic entry. By

the previous discussion, the following results

Cos ©= Cloa;GQ
. E L( L.)(C,A (Jﬁ ) Cos é ( 9](‘,-‘,‘) (1_7)

Next, the gravity component parallel to the velocity vector

is neglected. Together with Equation (1-7), this assumption

enables Loh to obtain
[v "V Y(3Re) ] C(CepY/(mel)](e-Oe)
RG » & -
R IR b, PR O

Equations (1-7) and (1-8) are Loh's approximate solutions to
the entry dynamics. One important point should be noted.
These solutions are most valid during the initial phases of
entry where the velocity is still of the same order of mag-
nitude as the circular satellite velocity. willes’ and
Citron and Meir® further discuss and evaluate Loh's work.

Willes7 applied the Method of Matched Asymptotic
Expansions to ;he entry dynamics problem with several
objectives:

(1) defining the ‘'regions' in which specific

approximate analytic solutions such as Loh's



are valid,
(ii) extending the solutions to higher aécuracy,
and 
(iii) combining the solutions to obtain composite

solutions valid éver éeveral flight regimes.
From the point of view of the Martian entry guidance pro-
blem, the third obhjective is the most interesting.
Intuition and experience have led the present investigator
to divide the aerodynamic braking phase of Mars entry into
two flight regimes: (i) a drag dominated phase characterized
by velocities of the order of the circular velocity and
slowly changing flight path angles, and (ii) a "near sonic"
regime characterized by much smaller velocities and a more
rapidly changing flight path angle. 1In terms of forces the
"near sonic"” regime is one in which drag and gravity are of
the same ordér of magnitude. Analytic solutions for this
second flight regime have not been obtained except for some
special cases?. General analytic solucions for the 'mear
sonic" regime and composite solutions valid over both regimes
will be needed if ome is to obtain closed form expressions
for the semsitivity coefficients used.in the guidance

equations. Other works which contributed to the author's

undérstanding of the atmospheric flight mechanics problem are



Martinlo, Plattell, Haninl2,13, Allen and Egger59 and
Jungmannla; Related literature in the field of Matched

Asymptotic Expansioné'is given in References 15 to 25 where

the works of Van Dykel?, Erdelyizo, Wésowza, and Cole?>

perhaps provide the most genmeral coverage.



2. Present_Knowledge of the Mars Atmosphere

Before beginﬁing the discussion, it is necessary to
relate knowledge.pf the Martian atmosphere to the problem
of soft landing an unmanned capsule on the surface of Mars.
First, newer estimates of’the Martian atmospheric parameters
have greatly influenced the design of a reference trajectory
for such a landing. Eariy estimates of the Martian surface
pressure'rangedAfrom 40 to over 100 millibars?6:27,28  por
these 'thick' atmospheres, W‘ingrove29 shows that the aero~
dynamic braking provided by a vertical entry trajectory
would be sufficient. For thinner atmosPheres,30a3ls32
Wingrove suggested that .10 millibars is a reasonable lower
limit on the surface pressure necessary for vertical entry
trajectories. He also suggested that a surface pressure of
7 millibars is about the lowest limit for safe direct entry
trajectories using terminal phase deceleration devices29,

However, the latest estimates of the Martian
atmospheric density paramaters33»34’35936’37 obtained from
Mariner IV experimehts caused further revision of plans for
soft landing. These studies of the Mariner IV data indicated
that the Martian surface pressure is around 4 to 6 millibars,
though this result is not conclusive. To compensate for the

lessened atmospheric drag, two tecohniques have been



suggested38. These are (1) lowering the capsule ballistic
coefficient and (2) lengthening the flight path in the
atmosphere. More wi1l'be'said about these proposed
strategies in the Statement of Problem'section of this thesis.
To conclude fhe review of data pertaining to the Martian
atmosphere, it is noted that the most recent sources‘of data
are References 39 and 40. For a detailed description of the

atmospheric density models used in this thesis, see Appendix

B.



3. Sensitivity Analysis

Before the dévelopment of analog and digital com~
puters, the Study.of-a dynamical system usually was to find
aﬁ analytical closed-form solution for the differential
equations describing that system. However, in the analysis
of practical dynamic systems, along with the obtaining of
solutions as functions of the independent variables; it is
also impoftant to have a knowledge of the variations of the
solutions with résbect to the parameters of the problem. If
the solution of the dynamic system has been found in analytic
closed form, then the problem of describing the variation
with the parameters is quite simple. It is only necessary
to pefform the indicated partial differentiation in order to
obtain the coefficients of a Taylor series expansion for the
perturbed solution. For complicated dynamic systems such as
the entry dynamics where analytical closed-form sclutions are
hard to find and only numerical techniques seem applicable,
the approxiﬁation of the effects of parameter variatiohmposes
. a greater problem. This is the ?rob;em to which Sensitivity
Analysis is directed. Now we review specific contributions
to Sensitivity Theory.

The analysis of ﬁiller and Murray*! constitutes an

early development of a workable form of Sensitivity Analysis.
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Though the motivation for these studies was quite.different
(Miller and Murray were interested in obtaining a mathe-
matical basis for a general error analysis of solutions of
systems of ordinary differential equations by analog computer
methods), there is a general discussion which was useful to
the present investigator. 1In particular, the relationship
between modern sensitivity analysis and the more classical
theory of”differential equations is noted. Theorems for the
dependence of systems of ordinary differential equations on
parameters are also discussed. That perturbations of com-
plicated nonlinear systems may be described by linear differ-
ential equations without "linearizing” or simplifying the
given system is also shown.

As ﬁas mentioned, Sensitivity Analysis is closely
related to some well known theorems of differential equations.
Hartman™Z provides a concise review of these theorems in his
general work on ordimary differential equations. The follow-

ing system is considered

ﬁd,=3 4?(51;131;E>:' '1a(dh*)1= 13°

(1-9)

. a c
where 2= (2, .., & D is a set of parameters and where, for

each fixed z, the system has a unique solution



11

43 =V ( *;-’i‘m’aas z) (1-10)
That the assumption of uniqueness impiies the continuity of
the general solution is noted and a ﬁheorem for this is given
and proved. Finally, the qﬁestion of the differentiability
of the general solution is discuSsed. A Theorem (due to
'Peano) is ‘given tﬁat provides sufficient conditions for the
existence'of the first partial derivatives of the general
solution.%42 This same theorem also specifies another diffef-
ential equation whose solutions are the first partial deri-
vatives of the general solution*2. Since these first deri-
vatives are equivalent to the first order sensitivity
coefficients, any study of Sensitivity Analysis should include
this work.

The work of Tomovich3 perhaps contributed the most
to the understanding of the theory of the sensitivity
analysis of dynamic systemé. The discussion begins with the

following mathematical model:

F(x, %xx,%, 8e)= O (1-11)

Next the sensitivity coefficient -4 () 80) is defined by

y {5, Re )—- (&p C] 8 -
(%, 0)= 20;:0[ X¢t 8 ;z (4,8 >J=%.o x(:t,g.) (1-12)
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where XC.* 8o +'A3 ) is the perturbed solution that result:s
when 8° *Ag is substituted for 3, in the original mathe-
matical model. The sensitivity equation is then obtained by
téking the ﬁartial_derivative of equation of the model with
respect to é?a

The result is
HF .. BF ., 8F, _ SF
sz M e M Ex 380 (1-13)

A second order sensitivity equation is also derived
and that result will be discussed in another portion of this
thesis,

Thompson and Kohr44

extend Tomovic's analysis by
considering an n-th order system modeled by a single scalar
equation:

Fla,x, %, , P X, 8,0 Bw)=0 1
where x is the solution,

do = d%x
P Pz (1-15)

and 23., ooy 2;4“' are parameters. Again, first and second

order sensitivity equations are derived,.

The book Sensitivity'Methodé in Contr0145 in the

Proceeéings of the Internatiocmal Symposium on Semsitivity

Analysis, sponsored by IFAC, held in Dubrmﬁnik,~Yugoslavia in



1964. Papers presented were divided into the following cate-
gories: Basic Approaches, Sensitivity Fugctions,’Compen-
sation of Parameter Variations, Synthesis of Insensitive
S&stems, ané Sensitivity and Optimality. The paper by
Kukhtenko and Shevelev4? dealiﬁg with the design of insensi-~
tive control systems was of‘particular interest since it gave
a further application of Tomovic's concept of Second order
sensitivity.

The next three papers are strictly applications
oriented. Staffanson#® deals with a kind of inverse sensi-
tivity problem in which the object is to obtain improved
system parameters from recorded text range data. Watson7
appliéd Sensitivity Analysis in a somewhat novel manner. To
design optimal reference trajectories insensitive to para-
meter variations for advanced ballistic missile systems, he
added sensitivity functions directly into the cost functional.
Hull and Guncke148 present sensitivity data for the Mars
entry problém although it is not clear whether this data was
obtained by solving for the actual sensitivity funétions or
by using the method of divided differences.

Finally, the survey of Kokotovic and Rutman%9 pro-
vides a comprehensive introduction as well as an extensive

bibliography in the field of Semsitivity Analysis.
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4. Entry Guidance

The function of the entry guidance system is to
control tbe_brakiﬁg of a space vehicle in the vicinity of the
planet's atmosphere. The final objective is usually the soft
landing of the vehicle on the sﬁrface of the planet. Imn
this section, both theoretical guidance schemes and varicus
control techniques.are'reviewed. In addition, some guidance
and controi techniques suggested specifically for Mars are
considered. Finally, some attempts to apply modern control
theory to the entry guidance problem are mentioned.

In the past, methods for guiding the flight of an

entry vehicle have been divided into the following categories:3*

(1) linear perturbation guidance employing on-
board calculation of future trajectories
using approximate expressions,

(ii) 1linear perturbation guidance employing
storage of reference trajectories and optimal
feedﬁack control.

(iii) guidance based on on-board fast-time inte-
gration of future trajectories.
The fast-time integration techniquel;30,31 yses a prediction

of the range performance that would be obtained if the



the current control is held constant. The prediction is
obtained by numerical integration of the equations of

motion. After comparing the predicted range with the desired
range, a second prediction is made using a "modified control"
designed to reduce the range error. Since the prediction
time must be small in comparison with the time of flight,
Chapman's reductioen of the entry dynamicsl to a single non-
linear differential equation is really the basis of this
technique.

Linear perturbation guidance employing on-board
calculation of future trajectories using approximate expres-
sions i8 perhaps the most promising entry guidance technique
since it has the ability to adapt to a wide range of terminal
objectives.?0 1In this techniqué, the control is formed by a
summation of terms linearly proportional to the deviations
of the actual trajectory from a reference trajectory. The
proportionality factors are the functions which multiply the
state variable deviations to give the control. These factors
depend .on the partiéular approximate solution of the traject-
: ory dynamics. Approximate solutions are available for the
following flight modes:?0 the equilibrium glide, constant
path angle, constant altitude rate constant aerodynamic

load factor and constant rate of change of load factor witﬁ



velocity. Unfortunately, these solutions are applicable
only to Apollo-type lifting entry into the Earth's atmos-
phere. As mentioned previously in this thesis, further
approximate~solutians will be needed'béfore this technique
can be fully applied to the ballistic entry planned for Mars
landing. Examples of_present applications of this guidance
technique are given iﬁ reference 52, 53, 54, and 55.

