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NOMENCLATURE

!
H

This list contalns all symbois except those infrequently
used and clearly defined in the text.

i1

regions defined by Figure 1

n

speed of sound in the undisturbed fluid (m/sec)‘

= slope of normal force and ﬂoment coefficlents (rad'l)

pressure coefficient

it

reference diameter

frequency (Hz)
I .
an arbltrary function, det%rmined s0 as to satisfy a boundary
condition {

i

!
‘unit step function, =1 iﬂ t 2 0 and zero otherwise

I

1l

characteristic body length (m)

n

Mach number, U/a

equation of the body surface

radisl coordinate

Shrouhal number (= fL/U)

base area of body (m®)

it

time (sec.)

ups'tream velocity (m/sec)

L

1l

strength of an elementary point source

velocity of the side gust

!

n

ha1$~amplitude of wind velocity (m/sec) (see (53))

viii



T =

é,ﬂ,?,ﬁ =

Subscripts
a 3
c =

r,x,t,7,0 =

= axial coordinate, measured from nose of body

pitch axis location (nondimensionalized with respect o bod:
length)

(2-1)F

fineness ratio (ratio of base radius to body length)

‘angular coordinate

axial coordinate, or l&cation of & point on the x-axis
time (sec.)

velocity potentials, whose negativg‘gradient yields & Corres-~
ponding velocity vector '

= angular frequency (rad/sec)

axial flow
cross Tlow

derivative with respectito r,x,t,T, or ©

ix
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I. INTRODUCTION

A. Overview
i !

Aerospace launch vehicles of the Saturn V class are potentially
vulnerable to side wind loads in ways which have not been of concern pre-
viously. Vehicles of this class are, first of all, rather flexible and mas-
sive, meaning that the bending modes of the configuration are of relatively
-low frequency (on the order of 1 to lO*H#rtz). Secondly, the geometric con-
- figuration, consisting of several stages|of different diameters Jjoined by
~conic frustrums, leads to large, localized aerodynamlc side forces rather
than relatively uniformly distributed foyces. Thirdly, the length of the
vehicles (in excess of 100 meters) is such that the vertical profile of the
horizontal winds must be Considsred_(i.e , vertical wind shears are of con-
cern). A fourth point is that the "skin!' of such vehicles is relatively
thin so that the possibility of damage due to large, localized unsteady
forces Caused by oscillatory or transiént winds must be considered.

In view of the above remarks, % research program was carried out
with the following objectives:

: 1. To extend a previously developed aerodynamic theory, an in-
dicial theory, so that it may be appljedgfo both sinusoidal wind profiles
as well as arbitrary, numerically defined wind profiles;

2. To obtaln pitching moment and normal force frequency response
data for simple aerodynamic bodies, such,as cones, ogives, and cone-cylin-
ders; and

’ .
3. To obtain aerodynamic forces and moments for the Saturn V
vehicle in response to sinusoidal and measured, in~flight wind profiles.

The most critical flight regime is the low supersonic portion of
the fllght, during which the peak dynamic pressure (maximum ) occurs and
during which the side wind velocities are generally at thelr peak. The
'thedry developed in this report‘applies to this flight regime.

The principal difficulty which arises when one attempts to study
the aerodynamic forces of the types just mentloned is that most aerodynamlc
theories are not applicable. The reasons are twofold: (L) the vehicle is
not slender in the sense required of "slender body" theories (e.g., the
~overall diameter-to~length ratio is 0.1, local surface slopes may be on the
order of 0.5); and (2) the vehicle profile is not smooth, but contalns slope
discontinuities or sharp corners. Therefore, il was necessary to develop



a nev basic theory; this was done in earlier studies by MRI. Before dis-
cussing this theory, it is instructive to briefly mention earlier steady
and unsteady flow theories. ‘
Theodor von Karman and Norton B. Moore}/ developed a method for

obtaining the ssteady axial potential flow over a pointed body of revolution
traveling at supersonic speed. The method was based on the superposition ;
of basic solulions which represent the fﬂaw over a cone.:  This method, which
has become widely known as the Karman-Moore theory, was extended to the
steady cross f£low problem by Tsien.2 ‘

This work was extended, as a numerical technique, by Van Dyke.é/
He considered jthe Karman-Moore and Tsien solutions as being of first order
compared to the exact solution of the full nonlinear potential equation. He
then proceeded to show that a second order theory produces a marked improve-
me... for the axial flow case, but that a second order cross flow theory is
not thainablé in general. Van Dyke also presénted other, more useful basic
solutions for the first order problen. : ’ '

Maﬁy suthors have made slender body approximations and obtained
solutions of ‘higher order along these lines. However, such approaches for
the case of bodies with slope discontinulties were questioned by ILighthil 4

‘who then presented a modification using;Stieltje’s integrals, to properly
account for these corners. Adams and Sqarss have developed a quite general
scheme for dealing with so-called not-so-slender bodies. . Several authors,
and -most recently Platzer and Hoffman,é/ have extended their work, particu-
larly in the solutlion for oscillating bodies. ‘ -

Previous work in the field of;unsteady or transient aerodynamic
loading of axisymmetric bodies’ involves many assumptions and simplifications.
First, it is assumed tha? the flow fiel@ can be described by a potential
function. The resulting potential equation is then simplified by neglecting
all nonlinear terms, implying that disturbances are small. Furthermore, cer-
tein terms in the linearized equation gfe normally dropped by assuming the
body to be slender and/ or the reduced frequency to be very large or very
small. Also, an approximate boundary condition is normally used, again im-
plying that the body is slender. '

In the field of nonsteady problems, the case of‘osciliatory mo-
tions offers the greatest abundance of work. PlatzerZ/gpresgnts a general-
ization of the Karmen-Moore technique which is applied to slowly oscillating
bodies. Not so much work has been done, however, with the indicial case.
Mil£s§/ considers the transient motion of a body of revolution, assuming the
body to be very slender and using a high~frequency approximation. This idea
vas-applied to cone-~cylinder bodies by Yatesg/ and Blackburniand St.-John,lg/
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derived from the unsteady potential
r theory may prove adequate for en-

theor;-. Results showed that tze simple

This unsteady potential theory, termed an indicial theory, is

;iinea:, It represents the reszonse to & unit step wind. Just as any ar-
. bitrery wind profile can be gererated by superposition or integration of a .

large number of such step winés, the linear property of the indicial theory

This approach,
the D:hamel or convolution integral apﬁroach, is applied in the present
I
|

study.

B. Rsport Organization'

This final report is organized into two volumes. This volume
I) contains the methodzlogy and results obtained using the programs.
The szcond volumeld contains the detalled descriptions and instructions for
use ¢ the various computer programs dﬁveloped and used during thils project.

The next section, Secztion II; of this volume presents the con-
clusicns and recommendations developedifrom the study. Section III con-
tains a review of the indicial aerodyn@mic fheory and its application
throush use of the Duhamel integral technique. Section IV presents and
discusses results of a study c? several simple geometries subjected to
sinusoidal winds. - The geometries include cones, ogives, cone-cylinders,
and czive-cylinders. The frecuency responses of local normal forces, total
normsz_. forces, and pitching mcments are considered.

3
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Flnally, application of the brecedfng to the Saturn V launch ve-
hlc]e is reported in Sections V and VIP Section V considers the frequency
response characteristics, while Section VI gives the aerodynamlc responses
when the vehicle is exposed to measureﬁ wind profiles,

Appendices contain additional information utlllzed in the obtaln-
ing and analyzing of results. Appendix I presents a dlscusslon of how sim-
ple mass- sprlng~damper concepts can aild in estimating the sinu301dal re-
sponses from the indicial aerodynamic loading. Appendix II presents the
details of our:technique of adapting NASA’S wind data (obtained with the
FP&-16 Radar/Jﬁmspheren./) to our study



II. CONCLUSIONS AND,RECOMMENDATIONS

A. Conclusions

It should be emphasized that the results obtained and reported
here pertain to serodynamic responses to winds, not to any subsequent
vehicle responses such as rigid body pitching or elastic bending. Further-
more, these aerodynamic forces are responses to wind gusts of various types
and should not be confused with various stability derivatives of a differ-
ent origin. The latter are defined in terms of responses to rigid body
motions, the body being immersed in a steady flow.

Before detailing the many sp%cific‘findingq and conclusions, two
general statements concerning the responses in general are in order. One
of the first questlons an engineer w1l1 probably ask concerning frequency
response data is, "Is a resonance condltlon possible; and if so, at what
frequency?' It was found that, generqlly speeking, examination of the
~indicial response curve in relation tg a simple, single~degree-of-freedom,
spring-mass-damper system would enable this question to be answered in a
qualitative way. That is, one could generally determine if a domindnt
;-resonance would occur, and often esthate the frequency of this first

o resonance. Other peaks may occur in ﬁhe frequency response curve, but they

"Tf'aI‘e nO’b eas ily predictable.

. The second statement concerns the comparison of the results of
using the full potential theory and the simpler, quasi-steady theory. No
‘gross differences were found, a]though often the simpler theory slightly
underestimated the response and may be even less accurate at higher “fre-
guencies. Since the indicial respons¢s using the full theory reduire an
order of magnitude more computer time than those using the simpler theory,
it may often be advisable to perform 1n1t1a1 studies using the quasi-steady
theory

" The: conclusions presented'bélow are organized by véhicle geometry.

- They are, of course, limited in scope to the parameter range investigated.

The pertlnbnt range is thus 1nd1cated here also.
g :

‘Cones (1.25 <M < 3.0; semit vertex angles up to 33°; S < 2): No
resonance of total or local normal fo ces, or of pitching moment occurs.
The quasi-steady theory predicts results which are nearly independent of
‘Mach number. The full potential theo?y leads to frequency responses which
 attenuate more rapidly with frequencyk but which approach the simpler,
quasi-steady responses at higher speeds.




Convex and Concave Ogives (1.2 =M 5 3.0; € = 0.05, 0.10; 8 < 2):
No significant resonances of total normal forces or moments Were obscrved,.
although a very low peak for the convex ogive did occur. This peak was at -’
a level wvell below the zero-freguency xeupbnse and occurred for Strouhal
nunibers belween 1.5 and 2.  The quagi~uLOddy theory gave slight undercstl-
mates for the convcx ogives and overestimates for the concave oglves, comr
pared to the full potential theory. No large Mach number or slenderneus
ratio effects were observed among the total responses, beyond the obvious
effects on the overall response level which may be obtained from considera-
tion of steady flow. The local normal force for the convex ogives exhibited
a resonance, the frequency of which Jncreased with Mach number. The con-
cave ogive local normal. forces showed no rbsonances

1
Cone Cylinders (1.25 <M = 3, cone semi-vertex angles up to 20°,

S8 = 2): All responses exhibited resonance phenomena except for the local

normal forces on the ¢onic portion and On the cylindrical portidn near the

cone~cylinder junction. The quasi~steady theory undcrestimated the peak

CN, by less than 4 percent and the peak CMa by, typically, less than

15 percent. The resonancc occurs at lower frequency, and is of larger rela-

tive magnitude, at the large cone angles. | The resonance peak exceeds the

zero-frequency level by less than 11 percent for CNd and as much as 92 per-

cent for CMQ . The highest resonances occur at or near a Mach number.of 2.

Ogive Cylinders (1.1 <M <2.6; € = 0.05; 8 = 2): All results
were similar to the cone-cylinder results, except that at very low Mach num~
bers (1.1 to 1.2) the quasi-steady theory underestlmated the peak response
by as much as 30 percent.

|
t .
Saturn V (1.3 <M < 1.8, simulated fins and shrouds, § < 7:
The vehicle staging is such that gust wavelengths of 100 to 200 meters are
effectively filtered out and not seen as part of the aerodynamlc total. nor-
mal force and pitching moment. In this Mach number range the corresponding
frequencies are from 2 to 4 Hz. On the other hand, aerodynemic resonances
do occuf, roughly at wavelengths equal to %he interstage distances. Spe-
cifically, peaks occurred at about 80, 50, 30, 20, and 15 meters, and an
additional peak may be present at about 95 meters; but if so, it is over-
shadoved by the ngarby peak at 80 meters. (This Bo-meter peak corresponds
to a frequency ofy5 to 6 Hz.) All of these resonance peaks are of ampli-
tudes on the order of or less than the zero»frequency response‘amplitude.

!

The resonant wavelengths for the total normal force and pitching
moment are essentially independent of Mach number and type of aerodynamlcs
(quasi~steady or full potential theory). However, there is evidence (1n—
conclusive) that the more accurate theory-leads to the prediction of &
resonance of large amplltude of about 20 metcrs wavelength

i
!
1



The local normal force frequency rcuponses are strongly dependent
on station location and Mach number. Resonances are not likely on the conic
sections, but do occur generally on the cylindrical portions. Many of these
peaks are several times the amplitude of the steady or zero-freguency re-
sponse amplitude. The local frequency responses do depend strong]y on Mach
number, but not in a consistent fashion.

