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ABSTRACT
The Superscnic Flight of a Blunt Body

in & Disturbed Atmosphere

by

Jose Bvangelio Chirivella

The method of integral relations has been applled to
determine the field properties in the subsonic and transonic regions
of the flow about a blunt axi-symmetric body. The conditions in the
free stream are assumed to have sharp gradients of the Mach number and/or
stagnation temperature in the direction perpendicular to the free flow.
The stagnation pressure is kept constant. Four cases were run: Case I
where the case for uniform free stream is solved and compa&ed with
avallable solutions encountered in the literature; Case II where the
Mach number varies in the radial direction; Case ILII where the Mach
number remaing constant but the stagnation temperature is allowed to
vary across the oncoming flow. Finally, Case IV corresponds to a
simultaneous variation of the Mach number and the stagnation temperature.
It is found that the most. sensitive parametér to the non-uniform-
ities is the sonic point on the body, and a general discussion and exam-

ination of the other flow parameters is carried out.
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NOMENCLATURE

Latin Characters

A Defined by Equation (3.8). Alsg in paragraph 5.7,
refers to the area of the cross section of a

Laval nozzle

By Defined by Equation (5.66)

¢y Defined by Equation (5.65)

E, Defined by Equation (5.38)

F Defined by Equation (5.39)

H ‘Defined by Equation (3.16)

L Defined by Equation (3.9)

M Mach nunmber

MC Mach number in the free stream at two radii from
the axis

MQ Mach number in the free stream at the center line

R Radius of curvature of the body at a generic point

S Entropy

T Defined by Equation (3.7)

U, Defined by Equation (5.47)

U, Defined by Equation (5.49)

v, Defined by Equation (5.48)

v, Defined by Equation (5.50)

s Defined by Equation (3.17)

Z Defined by Equation (3.15)

viii



Greek

max

Al S

0

Characters

Speed of sound

Non-dimensional Qistribution of Unax

Enthalpy

Defined in Equation (3.38)

Coordinate across the shock layer

Static pressure

Velocity

Maximum velocity attainable in a point of the free
stream, by means of an isentropic expansion
Velocity component along the tangent to the shock
Velocity component along the normal to the shock
Coordinate along the body

Velocity component along =n

Velocity component along s

Coordinate along the axls of symmetry

Radial coordinate

Angle of the tangent to the body and the free stream
Angle of the tangent to the shock and the free stream.
Defined also in Section 6 as the fractional change of
Ynax

Gas specific heat ratio

Defined as (%/ 2) - «

Azimuth eof the sonic point on the shock
Non-dimensional coordinate across the shock lagyer de-
fined by Equation (3.66)

Shock stand-off distance

ix



Subindices

at

1s

Superscripts

*

Density

Defined as (%/ 2)- 8

Defined as

p /o7

In Section 3 represents the azimuth for that particu-

lar kind of coordinates

Stream function defined by Equation (3.56)

Defined by Equation (3.33)

Atmospheric conditions

Designates

Designates

Used as &,
ie

Designates
Designates

Degignates

the values on
values on the
% designates
values on the
values on the

values on the

the body

axis

the exact value of €.
shock

shock in Section 5

body in Section 5. Also, in

Section 3 is used to refer to values at the center line

Designates values in the free stream

Designates the value on the shock in a point closer

to the axis than that labeled by 1

Used to indicate sonic conditions

The primed quantities in Section 5 indicate derivatives

with respect to s



1. INTRODUCTION

The supersonic flight of a blunt body has been extensively
studied theoretically as well as experimentally, and there has been,
during the past 15 &ears, a large profusion of very excellent works on
the subject. A good collectlion of classical and recent papers on the
hypersonic problems, in general, can be found in Hayes and Probstein
{1.1]. Although there have been several successful solutions for
speclal flow circumstances, the general problem remains unsolved; one
can say that, in general, a particular analysis for each case is required.

A number of methods for calculating the flow of a gas past a
blunt body have been deve;oped and can be divided into two general
types, direct and inverse. In the inverse method the shock shape is
initially assumed known and the flow variables are expanded in a series
and integrated from the shock to points in the flow field corresponding
to the body streamline. ZExamples of these methods are given by Lomax
and Inouye [1.2], Swigart {1.3], Vaglio-Laurin [1.4}, and Hall et al
§1.5]. Although the inverse solution is numerically exact, the problems
of convergence of the series and of the extreme sensitivity of the re-
sulting body shape have limited the application of the method. The
sources of the convergence. problems have been ldentifled and usually can
be avoided for smooth bodies (see Reference [1.6]).

In the direct method, the body shape is specified and the
shock shape and shock layer properties are calculated. A number of
direct methods have been proposed in the literature, such as the stream-

tube continuity methods (see Reference [1.7]) and relaxation techniques



(see Reference [1.8]). One such method, which was developed by Gravalos,
Edelfelt and Enmons [1.8], divides the flow field into three regions:

a transonic region, a purely subsonic reglon and a purely supersonic
region. Conditions in the transonic region are determined by iteration
between the body and the transcnic part of the shock wave. Data from
this solution are used to provide boundary conditions for a solution

in the subsonic region, where the equation for the stream function is
solved by a relaxation technigue. The solution in the supersonic region
is found by the method of the characteristics. The calculations in the
three regions are continued until boundary conditions at the body surface
and the shock wave are all satisfied.

Another powerful direct method is based on the method of
finite differences. The unsteady flow past the prescribed body shape
is determined and the steady solution is found as the asymptotic form
of this at large times. This approach was origlnally formulated by
Godunov et al {1.9] and has been developed further by Bohachevsky et al
[1.20] end {1.11], Moretti [1.12], and Mason [1.13].

Most of the efforts in the blunt body theory have been directed
to the investigation of the aerodynamic parameters associated with the
drag and heat transfer characteristics of the body submerged in a
uniform flow. However, there have arisen lately some problems in
which the behaviour of a body in a non-uniform gupersonic stream is re-~
quired. A few examples of flow situations in which the non-uniformities
of the free sﬁream,have important effects on the aerodynamic behaviour
of the body are as follows: a) The experimental investigation of the

blunt body problem often requires the use of supersonic wind tunnels.



The flow in such tunnels, although well calibrated, may present
transverse non-uniformities due, for example, to the intentional

heating of flow in the tunnel; this heating is sometimes necessary, for
example, to avoid the formation of condensation waves which tend to form
at relatively large Mach numbers if the stagnation enthalpy is not in-
creased. . Other non-uniformities that could possibly be encountered in a
supersonic wind turnel are those that contribute to losses of gtagnation
pressure along and across the stream, i.e., weak shocks and boundary layer
effects. b) In the supersonic flight of certain aircraft an snemalous
phencmenon has been observed. This phenomenon is produced by the
impingenent of a shock on the bow shock of another body, illustrated

in Figure 1l.l. Here the bow shock of the fugelage interferes with the
bow shock of the booster. This impingement is extrsordinarily diffi-
cult to analyze and depending on the initial and boundary conditions

the flow pattern in the interference region may te totally different

as has been proved experimentally by Edney [1.14]. All of the

- different configurations have one thing in common and this is a signifi-
cant rise in the heat transfer rate to the wall of the body in the
vicinity of the impingement. It seems that the highest heat rate
corregponds to the case where a non-uniform supersonic stream formed
behind the shock Intersection ixpinges on the wall of the body. There
has not been so far a theoretical effort to investigate the origin of
this striking increase in the heat transfer rate. A schematic picture
of the situation can be seen in Figure 1l.2. c¢) Another case of possible
interest unld be the lwpingement of the exhaust plume of a rocket

on a body whose size is of the order of magnitude of the diamefer of
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the plume. This situation occurs, for example, in the separation of
rocket stages.

The above considerations have led to an investigation of
the effects of the non-uniformities of the free stream on the flow field
properties in the shock layer and their importance as compared with the
case of having uniform flow in the free stream. As a first effort to
analyze such effects, the following physical model/is considered:

a) The oncoming stream will always be supersonic.

b). The flow will be inviscid, i.e., viscosity effects
are neglected.

c) The streamlines upstream of the shock will be parallel,.

d) The body to be investigated will have axial symmetry and
its angle of attack zero.

e) The stagnation pressure in the free stream will remain
constant.

f) The Mach number and/or the stagnation temperature of
" the free flow will vary perpendicular to the flow direction. These
distributions of non~uniformities will also be assumed to have axial
symmetry.

g) The gas will be assumed to be calorically and thermally
perfect. |

Although the model does not represent physically all the
different situations mentioned above, it seems to be, on the other hand,
an excellent representation of the supersonic wind tunnel case. Neverthe-

less, it will throw some light on the understanding of the more complicated



cases such as the shock]impingement case or the plume impact on the
separated rocket stage.

