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VAPOR-PHASE GROWTH TECHNIQUE AND SYSTEM 

SEVERAL I I I - V  COMPOUND SEMICONDUCTORS 
FOR 

J. J. T ie t j en ,  R. Clough, A. B. Dreeben, R; E. Enstrom, 
and D. Richman 

RCA Laboratories 
Princeton, New Jersey  

SUMMARY 

Sign i f i can t  progress has been made during t h e  pas t  year i n  extending t h e  
vapor-phase growth method t o  t h e  prepara t ion  of I I I - V  compounds containing A 1  
and nitrogen, on t h e  completion of t h e  growth of t h e  antimonides, and on the  
growth and cha rac t e r i za t ion  of Inl-xGaxP a l loys .  A s  a r e s u l t ,  most of t h e  
cont rac t  ob jec t ives  of t h e  f i r s t  two years have been m e t ,  demonstrating t h e  
v e r s a t i l i t y  and compat ib i l i ty  of t h e  ERC vapor-phase growth system. 

For the  f irst  t i m e  s ing le-crys ta l l ine ,  c o l o r l e s s  l aye r s  of G a N  have been 
grown with s u f f i c i e n t  s i z e  t o  permit good electrical and o p t i c a l  charac te r iza-  
t i o n  of t h i s  material. Good c o n t r o l  of t h e  composition of-Inl,,GaXP a l l o y s  
has been achieved, and i t  has been determined t h a t  t hese  a l l o y s  have d i r e c t  
band gaps as l a r g e  as 2.12 eV.  
p-type, and orange electroluminescence has been generated by an Inl,xGaxP p-n 
junction. 

These alloys4 have been doped both n- and 

GaAsl,,Sbx a l l o y s  have been prepared ac ross  t h e  e n t i r e  a l l o y  series with 
good con t ro l  of t h e  composition. For t h e  f i r s t  t i m e  donor impur i t ies  have 
been added t o  GaSb during vapor-phase growth, and t h i s  has permitted t h e  prep- 
a r a t i o n  of vapor-grown p-n junc t ion  s t ruc tu res .  A p-type a l l o y  with 4% GaSb 
w a s  prepared with a mobili ty of 400 cm2/V-sec, which is equivalent t o  the  
h ighes t  y e t  reported f o r  unalloyed p-type G a A s .  Gal,xA1xAs a l l o y s  have been 
prepared as s ing le -c rys t a l l i ne  l a y e r s  which i s  t h e  f i r s t  t i m e  t h a t  t h i s  
material has been prepared from t h e  vapor phase. Po lyc rys t a l l i ne  InSb and 
InAsl-,Sbx a l l o y s ,  with x > 0.95 have been prepared. 
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I. INTRODUCTION 

During t h e  f i r s t  year of t h i s  cont rac t ,  t he  primary ob jec t ive  w a s  t o  
develop a compatible vapor-phase growth method f o r  t h e  prepara t ion  of G a A s ,  
Gap, GaSb, Ids, InP, InSb, and se l ec t ed  a l l o y s  of t hese  compounds. Further, 
t he  method w a s  t o  have t h e  capab i l i t y  of providing both n- and p-type doping 
and t h e  preparation of mul t i layer  s t ruc tu res .  To accomplish these  objec t ives  
t h e  RCA method of vapor growth, used previously with g r e a t  success f o r  t h e  
preparation of G a A s  and GaAsl,xPx a l l o y s ,  w a s  chosen and w a s  modified t o  per- 
m i t  t he  prepara t ion  of compounds containing I n  and Sb. 

I n  t h i s  way, a l l  of t h e  above compounds, except InSb, were prepared as 
s i n g l e  c r y s t a l s .  I n  addi t ion ,  a l l o y s  of GaAsl,xPx, InAsl-xPx, GaAsl,,SbX, 
Inl,xG+As, and Inl,xGaxP were a l s o  grown as pure, s ing le -c rys t a l l i ne  
e p i t a x i a l  l aye r s .  Also, p- and n-type doping and t h e  prepara t ion  of multi- 
l aye r  s t r u c t u r e s  i n  se l ec t ed  materials was  achieved, which demonstrated t h e  
a b i l i t y  of t h i s  vapor-phase method t o  f u l f i l l  t he  objec t ives  of t h e  program. 

I n  order t o  extend t h e  u t i l i t y  of t h i s  vapor growth system, work during 
the  second year focussed on the  preparation of 111-V compounds containing A 1  
and nitrogen by the  add i t ion  of A 1  and NH3 sources. Also, t he  antimonide 
work has been completed, and t h e  growth and cha rac t e r i za t ion  of Inl,&a,P 
a l l o y s  has been continued because of i t s  p o t e n t i a l  f o r  v i s i b l e  e lec t ro-  
luminescence. Again t h e  method has demonstrated its a b i l i t y  t o  meet t h e  pro- 
gram objec t ives ,  even though several of these  goa ls  are exceptionally 
d i f f i c u l t  t o  a t t a i n  because of problems r e l a t e d  t o  the  i n s t a b i l i t y  of SbH3 at  
room temperature and t h e  corrosiveness of t he  aluminum chlor ides .  

11. TECHNICAL DISCUSSION 

A. Growth of GaN and InN 

GaN has been vapor-grown using equipment and gas flow rates similar t o  
t h a t  used f o r  G a A s  except t h a t  NH3 is used i n  place of AsH3  and, i n  i n i t i a l  
experiments, a N2 carrier gas was  used instead of Pd-diffused H2. 
20 runs, t h e  thermal conditions,  flow rates, and gas concentrations were 
determined s u f f i c i e n t l y  w e l l  so t h a t  po lyc rys t a l l i ne  GaN could be deposited 
on a v i t r eous  quartz s u b s t r a t e  at 75OOC. Subsequent experiments t o  achieve 
s ing le -c rys t a l l i ne  GaN l aye r s  focussed on t h e  e f f e c t  af s u b s t r a t e  and tempera- 
t u re .  The use  of a wide v a r i e t y  of s ing le -c rys t a l l i ne  s u b s t r a t e s  o r  of 
a range of depos i t ion  temperatures w a s  i n e f f e c t i v e  i n  promoting the  growth of 
s ing le -c rys t a l l i ne  GaN layers .  However, i t  w a s  demonstrated t h a t  GaN could be 
grown a t  temperatures as l o w  as 550OC; but even a t  t h i s  low temperature, 
s i g n i f i c a n t  oxygen contamination w a s  present t o  co lo r  t h e  c r y s t a l  yellow. 

Af te r  about 
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The problem of oxygen contamination w a s  overcome by using high-purity NH3, 
which then permitted high-purity Pd-diffused H2 t o  be used i n  p lace  of t h e  N2 
carrier gas. This then led ,  a f t e r  about 40 runs t o  optimize growth condi t ions ,  
t o  t h e  growth a t  825OC of s ing le -c rys t a l l i ne ,  c o l o r l e s s  l aye r s  of GaN on <0001> 
or ien ted  sapphire a t  a growth rate of about 1 /2  micronlmin. 

. f i r s t  t i m e ,  s i ng le -c rys t a l l i ne  l a y e r s  of GaN are a v a i l a b l e  of s u f f i c i e n t  s i z e  t o  
allow good measurements of t h e  o p t i c a l  and electrical p rope r t i e s  t o  be made. 

Thus, f o r  t he  

These l aye r s  are single-phase, hexagonal GaN with the  wur t z i t e  s t r u c t u r e  
and have la t t ice  parameters a - 3.189 1 and c = 5.185 b.  
measurements on undoped GaN revealed a very qharp absorption edge a t  3.39 eV,  
-and ana lys i s  of absorption vs. wavelength r e l a t ionsh ip  ind ica t e s  t h a t  t he  
energy gap is d i r e c t .  The r e f l e c t i v i t y  of polished GaN is 30% over t h e  range 
4000 to 6000 w. 