The aerodynamic reéponse.to winds shows two effects of importance.
First, a time lag is evident which is accounted for by penetration effects.
Secondly, a small effect arising from the aerodynamic transients (or aero-
dynamic inertia) is observed. This latter effect is correlated with the

wind shear.

B. Recommendations

The integration of the indicial responses is currently performed
using a step size which depends on the spacing of the indicial responses.
This placed a restriction on the validity of some of the high frequency re-
sults obtained in this study. Either the computer program should be modi-
fied or finer intervals should be used in evaluating the indicial responses.

. Then, the high-frequency results, where important, should be checked for

AL S

validity. Of particular concern is the Saturn V response, using the full
potential theory, at a wavelength of about 20 meters'(S =6).

Currently available wind data are at intervéls (25 meters) which
are too coarse to elicit resonance responses. Should more detailed data
become available, it would be of intbrest to re-examine the Saturn V behavior.

It would be of great benefut to compare the current theories
with wind tunnel results. Of courseﬁ the experiments must involve gust
responses, and thus are different frpm.the more routine oscillating body

‘experiments.

The coupling of aerodynamlbs and the vehicle rigid body and
elastic degrees of freedom has been studled previously. However, it might-
be of considerable interest to re- eiamine this coupling in light of the
findings of the present study. In pbrticular, the aerodynamic excitation
of the lower bending modes may be fo&tuitously'light since these model
frequencies are under 5 Hz. But, thé fifth and sixth modes, which to our
knowledge have not been examined in detall nay suffer direct gerodynamic
exc1tat10n. i

The present computer progr%ms have been run on the IBM 7094.
They should be made operable on the hewer machines (e.g., Univac 1108).
This would be a minor undertaking.



1TI. REVIFW OF [MHORY

In thls scction we briefly review the development of Lhe in-
dicial theory and present the Duhamel. integral approach utlllzing the in-
dicial results. The indicial theory has been described previously in some
detai]l%;léLlZ/, the presentation here will thus be brief. The extension
of this axially symmetric theory to wing-body configUrations,lS through ~
the "equivalent ‘body" concept, will also be indicated.

A. Formulabtion of Indiclal Theory

The indicial problem to be solved can be stated as follows: find
the transient flow field, pressure, etc., on a p01nted body of revolution
" encountering a side gust while traveling al supersonic speed. _U31ng Lin~
eerized potential theory, the problem may be separated into an axial flow
and a cross~flow problem. The latter, which is*of prime concern here, may
' be stated mathematically as follows: '

Find the solution to the linearized potential equation

Ory *

I o

&y +'%§ Bgg = Boixy - Aoy ~ W =0 (1)
r

with the boundary conditions

il

- VoH(T-x) at r = ® , and

St
L2
1
2]
©1
™
It

0 at surface of the body.

The velocity vecteér is the negative gradient of the velocity potential, & .

‘We will write the solution as

=Y+¢ (2)



~vhere

Y= - vgr cos 0 H(T-x) . (3)

~ Now, ¥ sdatisfies Eq. (1) and likewise, § must satisfy (1). The
boundary condi=ions for P become

=0 at r=o (4)
. - R'$, = v, cos & H(T-x)

at the body, r = R(x) . . (5)

The zssoclated problem to the cross~-flow situation which has just
been formulate is the axial flow problem. The steady axial flow solution
is also needed to obtain the required force cogfficients. For completeness,'
'this solution, which is presented by Van D;y'ke5 is also included here. The .
axial flow potential is a function which satisfles (l) and (4), but in place
of (5), we reg:ire

n

e - fop * R, = R'U &t the body, o

1l

r

R(>§) | : "‘(:3) ' O

For clarity, t-e subscript a (and subsequently, ¢ ), denoting axial and
cross~flow potentials, will be used unless the context makes the dlStinCtlon
unnecessary. '

: B; Integral Eebresentation of Solution

To s:lve the transient cross-flow problem, a generalization of the
method of Karim:in and Moore~/ is used. Thils technique involves a superposi=-
tion of basic zolutions of (1) and (4), done in such a manner as to satisfy
reletion (5) &= a discrete number of points. The basic solutions used were
developed in & Zashion similar to the method used by'Strang.lii We will
first look at zolutlons to an axial flow problem, which are essentially
time~dependent sources. Cross~flow solutions can then be easily found as
doublets, by rzans'of the relation ‘

fo = cos 0 26, (7)



Our ba31c solution, ca]led a gust source, can be conceivcd .of
phy51cally as follovs. Consider a coordinate system fixed to the vehicle,
with its origin at the nose of the vehlcle. The x~axis lies along the ve~
hicle axis, pointing aft. The vehlclo is mov;ng in the negative x-direc~
tion with supersonic speed, U . At time t =0 the nose of the vehicle
_encounters a disturbance in the otherwise uniform.upstream flow.

Now,gconsider an arbitrary, superSonic point source loCated at
x = € . This source starts "emitting" at time E/U ; that ig, at the time
required for the disturbance to move a distance, £ , relative to the ve-
hicle.. The various regwons of influence of this source, denoted by lower
case letters, are shown in Figure 1, after it has started emittlng.

The gmaller sphere has the equation
(x-Ut)2 + ® = a2(t-£/U)2 (8)
while the cone has the equation

=E+ Br . (9)

Figurk 1 - Regions of Influence of Moving Point Source

10



The dotted lines represent the locus of interqectionu of the spheres and
associated cones, and have the equation

t

Ly

= Ut - r/B i (10)
The'se lines divide the large sphere into two regions, C and D.
This point source at x = § has the potential f; given by
. v ; '
g = s in (b)
; /2
W on [(x-€)2-p2x2 | /
.‘ V' ;
s s 1 >
Bror= o] 175 in (c') (11)
s [ (x-8)P-8%r
pp =0 elsevhere o
Co v o \ ) " »."n‘i‘:g % o
A distribution of sources along the x-axis, where each source
starts emitting as it crosses a gust front i1s called a gust source. It is

this type of distribu

interest!
=0 and x
the integral

vhere f; is given in (11).

-—
-

Ut. To obtain the total source potential, ﬁa , we evaluate

Polx,r,t) = f f1(x,r,38)E(8) ag
: o . :

The function f(£)., which may be chosen

arbitrarily, represen+s a possible variation of source strength with posi-

tion.

At & point fixed on the vehicle, the integral (12) takes on a

succession of forms as time increases.

At first, the point is in Region E

of Figure 1, it has not yet been affected by the disturbance, and ﬁ =0.
Later, the point becomes engulfed by the disturbance as Regilon D, then c

move by the point as they expand.
Finelly, Region C moves by and the point 1s left in Reglon B.

character.

During this time f; has a transient

i B

tion that is used to find a solution to the problem of
This gust source includes sources located on the axis between

i



At this time, P, becomes a constant value (i.e., steady state). It is
never .in Begion A since the Mach cone defining Region A does not move rela-
tive to the vehicle. '

The disturbances of interest here are cross winds; hence, the
only transient solutions of interest are the cross-flow solutions, obtalined
utilizing (12).and (7). We do need, however, the axlal steady-flow solu-
tlons, so they are given subsequently with the cross-flow case.

At this point the Function f(£) , which is the local source
strength, is still arbitrary. In theory, £(§) is that functlon which leads
to the satisfaction of the surface boundary condition (either (5) or (6)).
If the general solution is placed into the appropriate boundary condition
equation, an integral equation in f(§) results. The integral equation
developed in this way cannot be solved analytically except for certaln spe-
clal body shapes. Therefore, recourse is made to approximate —techniques;
in our case, an extension of the method of Karmen and Moore.:x

Three different forms of the function f£(E) are used, for both

the axial as well as the cross-flow solubtions. These three forms are now
presénted. ' ‘

C. Linear (Gust Doublet) Solution

One useful form of f(£) to be used in Eq. (12) is the linear
form where f(§) is proportional to £ . The resulting potential .is

fo = o) = e /e P

Nl

} . (13)
This is the exaét solution for axial flow over a cane; The con-
-stant, A , is to be determined from the boundary condition (6). The associ-
ated exact solution for steady cross flow over a cone can be obtained using
£(£) proportional to £° and then differentiating according to Eg. (7). -

The solution is extended to the transient case also. The result is}termed
the gust doublet solution and 1s summnarized below.

For Region B,

O

]

Bo=c { cost ™ (x/pr) = (x/8)|(x/pr P-1]

} , (10)
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and for Regions C and D,

Vi

bo = )| gl o + e o]

NOjrr

[ x-Ut+M{(x—-Ut )2+r2]
Br

-
¥ 52r cosh™~

1

+ ﬁar cosh"l(x/Br) - % (x2—~B2r2)2 (15)

In Egs. (14) and (15) the constant, C , is to be determined from
condition (5). (A factor, cos 8 , has also been incorporated into € for
convenience.) Where a choize of signs is given, the upper sign is to be
used in Region C, the lower in Region D. . ‘

E?e axial flow solution given in (13) is the one used by Karman
and Moore,l while the stealy portion of the cross-flow solutlon, as given
in (14), is the one used by Tsien.Z/ It is thus the exact cross-flow solu-
tion for & cone. In princizle, these solutions, together with the unsteady
portion given in (20), are sufficient for use in a Karman-Moore type super-
position for solving for the flow over axially symmetric bodies of arbi-

’ trary‘shape. It is more ccnvenient and economical, however, to make use of
the more sophisticated solutions presented next.

D. Quadratic'Solution

: The linear~type sclution Jjust given is the exact solution for a
cone, and provides an excellent start for obtaining the flow over arbitrary,
pointed bodies. However, t:e derivatives of the velocity components are
discontinuous along the Mack line x = Br . When this type of solution is
used in & Karman-Moore scheze, therefore, a "smooth" result is not obtained.
To obtain redsonable accurscy, many such solutions must be used to meke the
irregularities small.

al !

To avold this pro:lem, a 5f7other basic solution may be used.
This idea was first used by Van Dyk.e5 where he sought the second-order
steady flow based on using solutions of (1)-as the first-order approxima-
tions. A convenient steady axlal flow solution is obtained by using a quad-
ratic function for f£(§) in Eq. (12). The result so obtained is '

13
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by = M%7 {{}ﬂo S(Br/x)e}cosh l(x/ﬁr) - 1. u[}—(ﬁr/x)e] } , (lﬁ)
where A 1s a constant.

The ,corresponding cross flow is obtained by using f(g) propor=
tional to E° in (12) and applying (7). TFor Region B the résult is

it

P C‘{er cosh_l(x/Br) - (x?+252r2)[x2 Bere] /rB } N (17) -

For Reglons C and D

p. = (c/2) {~3xr cosh™ (x/pr) - (X2+232r2)[22_521,2]?2“/]?92‘

]

t sxr cosh ™ [(x-n)/6r ] + [EM2 (x-Ut )-5x] bir/ g°
o (l/rﬁe)[xs(x—Ut)‘+5xUtr2+r2(x—U“G ] / [(x-ut )2+'r2]%
L (/6P ) (38R ) [(x-Ut P ]%} > - (18)
vhere 3
A =Tt -'M[(x-Ut )2+r2]% : (19)
E. "Cormer” Solution |

The two basic solutions presented thus fer are continuous and
serve well for determining the flow over smooth, pointed bodies of revolu-
tion.‘ waever, current space vehicle desigrs are not smooth bodies butb
have several slope discontinuities (or cormers). These corners occur be-
tween stages and cause aerodynamic discontinuities. Rather than approxi-
mate a discontinuity with several continuous solutions,;it is more reason-
able to use a third basic solution which inherently conlains such a behavior.

: Van Dyke~/ first presented such a solution for the case of steady

flov. We giv; his results here together with the extension to gnsteady
cross flow. TFor axial flow, £(§) is chosen proportional to E2, ylelding

14



P, = 2A(x+pr )é[K(k%E(k)] (20)

where A is a con:iant. I«.\-.) and E(x{) are the complete elllptlc inte-
grals of the first =nd secox2 kind with

X~37
= 2790 . 21
e (21)
For the :zross-flow problem .f(;) is taken proportional to 53/ 2

in (12). Arter apzlication cI (7), the result for Region B is

i

1

‘%=-ﬁﬁmxﬁmf{mm4whm&ﬂ - (22)
o Regiea & |
g, = -C {(X/Br)(xﬁr )%{E(k)—(sr/x )K(k)l,
- 2(x/pr ) (+pr )%[E(o:,k)-(sr/x)F(a,k)] |
- (d8r )A%[:rz(x-Ut yr?) / [(x-ut )2+r2]%} . _(23)
ll\nd,, in I.{egion D,

-

po - o {2 #wxwm)@w¢)@ﬁﬂﬂmm]

ot

- (%Br )A%[x %-Ut )+r2] / {(x—U’c )2+r2]? } . | (24)

| ' In the sbove F(a,k) and E(w,k) are the incomplete elliptic
integrals of the firs~ and seccnd kind with

@ = sin” { 2/[x-ﬁr]§} . (25)."‘_
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F. Satisfaction of Boundary Conditions

The three baslec types of solutions are now to be superimposed in
such @ way as to satisfy the appropriate boundary conditions.