Perturbation guidance using stored reference
trajectories and optimal feedback control is possible when
the steering objective and entry conditions are known with
some certainty beforehand.SD Such techniques have been
rdeveloped by Bryson and Denham, 56

While most of the above schemes use the 1ift to
drag ratio as the contrel, variation of the ballistic
coefficient above has also been suggested as a control tech-

57 and wardenSB. Control of the

nique by Phillips and Cohen
ballistic coefficient is particularly appliiable to Mars
entry.

Preliminary studies of the Mars entry guidance
:have been given Ey Hull and Guncke148, WbestemeyerSg, and
Moore and Cork60, |

Finally, attempts to apply modern control system

theory to the re-entry of aerospace vehicles have been made

16



' 61,62
by Kishi et al »6

with moderate success.

17
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B. Statement of the Problem

The Mars entry guidance problem is significantly
more difficult thén any previously considered entry problem
for the following reason. In Earth re-entry the'atmosphgre
is considerea to be a well known quantity. The major distur-
bances are entry condition variations such as entry angle
and/or entry velocity:errors. In Mars entry, however, the
atmospheré itself is a source of great uncertainty. The
guidance system must be able to compensate for variations in
the atmosphere as well as in the entry conditions.

Trajectory errors due to deviations between the
actual and reference values of the Mars atmospheric parameters
are important for two reasons. First, the trajectories
obtained by applying aerodynamic braking are particularly
sensitive o deviations in the parameters of the Martian

atmosphere.29’38’48

Second, the parameter deviations pro-
bably will be large. Present estimates of the parameters
cover a wide range with surface pressures ranging from'A to
10 millibars and scale heights ranging from 3 to 9 miles in
the VM-1 to VM-8 atmospheres.33’39

The effect of trajectory sénsitivity to parameter

deviations is exemplified by the terminal altitude at the

end of the aerodynamic braking phase. Variation in the
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surface pressure‘from 10 willibars to 4 millibars may lower
the terminal altitude (where the vehicle has slowed to 1000
feet per second) from slightly over 40,000 feet to approxi-
mately 14,000 feet. Such a wide variation would be a problem
in designing a terminal phase landing system. In addition,
the terminal range angle is sensitive to density parameter
deviations. This -will affect the accuracy with which the
capsule may reach a pre-specified landing point.

Thus guidance and control will be necessary to
compensate for atmospheric parameter deviations if the entry
capsule system is designed to operate for all known atmos-
pheric possibilities. The objective of the proposed guidance
schemes will be to produce a pre-specified terminal condition
whatever the atmosphere encountered on Mars entry. More
specifically, the problem of producing a desired velocity and
range angle at some given terminal altitude above the planet's
surface will be considered. The various approaches to this
problem investigated in this thesis are outlined in the next
paragraphs.

In thé first part of this thesis, a first order
sensitivity guidance scheme is suggested. Sensitivity
analysis is applied to the entry dynamics in order to com-

pute the first order effects of both density parameter
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deviations and control changes. After the atmospheric para-
meters are tracked, the controls are determined on-board by
using the sensiti&ity coefficients previously compiled.
Control updating is provided by intreducing the adjoint
sénsitivity equations. Thig‘reduces the on-board computation
since all the required terminal sensitivity coefficients are
now produced by the real time solution of one differential
equation.

In the second part of this thesis, the terminal
error prediction equations are improved by adding terms
involving the second order sensitivity coefficients, for
which a new vector~-matrix differential equation is derived.
This formulation should be move useful than a previously
obtained seccnd order sensitivity equatiangB’éé for a single
higher order scalar differential eguation. Complications in
the implementation of second order sensitivity guidance are
discussed. These include a difference in form between the
first and second order sensitivity equations. For the first
order case, it was possible to describe all the terminal
 values by usingnthe adjoint sensitivity equation. For the
second order coefficients, this procedure is only possible
for a certain approximation to the second order sensitivity

foreing function. Finally, second order semsitivity
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guidance is numerically simulated assuming a VM-2 reference
atmosphere with a 7 mb surface preésure and WM- 4 actual
atmosphere with 10 mb surface pressure. It is noted that the

density parameter deviations are large in this case.



PART 11
First Order Sensitivity Guidance
for Mars Entry
A. Qutline

Estimates of the xartian atmospheric parameters
and entry conditions are uséd to compute a reference traject-
ory. SensitivityAanaiysis is then used to compute the
changes in the terminal values of the state variables
(flight path angle, velocity, range angle) caused by
deviations in the atmospheiic parameters. Likewise the
effects of changes in the control variables on the terminal
values of the state variables are also computed by sensitivity
analysis. All this information is stored in the guidance com-
puter on-board the lander. During entry an adaptive model of
the atmosphere gives information on the actual values of the
atmospheric parameters. Since a specific structure of the
model atmosphere has been assumed, as shown in Appendix B,
knowledge of the parameters is equivalent to predictiﬁg the
density at all altitudes. The atmospheric parameter devi-
ations are computed and the controls adjusted so as to produce
the desired terminal condition. It should be noted that the
controls may be updated several times during entry to

improve performance. The value of the control is constant



juring each interval. Modified sensitivity equations are
developed which greatly simplify control updating. These

are based on the adjcint Semsitivity system.

23
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B, Entry Dynamics

For two dimensional flight, assuming a spherically
symnetric planet surrounded by a non-rotating atmosphere, the

dynamical eﬁuations can be written as follows (see Appendix A).

%. =~V Siu®

.ﬁ. = V[al«a)-ge ]Cosé

~ Celw) Cph in (2.
LV S v gy Sin(x- D

(2-1)

2 Coph
av ““"-—%P(‘“ﬁ)v =2 +g6¢4> Sin@
"-%Ca@(@&wé‘)

d v Coes ©
ax Rot o

where @& = gltitude

= flight path angle
= magnitude of velocity
range angle

= local demsity

]

local gravitational acceleration

He D <O

= magnitude of thrust
Ko = radius of Mars

Chn@)= 1ift coefficient

R
"

angle of attack

03
i

thrust angle



2k

C;p==_drag coefficient
m = mass of entry capsule
A = reference surface area

It is convenient to make the following changes of variable:
: /&- “
T (2-2)

U‘ - .V E— 'p k3 oy

’ v’éo An
where ,% reference altitude
N
34,

The controls are assumed to be two variable thrust engines,

i

i

scale factor

]

surface gravitational acceleration

one of which is fixed normal to the flight path direction
and the other in the tangential direction. The magnitudes
of the control accelerations are f, and f; respectively. In
addition, ballistic entry without 1lift is assumed, i.e.
CL("O = 0 and 6 = 0. With these assumptions, the entry

dynamics (2-1) can be rewritten:

do 5 (xr0mh) = vgﬁ;@.{[

£l R,bk (l xm)]

ﬁ—— c ﬁ” -
v oF (x.0,0pCxi0b o570 ) (2-3)
X o ~ T e b —
ok { 7 e[+ e -] " v™ ¢ qo0 Si-© *PS
d o vy Cot &

— &) = '

where o7 =.k /N

:ﬁ;?:
V'3= ,R

(tL'z (:t'A ) :30
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C. Control at the Beginning of
Entry into the Mars Atmosphere

This method assumes that one has reference
estimates, 3, g, é: for the atmospheric parameters, a, b, ¢
before the mission is begun. The outputs of the adaptive
atmospheric density model aé the entry altitude are then
assumed to be accurate enough to represent the actual
Martian atmospheric parameters.,

bThese “"actual parameters are different from their
reference values. Two questions immediately arise. First,
what is the effect of these deviations on the terminal values
of the state variables? Second, how can the controls be
adjusted so as to achieve the desired terminal condition? We
are, in effect, loocking for a method of predicting the
terminal deviation in the state variables on the basis of
information obtained at entry. To solve this problem we use

sensitivity coefficientslﬁ’%’49

which give the ratio of the
deviation of the particulag state variable from its reference
value (as a function of altitude) to the parameter deviation
at entry.

Deviations in the state variables caused by atmos-

pheric density variations may now be expressed in the follow-

ing manner. First let

z -0 =z,-w, Bo=S1L (2-4a)

3
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Ol a:’?-m‘&’j"; T3 T4 ﬂ?4_=-€34?5%.-p1

(2-4b)
Then we obtain
éi-i - F. (% 2‘,“%)) A=1,2,8 (2-4c)

- oh
dx

Before one can proceed to the mathematical definitions of
the parameter senéitivity function, it is mnecessary to des-
cribe the reference and perturbed trajectories used in that
definition. The reference state variables will be given by
?;(’f»'%r Xg) . The normalized altitude x is the indep-
endent variable and x; denotes the entry altitude. This
function results from solving the trajectory dynamics with
the reference values of the atmospheric parameters and the
constant initial conditions iEAV(X¢). The perturbed traj-
ectory is given by % (x,% ,"?&-&-&"%ﬂs) for any A'B%J
where fﬁﬁ is a vector without the'?ﬁ term. It can be
obtained from the subétitutien of the perturbed parameter
i%-&big into the equatione of motion and the definition of

the initial condition
& A A"ﬂ? )= (
zZ; (Xg, Yy ,"fé + 9° Xg)= 2Z2; (Xg) = comstant (2-5)

A
for all ﬁ"l{i . Physically, this last definition can be
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interpreted as meaning that the reference and perturbed state
variables are equal at the entry altitude Xg (before any
effects of the atmosﬁhere are felt). We now define the

sensitivity function by

: A
s (08, xg) = Jow 4 FdlXHL f&*"rg,zs.;)

_ e,&(x '? T D g (2-6)

de(x ‘a xe)
R

The perturbed state vaﬁgable can be approximated at altitude
A
x by FE (x:‘%h.’?,j*&w » X )

=2 (hke) + U (ORI AN (XD,

The quantity AWQ (XE) is a step function applied at X=Xg.
Equation (2~7) shows that the effects of parameter deviations
on the state variables at altitude x can be estimated (at Xg)
once the sensitivity coefficients are known.