In this dissertation, the inviscid’flow field in the mixed
flow regions is determined by the method of_integral relations developed
for the case of uniform free stream by Belobtserkovskii [1.15] (for a
complete literature survey on the method and a general discussion, see
Section hj. In this case certain quantities are interpolated as linear
functions between the body and the shock; the equations of motion are
then written in divergence form, integrated acrogss the shock layer, and
replaced by a set of ordinary differential equations to determine the |
velocity on the body, the shock detachment distance, and the shock
angle.

The method requires the integration of the approximating
system of ordinary differential equations between the’axis and the sonic
point. On a smooth contour body this point 1s located at a saddle point

singularity in the body velocity derivative. The shock detachment

-+ distance on the axis must be chosen so that the solution 1s regular

at the saddle point. The procedure for determining this has been con-
siderably simplified since the method was first applied and the con-
verged solution, together with conditions atb axlbeybnd the sonic point,
can now be found after ve;y few iterations.

Four cases have been investigated under the present method:
Case I, in which the free stream is considered uniform; Case II with
a variation of Mach number in the free stream; Case IIT with uniform
Mach number in fhe free stream but allowing a stagnation temperature

variation; Case IV where & simultaneous variation of stagnation



temperature and Mach number are considered. Case I is compared
with the more exact and elaborate Belotserkovskii's solution. The
approximation seems to be excellent and only in the vicinity of the
sonic line separates slightly from Belotserkovskifs solution. A
discussion of the results can be found in Section 7 where Cases II,

I1I, IV are compared with Case I.



2. PHYSICAL DESCRIPTION OF THE PROBLEM

2.1 Natﬁre of the Supersonic Flight under Non-Uniform Conditions

The considerations discussed in Section 1 have led to an
investigation of the supersonic flight of a blunt body under non-uniform
conditions in the free flow defined as follows (see Figure 2.1):

Let £ be a body of revolution with no singularities along
the surface, and O-x be the axis of symmetry. Consider now an oncoming
supersonic flow whose streamlines are all parallel to the axis O-x and
whose Mach number and stagnation temperature vary along the radial
coordinate y. The stagnation pressure will be assumed to be constant
throughout the frge flow. As a consequence of the presehce of the body,
a shock wave will appear at the bow of the body in a similar manner as
occurs in the classical blunt body problem. The non-uniformities will
be assumed to be symmetrically distributed, and an investigation of
thelr propagation across the shock and thelr effects on the aerodynamic
_and thermal properties of the body will be the subject of this disserta-

tion,

2.2 The Blunt Body Problem

Due to the parallelism of the actual problem with the
classical blunt body problem, a review of the salient features for that
case is given in the present Section.

In the flight of a blunt body at supersonic speeds, a detached
shock wave travels with the bodyQ The region betﬁeen the shock and the

body is called the shock layer and the flow in such a region is of a
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Amax (V) M(y)

Body

Shock layer

N

Non-uniform oncoming flow ’Shock wave

FIG. 2.1 SCHEMATIC OF NON-UNIFORM BLUNT BODY PROBLEM
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trangsonic nature, i.e., the governing differential equatlions are of the
hyperbolic-elliptic type (see Figure 2.2).

The line along which the Mach number is one, 1s designated the
sonic line, and of particular importance is the relative location of
- the polnts P , Q@ abt which the sonic line intersects the shock an& the
body. The shape of the sonic line, depending on the body shape and
the free stream Mach number, may be one of the three ftypes shown in
Figure 2.3. One important feature of the region on the supersonic side
of the sonic line and extending to the limiting characteristic defined
below, ig that the flow is pseudo-elliptic in the sense that even though
the flow is supersonic, perturbations are propagated upstream. This
results from the occurrence of the intersection of the characteristics
in this region with the sonic line thus affecting the subsonic region
(see Figure 2.4). Note that one defines the liﬁiting characteristic as
the locus of points for which the characteristics intersect the sonic
line at one point and only one; for example, in Figure 2.4 it would be
“the line QP'. In Figure 2.3 the limiting characteristic for the different
cases are indicated. Once the limiting characteristic and the flow
field variables along it are known, the flow downstream is easily cal-
culated by the powerful "method of the characteristics". For a general
discussion of the blunt body problem see, for example, Hayes and

Probstein [2.1].

2.3 General Approach and Numerical Techniques

Because of the similarity of the problem with the blunt body

one, analytic and numerical techniques available for this problem have

11
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FIG, 2.3 DIFFERENT TYPES OF SHOCK LAYERS IN THE BLUNT BODY PROBLEM
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been reviewed for their possible applicaiion to the actual case (see
also Introduction). Among the analytical techniques used in blunt
body investigations (i.e., streamtube continuity method) most of them’
have the pecullarity that the assumptlion of a uniform free gtreanm is
very restrictive and thelr possible extension to our problem is not seen
to be eagsy. If one restricts the free stream variations to conical-like
flows, kastman and Bonnema [2.7} and [2.8] have applied the inverse
method and obtained a solution. These results however have limited
application to the variations noted in the introduction. Nevertheless,
these analytical technigues should still be subject to further con-
sideration and their possible application is'left open.

Among the finite difference methods most ccmmonly used are
the method of artificial viscosity, which requires very detailed mesh
calculations (see for example the papers of Lax [2.2] and [2.3}), and
Godunov's method {2.h],which,although only of first degree accuracy,
is especially powerful in that it handles the shock as & discontinuity
- and thus only requires a very small number of mesh points (see References
[2.h}, {2.5}, and [2.6}). Godunov's method seems adequate and it should
be pursued further. However, attention was turned to the method of
integral relationsg which has been shown to be one of the most accurate
in many blunt body calculations. For further detalls on the method see

Section 4 where the method is widely discussed.

15



3. EQUATIONS OF MOTION

3.1 Definition of Coordinate System

Iet 0 be a body of revolution and let us take the axis x
as the axis of symmetry of the body (Pigure 5.1). Now a coordinate
system P(n,s) is considered, where n 1s the distance from the point
P to the body measured along the normal, s 1is the distance along the
body arc from the center point O +to the point M where the normal
through P intersects the body (1. If the free flow has an axi-symmetric
distribution of Mach number and stagnation temperature, the resulting
flow will be axi-symmetric with zero component in the azimuthal direction.
The differential equations of motion can be found by considering a vol-~
ume element dV as deseribed in Figure 3.2, The cowmponents of the veloc-

ity a_ will be given by u and Vv along n and s respectively.

3.2 Continulty Equation

al p u area(aBcD)! + af p v area(cDC'D')] = O (3.1)
but

area(ABCD) = ¥ ax (R+mn ) a® (3.2)

area(CDC'D') = y dX dn (3.3)

where (see Figure 3.1) R 1is the radius of curvature of the body Q

at the point M, y is the distance from P %o the axis of symmetry,
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volume A
C

(a)
Projection of the element of wvolume on the

meridian plane

(b)

General gecmetry of the element of volume

FIG, 3.2 ELEMENT OF VOLUME
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6 is the angle formed by PM and the axis O-x s and dX the elemen-
tal change of azimuthal angle. Taking (3.2) into (3.1) and expanding the

differentials, one gets

)

o T - i
antpuy(Rkﬂ-n)JdXdedn +

Aevy)aasam =0 (3.1)

or

_%_ %EE:O uy ( R+n )] + éﬁ—EE%QX—l = 0 (3.5)

kence the equation of continuity can be written in the form

7 Y
—-é"g s a AnL = 0 (3-6)
where
T=p vy (3.7)
A=1+— (3.8)
L=0uy (3.9)

3.3 Momentum Equstion

Here, we should have two scalar eguations. One, the equation
of motion in the projection on n and the other one on s . Only one

of these eqguations will be needed if the Bernoulli equation and the con-

19



servation of the entropy are brought in, and therefore only the equation

along n will be considered here. Thus

ale o area(ABCD)] + 4 p u v area(cDe'd')] =
p area(CDC'D') @ - df p area(ABCD)] +

p area(CDC'D') d® + p area(AA'CC') daX sin @ (3.10)

and expanding the differentials and taking into account (3.2) and

1

area(AA'CC') (R+n ) dn 4@ (3.11)

one gets then

e )y (ren)]+ Gz (puvy)R -

p[y+ (R+n) sin 8] (3.12)

2
pv ¥
or

—%;(puvy) + _%[(pu2+pi)-y (1+—%—>] =

P (l‘+—%—) sin b + (Pv2+p)—§— (3.13)

or in condensed form

20



oz, 3(AH) _
o8 on -

Y (3.14)

where
Z=puvy (3.15)
2
H=(p+pu )y (3.16)
Y=(p+p ve ) —%— +Apsin 0 (3.17)

3.4 Bernoulli Integral Equation

Along a streamline

1 1
- 4 tBE5 G (3.18)

where h dis the enthalpy and D oox is the maximum velocity that can
be obtained by a total isentropic expsnsion., If the perfect gas

approximation is brought in, equation (3.18) becomes

2% YT o T o Ypax (3.19)

This equation is valid even across a shock wave, and if the oncoming
. . . . 2 \ AN .
flow is isoenergetic, i.e. 9 ax 18 constant, it is valid for the whole

region. Let us assume for the moment that it is a function of ¥y, i.e.

