
https://ntrs.nasa.gov/search.jsp?R=19690025327 2020-03-12T05:20:40+00:00Z



NASA GRANT NO. NGR 05-010-028 
JUNE 1969 

SWNSOREa BY 
NASA LANGLEY RESEARCH CEN'IER 

KAMITON, VIRGINIA 

THE SUPERSONIC FLIGHT OF A BLUNT BODY 

IN A DISTURBED ATMOSPIEERE 

Jose Chirivella 

Submitted i n  partial  sa t i s fac t ion  of the requirements 
for  the degree of Doctor of Philosophy i n  Engineering 

Science 

University of California 
Department of Mechanical Engineering 

Smta Barbara, California 



ABSTRACT 

The Supersonic Flight of a Blunt Body 
i n  a Disturbed Atmosphere 

Jose Evangelio Chirivella 

The method of in tegra l  re la t ions has been applied t o  

determine the f i e l d  properties i n  the subsonic and transonic regions 

of the flow about a blunt axi-syninetric body. The conditions i n  the 

free stream are assumed to have sharp gradients of the Mach number and/or 

stagnation temperature i n  the direct ion perpendicular t o  the f ree  flow. 

The stagnation pressure i s  kept constant. Four cases were run: Case I 

where the case f o r  uniform f ree  stream is solved and compared with 

available solutions encoun-tered i n  the l i t e r a tu re ;  Case I1 where the 

W h  number varies i n  the r ad ia l  direction; Case I11 where the Mach 

number remains constant but the stagnation temperature i s  allowed to 

vary across the oncoming flow. Finally-, Case I V  corresponds t o  a 

simultaneous var ia t ion of the Mach number and the stagnation temperature. 

It is  found that the most sensit ive parameter t o  the non-uniform- 

i t i e s  i s  the sonic point on t h e  body, and a general discussion and exam- 

inat ion of the other flow pammeters i s  carr ied out. 
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1. INTRODUCTION 

The supersonic flight of a blunt body has been extensively 

studied theoret ical ly  as well as experimentally, and there has been, 

during the past 15 years, a large profusion of very excellent works on 

the subject. A good collection of c l a s s i ca l  and recent papers on the 

hypersonic problems, i n  general, can be found i n  Hayes and Probstein 

[ 1.11 . Although there have been several  successful solutions for 

special  flow circumstances, the general problem remains unsolved; one 

can say tha t ,  i n  general, a par t icular  ma,l.ysis fo r  each case i s  required. 

A number of methods fo r  calculating the flow of a gas past a 

blunt body have been developed and can be divided in to  two general 

types, d i rec t  and inverse. i n  the inverse method the shock shape i s  

i n i t i a l l y  assumed known and the flow variables are expanded i n  a ser ies  

and integrated from the shock t o  points i n  the flow f i e l d  corresponding 

t o  the body streamline. Exwples of these methods are given by Lomax 

and Inouye 11.21, Swigart tl.31, Vaglio-Laurin [~4] , and H a l l  e t  a1 

[l.5]. Although the  inverse solution is  numerically exact, the problems 

of  convergence of the ser ies  and of the extreme sens i t iv i ty  of the re- 

su l t ing  body shape hzve limited the application of the metnod. The 

sources of the convergence problems have been ident i f ied and usually can 

be avoided for smooth bodies (see Reference [1.6]). 

I n  the d i rec t  method, the body shape i s  specified =Ad the 

shock shape and shock layer  properties are calculated. A number o f  

d i rec t  methods have been proposed i n  the l i t e r a tu re ,  such as the stream- 

tube continuity methods (see Reference [l~]) and relaxation techniques 
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(see Reference [1,8]). 

Edelfel t  and Emraons [ 1.8]> divides the flow f ie ld  in to  three regions: 

a transonic region, a purely subsonic region and a purely supersonic 

One such method, which was developed by Gravalos, 

region. Conditions i n  the  transonic region are  determined by i t e r a t i o n  

between the body and the transonic pa r t  of t he  shock wave. 

t h i s  solution are used t o  provide boundary conditions for a solution 

i n  the  subsonic region, where the equation f o r  the stream function i s  

soived by a relaxation technique. The solution i n  the  supersonic region 

i s  f o m d  by the snet'nod of the character is t ics .  

three regions are continued u n t i l  boundary conditions at the body surface 

and the shock wave are  a l l  sa t i s f ied .  

Data from 

The calculations i n  the  

Another powerful d i r ec t  aethod i s  based on the method of 

f i n i t e  differences. The u s t e z d y  flow past  the  prescribed body shape 

is  deterrained and the  steady solution is  found as the asymptotic form 

of t h i s  at  large times. This qprozch  was o r i g i m l l y  foraulated by 

Godunov e t  al f ~ g ]  and has been developed fur ther  by Bohachevsky e t  al 

- [l.lO] and [Lll], Moretti [1.12], and Mason [1.13]* 

Most of the  e f f o r t s  i n  the  blunt body theory have been directed 

t o  the  investigation of the aerody-nmic parameters associated w i t h  the  

drag and heat t ransfer  charac te r i s t ics  of the body submerged i n  a 

uniform fiowa However, there have ar isen l a t e l y  some problems i n  

which the behaviour of a body i n  a non-uniform supersonic strean is re-  

quired. A few examples of flow s i tua t ions  i n  which the  non-uniformities 

of the free s t r ean  have important e f f ec t s  on the aerodynzmic behaviour 

of t he  body are  as follows: a) The experimental investigation of the 

blunt body problem often requires the  use of supersonic wind tunnels. 

2 



The flow i n  such tunnels, although w e l l  calibrated,  may present 

transverse non-urilfoxmities due, fo r  example, to the intent ional  

hezting of flow i n  the tunnel; t h i s  heating i s  sonetines necessary, f o r  

exmple, t o  avoid the formation of condensation waves which tend to form 

at re la t ive ly  large Mach numbers i f  the stagnation enthalpy is  no% in- 

creased. Other non-miformities that could possibly be encountered i n  a 

supersonic wind turvlel are those tha t  contribute to losses of stagnation 

pressure along and across the strean, i.e., weak shocks and boundary layer  

effects .  

phenomenon has been observed. 

hpingezlent of a shock on "the bow shock of another body, i l l u s t r a t e d  

ii? Figure 1.1. Eere the bow shock of the fuselage interferes  with the 

bow shock of tkc booster, T? is  impingeiaent i s  extraordinarily d i f f i -  

cu l t  t o  aralyze and depending on the i n i t i a l  and boundary conditions 

the f lov  pat tern i n  the iaterference region may be t o t a l l y  different  

b) ~n the supersonic f l i gh t  of cer ta in  a i r c ra f t  an anamalous 

'=his phenomenon i s  produced by the 

as has been proved ex2erirnentally by Edney [i.14]. A l l  of the 

- d i f f e r e a t  configurations have one zhing in comon and th i s  i s  a s igni f i -  

caqt r i s e  i n  the hea$ t r a m f e r  ra te  t o  the wall  of the body i n  the 

v i c in i ty  of the impiEgement. It seems 'cha'c the highest heat r a t e  

corresponds t o  the c8se where a nonlunifom supersonic s t rean formed 

behind "Le shock intersect ion iqIinges on the wall .  of 'che body. 

has not been so far a theoret ical  e f f o r t  t o  investig2te the or igin of 

t h i s  s t r iking increase i n  tlne heat t r m s f e r  ra te .  A schematic picture 

of the s i tua t ion  can be seen in Figure 1.2, 

i n t e re s t  would be the impingement of the exhaust plume of a rocket 

There 

c )  Another case of possible 

on a body whose s ize  i s  of the order of magnitude of the diameter of 
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the plume. This s i tua t ion  occurs, f o r  example, i n  the separation of 

rocket stages. 

The above considerations have l ed  t o  an investigation of 

the e f f ec t s  of the non-uniformities of the f ree  stream on the flow f i e l d  

properties i n  the shock layer  and t h e i r  importance as compared with the 

case of having uniform flow i n  the f ree  stream. As a first e f f o r t  to 

analyze such effects ,  the following physical model is considered: 
1 

a )  

b )  

The oncoming stream w i l l  always be supersonic. 

The flow w i l l  be inviscid, i.e., viscosity e f fec ts  

are neglected. 

c )  

d) 

The streamlines upstream of tk shock w i l l  be para l le l ,  

The body t o  be investigated w i l l  have ax ia l  symmetry and 

i t s  angle of attack zero. 

e )  The stagnation pressure i n  the f ree  stream w i l l  remain 

constant . 
f )  The Mach number and/or the stagnation temperature of 

- t h e  f ree  flow w i l l  vary perpendicular t o  the flow direction, These 

dis t r ibut ions of non-uniformities w i l l  a lso be assumed t o  have ax ia l  

symmetry. 

g) The gas w i l l  be assumed to be ca lor ica l ly  and thermally 

perfect. 

