ov/search.j

AN INTERFACE FOR A REAL-TIME
STORAGE OSCILLOSCOPE DISPLAY

by
Robert Arnold Berntson

June,

o

e
L

AN INTERFACE FOR A REAL-TIME
STORAGE OSCILLOSCOPE DISPLAY

by
Robert Arnold Bexrntson

MIT CSR T-69-3 June, 1969

AN INTERFACE FOR A REAL-TIME

STORAGE OSCILLOSCOPE DISPLAY

by
ROBERT ARNOLD BERNTSON

Submitted to the Department of Electrical Engineering
on May 23, 1969, in partial fulfillment of the require-
ments for the degree of Bachelor of Science.

ABSTRACT

A small general purpose digital computer (HP-21153) is

to be used in a laboratory environment for the monitoring,
calibration, and checkout of a satellite experiment pack-
age. Test results are to be presented via printout and
graphics (Calcomp Model 565 plotter).

The existing real-time graphics system consists of a
small general-purpose computer and an incremental X-Y
plotter, with an appropriate software and hardware
interface. A new interface has been designed to pro-
vide for the addition of a storage oscilloscope display
to this system.

It is shown that scope writing using unresolved dots

is operationally equivalent to plotter writing using
incremental steps. Functional graphical equivalence

of the two devices is then established through the use
of adapted plotter software for the operation of either
device.

THESIS SUPERVISOR: Suhas S. Patil
TITLE: Instructor of Electrical Engineering

ii

ACKNOWLEDGMENT

The thesis work was done at the Center for Space
Research at M.I.T. and the people there have generously
given me valuable assistance. Dr. E. F. Lyon suggested
the thesis project, helped me throughout the course of
the work, and gave much advice that I recognized too
late as wise. J. Binsack and S. Patil provided ideas
during the work and much useful criticism in the prepa-
ration of the final draft of the text.

This work was supported in part by NASA grant

NGL 22-009-019 and NASA contract NAS 5-11062.

iii

TABLE OF CONTENTS

Abstract+ ¢ 4 4 i 4 b e e e e e e e e e e e e
Acknowledgment ¢ 4 4 4 4 e 4 e e e s e s e s .
List of Illustrations . . .« .« & &+ ¢ ¢ ¢ ¢ o ¢ o « o &
1. TIntroduction . . . ¢« &+ ¢ ¢ ¢ & o 4 o o o ¢ o o o«

2. Comparison of Storage Oscilloscope
and Plotter Characteristiecs

The Plotter « « .+ .
The SCOPE & v & « « o o « « » =
Line~drawing Techniques
Speed . . v i v e v e e e e e

3. The Existing Interface between
Plotter and Computer . . . +« « o o« =« o &

Graphical Capabilities + « & o« &« « « .
Operational Characteristics

4. Storage Oséilloscope Interface
Design Considerations . . . « + o o &« o « o &

Restatement of Objectives . .« « « ¢ « & « o
Sof tware »® - . * » [] - L] - L] - L) - . e d » - LN 2
Hardware .« « v v o o ¢ o o o s o o o o o o o=

5. An Interface Proposal . . . ¢« &« ¢ ¢ o + o o o o o

The New PLOT Routine o « o & ¢ o o o =
The Scope Interface Hardware « .« .

6. Summary and Conclusions« « o ¢ o« o o o o o

Appendix A: Details of Existing Plotter Software . . .
Appendix B: Details of Proposed Software Modification.

References ., .« o « o o o o 5 o o s o o o s o o s s o »

iv

ii

iii

(8]

o~Jgoum

11
13
17
17
18
21
23

23
25

28

29
33

35

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2.

LIST OF ILLUSTRATIONS

Block diagram of the existing graphics system.

Line-drawing techniques on the plotter and the

scope.

Simplified logic diagram for existing plotter

interface hardware.

Simplified logic diagram for proposed scope

interface hardware.
The existing PLOT routine.
The plotter I/O Driver routine.

The proposed addition to the PLOT routine.

Chapter 1

INTRODUCTION

The use of a small general-purpose digital computer
as a participating analytical component in a laboratory
environment is becoming increasingly popular and pro-
ductive. With appropriate interfaces, consisting of in-
put/output hardware and software, the computer can rapid-
ly and accurately monitor data from a wide variety of
instruments or generate digitally coded signals for in-
put to other information-handling devices or test instru-
ments. In most cases, the computer accepts data from
external sources, processes them, and conveys the results
in coded form to other devices which frequently display

the information for inspection by a human user.

This thesis will deal with the graphical display
capabilities of such a real-time system for preflight
testing of a satellite-borne plasma instrument. All
graphical display is presently done using an X-Y drum
plotter which is interfaced with the computer using

standard software and hardware. (See Figure 1.)