Yax = %pax'V) (3.20)

21 -



3.5

The Entropy Eguation

One of the features of inviscid flow is that if the flow is

continuous, the entropy is constant along a trajectory.

If the flow is

steady, a streamline is a trajectory and, thus, downstream of the shock

where Y

3.6

S = S(¥) = constant along a streamline

is the stream function defined by

oY

pvys= on
n oY
(l + —ﬁf) Puy =--5s

Boundary Conditions

On the body, where n = 0 , one has

ub(s) = 0
Yb(s) =0
Sb(s) = constant

and at the axis, where s =0 ,

vo(n) =0
Yo(n) =0
So(n) = Sb(s) = constant

The boundary conditions on the shock, i.e. n = €(s), are

22

- (3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



where ws is the local deflection of the flow, MS is the Mach

S~
< o
8D
&
&

2 2

el
)]
i
o]
8
| ]
I_J

(y+1) Micos20

4-§;% (M coso - 1 )]

p =

s (y=-1) Micoszc + 2

1 Mi cos - 1
ws = ‘tan- 2 tan © 5
M(Y-=-cos2 )+2

5 1+ Y-1 M2 c0520 1
M- = 2=

s 2 2 ¥-1

Y M, cos O - 5

Q
1
PR

p
: ]
.M |y == )
s S ( ps

cosz( T+ W )

(3.30)

(3.31)

(3.32)

(3.33)

(3.3k)

(3.35)

number behind the éhock, P, 18 for this case the atmospheric pressure

Poge ‘
of the shock with respect to the perpendicular to the free stream.

is the velocity of the flow behind the shock and O is the angle

The angle OI is related to the stand-off distance by (see

Figure 3.7)
de=_(R+e)tan(0-6)%§-
or

23

(3.36)
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3.7 Non-dimensionalization of the Equations of Motion

Taking into account that the stagnation pressure upstream of
the shock is constant and that the Mach number throughout the free flow

is greater that one, let us make

M, = 1 + mn(y) (3.38)

with m(y) > 0.

From the Bernoulli equation (3.19) one has

L
a, Y12 i
S (3.39)

Unax 1+ Xgi Mg,

but since Doy varies with y , one has

Ynox = Lpaxo T (3.40)

where f(0) =1 . Tt should be remarked that the distribution of Uox
ig the square of the distribution of the stagnation temperature.

Given f(y) and m(y) , the density.distribufion is given by

1 2 y Po 1 2
7 %t VI, T2 Yex (3.41)
hence
_ 2y Poo
o= ¥1 Z _ 2 (3.52)
qmaxy qm
“with :
Y-1_2 - 75
- - V-1
Py = P,oo(l"*“-é"Mm) ' (3.43)
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Equation (3.41) for g = O becomes

Y Poog 1
T2

2
V-1 Peq Inaxo (3.44)

After these considerations, Equation (3.41) can be rewritten as

Pe
2
2 2 * v-1- P, = T3 (3.45)
qma.xo -
pmo

Thus, the pressure will be non-dimensionalized by the expression
. 2 : .
Pog 2Y/(Y-l) , ‘the velocity by Upoxo * the density by .pmo s, and the
length by the radius of curvature Ro of the body at the stagnation
point. Subscripbs o refer to the stagnation conditions.
With this non-dimensionalization, the dimensionless equations

of motion are:

Continuity
dT (AL ) _
Sl 5=+ =0 (3.46)
with
T=pvVvy (3.47)
1. .
A=1+g% (3.48)
L=puy (3.49)
n-Momentum
dZ 3( AH ) _
os * an = X (3.50)
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where

Z=puvy (3.51)

A=1+ % (3.52)
2

H=y (p+pu ) (3.53)

Y=(p+pv’) - +Apsind (3.5%)

Note that although (3.46) to (3.54) appear the same as (3.7) to (3.9)
and (3.14) to (3.17), it should be remarked that the varisbles in the
present equations are dimensionless. The same symbols have been
ysed for the present non-dimensionsl variables for clarity in nomen-
clabure, |

The Bernoullli equation becomes

-1 2 2
p=o Iy [20)° - ] (3.55)
The dimensionless stream function is defined by
d\f:py[vdn-<1+-§>uds} (3.56)
If a more convenient function

= 2 (3.57)

is defined it is evident that along a streamline

@

[

©(¥) = constant (3.58)
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can be used to replace the entropy equation.

The boundary conditions along the body, n =0 , are

w (s) =0 (3.59)
Yb(s) =0 (3.60)
mb{Yb) = constant (3.61)
At the axis, s ;‘O , one has
v (n) =0 (3.62)
¥ (n) =0 (3.63)
mo(wo)'= ¢, (¥.) = constant (3.6k4)
Behind the shock one has from equation (3.37)
gz + (J.4--§7> tan (G -8 ) =0 (3.65)

The Rankine-Hugoniot relations given by equations (3.30) through (3.35)
remgin the same after the non;dimensionalization.

The differential equations (3.46) and (3.50) can be transformed
in a more convenient form if one adopts the customary boundary layer

coordinates, i.e,

€ ¢ (3.66)
s =8 (3.67)

B
]
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‘Then

(.- () - ¥ ()

(._g;z) - L (.g_g.) (3.69)

where the primed quantities denote differentiation with respect to s .

The transformed equations (3.46) and (3.50) are thus
3T > (e > (a1) _
B T S (—a' T>+ '5'5(?) =0 (3.70)

Z e e' o) AH
Ts T S E (’é" Z)* 'SE(T)

Since & is the distance from the body to the shock measured along the

o
1]
”

(3.71)

normal, then € = O on the body and § = 1 on the shock .,
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L, THE METHOD OF INTEGRAL REIATIONS AND THE BLUNT BODY PROBLEM

4,1 Introduction

The strip method of inftegral relations is due to Dorodnitsyn,
who extended the N-parameter formulation of Galerkin and Kantarovich
to the present form of the method. A very good survey of earlier
developments and applications can be found in Bethel-[h.l]. An sbstract
describipg the general method appears in Dorodnitsyn fh.Z]. In ref-
erence [M.ﬁ], Belotserkovskii and Chushkin allude to a more detalled re-
- port of the work. Subsequently, Dorodnitsyn [h.h] published an exposi-
tion of the method, and still later, generalized fne method (references
[4.5) and [h.6}) in an effort to increase the accuracy without a cor-
responding increase in machine time.

The best elaboration of the method for the blunt body problem
is due to Belotserkovgkii, who has carried out computations for a large
number of cases, obtalining an astonishing accuracy for relatively short
. machine times (see for example Belotserkovskii (4.7] ana [14.8]). For
more recent publications with an extension of the method to the case of
non-equilibrium chemistry, see Belotserkovskil et. al. [4.9] and [h.lO].
A variation of the method for the case of non~equilibrium flows can
be found in Gilinskii et. al. [4.11]. 1In the U.S.A. the method has not
been widely used yet, but the reader is referred among others to Gold
and Holt [4.12], Deacon and Oliver [4.13], Kuby et. al. [Lk.14] and
Holt who has applied the method to many blunt body and boundary layer
problems (a partial list of Holt's works appears as a reference in

Belotserkovskii's and Chushkin's article on the method [4.15]).
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4,2 Description of the Method

Although there have been some applications in three dimensions
[h.l6] , we will restrict ourselves to the case where the physicai model
can be well described by two coordinates, i.e. two-dimensional and axi~-
symmetric problems. Iet us agsume that the governing differential equa~

tions of the problem are

d 0 _
3% ?(X:Y:ul’u‘g:"--ul,) + 5‘3}' Qﬂ(X:Y:ulaugancuL) =

?(X:Y9ul:u29°°°u}-_‘> P) (Z = 1’2’-°~L) (L.1)

where x and y are the independent variables, UpsUsseeoly BT the

unknowns, P ,Q , F are known functions of X3 sUqsUnseesll Iet the

L -
gsolution of the system be required in a region of the shape of a curvi-

linear quadrangle with boundaries (see Figure 4.1 ) :
x=a , x=b , ¥y=0 , y=»Mx)

Concerning the boundary conditions of the system (4.1) we'shall assume

them to be
\
at x = @&
®,(¥50y 50550000 )" = O
V = 1,25.0.h8
>
at x=5D
0, (¥5uy5Up5000u;) = O
V = h+l,h+2’nauL J (ll"z)
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at y =0
YV(X’ul’HE""uL) = 0

Vo= 1,200

ab v = AMx)
Ev(x,ul,uz,...uL) = 0
Vo= J+1,542,...0 y (k.3)

If the boundary vy = A(x) is not known in advance, then an additional
boundary condition must be imposed there, i.e. at y = A(x) the index
v sghould run from VvV = j+l1 %o v = I#+l.. Note also that the conditions
(4.2) and (4.3) can be differential relations rather than algebraic or
transcendental. If there are singular points on a boundary, the corres-
ponding boundary conditions may be absent; they are then replaced by the
condition of regularity of the solution at that singularity. Thils situa-
tion is typical in the blunt body problem.