Uthough the model does not represent physically a l l  the 

different  s i tuat ions mentioned above, it seems t o  be, on the other hand, 

an excellent representation of the supersonic wind tunnel case. Neverthe- 

less, it w i l l  throw some l ight  on the understanding of the more complicated 
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cases such as the shock impingement case or  the plume impac 

separated rocket stage. 

I n  t h i s  disser ta t ion,  the inviscid 

flow regions i s  determined by the method of in tegra l  r e 1  

fo r  the case of .uniform f ree  stream byBeldserkovskii [L.Yj] ( fo r  a 

complete l i t e r a t u r e  survey on the method and a general discussion, see 

Section 4). In  t h i s  case cer ta in  quant i t ies  are interpolated as l inear  

functions between the body and the shock; the equations of motion are 

then writ ten i n  divergence form, integrated across the shock l w e r ,  and 

replaced by a set of ordinary d i f f e ren t i a l  equations t o  determine the 

veloci ty  on the body, the shock detachment distance, and the shock 

angle. 

The method requires the integration of the approximating 

system of ordinary d i f f e ren t i a l  equations between the axis and the sonic 

point. On a smooth contour body t h i s  point i s  located at a saddle point 

s ingular i ty  i n  the body velocity derivative. The shock detachment 

- distance on the axis must be chosen so that the solution i s  regular 

at the saddle point. The procedure for  determining t h i s  has been con- 

siderably simplified since the method was first applied and the con- 

verged solution, together with conditions at &beyond the sonic point, 

can now be found a f t e r  very few i terat ions.  

Four cases have been investigated under the present method: 

Case I, i n  which the free  stream i s  considered uniform; Case I1 with 

a var ia t ion of Mach number i n  the f ree  stream; Case T I 1  with uniform 

Mach nmiber i n  the f ree  stream but allowing a stagnation temperature 

variation; Case IV where simultaneous var ia t ion of stagnation 



temperature and Mach number are considered. 

with the more exact and elaborate Belotserkovskii 's solution. The 

approximation seems t o  be excellent and only i n  the v ic in i ty  of the 

sonic l i n e  separates s l i gh t ly  from Belotserkovfii 's solution. 

discussion of the r e su l t s  can be found i n  Section 7 where Cases 11, 

111, IV are compared with Case I. 

Case I i s  compared 

A 

a 



2. PHYSICAL DESCRIPTION OF THE PR0BI;EM 

2.1 Nature of the Supersonic Flight under Non-Uniform Conditions 

The considerations discussed i n  Section 1 have led t o  an 

investigation of the supersonic f l i g h t  of a blunt body under non-uniform 

conditions i n  the free  flow defined as follows (see Figure 2.1): 

Let 52 be a body of revolution w i t h  no s ingular i t ies  along 

the surface, and 0-x be the axis of symmetry. Consider now a31 oncoming 

supersonic flow whose streamlines are  a l l  pa ra l l e l  t o  the axis 0-x and 

whose Mach number and stagnation temperature vary along the r ad ia l  

coordinate y. The stagnation pressure w i l l  be assumed t o  be constant 

throughout the f ree  flow. As  a consequence of the presence of the body, 

a shock wave w i l l  appear at the bow of the body i n  a similar manner as 

occurs i n  the c l a s s i ca l  blunt body problem. The non-uniformities w i l l  

be assumed t o  be symnetrically distributed, and an investigation of 

t h e i r  propagation across the shock and t h e i r  e f f ec t s  on the aerodynamic 

-and  thermal properties of the body w i l l  be the subject of t h i s  disser ta-  

t ion. 

2.2 The Blunt Body Problem 

Due t o  the parallelism of the actual  problem with the 

c l a s s i ca l  blunt body problem, a review of the sa l ien t  features f o r  t ha t  

case i s  given i n  the present Section. 

I n  the f l i g h t  of a blunt body at  supersonic speeds, a detached 

shock wave t rave ls  with the body, The region between the shock and the 

body is  cal led the shock layer  and the flow i n  such a region i s  of a 

9 



FIG. 2.1 SCHEMATIC OF NON-UNIFORM BLUNT BODY PR0BI;EM 
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transonic nature, i .e . ,  the governing differential  equations are of the 

hy-perbolic-elliptic type (see Figure 2.2). 

The l i ne  along which the Mach number i s  one, i s  designated the 

sonic l i ne ,  and of par t icu lar  importance i s  the re la t ive  location of 

. the points P , Q at  which the sonic l i ne  in te rsec ts  the shock and the 
I 

body. The shape of the sonic l i ne ,  depending on the body shape and 

the f ree  stream Mach number, may be one of the three types shown i n  

Figure 2.3. One important feature  of the region on the supersonic side 

of the sonic l i n e  and extending to the l imit ing character is t ic  defined 

below, i s  tha t  the flow i s  pseuco-elliptic i n  the sense that even though 

the flow i s  supersonic, perturbations are propagated upstream. This 

r e su l t s  from the occurrence of the intersect ion of the character is t ics  

i n  t h i s  region w i t h  the sonic l i ne  thus affecting the subsonic region 

(see Figure 2.4). 

the locus of points fo r  which the character is t ics  intersect  the sonic 

l i n e  at one point and only one; f o r  example, i n  Figure 2.4 it would be 

Note that one defines the l imit ing character is t ic  as 

- t h e  l i n e  QP'. I n  Figure 2.3 the l imit ing character is t ic  fo r  the different  

cases are indicated. Once the l imit ing character is t ic  and the flow 

f i e l d  variables along it are known, the flow downstream i s  e a s i l j  c a l -  

culated by the powerful "method of the characterist ics".  For a general 

discussion of the blunt body problem see, for example, Hwes and 

Probstein [2,1]. 

2.3 General Approach and Numerical Techniques 

Because of the s imi la r i ty  of the problem w th the l u n t  " O d y  

one, analytic and numerical techniques available for  t h i s  problem have 

11 
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been reviewed f o r  t h e i r  possible application t o  the actual  case (see 

also Introduction). 

body 

have the pecul iar i ty  that  the a s s u p t i o n  of a uniform f ree  stream i s  

very r e s t r i c t ive  and t h e i r  possible extensioii "GO our problem i s  not seen 

to be easy. If one r e s t r i c t s  the free stream variations t o  conical-like 

flows, Eas tman  and Bonnema [2.7] and [2.8] have applied the inverse 

method and obtained a solution. These r e su l t s  however have l imited . 
application t o  the variations noted i n  the introduction. Nevertheless, 

these analyt ical  techniGues shonld s t i l l  be subject t o  fur ther  con- 

Among the analyt ical  techniques used i n  blunt 

investigations (i.e., streantube continuity method) most of them 

sideration and t h e i r  possibie application i s  1ef-t open. 

Among the f i n i t e  difference rcethods most commonly used are 

the method of a r t i f i c i a l  viscosity,  which requires very detailed mesh 

calculations (see f o r  exanple the papers of Lax c2.21 and [ 2 . 3 ] ) ,  and 

Godunov's method t2.41 , w;li.cn, &though only of first degree accuracy, 

i s  especially powerful i n  tha t  it handles the shock as a discontinuity 

- and thus only requires a very small nurriber of rilesh points (see References 

[2.4], 12.53 , and [2.6] ). 

be pursued further.  

i n t eg ra l  re la t ions which has been shown to be one of the most accurate 

i n  m a n y  blunt body calculations. 

Section 4 where the method i s  widely discussed, 

CTodunov's method seems adequate and it should 

However, a t tent ion was turned t o  the method of 

For fur ther  de t a i l s  on the method see 



3. EQUATIONS OF MOTION 

3.1 Definit ion of Coordinate System 

Let n be a body of revolution a d  l e t  us take the axis x 

as the  axis of sylamekz-y of the  body (Figure 3.i) (. 

system P(n,s) i s  considered, where n i s  the  distance from the  point 

P to the  body measured along the normal, s i s  the distance along the 

body arc  f romthe  center point 0 t o  the point M where the normal 

through P in te rsec ts  the body R.  If the f ree  flow has an mi-symmetric 

d i s t r ibu t ion  of Mach number and! stagnation temperature, the resul t ing 

flow w i l l  be mi-symraetric w l t h  zero component i n  the azimuthal direction. 

The d i f f e r e n t i a l  equations of motion can be Tomd by considering a vol- 

ume element dV as described I n  Figure 3.2. Tne cornponents o f t h e  veloc- 

i t y  g w i l l  be given by u and v along n and s respectively. 