The ab§ve elementary gust solutions have their space and time
origins both at zero. A more general solution is obtained by locating the
space origin at 'x = g and the time origin at '

t o=ty = E/U (26)

This is precisely the time required for a vehicle (or part thereof) of
length §; , and traveling at speed U , to penetrate a gust front. The
coucresponding solution is simply obtalned from the previous expressions by
replacing x by =x-§ and t by t-tyx . Let us write such a solution
for axial flow as

The cdmplete solution may then be written

N -
o= 2 Bxya, s (28)
k=1 '

N
> qu’ck . (29)
k=1 '

]

s

The Cyp and Aj are to be determined by applying the boundary conditions
at N points on the surface of the body. ‘
» To aid in determining the constants, consider Figure 2. A se-

quence of values of &y 1is shown on a representative vehicle. Through
each point, &, , is drawn a Mach line,

x - & = Br . (30)

16
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gl gg{gs 54 §5{§6 €7 €s

Figure 2 - Representative Vehicle Showing Control. Points

Consider the intersection of the (n+l)th Mach line with the body
profile. Call this point Py 4y with coordinates (xy41,Tp4) - By eval-
uating the appropriate boundary condition at this point, the unknown coef-

ficients, A, and C, may be determined. For, upon substituting (28) into
(6) and rearranging, ' : ‘

n-1 i n-1

A, = - XL R L -, (31)
arn axy,
and in a similar fashion, using (29) in (5),
n-1 n-1
~Vo cos 6 + 2 Ck‘l’crk"R' > Ck‘l’cxk
_ k=1 - k=1 '
Cn - - _R' . (32)
Wcrn wcxn

17



The second subscript (r or x) indicates partial differentiation with respect
to r or x . ‘The functions *ark , etc., and R' (the slope of the ve-.

hicle surface) are all to be evaluated at the point “Py41 , Or,; more pre-
cisely, an infinitesimal distance upstream of Pp4; , and under Sﬁeadyéstate
conditions. ALL basic solutions for which Xk = ntl have the value zero so
they do not appear in the above equations. Assuming the coefficients for
k<n are all known, the (n)th set can be computed directly. Thus, by
starting at Pp , and progressing downstream, all coefficients may be ob~-
tained. ‘ o

The ¢hoice of types and locations of solutions to be used for a
given body geometry 1s best made in the following manner. Starting at §;-
is a linear~type solution. Following this is a sequence of quadratic-type
solutions, with a corner-type solution added for each slope discontinuity.
Referring again to Figure 2, € 1s the origin of a corner solution, §z and
€, are the quadratic types, §5 a corner type, etc. In practice, £ and
€z eare considered to be separated by an infinitesimal distance so that
BEgs. {3L) and (32) may be applied uniformly, regardless of the solution type.
Van Dyke}g/ suggests, as a rule of thumb for spacing between the other E&'s,
a value 2

AE = BR , approximately , (33)

except for immediately downstream of a corner, where one-half this spacing
is advisable. - .

G. Aerodynamic Forces

The unsteady pressure'coefficient may be written as
Cp = & ovs,-55 - L s5+p%sa0s, , (34)
e re

where terms of (order higher than 2 in the derivatives of & have been
neglected. Now, the potential function, § , is the complete‘perturbation
potential and may be written as ‘

8 =, + f cos 0+ § cos O , (35)

where all ©-dependence is shown explicitly.

18



The‘end result which is desired here 1s not the pressure coeffi-
cient itself, but rather generalized force coefficients, such as

CFZ j~ Cpx IR cos © axdad |, (36)

sbr-‘

where

the pitching moment coefficient about the apex.

B Due to the integration on © , the only portions of Cp which
#... have & nonzero contribution to (36) are those terms involving cos 6 . De-
fining that part, then, as Cp , ylelds o

w

Inserting (37) into (36) gives

g, = u2sb:.£ { f (Bt 0B xR (x)ax - [ ﬂar}écrx‘e’R(x Jax

+ voJfﬂhrx‘R(x)H(Ut-x)ax+32Jr¢gx¢cxx‘R(x)dx} . (38)

The first line of (38) contains the contribution of the linearized
pressure coefficlent. The rest is the result of retaining quadratic terms.
The third line is often considered small compared to the second line and,
hence, neglected. Such 1s not always the case, however, and it is retalned
in the present work.
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The local normal Torce, dCN/dx » is obtalned by differentiating
CFo or, in practice, by evaluating Lhe nlcgland of (38).

~ The theory which involves the use of Egs. (14)-(25) in Eq. (38)
1s termed the full indicial potential theory. A simplified version is also
utilized whichluses only the steady-state (Region B) equations from the set
(14)-(25).  This "quasi-steady" theory implies that the flow over the por-
tion of the vehicle immersed in the gust is at steady-state conditions,
whereas the remainder of the vehicle is not yet affected by the gust. Thus,
the theory accéunts for gust penetration but not for the aerodynamic inertia.

H. EquivaléntiBody Concept

The indicial solutlon presented above holds only for bodies pos=-
eaesing complete axial symmetry. A method for inclusion of the effect of
nonaxially symmetric protuberances is necessary to hwndle certain geom-
etries. For example, the fins and shrouds of the Saturn V generate over
half the total lift of the vehicle, and cannot be ignored. Thus, the tech-
nique of an equiyalent body was evolved.18

Thissconcept, simply stated, is to replace the finned vehicle with
an artificial body of revolution. The latter is designed so as to have the
same steady-state normal force distributions as the original winged vehicle.
The'hypothesisj then, is that the Lift growth of the egquivalent body of revo-
lution approximates the 1lift growth of the body with wings to engineering
accuracy-.

. The application of this concept involves rewriting the expressions
given earlier. From Eq. (38), using (28) and (29), the steady local normal
« force,at the point (%,41,Ry+1), may be written in the form

4aCyy. h

o
- |= F(R V., 2 ¥ E Ay C ¥
d(x/P) n+l( o) 0 L k aky. ktak, ji: k ckr

) (39)

n n :
+ g2 S‘ CpY DAY t* 2 C¥
e N sk 3 Ck?ﬁ,

o0



wvhere F(Ro) "is a function of the reference area. Now, 1f one considers
R and R' as being unknown at the axial position, x Xp+1s then A, -and

C, are also unknown. However, they may be eliminated by means of Egs. (uJ)
and (32).

Uslng the notation
1

n-1 ’
=5 Axtfax. » ete., (40)
k=1 . x
Bq. (39) reduces to
24y R =0 (41)
anfin+l n+l - 4

- where -

ac
an(X,Rn+l)‘= g&i—g—j (Yanx‘ycnx) - F(R ){ c:nX cny,

i

+ (vo -Scn,.) ‘f’tn,c} {Sanr‘l’anx + (U - San,, ) ‘i’anr} ’ (42)

dC

by(x, Rntl ) = " aG/D) /D) (Yan,Y eng * YanYen,)

: F<Ro>{scnxvcnr ‘(v - scnx>}<1 FER) Yan 5 (09)
Ac,:.

Ny
d(x/p)

qn(x,Rn+1) = (‘f'anr‘i’cnr) F(Ro ){Scn Yeny,.

o

+ (vo - Scnr) Yc:g} {(1 + ﬁesanx,) Yan, - B?Sanr‘i’anx} 3 (44)

21



snd the Y's are explicit (albeit complicated) functions of Rpyq » Thus,
tq. (41) represents a relation between the unknowns Ryiq% and Rpyq -and the
knowns dCNd/d(X/D) and the A, and Cp for k <n . A second equation
may be writtep using the definition of a derivative. Assuming xﬁ‘ and
Z,+1 to be close together, we have ‘

RI+R',
Rp+p =~ By + (xn+l"xn) 'E*Eg“l s (45)
Qr
"R _,.-R
Riyy = - Ryte BHL 10 . (46)
Xn.i.—_I‘-xn

[

Equations (41) and (46) are then to be solved simultanecusly for
Ry4p and 3ﬁ+l . The solution 1s carried out by varying R, -until the
difference, E ., , between the solutions of (46) and (41) is zero (or suf-
ficiently small). Care is needed with (41) to insure that the two roots
are not inadvertently interchanged.

This procedure worked well in previous studies,lg/ but is limited
to configurations where the local forces are not too large. The limitation
is that Rﬁ+l mist not exceed the slope of the Mach cone, l/B . Initial
attempts at application of the method to the Saturn V lead to difficulties.

Published data?9/ indicated that the 1ift generated by the Saturn
V shrouds could be approximated by a triangular 1lift distribution, varying
linearly from zerc at the leading-edge of the shroud to a maximum at the
rear of the shroud. We envisioned approximating the lift of the fins in
the same fashion, and superimposing the two 1lift distributions. First, it
was found that the lift over the forward portion of the shrouds (ahead of
the fin location) could be used and an equivalent body geometry generated.
(It was, however, approaching the Mach cone limit and the numeries showed
‘signs of instability.) Secondly, in stepping the solution toward larger
x~values, the lidit of acceptable R' values was exceeded when the fins
vere encountered.' Thus, there was too much lift to be handled in this way,
to this degree of approximation.

The following alternative approach was followed in the present
study. The entire fin-shroud region was replaced by a single conic section.
his conic sectioh was selected (by trigl and error) so as to generate the
same total 1ift as the published data2l required (Figure 3). The section
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Figure 3 - Lift Distribution in Fin-Shroud Region at Mach Number 1.6 -

23



started at the«forward edge of the shroud; the cone angles used are given
in Table I. An indication of the lift distribution so calculated is glven
in Pigure 3. It would be desirable to have experimental data to compare .
this with, but data do not appear to exist which give the detalled lift
distribution in this region. In any case, we believe that any differences
which may exist between the lift distribution used here and the true dis-
tribution would have negligible effect on the vehicle frequency responses
in the 6trouha¥ number range investigated (up to 8§ = 7), since the fin~
shroud 1eglon occuples less than L/15 of the total vehicle length.

TABLE I

CONE ANGIES FQUIVALENT TO FINfSHEOUD REGION

Mach No. gi 9.
1.3 0.71 20,4
1.4 0.65 © 33.0
1.5 0.61 31l.4
1.6 0.58 30.1
1.7 0.56 29.2
1.8 0.54 28.4

I. Duhamel Integral

The indicial force coefficients (38) are linear functions of v, ,
the magnitude of the wind gust. Therefore, the Duhamel integral may be used
to obtain force coefficients resulting from arbitrary winds. -

Given an indicial respomse function f(x,T), the response F(x,t).
to any arbitrary forcing function is computed as a convolution integral,

. i .
P(x,8) = v(o)e(x,t) + f V(@ eT)aE (47)
0’ ’

where v(T) ig en arbitrary forcing function (wind profile) and the prime
denotes the time derivative.¥ '

* Equation (47) involves the response to the unit step, £(x,t), and the de-
rivatlvo of the wind profile. An alternate formlation could be written
which involves the response to a unit impulse (the time derivative of
f ) and thﬁ wind profile. It was deemed easier in this study to dif-
ferentiatégthe wind profile rather than the indicial response.
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By replacing t-T with T , the integral may be rewritten

‘ % ‘ ' ‘
F(x,8) = v(0)r(x,t) +f ) D ar L (as)
‘ 0 . ;

Now, dropping the x~dcbcndénce, nondimensionalizing the wind velocity with
U , and introducing C(t) as a general force coefficient (e.g., CN (%),

GMa(t) , etc.), we have

S
= v(o) 1 av(t-
c(+) _ial Ce(t) + 5'/; g (r) —*éz_J)dT , (49)

where Cg(v) is the indicial force coefficient which corresponds to the
wind-induced force coefficient, C(t).

Since our functions, Cg(T) , all reach a steady—state value (say,
’C ) in a finite time, it is convenient to deal with the difference between
the transient indicial response and its steady-state value. That is, we
"~ dintroduce

G(t) = Cy-Cg (%) (50)»

and obtain -

TORES SRR O IOE -f o(r) 2lt=m) o (51)

It is implicitly assumed above that the response 1s desired to a
wind which has a velocity of zero for 1< 0., and of v(7T) for T=0.
‘The response thus includes, in general, a transient portion caused by the
"Jump" in wind velocity at T = 0 . But, this is usually not of physical
interest. It is furthermore clear that if the indicial response Cg
reaches steady state in time ty , the vehicle wind response at time +t is
- influenced only by the winds from t-tg to t . . Thus (provided t > tg )s

there should be no transient portion of C(t) caused by the jump at '
T =0 . This can be easily shown, mathematically; by simply noting from
(50) that, for t2tg, G(t) 0. We thus have
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. | ‘
c(tzts)=‘—’—%l'és -%f "a(r) i‘f%f-)_df_ . (52)

O .