DATA
ANALYSIS
PROGRAMS

"NUMBER" "SYMBOL" | "pLOT"

PLOTTER
SYSTEM i
Ié8 CONTRO INSTRUCTION
UTINE BUFFER

PLOTTER
I/0 DRIVER
|_ROUTINE

PLOTTER
INTERFACE
HARDWARE

CALCOMP
PLOTTER

Figure 1.

Black diagram of the existing graphics system. The
dotted line represents the boundary of the computer.
The rectangles represent either software or hardware
modules. NUMBER, SYMBOL, and PLOT are standard Cal-=
comp graphics routines. The plotter instruction buf-
fer is a contiguous area in core memory. Single ar-
rows represent subroutine calls or transfer of control.
Double arrows indicate flow of plotter commands. The
system is described in more detail in Chapter 3.

To gain considerably greater display speed and flexi-
bility at reasonable cost, the users of this system
have decided to add a storage oscilloscope ("scope")

to the system.

An interface for the scope will be proposed in
this thesis. The overall objectives of the interface
design are: (1) to provide the same graphical func-
tions as the plotter does presently, (2) to ease imple-
mentation by minimizing modifications to the existing
system and making additions conceptually simple, (3) to
keep core-storage requirements low, and (4) to take
definite advaﬁtage of the speed of the scope relative

to that of plotter.

Towards these ends, the thesis work was divided
into several parts. Chapter 2 contains a comparison of
the operating characteristics of the two graphical dis-
play devices. In Chapter 3, the dperation of the plot-
ter interface is described and relevant features of the
computer output system are presented. The objectives
of the new interface and their practical consequences
are made specific in Chapter 4. Chapter 5 contains the

actual interface proposal, followed by conclusions and

comments in the last chapter. The appendices contain
details of the existing and proposed systems which
will be useful to a programmer involved in implementing

the proposed system.

A Hewlett-Packard 2115A general-purpose computer
(3) is used in these systems. For brevity and a cer-
tain amount of generality, details of its operation are

included in this thesis only where necessary.

Chapter 2

COMPARISON OF PLOTTER
AND

STORAGE OSCILLOSCOPE CHARACTERISTICS

The Plotter

The Calcomp plotter (1) is an electromechanical
device consisting principally of input electronics,
incremental motors, drive system controls, a pen, and
a drum over which runs a roll of paper. The pen can be
moved across the drum in the "Y-direction", wﬁile the
drum can be rotated to effectively create pen motion
(relative to the paper) in the "X—diregtion". The
Y-axis is limited to 10 inches by the drum length (i.e.
the "height" of the drum cylinder). The X-axis can be
as long as the roll of paper used. The pen may be
raised from the drum or lowered to the drum surface

under electronic control.

There are ten specific plotter movements. Two of
them are raising and lowering the pen. Two more are
0.01-in. movements of the pen in either direction along

the Y-axis. The drum rotates incrementally, its two

specific movements resulting in 0.0l1-in. pen displace-
ments in either direction along the X-axis. Simulta-
neous pen and drum movements will produce four other
possible vector movements, along the diagonal in each
quadrant. Lowering the pen requires 60 ms for comple-
tion. The other nine movements require 3.3 ms. Each
plotter movement is initiated by a unique six-bit digi-
tal input or command to the plotter electronics. More
details of plotter system operation will be found in

Chapter 3.

The storage Oscilloscope

The Tektronix 611 Storage Display Unit (2) is a
device in which an electron beam excites a phosphor-
coated screen, producing a visible spot called the
trace. Under certain conditions an electronic process
maintains a visible dot on the screen after the trace
has moved eisewhere. This is the storage capability
of the device. Since the scope is an electronic device,
it is much faster than the plotter and comparable to

the computer in speed.

The scope requires analog voltages as inputs to
horizontal and vertical deflection circuits. These
inputs are called the X-axis and Y-axis inputs, respec-
tively. The scope also has a Z-axis input which makes
the trace visible (unblanked) or invisible (blanked).

If this input is held above a certain voltage (to
unblank the trace) and the X-axis and Y-axis inputs
remain at the same voltage for at least 20us, a visible
dot is maintained (stored) at the location of the trace.

This is how the scope "writes".

Four other digital scope inputs control special
features of scope operation. The view input intensifies
stored information on the scope screen. The non-store
input allows the scope to function as a normal oscillo-
scope, without storage capability. The erase input
deletes all previously stored information from the screen.

The write-through feature allows the trace to be visible

without storing any new information or affecting stored

information.