Opt ica l  absorption 

The r e s u l t s  of Hall-ef E ect measurements f o r  several undoped GaN samples 
Since the  t o t a l  impurity concentration, as determined are shown i n  Table I. 

by mass spectrometric ana lys i s ,  i s  less than 10 ppm, t h e  high c a r r i e r  concen- 
t r a t i o n s  are a t t r i b u t e d  t o  a n a t i v e  defec t ,  such as n i t rogen  vacancies(Ref.1). 

I n  an e f f o r t  t o  achieve high-conductivity p-type GaN,  t h e  l a y e r s  were 
doped during growth with Zn, Hg, Mg, and Si. 
colored, h igh - re s i s t i v i ty ,  p-type GaN, ind ica t ing  t h a t  t he  Zn forms a deep 
acceptor level(Ref .2). It w a s  poss ib le  t o  make e l e c t r i c a l  measurements on two 
l i g h t l y  Zn-doped samples and t h e  r e s u l t s  are shown i n  Table 11. 
be seen t h a t  t he  samples are n-type and t h a t  t he  n e t  e l ec t ron  concentration i s  
less than observed f o r  undoped GaN, Table I, ind ica t ing  the  occurrence of some 
compensation. For sample 12*23*68-M, the re  is  a l s o  a marked increase  i n  
mobili ty,  even though chemical ana lys i s  shows a Zn concentration of 1x1020 
em-3. The high observed mobili ty of t h e  sample most l i k e l y  r e s u l t s  from a 
r eac t ion  of t h e  z inc  with t h e  donor, t o  produce a complex having a lower charge 
state and a smaller s c a t t e r i n g  c ros s  sec t ion .  

Zn-doping produces orange- 

Here it may 

GaN samples doped with Rg w e r e  a l l  highly conducting n-type, suggesting 
t h a t  t h e  s o l u b i l i t y  of Hg i n  G a N  is r e l a t i v e l y  low a t  .the? 825OC growth tempera- 
tu re .  

Mg doping of GaN l eads  p r inc ipa l ly  t o  yellow, h igh - re s i s t i v i ty  l aye r s  
which ind ica t e s  t h a t  Mg, 15ke Zn, i s  probably a deep-level acceptor. One 
Mg-doped sample appeared t o  be highly conducting p-type from r e s i s t i v i t y  and 
thermal probe measurements. However, t hese  l a y e r s  w e r e  not uniformly doped 
and exhibited some n-type conductivity regions. To d a t e ,  e f f o r t s  t o  increase  
the  Mg concentration e i t h e r  have prevented t h e  growth of s ing le -c rys t a l l i ne  
GaN or  have r e s u l t e d  i n  n-type l aye r s .  

Doping GaN with S i ,  which could s u b s t i t u t e  f o r  e i t h e r  G a  o r  N,  does not 
lead t o  high-conductivity p-type l a y e r s  e i t h e r ,  bu t  does appear t o  lower t h e  
e l ec t ron  concentration by compensation as shown i n  Table 11. 
2*24*69*M, t h i s  compensation is  q u i t e  c l o s e  s ince  t h e  e l ec t ron  concentration 
has been reduced t o  3x1016 cm-3. 

For sample 
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Sample 

11.22-68:M 

12-60 68:M 

1*28-69:M2 

TABLE I 

ELECTRICAL PROPERTIES OF UNDOPED GaN 

TABLE I1 

ELECTRICAL PROPERTIES OF GaN DOPED WITH ACCEPTOR IMPURITIES 

Sample 

11*29*68:M2 

12.23-68:M 

2.24.69:M 

3-6.69:M 

Dopant 

Zn 

Zn 

si 

si 

n, (cm-3> 

18 

18 

16 

19 

8.8 x 10 

3.0 x 10 

3 . 0  x 10 

2 . 0  x 10 

0.134 

0.0042 

18.3 

0.0038 

2 
~ t ,  (cm /V-sec) 

67 

500 

11 

85 
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A preliminary study of t h e  growth of InN w a s  i n i t i a t e d ,  a l s o  using NJ33 
To da te ,  l i t t l e  information has been reported f o r  

InN d i s s o c i a t e s  a t  temperatures above about 500'C and thus very 

as the  source of nitrogen. 
t h i s  compound because i t  is  very d i f f i c u l t  t o  prepare,  e spec ia l ly  from t h e  
vapor phase. 
low growth temperatures (< 500'C) must be used. However, a t  such low tempera- 
t u re s ,  t h e  vapor pressure  of InCl is  very low, so t h a t  i t  tends t o  condense i f  
present i n  t h e  concentrations required t o  achieve a reasonable growth rate of 
InN. Therefore, oxide t r anspor t  of I n  w a s  inves t iga ted  i n  a series of f i v e  
runs using high-purity oxygen gas as t h e  t r anspor t  agent.  
firmed t h a t  InN had been successfu l ly  deposited as a polycry'stall ine f i l m  on 
v i t r eous  quar tz  s u b s t r a t e s  a t  about 500'C. However, f u r t h e r  examination 
showed t h e  depos i t  t o  be  a two-phase mixture of I n  and Id. I n  view of t h e  
d i f f i c u l t i e s  assoc ia ted  with the  vapor growth of InN and the  high d i s s o c i a t i o n  
pressure which l i m i t s  p r a c t i c a l  app l i ca t ion  of t h e  mat,erial, i t  i s  an t i c ipa t ed  
t h a t  no f u r t h e r  attempts w i l l  be made t o  improve t h e  pu r i ty  and c r y s t a l l i n i t y  
over t h a t  achieved already. 

X-ray a n a l y s i s  con- 

B. Growth of Inl - xGaxP Alloys 

The work on t h e  vapor growth of Inl-xGa,P a l l o y s  f o r  t h e  p a s t  year has 
been d i r ec t ed  toward obtaining material with a d i r e c t  band gap g r e a t e r  than 
t h a t  found i n  t h e  GaAsl,xPx system, i n  an  e f f o r t  t o  ob ta in  material having 
p o t e n t i a l  f o r  e f f i c i e n t  v i s i b l e  electroluminescence. I n  t h e  course of t h i s  
work seve ra l  d i f f i c u l t i e s  have been encountered and t o  a l a r g e  ex ten t  overcome. 

F i r s t  i t  w a s  found t h a t  indium-rich a l l o y s  w e r e  not e a s i l y  prepared. This 
is  r e l a t e d  t o  t h e  g r e a t e r  r e l a t i v e  s t a b i l i t y  of indium monochloride compared 
with gall ium monochloride and t o  the  higher d i s s o c i a t i o n  pressure  of InP rela- 
t ive t o  Gap, under t h e  experimental conditions used. By modifying the  gas 
flow conditions and by increasing t h e  concentration of phosphine i n  t h e  gas 
phase it w a s  poss ib le  t o  overcome t h i s  d i f f i c u l t y .  