Now a coordinate 

4 

3.2 Continuity Equation 

d f  P u area(&CD); f d[ p v area(CDC'Ds)3 = 0 (3.1) 

but 

area(ABCD) = y dx ( R f n ) de (3.2) 

a r e a ( C D C ' D ' )  = y dx dn (3.3) 

where (see Figure 3.1) R i s  the  radius of curvature of the body Q 

at the  point M, y i s  the distance from P to the  axis of symmetry, 



x 

r-i 

rr) 



Projection of the element of volume on the 
aer idian p la te  

(b) 
General geometry of the element of volume 
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e i s  the angle formed by and the axis  0-x , and dx the elemen- 

t a l  change of azimuthal angle. Taking (3.2) i n to  (3.1) and expanding the 

d i f f e ren t i a l s ,  one ge ts  

a r P u y ( R "r n )] dX de dn -t an L 

dx ds dn 3 s  = o  

or 

kence the  equation of continuity can be wri t ten i n  the  form 

where 

(3.4) 

( 3 . 6 )  

3.3 Momentum Equcjtion 

Here, we should have two scalar  equations. One, the equation 

of  notion i n  the  projection on n and the ot'ner one on s . Only one 

of these equations w i l l  be needed i f  the  Bernoulli equation and the con- 



servation of the entropy are brought in, and therefore only the equation 

along n w i l l  be considered here, Thus 

d [  p uz asea(fBCD)] + d[ p u v area(CDCfDf)] = 

P v area(CDC'D') d@ - d[ p area(ABCD)] f 
2 

p a r e a ( C D C ' D ' )  d@ -t p area(AA'CC') d% s i n  8 (3.10) 

and expanding the d i f fe ren t ia l s  and taking in to  account (3.2) and 

area(M'CC') = ( R + n ) dn d@ 

one gets  then 

or 

o r  i n  condensed form 
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where 

z = p u v y  

H = ( p + P u  ) y  
2 

y = ( p + P v  )T + A p s i n 6  

3.4 Bernoulli Integral  Equation 

Along a streamline 

where h i s  the en-thalpy and is  the maximum velocity that can 

be obtained by a t o t a l  isentropic expansion. 

approximation i s  brought in ,  equation (3.18) becomes 

ax 

If the perfect gas 

This equation is  val id  even across a shock wave, and i f  the oncoming 

is  constant, it is  valid fo r  the whole %ax flow i s  isoenergetic, i.e. 

region. Let us assume for  the moment tha t  it is a function of y, i.e. 

21 ‘ 



3.5 The Entropy Equation 

One of the features of inviscid flow is  t h a t  if the  flow is 

continuous, the  entropy i s  constant along a t ra jectory.  If the  flow is 

steady, a streamline is  a -trajectory and, thus, downstream of the  shock 

s = s ( Y )  = constant along a streamline (3.21) 

where i s  the stream function defined by 

w 
P v y = - , ,  

(l+) p u y = - -  i3Y 
i3S 

3.6 Boundary Conditions 

On the body, where n = 0 , one has 

SJS) = constant 

and at  the  axis, where s = 0 , 

vo(n) = o 

Yo(.) = o 

So(n) = %(s) = constant 

The boundary conditions on the  shock, i.e. n = C(s), are 

22 



)I 2 2  p, = p ,  1 + -  ( M ,  cos 0'- [ ;2 
2 2  ( Y + 1 ) M,cos o 

( Y - 1 ) M:cos20 + 2 
P,  = P, 

2 2  24, cos cr - 1' 
S Y - COS 2a ) + 2 

1 - b -  '-' M: cos20 1 - 2 
2 

M p  - 
cos ( ff + ws ) 2 2 y-1 

y M, COS 0 - - 2 

1 

CIS = Ms (Y -?)s 

where W i s  the  l o c a l  deflection of the flow, Ms 
S 

(3.32) 

(3.33) 

(3.34) 

i s  the  Mach 

number behind the  shock, 

pat  

of the  shock with respect t o  the perpendicular t o  the  f r ee  stream. 

p, i s  for  t h i s  case t h e  atmospheric pressure 

qs i s  the veloci ty  of the  flow behind the  shock and Cr i s  the  angle 

The angle 0 i s  re la ted  t o  the  stand-off distance by (see 

Figare 3.7) 

ds - 8 )r de = - ( R + e  ) tan( 

or 

(3.36) 
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3.7 Non-dimensionalization of the Equations of Motion 

Taking in to  account t h a t  the  stagnation pressure upstream of 

the shock i s  constant and t h a t  the  Mach number throughout t he  f r ee  flow 

i s  greater t ha t  one, l e t  us make 

M, = 1 f m ( y )  

with m(y) 2 0. 

From the  Bernoulli equation (3.19) one has 

varies with y , one has %ax but since 

(3.38) 

(3.40) 

-where f(0) = 1 e It should be remarked tha t  t he  d is t r ibu t ion  of %ax 

i s  the  square of t he  d is t r ibu t ion  of the  stagnation temperature. 

Given f(y)  and m ( y )  , the  density d is t r ibu t ion  is  given by 

hence 

with 

Y 1 2  - - = -  1 2  
-5- + Y-1 P, 2 %lax 

2 Y  p, 
2 P, = - Y-1 2 

%ax - Q 

(3.41) 

(3.42) 



Equation (3.41) f o r  = 0 becomes 

A f t e r  these considerations, Equation (3.41) can be rewritten as 

(3.45) 

Thus, the pressure will be non-dimensionalized by the expression 

axo the density by p,, , and the 2 the velocity by 9~ 2Y/(Y-1) , pa0 

of the body at the stagnation 
RO 

length by the radius of curvature 

point. Subscripts o refer to t h e  stagnation conditions, 

With this non-dimensionalization, the  dimensionless equations 

of motion are: 

Cont inuity 

with 

T = p v y  

n A = l + -  R 

L = P u y  

n-Momentum 

(3.50) 
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where 

z = p u v y  (3.52) 

Note that although (3.46) to (3.54) appear the same as (3.7) t o  (3.9) 

and (3.14) to (3.17), it should be remarked that the variables in the 

present equations are dimensionless. The same symbols have been 

used for the present non-dimensional variables for clarity in nomen- 

clature e 

The Bernoulli equation becomes 

'The dimensionless stream function is defined by 

d Y = p y  [vdn-(L+;)uds] 

If a more convenient function 

E c P =  
P Y  

is defined it is evident that along a stredine 

(3.55) 

(3.56) 

(3.57) 

cp = cp(Y) = constant (3.58) 



can be used t o  replace the entropy equation. 

The boundary conditions along the body, n = 0 , are  

%(S) = 0 

YJS)  = 0 

cp ( Y  = constant b b  

I 

At the  axis, s =, 0 , one has 

v (n) = o 

Yo(n) = o 

cpo(Yo) = cp,(Y,) = constant 

0 

Behind the shock one has f?om equation (3.37) 

- +  ds (l++) t a n ( a - e ) = o  
ds 

The Rankine-Hugoniot re la t ions given by equations (3.30) through ( 3.35) 

remain the same a f t e r  the non-dimensionalization. 

The d i f fe ren t ia l  equations (3.46) and (3.50) can be transformed 

i n  a more convenient form if one adopts the customary boundary layer  

coordinates, i . e e 

n = 5 e  

s = s  

28 



Then 

(-k)n = (%)5 - v' (+) S 
(3.68) 

where the primed quant i t ies  denote d i f fe ren t ia t ion  with respect to s . 
The transformed equations (3.46) and (3050) are thus 

- az - 5 a (-+ z) + -$ (9) = Y 
3 s  

Since 5 i s  the distance from the body t o  the shock measured along the 

normal, then 5 = 0 on the body and 5 = 1 on the shock 
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4. THE METHOD OF INTEGRAL €KLATIONS AND THE BLUNT BODY PROBLEM 

4.1 Introduction 

The s t r i p  method of in tegra l  re la t ions i s  due t o  Dorodnitsyn, 

who extended the N-parmeter formulation of Galerkin and Kantarovich 

t o  the present form of the method, 

developments and applications can be found i n  Bethel c4.11. 

describing the general method appears i n  Dorodnitsyn c4.21. 

A very good survey of e a r l i e r  

An abstract  

I n  ref-  

erence f4.33, Belotserkovskii and Chushkin allude t o  a more detailed re- 

port  of the work. Subsequently, Dorodnitsyn c4.41 published an exposi- 

t i o n  of the method, and s t i l l  l a t e r ,  generalized the method (references 

c4.51 and L4.61) i n  an e f f o r t  t o  increase the accuracy without a cor- 

responding increase i n  machine time. 

The best  elaboration of the method fo r  the blunt body problem 

i s  due t o  Belotserkovskii, who has carr ied out computations f o r  a large 

number of cases , obtaining an astonishing accuracy fo r  re la t ive ly  short 

- machine times (see fo r  example Belotserkovskii r4.73 and L4.81). For 

more recent publications with an extension of the method t o  the case of 

non-equilibrium chemistry , see Belotserkovskii e t  

A var ia t ion of the method f o r  the case o f  non-equilibrium flows can 

be found i n  Gil inski i  e t .  'al. c4.111. 

been widely used yet ,  but the reader i s  referred among others t o  Gold 

and H o l t  Lb.121, Deacon and Oliver c4.131, Ku'by e t .  ale c4.141 and 

Holt who has applied the method t o  many blunt body and boundary layer  

problems (a p a r t i a l  list of Holt's works appears as a reference i n  

Belotserkovskii' s and Chushkin' s a r t i c l e  on the method 14.151). 

al. c4.91 and [4.103. 