This form of the integral is the one of most use in the present
study. It invelves only a finite integral, backward. in time, over the range
0 =17 <ty , regardless of the range of t , provided, of course, t 2 t; .
The latter désgmption simply means, physically, that we require the wind
v(t) to be defined for a period of at least tg prior time t .

A wipd profile of particular interest is the sinusoidal wind
v(t) =¥ cos wt . (53)
Substituting (53) into (52) yields the special cdse

C(t) = €4 cos wt + C, sin wt , (54)

where C; and C, are constants given by

—_ t
— S
Cy =< cs-wf G(1) sin U.)Td’r] s (55)
U 0
-1 ptg
Co =%’]- w f G(t) cos wTdT] . (56)
) L Y0

These are the in- and out-of-phase components of the response,‘respectivély.‘
The magnitude of the response is glven by

2 2 :
lcl = C?_'*‘ Co (s7)
whereas the phase angle between the response and the wind*is‘given by '

6 = tan™t (Co/Cy) . (58)
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: In conclusion, Eq. (52) gives the form of the convolution integral
used for arbitrary wind profiles, v(t) , whereas Egs. (54)-(56) are used for
the speciall case of sinusoidal winds. In either case, the indicial response
(actually tbe difference between the transient and steady-state values) is
integrated, after being multiplied by the time derivative of the wind pro-
file. The method of differentiating the wind profile is given in Appendix
II. '

J. Stability Derivatives

The derivatives of the total normal force and pitching moment co-
efficients,”CNa and CMa ,» are interpreted as responses to a sinusoidal
wind in this study. These quantities are computed by the computer programs,
where the wind is written as

»

v(t) =V cos wt . (53)

Since the vghicle velocity is U , the cross flow at any station, x , could
. be written

v(x) = Vv cos(ux/U) (59) |

Thus, the cross flow varies, at any instant of time, with vehicle station
location. The angle of attack, o , used in defining Cy, and Cy, is

" determined from the magnitude of the cross-flow wind
. -1~
@ = tan (v/U) . (60)

. From the above discussion it is obvious that these gquantities,
which are computed from a gust penetratlon approach, differ from the so-
called stability derivatives. To review briefly, stabllity derivatives are
based on three types of vehicle motions.gé/ First, a pure pitching motion
may be defined, in which a reference point on the vehicle describes a sinu-
soidal path in space as the vehicle moves ahead, but the vehicle axis is
always aligned tangentially with the path. The angle of attack, o , is
always zero and the angle of pitch, © , varies sinusoidally. The deriva-
tives usually computed for this motion are CNq and. CMqV, where q = e .
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A sccond motlon, =zlled pure plunging motion, requires the vehicle axls to
remadn at fixed orwitude (say, horizoatal) while a reference point describes
a sinusold in spa:ez (i.e., a purely translatory motion). Here, the pitch is
zero and the angls of attack varies. The stabllity derivatives; here, are
CN& and CM& . The third motion is most easily'described by'imagining a
model mounted in z wind tunnel with uniform upstream flow. ' The model is
then forced to,urizrgo sinusoidal rotary oscillations about a reference
point. It may ,be shown in this case that « and 6 are equal, and the
stability deriwvati—es are obtainable from the other two mﬁtions as - Cy +CNa

and Cy +CMa (the so-called pitch damping coeff1c1ent)

The poirt we wish to stress is that none of these three situations
are physically:the same as sinusoidal gust penetration. Thus, the deriva-
tives cannot cerrzcztly be compared, except in' the limit as the frequency
approaches zero. It is unfortunate that even the Jnterpretatlon of the
synbol for angle -7 attack, o , is not consistent. For the ‘three motions
just discussed, ¢ is constant along the vehicle length (although it may be

time~dependent ), ~~hereas it varies along the vehicle during gust penetra-
tion. ' '
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Iv. APPLICATION TO SIMPLE GEOMETRICAL SHAPES

b

A. TIntroductory Eswmarks

Numericel results are presented in the following sections which
illustrate the effsct of frequency of sinusoidal winds on the aerodynamic
characteristics for various body geometries. Freguency response calcula-
tions were carried out for five typical pointed bodies of revolutlon The
body geometrics ccrsidered are as follows:

l. Rig:rt circular cone

2. Cowvex parabolic ogive
3. Concesve parabolic ogive
4. Cone-cylinder

5. Ogive-cylinder

These bciy shapes were chosen, first, because they possess the
basic types of curvature, and second, because some theoretical results are
~available with which to make comparisons. '
The fregaency response of the slope of the normal force coef-
ficient, CNa s, the slope of the pitehing normal cosfficient, CMa , and the

local normal. forcs coefficient, dCNa/&(x/D) , were computed for each con-

figuration. Both *he full potential theory (noted by K=5) and the quasi-
steady potentiasl *heory (K = .3) were used in calculating CN and CMa 5

while dCNQ/é(x/D\ was_computed using only the full potentlal theory.

The freguency ranzs used corresponded to a Strouhal number range of
0= fL/U <2 , vhere f = frequency (Hz.) , U = free stream velocity, and
'L = characteristiz length, taken as unity. (A value of fL/U = 1 corre-
sponds to a frequexncy with wavelength equal to L .) The cones,‘ogiVes
and nose sections of the cone-cylinders and ogive-cylinders were of unit
length.

Before troceeding to a discussion of the various results obtained,
- we first point ou: a common feature which was observed and must be kept in
mind in examining =11 of the frequency response data.

The. frezaency response curves obtained of the simple geometries
can be cast into <wo main types: (1) those curves which have a maximum

response at zero Impressed frequency, and (2) those curves which have a
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maximun response at nonzero impressed frequency. In general, the curves

of the type 1 are associated with the indicial responses which reach
steady-state values without undergoing an overéhoot.' The type 2 curves .

are associated with the indicial curves which exhibit an overshoot. (See
Refs. 13 and 17 for the type of indicial responses indicated, and Appendix

I for further discussion of the relationship between indicial and sinusoidal -
responses. ) '

THe presence of a maximum response value at nonzero frequency is
important. ‘It indicates those geometries and Mach nunber ranges for which
frequency effects are important. An underestimation of the aerodynamic
coelficient '‘could ensue if a low order frequency expansion theory were used
to calculate an aserodynamic coefficient which should exhibit a maximum fre-
quency response at a nonzero frequency. Conversely, a conservative esti-
mation of the aerodynamic coefficient could' ensue if the frequency response
attenuated rapidly from a maximum value at zero impressed frequency.

B. Cone Results

The numerical results for the frequency response of right cir-
cular cones are presented in this section. The cone configurations con~
sidered are presented in Table II along with the Mach number range
investigated. ‘

TABLE IX

. CONE CONFIGURATIONS EXAMINED

Semi~Vertex Angle . Mach Number‘Range
2.87° (& = 0.05)% 1.25 to 3.0
5.72° (e = 0.10) 1.25 to 3.0

10° 1.25 to 3.0

15° 1.25 to 3.0

20° 1.25 to 2.5

30° 1.5 to 1.9

33° \ 1.667 and 1.82

% € is the ratio of the base radius to body lehgth (fineness ratio).
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The local normal force coefficients were evaluated at the end of
each cone. A pitch axis location at the nose was chosen for the cones and
other simple geometries.

First, the zero-frequency results are examined, as a review,
since this allows a direct comparison of the present results with those
of other investigators. :

Plots of CNa and CMQ at zero frequency are presented in

Figures 4a and 4b, respectively, for the cones examined. These plots show
the influence of Mach number and cone angle on these stability derivatives.
CNa and CMa for cones up to and including 15° semi-vertex angle are

almost insensitive to Mach nunber while they tend to increase with Mach
number for the 20°, 30° and 33° cones. For a given Mach number the values
of CNd and CMa are scen to become smaller with incregsing semi-vertex

angle. These zero-frequency values of € and Cy ¥ are also the maxi~
Ny My

mum response values for the frequency range-investigated.’ The only excep-
tions found to this were the K =5 CMa values for 2.87° cone at M = 1.25
and 1.5; and the 5.72°, 10°, and 15° cones at M = 1.25 . The maximum Cu,

values for these cases were not larger than 5 percent of the zero-frequency
. values and generally occurred at a Strouhal number of 0.15. Thus, it can
be said that the frequency response curves for the cones are of type 1 with
the exception of Cy  for slender cones at low Mach number, using the full
potential theory. ‘ 1 '

Plots of Cpy, versus Mach number for 2.87° (€ = 0.05) and 5.72°

(e = 0.10) cones, using several theories, are presented in Figures 5a and

5b (note the expanded scale).- The present zero-frequency results (noted by
a s0lid line) are compared with the quasi-slender-body theory of Platzer-
Hoffman,ﬁ/ Sims' exact fesults,gg/ the "exact" first-order theory of Tobak
and Wéhrendgé/ and slender body theory. The Platzer-Hoffman work is based
on an expansion of the cross-flow potential with respect to frequency.

Their results are restricted (including those restrictions imposed by lin-
earized theory) to a value of the hypersonic similarity parameter 2Me < 0.3
and by kM << (M - 1) . Sims' results are based on the exact nonlinear cone

solution.

Slender-body theory, as to be expected, becomes more conservative
(Larger CNQ values) compared to the more aeccurate theories as both Mach

"nunber and cone semi-apex angle increase. The present zero~frequency results

. * The present theory dictates that the XK = 3 and 5 Vaerédynamic representa~
tation yield the same steady-state or zero-frequency value.
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gre slightly more conservative than the first order exacL', qua31~slender—
,body theory and Sims' "exact" for these two cones.

A comparlson of CN values obtained from the present potential
thecry, with those obtained by other investigators, is given in Table ITI1
for various : cones at M = 1.5 . It can be seen that the agreement of the
potential theory-W1th the results of Platzer and Hoffman and Tobgk and
Wehrend is good for cones of semi-vertex angles up to sbout 5° to 10°.

Yor cone angleo of 10° and larger,* the present potential theory becomes
more conservatlve compared to those above mentioned investigators' results.
tHlowever, for the larger cone angles, the potential results have the same
trend and compare favorably with those obtained by Simsgg/ and Brong.gé/

The effect of freguency on the aerodynamic characterigtics will
now be discussed.

Plots of the frequency response of CNQ and CMQ are‘presented

in Figures 6a through 10b for various cones at Mach nurber of 1.5. The re-~
sults obtained from the quasi-steady potential theory (K = 3) are given by
the solid line while the full potential theory results (K = 5) are given by
the dashed lire.

A1l of the Cy, curves bave about the same character. The re-

sponse attenuates with increasing frequency; and the rate of attenuation is
greater with the full potential theory. No resonances occur in the fre-
quency range investigated.

The CMd curves also have about the same character. Again, no
resonances are observed. For slender cones the K = 5 response is nearly
flat for low frequencies, gnd then drops off rapidly. For the larger cones
the response attenuates with frequency more rapidly for X = 5 than for
the quasi-steady case.

Values of CN and CMQ are predicted by the exact theory of

2/ are plotted on the zero-frequency ax1s in Flgures 6 through 9
for purposes of comparison.

* The deviatidn of the potential theory results from those of Platzer and
Hoffman for cone angles of 10° and larger is to be expected since
2Me > 0.3 for these cone angles at M = 1.5 .
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The effects of Mach number on the frequency response of CN&
and CMd for a’'10° cone are shown in Figure 11. The quasi-steady theory

is insensitive to Mach number; however, the X =.5 curves are dependent
on Mach number. It is seen that as the Mach number increases, the K =75
curve approaches the K = 3 curve. This is to be expected since the aero~
dynamic .inertia effects tend to decrease with increasing Mach number.

The frequency response curves of dCy /h(x/D) for all the cones

are of the type 1 curve, i. e., the curves have a maximum value at zero-
frequency, then attenuate as [requency increases. The zero-frequency values
of dCy, d(x/D) increase with increasing cone angle (0.3990 for € = 0.05

and 3.61 for 33°). The attenuation of the frequency response curves has a
tendency to become more rapid as cone angle increages. For each individual
cone, the shape and rate of attenuation of the frequency re3ponse curves
are almost independent of Mach nunber.

€. Convex and Concave Parabolic Ogive Results

The numerical results for the frequéncy response of convex and

" concave ogives are presented in this seCtﬁon. The body geometry of the

' ogives is the same as that used in Ref. 6:

Convex ogive, R(x) = ex(2-x) 0 sx =1

‘Concave ogive, R(x) = %; (1+x) osxs1 |,

where € 1is the fineness ratio. Two values of body fineness ratio,
= 0.05 and 0.10 were investigated for each type of ogive. Frequency

;'response ‘calculations Tor the aerodynamic characteristics were carried ouﬂ

for each of the four conflgurations over a Mach number range from 1.2 to
3.0. The local normal force coefficients were evaluated at the end of each
body geometry (x = 1).