The procedure for calculating the sensitivity
coefficients «uﬁéj (X,‘?,X§> is now developed. First take
the partial de:ivative of Equation (2-4c) with respect to ﬁ%
and set all the parameters equal to their reference values®?,

This results in

OF, A
‘%;M 1 (-’(:"‘;‘%JYE)“ 5=, M(J(‘rf?*&’)

SF
45-,-«4123 (x4, X + 2 Q’”“’

(2-8)



d - ........, OF. AR
a—i 4“23 (Jt’ 'Q xl‘.‘.)“‘ utafx 'Q xﬁ)+ g ) —uq_j(x .!1 XE) + 5—_—6-;*
d 4

4 U, - 2% : 5
Iz M35 (x,4,%e) - Mg (LR p

where—j= b,...., 5 and Fy, Fy, and F3 are given by
Equations (2-3) and the partial derivatives 37"5; /9‘_5_} are
evaluated along the reference trajectory. The initial con~-
ditions for the & d(x,‘%,xg)can be obtained directly from
the reference trajectory by means of Equations (2-6) and

(2-5)

|

9%‘5 (X D
My (Xe F, %) = &% O -9

The important thing to realize is that the Ad; 0 (x ;_!;?XE) may
be computed if the partial derivatives of F;, 1 = 1,2,3 are
known. If the index j is allowed to take on values 1..., 5
in Equation (2-8) there are 15 first order sensitivity
equations. These together with the three equations of
motion (total of 18 equations) are solved simultaneously.
Then the resulting's&nsitivity functions will describe all
possible effects Qf atmospheric parameter variations and con-
‘trol variable cﬁanges on the state §ariab1es. The values of
the sensitivity functions at the terminal altitude X,

i{idfuﬁr;i%,xé)can then be stored in the on~board computer.

When the vehicle enters the Mars atmosphere and the actual
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values of a(¥%), ,,5{,@, and < (Xg) become available from the
adaptive modelﬁB, we may immediately estimate the total
change (at altitﬁde,%f) in the ith state variable produced
by atmospheric variations and control variable changes at
Xg by ,.
4!4'Eﬁfr,63(XE4L4ﬁﬁﬁgzn¢(&%DE4?,{2& xk;:7
-2, (¥, 8,4, &, 0,0 x¢)
=t oy (X, X )l alng) - &

tatj, (Xr G Ye) [b0r) -4 ]

* ey Cxp W %) [elg) =2 ]

+ ““j.‘ (rT.a ?l ‘VE‘) ";7

(2-10)

o 'ﬂdf (fx'f,—%,ﬁ'@)‘jg

A A A
As before, the a, b, ¢ are the reference values of the

atmospheric parameters. Note that the entry condition state
variable errors have been assumed to be zero. If f1 and ﬁz
are set equal to zero, Equation (2-10) predicts the uncon-
trolled terminal deviations in the ith state variable. The

desired terminal condition is described by
Ly, @ (Xg) Slxg) <lae), ¥, % > % 7
-'ﬂf'[xr,g,—z,ag, e e, XgJ:“:@
2-11
0 Oy, acre), 400 wine), )4, %] O
—12 [xr, a,8,2,0.0 ¥ = o

which constrains the terminal velocity and range angle. Then

the controls f1 and £, are obtained from the simple inverse



sensitivity problemﬁB.
o= U, Lo -J'.y,aﬂ.é- Fddy g o ﬁ.«a.,.’f +.-ee”'/:,

= ‘ (2-12)
O = Mg, Qa +¢U32&~5’ +u¢4’33Anﬁ. #.-&I%-p’ +"‘f¥’5‘ .,g
Because it is likély that the Martian atmospheric parameters
will turn out to be slowly varying functions of altitude, the

problem of updating the control during entry must be investi-

gated,



D. Sensitivity Analysis and
Updating the Control

Before considering the process of updating the
controls it is convenient to introduce vector and matrix

notation. First we define the sensitivity vector by

Ll (X'% XQ) E‘Ju'!a(x:% xﬁﬁ) Mﬁ@(roﬁtrﬁba

(2-13a)
'4“3,3 (xa_ga xﬁ )]
and the sensitérlty forcing vector by
A | a
H e g Get D,
(2-13b)

F " \ *
S Ceedaox}),e]

where * denotes the transpose operation. The sensitivity

system matrix is given by

R 8h. o7
. 8&, S&E,
A (’J(zﬂqh) = oF o Fe o 0-14
&Eg B%‘I— ( -1 )
88
| D= © © -

Note that the ggiand -%3 are still defined by Equation (2-4)

and that the partial derivatives in A(I',‘%) and 1!_..3 (X,‘.‘?) are

evaluated along the reference trajectory.

Using Equations

(2-13) and (2~14), Equation (2-8) may now be expected in more

concise form:

d Iy (z,ﬁ,xg)z A(Jf;'%)aéé.j (X,%,Xg D 4'«'!\;3(1.‘5?)

dx ™

)

(2-15)
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Now suppose at some normalized altitude S (XE §55x¢ 1’1—>

new values for the atmospheric density parameters a, b, and

¢ are obtained tﬁe adaptive density mode163. The question

is how to incorporate this updated atmospheric parameter

information. We might replace Xgwith S in Equation (2-15).

This in effect resets the sensitivities to zero at altitude

S . Mathematically, it means that we are dealing with a new

perturbed:solution which coincides with the reference tra-

jectory at altitude S (instead of at altitude Xg ). The

sensitivity functions which describe the new perturbed

solution are given by

f’.‘.gé(r,ﬁ,s)-.—: A (x,’ﬁ.)ng (x,-ﬁ,.s) -i—/&_t,a (x;tf:)
~ﬁé:i(55,1%,ﬁi>

It is noted that "—{!3 (X,‘!‘f) in Equation (2-16) does not

(2-16)

depend on S . This point is not obvious and is discussed

in Appendix C due to its importance to the rest of the
analysis. The method of predicting the actual state variables
at Xy is similar to that of Section C with one important
exception. Before the assumption that the perturbed and
reference trajectories were identical at XE (Equation (2-5))
actually was true in a physical sense since the dynamics are
very nearly Keplerian at the entry altitude. However, it is

very unlikely that the actual trajectory will be identical to
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the reference trajectory at some lower altitude § . For
this reason, the effects of state variable deviations

A-TZL i(s) yA=42,5 at altitude S must be included in the
estimate of the state variable error at the terminal
altitude (the mathematics of this process is explained in
Appendix D). With this complication noted, let us again con-
sider Equation (2h16). This problem could be solved numeri-,
cally. The values of the sensitivities at the terminal
altitude, ﬁj(x-r ;'%;3) can be substituted in expressions
similar to Equation (2-10) with the estimates of the atmos-
pheric parameters a, b, ¢ at altitude X replaced by the
new estimates at altitude S : a(s), 4{(s), and <(3). We
would then re-adjust £y and fy to obtain zero deviation in
the terminal velocity and range angle.

Numerical solutions of the combined system of (2-3)
and (2-16) with Xz and S as initial altitude have been
required in order to obtain the control applied at entry
altitude Xg and the first update of control at altitude S,
For many such updates the amount of on~board computation
would be excessive. It is also clear that only the values
of the sensitivities at the terminal altitude, 2y, are
required. The variable of interest is the present altitude

at which the parameter sensitivities are set equal to zero.
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We now find new sensitivity equations whose solution will con-
tain all the necessary terminal sensitivities with the present
altitude appearing as the independent variable. That is, we
oBtain an analytical description for..«g é(XT;‘!‘%,S) as a function
of 8. To do this, Equation (2-16) is solved using the
transition matrix ’@(I,S) f;)r the homogeneous portion of

Equation (2-16). This matrix is governed64’65 by

J% Bcx,sd= Ax 4B (X,

@(ﬁ, S) =X, L= Identity Matrix
It is noted that §§C&§) is also a function of the reference

(2-17)

parameters but this is not shown for the purposes of simpli-
city. We also need the adjoint transition matrix which is

described by

é%i qjﬂ{(iﬁrJEQD‘z "'(+,*(23”35)AA(1131%:>

2-18
&g, X (X'r ’I_‘_) = IJ I= Identity Matrix ¢ )

From these, the useful identity
¥ (xr, )= B(x%,3D (2-19)

is obtained (see Appendix E for details). The solution of -
Equation (2-16) can then be shown to have the integral

representation

X
TR B S’S & (x50 %)d)

(2-20)
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Setting X=2X¢ in Equation (2-20) yields
A Ar a
4;3 (XT;%)S)':" S‘ @ (XT)XD%j(’\:#M (2-21)
' S

Substituting Equation (2-19) into (2=21) and then differen-

tiating the result with respect to S5 gives

34%5 %g (XT;!%Jﬁf)m ”k{"*(z“’fx5>“&j(5;$) (2-22)

;)(E.S$$>f-r

where gj (Xr,'¥,%z) is used as the initial condition. Thus
we may pre-compute and store gffxyux@) and then solve the

following (similar to Equation (2-18)).

L ¢¥ixr8) =~ *or, D A (s F) (2-23)

»
subject to 79 (hﬁwﬁg)m QECX%.XQJ' (similar to Equation

(2-19). Equation (2-22) has the following initial condition:

iéj(x'rf?: 5);51@1& = -&!d(xp"%."e) (2-24)

Equations (2-22) and (2-23) are solved simultaneously with
the equations of motion to obtain the proper sensitivity
coefficients fof the updated atmospheric information. This
is advantageous because it is only necessary to solve the
whole system (of Equations (2-3), (2-23), and (2-22) once

as the vehicle enters the atmosphere. Thus an efficient
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scheme for obtaining the required terminal sensitivities as
functions of the actual altitude has been developed. 1Its

application to the control updating problem is investigated

in the next section.
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E. Implementation of Control Updating

The ith state variable deviation at terminal
altitude X 4 may now be estimated while the entry capsule is

at actual altitude S by _
Z; [xy ,ae),b(s),26), «QJ-&)‘%} -~ I Xy, a, b2 00,57
= g cx+, 4, 9)Carsd-87 « ;u_w_uc‘. ,-ﬁ,s)t,b(s)_.,@]
sty (g, sd) Ceesd-2] + awy, ¢xv, g s)B- &¢sy]
A (1,78 ,9) V(D - DT s lxeith DTAD-14s] (2-25)
+ALJ4_’('X-,»4.‘°%.$) P o+, CxrY, 5)-&_

This is similar to Equation (2-10) with the exception that

we have taken into account state variable deviations at the
‘ .
%,5)

3
are obtained from ¢ (XT:S‘) as in Appendix D. The @(S),

actual altitude S . In Equation (2-25), the Al - (X4

4(5) (S are the updated atmospheric parameters available
at altitude S and 6(8), (9, and £2(S) are obtained by
measuring the actual path angle, velocity, and range angle
at that altitude., If fy and f, are set equal to zééd,
Equation (2-23) gives an estimate of the uncontrolled
terminal deviation. Then the controls £; and fy can be
applied to produce a result similar to Equation (2-12) thus
reducing the terminal velocity and range angle errors.

The computation of ;he sensitivity coefficients

used in Equation (2-25) and their role in the guidance scheme
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are shown in Figure { where the following shortened notation

is used: _ A
Z (Y,‘??,:st.—:) is replaced by Z; (x)
*‘*‘u"j {x;:%g Xz D is replaced. by ‘:1-—‘0 (x,X=)
> b
A(x-’ﬁ) is replaced by A O
A ..
-"i’ﬁ(j{;@) is replaced by “.t.!q ).