In the method of integral relations,the solution is constructed
“in successive approximations. Let us consider the Nth approximation. The
region of integration is divided into N strips by constructing N-1
lines between the boundaries, for example, y = 0 and y = A(x) (see

Figure 4.1 ) :

y o= oy, n=0,1,... N (4.1)

where ¥y =0, yN(x) = A(x) . The reader should note that there
is no restriction upon the spacing of the lines yn(x) . A common

practice 1s to have them equally spaced, unless emphasis is desired

on a certaln region of integration.
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Next, a system of L groups of N linearly independent

"weighting functions" fﬂ,n(x,y,ul,uy...ulx) is chosen

{:?Z‘;;x,y,ul,um...ul)} = {fﬁ,l , . "'fﬂ,N}
| (£=1,2,...1) (k.5)

In the first improvement of the method, Dorodnitsyn [4.6] chose
these functions to be only y dependent. Further, Deacon and Oliver
[4.13] used them as a function of one of the unknowns up .

If the system (4.1) is multiplied by £ n and integrated

between yn(x) and yn+l(x) , cne has

{QYn+l 3P 6Q \
"'j.o ﬂ . T _
J’*ﬂ,n{é?é"J“éSrﬁ“Fz}dy =0
yn . .
(n=0,1,.el ) , (f=21,2,00.L) (4.6)

or expanding the integrand and taking f;g 0 only y dependent for simplicity
b

fynﬂ
d_ "o
= j S ® T e By e Yo
n ,
f P + T - f -
Jsn g, In fon,ntl Qj,n+l Jsn,n Q’Z,n
/{-Yn+1 Y4l
.'l — #
i df - i f F
jQZ s 12 j Z;n Z %
Yn n
(n=0,1...0) , (4 =21,2,00.L) . (4.7)

If now, for the integrand functions %,Q{” ¥, we apply any interpola-
BANES 4 ;

tion formula expressing thelr values at any y through the values on
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the lines y_(x) and integrate, we shall have

PR

P N

= ‘ A . 4,8
J%’f/@’n P/g dy A(x) ; n, i (4.8)
;

A2

Siira

N
‘K;"’\
e %) £, Ba,i X g1 (4.9)
Vsl
g f Fody = A y  C_ . . 4,10
R A S )

where in (4.7) f 0,0’ %Z’n, Qﬁﬁn are the functions ?Z,n, %ﬁ’ Q

A

evaluated at yn(x), and in (4.8), (4.9), and (4.10) A 5B 4 C

i

are numerical coefficients whose value depends on the particular choice

of %Z»n and the interpolating formula for Ef’ %@’ and Eé; I?@,i’
BQZ,i’ ‘@,g,i are the functions

A .= i . X u U-, evaosooll

q—‘Z,l r{é’:l ( g ,{3:0’ s ,Zan )

. = . (0x U, neseeesall

Kagal K/Z:l (x, u,gao, AR gAY )

¢7 . = @ s ( X’ u E) u o..oooou )

;’z:l j?,’l ;290 /g’l ﬁ:n

(L=1, 2,000l ) (1=0, lyeosoll ) (4.11)

where Vg, 8T functions of x 10 be determined and they are the
Ard
velues of the unknowns u, at the line y (x). Most of the time ,
A

these smoothing functions are chogen to be polynomials in y with co-
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efficients depending implicitly on x, bub very recently Bossel {4.17]

has inserted terms of the type a(x) exp {(x(x) v } ¥ in boundary

layer calculations. With (4.8) to (k.11) the system (4.7) can be

written as
N _ .
A a i !
s b - 4
@ {An:’ci ax g_A<X) i 9i.§} f’ﬁ,n,n’i*l P«é:m‘l Yot
i=0 .
1
4+ -
: F v iﬂf,n,n‘Pl Qﬁ?m’l f:@ansn Qﬁsn

Z.,n,m 2,0 °n
N

W ]
5 — = D

8 (x) Lo \Pn,1 Bg,1 ) A(X)?-g “h,i %1
1= i=

£

(n=0, Lol ) , (£=1, 2...L) (4.12)

Equations (4.12) represent a system of L N ordinary differential

equations with ( N+ 1 ) L unknowns; but from (%.3) one gets the

L relations

\
YV (= Y107 YootV ) =0
(v =1, 2...5 )
>
Y\) ( X, ulN, uaNaoo.uLn ) = O
(vV=J+25.eel) (4.13)
Y

by which one can eliminate L unknowns from (k.12).

In the sameAnmnnerﬁ(h.Z) yields the new boundary conditions
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T x=a, 9 ( Ty Ugps Tppeeey, ) =0

(v=1,2...h )

dIn ) =0

x =Db, CPV ( .Vn: U-lna U-zn-v"

(\)=h+ l...5L ) y (ll'-lh')

Equations (L4.1l4t) are the boundary conditions for system (4.12) and they

represent L ( N+ 1 ) integral or differential relations between the -

L( N+ 1) unknowns Uyn at the boundaries x =a and X =Db, i.e,
ﬁ,,,n ,but note that L of them have to be identical to (4.13)

r x = 0 and therefore one hags L N dindependent conditions to

determine the L N constants of integration of the system (4.12).

4.3 Accuracy, Practicebility and Convergence

The method of integral relations shows great accuracy for
blunt body calculations. TFor example, the three strip solution for the
- gphere presented by Belotserkovgkii Eh.8§ is believed to be the most
accurate as compared with experiments. The two strip solution for the
same case gives very nearly the same accuracy as the fhree strips.

There is not yet a satisfactory explanation of the reason for such

accuracy. [(I% shoull o coho- Shat the accuracy may be further im~
S 5 avpear that a partial
LOET OF DeLstnd WO ULLe SLUOTELT Lé 48 L0wmlid. &, e integration

procedure smoothes the irregularities introduced by numerical computa-

tions as compared to the schemes used by finite difference methods.
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b) The preceding statepent is especially true for cases in which
singularities are present within the field of integration. In using
finite differences the geamefry of the mesh has to be changed and
diminished around the singuiarity; no special modification needs to be
taken in the method under discussion unless one wants to have improved
accuracy in the neighbourhood of the singularity. The reason ls that
the divergence form of the governing differential equations allows

for the integration through the'singularity; the conservation laws are
thus automatically satisfied.* ¢) Any knowledge of the qualitative

or quantitative nature of the physics of the problem can be introduced
into the scheme by choosing appropriate smoothing functiong to approxi-
mate the integrands occurring in equations (4.7). This flexibility of
the method is extremely impoftant for possible increases in the accuracy
without corresponding increases in the order of approximetion. d) The
most striking feature 1ls the remarksble improvement of the method by

a convenient cholce of the system of weighting functions. It is a fact
" that if one chooses the right system of functions the accuracy is ﬁmpfoved,
but there is no explanation for this improvement. There has not been
much use of the weighting functions in the biunt body problem, but
regearchers in boundary layer theory have made wide use of these func-
tions since in boundary layer type problems the region of integration 1is
infinite in the direction normal to the body surface, the use of weighting
functions is the only way to generate as many ordinary differential
equabtlons as parameters introduced in the approximation of the inte-~
grands; however, it would appear that the use of these functions has not

been totally exploited as yet. Most of the investigators in boundary

Except if the physical model breaks down near to the singularity

38



layer theory have limi’l=d Themselves to the use of systems of functions
that have been shown in the past to give good accuracy for the particu-
lar cage of the integration of the boundary layer equations; however,
Bethel {h,l: &g investigated the effect on the sccuracy of three dif-
ferent families of weighting functions and found that it is very small
for the cases that he studied.