Plots .of CNa and CMd at zero fregquency versus Mach number for

the convex ogives are presented in Figures 12a and 12b and for the concave
ogives in Figures 13a and 13b, respectively. The present zero~-Ifrequency N
resulis¥* }noted by a solid line) are composed with quasi-slender-body theory
results,g Sims' method of characteristics,QLg§7 and slender-body theory.

- * The zero-Trequency values of CNa and CM& are also the maximum response

values for the frequency range investigated. The effect of frequency
on the ogive stability derivatives will be discussed shortly.
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These plots show a significan# influence of Mach number and body
thickness on the two stability derivatives (except for slender-body theory
which is independent of both Mach number and body thickness). The three
more accurate theories show that the convex ogive CNa and CMQ values
increase with both Mach number and body thickness, while the opposite is
true for the concave ogives. Closer agreement between the present results
and those of guasi-slender-body theory is obtained for the € = 0.05 ogives
than for the .€ = 0.10 ogives. '

The zero-freqﬁency potential theory results for both ogives ex-
hibit about the same trend with Mach number and body thickness as do the
exact results of Sims. For the convex ogives the present Cy, and CMy

results agree well with Sims' results, with the worst agreement being an

8 percent overestimate of CNQ at M =3 for the 0.10 fineness ratio.

CNa and CMQ for the concave ogives, as predicted by potential theory,
are consistently conservative compared to Sims' results for the Mach nurmber
range investigated; the largest discrepancies are 4 percent for e = 0.05
and 4.6 percent for the e = 0.10 concave ogive, occurring near the high
Mach number end.

The effects of frequency on the ogive stability derivatives will
now be discussed. Plots of the frequency response of CNa and CMQ for

the ogives are presented in Figures l4a through 17b for M = 1.5 and 3.0.
The results obtained from the quasi-steady potential theory (K = 3) are
given by the solid line while the full potential theory results (K = 5) are
given by the dashed line.

All of the ogive frequency response curves ave of type 1 in that
the maximum response occurs at zero frequency. The CNa curves for the
convex ogives attenugte to a minimum value (between a Strouhal number of
1.25 and 1.5) followed by a small rise to a second maximum. The CMQ con~
vex ogive curves behave similarly, except that the minimum occurs (if one
is present) at higher Strouhal numbers. The more accurate theory, full
potential theory, tends to give slightly higher results than the quasi-
steady theory. '

The Cy, &and Cp, curves for the concave ogives also attenu-
ate as freguency increases. The full potential theory here leads to values
which are smaller than the cofresponding quasi-steady results.  The sta- |
bility derivative curves are seen to be almost independent of Mach number,
with the exception of the K =5 curves for € = 0.10, which show a mild
Mach number dependence at the very high frequencies. '
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The frequency response curves of dCy, 3(x/D) for the convex
ogives (not reproduced here) are of type 2 (maximum response value located
at nonzero freguency), while the concave ogives are of type 1. For a given
Mach number, the maximum value of dCy, d(x/D) for the convex ogives in-
‘creases as € increases. Also, the maximum value increases in magnitude
and moves toward*hlgher frequencies as the Mach number increases. = The fre-
quency responses ‘of dCN d(x/D) for the concave ogives are very similar
to those found. for cones. However, here, the curves are slightly more Mach
number dependent las fineness ratio increases.

D. Cone~Cylindext Results

}

The numerical results. for the frequency re8ponselof cone-cylinders
are presented in this section. ‘The corie~-cylinder configurations considered
ar~ ~resented in Table IV along with the Mach number range investigated.

TABLE IV

CONE-CYLINDER CONFTGURATIONS EXAMINED

Semi-Vertex Angle Mach Number Range
é° 2.0
©10° 1.25 to 3.0
©20° 1.25 to 2.5 -

The 5° cone-cylinder was 20 calibers (diameters) long, while the 10° and
20° cone-cylinders were each 10 calibers long. The slope of the pitching
moment coefficient, CMa ; uses the cylinder diameter as a reference length.

Figure 18 shows the steady~state local normal force coeff1c1ent
on a 5° cone—cyllnder for Mach number 2.0, and indicates excellent agree-
ment between the present potential theory and the exact solution. 25/ (See
Refs. 6 and 17 for a complete discussion of the steady-state results.)

Also shown in the figure is a half cross section of the configuration with
various station locations indicated. Station 1 corresponds to the shoulder,
while station 8 is at the aft end of the configuration. The fregquency re-
sponses of the local normal force coefficients were evaluated at M = 2.0
for these various stations from the shoulder to the end of the configura-
tion. 1In addltloﬁ; the local normal force coefficients were. computed near
the point of maximum negative steady-state dCN /ﬁ(x/D for- the 10° and 20°
cone- cylindéf 50.
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Typical steady-state, total indicial response Tesults For the
cone-cylinders examined were presented in previous publications;5;17/
These results were compared with slender-body theory and with the exact
results of Sims.25/ The present potential theory and Sims' exact method
were found to yield nearly the same CNa values for the 5° cone-cylinder,
whereas the slender-body theory is more than 10 percent low. Similar re-
sults were found for the 10° cone-cylinder CNa values, where slender-body
theory was unconservative by over 30 percent. '

Figure 19 shows a typical indicial 1ift growth curve for a cone-
cylinder. The pvershoot in the response to a unit step is indicative of an
underdamped system (see Appendix I). Thus, a type 2 frequency response
curve (exhibiting a resonance condition) is to be expected. The following
discussion exemplifies this prediction. ‘

Typical plots of the frequency response of CNa and CM& are
presented in Figures 20a and 20b for the three cone-cylinder configurations
at M= 2.0 . (These results are obtained from the quasi-steady potential
theory.) The results indicate that the response amplification at resonance
increases with increasing cone angle. Furthermore, the resonance occurs at
lower frequency for the larger cone angles. More will be said concerning
the maximum response values of CNa and. CMQ after the effect of aero-

-dynamic representation is discussed.

The efifects of the aerodynamic representation on-the frequency
responses of CNa and. CMa for the three cone-cylinders are shown in

Figures 2la through 23b for M = 2.0 . The quasi-steady (K = 3) results
are given by the solid curves, while the full potential theory (K = 5) re-
sults are given by the dashed curves. The latter results, for the 20° cone-
cylinder, are gquestionable beyond a Strouhal number of about 1.0 because of
loss of numerical resolution. The other curves are considered valid for
the frequency range shown. ‘

In general, the K = 5 curves for both CN& and >CMd have

slightly larger maximum response values than their X = 3 counterpart;
There is a tendency toward a frequency shift for the maximum values in
going from the K =3 to the K =5 curves.

The domlnant features of the CN snd CMa frequency response

data for the 10° and 20° cone-cylinder data aré summarized in Figures 24z
and 24b.
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In these figures, the peak response values (irrespective of frequency) are:
compared with the zero-fresuency (steady-state) data for the Mach number

range investigated. Here 2t is further illustrated that the maximum K = 5

responses are larger than the corregponding pegk values for K = 3 for
both Cy, and Cy, . The vertical deviations of the K = 3 and 5 maximum
frequency response curves Zrom the zero-frequency curves is a measure of
the overshoot. '

Ratios of maximu frequency response to&zeré-frequenéy response
of the cone-cylinder stabllity derivatives were computed and the results
are shown in Table V. '

TABLE V

RATTOS OF MAXTM.>! FREQUENCY RESPONSE TO ZERO-FREQUENCY -
RESSONSE FOR CONE CYLINDERS

Semi-Vertex Mach . CNa CMa

Angle “No. K=3 - K=65 K=3 K=5

I 5° 2.0 1.0052 . 1.0174 1.1697 - ‘1 1.2652

S : a b T

10° 1.25 1.0004 - 1.0318 1.1136 1.4361

1.50 1.0191 1.0325 1.2652 1.4842

1.75 1.0%86 1.0669 1.3723 1.5503

2.0 1.0489 1.0923 1.4378 1.6075

2.5 - 1.0349 1.0846 1.3733 " 1.5707

3.0 . 1.0033 1.0363 1.1748 1.3413

20° 1.25 1.0428 1.0704 1.4127 1.6425

~ 1.50 -1.0686 1.0854 1.5768 11,7864

1.75 1.0679 1.1076 1.6647 1.9013

2.0 1.0722 1.1091 1.6856 1.9189

2.5 1.0440 1.0724 1.6236 1.7572

From this table it is agaln seen that the maximum X = 5 frequency re-
sponses are larger than the K = 3 responses for both CNa and CMa .

Furthermore, for each cone-cylinder, the magnitude of the resonance is a
maximum, for both Cy = eari CM& , at (or about) M = 2.0 . Also, higher
resonances are noted for Iy, than for Cy, - ’
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Frequency response curves of the local normal force are presented
in Figure 25 for stations 1 through 4 of the 5° cone-cylinder at M = 2% ,
Stations 2 and 3 bracket the maximum negative indicial potential - - aCyy, /h(x/D)

value. It is seen that the frequency response curve for staulon 1l is of
type 1. The other curves shown are of type 2 with the station 2 curve show-
ing the largest relative response at resonance. This is also the station
closest to the point of maximum negative dCy /&(X/D) The frequency re-~

sponse curves for stations 5 through 8 are not presented since they have
nearly zero magnitude. e

‘ The local frequency response results shown for the 5° cone-cylin-
der are indicative of the results for the other cone-cylinders. TFor a given
station locatién, the maximum dCpy /h(x/D) velue tends to increase with
both Mach numbé&r and cone angle. Ihls is espe01a11y true for the frequency
response right at the shoulder.

The cone-cylinder data pfesented exhibift a resonance in the fre-
quency response behavior. The presence of 'a maximum freguency response at
nonzero impressed frequency is extremely important in that an urderestima- -
tion of the aerodynamic coefficients could ensue if a low order frequency
expansion theory were used to calculate cone-cylinder stability derivatives.
Ogive cylinders, being similar to cone-cylinders, might also be expected to
exhibit a resotiance phenomena in their frequency responses. The next section
shows compariséns which bear out thls hypothesis. ' b

!
'

E., Ogive-Cylinder Results

' The numerical results for the frequency response of an ogive-
cylinder are presented in this section. The body geometry is tre same as
that used by Platzer and Sherer26/ and Bond and Packara2l/:

R(x) = X (1 - 0.5 %) 0£x s1
3 :
R(x) ‘= 0.16567 1 <x < 3.3333

For this configuration, the fineness ratio, € » is 0.05 and uhe nody is °

10 calibers long. Frequency response calculations for the total aerodya
nemic characteristics were carried out over a Mach number range Ifrom 1.1 to
2.6. The pitching moment data used the body diameter as a reference length. -
Local normal force coefficients were evaluated for the above Mach number
range at various body stations from the end of the ogive (x = 1) to the end
of the configutation.

* See ‘Figure 18 for the station locations.
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The frezuency response results obtained for the € = 0.05 ogive-
cylinder show max: similarities to those presented for the cone-cylinder
confTiguratlions. That is, the frequency response of CN and CMQ undergo

a maximum respon,v at a nonzero impressed frequency. This isveXemplified
in Figures 26 thrcugh 28. ‘

Pldtsiof the frequency response of CNQ and CMa are presented

in Figures 26a ari 26b for several Mach numbers. These results utilize the
quasi~-steady thecz . It can be seen that the maximum response values in-
crease while the :;equepcv at maximum response tends to decrease with in-
creasing Mach nu”“-r, in this Mach number range. A few small resonarnces
are also noted ir. The higher Mach number curves as frequency increases.

The effz2ts of the aerodynamic representation on the frequency
response of CNQ end C:, for M= 1.6 and 2.6 are shown in Figures 27a
torough 28b. In zeneral, the full indicial theory results for both CNd

<

and CMd are larzsr than their quasi-steady theory counterparts for the
frequency range ccnsidered.