The quantity g(ﬁ is the solucilod of the entry dynamics baged
ou the entry conditions (kncwn only after de-orbit) and refer-
ence values assigned to the density parameters. The
definition of the refereree state variables %(-X‘) , and pafa-—

A
meters ~¥. , are giver by Equation (2-4) and used to compute

\; P A

the sensitivity systen matrix, A&) and forcing function, «_quw
The sensitivity dynamics given by Equation (2-15) are solved
and the torrinal seasitiviey, "QJ (Xx%g)is stored. In addi-
tion, .oe fipal value @(wa’g]}of the state transition matrix
is otiained by solving the howogeneous sensitivity system.
The reference trajectory %{2’), the parameter sensitivities
A
:!%_3&1 sl ) , and the state transition matrix ECIr,XE)shoul:d
be solved for simultan~ wrly after de-orbit and before entry
into ¢ha sensible atmospherw as shown in Figure ] . |

During entry § fz}ng)amd -.53 (xr:x'&)will be used as
initfal conditions in solving the adjoint sensitivity system

i A
for ‘{’ *(X.,-,S)ané in selving for the aeffl;af’(xf,@. It is sug-

gested that this simultansous solution for '?J*(IT,S) and M '(IT,;
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be carried out in real "time', that is, the values of the
sensitivities at & be obtained at real altitude §. This

will reduce the computational capability required,

41
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F. Numerical Simulation of First

Order Sensitivity Guidance

We now examine a numerical example which will
illustrate the usefulness of the proposed guidance scheme.
In this example, the VM~-2 model is taken as the reference
atmosphere and W-1 modelBg is taken as the actual atmosphere.
Before discussing the guidance computations performed,
straightfbrward,numerical solutions for the uncontrolled
trajectories are presented in Table 1. It is noted that the
same initial conditions were assumed'with both atmospheres.
It is seen that not applying control with the VM-1 atmosphere
results in the entry capsule reaching the terminal altitude
60 miles short of the target with a velocity 118 feet/sec
faster than the same vehicle entering the VM-2 reference
atmosphere. It is also seen that the atmospheric density
parameter deviations are not reflected by deviations in the
state variables until the capsule reaches an altitude well
below the 800,000 foot altitude where Mars entry is usually
considered “to begin. This leads us to assume that the state
variable errors are zero at some lower altitude. To simplify
the guidance equations it is also assumed that adiabatic
model (see Appendix B) may be used to represent the density

throughout the controlled portion of the flight. The
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density parameters a, b, and ¢ for the VM-1 and VM-2 atmos-
pheres are given in Appendix B. Further, we assume exact
tracking of the aétuél density parameters once the capsule
enters the Mars atmosphere.

Two computer programs were written to assist in
evaluating the performance of the guidance scheme. The
first program computes the quantities aﬂéé(xf,'%,lg)and é(x-nxsj
between de-orbit and entry by solving differential equations
(2-3), (2-15), and (2-17) (with S =Xg) simultaneously. The
following numerical data was used for the WM-2 reference
trajectory.

= 89,400 ft.

al
m

© = .15287 radians
Ve = 12,300 ft/sec.
Q- ©

a = -10.2348

& = 2.7027

A = -.501556

N =.1

b = 61,000 ft.

L]

mfeyh = 30 slugs/ft2

12.3 ft/sec2 for Mars

% -]
@
i

]

Re 10.86 (10)0 £t for Mars
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A ¢ = 20,000 £t
where ‘Jg &g ,% , and ,Q,g , were taken from the VM-2 tra-
jectory simulation previously discussed. The following

values were obtained for % (%), @jfx,,f‘%,xﬁj and é(x.,,rg}

&(%) = .8116 radians
OlXy = .05726
iijx%) = .02852 radians
. .7032
(o) = Bk,
. .3341
st (8, )
. 12.436 '
ayestom) s )
. f.o01605 .
A, 068,35 )= (I 50007926 ) sect/ge
. (ﬁ01472 ,
srodeo- (il ) e
' 1.537 -.05888 0.0
%(XT’XE) = .03511 -.001105 0.0
- 09704 006605 1.0
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The above values of &&J(x-r,ﬁ,xﬁ) and @(xf,x‘) were then

used as initial conditions (see Figure 1) for the second
numerical program- which solved the adjoint matrix for J_.j{x,-.ﬁ,%i
and %w(mps) as functions of the present altitude
subject to the same initiallconditions on the state variables.
In addition, this program computed the controls for each
interval as a function of the density parameter deviation
tracked and the state variable deviation at the beginning ofj
the interval (see Equation (2»25)). The actual controlled

VM-1 trajectory was generated by the following data

e

i

89,400 ft

&c = 15287 radians
V., = 12,300 ft/sec
Q= o

a = -10.8977

A = 2.6316

L 0= =.2625

plus the values of the controls f; and f, implemented in each
interval.

Figures 2 and 3 show velocity and range angle
deviations from the reference trajectory for the controlled
case (controls obtained from Equation 2-25) and the uncon-

trolled case (fl and f2 set equal to zero.) Figure 2 shows
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that the velocity deviation at the terminal altitgde is
reduced by about 90% by the application of control. 1In
Figure 3 range éngle'deviation is plotted as a function of
altitude. Here the effect of the control is much more
immediate with the uncontrolled range angle deviation always
increasing. The terminal range angle deviation for the con-
trolled trajectory is very small in comparison with the
uncontrolled trajectory. 1In Figure 4 the control accelera-
tions £ and f2 are plotted as functions of altitude. The
controls are seen to vary slowly over a major portion of the
flight.

The data plotted in Figures 2 and 3 is summarized

in the following Table 2:

State Variable Terminal Error

o control with control |
Velocity, ft/sec +87.5 -8.7
fiorizontal Range, miles - 14.1 +.003
TABLE 2

Another example assumed the VM-8 model with 5 mb surface
pressure as the actual atmosphere. All the other data was
the same as before. The results for that example are

summarized in Table 3.
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State Terminal Error
Variable no control with control
Velocity, ft/sec + 232, , +23.
Ferizontal Range, miles + 6 o + .1

TABLE 3

For the above example (VM-2 reference, VM-8 actual),
the dependence of sensitivity guidance performance on error-
free parameter tracking was investigated. The assumption of
error-free tracking really involved two separate assumptions.
First, it was assumed that the parameter information was
immediately available at the beginning of entry. Second, it
was assumed that the parameter information®3 was error free.
To simulate the effect of a delay in obtaining the actual
density parameters an interval of altitude delay (where fl
and £, are set equal to zero) was introduced in the appli-
cation of the updated control. Digital simulation showing
the effects of delays up to 20,000 ft. on the terminal
velocity and range engle errors are plotted in Figures 5
and 6. It is seen that a delay of 10,000 feet increased
the velocity error by about 25% and the range angle error
by about 75%.

To simulate the effects of tracking errors, a
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FIGURE 6
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constant error was introduced into the value of parameter 'a'
pfoduced by the adaptive model in the above example. The

effects of this tracking error are shown in Figures 7 and 8.

53
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FIGURE 8
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PART III1
Second Order Sensitivity Guidance
| A. Outline
In the previous portion of this thesis a variational
. guidance scheme based on sensitivity analysis for controlling
entry into an uncertain Martian atmosphere was proposed.
.This approach produced satisfactory results if the atmospheric
parameter deviations were not too large, for example with h
VWM-2 (7mb) and VM-1 (7mb); Other satisfactory results were
obtained with a VM-2 (7mb) reference atmosphere and VM-4
(10mb), VM-7 (5mb), and VM-8 (5mb) actual atmospheres. How-
ever, furﬁher simulation of sensitivity guidance using only
first order error prediction shows a.marked increase in
terminal errors if the density parameter deviations are large
(see Figure 9).

In this section of the thesis we improve the
terminal error prediction equations by including éhe second
order terms. These terms result from the multiplication of
products of parameter amnd/or initial condition deviations by
‘the second order sensitivity coefficients, for which a new
vector-matrix differential equation is derived. This forﬁu—
lation should be more useful than a previously obtained second

“order sensitivity equatid%3f%% a single higher scalar
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differential equation. The application of this analysis to

. the entry guidance problem is investigated and certain diff-
iculties are noted. ~These include a difference in form
between the first and second order seﬁsitiviﬁy equations.

For the first order case, it was possible to describe all the
terminal values by using the adjoint sensitivity system. For
the second order coefficients, this procedure is only possible

for an approximation of the second order semsitivity forcing

function.



B. Derivation of the Vector-Matrix Second
Order Sensitivity Equation

Before developing the second order semsitivity
eq'uationslfrom the first order sensit;ivity equations and the
original system dynamics, the three different types of second
order coefficients are defin;d. The Class 1 coefficients
are the quantities which multiply the second order parameter
deviations in a Taylor series expansion for the perturbed
state variables. The vector for the Class 1 second order
sensitivity coefficients is written as the partial derivative

of the first order parameter sensitivity vector by

...14¢ {’/?’)— "’" j“"?’? (3-1)

The Class 2 coefficients give the effects of mixed parameter-
initial condition deviations. The vector for the Class 2
coefficients is defined in terms of the first order sensi-~
tivity vectors either by
(2D 4
Rk ”’? 3= 9,, 7 & %, %.3) (3-2)
or

.“"(x Sz sl (X, Y, S
?a* ? 92:7(') =k ? ) (3-3)

where w J (x)-?‘,s) is the first order state variable

sensitivity vector given in Equation (D-2). The definitions
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given in Equations (3-2) and (3-3) are equivalent since one
can be obtained from the other by interchanging the order
of the partial diffeientiation. Finally, the Class 3
éoeffigients give the effects of second order initial con-
dition deviations on the perturbed state variables. Mathe-
matically, the vector of Ciass 3 coefficients can be

expressed by

. 2w xS
7‘* s %) P23 5 D e

Alternatively, all three kinds of second order coefficients
could be expressed as second partial derivatives of the refer-
ence state vector g(x,f,S) and this is shown in Table 4.

The differential equations describing the .1€?2f)
are now obtained by differentiating the first order sensi-
tivity equations with respect to either ‘f& or Z,(s),
A=1,...,5ad m=1,...3. In particular, the differential
equation for the ?BJS%) is obtained by differentiating
Equation (2-16) with respect to 'ii .

A remark is necessary before this operation can be
performed, however. Since the elements of A(’fﬂ;) matrix
and the «_I_lJ ) forcing vector are explicit functions of the

state variables which themselves are functions of the para-

meters and the initial conditions, the chain-rule must be -
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used in differentiating Equation (2-16). To the author's
knowledge, this point has not been discussed previously
though it is implied by the analysis of Reference 44 for a

single higher order scalar differential equation. We now

. (¢
obtain the following for 7?Eﬁk?