Going back to the general method where the region of inte-~
gration is finite, one can solve the problem without using any weighting
function and determine the introduced parameters by using a convenilent
nuber of strips. Suppose now that the gystem of welghting functions
(4.5) has been chosen in such a way that all of them acquire the value
zero at the lower bouandary of the corresponding strip. Examining
equation (L.7), one can see that with a proper choiée of ?@,n one
can compute the integrals (regardless of the choice of the smoothing
functions) in such a way that the main contribution to the value of
the integral comes from the region of the strip where ?@,n has a

-peak value. Thus the general recommendation for the use of weighting
functions is to select them in such a way that they have a peak for
the value of the variable arguments around which the profile approxi-
mated by the smoothing functlons is known to be very accurate, A
general disadvantage of thé method 1s that the accuracy depends on the
choice of the expression to be approximated by the smoothing functilons
a3 well as the particular system of coordinates. A general rule for
that option is to'examine previous experlence on similar cases and to
take them as a basis of comparison. There has not been developed, as

yet, a study of the scheme for the linear differential equations, but
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it would appear that one could learn much of the effects described
above on the accuracy of the differnet order of approximation by
carrying out computations Tor the non~linear case similar to those that
have been proved to be successful in the lineor case.

With regard to the practicability, it should be said that the
fact that the problem has been reduced to the integration of a system
of ordinary differential equabtions makes It plausible to apply the well
known and well developed fiﬁite difference techniques. However,
beyond the first approximation, the formulation of the method becomes
very tedious and requlres lengthy treansformations and algebra; there is,
on the other hand, an advantage of the method in that these transforme-
tions are purely mechanical, and, although 1t has not been demonstrated
yet, they can be handled by a program written in "FORMAC"* (an extension
of PL/I compiler); this procedure is presently being applied to boundary
layer problems.** This is especlally feasible for cases like the
present one in which the governing differential equations are quasi-

" linear, meking it possible by elemental means to find explicitly the
derivatives as a function of the ihdependent and dependent variables.
Once the analytic expressions of the system of ordinary differential
equations is known, it is quite practical to develop a code for an
electronic machine to solﬁe this system without over-loading the
memory of the machine by using subroutines for the different steps of
the code. There are, however, some special cages with peculiar

boundary conditions that reguire careful treatment, thus enlarging the

See Reference [h.l8]

¥. Mitra and H. Bossel, private compunication
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size of the program (for example, the blunt body problem with a dis-
continuity on the body).

The convergence of the solution as the number of strips
increases is totally unknown cdue to the fact :hat the blunt body
problem has not been carried out for more than three strips. Therefore,
one does not know whether the sciution gets better for higher N or
if there is a certain value of N TDeyond which the solution diverges
from the true solution, that i1s, the method would give an asymptotic
expansion rather than the terms of a convergent series expansion.

There have been some efforts in boundary layer theory to investigate
the convergence of the method when spplied in a particular version
(Bethel {h.l} ). However, there are cases in which special care needs
to be taken or the solution diverges for very high N, for example,

the blunt body problem with & shoeck within the region of integration in
which a step function is being approximated by polynomials. In general
one cen saybthat there is nothing to assure convergence and that a

special study for each case may be necessary.



5. APPLICATION OF THE METHOD OF iNTEGRAL RELATIONS TO THE CASE OF

A BLUNT BODY TN A NON-UNIFORM FLOW

5.1 Introduction

In the present section th¢ method of integral relations is
applied in its first approximation to the case of the blunt body under
the conditions described in earlier sections,

A feature of the integral relation hypersonic flow field
solutions of the blunt body prcblem is that a one strip approximation
usually gives quite accurate resuits (see reference [5.1}) when
applied according to Schene if i.e., teking the strips parallel to the
body surface. In our case, nowever, one has to be cautious about the
reliability of the numerical results because the infiuence of the non-
uniformities upstream in the shock wave may considerably reduce the
accuracy of the method. Thus, the results of this numerical scheme
will be significant only fron a gqualitative point of view, and for
more reliable numerical results it is recommended  that one applies
the second or if possible the third approximation.

The same notation thalt was used in Section 3‘will be followed
in the present section, except as otherwise specified. The formulation
will be developed for a body of revolution whose meridian curve is of

the most general geometrical shape.
5.2 Formulation

The flow equations utilized are the continuity equation, the

n-momentum eguation, Bernoulli's equation or the energy equation along

.X.
i.e.; the case in which the strips are tsken parallel to the body
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a streamline and the conservation of entropy along a trajectory, or
i.e., along a streanline in a steady flow.
The equations of continuity and n-momentum were derived in

section 3 and they are given here again for convenience

+

a7 .3 [ e 3 (a1

as"g?«i(e T) ag(e>“° (5.1)
3z .o [ e > (am

-B—S--g-—g- (-—G-—Z> + ——g'- (-—é—) =Y (5-2)
T=pvy (5.3)
A=1+—4 (5.4)
L=puy (5.5)
Z=puvy (5.6)
H=V(P+pu2) (5-7)
Y = ~%— + A psin 6 (5.8)
G=y(p+p V2>\ (5.9)
R = radius of curvature of the body

In the analysis which follows, suffix o refers to conditions
on the body while suffix 1 refers to conditions immediately behind
the shock. The distance of* a general point from the axis of symmetry

is given by
¥y =y, (s) +n sin 6 (5.10)

To apply the method of integral relations in the first
approximation, interpolate linearly for T, Z, and Y between the

body and the shock using the formulae
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T=To+(‘l‘l—To)§ (5.11)
z=zo+(zl~zo)§ (5.12)
Y=Y +(Y -7 )¢ (5.13)

Then substitute in (5.1) and (5.2) and integrate with respect to §

from. O to 1. We obbtain the relations

d 1 e
T [E(To”l)] et

I
ol
>
=
l.-l
]
o=
H
o]

= ( T+ Ty ) + =0 (5.1k4)

d 1 € e 1
= [E(Zo+zl)] e ke ()
A - A H .
1 Hl 00 1
g =30y +7,) (5.15)
These may be written as
1 | '€' 2 6
T =—TO+-é-—(\Tl-T0)—E('AlLl-AOLO)’ (5.16)
1
z’=5—-z-—2-( ~-A H )+Y +%¥ (5.17)
1 e 71 e Al Hl o o Tl o]
¥
since Z. = Z = 0O,
o] o]

The differential eiuations (5.16) and (5.17) can be expressed

entirely in terms of the dependent varisbles €, O, and Ve
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The differentisl equation for € is given by the geometrical

relation
de : '
-a—s'-~Al'b8.n(B—(1) (5'18)!
where
LE]
B=5-0 (5.19)
1L
“‘E‘e (5.20)
The differential equation for A is derived from the
definition |
T, =P, V¥, (5.21)
Then
H o ) 1 ) ]
T, =¥y Py Vg T¥,P Y,V P, (5.22)

v
0O O O

-8ince the bddy surface is a streamline, we know from the Bernoulli

equation that
dpo = - po vo dvo

S

and from the entropy equation that

a2 ="Efg
o] dpo

L5

(5.23)

(5.24)

(5.25)



Combining these equations, we obtain ‘the equation

& = - P Yo av, (5.26)

2
a
)
If (5.26) is substituted in (5.22) the differential equation for vy
is given as
1 V‘|
' T -y p

v
_ o) O O ©
v, = 5 (5.27)

Vo
Yo Po - T
a
o
1

where Y, is specified by the body geometry, and the speed of the

sound, &, on the body streamline is given by the Bernoulli equation

in the form

2 _ y-l,. .2
a = -3 (1 vy ) (5.28)

The density pO and pressure P, are found as a function of Vs with
" the help of the equation of conservation of the entropy along a stream-

line and they are

L S
. _ Y—l Y-—l - 2 Y"'l Y"'l -
e, -(———Y) I AP A (5.29)

Y y 1

) -1 \Y-1 2 -] -
2, =(—;——;,)Y (1-v2) Tt g ™ (5.30)

where mi is given by
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‘_x
o liﬁ
e <)

(5.31)

Py and p, are the pressure and density behind the shock at the

center line and they are given by the shock jump relations (3.31) and

1

(3.32) for the case 0 = 0. T, is determined by the continuity

integral relation differential equation (5.16) by

?
1

' € 2
o= T te (T - T ) -g (i Ly - ALy ) (5.32)

1

To evaluate T,5 we utilize the definition

-~

Then
i ? ¥ 1
=¥ PV * ¥V VP ¥y P Wy (5.34)
vwhere
op op
T 1 98 U
=35 35 T 55; I1 (5.35)
' ! de € .
¥y, =¥, teosa = + & §1n a (5.36)

;
Aat

equation is then

is defined later in equation (5.46). The final form of the

dvo Eo
=2 = ?; (5.37)
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with

= ey 543
o v, g
and
2
Fo =8 - vg (5.39)

In the present syétem of coordinates, the differential
equation for B can be deduced from the n-momentum integral relation
differential equation (5.17) and the shock boundary conditions.