Line-Drawing Techniques
The first two objectives of the interface are to

create functional equivalence between scope and plotter

graphics and to simplify changes to the existing system.
A first step towards realizing these objectives would
be to make the line-drawing technique of the scope ana-
logous to that of the plotter. On the plotter, sequen-
ces of small straight line segments can be used to ap-
proximate any desired line. On the scope, because of
the finite size of a stored dot, it is possible to form
a line from a series of unresolved dots. These two

techniques are illustrated in Figure 2.

The increment of pen or drum movement by the plot-
ter is 0.01 in. For the scope, the manufacturer claims
resolution of up to 50 line pairs per inch, i.e. two
lines (or dots) must be 0.02 in. apart to be separate
and distinct. If the increment of horizontal and verti-
cal trace movement on the scope is made 0.01 in., then
two adjacent (along an axis or diagonally) dots will be
unresolved. The scope display size is 8.2 in. (verti-
cal) and 6.4 in. (horizontal). If digital-to-analog
(D/A) converters provide the X-axis and Y-axis voltages,
then the D/A inputs should be ten bits to obtain the

desired increment size.

(a)

(b)

Figure 2.

Line~drawing technigues on the plotter and the scope.
Diagram (a) is a greatly enlarged illustration of an
approximation to a straight line drawn by the existing
system using incremental plotter commands. Diagram (b)
shows an approximation to the same straight line drawn
by a new system using unresolved dots on a storage scope
screen. The rectangular boundaries are marked in units
of 0.01 in.

Speed

The plotter can execute a maximum of 300 commands
per second. It moves incrementally whether the pen is
up (not writing) or down (writing). On the other hand,
writing on the scope is limited in speed by the fact
that the trace must remain unblanked at a given location
for a certain minimum time (20us) in order to generate
a stored dot. When not writing, the scope trace may
move as fast as the scope deflection electronics allows.
The specified settling time for trace movement within

one dot diameter of the final position is 3.5us/cm + 5us.
Thus the scope is faster than the plotter by two

orders of magnitude for writing operations and by three

orders of magnitude for nonwriting operations.

10

Chapter 3

THE EXISTING INTERFACE BETWEEN PLOTTER
AND

COMPUTER

In Chapter 2, a possible approach to the functional
equivalence of scope and plotter graphics was suggested.
In the new system, this equivalence must be attained not
only at the level of device operation but also through
computer and interface behavior. The first step towards
the design of the new system is a study of the computer
and of the existing plotter interface. This study, in
the light of the comparison of scope and plotter charac-
teristics, should provide useful ideas for the new inter-

face and its relation to the old.

Plotter Graphical Capabilities

Each of the ten plotter commands described previously
corresponds to some elementary action. However, the user
of the plotter graphics system generally does not want
to specify each command necessary to construct any line

or character. He should be able to make requests in terms

11

of the coordinates of points, lines between any two
points, and characters or character strings to be drawn.
The function of the three software routines (PLOT, SYMBOL,
and NUMBER) in Figure 1 is to take such user-oriented
requests and break them down into sequences of plotter

commands.

The key software routine is PLOT. Its arguments
specify the X and Y coordinates of the point to which
the pen is to be moved, either in the up or down posi-~
tion, and whether the'new point is to be considered as
the origin for subsequent pen operations (otherwise
the existing frame of reference continues to be used).
PLOT generates the appropriate sequence of plotter com-
mands to move the pen in approximately a straight line
to the new coordinate location. It is important to
"recall that the pen actually changes location by a series
of incremental steps whether writing or not.

ASCIIl codes and some special character codes are

related to sequences of straight line segments through

1 American Standards Code for Information Interchange

12

extensive tables contained in the SYMBOL routine. To
draw the desired charcters, SYMBOL calls PLOT once for
each of the straight line segments. The NUMBER routihe
converts floating-point numbers into ASCII~-coded charac-
ter strings, with optional signs and decimal point, then
calls SYMBOL to draw the numerical symbols. In both of
these routines the size of the characters and the angle
and starting-point of the resulting print are specified

by the user.

Operational Characteristics

Once a user's graphical request has been reduced
to individual plotter commands, these commands must be
presented to the plotter. Since the computer can gene-
rate instructions much faster than the plotter can use
them, an output buffer is a practical necessity. In
conjunction with the computer interrupt system, the
buffering scheme will allow the computer to perform other
computations rather than waiting idly for the plotter
to act on a command. For instance, if the plotter has
just received a command, the computer sets the plotter
"control bit" and clears the "flag bit". (See Figure 3.)

The computer can continue to another set of instructions.

13

FROM ACCUMULATOR

Figure 3.