B 2L nF I AP (549 TS T by en)
| £ ‘ =
+[(€(»(45?°-$)-%3%M(n Y74 (2. F,5)

‘where the scalar. operator .._&‘(*(;;3?,3)- [7; can be written

-

explicitly as

” . - 4 ..;"_)- ; —g"’
Ly (L. D Vg =4 R+ e Fshe g
fﬂg‘j@ (“5?"’)9%;

Further simplification is achieved by noting that
Ly c§ 9V J-4ind)

IR, 7F I~F
Vi wr el ! il L—
tk 9‘592, Z*Jf’aﬂ ’*,')1?55,

- A= - K R
= 7, * Ay, = 7,
l*a"’gk: ? é’:;?'f: ! ’éo"'g}’?.s

% > (-7)



BER- 9 F ] [ ]
3i, 8':\‘ l !‘9“\’ 81}8‘{' ' Lk
I I A F | |y
.92,3"5 2z.9% 32391?\,
2% 'K | KR |
STEE e A
2% 920 IR 1L sk ]
) A
- [3.;;‘ Alxg) Juy (x,4,9)
J

wherezﬁj(r,ﬁ) is defined in Equation (2-13b) and 4("31;) is
defined in Equation (2-14). The substitution of Equation

(3-7) into Equation (3-5) then leads to

{r) L o ) 4
L Rk B < A6F) 2y (BHD
f[% AlLG) [ ui(xF,s)
+ [ ﬁ;’: AL T4y (x,9.5)
+%Jj (x.%) (3-8)

L (9B A0 [y onhs)

To obtain the differential equation describing the
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(/ s) sensitivity vector, we differentiate Equation (D-3)
Pk ¥
with respect to ’{l‘, Following the same approach used to

derive Equation (3-—8), we obtain
f 1;',2’ (0,§,9)= Alx, flzﬁ" X¥,3)
(3-9)
+5 59, A ST I Ce3,9)- B DA ) S
For the -ﬁiz)/{.?, ) , Equation (D-3) is

dlfferentiated with respect to Z ($) leading to
a3),

X, FD= A, F) 2.2 cx¥,s
:%Je Zik Y. (3-10)
+[(ey (1 %9 ZIACE e 1%,%,2)

To summarize, we note that gll the second order sensitivity
vectors can be described by the following vector-matrix dif-

ferential equation

) 4 2 J - ) 4 -
ER L DAVIZ YA VAR 2o SN

where ? ) and ’;"’ are given in the following table:

TABLE &
[cTass Meaning of g, §*/ Forcing F g2
=§ss caning of z ¢ orcing unct:.on.g (, fj
e s
7 % Ly is)-V;)Atmf)_],_c/j (£%.3)
124 g 4
1‘/;',* Az, ?)]_g(,(z;y.‘) g%_é (%)
; ,
2wy | CR)
s) ;
Izjts +{[ e F D MaE fers oo




Class Mean:mg of Forc:.,n Functlon
=i 7% Fik 45
3&
Gt 2049 | [y endsg i) e (o)
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C. Second Order Sensitivity Analysis
for Undating the Control

The problem cf mechanizing the first order sensi-
tivity guidance scheme was solved by using the adjoint
sensitivity Equation (2-22) .to compute the required terminal
sensitivities. This was advantageous since a separate 'fast-
time' integration-of Equatiem (2-16) was no longer needed
for each eontrol update. In this part of the thesis, we
apply a similar ‘'adjoint' approach to second order seﬁsitivity
analysis in order to simplify the on-board computation of
the required second order coefficients.

First, however, a remark is made about the structure
of the second order sensitivity equations. Comparison of
the;First Order Semsitivity Equation (2-i6) with the Second
Order Sensitivitj Equation (3-11) reveals a difference in
form between the two relations. The %}gi? clearly are a
function of & (see Table 4) while the a,é';j are not. It_ is
shown that. the "3-‘1.,1 do not depend on & in Appendix C of this
thesis. As might bé expected, this difference in form com-
plicates the apﬁlication of the ‘'adjoint' approach to second
order sensitivity. To reiterate, the aim of the following
analysis is to produce a differential equation describing the

4
P ;Jg (x‘..;%,s) as functions of &, the present altitude.
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Proceeding in a straightforward manner it is pos-
sible to write the solution of Equation (3-~1l1l) in terms of

its state transition matrix as follows
. . x P
(1) a A3 4
e (5 .8)=<; $ (1) 2y Ch4.9d)  (o12)
Pk (4 g2t 54

Since we are interested in the terminal values of the second
order coefficients we can substitute 2y, the normalized

terminal altitude, for X in Equation (3-12) which gives

7 a 2 ') ¢
.PJ# {%"?’S)ajs‘ 7;(2’7,2)53;&)0:?:%)%" {(3-13)

We now differentiate Equation (3-13) with respeci to § which
results 1n
{.
% ﬂfl’?’:'ﬁ? s) =-&(%,9) 2 % T s¥s)
i (3-14)

f % ro0n08 67,97
Since the state transition matrix dﬁﬁﬁé}does not depend on
S Equation (3-14) can be rewritten

‘e

d§:7%& ﬂr%,??2)-«~é?(xk,s)igdi,(5‘?r§)

+ 5 g [E 554, >a,4,5)74)

The effect of the dependence of '8 (15;7,) on .8 is now

(3-15)

evident. It results in the integral term in the right hand
side of Equation (3-15). This term was not present in the

analogous first order equation which is shown here for
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comparison: .

fi‘gj (e f.5)= - ¢ (%.5) ‘éJ’ %) (3-16)
The difficulties caused by this more c;omplicated dependence
will become clear as we try to simplify Equation (3-15).
The evaluation of the_ _3' J;v:')(s_,?’:s) follows directly from

Table 4. The results are given below in Table 5.

i g ﬂ%) (s, %.8)
2} o te
L 53,45

: {53, 405474;
3 [y ) AR,

TABLE 5

It is noted that é'kand é& are given in Equation (D-5). The
evaluation of the partial derivative é% ‘S?k) Q\;:?,s) in
Equation (3-~15) is not quite as simple.

To indicate the problems involved, we comnsider the

A=] case in detail. Using the definition of g;i) given in
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Table 4, we obtain

() _ 8 A1 9O . 4
5% ik .9 (0] 554504

-5 2NT D 4
N [g% A 009)] 5 (393 317

5 310059 ) A0 DT 1y (04,57

If we substitute Equation (3-16) into (3-17) and neglect
terms containing products of two sensitivity coefficients, it

follows that

3 s 0ad=-[FroD[e0 k63
[ ACD]E0. Dk ) T

The substitution of Equations (3-18) and the result for

4? 3? -%,5} from Table 5 into Equation (3-15) lead to
adfg’c:z?:q ) = =@ (xr,8) %A (s, %)

-S. @crw»a?A(»\,z)% DhEDh (319

-STE ) & ACFEO D5 2)AN
N

But, because é is a state transition matrix, it is péss-ible

(D= T E(xr,9

(3-20)

Substitution of Equation (3-20) into (3-19) and some
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algebraic manipulation leads to

f “‘21"* (X0, %,8) = - @(x“s) ( gD
- [ S:‘Ecxf.x) :»Aanz)é O] :écxf,g 469

(3-21)

-[ S8 A(mf)f (x,rr)&gé Ctn Dby (s,9)

Finally, we can write

gg-‘ggx(%,’%,ﬁ)r-@(l’ms) .14 (58

S SXOX:1¢ x.,,s,).lq <) (3-22)
~1;(s) @ (v, ﬁ)/!% s, %)

where

T,0)= S é(xn»\) A(W)é(f\xf)&\ (3-23)
and

A -1
Héé I,@(S)'~= - éCXT,S)Q%A(S,‘-{) ¢ " (xr,s) (3-24)

for.ﬁ:éfﬁ. Thus we have obtained (in an approximate sense)
| . . W A
a system of differential equations for f#(x'r;‘%, s) in-
which S, the present altitude, appears as the independent
variable,
To summarize, in this section we noted a difference
in form between the first and second order sensitivity

equations. Also we approximately obtained an adjoint



description for the terminal values of the second order

coefficients.
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D. Control Equations for Second QOrder
' Sensitivity Guidance

In this=segtion a general second order error pre-
diction equation is developed for the ﬁerminal deviation in
the i~-th state variable as a functioﬁ of the parameter
deviations, the initial condition deviations, and arbitrary
controls fl and f2, Before beginning the analysis, a revised

notation is introduced for the second order coefficients:

P (‘é;‘j:‘k)" EJ(YJ'Q;S)

Q‘l
257

iy T el
PZ ("‘111“&> Q““““T_cﬁsx%.x(xf%‘s) (3‘25)-

P3 (4= Qz CS)&%kcs) (6.

Also, the first order error prediction Equation (2-25) for

the i-th state is rewritteﬁ

e
D= ) = z Mg Cxe,9,3) A%y ¢s)
3-

-2
+ 2w Con B D Arg(s) (3-26)

3=
With these preliminaries in mind, the second order error

pﬁgfiction~.equation can be wgitten
s 1 . e
ARG = A%; Gy + 4 §f5§:. P1 () A5 () A7 (5)
3 g * L4
A5 S
+ 3% Z P2(i,j ka2 (DAY (D (3-27)

' 3 ¢
" (SOAZE,
+d‘£‘ PB(’J,:’,‘&}AE:},C AT, (s)}



Since the effects of the controls are of particular interest,

the terms involving f1 and f9 are written explicitly giving

=
Az, () = Z»wsz ; () +Z.u §8G )
¥ (i

+J¢l£4. 'p; + «u“" 'P.,_
3 ) . |
+L 3 3, PG BTN

2 P20 A8 (DAt (s)
gt
3
+ FALE A AR () B2 Y(S)

+ 2Pl (4,1,4):&1{ ),
q-
+ f. ST RIIS HORS (3-28)
+ 3 PIG,45) 8% 1
@-1
+ ZPics,aged £,

+ P4, 44087+ Pi ("i,4-,5’)1‘1(’1
+ PI (4,549 £ + P (—i,ﬁf)P:%



Because of the symmetric property of¢%;52? and iFfjf) we

can show

Pl (g )< Prei, 4 4)
FP3 (i, g.4)= P3(i43j) (3-29)
Substitution of Equation (3-29) into (3-28) and algebraic
man%Bg}aticn lead to

Zr 3 R 2
B2, (X)) = B g« B, 14 P14 0F

+ P14, 4,5) 0 +4 Pf(i.aif)\o: (3-30)

o 3
where Ej = & £%d ARG (S) g &My (s)]
- ég‘
2 . .
+t éig [ P44 a2y () a%y(s) (3-31)

+ P20, kAT 87,9 4 PL, 3,4 5798 09)

3
E{"= wu;, t+4 ZP2Gi,§,9A%(5) (3-32)
=1 + 2 P14, DAY (D)
Gﬁ

‘ . . (3-33)
EiVe a5 4 & P2 G40

+ 2 PICL 4,587

In order to achieve zero terminal deviation in the range

angle and velocity, we set

=

AZ, (xr) =0, 472,3 (3-34)



This results in a set of two simultaneous quadratic equations
for the controls fl and f5. Techniques for solviﬁg these

equations are discussed in the next section of this thesis.



E. Numerical Simulation of Second Order
' Sensitivity Guidance

We UOW'exgmine‘a numerical example which will
illustrate the effectiveness of the second order semsitivity
guidance. This example will also give an indication of the
complexity of the computational requirements. Three specific
tasks are considered. The first is the solution of the
second order senéitivity equations. The results of this
task are.the sensitivity coefficients required at the
beginning of entry into the Martian atmosphere. The second
task involves the solution of the simultaneous quadratic
control Equations (3-34) for £; and f;. Finally, these
controls are substituted into a trajectory program and the
terminal errors csmpared-for first and second order guidance
schemes. All three tasks are now discussed in detail.