From the definition of Zl one has

Zy=pyuy vy ¥y g (g up vy ) (5.40)

¥
where y, is given by equation (5.36). At this point it is convenient
to introduce the equations relating the boundary layer coordinate
velocity components to the velocity components U> %o tangential

and normal to the shock. Thus

u =g sin(B-a)-q cos(B-a) (5.41)
v, =g cos (B=-0a)+gq sin(B-a ) (5.42)

The cohdithmﬂ;across the shock‘are given by

Continuity

P9y = Pe o 5in B ‘ (5.43)
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Tangential momentum

q = G COS B (5.k44)
and one gets

duy aB 4y do.

T s ThEd M E (5.45)

dv. dy.’

1 as 1 do.
T " ha thed tMas (5.46).
where

aq_t o)

Ul = ’a_B"‘ sin ( B - Q ) - S—B— cos ( B - Q ) + Vl (5')"'7)
aq_t e]

Vl = S-B—- cos ( B~ ) + S.B—- sin ( B -a ) - ul (50)‘*‘8)
) aqn

U2 = BF]- sin ( B ~aQ ) - a?l' cos ( B -a ) (5-’)"'9)
) aqn

V2 = g-yfi' cos ( B -« ) + BKTI sin ( B -a ) (5.50)

d ;

8—21 = -qoo sin B (5-51)

% _ o B g2 (p" ) (5.52)

= cos B + g, sin = .

g



EE

i
[e)
o}
2]
™

) Pe Uy
_a.q_l.l. = SlnBaa ( °p° >
I1 Ty 1

_2y-1
EE?: = ...'_Y;l (]_.;.LY.:_J:MQ) Y-l M iﬂff
dyl 2 2 "Tow m<3Ly:|_

- 2
dqoo_ %J;Mcof dMoo " qco _d__f-—
¥, (2 +-3£l W), oo T A
and from (3.32)

() e
537]': Py (y+1) sinZB Mz dlyl
3 ( fg:) _ 2 sin 2 B
3B \py (v+1) sin'B
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(5.54%)

(5.55)

(5.56)

(5.57)

(5.58)



T
For pl one gets

Gy 3y g5 %Py dyy

1
where
op p p
1_ "1 9 [I=
¥ -5 5% <pl> (5.60)
2
apl:ﬁlfﬁ .._p.la<ff> (5.61)
% Pa Wy Pa W\ Py
and
ddg,
af
dp ) T - e o, dp
d.vm=—$z % 22:L Pw-"hia_f' (5.62)
1 ) [(£v))° - o3 ] P 0¥

The last eguation follows from (3.42). Going back to equation (5..40)
1 1

vy and pl by its expressions one has

) ay. ap
_ et _1 d8
Zy =Py Uy Yy g5 Ty [ul Vl(as as

1
and substituting U s
-af-J-'- d——y-l + P 'V .(_i.@. + V & +

3y, @ 1M {1d T2 W&

it 3| (5.6
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and solving (5.63) for %g, we find that

£ . %1[ (5.64)
with
01=Z3:"’1“1~v1 '?El’yl %(vi'“i)J'
Uy Vlg% %”1 ! V2;s:];+pl vy U %’l'] (5.65)
and Zi is given by tﬁe integral relation equation (5.17)
apl
B =7y [“1"1 3B TPy UVt Ul} (5.66)

5.3 Study of the Fixed Singularity

An examination of equations (5.37) and (5.64) shows that they
present a singularity at the axis, i.e. for s = 0, they are indeter-
minate.

Equation (5.64), when s = 0, is written as

a8

———

ds

(5.67)

e

where again the primed quantities denote differentiation with respect .

to the arc length s. Since for s =0 one should recall that the

symmetry of the distributions of Mach number and total energy in the
free flow makes
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M, df(:y‘l)

= =0 (5.68)
dy, ~ayy
and consequently
V,=U, =0 (5.69)

and from the non-dimensionalizabion of the lengths by the radius of

curvature of the body at the center line, Rs=0 = 1, then from equation

(5.65), when s~ O, one gets

H 3 n 2
Cp =2y =8y Py Vg + 248 01y (5.70)
From (5.66)
B, = Ay Py u Ty (5.71)

Hence, when s — O

1" . 2
7. +
a_ hrtchHhY (5.72)
ds 2 pl ul Vi Al

1"

. we go back to equation (5.17) to get

In order to determiﬁe Z

"

2 1 ¥ ¥ t
Zp=-5 (A H ) -(AH ) +¥ +Y (5.73)

1

because for s =0 , Zl = 0, But for this value of s one has also

(A B ) =82 (p +p v ) (5.74)
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(A H )=0p : (5.75)

o 0 (o]
Y, = 2 Al P, (5.76)
Yo =2p (5.77)

Hence

Ny
i

17" % {Ai ( Pyt Py “i ) - Po} +2 (A p+p) (5.78)

In the same way, equation (5.38) for s~ O can be written as

E = S v a (5.79)

e 11!
To evaluate T  we use equation (5.16). When s — O we have

1 11 2 i I R
T,=-T -5 (AL ) (5.80)

i

.and if one computes the derivatives by a limiting procedure as s — O

we have

’ 2
n " 2 A0 P, uy
i (5.81)

Now when § = 0

(5.82)
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11
where Z, is determined from equation (5.78). Therefore one has

1
finally
1
dvo To
ds ~ Z2p (5.83)
o
The initial values of the variables and their derivatives
are thus

s =0
e =¢€,
5
m
B=3
v =0
o
1
e =0
B = given by equation (5.72)
1
v, = given by equation (5.83) (5.8L4)

5.4 Moving Singularity

It is obvious that equation (5.37) presents a singularity
for the value of s corresponding to the point on the‘body for which
Ve = 8 i.e. for the sonic point on the body. This is a feature of
the method and it occurs also for the cases of higher approximations.
This point has been fully studied by Belotserkovskii (see reference
{5.2] ) and it has been shown to be a singular point of the saddle
fype. The condition of regularity of the solution at this point imposes

an extra condition to determine the stand-off distbance at the axis ei

that up to now was undetermined. In the next secﬁion the mathematical
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procedure to determine e::.L is given as well as the method to pass
through the singuler point in order to find the solution for values
of s larger than the one that corresponds to the sonie point, i.e.

the saddle point§_

5.5 B8hock Layer Properties.

The formulation expressed in the preceding paragraphs

reduces the problem to the integration of a system of ordinary differ-
ential equations that gives €, B, Vs as a function of s. In order
to determine the rest of the flow field vaxiables as well as their
distribution across the shock layer one should proceed as follows: with
the help of equations (5.3), (5.6), and (5.8) one computes Z, T, and
Y for the body surface and for the shock. Since Z and T wvary
linearly across the shock, one has directly (the numbers refer to the
steps in the iterative sequence)

Z + ( Z, - Z ) €

= (5.85)

1)  u(s,f) = To + (rTl - T0 ) §.

2) Assume a value for v(s,E) given by

v(s,§)

1l

vo + (vp- vy ) 8 (5.86)

With this value of v substitute in

+3
]

yov (5.87)

and

o
vy =4 (p +Rp4v ) . A pcosa (5.88)
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toget p and p as a funcbtion of s and §

3) From the energy equation compute f(yls) where y,  refers
to the point of intersection of the shock and the streamline

that passes through the point (s,g)

f(yls)?‘ = (% . <_12 + %i' -E- )2 (5.89)

L) Compute the corresponding m(yls) and find p such that
p = o oy) (5.90)
1s *

5) With this value of p compute from (5.88) a new v and repeat

the process again until the desired décuracy 1s reached.