A second major problem is t h a t  of s t r a i n  i n  t h e  grown l aye r s .  This  has 
two causes: t h e  mismatch i n  la t t ice  constant between t h e  a l l o y  and the  sub- 
s t ra te  and t h e  d i f f e rence  i n  t h e i r  thermal expansion c o e f f i c i e n t s .  
la t t ice  mismatch can be minimized by growing a l l o y s  near t h e  composition 
Inm43Ga.57P s ince  f o r  t h i s  composition t h e  a l l o y  la t t ice  constant matches t h a t  
of t h e  G a A s  subs t r a t e .  The thermal-expansion s t r a i n ,  however, has not been 
overcome. 
t i n g  t h e  electroluminescent behavior of t h i s  a l l o y  system. tience, t h e  band 
gap is about 2.0 eV and is  d i r e c t ;  but i t  is  w e l l  removed from t h e  crossover 
t o  an  i n d i r e c t  t r a n s i t i o n  both i n  composition and energy. 
point is a t  2.2 e V  and has a composition of In.24Ga.76P. 

and junc t ions  were formed by zinc d i f fus ion .  
l igh t -emi t t ing  junc t ions  were obtained. Although orange, band-edge emission 
w a s  obtained t h e  luminescence w a s  dominated by weak low-energy emison and t h e  
maximum room-temperature e f f i c i e n c i e s  were only about 

The 

This composition range around 50% InP is a good one f o r  investiga- 

The crossover 

Throughout most of t h e  work t o  t h i s  po in t  only n-type material w a s  grown, 
I n  many but not a l l  cases,  

percent.  
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Recently w e  have begun t o  grow junc t ions  by vapor deposit ion.  A t  f i r s t  a 
p-type a l l o y  w a s  grown on top of an  n-type layer .  
zinc d i f fused  through t h e  a l l o y  n-layer and i n t o  t h e  G a A s  s u b s t r a t e  so t h a t  
t he  junc t ions  emitted i n f r a r e d  r a t h e r  than v i s i b l e  l i g h t .  
problem, t h e  growth order w a s  reversed. 
a p-type a l l o y  l aye r  w a s  grown f i r s t  and t h e  n-type l aye r  w a s  grown last .  
This technique yielded sharp, f l a t  junc t ions  i n  t h e  InlexGaxP a l l o y  but  t h e  
as-grown junc t ions  d id  not e m i t  v i s i b l e  l i g h t .  
annealing t h e  p-n junc t ion  s t r u c t u r e  f o r  4 hours a t  8OOOC is e f f e c t i v e  i n  
promoting v i s i b l e  electroluminescence. 
inves t iga t ion .  
t h a t  t he  p- and n-type doping.concentrations may be too high and, therefore ,  
work a t  the  present time i s  d i r ec t ed  toward optimizing t h e  doping l e v e l s .  

However, i n  a l l  cases the  

To avoid t h i s  
S t a r t ing  with a p-type G a A s  s u b s t r a t e ,  

However, i t  w a s  found t h a t  

The reason f o r  t h i s  is present ly  under 
Recent Hall-effect  measurements on sepa ra t e  l a y e r s  suggest 

C. Growth of Gal  - xAlxAs Alloys 

The work on preparing Gal,xA1xAs a l l o y s  has concentrated on preparing 
a l l o y s  containing from 10 t o  40 mole percent AlAs because materials i n  t h i s  
range are of i n t e r e s t  f o r  electroluminescence and a l s o  avoid t h e  problem of 
hygroscopicity associated with AlAs-rich a l loys .  

I n i t i a l  e f f o r t s  t o  achieve s ingle-crys ta l  a l l o y  l a y e r s  w e r e  no t  
successful.  
contamination (as  silicates or  oxides) w a s  suspected as a poss ib l e  cause of 
t h e  po lyc rys t a l l i ne  l aye r s ,  Coating t h e  quartz growth tube with carbon pre- 
vented a t t a c k  by the  A l C l  but d id  not promote s ing le -c rys t a l l i ne  deposits.  
N e x t ,  about 30 runs were made t o  determine t h e  e f f e c t  of o ther  growth param- 
eters on t h e  c r y s t a l l i n i t y .  It w a s  found t h a t  approximately 50% lower t o t a l  
H2 c a r r i e r  gas flow rates are required t o  prepare s ing le -c rys t a l l i ne  unalloyed 
GaAs, as w e l l  as the  a l l o y  layers ,  when t h e  higher temperatures needed f o r  
t h e  e f f i c i e n t  t r anspor t  of aluminum (e.g., aluminum source and r eac t ion  zone 
temperatures g rea t e r  than 1000°C) are used. 

Attack of t he  quartz growth tube by A l C l  and t h e  r e s u l t a n t  oxygen 

Another series of runs w a s  made t o  determine growth rates of G a A s  and 
Gal-xA1xAs a l loys  f o r  var ious  combinations of gas flow rates. Some represen- 
t a t i v e  va lues  determined by metallographic examination of cleaved and s ta ined  
sur faces  are given i n  Table 111. Here i t  i s  i n t e r e s t i n g  t o  note  t h a t  rela- 
t i v e l y  high G a A s  growth rates can be a t t a i n e d  with low HC1 flaw rates over t h e  
G a  source, and t h a t  t he  a l l o y  growth rate i s  genera l ly  less than f o r  unalloyed 
G a A s .  
l aye r s  from which t h e  s u b s t r a t e s  had been removed by chemical polishing show 
t h a t  up t o  3 mole percent AlAs has been incorporated. 
with s ing le -c rys t a l l i ne  areas (%13, Table 111) w a s  prepared with co lo r s  ranging 
from yellow t o  orange-red ind ica t ing  t h e  presence of s u b s t a n t i a l  amounts of 
AlAs.  
d i s t r i b u t e d  throughout t h e  wafer. 
t e n t  is estimated t o  range from 10 t o  30 mole percent,  with t h e  maximum 
possibly extending t o  60 mole percent. 
growth conditions so t h a t  homogeneous, s ing le -c rys t a l l i ne  l aye r s  wi th  t h e  required 
AlAs concentration can be prepared cons is ten t ly .  

Spectrographic and o p t i c a l  absorption ana lys i s  of some s ing le -c rys t a l l i ne  

Recently, another l a y e r  

However, t h e  co lor  range ind ica t e s  t h a t  t he  A l A s  is inhomogeneously 
From o p t i c a l  absorption da ta ,  t h e  ALAS con- 

The main problem now is t o  c o n t r o l  t h e  
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TABLE I11 

REPRESENTATIVE GROWTH RATES OF GaAs AND 
A1 As ALLOYS Gal-x x 

3 Flow Rate - cm /min 

HWH, 
Over 
Ga 

5 /  400 

5/200 

5/ 200 

5 / 2 0 0  

5 /  200 

5 / 4 0 0  

1/ 400 

1 / 4 0 0  

1/ 400 

0 . 2 / 4 0 0  

0 .2 /400 

0.53/40(3 

0.53/40(3 

L 

Over 
A1 

0 /400  

O/ 600 

1/600 

5/ 600 

5/600 

0 / 4 0 0  

01’400 

5 / 4 0 0  

5 / 4 0 0  

0 / 4 0 0  

1 / 4 0 0  

0 / 4 0 0  

1/ 400 

10% AsH3 in H2 

150 

150 

150  

300 

50 

150 

150 

150 

200 

150 

150 

150 

150 

Carrier 
H 

1100 

700 

7 00 

700 

700 

7 00 

7 00 

700 

700 

700 

7 00 

700 

700 

Growth Rate-v/hr 

GaAs All03 

- 

- 

29 

20 

9 

- 

- 

23 

1 5  

- 
2 

- 
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D. Growth of Idsl - xPx Alloys 

A paper describing i n  d e t a i l  t h e  preparation and electrical p rope r t i e s  of 
InAsl,xPx a l l o y s ,  grown primarily during t h e  f i r s t  year of t h i s  cont rac t ,  is  
attached as Appendix A. 
with t h e  h ighes t  e l ec t ron  mob i l i t i e s  y e t  reported f o r  t h i s  system. A t  77"K, 
a mobili ty va lue  of 120,000 cm2/V-sec w a s  measured f o r  InAs which exceeds any 
previously reported.  
growth t o  provide a broad range of electrical resistivities and p-n junc t ions .  