FLAG FF |
::::)—————-—1> INTERRUPT
CLF SIGNAL
STC CONTROL _FF
CLC
400 us . J1>c 2.9 ms
ONE-SHOT ONE-SHOT
100
(TIMING Y 60 ms
SIGNAL) ONE-SHOT
TO PLOTTER
f’ Fe1r o0 FF _ D._—-{>o-—o DRUM DOWN
+—-4 (+X AXIS)
o
BIT 1 FF ::::>___ [:: .
‘ DRUM UP
f (-X AXIS)
¢
BIT 2 FF) —{>o—9 CARRIAGE
> ¢ RIGHT
(+Y AXIS)
' CARRIAGE
\ ::::>—~BIT 3 FF_ I:> N LEFT
>) (-Y AXIS)
[-
N BIT 4 FF) Dc & PEN UP
—
L. -
1 BIT 5 FF PEN DOWN
Simplified logic diagram for existing plotter interface

hardware.

14

After 3.3 ms (or longer for a "pen down" command), during
which the computer has gone through 1650 timing cycles
(on the order of 1000 typical instructions), the plotter

flag bit is set by the interface and an interrupt occurs.

The interrupt stops execution of the present program
on the computer and transfers control to a reserved lo-
cation (the "interrupt location"). An instruction at that
location should transfer control to the continuator sec-
tion entry point of the I/O driver routine (see Appendix A).
This routine removes the next command from the buffer and
gives it to the plotter interface. The flag bit is cleared
to ready the interrupt system again, and then control re-
turns to the interrupted program. A command has just been

received by the plotter; the system is back where it started.

To start the above cycle, PLOT stores plotter commands
in a buffer in core memory. When PLOT has completed the
breakdown of a requested "move", or when it has filled the
buffer, it makes an output (write) request to the I/O control
system routine, specifying the unit-reference number of the
plotter along with the buffer size and location. The unit
reference number determines the equipment table entry

address for the plotter. (The equipment table is part of

15

The system software containing information about all I/0
facilities used by a given system.) Here the I/0 control
program finds the address of the I/O driver initiator
section and the channel number of the plotter. Control

is transferred to the driver, which initializes buffer
pointers, output channel number, and other output book~-
keeping. Then the driver gives the plotter its first
command through the output hardware and sets the interrupt
system as described above. The plotter has just received

a command, so the interrupt cycle has started again.

The cycle ends when the buffer is empty. If PLOT
had finished breaking down its original request, then
while the buffer was being emptied other computations may
have been performed. However, new calls to PLOT are not
acknowledged until the buffer is empty. If PLOT had not
finished its original request because the buffer became
full, control remained in a small loop within PLOT waiting

for the buffer to empty.

16

Chapter 4

STORAGE OSCILLOSCOPE INTERFACE DESIGN CONSIDERATIONS

Restatement of Objectives

The objectives of the new system are:

1. To give the scope the same functional

graphical capabilities as the plotter;

2. To develop operational analogies be-
tween scope and plotter functions as

suggested in Chapter 2.

3. To use common software wherever pos-
sible, as might follow from (1), and
(2) thereby simplifying implementa-
tion of the new system and reducing

core storage requirements;

4. To take advantage of the writing speed

of the scope;

17

5. To take advantage of the potential
speed of movement of the scope trace

when not writing;

6. To design simple interface hardware for
optimal interaction with existing com-
puter hardware and software output

ﬁacilities.

Software

It has been shown that an approximation to any straight
line segment may be produced on the scope by the appro-
priate series of dots. By analogy with the plotter sys-
tem, the scope software should have a basic routine for
decomposing users' straight-line requests into sequences
of output commands to the scope interface. To help satisfy
the first three objectives, the existing SYMBOL and NUMBER
routines may be used unchanged in the new system. The
user, both directly and indirectly through SYMBOL and
'NUMBER, will call a new PLOT routine which must be able
to break down straight~line requests into either plotter

or scope commands.

18

In realizing the first five general objectives,
several particular considerations must be made. First,
PLOT should distinguish between plotter and scope opera-
tion in such a way that calls to PLOT are made just as
they are in the present system, i.e. with the same number
and interpretation of arguments. Thus no changes need
be made in existing programs that use only the plotter.
Second, in scope operation, PLOT must respond differently
to writing and nonwriting requests. Because of the great
speed of trace deflection when not writing, the software
should place new coordinate values in the X and Y scope
input registers as quickly as possible. In dot writing
operations, the registers will be updated by a new com-
mand at most every 20us. Third, since scope and plotter
requests may be intermingled in time, current pen (plotter)
and trace (scope) location coordinates and status infor-
mation must be maintained in separate memory locations.
Closely related to this issue is the definition of the
origins of the coordinate systems. Ultimate plotter com-
mands are incremental; any plotter coordinate system must
be maintained by software. On the other hand scope trace
coordinates are maintained in the D/A converter input

registers, and merely recorded by the software. There

19

is one "fixed" coordinate system for the scope, unlike

the plotter.