I n  the U.S.A. the method has not 



4.2 Description of the Method 

Although there have been some applications i n  three dimensions 

c4.161 , we w i l l  r e s t r i c t  ourselves t o  -the case where the physical model 

can be well  described by two coordimzes, i.e. two-dimensional and axi- 

syimetric problems. 

t ions  of the problem are 

Let us assume tha t  the governing d i f f e ren t i a l  equa- 

where x and y are the independent variables, u1,u2,.*.uL are the 

Let the unknowns, P ,Q , F are known functions of x,y,ul,u2,...u 

solution of the system be required i n  a region of the shape of a curvi- 

L' 

l i nea r  quadrangle with boundaries (see Figure 4.1 ) : 

x = a  , x = b  , y = o  , y = n ( x )  

Concerning the boundary conditions of the system (4.1) we s h a l l  assume 

them t o  be 

I at x = b  

cpv(Y,u1,~2, - ' 'q = 0 

V = h+l,h+2,...L 



4 

'x 

P 

14 
0 
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at y = O  1 
I V = 1,2,...j 

i at y = b(x )  

Yv(x,u1,u2, e 0 *UL) = 0 

J (4.3) 

If the boundary y = A ( x )  is  not known i n  advance, then an additional. 

boundary condition must be imposed there,  i.e. at y = A(x) the index 

V should run from V = j+l t o  v = L + l  . Note also that the conditions 

(4.2) and (4.3) can be d i f f e ren t i a l  re la t ions rather  than algebraic or 

transcendental. If there  are singular points on a boundary, the corres- 

ponding boundary conditions may be absent; they are then replaced by the 

condition of regular i ty  of the solution at that singularity.  This s i tua-  

t i on  i s  typ ica l  i n  the blunt body problem. 

I n  the method of in tegra l  relations,the solution i s  constructed 

- in  successive approximations. Let us consider the N t h  approximation. The 

region of integration i s  divided in to  N s t r i p s  by constructing N-1 

l ines  between the boundaries, for exmple, y = 0 and y = A(x) (see 

Figure 4.1 ) : 

y = yn(x) , n = 0,1,... N (4.4) 

where yo = 0 , yN(x) = A(x) e The reader should note tha t  there 

i s  no r e s t r i c t ion  upon the spacing of the l i n e s  yn(x) . A common 

practice i s  to have them equally spaced, unless emphasis i s  desired 

on a cer ta in  region of integration. 

33 



Next, a system of I; groups of N l inear ly  independent 

"weighting functions" flYn(x,y9u1,u2,. . .uz) i s  chosen 

2 *oofe,N 

( 1 = 1,2, ..I. .L) (4.5) 
. .  

I n  the first improvement of the method, Dorodnitsyn c4.61 chose 

these functions t o  be only y dependent. Further, Deacon and Oliver 

[4.13] used them as a function of one of the unknowfls ?-le 
If the system (4.1) i s  multiplied by f and integrated 

&7n 

(4.6) 

o r  expanding the integrand and taking f only y dependent f o r  simplicity 19 

If nowp f o r  the integrand functions P,,39 2 we apply any interpola- 

t i o n  formula expressing t h e i r  values at any y through the values on 
I 

34 



the l i nes  y-(x) and integrate,  we shall have 
.A 

N 

i = O  
B K  n , i  &,i (4.9) 

(4.10) 

evaluated a t  y,(x), and i n  (4.8), (4.9), and (4.10) An,ij B nyi9 C n,i 

are nwnerical coefficients whose value depends on the par t icular  choice 

and the interpolating formula for P@, %, and 5 ;  n29i, 
& 

of f 
2 , n  

xz9i9 @ A 9 i  are  the functions 

(x= 1, Z!,.~..L ) , ( i = O ,  l,.o.e~ ) (4.11) 

where 

values of the unknowns up at the l i n e  ym(x). Most of the time , 
these smoothing functions are chosen t o  be polynomials in y with co- 

U.@ are functions of x t o  be determined and they are the 

4 d  
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e f f i c i en t s  depending implicitJy. on x, but very recently Bossel c4.171 

has inser ted terms of the type a(x) exp { a(x) y } yi" i n  boundary 

layer  calculations.  

wri t ten as 

%th (4.8) t o  (4,11) the  system (4.7) can be 

F 

( n = 0,  1..,N ) , ( g =  1, 2...L ) (4.12) 

Equations (4.12) represent a system of L N ordinary d i f f e r e n t i a l  

equstions with ( N -+ 1 ) L unknowns; but frora (4.3) one gets  the  

J ( v = j + 2,...~ ) 

by which one can eliminate L unknowns from (4.12). 

(4.13) 

I n  the same manner (4.2) y ie lds  the  new boundary conditions 



L ( v = 1, 2...h ) 

( V = h 3 L . . L  ) J (4.14) 

Equations (4*14) are the boundary conditions for system (4,lZ) and they 

represent L ( N + 1 ) in tegra l  or d i f f e ren t i a l  re la t ions between the - 
L ( N -+ 1 unknowns u at the boundmies x = a and x = b, i,e. 

A n  - 
I I 

U u , bu t  note t h a t  L of them hare to be ident ica l  to (4.13) 
&l, &n 
f o r  x = 0 and therefore one has L N independent conditions to 

determine the L N constants of integration of the system (4.12). 

4.3 Accuracy, Pract ic6bi i i ty  a d  Convergence 

The nethod of in tegra l  re la t ions shows great accuracy f o r  

b lmt body calculations,  For exmple, the three s t r i p  solution for the 

- sphere presented by Belotxerkovskii [44,8] i s  believed to be the most 

accurate as conpmed w i t h  experiments, The two s t r i p  solution for the 

sane case gives very zearly the same accuracy as the three s t r ips .  

There i s  not yet a s z k i s f a c t o r y  explanation of the reason f o r  such 

accuracy, (x-; E-: the  accuracy may be fur ther  im- 

2 aFFear that a p a r t i a l  

vi so b.a +.J-u. ir n i,, 3 Integration 

procedure snoothes the i r r egu la r i t i e s  introduced by numerical computa- 

t ions  as compared t o  the schemes used by f in i t e  difference methods. 
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b) The preceding statement i s  especially t rue  f o r  cases i n  which 

s ingular i t ies  are present within the f i e l d  of integration. In  using 

f i n i t e  differences the geometry of the mesh has t o  be changed and 

diminished m o u d  the singularity;  no special  aodific&%ion mfds t o  be 
. .  

taken i n  the me%hod under discussion unless one wants t o  have improved 

accuracy i n  the neighbourhood of the singularity.  The reason i s  tha t  

the divergence form of the governing d i f f e ren t i a l  equations allows 

f o r  the integration through the singularity;  the conservation laws are 

thus aatoaat ical ly  sa t i s f ied .  c )  Any knowledge of the qualitative 
3c. 

o r  quantitative nature of the pbgsics of the problem can be introduced 

in to  the scheme by choosing appropriate smoothing functions t o  approxi- 

mate the integrands occurring i n  equations (4.7). This f l e x i b i l i t y  of 

the nzethod i s  extremely inportant fo r  possible increases i n  the accuracy 

without corresponding increases i n  the order of approximation. 

aos t  s t r ik ing  feature i s  the remarkable irnprovement of the method by 

d )  The 

a convenient choice of the system of weighting functions. It i s  a f ac t  

t ha t  i f  one chooses the r igh t  system of functions t'ne accuracy is  improved, 

but there i s  no explanation fo r  t h i s  hprovement. There has not been 

much use of the weighting fmc t ions  i n  t'ne biunt body problem, but 

researchers i n  boundary layer  theory have made wide use of these func- 

t ions  since i n  boundary layer  type problems the region of integration i s  

i n f i n i t e  i n  the direct ion n o d  t o  the body SurfiLCe, the use of weighting 

functions is  the only way t o  generate ils many ordinary d i f f e ren t i a l  

equations as parameters introduced i n  the approximation of the inte-  

grands; however, it would appear t h a t  the use of these functions has not 

been t o t a l l y  e -q lu i ted  as yet. Most of the investigators i n  boundary 
-E 

Except i f  the physical model breaks down near t o  the s ingular i ty  



layer theory have lim2’--xi Themselves to the use of systems of functions 

tha t  have been shom i n  the past  to give good accuracy f o r  the particu- 

lar case of -the integration of Yne boundary layer  equations; however, 

Bethel [4.1: -;LS investigated the e f fec t  on %--e accuracy of three dif-  

ferent  fazi lkes  of weighting functions md found tha t  it i s  very s m a l l  

f o r  the cases that he studied. 

Going back to the  general method where the region of inte- 

gration i s  f i n i t e ,  oae can solve the problem without using any weighting 

function and determine the introduced parameters by using a convenient 

nmnber 0: s t r ips .  