S ingle-crys ta l l ine  InAsl,xP, a l l o y  l a y e r s  were prepared 

Both n- and p-type doping have been achieved during vapor 

E. Growth of GaSb and GaAsl,xSbx Alloys 

A complete desc r ip t ion  of t he  preparation and p rope r t i e s  of GaSb and 
GaAsl,,Sb a l l o y s  is  given i n  a paper t h a t  has been submitted f o r  publ ica t ion  
and is  included i n  t h e  present r epor t  as Appendix B. 
found t h a t  s ing le-crys ta l  GaSb and GaAsl-xSbx a l l o y s  across  t h e  e n t i r e  a l l o y  
series could be grown from t h e  vapor phase using s t i b i n e  as t h e  source of a n t i -  
mony. This is t h e  f i r s t  t i m e  t h a t  t he  a l l o y  series has been grown from the  
vapor phase.. To accomplish t h i s ,  s p e c i a l  handling techniques had t o  be de- 
veloped f o r  using t h e  s t i b i n e ,  which must be s to red  a t  -78" t o  prevent decompo- 
s i t i o n .  
carrier concentrations comparable t o  t h e  lowest ever reported.  
a mobili ty of 400 cm2/V-sec has been measured i n  a p-type a l l o y  containing 4% 
GaSb, which i s  equivalent t o  t h e  highest  reported f o r  p-type G a A s .  
inhomogeneity appear t o  L i m i t  t he  e l e c t r i c a l  p rope r t i e s  of a l l o y s  with higher 
GaSb concentrations. 

I n  summary, i t  has been 

Layers of p-type GaSb and GaSb-rich a l l o y s  have been grown with 
I n  addi t ion ,  

S t r a i n  and 

Undoped GaSb is always p-type. Therefore, t h e  add i t ion  of T e  and Se donor 
impur i t ies  during vapor growth of GaSb w a s  inves t iga ted  t o  achieve n-type 
doping and p-n junc t ions .  
more r ead i ly  than Se ,  probably because the  s o l u b i l i t y  of T e  i n  GaSb is higher.  
However, t he  rap id  d i f fus ion  of T e  i n  GaSb requ i r e s  low growth temperatures t o  
prevent t h e  dopant from d i f fus ing  out  of t h e  growing l aye r  and i n t o  the  sub- 
strate. By using depos i t ion  temperatures as low as 4OO0C9 it  has been poss ib l e  
t o  prepare Te-doped GaSb with net e l ec t ron  concentrations as high as ' 2 ~ 1 0 ~ ~  cmm3. 
Consequently, f o r  t h e  f i r s t  t i m e ,  p-n junc t ion  s t r u c t u r e s  have been prepared 
i n  GaSb by vapor-phase growth. 

It w a s  found t h a t  T e  provides n-type conductivity 

F. Growth of InSb and InAslmxSb Alloys 

The vapor-phase growth of InSb w a s  i n i t i a t e d  using s t i b i n e  as t h e  source 
of Sb. The preparation of t h i s  compound is  one of t h e  most d i f f i c u l t  problems 
i n  t h i s  cont rac t ,  s ince  t h e  combined low melting poin t  of InSb and t h e  low 
vapor pressure  of Sb impose growth conditions which severe ly  l i m i t  t he  su r face  
mobili ty of t h e  r eac t an t  spec ies ,  and favor t h e  formation of metallic Sb as a 
second phase. I n  addi t ion ,  t h e  proper growth conditions must necessa r i ly  
r e s u l t  i n  low growth rates. 
concentrations of SbH3, and growth temperatures as near t h e  melting po in t  of 
t h e  compound as possible,  were used t o  prepare several l aye r s  of InSb and 
InAsl,xSbx f o r  x > 0.95. In a l l  cases, however, t hese  l aye r s  w e r e  
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po lyc rys t a l l i ne  and no electrical measurements were made. Because of these  
inherent d i f f i c u l t i e s ,  and s ince  o the r  phases of t h i s  research appear t o  be 
more important, t h e  work on t h i s  system is being discontinued. 

111. CONCLUSIONS AND RECOMMENDATIONS 

Most of t h e  objec t ives  of t h e  con t r ac t  extension have been successfu l ly  
accomplished during t h e  p a s t  year. The v e r s a t i l i t y  of t h e  ERC growth system 
has again been demonstrated with t h e  preparation of 1 1 1 - V  compounds containing 
aluminum, nitrogen, and antimony, Thus, GaN,  InN, GaSb, InSb, and t h e  a l l o y s  
of GaAsl,,Sb,, InAsl,xSbx, and Gal,xA1xAs have been added t o  t h e  s u b s t a n t i a l  
number of materials prepared during t h e  f i r s t  year by t h i s  vapor-growth 
method. 
l aye r s ,  and multi-layer s t r u c t u r e s  have been prepared f o r  t he  f i r s t  time by 
vapor-phase growth. 

With several of these  materials s ing le -c rys t a l l i ne  n- and p-type 

I n  accordance with t h e  ob jec t ives  of t h e  con t r ac t  extension, work w i l l  be 
i n i t i a t e d  on t h e  extension of t h e  ERC vapor-growth system t o  t h e  prepara t ion  
of s i n g l e  c r y s t a l l i n e  l aye r s  of t h e  compounds A l N ,  Alp, A U s ,  and AlSb. 
addi t ion ,  s tud ie s  w i l l  continue on t h e  doping of G a N  with acceptor impur i t ies ,  
the  preparation of Inl,xG+P a l l o y  p-n junc t ion  l a y e r s  f o r  electroluminescent 
appl ica t ions ,  and t h e  growth of Gal-xA1xAs a l loys .  
Gal,xInxN a l l o y s  w i l l  be attempted. 

I n  

Also, p repara t ion  of 
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V .  NEW TECHNOLOGY APPENDIX 

Title: 

Page reference: 5,6 

Vi s ib l e  Light Electroluminescent Diodes of Inl ,GaxP. - 

Comments: P-N junc t ion  electroluminescent diodes t h a t  e m i t  orange l i g h t  have 
been prepared both by vapor growth and by acceptor impurity 
d i f fus ion  i n  Inl,xGaxP a l loys .  
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APPENDIX A 

The Preparation and Proper t ies  of Vapor-Deposited E p i t a x i a l  

z=l-x--x P Using Arsine and Phosphine 

by 

J. J. T ie t j en ,  H. P. Maruska, and R. B. Clough 
RCA Laboratories,  Princeton, N.  J. 08540 

ABSTRACT 

Single-crys ta l l ine  InAsl-xPx l a y e r s  have been prepared by a vapor-phase 
growth technique previously used t o  prepare very high-quality GaAs l -XPX.  
These InAsl-xPx a l l o y s  exh ib i t  t h e  h ighes t  e l ec t ron  m o b i l i t i e s  y e t  reported 
f o r  t h i s  system. 
f o r  the  f i r s t  t i m e .  
w a s  measured f o r  Ids, which is t h e  h ighes t  y e t  reported. 
obeyed over t h e  e n t i r e  composition range. Both n- and p-type doping have been 
achieved during vapor growth t o  provide a broad range of electrical resistivi- 
ties and p-n junc t ions .  