5.6 Summary of Formulae

For convenience and clarity the necessary formulae for the
computation of the flow field variables are given in the order that

would appear in a code for a computer

s = 0
1
léi M°2°i i
Uy = 1oL (5.91)
2 Mooy
Py = [1 + %}{ ( Mii -1 ):} 'pmi (5.92)
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]

— p, (5.93)
1 - q°°i
LYt Y (5.9%)
Poos 5.9
Py-1)M, v
-y
P11 Pyg (5.95)
1.1
=1\ ¥-1 1
= (':\2{-—\{'>y cPi Y (5096)
y-1
Pt (5.98)
e 13 )
1+e,; (5.99)
Gy * Qg (5.100)
2 [ o 2
A %Ali( Prg * Py g ) Pyt
(85 pp; +04) (5.101)
ZH 2 Ai p
1i + i 711 %y (5.102)
i €
= 0 (5.103)
1
7. +2A. p. g
et 1i P1i T (5.10k)

2Pys Yy Vg Agy
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s >0

av T

_— = o
dsi 2poi
de
= = (1+e)tan(B-a)
v-1 2 L
4% = 2 = 2f( )
. v-1 _2 Iy
1+ 5= Mg
2y
v
pno= 2 o0
(y)~ - q

(y+1) Mﬁ sin°p

Pe
(Y—l)Misin2f8+2

2 2 .2
P, =[l+ =X (Mms:.nB—l)] P,

Y+l

q = G, cos B
P 8

= — q, sin
D T B
2 (f’i_): i A e
%y \ Py (y+1) sin°B Mi vy
g__(f_*’_"): _ 2 sin 2 B
B \Py (y+1) sinl'rﬁft\/lce°
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da,, 5 M, T M, % gf
= + o— ==
dy. Y-1 .22 f
1 @+, ¥ dayy
aq_t “d
-5-3—;]-: = cos B a-i’-;
Sy
S5 < - q, sin B
S, P G 3
S5 - 5 cosB+qmsz.n.8-é—§-
=~ = ginBl— — + q,
Byl pl dyl‘ : 5_371
dqg,
af
£f(y,) = - q, =—
dp. y 17 dyy Wy
e ——— —y - p
ay Y-1 Z 272 ‘e
1 [f(yl) ) Q»}
.
op, Pl 3 [Pe
g - T p, °B BZ
3 2
Py Py Ao,  PT <pm)
dy dy 5
A de L &
-a—s—- = = + cos O a5 + B sin
P12 %@, P W
ds o8 das 5—37; ds
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]

i

il

g, sin (B-a) - q, cos (B -~-a)

qt cos ( B ~a )+ q, sin (B -0a)
-:-;isin(ﬁ-m-;'in-c'os(a-a)Jrv
;gﬁ cos ( B -a) flzgﬁ sin (B-a)-u
g;i sin (B-a) - ;;? cos (B -a)
E;i cos { B-0a ) + ;5— sin ( 8 - a )

+U——-—-dy:L E
2 ds R
P T |
2 ds R

2
Z, - = ( AL H, - Ao Hy ) + Y, o+ YO

61

(5.

('5.

(5

(5.

(5.

(5.

(5.

(5.

(5.

125)

126)

.127)

.128)

129)

130)

131)

132)

133)

13k)

.135)



dg
ds

il

]

1 1 !

Yy Pp Vg ¥ ¥ Vg Py vy P vy

! ‘e' 52
S rm (T =T ) -T AL

(r, - yo Py v, ) a
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5.7 DNumerical Procedure

The calculations described in the last paragraph were carried
out for a sphere under different conditions described in next section.

In order-to integrate the system of ordinary differential
equations developed in the last section, the Runge-Kutta method modified
by Gill was used.

It should be récalled that the initial stand-off distance of
the shock wave had to be attained by satisfying the condition of
regularity at the singular point. Following Belotserkovsgkii's recom~
mendations [5.2} the original procedure for finding the correct solutlons
on smooth contours has been considerably simplified. Previously it
was necessary to stop a given integration ahead of the sonic point and
extrapolate the solution up to that point by means of a series ex-
pansion. These took time and labor to construct and had to be evaluated
for each choice of detachment distance. until that corresponding to
correct saddle point conditions at the gsonic point had been determined.
‘Under the revised procedure, as applied to the first approximation, the
integration corresponding to each detachment distance is continued until
either the velocity derivative changes in sign or until it attains the
value unity. The desired integration always lies between those satis-
fying these two conditions so that progressively dloser upper and
lower bounds on the stand-off distance can be found. No extrapol~
ations and series expansions are required to carry out the new scheme
if one is only intefested in the initial stand-off distance, the

distribution of velocity on the body and the shock shape. However, if

¥
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the properties across the sghock layer are desired, an extrapolation may
be necessary in the way deséribed in the next paragraphs.

A general feature of transonic flows is that in the proxim-
ity of the sonic line & saddle point in the family of infegral curves
of any field property appears. A very'Aescriptive example can be seen
in the curvesg for different critical sections A% thnat appears in the
analysis of a supersonic nozzle. (See for example Liepmann and
Roghka E5.3}). The same phenomenon appears in our ca;culaiions, and with
no further comments we proceed to its analysis.

Assume that an integration of the system of ordinary differ-
ential equations is pogsible.for each value of the initial detachment
distance €. If €ex is The exact value of € that makes the
solution regular at the sonic point, one would have the pattern of
curves sketched in Figure 5.1. In practice it is not possible to carry

~out the above because the Runge-Kutta scheme becomes unstable before the
sonic point is reached. This instability does not appear until the veloc~
ity derivative dvb/ds reaches the value unity if € < €.ox OF 2Zero
if e, > €iex® Therefore, one is able to construct the curves as close
as necessary to the regular solution. It has been shown that the loca~
tion of the points where the'velocity derivative for the lower and upper
bounds of eiex diverges significantly 1s very sensitive to the assumed
value of 61 and one has to approximate eiex within the sixth signifi-
cant decimal digit in order to have satisfactory results. For such a
purpose, the Runge-Kutta schemé has to be carried with an éccuracy
larger than 0,000001 and thus the procedure for computbing eiex is per-

haps longer than it would appear from a superficial inspection.
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Once the detachment distance is known with sufficient accuracy,
the problem of finding the lqcation of the gonic point on the body re-
mains to be solved. To do that, it is necessary to stop the integration
a few steps before the sonic point and with the #alue of the derivative
vfound for the last point one can extrapolate until the point for which the
velocity vb equals v*, is reached. Should one desire to carry the
integration beyond the sonic point, a further extrapolation has to be
carried out as it is indicated in Figure 5.1, where the jump in the
extrapolation occurs from the point Pl to the Pé or from Q1 to

the Q2 depending on the curve along which the integration has been

carried.

5.8 Calculations in the Shock Layer

The calculations in the shock layer were carried out in the
manner described in paragraph 5.5. The sonic line was found as the
locus of the points in which the Mach number is one. If the value of
the azimuth of all points on the sonic line is less than the one that
corresponds to the sonic point on the body, it is not necessary to pass
through the saddle point, and the solution simplifies to some extent
because the calculations beyond the saddle point can be obtained by the
method of the characteristiés‘gince the ray that passes through the
sonic point is totally beyond the transonic region, i.e., it is located
downstream of the limiting characteristic as was already discussed in

Section 2.
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6. RESULTS

6.1 Deécri@tion of the Differént‘Cases under Investigation

Figure 6.1 describes the different parameters that define
each of our cases. As is indicated in the Figure, parabolic distri-
butions of the Loy and Mach number have been adopted. Mé represents
the Mach number at a distance 2 R from the axis and Mi represents
the Mach number at the center line. The parameter ﬁ% represents
the fractional excess in the maximum velocity at y = 2 R over th¢
value of Lpax® The different cases considered in these calculations
correspond then to thoge defined in Table I.

Case I corresponds to the uniform flight of the sphere for
Mach number 4.0. Case II has a uniform stagnation temperature but
variable Mach number. Case III is under uniform Mach number but
variable stagnation temperature. And finally Case IV is a superposition

of Cases II and IIT,
6.2 Results

éomputations for the cases above defined weré carried out in
a digital computer IBM 360/75 and the program was written in FORTRAN IV.
The average time to computé‘ €5 ox with 6 decimal digits was variable
for each cage, but it was of the order of 6 minutes when it was done
manually, that is, observing the output for each run and deciding on a
new value for €;- If the computation had been done automatically

the time would have increased to ten minutes.
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TABIE I

INPUT PARAMETERS

4
A, 0.0 0.0 -0.5 -0.5
My k,0 4,0 4,0 L,0
Mc 4,0 2.0 4,0 2.0
TABIE II
NUMERICAL RESULTS
CASE NUMBER 1 2 3 I
€ 0.175 .200 .169 .187
N .
6 .73 .93 .69 .89
¥ | L 2
esh 5T «55 o5 o5
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The gignificant numerical datea for each case are shown in
Table II, where g;: is the azimuth of the sonic point at the body,

9:5 is the azimuth of the sonic point behind the shock. eiex is the
stand-off distance of the ghock at the center line.

Figure 6.2 shows the shock shape and sonic line for Case I
according to the present method (dashed lines). The numerical results
of the three strip solution of Beloﬂ%ﬂ%DVSkii [6.1] are given for com-
parison (see full lines). The apparent peculiarity in the computed
sonic point near the body is discussed in the next section. In Figure
6.3 the difference between the Belotserkovskii solution and the present
solution is amplified. It should be noted that the origin of the verti-
cal scale is at 1.5. TFigure 6.4 illustrates the variation of pressure
across the shock layer; the differences have been amplified again for
purposes of comparison. One can say that the maximum differences in
the shock stand-off distance is of the order of 0.5% and that the pres-
sure differs less than 5% across the shock layer.