The dOW'“ant features of the og1ve~cy11nder CNQ and CMQ fre-

quency response.Gzza are presented in Figures 29a and 29b. 1In these figures,
‘the maximum CNv' end Cpr, frequency response. values are cpmparediwiph the

zero-freguency ACt:ady~state) data for the Mach number range investigated.’
The maximum X = £ freguency response values are larger than the maximum
= 3 wvalues for toth CNa and CM& . For CNa the percentage difference

is 5 percent or le:zs over the entire Mach number range. For CMd the full

indicial theory rrzdicts maximums which are 15 percent hlgher than those
from the simpler <treory Zor Mach numbers over 1.6. The difference increases
to 30 percent at llzch nu:@ers of 1.1 and 1.2. ’

RathS ¢ maxirum frequency response to zero-frequency response
of the ogive-cylirier stebility derivatives are presented in Table VI.
The trends evider in this table are very similar to those mentioned in the
discussion of the zone-cylinder results. In particular, the maximum reso-
nance again occur:z a2t or near M = 2.0 . It 1s interesting to note that the
c o (K_; 3) maxi-on freguency response for M=1.1, 1.2 occurs at or near

zero frequency (i.z., there is no resonance).
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TABLE VI

- RATTOS OF MAXIMUM FREQUENCY RESPONSE TO ZERO-FREQUENCY
' RESPONSE FOR € = 0.05 OGIVE CYLINDER

Cn,, Cn,

Mach No. K=3 K=5 K=3 "~ K=5
1.1i 1.0000 1.0270 1.0187 1.3174
1.2 1.0000 1.0465 1.0941 1.4251
1.6 1.0315 1.0731 1.3945 1.6237
2.0 1.0518 1.1013 1.5558 1.7701
2.4 1.0472 " 1.0974 1.5547  ° 1.7778
2.6 1.0363 1.0826 - 1.4840 1.6978

A comparison 1s given in Figﬁres 30 and 31 of the present poten-
tial (gust) theory results with oscillating body results of Bond and
Packard,gz the apparent mass theory, and experiment.gz The frequency
response of CMa versus Strouhal humber‘is presented in Figure 30 about
an axis at the midpoint of the vehicle length (xg = 0.5). bMa values
about several axes versus Mach number at 10 Hz. are shown in Figure 31.
Bond and Packard's results are based on the solution to the time-dependent
linearized potential equation using linearized approximations for both the
boundary conditions and pressure coefficient. The apparent mass theory is
a low order, frequency-dependent slender-body theory.

The difference between the present potential theory and the other
two theories (and experiments) was explained in Section III-J. Briefly,
the indicial gust technique is the approach used in this investigation to
compute the aerodynamic frequency responses to a prescribed sinusoidal (with
axigl position) cross wind. The other two theories presented (Bond and
Packard and spparent mass) and the experimental results correspond to an
osclllating body placed in a steady flow. The transient effects in the two
cases are different. Thus, the only legitimate comparison is at zero fre-
quency. However, the trends of the two physical situations wi%h increasing
frequency are of interest.

From Figure 30 it is seen that the trend of the present gust
theory and frequency is opposite to that of the Bond and Packard and sppar-
ent mass theory. Near zero frequency, potential theory is conservative
compared to the other theories and experimental results.
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From Figure 31 it is scen that for f = 10 Hz. potential theory yields

the same trend with liach number as do both the experiment and Bond and
Packard's results.

The results concerning the frequency response of the local normal
force coefficient for ogive-cylinders are similar to those obtained for the
cone-cylinders. The response curves (not presented) for M ="1.1, 1.2 and

1.6 are of type 2 (contain a resonance) for all stations considered. ¥or
"M =2 and larger, the responses at x = 1 are of type 1, while the re~
sponses at the,iemaining stations are of type 2. Tor all Mach numbers con-
" sidered, the maximum response value at each station decreased as distance
increased downspream from the ogive-cylinder junction. For M 2 1.2 and

any given station location, the maximum frequency response of dCNd/a(x/D).
increased with Mach number.
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V. FREQUENCY RESPONSE OF AERODYNAMIC FORCES FOR SATURN V

The frequency responses for total normal force and pltching moment
and the local normal forces for the Saturn V are presented in-this section.
The Mach number range considered was 1.3 to 1.8, while the frequenc1es
ranged from J to 10 Hz for all cases, and extended to beyond 25 Hz in many
instances. The corresponding Strouhal numbers, fL/U s ranged from
about 0 to 3, or O to 7, respectively.¥ The actual upper limit of S is
Mach number depcndent, since U is nearly proportional to M . See Section .
. VI for the Mach mumber .- density relationships used.

. Figure 32 shows the local normal force distribution (at M = 1.3)
for the vehicle geometry used in this study. The vehicle geometry was that
specified in MSFC drawing 10M04106, rev. M (the SA501). The local normal
force over the fin-shroud region is an approximation, based on using an
"equivalent" conic section for the body shape. This approximation leads to
the correct total (integrated) normal force in this region. See Section
III-H for additional discussion of the approximation. Also indicated in the
figure are the locations of the 17 stations atfwhich local normal force fre-
quency responses were calculated. ‘

. The indicial normal force and pitching moment coeff1c1ents are

' shown in Flgure 33 for a Mach number, M, of 1.3 These arg the coeffi-

cients, CNQ and Cp, , which indicate Qhe response to a step wind gust,

" and are expressed in rad?l. The nondime&sionalizing length used is the
vehicle dismeter of 10.058 meters (33 ft.). The results obtained from the
full potential theory are indicated by the solid lines, whereas the “simpler,
quasi-steady potential theory yields the dashed curves. The time required
for steady-state conditions to occur is about 0.27 sec. for the quasi-~steady
theory and over 1.1 sec. for the full potential theory. In the latter

~case, however, nearly steady conditions have been obtained after 0.41 sec.
The full potential theory response, as a function of time, appears to have
more higher-frequency content than the simpler theory, as evidenced by the
peaks and valleys associated with the vehicle staging. The wavelengths

|

* The integration step for calculating frequency responses is affected by
the time interval used in the indicial response calculations., Assuming
that five points per cycle are required to maintain acceptable accuracy,
‘all of the results calculated to 25 Hz were not considered valid. In
particular, the total responses are valid only up to 8§ =3 for M= 1.5,
1.6, 1.7, 1.8 (K =3) and M= 1.3 (K = ’
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associated with these peaks and valleys are very short, however, when com-
pared with the vehicle length, so they would not be expected to have much
influence on the frequency response curves until the Strouhal number exceeds,
say, 5. _

When the indicial responses, of which Figure 33 was an example,
are integrated in the Duhamel sense, frequency response curves such as are
shown in Figure 34 result.* These curves were obtained from the quasi-

- steady theory, and clearly show several resonance frequencies which when
expressed in terms of the Strouhal number, are nearly independent of Mach
number. In addlblon to the maximum at zero frequency, the normal force
response clearly shows four resonances, with a fifth indicated at a Strouhal
number of slightly over 7. The first two resonances are so close together
that the peaks have overlapped. The true peaks, when separated (assuming
separation to be possible) would be somewhat further apagt than they appear
in the figure, This may be readily shown by simply adding (elther graphi-
cally or analytically) two curves (Gausulan, for instance) which overlap
puv.t that the respective peaks are relatively close together. -The pitching
moment results show the same resonances, at nearly the same frequencies, -
except that the first two peaks have coalesced into one.

It has been postulated that the~staging of a launch vehicle such
as the Saturn V might lead to a resonance-type of response for certain
wavelengths. To examine this possibility, the resonance wavelengthu indi-

_.cated by Figure 34 were compared with the interstage distances. Theré are
four conic sections which contribute to large normal forces: +the command
module; the Lunar Excursion Module; the interstaging between the S-IVB and
the S-IT; and the engine shroud region. Thus, six interstage distances ‘
can be ascertained. The aft end of each conic section was more or less
arbitrarily selected for determining the interstage distances, since the
local normal force is maximum there (see Flgure 32). Table VII presents
the results of +this comparison. k '

- The comparison, although not conclusive, presents sirong evidence
that the resonances are correlated with the interstage lengths. It must be
recognized in making any comparisons that each of the cbnic\septions is of
8 different geometry with a different normal force distribution. Thus, one
should not expeéct very "pure" results as concerns the frequency content.

¥ These responses are dimensional, and correspond to a’cross-wind half-
amplitude ‘of 1 meter/sec.
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TABLE VIT

WAVELENGWHS OF MAXIMM FREQUENCY RESPONSE OF TOTAL
NORMAL FORCE FOR SATURN V

= £1/U Wavelength Interstage
Wavelength (Approx.) (Approx.) . Tength “ Iocation of
Number ~ (cycles) (meters) (meters) . Measurement
1 - Not Observed Kot Observed 94.8 C.M. to Shroud
2 . L.3-1.4 76-82 81.6 L.E.M. to Shroud
3 P.2-2.4 4448 62.8 5-II to Shroud
4 ¢ B.5-3.7 29-30 31.8 C.M. to 8~II
5 5.4-5,5 19.4-19.7 ' 18.8 L.E.M. to S-II
6 7.27 14.8% 13.1 C.M. to L.E.M.

“

It can be rationalized that the first wavelength (94.6 meters) was not.ob-
served because (1) 1ift produced by the command module is very small; and/or
(2) a resonance does occur but it is masked by the higher resonance at the
nearby wavelength of about 82 meters (S values of 1.13 and 1.30, respec-
tively). The poorest agreement is associated with the third wavelength
(which is nearly obscured by the second in Figure 34) and the sixth wave-
length (which unfortunately is not clearly defined by the available data).
"Neyertheless, we¢ believe the comparison is meaningful and not due to chance.
It would be of interest to modify the geometry (e.g., remove the fin and
shroud conic section) to see if corresponding alterations in the frequency
response were observed. .

The amplitude of the resonances are, in all cases, less than the
zero-frequency amplitude. Table VIII presents the ratio of peak response
to zero~frequency response for the cases studied. It is seen that the so-
defined relative response tends to decrease with increasing Mach number and
with increasing frequency. The implication is that, although resonances do
occur, the resulting aerodynamic forces are less than would be predicted by
a steady flow theory. On the other hand, a frequency expansion theory would
probably not show% the resonances at all, so may underestimate responses at
the higher frequéncies.

One more point of interest in these response curves is the occur-
rence of the very low minimum near S = 0.75.~ This indicatés a cancellation
effect wherein the net aerodynamic responses are substantially lower than
the zero~frequengy responses. In particular, sinusoidal winds with a ﬁave—,
length of 100-200 meters should cause negligible aerodynamic responses com-
pared with longer wavelengths or wavelengths of around 80 meters. This is
particularly true of the normal force and, to a lesser degree, of the
pitching moment. '
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TABLE VIII

RELATIVE RESPONSE AMPLITUDES AT RESONANCE FOR SATURN V

Max. Force/Force (w = 0)

Wavelength

Number M =1.8 M=1.7 M=16 M=15 M=1.4 M=1.3
l = = - - = -v
2 0.64 0.66 0.69 0.70 0.73 0.75
3 0.54 0.54 0.55 - - -
4 0.61% 0.59% 0.58% 0.57% 0.76 0.80
S - - - - 0.59 0.63
6 - - - - - ° > 0.56

Max. Moment/Moment (w = 0).

l. - N - - '— - )
2 0.87 0.88 0.90 0.89 0,93 0.94
3 - - ) - - -
4 0.75% 0.68% 0.65% 0.60% 0.87 0.89
D - - - - ' 0,75 10,78
6 l

- - - - - > 0.64

"\\,

% Frequency exceeds approximate limit of validity.

Figure 35 shows the  comparison of the guasi-steady theory with
the full potential theory, for a Mach number of 1l.3. Within the range of
validity the theories show the same general trends, although the full poten-
tial theory indicates resonance at a somevhat lower frequency..

The large peak at S = 6 for the full potential theory is pos-
s8ibly Just an indication that the numerical solution is, in fact, invalid at
this high frequency. On the other hand, there mey be some physical signifi~
cence to this peak. There 1s evidence of a nearly periodic buildup of 1ift
from the command module to the forward portion of the S-IT stage (see Figure

' 33)., During this time, two clearly defined oscillatory cycles are seen,
for K=5 . This agrees nominally with the occurrence of a high frequency .
response at S~ 6 . A 1ift buildup also occurs for the quasi-steady theory
but the curve lacks the distant oscillatory character associated with the
"~ overshoots and undershoots characteristic of the other theory.
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Thus, many of the frequency response results for total normal
forces and pitching moments can be easily related to the physical gecmetry
and phenomena. The frequency responses of local normal forces; discussed
next, are more difficult to interpret.

The frequency response of the local normal force was computed at
several vehicle stations and Mach numbers for 0 < £ < 25 Hz . The type of
responses obtained are indicated by Table IX. Several trends are noted. '
First, a resonahce condition is not apt to occur at a station oin & conic
section, but is. likely at locations on the cylindrical portions. (See
Figure 32 for station locations.) In addition, more resonances on the cylin-
drical portion are likely to occur at large distances downstream from a cone-
cylinder junction, although they may be 1ess‘important since the magnitude
of the aerodynamic force (steady-state) decreases rapidly with this distance
(again, see Figure 32). Finally, the number of resonances is Mach-number
dependent, usually (but not always) decreasiqg at the higher Mach numbers,

Examples of the local normal force frequency response curves are
‘presented in Figure 36, at M = 1.3 , for six selected stations. It is
interesting that the responses at 43,733 and 43.735 are so different. These
stations are located either side of the cone-cylinder junction at the forward
end of the S-~II stage. Of course, viscous flow effects, separation, and/or
shock wave effects would be expected to alter the situation, perhaps greatly.
However, the basic difference in the flow,‘which is being slowed and com-
pressed over the conic section and being accelerated and expanded over the
cylindrical portion, must be acknowledged. It is thus not too surprising
that the frequency responses are guite different.