Electron mobili ty da ta  are reported f o r  t h e  a l l o y s  a t  77'K 
A t  t h i s  temperature, a mobili ty va lue  of 120,000 cm2/V-sec 

Vegard's l a w  is  

I. Introduction 

InAsl-xPx a l l o y s  have an exceptionally broad range of band gaps and elec- 
t ron  mob i l i t i e s .  
device appl ica t ions .  
u t i l i z i n g  t h e i r  low energy band gaps, and devices operating a t  high frequencies,  
which can take  advantage of t h e i r  high mob i l i t i e s .  Nevertheless, only l imi ted  
r e s u l t s  (Refs. A-1 - A-3) have been reported per ta in ing  t o  improving t h e  prepara- 
t i o n  and p rope r t i e s  of these  c r y s t a l s ,  and v i r t u a l l y  no work has involved the  
vapor-phase growth of t hese  materials. A s  a r e s u l t ,  t h e  p o t e n t i a l  of 

Consequently, they have p o t e n t i a l  advantage f o r  a number of 
These include in f r a red  emitt ing and de tec t ing  devices,  

P a l l o y s  has not  been f u l l y  r ea l i zed .  
InASl-X x 

I n  con t r a s t ,  with GaAsl,xPx a l l o y s ,  a very s i g n i f i c a n t  e f f o r t  has been 
undertaken t o  improve and cha rac t e r i ze  these  materials, and i n  t h i s  respec t ,  
vapor-phase growth methods have played a s i g n i f i c a n t  r o l e  (Refs. A-4 - A-8). 
I n  p a r t i c u l a r ,  one vapor-phase growth technique (Ref. A-8) has been dev.eloped 
which permits t h e  prepara t ion  of GaAsl,,P, a l l o y s  with high pu r i ty ,  homogeneity, 
and c r y s t a l l i n e  per fec t ion .  I n  addi t ion ,  t h i s  method f a c i l i t a t e s  cont ro l led  
n- and p-type doping over a wide r e s i s t i v i t y  range, and t h e  prepara t ion  of 
mul t i layer  s t r u c t u r e s  incorporating l aye r s  of d i f f e r e n t  r e s i s t i v i t y  and/or 
composition. This, i n  turn,  has l e d  t o  t h e  f a b r i c a t i o n  of a v a r i e t y  of out- 
standing e lec t ro-opt ic  (Refs. A-9 - A-11) and microwave (Refs. A-12 - A-13) 
devices. 
r eac t ion  with HC1 gas, and ASH and PH serve as t h e  sources of t h e  group V 
elements. 

With t h i s  growth method, G a  is  transported as i ts  subchloride via a 

3 3 
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A s  a l o g i c a l  extension of t h i s  growth technique, a s 
I n  f o r  t h e  G a  has permitted the  preparat ion of InAs 
having the  highest  e l ec t ron  m o b i l i t i e s  ever r epor t e  
earlier work on GaAsl,Px. 
achieved, and mul t i layer  s t r u c t u r e s  have been p re  

I n  addi t ion ,  both n- 

11. Experimental 

A. 
A-1, is e s s e n t i a l l y  i d e n t i c a l  t o  that described previously (Ref. A-8) with t h e  

Apparatus and Materials. -- The apparatus,  shown schematically i n  Figure 

MIXING CHAMBER 

SUBSTRATE 
1 

I CONTINUES 
I TOEXHAUST 

l1 I 
I - 

AND STOPCOCK 

4 
INDIUM I CENTER DEPOSITION I ZONE ZONE ! ZONE 

i I 
I 

Figure A-1. Schematic representa t ion  of vapor-deposition apparatus.  

exception t h a t  t he  source G a  is  replaced by In.  
s t r a i g h t  tube through which t h e  pe r t inen t  vapors pass. 
separa tes  t he  growth region from a forechamber which may be independently 
purged t o  f a c i l i t a t e  i n s e r t i o n  and withdrawal of the  specimens without con- 
taminating t h e  system. 
dopant source, are a l l  monitored i n t o  the  apparatus by prec is ion  valves  and 
flowmeters. P-type doping is  achieved by vaporizing metallic Zn i n  a 
side-arm and t ranspor t ing  the  vapors i n t o  the  deposi t ion zone with H2 
gas. 

It c o n s i s t s  pr inc ip  
A l a r g e  bore 

HC1 gas,  AsH3, PH3, and HzSe, which serves  as the  n-type 
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With t h e  exception of t h e  use  of <lOO>-oriented InAs s ing le -c rys t a l l i ne  
subs t ra tes ,*  t h e  materials employed i n  t h i s  study are as described previously 
(Ref. A-8). 
smooth f i n i s h ,  and then chemically polished i n  a so lu t ion  of 2% by volume of 
bromine i n  methanol. 
0.5 mm th ick .  

The InAs s u b s t r a t e s  were mechanically polished t o  a f l a t ,  mirror- 

Typical s u b s t r a t e  dimensions w e r e  about 2 cm2 i n  area and 

B. Procedure. -- The growth procedure a l s o  c lose ly  follows t h a t  described 
P r  f .  A-8). Freshly etched s u b s t r a t e s  are inse r t ed  i n  the  growth 
chamber and heated i n  hydrogen a t  a rate of about 20°C/min. 
strate temperature reaches 6OO0C, t h e  AsH3 flow is  s t a r t e d  i n  order  t o  provide 
an a r sen ic  atmosphere t o  s t a b i l i z e  t h e  s u b s t r a t e  sur face .  
operating temperatures are reached, t h e  H C l  flow over t h e  I n  is s t a r t e d  and t h e  
e p i t a x i a l  deposit ion of InAs occurs. 
slowly increased t o  produce a f i n a l  gas  phase mixture of AsH3 and PH3 appropri- 
ate t o  the  des i red  a l l o y  composition. 
on the  concentration of PH i n  t h e  ASH -PH mixture is  presented i n  Figure A-2. 

When t h e  sub- 

When t h e  f i n a l  

The flow of PH3 i s  then i n i t i a t e d  and 

The dependence of t h e  a l l o y  composition 

3 3 3  

J 
/a 

I .o 
/- 1 

I 

/ " r 
0.6 I / /' L 
0.4 1 / ' /  

I I I 
I I I I 

0 0.2 0.4 0.6 0.8 1.0 
MOLE FRACTION OF PHOSPHINE 
IN THE ARSINE -PHOSPHJNE GAS 
MIXTURE. 

Figure A-2. The dependence of t h e  a l l o y  composition on t h e  
concentration of PH3 i n  t h e  AsH3-PH3 gas 
mixture. 

* Purchased from Monsanto Company, S t .  Louis, Missouri. 
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By slowly increasing t h e  PH3 flow, a region is  introduced which i s  graded i n  
composiition from I d s  a t  t h e  s u b s t r a t e  t o  t h e  se l ec t ed  a l l o y  composition. 
This graded region, which has been as th i ck  as 50 microns f o r  phosphorus-rich 
a l loys ,  i s  included t o  minimize s t r a i n  a r i s i n g  from d i f f e rences  between the  
l a t t i c e  cons tan ts  of t h e  s u b s t r a t e  and t h e  f i n a l  a l l o y  layer .  

The sum of t h e  flow rates of pure AsH3 and PH3 i s  i n  the  range of 20 t o  
60 cc/min, The HC1 flow rate is  about 5 cc/min, and between 1 and 2 l/min of 
hydrogen is used as a carrier. 
t u r e  i n  t h e  range of 675 t o  725OC, a center  zone temperature of 950 t o  975OC, 
and an indium zone temperature of between 850 t o  95OoC, growth rates i n  t h e  
range of 1 / 4  t o  1 /2  micron/min are obtained under s teady-s ta te  conditions.  
Typical thicknesses f o r  t h e  constant composition region of t hese  depos i t s  have 
been between 50 and 150 microns. 

With these  flow rates, with a s u b s t r a t e  tempera- 

111. Results and Discussion 

A. C r y s t a l l i n i t y  and Growth Morphology. -- X-ray ana lys i s  by the  Debye- 
Scherrer technique ind ica t e s  t h a t  these  l aye r s  are s i n g l e  phase, cubic, s o l i d  
so lu t ions ,  and show no de tec t ab le  range of composition. I n  addi t ion ,  Laue 
back-reflection ana lys i s  revea ls  t h a t  t h e  l aye r s  are e p i t a x i a l .  The la t t ice  
constant i s  presented as a func t ion  of a l l o y  composition i n  Figure A-3, which 
demonstrates t h a t  Vegard's l a w  of s o l i d  so lu t ions  is obeyed i n  t h i s  system. 
This r e s u l t  i s  i n  genera l  agreement with those of Folberth (Ref. A-1), and 
Koster and Ulrich (Ref. A-14). 
ana lys i s  (Ref. A-15) with an accuracy of - + 0.5%. 