The plotter can accept new six-bit commands every
3.3 ms except for a "pen-down" command which regquires
60 ms., The computer can generate plotter commands
approximately one hundred times faster. Therefore, the
plotter software places commands in a buffer; then when-
ever the plotter is ready an interrupt occurs, trans-
ferring control to an output driver which outputs the
next command in the buffer to the plotter interface and
activates the plotter. On the other hand, the scope
writes a dot in 20us and requires at most 100us to move
the trace when not writing. Since the computer takes
approximately 50us to prepare any new command coordinates
for output to the scope interface, the need for buffering,
interrupts, and an output driver is obviated. It would
be wasteful to put commands in a buffer while the scope
is idle and then interrupt subsequent programs every ten

machine cycles for output to the scope.

20

Hardware

The purpose of the hardware for the scope interface
is to transfer commands from the computer output hard-
ware to the scope input terminals in such a way that they
will result in proper display on the scope. Most impor-
tant are the ten-bit registers providing input for the
D/A converters, which in turn provide input voltages to
the X-axis and Y-axis scope inputs. These registers hold
the current coordinate values at all times. It will also
be remembered that the plotter interface hardware handled
the timing of plotter commands and interrupts. The
principal design decisions for the scope interface hard-
ware are how to handle timing without interrupts and
what information to transfer from the two 16-bit computer
accumulators provided with output capability to the D/A
input registers. Timing is discussed in Chapter 5. Also
to be considered are several digital control inputs to
the scope. The final hardware design will affect soft-

ware output instruction formats.

Three approaches were considered for the content of
the computer output data which are to be presented to
the interface hardware. The first involved incremental

commands to two up-down counters, used as the D/A converter

21

input registers. The second approach added the possibi-
lity of multiple increments particulariy for fast in-
crementing or decrementing of the up~down counters while

the scope is not writing. The advantage of these approaches
is the small number of bits needed as input to the up-down
counters, and thus the small amount and simplicity of the
hardware needed. The disadvantage of both is that the
computer must calculate incremental commands for the non-
writing requests, therefore, not taking advantage of the

faster scope trace movement.

A third approcach is to load the coordinates for
each new command into all ten bits of each D/A input
register, whether writing takes place or not. The con-
cept is simple and so is the hardware. The two coordinate
values would be kept in memory anyway. This approach is
used in the final design. The one complication is that
more than twenty bits of output are needed to specify
the coordinates and scope function; one computer output

instruction transfers only 16 bits.

22

Chapter 5

AN INTERFACE PROPOSAL

The New PLOT Routine

PLOT is the only software routine that is changed
for the new system. The choice between plotter and scope
operation is made by calling a new entry (CHOOZ) in the
PLOT routine. The one argument passed by a call to CHOOZ
determines whether subsequent calls to PLOT will refe-
rence the plotter or the scope. Each device therefore
operates independently of the other, and, in particular,
calls to PLOT for plotter operation are exactly the same
as they are in the existing system. A detailed flowchart
of the modifications to the PLOT routine may be found in

Appendix B.

If scope operation has been specified, then the
modified PLOT routine carries out three procedures.
First, certain bits in storage are set depending on which
of the scope functions are to be used. Second, if the

write, write-through, or non-store scope functions are

specified by the third argument of PLOT, the software
decomposes the PLOT request into individual dot writing

commands. The algorithm used is similar to the one for

23

plotter operation in the existing PLOT routine. Thus

an approximation to a straight line will be drawn from
the current trace location to the specified new location,
as described in more detail below. Third, the X and Y
coordinates of a new command are placed in the two ac-
cumulator registers of the computer. The function’bits
are merged into the unused high-order bits of the accu-
mulator containing the Y coordinate. The high—orderAbits
of the other accumulator are set to zero. When the PLOT
routine detects that the flag bit of the interface hard-
ware is set, two output instructions are executed to give
the accumulator contents to the interface hardware. For

a write or erase operation, the flag bit then is cleared.

In those operations using the second procedure de-
scribed above, each dot writing command is transferred
to the interface hardware as soon as it is generated.
That is, the second and third procedures form a loop which
iterates until the requested line is completely drawn.
Nonwrite and erase requests skip the second procedure
and perform the output procedure only once before control

returns to the program that called PLOT.