(4.5) has been chosen i i r  such a way tha t  a l l  of them acquire the value 

Suppose now t ha t  the system of weighting functions 

zero a t  the lower boundary of the corresponding s t r ip .  Xxanining 

equation (‘i..7)$ one c a  see tha t  wit‘il a proper choice of 

can compute the integrals  (regardless of the choice of the smoothing 

f one 
$ 2  n 

functions) i n  such a way tha t  the main contribution to the value of 

the in tegra l  comes from the region of the s t r i p  where f‘ has a 4 4  
-peak value. Thus the general recornendation f o r  the use of weighting . 

fmc t ions  i s  t o  se lec t  them i n  such a way t h a t  they have a peak fo r  

the value of the variable mgments  around which the prof i le  approxi- 

mated by the smootlning functions is  known to be very accurate. A 

general disadvmtzge of the method is  t h a t  the accuracy depends on the 

choice of the expression t o  be approximated by the smoothing functions 

as well  as the par t icu lar  system of coordinates, 

t ha t  option i s  to exmine previous experience on similar cases and t o  

A general rule  f o r  

take them as a basis of cornpaxison. There has not been developed, as 

yet,  a study of the scheme f o r  the l i nea r  d i f f e ren t i a l  equations, but 

39 



it would appear thak one could learn  much of the e f fec ts  described 

above on the accuracy of the differ.net order of approximation by 

carrying out compu-bations f o r  the  non-linear case s imilar  t o  those tha t  

have been provea t o  be successful i n  the line?-- case. 

With regard t o  the prac t icabi l i ty ,  it should be said t h a t  the  

f a c t  "chat the problem has been Teduced t o  the integrat ion of a system 

of ordina-ry differer i t l&l  eqvlztions n&es it plausible t o  apply the well  

known and wel l  Ceveloped f l n i t e  difference techniques. 

beyocd t'ae first approximatlm, the foxmulation of the method becomes 

However, 

very tedious and requi;-es lengthy t rmsfwmzt ions  and algebra; there i s ,  

on the other hznd, ar advankage of the method i n  Ynat these trx-sforma- 

t ions  are purely I;IEtchar,icaJ., and, although it has not been demofistrated 

yet ,  they can be handled by a progrm written i n  lrFOISISiC1fiC (an extension 

of PL/I ccmpiler); 

layer  problems. This  i s  especial ly  feasi51e for cases l i ke  the 

t h i s  procedure i s  presently being applied t o  boundary 
-E-% 

present one i n  ?>%ich t'ne gcjverning d i f2erent ia l  equations are quasi- 

. l inear ,  making it possible by eler;lental a e m s  t o  f ind  exp l i c i t l y  the 

derivatives as a f m c t i o n  of  the  independent a d  dependent variables. 

Once Yne analytic expressions of t he  system of ordinary d i f f e r e n t i a l  

equations i s  known, it i s  quite p rac t i ca l  t o  develop a code for an 

electronic  machine t o  solve th i s  system without over-Loading the 

illemory of the machine by using subroutines fo r  the  d i f fe ren t  steps of 

the code. There are, however, some special  cases w i t h  peculiar 

boundary conditions t h a t  require carefu l  treatment , thus enlarging the  

iC 
See Reference [4.18] 

N. Mitra and E. Bossel, pr ivate  c m u n i c a t i o n  
x)c 
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s ize  of the program ( for  example, the blunt body problem with a dis- 

continuity on the body). 

The convergence of the  solution as the  number of s t r i p s  

increases i s  t o t a l l y  unkcown clue t o  the  f a c t  

problem has not been carr ied out for  more than three s t r i p s .  

one does not know whether the seiution gets  b e t t e r  f o r  higher N or 

i f  there  is  a cer ta in  value of B beyond which the solution diverges 

from the  t m e  solvAAon, t h a t  is, the method would give an asymptotic 

eqans ion  ra ther  than the te rns  of a convergent s e r i e s  expansion. 

There have been some e f f o r t s  i n  boundary layer  theory to investig6te 

the convergence of the method when applied i n  a par t icu lar  version 

(Bethel [4*1j ). 

t o  be t&en or  the  solution diverges f o r  very high N, fo r  exmple, 

the blunt body problem with,  a shock within the region of integrat ion i n  

which a s tep  Pmctlon i s  being approximated by polynoffiials. In  general 

i a t  the  blunt body 

Therefore, 

However, @-ere are cases i n  which special  care needs 

one can say that  there  i s  nothing t o  assure convergence and t h a t  a 

spec ia l  study fo r  each case may be necessary. 
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5. APPLICATIOX G?? TEE METHOD O F  IiVTE;z;RAL RELATIORS TO lTB3 CASE OF 

A BLLVTT 9GDY IL\T A BTON-UTJIFOREIJI 

5 .1  Introduction 

In the  present s e c t l z r  ’che met’nod of in tegra l  re la t ions  i s  

applied i n  i t s  f i rs t  a2yroxination to the case of the  blunt body under 

the  conditions described i n  e a r l i e r  sections. 

A feature  of the  in tegra l  r e l a t ion  hy-personic flow f i e l d  

solutions of the blunt body prcblem i s  t h a t  a one s t r i p  approximation 

usually gives quite accurate results (see Teference 15.11 ) when 

applied according t o  Sche;:=e 1, i.e. ,  taking the  s t r i p s  p a r a l l e l  t o  the 

body swface.  I n  our case, Lowever, 0r.e %as t o  be cautious aboxb the 

y e l i a b i l i t y  02 the  nwi-ierical r e su l t s  because the  influence of the non- 

u n i f o m i t i e s  cpstretm i n  t i e  shock wave mzy conslderably reduce the 

accuacy o f  the  method. Thus, -the r e su l t s  of t h i s  nuaerical  scheine 

w i l l  be s ign i f icant  only fro3 a qual i ta t ive point of view, and f o r  

more r e l i ab le  r m e r i c a l  yesalts it i s  recoimende d 

the  second or if  possible the  -third approxix-a-kion. 

:A- 

t h a t  one applies 

The same notation t h a t  was used in Section 3 w i l l  be folloxed 

i n  the  present section, except as otherwise specified.  The fo-mulation 

w i l l  be developed fo r  a body of revolution whose meridian curve is  of 

the most general geometrical s h s p .  

5.2 Formulation 

%%e flow equations u”ci1ized a re  the continuity equation, the 

n-momenha equation, Bernoulli’s equation or t’ne energy equation along 
-x- 

i . e . ,  the  case i n  which the  s t r i p s  are  t&en p a r a l l e l  t o  the  body 
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a streamline and the  conservation of entropy along a t ra jectory,  or 

i.e., along a s t r e d i n e  i n  a steady flow. 

The equations of continuity and n-momentum were derived . i n  

section 3 and they are  given here again for  convenience 

, 

T = P v y  

n 
R A = 1 + -  

L = p u y  

z = p u v y  

H = y ( p + P u  

y = -  + A p s i n 8  

G = y ( p + P v )  

R = radius of curvature of the bo* 

2 

R 
2 

In the analysis which follows, su f f ix  o r e fe r s  t o  conditions 

on the body while su f f ix  1 r e fe r s  t o  conditions immediately behind 

the  shock, 

is given by 

The distance of. a general point from the  axis of symmetry 

y = y0(s> + n sin 8 

To apply the  method of in tegra l  re la t ions  i n  the  first 

approximation, interpolate  l i nea r ly  fo r  T, 2, and Y between the 

body and the shock using the  formulae 
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z = z  0 e ( Z 1 - Z o ) g  

Y = Y o  + ( Yl - Yo ) 5 

Then subst i tute  i n  

f h m  0 t o  1. We obtain the relat ions 

(5.1) and (5.2) and integrate  with respect t o  5 

? 

e - ds [ $ ( T o + T l ) ]  - - T 1 +  e 

0 

= o  E 1  - z ( T o + T l ) +  
A1 L1 - A. Lo 

E 6 

These m a y  be wri t ten as  

P 
since Z = Z = 0. 

- _  
0 0 

The d i f f e ren t i a l  equations (5.16) and (5.17) can be expressed 

en t i re ly  i n  terms of the dependent variables G ,  0, and vo. 
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The d i f f e ren t i a l  equation fo r  vo is  derived from the 

def ini t ion 

To = Po Vo Yo 

Then 

8 9 9 9 

To = Yo Po vo * Yo Po vo * Yo Vo Po 

-Since the body surface i s  a streamline, w e  know from the Bernoulli 

equation t h a t  

= - Po v0 dVo 
dPO 

(5.22) 

(5.23) 



Combining these equations, we obtain the equation 

dPo = - - ’0 vo dv 0 2 a 
0 

If (5.26) i s  subst i tuted i n  (5.22) the d i f f e ren t i a l  equation for  

i s  given as 
vo 

1 1 

I To - yo vo 
2 v =  

0 

yo (. - t) (5.27) 

1 

where y 

sound, a 

i n  the form 

i s  specif ied by the body geometry, and the speed of the 
0 

on the body streamline is  given by the Bernoulli equation 
0, 

a 2 = F ( l - v 2 )  
0 0 

The density Po and pressure p are  found as a function of v with 

the help of the equation of conservation of the entropy along a stream- 

l i n e  and they are 

0 0 

1 1 - - -  1 
Y - 1  

T i  (5.29.) 