The compositions w e r e  determined by chemical 

Although no de ta i l ed  evaluation of t h e  c r y s t a l l i n e  pe r fec t ion  of these  
l aye r s  w a s  ca r r i ed  out ,  examination by o p t i c a l  microscopy revealed t h a t  
microscopic sur face  imperfections, such as h i l l ocks ,  were prevalent only i n  
phosphorus-rich a l loys .  For a l l o y s  containing less than 50% InP, sur faces  
are obtained which show v i r t u a l l y  no gross s t r u c t u r e ,  and t o  t h e  unaided eye 
appear t o  be mirror-smooth. 

B. E l e c t r i c a l  Proper t ies .  -- The e p i t a x i a l  l aye r s  w e r e  examined by H a l l  
c o e f f i c i e n t  and r e s i s t i v i t y  measurements using a technique (Ref. A-8) which 
permits these  measurements t o  be made on l aye r s  as t h i n  as 50 microns. Typical 
e l ec t ron  carrier concentrations f o r  undoped a l l o y s  are i n  the  range of 
5x1015 t o  lx1016/cm3. 
a l l o y  composition i n  Figures A-4 and A-5 f o r  room temperature and 77'K, 
respec t ive ly .  The d a t a  of Weiss (Ref. A-2) and t h e  r e s u l t s  of a t h e o r e t i c a l  
ana lys i s  of Ehrenreich (Ref. A-16) based on the  absence of a l l o y  s c a t t e r i n g  
i n  t h i s  system, and assuming pe r fec t  pu r i ty ,  are included f o r  comparison. 
I n  general ,  t he  mobili ty values a t  room temperature are very high, with 
seve ra l  va lues  exceeding t h e  bes t  previously reported.  I n  addi t ion ,  t hese  
da ta  corroborate Ehrenreich's contention t h a t  a l l o y  s c a t t e r i n g  i s  n e g l i g i b l e  
i n  t h i s  a l l o y  system, a t  room temperature. 
f o r  a l l o y  compositions approaching InP are a t t r i b u t e d  t o  s t r a i n  a r i s i n g  from 
la t t ice  and thermal-expansion d i f fe rences  between t h e  I d s  s u b s t r a t e  and t h e  

The e l ec t ron  mob i l i t i e s  are presented as a func t ion  of 

The r e l a t i v e l y  low va lues  obtained 
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Figure A-3. The dependence of t h e  la t t ice  constant on a l l o y  composition 
i n  t h e  system InAs -xP,. 
Folberth (Ref. A-lf and Koster and Ulrich (Ref. A-14) i s  
a l s o  included: --- Folberth; - - - Koster and Ulrich; 
- t h i s  repor t .  

The dependence observed by 

a l l o y  layer .  
alleviate t h i s  problem. 

It is an t i c ipa t ed  t h a t  f u r t h e r  compositional grading can 

The d a t a  presented i n  Figure A-5 are t h e  f i r s t  ever reported f o r  77°K 
f o r  t h i s  a l l o y  system. 
near ly  uncompensated. 
120,000 c&/V-sec f o r  InAs is  t h e  h ighes t  ever reported f o r  77OK (Ref. A-17). 

These high values i n d i c a t e  t h a t  t h e  c r y s t a l s  are 
It is  p a r t i c u l a r l y  noteworthy t h a t  t h e  value of 

14 



Figure A-4. 
The dependence of the electron 
mobility on alloy composition in 
the system InAsl,,P, at room 
temperature. The experimental 
results of Weiss (Ref. A-2) and 
a theoretical analysis of 
Ehrenreich (Ref. A-15) are also 
included: --- Weiss; - Ehren- 
reich; this report. 

0 
0 0.2 0.4 0.6 0.8 1.0 

InAs X- InP 

Figure A-5. 

The dependence of the electron 
mobility on alloy composition 
in the system InAs1,,Px at 77'K. Y 

0 0.2 0.4 0.6 0.8 1.0 
InAs X- InP 
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C.  
of Se f o r  n-type doping, and z inc  f o r  p-type doping. 
as high as 3xl019/cm3 w e r e  achieved and i n  genera l  t hese  c r y s t a l s  exh ib i t  
mob i l i t i e s  comparable t o  t h e  b e s t  repor ted  i n  t h e  l i terature f o r  un t rea ted  
samples (Refs. A-18 - A-19). For example, a t  carrier concentrations of 1x10 
and 3x1019 cm-3 t h e  mobili ty va lues  a t  room temperature are 10,000 and 1,500 
cmz/V-sec, respec t ive ly .  Thus, doping t o  these  high donor concentrations does 
not degrade t h e  material. 
range of 5x1017 t o  7xl018/cm3 can be r ead i ly  obtained, with m o b i l i t i e s  between 
150 and 90 cmz/V-sec f o r  t h i s  doping range. 

Doping. -- Doping of I d s  has been inves t iga ted  using H2Se gas  as a source 
Electron concentrations 

18 

With respec t  t o  hole  concentrations,  va lues  i n  t h e  

Both n- and p-type doping w e r e  a l s o  demonstrated f o r  some InAsl-XP, a l l o y s ,  
and f o r  InP, as characterized by point-contact breakdown and thermal probe 
measurements. I n  addi t ion ,  mul t i layer  s t r u c t u r e s  involving both n- and p-type 
regions w e r e  prepared f o r  s e l ec t ed  a l l o y  compositions. 

I V .  Conclusions 

The a b i l i t y  t o  prepare high-quality material by t h i s  growth method, which 
w a s  previously demonstrated i n  t h e  preparation of GaAsl-xPx a l l o y s ,  has now 
been extended t o  t h e  preparation of InAsl-,Px a l loys .  
have been obtained f o r  t hese  InAsl-xPx a l l o y s  which are higher than previously 
reported. Both n- and p-type doping can be achieved over a broad r e s i s t i v i t y  
range, and these  doped l aye r s  can be incorporated i n  mul t i layer  s t r u c t u r e s .  
Vegard's l a w  of s o l i d  so lu t ions  w a s  found t o  be obeyed i n  t h i s  a l l o y  system. 

Electron m o b i l i t i e s  
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APPENDIX B 

Vapor-Phase Growth of Ep i t ax ia l  GaAsl  - Alloys U s i n g  

Arsine and S t i b i n e  

R. B. Clough and J. J. T i e t j e n  
RCA Laboratories,  Princeton, New Jersey  

ABSTRACT 

A technique previously used t o  prepare a l l o y s  of InAs1,,Px and GaAsl-xPx, 
using t h e  gaseous hydrides a r s i n e  and phosphine, has been extended t o  grow 
s ing le -c rys t a l l i ne  GaAsl-xSbx by replacing t h e  phosphine with s t i b i n e .  
Procedures were developed f o r  handling and s to r ing  s t i b i n e  which now make t h i s  
chemical u se fu l  f o r  vapor-phase growth. 
t h i s  series of a l l o y s  has been grown from t h e  vapor phase. 
GaSb and GaSb-rich a l l o y s  have been grown with t h e  carrier concentrations com- 
parable t o  the  lowest ever reported.  
4% GaSb exhibited a mobili ty of 400 cm2/V-sec which is equivalent t o  t h e  
highest  reported f o r  G a A s .  