Figure 6.5 compares the shock and sonic lines for cases I
and II. The same technique used for Case I has been used for Case II.
Figure 6.6 éhOWs the variation sf pressure across the shock layer for
Cases I and II. It should be noticed that for Case II the pressure
behind the shock seems to‘femain constant along the azimuthal direction.

In Figure 6.7 the pressure variation has been plotted along
the body for Case I and in Figure 6.8 the difference for Cases II, III,

and IV is shown; the maximum variations correspond to Case II and it is

of the order of 25%.
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DISTANCE TO THE CENTER OF THE SPHERE

2.5

2.0

1.5

Belotserkovskil's three strips solution

OO~ Actual one gbrip solution

FIG. 6.3 SHOCK SHAPE SOLUTION FOR CASE I
BY THE ACTUAL METHOD AND BELOTSERKOVSKII'S
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PRESSURE
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FIG, 6.7 PRESSURE DISTRIBUTION ON THE BODY FOR CASE I
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PRESSURE DIFFERENCES

004 GO e Case 1T

A i~ Case III
Iv
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002

i
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-.002 - _
(i= II, III, IV ).

FIG. 6.8 PRESSURE DIFFERENCES BETWEEN CASES IT, ITII, IV AND I
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In Figure 6.9 the temperature variation along the body is
shown, and in Figure 6.10 the differences with Cases II, III, IV are
shown. The largest difference occurs again for Case II and it is of the
order of 7%.

Figure 6.11 shows, with the vertical scale amplified, the
shock waves for the different cases. The maximum change occurs for
Case II and it is about 10% at the center line.

Figures 6.12, 6.13, 6.14%, 6.15, and 6.16 correspond to the
distributions of veloecity at. the body along the azimuthal direction and
their differences. The maximum differerce is for Case II and is of the
order of 25%.

For further detalls on the results the reader is referred to
the corresponding figures. Speclal care should be taken when considering
vertical scales with regard to the order of magnitude and the shifting

of the origin.
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Tﬁﬁ‘— Tm = Stagnation temperature at the
| center line
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FIG, 6.9 TEMPERATURE DISTRIBUTION ALONG THE BODY
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TEMPERATURE DIFFERENCES
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FIG, 6.10 STATIC TEMPERATURE DIFFERENCE FOR THE DIFFERENT CASES
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FIG. 6.12 VELOCITY DISTRIBUTION ON THE BODY FOR CASE I
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FIG. 6.13 VELOCITY DISTRIBUTION ON THE BODY FOR CASE II
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VELOCITY DIFFERENCES
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FIG,
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7. DISCUSSION OF RESULTS

As one can see from Figure 6.2 and 6.3, the one strip method
as developed in this study. approximates the shape of the shock wave
very closely; the approximabtion becomes worse for values of 6 larger
than that corresponding to the sonic point on the shock. The sonic
line, on the other hand, is approximated only qualitatively. The sonic
point on the body, which has been calculated by extrapolation of the

integral curve, W

b—@, for one of the best estimates of €. as

iex
already mentioned in earlier sections, coincides with that given in the
three strip solutions. Figure 6.11 was utilized for this purpose and
if only three significant decimal digits for 6% are desired, there is
no significant difference between the upper or lower bounds of €iex
which are used in the extrapolation. The other sonic points encircled
in Pigure 6.2 were calculated by carrying calculations in the shock
layer, in the manner mentioned in Section 5, using the computed results
of a case representing the best of the bounds on Eiex‘ As one can see,
'the internal sonic points closer to the wall do not converge to the
extrapolated sonic point on the body, and therefore the sonic points
clogse to the wall are not expected to be reliable., The reason for this
disparity could be the sensitivity of the solution in a neighbourhood
of the saddle éoint to the accuracy of the approximated stand-off
distance.

In Figure 6.4 one can see additional effects of the first

approximation as compared with the more exact”three strips solution.

The reason for the near linear pressure. distribution for lower values of
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the azimuth for l-strip method case is due to the fact that in the

region cloge to the stagnation streamline, the density remains nearly
constant and the velocity component along the aximuthal direction is very
small; but the one strip method results in the linear approximation of the
quantity Y defined in Equation (3.17), which for the case of tﬁe sphere

becomes

Y;=(2;p+ﬁ>.v2)y~2py (7.1)

Taking'into account fhat y remains almost constant across the shock
layer if y << 1, one obtains approximately a linear variation of p
as shown by the numerical results. For larger values of the azimuth,
v 1s no longer small, y varies significantly across the shock layer
and the density cannot be assumed constant anymore, and therefore the
pressure distribution is expected to deviate from the linear behaviour.

Figure 6.5 shows the same results as in Figure 6.2, but for
Cases I and II., The most remarkable feature is thé large extension
of the subsonic region along the body for Case II as compared with
éase I. The shock wave moves outward;.and only the sonic point on the
shock remains approximately in the same area (although this fact does
not seem to have any physical significance). It should be noted that
a remarkable improvement in\the solution for the sonic line behaviour
next to the body as compared with Case I is evident. There is no
explanation for such a feature at the present time,

An examination of Figure 6.5 shows that the pressure across

the shock layer for Cagse II behaves qualitati#ély in the same manner as
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that for Case I. One can observe & rise in pressure on the body, and

a more exaggerated rise behind the shock., As one can see, the pressure
behind the shock remains more or less constant for the three values of
0 displayed. This result is caused by the deformation of the shock
wave that becomeg less steep as compared with Case I, as can be seen in
Figure 6.11. Also, in this TFigure are displayed the shock shapes for
Cases III and IV. It is seen that the shocks are‘always flatter than
for Case I, and it seems that this effect is most significant for Case
Iv.

Figures 6.7 and 6.8 show the pressure on the body for case I
and the differences with the other cases. These curves show an increase
in hody pressure as one approaches the sonic point of Case I, even
though the mean Mach number is smaller for Case II. This is due to
the fact that, for this particular case, the dynamic pressure in the
free stream, ;;q%o, increases in the radial direction. In the Newtonian
approximation the body normsal, free stream dynamic pressure is directly
- related to the body pressure and thus the above result is understandable.
This increase in pressure is most marked close to the sonic point, and,
therefore, the increase in the drag coefficient will not be significant
since both the pressure and the horizontal component‘of the pressure
in that region are small a; camparediwith that in the stagnation region.
For Case III, a variation in stagnation enthalpy, the effect is
opposite although much smaller. For Cage IV, a combined variation case,
one can see that the radial heating and Mach‘pumber variations have

opposite effects with the Mach number variation dominating.
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Figures 6.9 and 6.10 show the temperature variation on the body
for the different cases in an analogous manner as was dbne with the
pressure. It is seen that the body temperature profilé for Case II
is larger than for Case I which is larger than for CaSe III. This
result is expected in that the stagnation enfhalpy along the body is
the same for all cases and therefore the profile is dictated by the
location of the sonie point. Once again, Case IV ghows that the effects
Just described are opposite when actiné simultaneously, but again the
Mach number variation dominatesg.

Finally, Figures 6.11, 6.12, 6,13, 6.15, 6.16 show the
velocity variation on the body for each case and their final comparison.
These figures were used for computing the extrapolated sonic point,
and since in all the cases the @ of this point was larger than that one
of the internal sonic points, no integration beyond the sonic point on
the body was necessary as was discussed in the last section.

The shock layer properties for Cages III and IV were not
_ computed and nothing can be said about their behaviour across the shock

layer and along the sonic line,



8, RECOMMENDATIONS AND CONCLUSIONS

The method described can be generalized to include stag-
nation pressure variationsg in the free stream with no complex modi-
fications. Should one include asymmetric non-uniformities the problem
becomes quite involved and itAis of a.nature similar to the blunt body
under an angle of attack, If keeping the symmetry in the non-uniform~
ities one desires to intfoduce cross flow (i.e., the velocity in the
free gtream has a radial component) it can be introduced with no sub-
stantial modifications if one knows the analytical law for the radial
component, Finally, if the Mach number decay along the radial direction
goes to values of the Mach number legs than one, the problem cannot be
solved under the present analysis and an investigation of a new numerical
technique is required.

In conclusion one can say that for the cases studied

a) The non-uniformities affect the shock'wawe to some extent.

b) The shock wave becomes less steep than for the uniform
-case.

¢) The most sensitive parameter to the non-uniformities is the
location of the sonic point on the body.

d) This change in location changes the drag coefficient by
an amount that is much smaller than the percentage of change of the non-
uniformities.

e) Since the entropy layer in the supersonic region of the
flow around the body depends on the changes in curvature of the shock,

it seems that this layer will suffer the major effects of the non-

2



uniformities. Since the shock for these cases has continuously less
curvabture, the extension of the entropy layer will be enlarged. Note
that the free stream was already a non-isentropic layer for the non-

uniform cases.
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