1 
L -  

Y - Y 
Y-1 y-1 2 y-1 Y-1 

Po = ( J ( 1 - v o )  pi (5.30) 

where cpi i s  given by 
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P i  
'i Y 

P i  

= -  (5.31) 

and pi a re  the  pressure and density behind the  shock a t  the P i  

center l i n e  and they are  given by the shock jump re la t ions  (3.31) and 

(3.32) for the  case 
1 

i s  determined by the  continuity 
TO 

CT = 0. 

i n t eg ra l  r e l a t ion  d i f f e ren t i a l  equation (5.16) by 

9 

T ~ = - T 1 + ~ ( T 1 - T o ) - - ( ~ L 1 . - A  ' G  2 L ) 
e 0 1  

t 

To evaluate Tl, we u t i l i z e  the def in i t ion  

where 

t 1 E: s i n  U 
de 

'ii = y  + C O S U  - + y1 0 . as 

1 

v1 

equation is then 

is defined l a t e r  i n  eqpation (5.46)0 The SinaL form of the  

(5.35) 

0 
dv E 

ds 
0 

F* 

47 

(5.37) 



1 

where y 1 i s  given by equation (5.36). A t  t h i s  point it is  convenient 

t o  introduce the equations r e l a t ing  the boundary layer coordinate 

velocity components t o  the velocity components gt,, Q, tangent ia l  

and normal t o  the shock. Thus 

y = gt sin ( B - a )  - g, cos ( B - a )  (5.41) 



Tangential momentum 

gl; = s, cos B 

and one gets 

(5.44) 

- = U 1 s  dP + U 2 d s - v  *l da 
lds ds (5.45) 

d% 

where 

a% a% cos ( P - a )  +vl w u1= - s i n ( P - a ) -  a8 

a% c o s ( B - a ) + ~ s i n ( P - a ) - ~  a% 
aB VI = 

(5.50) 
a% cos ( P - a )  + %  a% s in  ( P - a ) 

v2= ay, 

= ‘Q sin j3 (5.51) ag 
a% 
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and from (3.32) 

(5.54) 

(5.55) 



1 

For p1 one gets  

where 

2 

w - - -  P, aa a q % - 

and 

The last equation follows from (3.42). 

&nd subst i tut ing ~ 1 ,  vl and p by i ts  eq res s ions  one has 

Going back to equation (5.40) 
1 1  1 

1 



and solving (5.63) fo r  z, we f ind  that 

N 

I 

with 

1 

and Z1 is  given by the i n t e g r d  re la t ion  equation (5.17) 
I 

u v + p v u  uzV1 a s + %  1 1  1 1  1 (5.66) 

5.3 Study of the Fixed Singularity 

An examination of equations (5.37) and (5,64) shows that they 

present a singular i ty  at  the axis,  i .e, fo r  s = 0, they are indeter- 

minate. 

Equation (5.64), when s = 0, i s  wri t ten as 

I 

7 - =  
ds 

B1 
(5.67) 

where again the primed quant i t ies  denote d i f fe ren t ia t ion  with respect 

t o  the a rc  length S. Since f o r  s = 0 one should r e c a l l  that the 

symmetry of the dist r ibut ions of Mach number and t o t a l  energy i n  the 

free flow makes 
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aM, df(Y1) 

d;yi dy1 
- =  

and consequently 

v2 = u2 = 0 

(5.68) = o  

(5 069) 

and from the non-dimensionalization of the lengths by the radius of 

curvature of the bow at the center line, 

(5.65), when 

RsZ0 = 1, then from equation 

s --t 0 ,  one gets 

&om (5.66) 

1 

= A  p u V B1 1 1 1 1  

Hence, when s -+ 0 

I 

In order t o  determine 
11 

Z1 we go back to equation (5.17) to get 

(5.71) 

(5.73) 

1 

because for s = 0 , Z1 = 0. But for this value of s one has also 

(5.74) 
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I 

Y = 2 p o  
0 

Hence 

In the same way,  equation (5.38) fo r  s -, 0 can be wri t ten as 

I 2 
V a 
0 0 

11 

To evaluate To we use equation (5.16). When s -p 0 we have 

(5.79) 

# 

and if one computes the derivatives by a l imi t ing  procedure as s + 0 

we have 

Now when s = 0 
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11 

where Z1 i s  determined from equation (5.78). Therefore one has 

f inally 

11 

dvO *O 

Po 
- = -  
ds (5.83) 

The i n i t i a l  values of the.variab1es and t h e i r  derivatives 

are  thus 

s = o  

8 = 8  i 

v = o  
0 
1 

8 = o  

P 
1 

= given by equation (5.72) 
I 

v = given by equation (5.83) 
Q 

5.4 Moving Singularity 

It is  obvious tha t  equation (5.37) presents a s ingular i ty  

for the  value of s 

v = a i .e.  f o r  the sonic point on the body. This is  a feature  of 

corresponding t o  the point on the body f o r  which 

0 0 

the  method and it occurs a lso for  the cases of higher approximations. 

This point has been f u l l y  studied by Belotserkovskii (see reference 

[5.2] ) and it has been shown t o  be a singular point of the saddle 

type. The condition of regular i ty  of the solution at t h i s  point imposes 

an extra condition t o  determine the stand-off distance at  the axis E i 

t h a t  up t o  now was undetermined. In the  next section the  mathematical 
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procedure t o  determine e is given as well as  the method t o  pass i 

through the singular point i n  order t o  f ind  the solution fo r  values 

of s la rger  than the one tha t  corresponds t o  the sonic point, L e .  

the saddle point. 

5.5 Shock Layer Properties. 

m e  formulation expressed i n  the preceding paragraphs 

reduces the problem t o  the integration of a systpm of ordinary d i f fe r -  

e n t i a l  equations tha t  gives €, @, vo as a function of s. In order 

t o  determine the rest of the flow f i e l d  vaiiables as well as t h e i r  

dis t r ibut ion across the shock layer one should proceed as follows: 

the help of equations (5.3), (5.6),  and (5.8) one computes Z,  T, and 

Y for the body surface and f o r  the shock. Since 2 and T vary 

l i nea r ly  across the shock, one has d i rec t ly  ( the numbers re fer  to the 

with 

steps i n  the i t e r a t ive  sequence) 

2) Assume a value fo r  v( s, 5 )  given by 

v(s,5) = vo + ( Va"' Vo 1 z 

With t h i s  value of v subs t i tu te  i n  

T = y p v  

and 

(5.84) 

(5.87) 



t o  get p and p as a function of s and 5 

3) From the  energy equation compute f(yls) where y r e fe r s  

t o  the point of intersect ion of the  shock and the  streamline 

t h a t  passes through the  point (s,5) 

Is 

E)8 f(Yls> = ($ .  g + - 2 2 
Y - 1  p 

4) Compute the  corresponding cp(yls) and f ind  p such that 

(5.89) 

5) With t h i s  value of p compute from (5.88) a new v and repeat 

the  process again until the desired &curacy is  reached. 

5.6 Summary of Formulae 

For convenience and c l a r i t y  the  necessary formulae f o r  the 

computation of t he  flow f i e l d  variables are  given i n  the  order t h a t  

would appear i n  a code f o r  a computer 

s = o  

57 



1 1 

Ali = 1 + ei 

Vli =-(++si 

(%)i= 

(5.94) 

(5.95) 



( 1 + € ) tan ( p - a ) de 
ds 
- =  

s,= 

2 2  ( y +- 1 ) M, s i n  @ 

( y - ~ ) ~ , s i n B + 2  
- 

p 1  - PaJ 2 2  

*1 = [I + y+1 ( M: sin2$ - 1 )] pa 

gt = s, cos $ 
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ds, 
= cos $ - 

dyI 

= - g, sin 19 

a% 
bg 

p, 
P, + - 

POD 
4 Y  - -  
Y - 1  

.L I 

- dJ-l 
ds 

dc E 
ds ds R = -  +  COS^- + - sin a 

- “1 
ds 
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v = s , c o s ( @ - a ) + s s i n ( P - a )  1 

a% a% c o s (  S - a ) + v l  -ap = - s i n ( P - a )  u1 a@ 

a% a% ay, cos ( - a ) = - s i n ( P - a ) -  
u2 dyl 

1 v 
+ -  - -  dB d Y l  d”l 

- ulx + u2 ds R ds 

d$ dyl  c uz 
ds - vlG + V 2 d s -  R 

dv 1 - -  

1 

? z1 - - - S Z  - -  2 ( A I H 1 - A o H o ) + Y 1 + Y o  
e d s 1  G 
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a 2 = F ( l - v 2 )  Y - 1  
0 0 

2 2  
= a - v  

FO 0 0 

0 

0 

dv E 

ds F 
0 - =  - 

(5.138) 
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5.7 Numerical Procedure 

The calculations described i n  the last paragraph were carr ied 

out fo r  a sphere under different  conditions described i n  next section. 

In  order t o  integrate the system of ordinary d i f f e ren t i a l  

equations developed i n  the las t  section, the Runge-Kutta method modified 

by G i l l  was used. 