As shown in Table 4, the solutions to the second
order sensitivity Equations (3-11) depend on the first order
sensitivity vectors U j(x;"% »3)  and 4_1{'3 (X%, 8) . For this
reason, a mumerical program was formulated for the simult~
aneous solgtion,of the reference states, the first order
sensitivities, and the second order sensitivities.
Specifically, the progrém (see Appendix G) solves Equation

(2-3) for g(r.r;z},xg), Equation (2-15) for the Jd; (Xr % Xe),
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Equation (D-3) for the ﬁ)‘% txy 4, %) , and ‘Equations (3-11)
(with 1 = 1,2,3) for the g%%§§}5w3;1§:1k;) . To estimate
the size of this task it is noted that there are 3 reference
state equations, 24 first order sensitivity equations, and
108 second order sensitivity equations. This program was
run assuming a VM-2 refereﬁée atmosphere and the following

numerical data:

i

89,400 ft.

H]

7e

Og = .15287 radians
Ve 12,300 ft/sec
L2

= 0

&

a = -10.2348

[

4 = 2.7027

2 = -.501536

N =1

b = 61,000 ft.
A“ﬁsﬁ = .30 slugs/ft2

12.3 ft/se¢2 for Mars

Ve
@
i

R, = 10.86(10)® ft for Mars
277, = 20,000 ft.
Since the above data is identical to that used in Section II.F

of this thesis the results for the reference states and the



first order coefficients are not repeated. The following

data was obtained for the second order coefficients where

the notation given.in Equation (3-25) is used. The Class 1

coefficients are given in Table 6 followed by Tables 7 and 8

for the Class 2 and Class 3 coefficients. Note that x

and 8§ = xp in Equation (3-25) for P1(i,j.k).
' TABLE 6 - Class 1

P
=

R

i 3 k Pl (i,3,k)
1 1 1 .1115
2 1 1 .7189 (10)~1
3 1 1 -.6436 (10)-3
1 1 2 - 4476 (10)~1
2 1 2 -.2892 (10)~1
3 1 2 .1484 (10)-2
1 1 3 .2821
2 1 3 .2020
3 1 3 -.1520 (10)71
1 1 4 .2217 (1o)-1
2 1 4 L4574 (10)-3
3 1 4 -.4468 (10)-4
1 1 5 -.2691 (10)-1
2 1 5 .2317 (10)-2
3 1 5 -.9397 (10)-4
1 2 2 .6851 (10)-1
2 2 2 .1035 (10)-1
3 2 2 -.2371 (10)-2
1 2 3 .2934
2 2 3 -.1023
3 2 3 .3000 (10)-2
1 2 4 -.1075 (10)-1
-2 2 4 L4013 (10)-4
'3 2 4 .3365 (10)~4
1 2 5 .1382 (10)-1
2 2 5 -.9458 (10)-3
3 2 5 .4278 (10)-4
1 3 3 .1452 (10)1
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[

Laale

W‘

P1 (1i,j,k

WNMHMWNFRWNRFWNFRWN R WN

oSO RWLWLWLWOLW

puiinwnunionapppbuUuinnpdespww

.5508
-.8609
.7816
.6140
.2815
-.1029
.6558
.2587
.1054
-4813
<1577
. 3899
- 3954
.3970
.1389
.5116
.2368

oyt
(10)-1
(10)-3
(10)-3

(10)-2
(10)-3
(10)~2
(10)-4
(10)->
(10)-3
(10)-4
(10)=>
(10)-2
(10)-4
(10)~4

TABLE 7 - Class 2

]

2 (i, 3, ¥

Bl L N B A B L0 PO W N e L D

DN RN NN NN e e ot ol fod o b fd

1124
.9186
.0

.1873
.1133

Sty QO

.3530
.3153
.0

4897
-.2215

t Ot

. .8058
L1172

0.0

-.5361

38?3}
(10)-2
G0
(10y~1

(10)-1
(10)~4

(10)~-1




Table 7 - Class 2 Cont'd...
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e

b

P2 (i,

i, k)

W WM NN P = DWW R NN = b WL WA NN e o W

W WNMFWNEEWRRFHWhFEWN OO PR N WD

UMbttt PP WLWLWLWWEWWLRWWEINN

. 1604
0.0

. 3882

.1118
0.0
-.5956

L4712
6.0

.4898
-.1088
0.0
-.6879
-.1268
0.0

. 1495

.5639
0.0

.6524

.2577
0.0

. 2468

.2150
0.0
-.2884

. 7596
0.0
-~.2353
-.1149
0.0

(10)-2
1oy’

(10)-3

(10)-1

(10)~1
(10)-2

(10)- 2
(10)-4

(10)-3
(10) -4

(10)-1
(10)-2

(10>"2
(10) "3

(16)- 2
(10)~3
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TABLE 8 - Class 3

i j k P3(, i, k)
1 1 1 -.5183 (10)'

2 1 1 .7398

3 1 1 6772

1 1 2 -.1097 (10)1

2 1 2 .2312 (10)-1
3 1 2 -.4885 (10)-1
1 1 3 0.0

2 1 3 0.0

3 1 3 0.0

1 2 2 .5077 (10)~1
2. 2 2 2272 (10)-2
3 2 2 -.8581 (10)~2
1 2 3 0.0

2 2 3 0.0

3 2 3 0.0

1 3 3 0.0

2 3 3 0.0

3 3 3 0.0

Before attempting to solve the simultaneous
quadratic control equations (3-34), two additional defini-
tions are introduced. These are

Ha (4,4 = EPGEL R gL +4 P (2,4,4)L"

2z
y Pl (2, 4.5+ P15 0L, (3-35)

and

2 2
(60 < EPEL R EPE, 4P, 4D

2

+P1(3,4,5) 4 t1 Pl 3.5,5)4,  (3-36)
where x = xp and 8 = xp in Equations (3-35), (3~36), (3-32),
and (3-33).
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() . i i .
The g; are defined in Section IIL.D. Using
‘Equations (3-35) and (3-36) the control problem stated by

Equation (3-34) may be restated as fiﬁding £, and £, such
that i‘“z (£ ;'Qu )= 10
Hs (F,9)2 0 (3-37)

The solution of these equations is discussed assuming a VM-2
reference atmosphere and a VM-4 actual atmosphere where a,b,c

for VM=-4 are

a= =9,9075
b= 2.3256
c = =-,5439

It also is assumed that there are no initialcondition
deviations at the entry altitude. Two different techniques
were applied to determine the values of f; and f, that

solve Equation (3-37). First, Newton's Method®? was tried
with the solutions of Equations (2-12) for fl and.fz used

as the starting values. The iterated solutions"resulting
from this approach failed to converge. The Steepest Descent

Technique70°7l’72

was applied with much more success. Since
Steepest Descent is usually applied to minimization pto-
blems, it was necessary to restate problem. To do this, we

define a new function of £7 and f2 given by

G’('Ps ,‘F-a.) = D—fz@. }ﬁ)},ﬂ'k"{}{z ('Pc ’_&)]1 (3-38)
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The control problem is to find the values of f£; and £, that
minimize C;-(IZ,#&). For the present problem (VM-4 actual
atmosphere and VM—Z'reference atmosphere), the sequences of
G (¥, ,-?.;) , Ho (&, ,"ﬂ.), Hy G}H‘F@), £y, and f, resulting
from the application of Steepest Descent are shown in

Table 9 for k2 equal to one. The Steepest Descent Computer
Program is given in Appendix G.

TABLE 9 ~ Steepest Descent
Control Determination

£q £y Hy (f1,£p) | Hy (£1,£5) G(f1,£9)

~11,75%% 5. 43%%| ,153 (10)~2{ -.251 (10)~3 | .239 (10)~?
-11.67 5.49 .136 (10)-21] -.230 (10)-3 | .191 (10)->
-11.59  5.55 .120 (10)-2 | -.208 (10)-3 | .147 (10)-5
-11.51  5.60 | .103 (10y-21} -.187 (10)~3 | .109 (10)-5
-11.42  5.66 .862 (10)-3 1| -.165 (10)~3 | .770 (10)-6
-11.34  5.72 693 (10)-3 ] -.143 (10)~3 | .501 (10)-6
-11.26 5.78 524 (10)-3 1] -.121 (10)-3 | .289 (10)-6
-11.18 5.84 .354 (10)~31| -.985 (10)-%4 | .135 (10)-6
-11.10  5.90 .183 (10)~3 1 -.752 (10)-% | .392 (10)~7
-11.03 5.97 126 (10)~4| -.494 (10)~% | .260 (10)-8
-11.075 6.06

** Starting values determined by trial and error.

The performance of the First and Second Order

Sensitivity Guidance schemes is compared in Table 10. First
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the uncontrolled terminal velocity and range angle deviations
are given. Then the results of the First Order Semsitivity
Guidance with upéating are given. Next, First Order Guidance
without updating is simulated. In this case, the controls
determined at the beginning of entry are applied all the

way down to 20,000 ft. Finally, Second Order Guidance

without updating is implemented.
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PART IV
Conclusions

Trajecﬁory dynamics, sensitivity analysis for
control and for updating, and efﬁicient implementation of
the proposed guidance technjques are studied in this thesis.

The trajectory equations have been transformed
from the time domain to a normalized altitude domain. This
is advantageous since the density (the main source of uncer-
tainty) now appears as a function of the independent variable.
This transformation also simplifies the description of the
guidance requirements.

The following atmospheric model is used

FIE5L e* 1+ .«e,(t-x)]“"’

assuming that the parameters a, b, ¢ are slowly varying
functions of altitude. The model will fit any of the pub-
lished Martian atmospheres. The parameters, a,b, c may be
tracked as functions of x, the normalized altitude. 1In this
way we can predict the density in the future as the vehicle
enters the Mars atmosphere.

The entry guidance schemes described consitute a
new application and extension of sensitivity theory. Previous
work#7 has assumed that the actual variations of the density

parameters are unknown and minimized the terminal state
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variable sensitivities to such variations. Our approach is
more specific in that sensitivity analysis is applied directly
to the entry dynémics in order to compute the effects of both
density parameter deviations and control changes.

In the process of obtaining an efficient procedure
for updating the controls a new sensitivity equation was dev~
eloped which describes the terminal sensitivities as functions
of the alﬁituée where the sensitivity coefficients are
assumed to be zero. This result is important because it
reduces the on-board computational requirements.

The on~board computational effort is divided into
two phases. Between de-orbit and entry the reference tra-
jectory and the first set of sensitivities are computed.

These sensitivities are used as the initial conditions for
the computations performed to update the control during entry.
Numerical simulation of the first order guidance scheme for

a specific case showed that the terminal velocity deviation
was reduced by 90% in comparison to the uncontrolled tra-
jectory. The terminal range angle deviation was reduced by
an even greater'amount with the application of the same
control.