This represents  t h e  f i r s t  t i m e  t h a t  
Layers of p-type 

I n  addi t ion ,  a p-type a l l o y  containing 

I. Introduction 

Recently, i n t e r e s t  has been shown i n  t h e  prepara t ion  and p rope r t i e s  of 
GaAsl-xSb, a l l o y s ,  s ince  i t  w a s  predicted (Ref. B-1) t h a t  f o r  compositions i n  
the  range of 0.1 < x < 0.5, they might provide improved Gunn devices.  
preparation of t hese  a l l o y s  presents  fundamental d i f f i c u l t i e s .  
liquid-phase growth, t h e  l a r g e  concentration d i f f e rence  between t h e  l i qu idus  
and so l idus  i n  t h e  phase diagram, a t  any given temperature, introduces 
c o n s t i t u t i o n a l  supercooling problems. It is  l i k e l y  t h a t ,  f o r  t h i s  reason, 
v i r t u a l l y  no desc r ip t ion  of t he  prepara t ion  of GaAsl,,Sb, by t h i s  technique 
has been reported.  I n  t h e  case of vapor-phase growth, problems are presented 
by the  low vapor pressure  of antimony and t h e  low melting poin t  of GaSb and 
many of these  a l loys .  I n  previous attempts (Ref. B-1) a t  t he  vapor-phase 
growth of t hese  materials, using antimony pentachloride as t h e  source of 
antimony vapor, a l l o y  compositions w e r e  l imi ted  t o  those containing less than 
about 2% GaSb. This w a s  i n  p a r t  due t o  t h e  d i f f i c u l t y  of avoiding condensation 
of antimony on introducing it  t o  t h e  growth zone. 

However, 
I n  t h e  case of 

A growth technique has r ecen t ly  been described (Ref. B-2) f o r  t he  prepara- 
t i o n  of 111-V compounds i n  which t h e  hydrides of a r s e n i c  and phosphorus (AsH3 
and PH3) are used as t h e  source of t h e  group V element. With t h i s  method, 
GaAsl,xPx and InAsl,xPx have been prepared (Refs. B-2 and B-3) across  both 
a l l o y  series with exce l len t  electrical proper t ies .  
(SbH3) a f fo rds  t h e  p o t e n t i a l  f o r  e f f e c t i v e  in t roduct ion  of antimony t o  t h e  
growth apparatus, i n  analogy with t h e  o ther  V hydrides, t h i s  growth method has 
been explored f o r  t h e  preparation of GaAsl,Sbx a l loys .  I n  add i t ion  t o  GaSb, 
these  a l l o y s  have now been prepared wi th  va lues  of x as high as 0.8. 
case of GaSb, undoped p-type l aye r s  were grown with carrier concentrations 
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Since t h e  u s e  of s t i b i n e  

I n  the  



equivalent t o  t h e  lowest reported i n  the  l i t e r a t u r e .  Thus, i t  has  been 
demonstrated t h a t ,  with t h i s  growth technique, a l l  of t h e  a l l o y s  i n  t h i s  
series can be  prepared. 

11. Experimental Procedure 

A. Growth Technique. -- The growth apparatus, shown schematically i n  Figure 
B-1, and procedure are v i r t u a l l y  i d e n t i c a l  t o  t h a t  described (Ref. B-2) f o r  t h e  

Figure B-1. Schematic representa t ion  of t h e  vapor-deposition apparatus. 

growth of GaAsl,xP, a l l o y s ,  with t h e  exception t h a t  phosphine is  replaced by 
s t ib ine .*  HC1 is  introduced over t h e  gallium boat t o  t r anspor t  t h e  gallium 
predominantly via i t s  subchloride t o  the  r eac t ion  zone, where i t  r e a c t s  with 
a r sen ic  and antimony on t h e  s u b s t r a t e  sur face  t o  form an  a l l o y  l aye r .  

The fundamental l imi t ing  f a c t o r s  t o  t h e  growth of GaAsl,,Sbx a l l o y s  from 
t h e  vapor phase are t h e  low melting point of GaSb (712OC) and t h e  low vapor 
pressure of antimony a t  t h i s  temperature (< 1 mm). Thus, r e l a t i v e l y  low 
antimony pressures must be employed, which, however, imply low growth rates. 
To provide low antimony pressures,  very d i l u t e  concentrations of ars ine and 

* Purchased from Matheson Co., E. Rutherford, New Jersey .  
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s t i b i n e  i n  a hydrogen carrier gas w e r e  used. 
4 cm3/min of HC1, from 0.1 t o  1 cm3/min of AsH3, and from 1 t o  10  cm3/min of 
SbH3, with a t o t a l  hydrogen carrier gas  flow rate of about 6000 cm3/min. The 
high l i n e a r  v e l o c i t i e s  a t tendant  with t h e  high t o t a l  flow rate delay cracking 
of t h e  s t i b i n e  u n t i l  i t  reaches t h e  r eac t ion  zone and prevent condensation of 
antimony i n  t h e  system. To improve t h e  growth rates, growth temperatures j u s t  
below t h e  a l l o y  so l idus  are maintained t o  allow f o r  a maximum p a r t i a l  p ressure  
of antimony i n  t h e  system. 
r eac t ion  zone a t  850°C, with t h e  growth zone held a t  temperatures from 650 t o  
750°C. 

Typical flow rates w e r e  about 

Typical temperatures used are gallium zone and 

Subs t ra tes  of semi-insulating G a A s  o r ien ted  3" off t h e  <loo> a x i s  were 
used i n  order t o  make electrical measurements, s i n c e  the  growth rates were too  
low t o  r e s u l t  i n  self-supporting e p i t a x i a l  l aye r s .  A s  pointed out  below, 
growth on these  subs t r a t e s  has a de le t e r ious  e f f e c t  on t h e  electrical proper- 
ties of t he  e p i t a x i a l  l aye r s .  

B. U s e  of S t ib ine .  -- Since l i t t l e  w a s  known of t h e  p rope r t i e s  and handling 
procedures f o r  s t i b i n e ,  experiments were performed t o  determine these. The 
vapor pressure  w a s  measured from -195°C t o  +27"C and found t o  agree  with t h a t  
obtained by Berka e t  a l .  (Ref. B-4) We found it t o  be more s t a b l e  than 
an t ic ipa ted ,  e spec ia l ly  i f  s tored  i n  t h e  dark. 
B-5) t h a t  s t i b i n e  has a h a l f - l i f e  of from 2 t o  4 hours a t  room temperature, 
we  found t h a t  t he re  w a s  no measurable decomposition a t  0°C f o r  a period of 
1 2  hrs.  Thus, t he  gas can e a s i l y  be kept above i ts  boi l ing  poin t  (-18°C) f o r  
use during growth. 
a t  -78°C ( s o l i d  C 0 2  temperature), so t h a t  i t  may be s tored  a t  t h i s  temperature 
p r io r  t o  use. 

Although i t  w a s  reported (Ref .  

W e  found i t  t o  be s t a b l e  f o r  a period of several months 

Based on t h i s  s t a b i l i t y  da ta ,  a simple technique t o  use t h e  s t i b i n e  w a s  
es tab l i shed  using the  apparatus shown i n  Figure B-2. 
-78°C ( so l id  C02 temperature) i n  t h e  l i q u i d  state. 
a l i q u o t  por t ion  is  f i r s t  d i s t i l l e d  from t h e  s torage  cy l inder  t o  a reserve 
cyl inder  a t  -195°C (liquid-nitrogen temperature). 
warmed'to 0°C and t h e  d i s t i l l a t i o n  rate es tab l i shed  by measuring t h e  s t i b i n e  
pressure a t  t h i s  temperature. Typically,  t h e  d i s t i l l a t i o n  rates f o r  our 
apparatus w e r e  about 0.01 mole/min. 
t u r e  changes of t h e  s torage  cy l inder  and, therefore ,  must be c a r e f u l l y  
monitored.) 
during growth. 
a t  high ve loc i ty .  
due t o  s e t t l i n g  of t h e  mixture were minimized. 