It should be recalled tha t  the i n i t i a l  stand-off distance of 

the shock wave had to be attained by sat isfying the condition of 

regular i ty  at the singular point. Following Belotserkovskii's recon- 

mendat ions [ 5.2 

on smooth contours has been considerably simplified. 

was necessary to stop a given integration ahead of the sonic point and 

extrapolate the solution up t o  tha t  point by means of a ser ies  ex- 

pansion. These took time and labor t o  construct and had t o  be evaluated 

f o r  each choice of detachment distance u n t i l  that corresponding t o  

the or ig ina l  procedure f o r  finding the correct solutions 

Previously it 

correct saddle point conditions at the sonic point had been determined. 

Under the revised procedure, as applied to the first approximation, the 

integration corresponding to each detachment distance i s  continued u n t i l  

e i t he r  the veloci ty  derivative changes i n  sign o r  mt i l  it a t ta ins  the 

value unity. The desired integration always l i e s  between those satis- 

fying these two conditions so tha t  progressively closer upper and 

lower bounds on the stand-off distance can be found. No extrapol- 

ations and ser ies  expansions are  r e q u i r e d t o  carry out the new scheme 

if  one is  only interested i n  the i n i t i a l  stand-off distance, the 

d is t r ibu t ion  of veloci ty  on the body and the shock shape. However, i f  



the properties across the shock layer are desired, an extrapolation may 

be necessary i n  the way described i n  the next paragraphs. 

A general feature of transonic flows i s  tkat i n  the proxim- 

i t y  of the sonic l i ne  a saddle point i n  the family of integral  curves 

of any f i e l d  property appears. 

i n  the curves fo r  different  c r i t i c a l  sections A that appears i n  the 

A very descriptive example can be seen 
* 

analysis of a supersonic nozzle. 

R O S ~ ~ Q  L5.33). 

(See fo r  exam-ple Liepmm and 

The same phenomenon appears i n  our calculations, and with 

no fur ther  comments we proceed t o  i t s  analysis. 

Assume tha t  an integration of the system of ordinary differ-  

e n t i a l  equations i s  possible fo r  each value of  the i n i t i a l  detachment 

distance Ei. If Eiex i s  the exact value of E i  that makes the 

solution regular at the sonic point, one would have the pat tern of 

curves sketched i n  Figure 5.1. I n  practice it i s  not possible t o  carry 

out the above because the Runge-Kutta scheme becomes unstable before the 

sonic point i s  reached. 

i t y  derivative dvb/ds 

i f  ci > ciex. Therefore, one i s  able t o  construct the curves as close 

This i n s t ab i l i t y  does not appear u n t i l  the veloc- 

reaches the value unity i f  E i  < Eiex or zero 

as necessary t o  the regular solution. It has been shown that the loca- 

t i o n  of the points where the velocity derivative f o r  the lower and upper 

diverges s ignif icant ly  i s  very sensit ive t o  the assumed 
bounds Of Eiex 
value of e and one has t o  approximate ciex within the s ix th  s ign i f i -  

cant decimal d ig i t  i n  order t o  have sat isfactory resul ts .  
i 

For such a 

purpose, the Runge-Kutta scheme has t o  be carr ied with an accuracy 

la rger  than 0.000001 and thus the procedure fo r  computing 
Biex 

haps longer than it would appear from a super f ic ia l  inspection. 

i s  per- 
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Once the detachment distance i s  known with suff ic ient  accuracy, 

the problem of finding the location of the sonic point on the body re- 

mains t o  be solved. To do that, it i s  necessary t o  stop the integration 

a few steps before the sonic point and with the value of the derivative 

found f o r  the l a s t  point one can extrapolate u n t i l  the point fo r  which the 

velocity v equals v , i s  reached. Should one desire t o  carry the 

integration beyond the sonic point, a fur ther  extrapolation has t o  be 

carried out as it i s  indicated i n  Figure 5.1, where the jump i n  the 

-E 

b 

Ql to extrapolation occurs f romthe point P1 t o  the P i  or from 

the 

carried. 

&2 depending on the curve along which the integration has been 

5.8 Calculations i n  the Shock Layer 

The calculations i n  the shock layer were carr ied’out  i n  the 

manner described i n  paragraph 5.5. The sonic l i n e  was found as the 

locus of the points i n  which the Mach number i s  one, If the value of 

the azimuth of a l l  points on the sonic l i ne  i s  l e s s  than the one that  

corresponds t o  the sonic point on the body, it i s  not necessary t o  pass 

through the saddle point, and the solution simplifies t o  some extent 

because the calculations beyond the saddle point can be obtained by the 

method of the character is t ics  since the ray t h a t  passes through the 

sonic point is  t o t a l l y  beyond the transonic region, i.e., it is located 

downstream of the l imit ing character is t ic  as was already discussed i n  

- 

Section 2. 
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6. RESULTS 

6.1 Description of the Different Cases under Investigation 

Figure 6.1 describes the different  parameters tha t  define 

each of our cases. A s  is  indicated i n  the Figvre, parabolic distri- 

butions of the sax and Mach number have been adopted. Mc represents 

the Mach number at a distance 2 R from the axis and 

the Mach number at the center l ine.  

the f rac t iona l  excess i n  the m a x i m u m  velocity at y = 2 R over the 

% represents 

The parameter Pc represents 

value of gmm. The different  cases considered i n  these calculations 

correspond then t o  those defined i n  Table I. 

Case I corresponds t o  the uniform f l i g h t  of the sphere f o r  

Mach number 4.0. Case I1 has a uniform stagnation temperature but 

variable Mach number. Case 111 i s  under uniform Mach number but 

variable stagnation temperature. And f i n a l l y  Case IV i s  a superposition 

of Cases I1 and 111, 

6.2 Results 

Computations for the cases above defined were carried out i n  

a d i g i t a l  computer Il3M 360/75 and the program was writ ten i n  FORTRAN IV. 

The average time t o  compute 

for  each case, but it was of the order of 6 minutes when it was done 

ciex w i t h  6 decimal d ig i t s  was variable 

manually, that is, observing the output fo r  each run and deciding on a 

new value f o r  E ~ .  

the time would have increased t o  t en  minutes. 

If the computation had been done automatically 
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CASE NUMBER 2 

0.0 

4.0 

2.0 

CASE NUMBER 

3 

-0.5 

4.0 

4.0 

'i 

9; 

-le 
'sh 

TABLE: 3 

INPUT PARAMETERS 

1 

0.0 

4.0 

4.0 

TABLE I1 

NUMERICAL FESULTR 

2 

.200 

93 

0 55 

3 

.169 

* 69 

0 54 

4 

-0.5 

4.0 

2.0 

L 



The s ignif icant  numerical data f o r  each case are  shown i n  

i s  the azimuth of the sonic point at the body, * 
Table 11, where o b  
'sh i s  the azimuth of the sonic point behind the shock. Eiex is the 

stand-off distance of the shock at the center l ine .  

* 

Figure 6.2 shows the shock shape and sonic l i ne  fo r  Case I 

according t o  the present method (dashed l ines) .  The numerical r e su l t s  

of the three s t r i p  solution of Belotserkrrrskii [6.1] are given for com- 

parison (see f u l l  l ines) .  

sonic point near the body is  discussed i n  the next section. In  F'igure 

6.3 the difference between the Belotserkmskii solution and the present 

solution i s  amplified. 

c a l  scale i s  at 1.5. Figure 6.4 i l l u s t r a t e s  the variation of pressure 

across the shock layer; the differences have been amplified again fo r  

purposes of comparison. 

the  shock stand-off distance i s  of the order of 0.5% 

sure d i f f e r s  l e s s  than 5% across the shock layer. 

The apparent pecul iar i ty  i n  the computed 

It should be noted tha t  the or igin of the ve r t i -  

One can say t ha t  the maximum differences i n  

and tha t  the pres- 

Figure 6.5 compares the shock and sonic l ines  fo r  cases I 

and 11. The same technique used f o r  Case I has been used for Case 11. 

Figure 6.6 shows the var ia t ion of pressure across the shock layer fo r  

Cases I and 11. It should be noticed tha t  f o r  Case I1 the pressure 

behind the shock seems t o  remain constant along the azimuthal direction. 

In Figure 6.7 the pressure var ia t ion has been plot ted along 

the body f o r  Case I and i n  Figure 6.8 the difference f o r  Cases 11, 111, 

and IV is  shown; the maximum variations correspond t o  Case I1 and it is  

of the order of 25%. 
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FIG. 6.7 PRFtSSuIlE DISTRIBUTION ON THE BODY FOR CASE I 
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F I G .  6.8 PFESSURE DIFFEFENCES BETWEEN CASES 11, 111, I V  AND I 
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I n  Figure 6.9 the temperature var ia t ion along the body i s  

shown, and i n  Figure 6.10 the differences with Cases 11, 111, I V  are 

shown. 

order of 7%. 

The largest  difference occurs again fo r  Case I1 and it i s  of the 

Figure 6,11 shows, with the v e r t i c a l  scale amplified, the 

shock waves f o r  the different  cases, The maximum change occurs for  

Case If and it i s  about 10% at the center l ine.  