Second Order Sensitivity Analysis is introduced

in Part III in order to improve the accuracy of the error
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prediction equations. A new vector-matrix differential
equation for the second order sensitivity coefficients of a
general system is derived. This formulation should be more
useful than a previously obtained second order sensitivity
equation43’44 for a single higher order scalar differential
equation. There is a difference in form between the first
and second order sensitivity equations. For the first order
case, it was éossible to describe all the terminal values by
using the adjoint sensitivity equation. For the second
order coefficients, it is shown that this procedure is only
possible for a certain approximation to the second order
sensitivity forcing function. Numerical simulation of second
sensitivity gﬁidance including solution of the nonlinear con-
trol equations is performed and the results summarized in
"Table 10,

Some extensions of tﬁe work in this thesis are now
discussed. For First Order Sensitivity Guidance, the singu-
larity in Equation (2-3) at zero flight path angle has
proved troublesome in certain cases. This problem is parti-
cularly evident with a 'thin' reference atmosphere and a
much 'thicker' actual atmosphere. Using the range angle as
the independent variable removes that singularity and might

allow a wider range of controlled trajectories.
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Other possible control variables should be investi-
gated. For example, it may be possible to achieve sufficient
trajectory contrél by implementing discrete changeé in the
vehicle ballistic coefficient, /ﬁb&; Such an approach
would be advantageous sinceﬁit would eliminate the fuel con-
sumed by retro-propulsive control of the aercdynamic braking
phase.

:As mentioned in the Introduction, uniformly valid
analytic sclutions of the entry dynamics would lead to closed
form algebraic expressions for the sensitivity coefficients.
Such closed form expressicns might facilitate a more flexible
implementation of sensitivity guidance and certainly would
reduce the complexity of the on-board calculations.

For Second Order Semnsitivity Guidance, the problem
of updating is still somewhat unresolved. It is not really
clear whether the benefits warrant the additional complexity
that updating may involve. Perhaps a hybrid approach
utilizing approximate second order coeffiéients might be
effective.

Finally, the nonlinear control equations (3-37) deserv
further attention. Since these equations represent the
intersections of a pair of conic sections, the possibility

of multiple solutions would appear to exist.
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APPENDIX A

The Time Domain Equations of Atmospheric

Flight Mechanics

Two dimensional entry into the non-rotating
atmosphere of a spherical plénet is considered. The geo-~
metry is given in Figure A-1 where
= Centér of Planet

Position of Vehicle

4

i

Local Horizontal

Range Angle

Velocity

= Vector from O to P

o <DITvo

= Flight Path Angle

€ = Unit Vector in the Direction of the Velocity
&, = Unit Vector Perpendicular to &

A moving coordinate system oriented parallel to the position
“vector is also used. The relationship between this coordi-
nate system and the 8¢, &yvelocity coordinate system is given

in Figure A-2 where

Eg i.&{ (A-1)

and € is perpendicular to ﬁéﬁ. Analytically, the relation-

ship between the §T, €, velocity coordinate system is given
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PLANET SURFACE

FIGURE A - 1.

REFERENCE PLANE

Entry Dynamics Geometry



FIGURE A -~ 2.

Entry Dynamics Geowetry

98



Ey = ~ L4 Sin® + €40 Cos & (4-2)

The vehicle positio‘n vector, <% , can be expressed in the _@*, Q‘Jl

system as

1f Equations (A-2) are solved for ;Q_?;R, and the result sub-
stituted into Equation (A-3), the position vector is obtained

in terms of QTand 2

2z RCos © €y~ SING € (A-4)

An expression for the velocity in the ®4, € y coordinates
is found by differentiating Equation {A-4) with respect to

time:

A = %{J&ﬁa@&@) ey” %_(.4, Sin®) &
44 Cos® €y — A SiNO 2 (a-5)

But the angular motion of the @y, &yframe with respect to

the fixed reference plane (see Figure A-~1) is given by
éN = ( —fL L o é 3 g-r-

. S A,, A"‘6*
g, =~ (£L+8) &y (heem

Substitution of Equations (4-6) into Equation (A-5) leads

* Equations (A-6) can also be derived by differentiating
Equations (A-2) and noting that = = €qn and é&g -
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to A=[a(iedd)Cos@ -4 (asine)]e,
oo (,.ﬁ_-&é) Sin® + %(A Cas.@jgﬂ(A-—T)

which can be simplified to read ,
A = [;Aygﬁi Cos® ~iSin@ | @

+[afl Sine + A Ces@J ey (A-8)

However, since &ywas defined to be in the direction of the

L

velocity vector, it follows that

By using the definition of the velocity and Equations (A~8)

and (A-9), the following two scalar equations are obtained
Am(‘l_ Cos © — 4 Sined =V

Al SO+ A Cos®=0 (A-10)

The solution of E_quations (A-10) for andf}_ gives the

following geometrical relations:

_',;_ et v SiN @ (A"‘ll)

2 = V Cos @ 12
L ~ (A-12)

In order to obtain the remaining equations of motion, an
expression for the vehicle acceieration is needed. This is
obtained by differentiating Equation (A-9) with respect to

time which gives
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A = Ver+ Ve, (A-13)

T pees=y

Substitution of Equation (A=6) into (A-13) and substitution

of Equation (A-12) into the result then gives

XfélcbsvéggjgzN

. W

(A-14)

,._g = \};@.T“Vté'ﬁ.

Next, the forces acting on the entry vehicle are considered. .
These include drag, 1ift, and gravity. Note that for the
present only unpowered flight is included. The external
force (excluding retro-propulsion) on the capsule can be

expressed by

Fow = 3 er-Pectles
where %4 = the mass of the entry vehicle
9 = gravitational acceleration

D = drag force
L. = 1ift force
The external force can be rewritten in terms of € and &

N
only, resulting in

F a(%% S{NG”’D)gT *@.“W%CQS e)g

Texr N (A-16)

Now, by using Newton's Law, the following is obtained:



10
1€> e ‘”»/!:65 + Eigg?fig?.] 1= N

:..(3Sm@-%)§_,r. +(~&'?—%Cos@)g_‘~

(A~17)
The equivalént scalar equations are
o D
= Sined - —
\4 K M (A-18)
and ,
y - v L
vé = (g WDCOSQ“K
(A~19)

Equations (A-11), (A-12), (A-18), and (A-19) constitute the
time domain equations of,motién for entry into a planetary
atmosphere.

Two additional steps are usually introduced.

First, the drag is approximated by

D= Lpe V7 (Cotd (8-20)

where g = atmOSpheric‘density

Cp = drag coefficient

A = reﬁerence area .

1} = gltitude
Also, the variable 4 , which represents the distance from
‘the center of the planet, is replaced by4a , the alﬁitude of

the entry capsule above the planet's surface. The quantities.}

%,
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and - are related by
= Ro v+ 2 (a-21)

The substitution of Equations (A-20)'ahd (A-21) into (A~11),
(A-12), (4-18), and (A-19) leads to the following revised

set of entry equations

,%_ o= - VS&'&#Q (A—ZZ)

vé=(3 - ¥ )cese-b)ipapvi(L2A) (a-23)

@ T Coh
Vo= - LV (2D« g swe (A-24)

. _ VCos@
LT TR

One final addition is now made. It is assumed

(A-25)

that retro-propulsion is possible with the geometry of the
thrust angles being shown in Figure A-3. Equation (A-16) is
now replaced by

F -.-.-E,m% Sin® -D-T Cos (“"‘?)]Q-r

— Y T

""ELf—Ma Cos ©&—1 Sin Cﬁ(—-{)]gﬂ (A-26)

The retro-propulsion terms are shown in the revised entry

equations:
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® = Lift Angle

¥ = Velocity Vector

S = Thrust Angle

T = Thrust Vector
FIGURE A -~

3 Thrust Angle Geometry
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/(& = mv SfN@
Ve« (4-Y)eos® -4 (brg) V7 (Cat)

%*l-; ‘Sm(@(’§> (A-27)

4

= e %ﬁ(v@) V™ C..,ME;__.‘& 4 % Siw &

— I.Cms (é(""ﬁp:)
A

ﬂ:\,/ﬂas

= -



106

APPENDIX B

Martian Atmospherig Density Models

At present there are two density wodels for Mars
being used by NASA3QQ For altitudes greater than the height

of the tropopause, an isothermal model is used:

‘ -8
P = R&,e@ < Al (8-1)

For altitudes less than the heigh of the tropopause an

adiabatic demsity model is used:

e= Pc(“’ ﬂré,)g”s (B-2)

Where = surface density (slugs/ft3)

Hi

surface temperature (°OR)
= inverse scale heigh (in stratosphere) (1/ft)

adiabatic lapse rate (PR/ft)

#

ratio of specific heats

= height above surface (ft)

ﬂﬁé = 1M drg 0
#

1f the density is assuwed to be a continuous function of

altitude, then it can be shown that

.
H g-1
Corer =P = P TG E H'ch) &3

where Hyppop = the height of the tropopause.
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Because of the height of the tropopause varies from 56,000
feet to 63,000 feet depending upon the atmospheric model used
and because the méin'part of the aerodynamic braking occurs
in the lower portion of the atmosphere, the adiabatic
density model is wused exclugively in this thesis.

The uncertainty iﬁ the present definition of the
parameters of the adiabatic wmodel is indicated by the allow-
able rangés for three parameters for the VM-1 to VM-8

models ;33

-5 r
.32 (o) <ps € 4.98 ( 10)

- .,003z1 < [T {~.00213

REe O < T«a < ‘4‘?5“
|.37 < ¥ < .43

To obtain formulas for the atmospheric parameters

a, b, and ¢ used in this thesis, the following transformation

is introduced

x = (%)N (5t



where X
/& =
N =

#
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normalized altitude
reference altitude

scale factor

To obtain an adiabatic model of the density as a function of

X, Equation (B-4) is solved ferﬁg and the result substituted

for ﬁ% in Equation (B-2). This leads to

QC,XD% pe E&*%J@(ﬁ”%>] ! (B-5)

In terms of a, b, and ¢ the density can be expressed as

@

where

e es[te aC-507F

(B~6)

a = - po (8-7)

{
b = 7 (B-8)
- r?; (B—Q)

Equation (B~6) is the demsity model used throughout this

thesis.