24

Storage Oscilloscope Interface Hardware

A computer output instruction makes available to
the specified interface hardware the contents of a 16-bit
accumulator. Figure 4 shows the essential logic of the
scope interface hardware. Bits 0 to 14 of the computer
output are used. The computer output instruction also
provides the I00 timing signal, which strobes bits 0
to 9 into one of the D/A converter input registers. If
bit 10 is set to zero, the X-coordinate is loaded; other-
wise, the Y~coordinate. Bits 11 through 14 control the

non-store, erase, Z-axis, and write-through scope inputs,

respectively.

The new PLOT routine transfers the X-coordinate
with one output instruction and the Y-coordinate and
functioh control bits with another. The X-coordinate
must be transferred first in the scheme employed here.

If bit 10 is set to zero, the I00 timing signal causes
the triggering of a 2-ps one-shot. The trailing edge

of this 2-us pulse sets the flag bit. When the PLOT
routine detects that the flag bit has been set, it trans-
fers the ¥Y-coordinate, with bit 10 set to one and control
functions determined by bits 11 through 14. Bits 11

)
and 14 enable the non-store and write-through scope

inputs, respectively, for 30us. Bit 11, 13 or 14

25

BITS 0-9 FROM (10~BIT BUS)

ACCUMULATOR » REGIég;gIT TO SCOPE
| 3—' AND D/A |l X - AXIS
CONVERTER INPUT
100
(TIMING
SIGNAL) Lo-srm
REGISTER
AND D/A [® Y - AXIS
e CONVERTER INPUT
&
-0
W
BIT } 2 s
1o ‘ ONE-SHOT
L—J NON~
BIT 11 \
30 s STORE
—9 / [:>o——>
ONE-SHOT
50 ms Do——v ERASE
ONE-SHOT
BIT12 A“‘ \
/ 500 ms
ONE-SHOT
BIT -—-X_\ :)——- 2 us O 20 us [l> » 7 - AXIS
S ONE-SHOT ONE-SHOT B INPUT
BIT — WRITE-
14 +- 30 us '{>° THROUGH 0
ONE-SHOT A — .
CLF e e ! COMPUTER
Figure 4.

Simplified logic diagram for proposed scope interface
hardware.

26

triggers a 2-us delay one~shot, to allow for settling
of the D/A converters. After this delay, a 20-us pulse
is sent to the Z-axis input in order to unblank the
scope trace. If only bit 13 is set, this results in
storage of a dot by the scope. The trailing edge of

the 20-us pulse sets the flag bit. Bit 12 enables the
scope erase input for 50 ms, and sets the flag bit after

500 ms.

If none of the bits 11 to 14 is set, a nonwriting
command has been given. Since this will have been the
only command given by a particular call to PLOT, the
trace will have settled in its new position by the time

PLOT can be reentered and another command issued.

27

Chapter 6

SUMMARY AND CONCLUSIONS

By establishing an analogy between scope and plotter
writing techniques, it has been possible to adapt the
design of the plotter interface software for use by the
scope and the plotter. The new software contains addi-
tional coding for scope operation, and requires approxi-
mately ten percent more storage than the present software.
The new scope interface hardware is independent of the
plotter hardware, but the function and operation of the two
are similar. All of the objectives of the interface speci-

fied in Chapter 4 have essentially been attained.

Implementation of the proposed system will involve
coding of the algorithm presented in Appendix B and con-
strucﬁion of the interface hardware. It is felt that
this proposal presents the best possible scope interface
using limited hardware and the given writing technique,

with the plotter remaining in the system.

28

APPENDIX A

DETAILS OF EXISTING PLOTTER SOFTWARE

Figures A-l1 and A-2 are detailed flowcharts of the
algorithms used in the existing PLOT and I/O Driver
routines of the Calcomp plotter graphics software. The
flowcharts are derived from Assembler coding for
the Hewlett-Packard 2115A computér. The labels above
some of the boxes are symbolic addresses to assist in
cross-reference with the original coding. All other
symbolic names from the coding are underlined; those
in the I/O Driver routine are explained there (in the
flowchart itself) while those from the PLOT routine
are listed and defined below:

PADY - subroutine which searches for the plotter entry
in the system equipment table and places the
plotter select code in call sequences to the

system I/O control routine (.IOC.).

PSTAT ~ subroutine which calls .IOC. to check plotter
status; returns when plotter is available.

X, Y -~ requested final pen coordinates; first two
- arguments in call to PLOT.

XPEN, YPEN -~ current pen doordinates in hundredths of
inches.

29

IDX, IDY - number of incremental commands along each
' axis for this request.