Figures 6.12, 6.13, 6.14, 6.15, and 6.16 correspond t o  the 

dis t r ibut ions of veloci ty  at the body- along the azimuthal direction and 

t h e i r  differences. The maximum differecce is f o r  Case I1 and i s  of the 

order of 25%. 

For fur ther  de t a i l s  on the r e su l t s  the reader is referred t o  

the corresponding figures. Special care should be taken when considering 

v e r t i c a l  scales with regard to the order of  magnitude and the shif t ing 

of the origin. 
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7. DISCUSSION OF RESULTS 

As one can see from Figure 6.2 and 6.3, the one s t r i p  method 

as developed i n  Ynis study approximates the shape of the shock wave 

very closely; the aTproximation becomes worse f o r  values of 6 l a rge r  

than tha t  corresponding t o  the sonic point on the shock. The sonic 

l i ne ,  on the  other hand, i s  approximated only qual i ta t ively.  The sonic 

point on the body, which has been calculated by extrapolation of the 

in t eg ra l  curve, vb-@, fo r  one of the best  estimates of Eiex as 

already mentioned i n  e a r l i e r  sections,  coincides wi’ch t h a t  given i n  the  

three s t r i p  solutions. Figure 6.11was u t i l i zed  f o r  t h i s  purpose and 

i f  only three s ignif icant  d e c h a l  d i g i t s  fo r  o u  
no s ignif icant  difference between the  upper or lower bounds of 

which are used i n  the extrapolation. The other  sonic points encircled 

i n  Figure 6.2 were calculated by carrying calculations i n  the shock 

lwei, i n  the  manner mentioneci i n  Section 5, using the computed r e su l t s  

of a case representing the bes t  of the bounds on 

the in t e rna l  sonic points c loser  t o  the w a l l  do not converge t o  the 

extrapolated sonic point on tne body, and therefore the s o d c  points 

close t o  the w a l l  a re  not expected to be rel iable .  

d i spar i ty  could be the sens i t i v i ty  of the solut ion i n  a neighbourhood 

of the  saddle point t o  the  accuracy of the approximated stand-off 

distance. 

are desired, there i s  

eiex 

ciex. A s  one can see, 

The reason f o r  th i s  

I n  Figure 6.4 one can see addi t ional  e f f ec t s  of the f irst  

approximation as compared with the  more exact ‘three s t r i p s  solution. 

The reason f o r  the near l i nea r  pressure d is t r ibu t ion  f o r  lower values of 



the azimuth for  1-s t r ip  method case i s  due t o  the f a c t  t ha t  i n  the 

region close t o  the stagnation streamline, the density remains nearly 

constant and the velocity component along the azimuthal direction i s  very 

small; but the one s t r i p  method r e su l t s  i n  the l i nea r  approximation of t h  

quantity Y defined i n  Equa%ion (3.17), which for the case of the sphere 

becomes 

Taking in to  account t ha t  y remains almost constant across the shock 

layer i f  y << 1, one obtains approximately a l i nea r  variation of p 

as shown by the numerical resul ts .  For larger  values of the azimuth, 

v i s  no longer small, y var ies  s ignif icant ly  across the shock layer  

and the density cannot be assumed constant mymore, and therefore the 

pressure dis t r ibut ion i s  expected t o  deviate from the l inear  behaviour. 

Figure 6.5 shows the same resu l t s  as i n  Figure 6.2, but fo r  

Cases I and 11. The most remarkable feature i s  the large extension 

of the subsonic region along the body fo r  Case I1 as compased w i t h  

Case I. The shock wave moves outward, and only the sonic point on the 

shock remains approximately i n  the same area (although th i s  f ac t  does 

not seem t o  have any physical significance). It should be+ noted that 

a remarkable improvement in . the  solution for  the sonic l i ne  behaviour 

next t o  the body as compared with Case I i s  evident. 

explanation f o r  such a feature at the present time. 

There i s  no 

An examination of Figure 6.5 shows t h a t  the pressure across 

the shock layer  for Cage II behaves qua l i ta t ive ly  i n  the same manner as 
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t ha t  fo r  Case I. One can observe a r i s e  i n  pressure on the body, and 

a more exaggerated r i s e  behind the shock. 

behind the shock remains more or  l e s s  constant f o r  the three values of 

As one can see, the pressure 

8 displayed. This r e su l t  i s  caused by the deformation of the shock 

wave tha t  becomes l e s s  steep as compared with Case I, as can be seen i n  

Figure 6.11. Also, i n  t h i s  Figure are displwed the shock shapes fo r  

Cases 111 and IV.  It i s  seen tha t  the shocks are a l w a y s  f lat ter than 

for Case I, and it seems tha t  t h i s  e f fec t  is  most s ignif icant  f o r  Case 

Iv. 

Figures 6.7 and 6.8 show the pzessure on the body f o r  case I 

and the differences with the other cases. These curves show an increase 

i n  body pressure as one approaches the sonic point of Case I, even 

though the mean Mach number i s  smaller fo r  Case 11. This i s  due t o  

the f ac t  tha t ,  f o r  t h i s  par t icu lar  case, the dynamic pressure i n  the 
z f ree  stream, p g W 9  increases i n  the radial direction. 

approximation the body normd.,free stream dynamic pressure is  d i rec t ly  

In  the Newtonian 

. re lated t o  the body pressure and thus the above r e su l t  is understandable. 

This increase i n  pressure i s  most marked close t o  the sonic point, and, 

therefore, the increase i n  the drag coefficient w i l l  not be s ignif icant  

since both the pressure and the horizontal  component of the pressure 

i n  tha t  region are s m a l l  as compared with tha t  i n  the stagnation region. 

For Case 111, a variat ion in stagnation enthalpy, the e f fec t  is  

opposite although much smaller, For Case I V Y  a combined var ia t ion case, 

one can see that the radial heating and Mach number variations have 

opposite e f f ec t s  with the Mach number var ia t ion d d n a t i n g .  



Figures 6.9 and 6.10 show the temperature var ia t ion on the body 

fo r  the different  cases i n  an analogous manner as was done with the 

pressure. It i s  seen that the body temperature prof i le  f o r  Case I1 

i s  larger than f o r  Case I which is  la rger  than f o r  Case 111. 

resu l t  is  expected i n  that  the stagnation enthalpy along the body i s  

the same f o r  all cases and therefore the prof i le  i s  dictated by the 

This 

location of the sonic point. Once again, Case I V  shows t h a t  the e f f ec t s  

j u s t  described are opposite when acting simultaneously, but again the 

Mach number var ia t ion dominates. 

I 

Finally, Figures 6.11, 6.12, 6.13, 6.15, 6.16 show the  

veloci ty  var ia t ion on the body f o r  each case and t h e i r  f i n a l  comparison. 

These figures were used f o r  computing the extrapolated sonic point, 

and since i n  a l l  the cases the 8 of t h i s  point was larger than t k i t  one 

of the in te rna l  sonic points, no integration beyond the sonic point on 

the body was necessary as was discussed i n  the last section. 

!The shock layer properties f o r  Cases 111 and I V w e r e  not 

computed and nothing can be said about t h e i r  behaviour across the shock 

layer  and along the sonic l ine .  



8. IiECOMMENDATIONS AND CONCLUSIONS 

The method described can be generalized t o  include stag- 

nation pressure variations i n  the free stream with no cumplex modi- 

f icat ions.  Should one include asymmetric non-uniformities the problem 

becomes quite involved and it i s  of a nature s imilar  t o  the blunt body 

under an angle of attack. If keeping the symmetry i n  the non-unifomn- 

i t i e s  one desires t o  introduce cross flow (i .e, ,  the velocity i n  the 

f r ee  stream has a radial component) it can be introduced with no sub- 

stantial modifications i f  one knows the analyt ical  l a w  fo r  the radial 

component. 

goes t o  values of the Mach number l e s s  than one, the problem cannot be 

F i n a l k ,  i f  the Mach number decay along the radial direction 

solved under the present analysis and an investigation of a new numerical 

technique i s  required. 

In  conclusion one can say t ha t  fo r  the cases studied 

a )  The non-uniformities a f fec t  the shock wave t o  some extent. 

b )  The shock wave becomes less steep than for  the uniform 

case. 

c )  The most sensit ive parameter to the non-uniformities i s  the 

locat ion of the sonic point on the body. 

d) This change i n  location changes the drag coefficient by 

an amount tha t  i s  much smaller than the percentage of change of the non- 

uniformities. 

e )  Since the entropy layer  i n  the supersonic region of the 

flow around the body depends on the changes i’n curvature of the shock, 

it seems t h a t  t h i s  layer w i l l  suf fer  the major e f fec t s  of the non- 



uniformities. Since the shock f o r  these cases has continuously l e s s  

curvature, the extension of the entropy layer  w i l l  be enlarged. 

that the f ree  stream was already a non-isentropic layer  fo r  the non- 

uniform cases. 

Note 
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