The s t i b i n e  i s  s tored  a t  
For use  during growth, an 

The reserve cyl inder  is  then 

(They are very s e n s i t i v e  t o  s l i g h t  tempera- 

The s t i b i n e  a t  0°C is then pressurized with hydrogen f o r  use  
To increase  t h e  amount of mixing, t h e  hydrogen is  introduced 

By preparing each a l iquo t  immediately p r i o r  t o  use, problems 

111. Results 

Using t h i s  technique, we have grown a l l o y s  of GaAsl,,Sb, with composi- 
This is  the  t i o n s  ranging from 1 t o  80 mole percent GaSb, as w e l l  as GaSb. 

f i r s t  time t h a t  they had been prepared from t h e  vapor phase over t h i s  range of 
compositions. 
w a s  l imi t ed  t o  2 mole percent GaSb. 
e p i t a x i a l .  
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I n  a previous r epor t  (Ref. B-1) t h e  prepara t ion  of GaAsl-,Sb, 
These l aye r s  are a l l  monocrystalline and 
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SAYPLIWG CYLINDER IN 
LlOU ID NITROGEN f-19S°C) 
OR ICE- WATER ( 0°C) BATH 

-SYALL BORE TUBIWG 
STORAGE CYLINDER AT SOLID 
C02 TEYPERATURE (-78°C) 
CONTAINING LlOUlD STIBINE (SCH,) 

Q INDICATES VALVE 

Figure B-2. Schematic r ep resen ta t ion  of t h e  s t i b i n e  s to rage  and 
sampling apparatus. 

A .  Growth Conditions. -- Studies on t h e  e f f e c t  of flow rates and growth 
temperature on t h e  composition of t h e  grown l aye r s  have shown t h e  following. 
F i r s t ,  t h e  mole f r a c t i o n  of antimony i n  t h e  vapor phase is always g r e a t e r  
than t h a t  i n  the  grown layers .  This i n d i c a t e s  t h a t  t he re  is a g r e a t e r  rate of 
incorporation of a r sen ic  than antimony i n  t h e  a l loys ,  even though t h e  vapor 
pressure  of antimony i s  over fou r  orders  of magnitude lower than t h a t  of 
a r sen ic  a t  the  growth temperature. Second, t he  composition of t h e  grown l a y e r s  
is independent of t h e  growth temperature, varying less than + 0.5 mole percent 
over approximately a 200'C range of growth temperature. Thus, t h e  composition 
of t h e  grown l aye r s  is a func t ion  only of t h e  composition of t h e  gas phase, so 
t h a t  a l l  of t h e  a l l o y s  i n  t h e  series may be grown by s e l e c t i n g  t h e  appropr ia te  
flow rates of a r s i n e  and s t i b i n e .  

B. Electrical Proper t ies .  -- The r e s u l t s  of H a l l  c o e f f i c i e n t  and r e s i s t i v i t y  
measurements f o r  these  a l l o y s  are presented i n  Table B-1. The carrier concen- 
t r a t i o n s  obtained f o r  t h e  p-type GaSb and GaSb-rich a l l o y s  ar 
than those  reported f o r  melt-grown GaSb, where only a l imi ted  number of undoped 
p-type c r y s t a l s  have been grown with hole  concentrations i n  t h e  1016 cm-3 range. 

somewhat lower 
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X 

0.01 

0.02 

0.04 

0.10 

0.21 

0.31 

0.62 

0.70 

0.75 

0.80 

1.00 

1.00 

1.00 

1.00 

TABLE B-1 

ELECTRICAL PROPERTIES OF P-TYPE GaAsl,xSbx ALLOYS 

Hole Concentration 
( cm-3 ) 

30OOK 

15 

16 

15 

18 

17 

18 

18 

16 

17 

16 

19 

16 

16 

17 

1 . 8 ~ 1 0  

1.3~10 

3.0~10 

1.2xlO 

2.9x10 

1.5~10 

9.OxlO 

3.4~10 

1.OxlO 

4.6~10 

1.2xlO 

6.0~10 

4.7~10 

2.3~10 

77'K 

15 

15 
1 2x10 

5.lxlO 

-- 
17 

17 

18 

19 

4.5~10 

1.7~10 

1.5~10 

1.2xlO 

-- 

19 

16 

1.9x10 

1.2xlO 

16 4.3~10 

Hole Mobility 

220 

190 

400 

55 

45 

24 

20 

251 

48 

21 

215 

240 

120 

33 6 

-see) 
77'K 

400 

700 

160 

80 

30 

15 

120 

270 

405 

One explanation f o r  t h i s  is  t h a t  t h e  acceptor concentration is due t o  excess 
gallium on antimony s u b l a t t i c e  sites (Ref. B-6) and is supported by t h e  f a c t  
t h a t  t h e  lowest ho le  concentrations reported (Ref. B-7 - B-8) were obtained 
only with an antimony-rich m e l t .  In t h e  case of vapor-phase growth of GaSb, 
t he  lower carrier concentrations obtained may be due t o  t h e  excess antimony 
pressure i n  the  growth zone. 

Due t o  t h e  thermodynamic reasons states previously, t h e  growth rates of 
these  a l l o y s  w e r e  genera l ly  low (< 5 microns/hr), so t h a t  i n  order  f o r  
electrical measurements t o  be made, semi-insulating G a A s  s u b s t r a t e s  were used. 
This has t h e  de t r imenta l  e f f e c t  of producing s t r a i n  i n  t h e  grown l a y e r s  due t o  
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a mismatch i n  l a t t i ce  constant and thermal expansion c o e f f i c i e n t  between t h e  
s u b s t r a t e  and grown layer .  A s  a r e s u l t ,  t h e  GaSb-rich compounds, which are a l l  
p-t$pe, genera l ly  exh ib i t  low m o b i l i t i e s  compared with melt-grown GaSb , where 
hole mob i l i t i e s  are t y p i c a l l y  700-800 cmz/V-sec. 
t i o n a l  grading, o r  depos i t ion  on GaSb subs t r a t e s ,  would r e s u l t  i n  higher 
mob i l i t i e s .  I n  t h i s  respec t ,  i t  i s  noteworthy t h a t  t h e  hole  mobi l i ty  of 
400 cm2/V-sec achieved i n  an  a l l o y  containing only 4 mole percent GaSb is  
equivalent t o  t h e  highest  va lue  ever reported f o r  unalloyed G a A s .  
a l l  less than 3 mole percent GaSb, were n-type, and these  show (Table B-2) 

It is  expected t h a t  composi- 

A few l a y e r s ,  

X 

< 0.01 

0.025 

0.033 

TABLE B-2 

ELECTRICAL PROPERTIES OF N-TYPE GaAsl xSbx ALLOYS - 
N e t  Carrier Conc., Electron Mobility 

cm-3 cmz/V-sec 

a t  300°K a t  77°K a t  300°K a t  77°K 

1.1 x 10  7.8 x 10 3840 4975 

4.5 x 10 l6 2.6 x 10 2920 5550 

15 

16  

4.7 x loL6 -- 5370 -- 

e lec t ron  mob i l i t i e s  which, i n  general ,  are s l i g h t l y  lower than commonly 
observed f o r  melt-grown n-type G a A s ,  Those p-type a l l o y s  having extremely low 
mobili ty show very broad x-ray d i f f r a c t i o n  peaks with half-widths o f t en  an 
order of magnitude wider than those of t he  s u b s t r a t e  d i f f r a c t i o n  peak, indica- 
t i ng  e i t h e r  considerable inhomogeneous s t r a i n  i n  t h e  l a y e r s  o r  an inhomogeneous 
composition. 

I V ,  Conclusions 

S t i b i n e  can be successfu l ly  used as a source of antimony i n  vapor-phase 

This growth technique shows promise of pre- 
c r y s t a l  growth, and GaAsl,,Sb, a l l o y s  can be prepared from t h e  vapor phase 
across  t h e  e n t i r e  a l l o y  series. 
paring these  a l l o y s  wi th  good e l e c t r i c a l  p rope r t i e s  i f  problems of s t r a i n  and 
inhomogeneity can be overcome. 
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