Figures 37-39 show the Mach-number dependence of these frequency
response curves for stations 43.735, 68.575, and 27.000, respectively. In
the first case (Figure 37) the response is nearly independent of Mach mumber
(except for a scale facﬁor) for frequencies up to 10 to 15 Hz., leading to
an aesthetic set of curves. However, at station 68.575 (Figure 38), the
responses are not as clean. This may be explasined, in part, by the fact that
the steady local normal force distribution varies with Mach number. The
maxinum negative local normal force on the cylindrical portion is aft of
station 68.575 at M = 1.3 (see Figure 32) and forward of the station at
M= 1.8. In any case, the resonant frequencies are not grossly affected by
Mach number., ‘

The situation is quite different at station 27.000 (Figure 39).
Here the character is greatly changed by increasing Mach number, where the
resonances shift upward in frequency. This phenomenoh does not appear to
~ be easily explainable, glthough recourse to the associated indicial response
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TABLE IX

FREQUENCY RESPONSE TYPE OF IDCA..J NORMAL: FORCES
FOR SELECTED STATIO"‘IS OF SATUBN v '

Station ; . Mach Number

(meters) 1.3 1.4 L5 L6 L7 L8
11.916 1 1 1 1 1 1
14,165 2(1) 2(1)

16.414 2(2) 2(1)

19.258 1 1

22,103 1 1 y 1 1 1
24,948 1 1 |

24,950 1 1 T 1 1 1
27.000 2(2) 2(2) | . 2(1) 2(1) 1 1
31.452 2(3) 2(2) ! ‘

50,034 2(5) 2(4) .

40.843 1 2(1) 2(2) 2(2) 2(1) 2(1)
43,733 2(2) 2(1) |

43,735 2(3) 2(3) 2(3) 2(3) 2(3) 2(2)
50.015 2(3) 2(3) 2(3) 2(3)- 2(3) 2(3)
60.295 2(¢) 2(4) i ;
- 68,575 2(4) 2(4) 2(4) 2(4) - 2(4) ;%(4)i
98.518 . 2(zany)’ 2(many) R B A -

NOTE: Type 1 has =o resonance for f <25 Hz.
Type 2 has one or more resonances for f < 25 Hz. The number of
such rescnances is indicated in parehtheses, and may include a
resonance indicated by an increasing response at 25 Hz., although
peak occurs for f£ > 25 Hz. '

does clarify the situation somewhat. 7Figure 40 shows the growth of 1ift at
this station for the two extremes of the Mach number range considered. (The
transition with Mzch number is continuous.) The curves have been offset
for clarity. The oscilla.tory character at the lower speed is clearly ap-
parent; .as comparsi to the Mach 1.8 curve which: tends to have a “"damped"
character,
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Figuré 40 - Growth of Lift at Station 27.000 Meters of Saturn V
at Different Mach Numbers
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VI. RESPONSE OF AERODYNAMIC FORCES ON SATURN V-
TO INFLIGHT WINDS

In this sectlon, we present and discuss the aerodynamic forces on
the Saturn V vehikle which arise from penetration of horizontal winds.
First, however, T the winds and the vehicle trajectory are discussed.

The Wiﬁa data were token from the data of Scoggins et al.lé/
These data were obtained by observing the rise of a special balloon by
radar (the FPS-JiSRadar/Jimsphere technique). The data, after reduction,
are given as winds at 25-meter altitude increments. For this study the
 "scalar winds" wé&e used. That is, the magnitude of the horizontal. wind,
independent of dlrectaon, was selected for input data to the present wind
integration routine.

The following wind profiles were initially selected for analysis,
and placed on punched cards: test numbers 0734, 1999, 2378, 2652-1, 2579,
and 2936, After initiel running of the computer program, it was decided to
limit the full analysis to two of the winds: 2652-1 and 2579. These winds
had high frequency components and large shears. Typical results are pre-
sented in this report for the winds of test number 2652-1.

Since the winds are given as a function of altitude, it is neces=-
sary to relate thé vehicle speed, etc., to altitude. For this purpose, the
nominal trajectory of vehicle AS504 was used.gﬁ/ The key data from this
are given in Table X.

TABLE X

SATURNY V NOMINAL TRAJECTORY DATA

Flight Time Altitude Velocity Dynamic Pressure

(sec.) (k. ) Mach No. ~ (m/sec) {kg/m?)
72, '9.0408 1.140 354,471 3013.17
74.992 %0.0000 1.254 383.947 3175.69
80. 11.7316 1.472 438,140 3370.53
84 13.2299 1.667 486.112 . 3413.45
85.955 14.0000 1.767 511.134 " 3387.47
88. 14.8325 1.875 538,434 3323.71
96. 48,3533 2.281 656.597 - 2733,29
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"Quadratic interpolation was used to obtain information between tabulated
values. Furthermore it was assumed, for this study, that the winds were
normal to the 'vehicle axis; this would be true only if the vehicle were
flying vertically, which is not the case. Since our purpose was merely to
test the computer program and gain insight into basic phenomena which might
exlist, there was nothing to be gained by unduly complicating the picture by
correcting the winds for vehicle trajectory angle.

Appehdix II contains a description of the method used to compute
wind shears from the wind data.

Figure 41 shows the total aerodynamic forces in response to the
winds in & normalized form, which must be clarified. First of all, the
neasured scalar wind velocity at the 25-meter increments are indicated by
the plotted points. The responses followed the trends of the wind, so a
normalized scheme was employed to enable better comparison of results.
-Each response value was divided by the steady-state response of the same
quantity (e.g., force, moment, etc.) to a 1 m/sec wind., Thus, if the ve-
“hicle responded to the wind instantly with a steady-state response (e.g.,
the so-called instantaneous immersion case), the normalized response would
exactly duplicate the wind data.

The Mach number range shown is from 1.3 to 1.8. For each Mach
number considered (1.3, 1.4, 1.5, 1.6, 1.7 and 1.8) responses were computed
over an altitude range corresponding roughly to a Mach pumber change of over
0.25, insuring & complete overlap of computed data. After normalizing each
response by the associated steady-state response, no Mach number dependence
remained which could be detected at this scale. -

The responses display two important features which are indicative
of the unsteady derodynamics employed.¥ First, an obvious time lag (or
altitude lag as the redults are plotted) exists between the wind and the
‘response, The magnitude of this delay is about 100 meters, the length of
‘the vehicle. Secondly, the "nigh freguency" components of the wind have
been filtered out. 1In particular, the portion of the wind at 13.5 km.,
which has a major wavelength of sbout 240 meters and an additional component
at about 120 meters is of interest. ‘The response contains a subdued portion
of the 240-meter wavelength but little evidence of the 120-meter wavelength.
‘These results are in agreement with predictions based on the frequency re-
sponse data of Figure 34. Also, a single cycle of the wind occurs at about
10.2 km. and again at 14.7 km. The normal -force response contains no oscilla~
tion at these altitudes, whereas the pitching moment contains & small
oscillation.

¥ The quasi-steady theory was used here. No noticeable difference was
detected utilizing the full potential theory.

85



MORMALIZED FORCE ARD WIND. HET/SEL.

NORMALIZED MOMENT RNO WIND. MET/SEC.

80

Figure 41 - Normalized Responses of Saturn V to

ALTITUDE IN KILOMETERS

(b) Pitching Moment

a Measured Wind Profile’

86

40% %‘ frog &4 -t W,
0 ‘o,
-Rosponse
ereatee Wind Spcga
20¢
10t
0 A £ A N ’ . A — - 4
9.5 10 1 )] 12 13 14 15
ALTITUDE IN KILOMETERS N
(a) Total!Normel Force
S0p
404
30t memee ReSPONSe ".
) steretr Wind Speed
20
10¢
o . " R . s 2 " et s
© 9.5 10 3 12 13 14 15



The aerodynamic resPonses are affected not only by the wind mag- =~

nitude but also, to a small degree, by the wind shear. To demonstrate this’
it is necessary to remove from the response the effect of the wind and the
time lag associated with pénetratiOn; then the remaining portion of the

' response is examined.

Figure 42 illusirates this wind shear effect for a short altitude
interval at station 43.735. The local normal force is shown as a function
of altitude, but is normalized by dividing by the steady state response to -
a unit wind ggg by the local wind magnitude. The local wind magnitude, to
account for the penetration lag, is taken at the altitude of the station
in question -- in this case at 43.735 meters below the altitude of the nose
of the vehicle. Thus, except for aerodynamic inertia effects, the normal-
ized response should be identically equal to 1. Also shown in this figure
is the wind shear at the station in questién. The effect of wind shear on
the response is thus seen to bé obvious, regardless of Mach number, even
though the magnitude of the effect is generally less than 0.5 percent.

=
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Normalized Response, M = 1,3
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Figure 42 - Effect of Wind Shear and Aerodynamic Inertia
’ on Local Normal Force at Station
43,735 Meters of Saturn 'V
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APPENDIX I

COMPARISON OF AERODYNAMIC FREQUENCY RESPONSE BEHAVICR
WITH A SIMPIE SPRING-MASS ANALOGY

1

An aﬁalysis of the frequency response data was undertaken to gain
insight into complex behavior of the aerodynamlc freguency responses. The
results of this study are presented in this Appendix. The investigation
of the sinusoldal response data is directed toward comparing these data to
the results obtained from the indicial and frequence response of a simple
spring-mass analogy. The simple analogy is tested to determine if the
salient features of the indicial responses (meximum response and location
of maximum response) can be used to predict the dominant features of the
.aerodynamic frequency response data

Consider & simple one degree of freedom spring-mass-damper system
_(see Figure 43) being driven by an’ external force F(t) . The equation of
motion of such & mechanical system.with visqous damping 1s

mi + cx + kx = F(£) ] (1-1)

where m 1s the mass, ¢ is the damping constant, kX 1s the spring con-
stant and x 1is the displacement.

® l
! 4
L F(t) ) )

Figure 43 - Spring-Mass—Damper System
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Dividing through by m and introducing

cc = Qmwn ,
C = c/cc )

where w, 1s the undamped natural frequency, c. 1is the critical damping
coefficient and ;{ is the damping factor, (I-1) becomes :
}

}

]

% + 2guk + wbx = Ei(hﬂ : b (1-2)
£ |

X

We will first concenmtrate on the uhit step solution. Specifying
that F(t)/m=1 for t = 0 and

x(0) =%(0) =0

the unit step solution of (I-2) becomes

-tw t] .. : .
xwi =1l-e Cn {——Q-—: sin @t + cos Wt 5 (1-3)
_ . | /
s . C
where
- 2
¥ = wy NL-¢’ . . (1-4)

® is the matural frequency of the damped system.

The maximum valie of xw?1 is found by differentiating (I-3) with
respect to t and sething the result equal to zero: '

20



5 .
d(xws ) : ,
dtn = sin @t {wn/ '\}1-:;2] =0 . (1-5)

The last relatisn is satisfied if

wt = 0,m,2m,...,etec.

For

2 R
t =itl = n/wn‘dl-g s (1-6)
e
and the maximum of (I-3) becomes

«

2 :
(o) = 1 + e/ N1g (1-7)

The ratio, R , of the flrst max trmum response to the steady-state
value of (I-S) is
i

« 5
R =1+ o6/ NIC ) (1-8)

Solving for the damping féqﬁor, ¢ , ylelds

= ];:;_(R-l)/\/neﬂn?(ﬁ-l) | . (1-9)

. The natural frecuency of the system, w, , is obtained from (1-6)

wn = n/tl‘\/l-ge ; (1-10)

is trze time for the first maximum response. Thus, by knowing
the maximum ster response, the time at this maximum and the steady—state
indicial response, the damping factor, § , and the undamped natural fre-
quency of the simple system, w, , can be computed from (I-9) and (I-10).

where tl
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The values of R range between 1 and 2. ( = l at R=1 and
the system is critically damped--producing no overshoot in the response
curve. =0 at R =2 and the system contains no damping. For
1 <R <2, the response curve contains an overshoot and the system is
underdamped. -

We will now investigate the frequency response of the simple
system. Specifying that

i

|
F(t) = F, cos wt

in (I-1), then the steady-state solution is a sinusoidal oscillation of
frequency w with amplitude x : '

X = L : (1-11)

\/[ " Cop )] ["‘C ';]2

where x, (= Fo/k) is the amplitude for w-—>0 .

p:

The maximm value of x/x, is found upon differentlating (I-11)
with respect to (x/xo) and setting the results equal to zero. The loca-
tion, w/w, , for the maximum response is therefore

-

w/wh.='Vl-2;2 . (1-12)

Substituting (I-12) into (1111) yields
(x/xo)'max = l/2gudl-;2 . (1-13)

, It should be noted that this last expression is only valid for
C <’V5~§'. In this case the amplitude response curves contain a resonant
peak, while for ( a’f—__ the amplitude response curves decrease steadlky
as w/wn increases from zero, and (x/xo) =1 at w/wn =0.
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Now setting

P = (x/x,

)y o

the damping factor (for ( =N0.5 ) is |

] (I"M‘)

Aoros

and }
wy = w0/ «}1;2;2 , (1-15)
-

where wj; defines the location of (x/%0) max Thus, by knowing ’c]lae maximum
frequency response (and also the zero frequency response ) and the frequency
wy &t which this value occurs,¥* the damping factor and undamped natural
frequency of the system cen be found from (I-14) and (I-15).