PREST - subroutine which initializes PBUFI to full
buffer length (negative), PXB to point to
top of buffer, and PDATA and PWDO to zero.

XYPMC, - four bits of plotter commands needed to

XPMC s .

—— construct combined (vector) and one-axis,
respectively, incremental commands for
this request.

IC - specifies pen up or down and whether new
coordinate system origin is requested; third
argument for PLOT.

Ip - absolute value of previous IC.

XPLT - intermediate storage used to load buffer.

A ~ denotes A-register (accumulator).

TRA - operation counter: -2means pen must be raised

' lowered before incremental commands; ~lmeans
incremental commands only; Omeans finished.

NC - number of incremental moves yet to be broken
down for a particular request.

NR, NI, _ g iabl d in the algorithm to break

& —— - dummy variables used in the algorithm to brea

— down a request into commands.

PBUFI - unused-buffer-word counter (negative).

PXB - points to active buffer word.

PDATA - data flag: O means the buffer is full and
output has started; -2 means the buffer is
not full but the request is finished.

PWDO - number of words of buffer used for commands
: during present request.

30

ENTRY PLOT

CALL PADY

CONVERT & SCALE
COORDINATES ‘TO
HUNDREDTHS OF
INCHES

CALL PREST

1

XYPMC ~ SIGNS OF
Y - MIN (] DX1,

10X, iDY

X~ MAXll___ _DJ‘“
14oYh

XPMC ~ SIGN OF NEW 10X

POg2

XeUr -7

PO03

NR-0
‘EA«-z

NG~ NA
NT - 2(NA)

Fig. aA-1l.

PUT A INTO
BUFFER

RESET FOR NEW
BUFFER WORD
PWDO - PWDO +1
PXB ~ PXB +1

PBUF| -~ PBUF} +1

NC NG +1

XPLT +XPMC
NA =~ [DX
AR ~ 2IDY)

NC - 07
{NO MORE
TO MOVE)

PWDO + PWDO +1

POO?

PDATA - -2

O

TRA =~ TRA +1

(2

CALL PSTAT

)

CALL PREST

CALL .10C, CALL .10C.

CALL PSTAT Pio0
- Ic > 0?
(USE OLD
3 ORIGINI
CALL PREST

RETURN

-

1P -0
KPEN, YPEN ~ 0
PDATA~ 0

The existing PLOT routine.

INITIATOR SECTION CONTINUATOR OR INTERRUPT
ENTRY POINT ENTRY POINT

00§ Lo - §

ISOLATE FCODE SAVEA LS
{FUNCTION CODE) REGISTERS AND
FROM OUTPYT EXTEND AND
REQUEST) QOVERFLOW BITS

CLEAR PLOTTER (i -
CONTROL BIT ¢ =0
(DISABLE {BUFFER EMPTY)
INTERRUPTS)

REJB

CLEAR B REGISTER

THEN SET BIT 15
(DEVICE OR
ORIVIR -BUSY)

RCER

CLEAR B REGISTER
(1LLEGAL REQUEST
CO0E)

RETURN 10
PROGRAM THAT
MADE OUTPUT
REQUEST

CH1,CH2,CH3

{SOLATE 4-8(T
PLOTIER INSTR
AND SET JUMP
TO FIRST 4-BITS
PROCESSING

{SOLATE 4-BIT
PLOTTER INSTR
AND SET jump
70 NEXT 4-817
PROCESSING

A REGISTER © 1 CALL TO SUBOL:
1ERROR FLAG) (1) OBYAIN PLOTTER
CHANNEL ¢ FROM £QY
(2) MERGE CHANNEL
¥ 1 INTOH0 INSTR
{31 CALL TO SUBOL
LA BECOMES NO OPERATION
INCREMENT CHXI
MADE OUTPUT {WORD TRANSFER
REQUEST COUNTI
. ot INCREMENT -
FLAG BIT SET? CHX1 IWORD COUNT)
(READY 10 BUF (BUFFER POINTER)
PLOT) STAT CHX (BUFFER LENGTH)
STORE CHXI IN
£QT AND CLEAR k————
STORE QT PLOTTER BUSY cour
ADDRESS IN .BUFR BIT IV BT T
CALL SEQUENCE 1
CODES TO
DELG - 0 6-B17 CODES
SET PLOTIER (&RS'\\,’,ER Not 13 1
BUSY BIT IN £QT PLACE 6-81T
SAVA - WORD 2, EQT PLOTTER INSTR
EQTA - WORD S, EQT IN CHANNEL FOR
PLACE ADDRESS PLOTTER INTERFACH
OF 1,10 ENTRY
BUF - BUFFER POINT IN _BUFR ¥
ADDRESS CALL SEQUENCE RESTORE A &8
CHX - NEGATIVE REGISTERS -
BUFFER LENGTH i ALSO EXTEND &
1 RESTORE A & B CLEAR A-REGISTER OVERFLOW BITS
CALL 10 SuBez REGISTERS - ACCISTER HOLD “__9
INITIALIZE ALSO EXTEND & QUTPUT REQUEST SET CONTROL
CONTINUATOR OVERFLOW BITS ADDRESS BIT AND CLEAR
SECTION CHX| = 0 i 7 FLAG BIT
-—-—r——J (START PLOTTER)
CLEAR PLOTTER RETURN 10
CONTROL BIT PROGRAM THAT [
OFLG ~ 77 (OCTAL)
i (DISABLE MADE QUTPYT
IDRIVER BUSY) INTERRUPTS) REQUEST RETURN 10
CLEAR A REGISTER : INTERRUPTED
k) PROGRAM
E) CALL BUFR
CALL 110 THEN (SYSTEM ROUTINE)
ﬁg&kmorm s
MADE QUTPUT RETURN)
REQUEST
Fig. A-2. The plotter I/O Driver routine.