An alternative model was used in some earlier

studies by this investigator. That model is given by

B
p(x) = QAC@""‘} (B-10)
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The quantity X is still defined by Equation (B-4) and the

parameters A, B, and C are defined by

r L
A = w@éﬁ?e + %%{JM f'm' T, N ) (B~11)

.
B = ¥ (B~12)
Tk
G = P e
, - » (8-13)
— Tk
=

While the model given by Equation (B-10) seems gc have a
simpler form than that of Equation (B-6) this advantage
proved on1§ temporary. During simulation of the first order
sensitivity guidance system with Equation (B-10) as the
density model certain difficulties were encountered when the
actual atmosphere differed from the reference atmosphere in
all three parameters: ‘A, B, and €. Such a case occurs when
VM~2 is the reference atmosphere and VM-1 is assumed to be
the actual atmosphere. Examination of the results showed
that the difficulty was caused by significant differences
between the predicted uncontrolled errors and the actual
uncontrolled exrrors. Further study showed that because para-
meters A and C both depended on the physical parameter (IVTO),
deviations in (quTO) caused larger deviations in the model
parameters A and C. The following tables illustrate this

point for VM-2, VM-1 case,



V-2 | YM-1
A -12.0997 ~14.4176
B 2.7027 2.6316
C . 24938 2.8097
a -10.2348 -10.8977
b 2.7027 2.6316
e - 5015586 - ,262485
h = 61,000 feet
N=1.0
01d Model New Model
Equation (B-10) Equation (B-6)
AA = -2,3179 Aa = -.6629
LB = - 0711 HAb = - 0711
A0 = +1,.8159 Ac = +.,239071

The first table gives the density parameters for
the VWM~2 and VM-1 models. Here A, B, C were computed using
Equations (B-11), (B-12), and {B-13) and a, b, ¢ were com~
puted using Equations {B-7), (B-8), and (B~9). The second
table compares the deviation of the parameters for the old
and new models for a VM-Z reference atmosphere and VM-1
actual atmosphere. Clearly the parameter deviations are
smaller for the model given by Egquation (B-6). In order to
improve the perferﬁanee of the first oxder error prediction
equations, the atmospheric density model given by Equation-

{(B-6) was adopted,
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Finally, a, b, and ¢ for VM=-1 through VM-10 are given in the

table on this page.

Mars Atmospheric Data for N = 1 and
h = 61,000
M- a ) b c
1 ~10.8977 2.6316 ~.2625
2 -10.2348 2.7027 -.5016
3 ~10,.5383 2.6316 -,2625
4 - 9.9075 2.3256 -.5439
5 ~10.2046 2.6316 -.2625
& ~ 9.7262 ' 2.2222 - 4778
7 -11.2353 2.6316 -.2625
8 ~10.5729 2.7027 -.5016
9 -~ 9.8452 2.6316 -.2626
10 - 9.5061 2.4390 -.4033
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APPENDIX C

Proof that the First Order Sensitivity Forcing

Vector 'gé(xfﬁ) is Independent of Present Altitude ;,'3

It is not obvious that the first order sensi-
tivity system forcing vectci;, »&3?(3(;3?) {in Equation (2-16)
should not be written with $ as an argument. This appendix
will show that it‘ is correct to write the Jg 3 as functions
of X and '@ ., This result is important in the derivation of
Equation (2-22) which describes the terminal parameter sensi-
tivities. The method of approach will be to explore a
simple problem and then suggest a more general proof,

For a simplified model, we chose the following

first order, constant coefficient system:
fé%fk’,&) = §E€x,&_) (c-1)

where: @ = reference value of parameter a
x = Independent variable
2 (x,&)= reference state variable
This model is desirable because an analytical solution for
the reference trajectory is easily obtained. If the initial

condition is given by

7 (xe, &)’zﬁg constant (C-2)
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the solution of Equation {C-1) follows

. 2%~ X
2 (x8) = mpet (XX (c-3)

The sensitivity ccefficient Aalx, &’,ig} is defined by

M{x,8,x) = 5—-—2 #(x,4) (C-4)

Differentiating Equation {C-1) with respect to 2 gives the

foilgwing'first order sensitivity equation

R A (x-xg)d
%&{X,&SXQD =aMlx,a,Xg) +E_€ (@)

Now consider 2 new perturbed trajectory which coincides with
the reference trajectory at 3 instead of Zg. The sensiti-
vity coefficient describing this new perturbed trajectory is

governeé by

o,
. A a {x—8)
f" A (x,&i 5) = a Ml (xaéss‘) "3'25'&
4 {(C~6)
a0x-8>
The quantity 24€ can be identified as the sensitivity
forcing function. That is
| ; (X— 5D
g o
b (x,8) =Eg® (c-7)

In order to show that ‘3!{&%} is not a function of § , we

i (x-8> a (x~2g)
must prove that &g® reduces to Bg @ {see

Equation (C-5). Note that the point (s, %s) is on the
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reference trajectory {given by Eguation (C-3}. Thus
A 3- (B~ Xg 2
Substitution of Equation (C-8) in Equation (C-7) gives

a A

« al(S-Xg) g xX-3)

T B, e 2.

P (x,a) = 2 (- xed {C-9)

= §§E>él
which is the desired result. The important concept.is that
the sensitivity coefficient ﬁ{x,é,s} always describes per-
turbations from the same reference trajectory. The variable
is the point at which the perturbed trajectory coincides
with the reference trajectory.
So far we have shown that the j;d_ 3 are not

functions of § for a specific case. We now consider a

general system given by

f; 2(x,8)=F [=(x.4),x,&]

(C~10)

In particular, we consider two different solutions of
Equations (C-10). These are given by the following integral

equations:

. X a ;
Z,(X,8)=Fgt ng Fﬂ%%ﬁ),é,ﬁ] dA (C-11)

Z.(x,a)= Eg+ S; Fle,(3,a), 3,‘3}33 (C=12)

where g and = s are constants. If we define the



regpective sensitivity coefficients by

X, 8, %) = ggﬁx (x,a) (c-13)
" ~ 8 A
M(x,a,5)= = fa(’fea) (C-14)

the following sensitivity equations result:

aé;ﬂ (x uaazﬁ > = ‘m‘)FEﬁa (’?3&‘)} X, £}“(x;&:x&')

~§~§;Z Flz«xd), x,a]

% Filz. x_,a)’? :r,ajalsf,&,s) (C-16)

¥ % FlZ.txd), =, 3;3

Clearly, if we can show that

(C-15)

i(.uﬁx,&,s) =

Z,(x,d) = 2, (x4), x>3 (c-17)

then the sensitivity forcing term &Fiﬂtf%&),na]/ﬂé will
not depend on 3 and the present formulation (Equation
(2-16) is correct. To prove Equation (C-17), recall that

the point (3,Zg) is on the reference trajectory. Therefore,
S
. A i)
Fy = Bt S Fl=, (\a), A,a]&z\ (C-18)
: X .
Substituting Equation (C-18) into Equation (C~12) gives
. S , R
2. (D=2 + SXE Fre,a), A a]d)
(c-19)

+ S;: F[ﬁ’:za;a>z ;i) a ‘]ér‘
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Algebraic manipulation cf Equation (C-19) leads to
P (X, 8d= &g + S Fre,¢),82,1,47]

+ S% § F *;Z@.s{x,&),:a, &_}4{%@,@3,@2&(&20)

Subtracting Equation {C-11) from (C-20) leads to
Emix,é% p - ﬁ,{x,&‘)
= 5; gFE"ﬁz{}pa},igﬁ-}“?{ﬁ‘fagé)"&s&j}ék (c-21)

Note that Eguation (C~21) contains the following initial
condition:
" A
z, (5,4)—Z (5,a0=0
(C-22)

Differentiating Equation (C~21) with respect to x gives

% Cz.(x,8)— 2 (x,8]
Fl=_ (x,8), x,4 ]~ FLe(2,8) %87 (C-23)

i

Since Ema‘}f‘,a)»—’%‘{%ﬁ) is small, Equation (C-23) can be
replaced by f‘ (2, Cx,8) ~&, (x,8)7]

-8
T oz, Dz (1,8

Fl=.o®, 28] 0y ,a)-=,(x,40] (€26

If the quantity BF[’%J?‘,&Z%&,}J@%{%@ can be shown to
satisfy a Lipszchitsz Condition®®, then Equation (C-24) will
have a unique sélution. However, because of the initial
condition given by Equation (C~22), every member of a Picard

sequence of approximate solutions of Equation (C-24) will be

zero. Therefore the solution of Egquation (C-24) must be
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%ﬂ{ :;(3&.} “Eﬁ(xa&)‘—:@ {C-25)

Thus {see Equation (C-17)) the first order sensitivitcy
forcing function does not depend on § for a general dynamical

system.
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APPENDIX D

State Variable Semsitivity

After the initiation of entry, the assumption that
the entry capsule is on the reference trajectory will no
ionger be wvaiid. Thus the ;ffeeﬁs of present state variable
deviations must be included in the estimate of the terminal
state variable deviation. The first order state variable

&
sen51tiv1tles-%ﬁké (%, %.8) are given by

Wig D= 5‘%{ ) X (0-1)

where the #; are defined by Equation (2-4a). The analysis

is made more concise by defining
g, 4.8 = E‘@‘?’a €x,G,9), W, . {ar;?%} s),

wy g i’zf;%,ﬁl}} (0-2)

where * denotes transpose. The state variable sensitivitcy

equations

é A7 - {X:%pﬁ‘) ”‘A{’xsﬁ}w‘é(rz"%a£}

dx =1 (D-3)

are obtained by the same procegs used to obtain the parameter
sensitivity equations. The system matrix Aﬁﬂi)is the same
as that given in Equation (2-14)., The initial conditions for

(D-3) are given by
@y (85 = dq (D)
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o
where é;"{é): éz‘z(‘;} }é33<$}

(D-5)

It is simple to show that the solution of Equation (D-3)

subject to (D~4) is

Wy (x,4,8)= @(x s)§
0-6)
where % "{Xﬁ} is given by Equation (2-17). Using Equation

{2-19) we may write

#
» ‘ 3 5= {X 4$) é )
4‘3‘33 (2™ } (4%1 T g (D-7)
é.}’@’
where ‘ {XTaﬁ} iz the solution of Equation {2-23). The use

of the 4¥; {'x?;% $}in computing terminal trajectory errors caused
by state variable deviations is discussed in Part II.E

of this thesis.
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APPENDIX E

Derviation of Eguation (2-19)

Recall that the state transition matrix of the

homogeneous senstivity system, @{2’; 5) is described by

D g = A B g

$(s9=T (E-2)

and its adjoint, ¥ {X1.%X) described by

i $Fex )= .-#)*(:afmx}é\(xa?)

(E-3)

¥ (xr, xe 0= 1 (E~4)

s ¥
Then premultiplying (E-1) by %} {XT)%) gives

* x> . B(2,3) =¥ 0nn 04 (5 ) Erg)

(E-5)
Postmultiplying (E~3) by &(x, 3) gives

(4 P erT 8009 = ¥ A D) 4 o

Adding Equations (E-5) and (E-6) gives

‘?*( x’i’zz)i’x @{E, ’5} '}E% \é)&{xT’x‘?}éCx’:):o (E-7)

which reduces to

[P 0ExD]=o0

(E-8)
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Integrating'gives
%
% (x?,}f}éfx, S) = a (E»Q) :

where C is a copstapt matrix. Substituting Equation (E-2)

into (E~9} gives

%%:8(731’35535% C
{E-10)
Substituting (E~4) intc (E-9) gives
P (xc,8) = C (E-11)

‘Finally, Equations (E-10) and (E-11) may be combined to give

the required identity

(E-12)