The expressions for the sinuso;i.dal response characteristics are

- presented as a guide for testing the simple analogy to explain (or predict)
the salient features of the more complex frequency responses presented in
~this report, from the corresponding indicial responses.

A numerical example is given below which shows a.typical compari-
son between the simple analogy and the more complex aerodynamic Ifrequency
response behavior. The K =5 i1ndicial and frequency response data of
Chy ‘for the € = 0.05 ogive cylinder at M =2 are used in the example.

i3

The indicial response data yield the following:
Steady state - ch = .3.7829
Meximum Cy, = 6.0497

Time at ma.ximum Cy, = 0.0021 sec.

- % The frequency, wy at which the resonant aerodynamic freguency respoﬁse
occurs 1s known in this example. "The unknown is w, . This.is oppo-
site from the usual situation in which w, 1s the lmovm'quantity.

93



From these, we calculate

R = 1.5992 .
¢ = 0.1609
w, = 1515.7 fad/sec

The above values for (¢ , w, and steady state CMa were sub-

stituted into (I-11) and a predicted frequency response computed. The re-
sulting single degree of freedom response is presented in Figure 44 compared
to the actual frequency response of CMa (dashed curve).n
+ - . ! . ?
From the actual frequency response data (see dashed curve in
Figure 44),(I-14) and (I-15), the following are obtalned;

Zero frequency (steady'state){ Cy,, = 3-7829

‘Max imum Cy, = 6.6972
?erquency at meximum -Gy, = 1180 rad/sec
P = 17706

C = 0.2956

Wy = 1299 rad/sec

The simple analogy gives a qualitative description of certain
features of the aerodynamic responées. For this example, the simple analogy
predicts a smaller damping factor and iarger natural frequency than that
found for the actual response. (The former is the reason for the larger '
resonance peak of the anslogy.) : :

The most important result of the simple analogy approach is that
it can be used fairly successfully to predict the gross behavior of the com~
plicated aerodynemic frequency responses. It permits an ‘interpretative
bridge between the aerodynamic indicial and freguency response dats.
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The aerodynamic frequency response curves can be cast. into two
main types: (L) those curves which have a maximum response et zero im-
pressed frequency (f » 0.5 ), and (2) those curves which beve a resonarnce
peak at a nonzero impressed frequency (¢ < 0.5 , i.e., underdamped). In
genéral, the frequency response curves of the type 1 are assoclated with
the indicial -curves which reach steady-state values wilthout undergoing an
overshoot, whileithe type 2 curves are assoclated with the indicial curves
which exhibit an®overshoot. The simple analogy preserves this correspon-
dence between the indiclal and frequency responses. Thus, it 1s anticipated
that the simple analogy can be successfully used, in conjunction with the -
indicial responses, to indicate those geometries and Mach nurber ranges for
which frequency effects are important. Alsq, a rough indication of the
first resonance frequency can often'be obtained.
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APPENDIX IT

TECHNIQUE USED TO COMPUTE WIND SHEAR DATA

The conmu‘l:ation of the aerodynamic response to an arbitrary wind
profile (as presented in this report) reQuires that either the wind velocity
or the indicial serodynamics be differentiated once. It was established
that, with care , the wind da,tal_é;/ could be differentiated once with adequate
accuracy.¥ Thus, the Duhamel integration for the response to the arbitrary
wind profile was performed using the wind shears (This is believed to be
preferable to differentiating the aerodynamic data.)

During this project varloue a.pproaches_g_ﬂ-/ to the calculation
of the wind shears were studied'in de’cail. The tech.nique chosen to com-
pute the shears 1s presented in 'this Appendix along with sone results used
for substantiation. The wind data used are those documented in Ref. 16

~which were obtained by employlng the FPS-16 Radar/a'imsphere method, The
data, which are presented at 25-meter altitude intervals, consist of zonal
(W-E), meridional (S-N), scalar (magnitude of wind velocity), and wind di-
rection profiles. Only the scalar winds were used in computing the wind

- shears in this study. The techniques presented below for calculating the

wind shears are just as applicable to either the zonal or meridional wind
components. !

The wind shear data were computed by employing differentiation of
a least squares quadratic curve fit of wind data.*¥ One example given here
utilized a curve fit over eight successive data points' (175-meter altitude -
intervals), while the other employed a curve fit (exact) over three succes=
sive date points .(50-meter altitude intervals). The wind shears obtalned
from the eight—point fit will be dlscussed first.

The procedure follo‘wed will be to fit a least squares quadratic
~polynomial through elght successive wind velocity data points (given at
25-meter altitude increments). Upon differentiation of the polynomial, the
~wind shears will be computed only over the mid-interval of the seven inter-
"vals in the curve fit. The shears oVer the adjacent interval will be

* This decision was reached ea.rly in the project as a result of a discus-
sion with Dr. Jemes Scoggins, formerly of the Aero-Astrodynamics ILab-
oratory, MSFC, concerning the wind data listed in Ref. 18.

¥* This technique implies that the shears may be considered to vary lin-

" early with altitude over discrete 25-meter segments.
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evalvated from a new
strip one increment.
profile is computed.

curve fit obtained by advancing the

) approximation
The process is to be repeated until the entire shear

Consider a typical wind distribution as shown in Flgure 45.
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Flgure 45 - Typical Wind Data for Eight-Point Fit

-

Some curve fi‘ctlng techniques are particularly sensitive to nu-

merical difficulty because of loss of significance.

To avold this pitfa,ll

it 1s best to reduce the magnitude spread of the data by an appropriate

transformation.
wind data. given by

where

With this in mind, we will curve fit a mcdified form of the

(II-i)

K
#

Y - NY F]
NY = YS -4 !‘l'YQS’ (II"Q)

NY 1s an average of the first and eigh{:h wind veloclty point.
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Now assume that the resulting wind date can be curve fitted by
Y= +btxt+e 5, . . (11-3)

vhere the constants a,b, and ¢ are determined by the method of least

squares.-—/ The problem is to minimize 2:(2&~Yi) where Yi are the
l _ i ! ' : -
sctual date pdints (transformed wind speed) and Y? -are the curve fit points.

Thus, we need to minimize

. - : ' 2
z [5- (e iz, ve )
P

Differentiating, in tu&n, the above expression with re5pect to
a,b, end ¢ and setting the derlvatives equal to zero yields the following:

-

2, ,
ad = Ss(SlSS"SQ) + 86(8182—883) + S-](BSQ"S%)
, , i |
bd = s5(sps3-8154) + 56(8s4-s§) + s7(slse—855)
. 2. | | 2
cd = 85(5254"85) + 86(8233-5184:) + 87(3183"52)

8 = 2 Epp= -4

i
-2
Sp = > Xy =44
55 = 3 % = -64
1
=4 .
8y = > Fj =452
1
85’= Z i o
i (Eq. (IT-4) concluded next page)
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]

g = 21: 1Y3

8, = 2. XY
T

fer
i}

2 2 3 e
; ‘8(8284:—53) * 2818585 - 518, - 5, = 56448 (I;"‘L)
‘ .

: The standard error of the approximétién- is (in the case of eight
data points) S o

(11~-5)

E 1
\/Z Y;-(as;+bsgtesg )
= Ald .
EgMs = ,

7

}

1
i {

The curve fit is then ‘written in terms of the actual wind ordinate
values: : '

Y=a§2+b§ b+ NY . ) (11-8)

;
]

‘Now, transforming (II-6) to actual altitude stations » ¥j, and noting that
Xj-Xj~] = Ah = 25 meters, ylelds ’

s

Y= +Bx+C (11-7)

-

where

C=c¢~ =2+ <2 + NY (11-8)
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The wind shear is found from (II-7):

Y = y' = oAx + B , (11-9)
d)( .

and 1s evaluated only over the midrange of the abproximation (i.e.,
Xy SX SX) o

This |approach gives rise to a double-valued wind shear at the be-
" ginning and end of each 25-meter altitude increment. In order to produce a
continuous wind shear profile, stralght line segments are used to connect

the average shqar at the midpoint of each 25+meter increment (see Figure 46).

This technique was tested by evaluating the wind shears over the
8.2 km. to 10 km. altitude range from FPS-16 Radar/Jlmsphere wind pro-
file test number 2579 (27 April 1965).% ——7 The midpoint shears were then
integrated over a portion of this altitude range and the results compared
to the original wind data. In general, the integrated wind shears and the
RMS error associated with the quadratic curve fits were in the order of
0.1 to 0.3 m/sec which is the order of error reported for the tabulated
data. (In a8 few 1solated instances the RMS error of the approximation was
as high as 0.6 to 0.8 m/sec) |

Another technique of curve fitting the wind data was undertaken
because of (1) the arbitrary manner in which the eight-point wind shears
were joined to produce a continuous shear profile; (2) the occasional high

RMS error; and (3) the loss of high frequency components of the wind pro-
" file. This second technique, or three-point curve fit, was the one ulti-
mately used in the wind response program. In this instance, a quadratic
curve is fitted (exactly) over three successive data polnts (50~meter alti-
tude intervals)

i

* Consider a typical wind distribution as shown in Figure 47.
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X Actual Wind Velocity Data

— 8~Point Least Squares Quadratic Curve Fit
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“Figure 46 - Procedure Used to Calculate §-Point
Curve Fit Wind Shears
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Again let
Y=Y~ NY s (11-10)

where

2

wy = XewHQ) (11-21)

h}

Now aéSuhle that the resulting wind data can be curve fitted by

Y = ax2 + bX + ¢ ’ - (1I-12)

where the constants are evaluated as
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= Y -1)-2Y(o)+¥(1)

8 = ’
-b=}_‘_:_o!-¥§-l} ,
: 2
and
c =

=Y. o) - NY . (11-13)

Now, . transforming (II-:2) to actual altitude stations, x; , and
noting that x;-x; 1 = Ah =25 —zters, yields '

2

Y = Ax® + Bx + C , (1I-14)

where ‘
|
A= 2
622 ’
B = b 2x2a.
25 625 g
and
1 |
=c-.—..x_?-+-—-—a§§+m . (II"lS)

The Vind shear is fouzi from (II-14) upon differentiation with
respect to altitude, x : ' ‘ ‘ '

&Y = y' =2ax + B , (11-16)

i
and is valid for the interval rz-ge Xy £x £xz . The wind sheaxr midway
between x; and x, is ' ’ ‘
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Yt o= A(xl+x2) + B (11-17)
- and midway between X, and Xz is

= A(xotx5) + B (11-18)

! 1

Tﬁj wind shears obtained from the three-point fit were computed
over the midrange of the curve fits, i.e., between the one-quarter and
three-quarter points (see Figure 48). The shears over the adjacent inter-
val were evaluated similarly from a curve fit obtained by advancing the
approximation strip one increment. A continuous wind shear profile is thus
automatically obtained from the three—po¢nt curve fit techniques. (It can
be proven that the shear at the three- -quarter polnt of one curve fit is
equal to the shear at the one- quarter point- of the curve fit for ‘the ad-
jacent interval.)

|

The three-point curve fit wind shears were also computed over an
altitude range of 8.2 km. to 10 km. using the FPS-16 Radar/Jimsphere wind
profile test number 2579 (27 April 1965). These shears| were then integrated
and compared to the original wind data. A comparison of the integrated
three-point curve fit shears with the actual wind data is shown in Figure
49. It can be seen that the agreement is excellent. The errors of the
approximation are equal to or less than the 0.3 m/sec RMS error reported
for the original wind data.

In comparing the two techniques, the eight-point curve fit shears
did produce a smoother wind profile when integrated than did the three-
point curve fit results. In this respect the eight~point curve fit will
tend to inadvertentlyﬁfilter out some of the desired higher frequency com-
ponents of the wind profile. (This filtering would be in addition to that
already done in reducing the raw wind data obtained by the FPS-16 Radar/Jim-
sphere method.ﬁgg&ép As a consequence, the three-point method of comput-
ing the wind shears is believed to be superior to the elght-point technique,
and was used in this study.
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% Actual Wind Veléc;ity Data

._-.....’3-Point' Least Squares Quadratic Curve Fit
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Curve Fit Wind Shears
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