32

APPENDIX B

DETAILS OF PROPOSED SOFTWARE MODIFICATION

Figure B-1l is a detailed flowchart of the proposed
addition to the PLOT routine. For plotter operation,
SCOPE is set to zero and the flowchart continues as in
Appendix A (indicated by the dotted arrow and the asterisk).
A glossary of symbolic names for the coding is supplied

below:

PADY, PSTAT, X, Y, XPEN, YPEN, PREST - See Appendix A.

Ic - as in Appendix A, but with extended range of
values to represent special scope functions.

SCOPE ~ set by entry CHOOZ (see Chapter 5) to distinguish
between scope and plotter operation.

CODE ~ contains requested scope function bits to be
merged into unused part of Y-coordinate output.

XSCP, ¥YSCP~ current trace coordinates.
S8DX, SDY =~ change in scope coordinates for current request.
sA, sC, SR, ST - correspond to NA, NC, NR, NT of Appendix A.

XCOM, YCOM~- increments for both coordinates for a combined
(vector) command.

XPRT, YPRT -increment (one is zero) for command to move
along only one axis.

A, B -denote A and B registers (accumulators).

33

ENTRY PLOT CALL PADY
XSCP ~ A
CONVERT & SCALE YSCP- 8
ARGUMENTS TO
HUNDREDTHS OF
INCHES)
ol MERGE CODE
SDX + X) - XSCP INTO 8
IC - 27 SET BIT 13 SOY » Y]+ YSCP
(WRITE} OF CODE XCOM, YCOM ~ 1
XPRT, YPRT -1
CALL PSTAT SETBIT I |) R Xon
OF CODE
‘ OUTPUT A
THEN CLEAR
FLAG BIT
1DX « X - XPEN SET BIT 11 YCOM ~ -YCOM
1YY - YPEN OFCODE [YPRY - -YPRT
SCOPE FLAG
XPEN+ 0 SET BIT 12 PRI~ 0 BIT SET?
YPEN~ 0 OF CODE 150Y|
Isoxi
UTPUT §
| THEN CLEAR
XPEN + X CODE~ 0 YPRT + 0 FIAG 8IT
YPEN~ ¥ (NONWRITE} $0X < 15DX|
SDY - 150Y1 1
Ae-X .
B-Y $A =~ SDX
CALL PREST SC~-1 SC ~-SA-1
SR ~-2(SDY}
- ST - 2(SA}
1 T
i
* T A~ XSCP
RETURN
t
SA~SA+ SR
(c%amm B~ Y5CP + Yoo
A~ XSCP + XPRT
B~YSCP + YPRT
1)

Fig. B-l. The proposed addition to the PLOT routine.

34

(1)

(2)

(3)

REFERENCES

The following are available from Hewlett-Packard:

== "Manual for Model 12560A Digital Incremental

Plotter Interface" (#12560-9001, Rev. 9/68)
~- "BCS Plotter Driver Source Listing" (#HP20014AL)

-- "Plotter Library Source Listing" (#HP20201BL)

Tektronix "ll-inch Storage Display Unit Type 611"
see also:

-- Storage Cathode-Ray Tubes and Circuits

-- Informatiom Display Concepts

(available from Tektronix)

Hewlett-Packard Model 2115A Computer manuals:

-~ Volume 1l: Specifications and Basic Operation
(#02471-1, Feb. 1968)

-- Assembler Programmer's Reference Manual
-- Volume 3: Preliminary Manual for Input/

Output System Operation
(#02115~9013, Feb. 1968)

35

