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Abstract

Two procedures are developed for the synthesis of inertia-
wheel systems for three-dimensional attitude control. Both
techniques compensate for inter-axis coupling due to the
angular momentum of the inertia wheels. 1In addition, both
procedures approximately minimize the integral of a quadratic
function of system error and control effort and are suboptimal
in a mathematical sense. The techniques developed iﬁ this
paper are applied to the design of an attitude control system
for a large axlially symmetric spacecraft similar to the
proposed Orbiting Astronomical Observatory. In a computer
simulation, the suboptimal systems were shown to respond
faster and more accurately than those designed by conventional
transform techniques or by optimization procedures based on
time-invariant approximations of the equations of motion. The
suboptimal systems also had lower peak torque and peak power
requirements than system designed by étandard transform

techniques.



Nomenclature
Ii = moment of inertia of the spacecraft about the Bi axis
J1 = moment of inertia of the inertia wheel rotating about
the Bi axis
wy = total angular velocity of the spacecraft about the
B1 axis
QB = angular velocity of the inertia wheel rotatiing abcui tre
i Bi axls relative to the spacecraft
T = sum of the disturbance torques about the Bi axis
Dy
w = total ~nrular velocity in terms cof the body axes
wg = angular velioclity of the spacecraft relative to the
reference axes in terms of the body axes
QR = angular veloclty of the reference axes in terms of the
reference axes
L =2a 3x3 orthogonal matrix relating the reference axes
to the body axes
X = the angular position and veloclty of the spacecraft
relative to the reference axes
A = matrix of the coefficlents of the time-invarlant coupling
terms
C(t) = matrix of the coefficients of the time-varying coupling
terms
u = control torque available from the inertia wheels

g(t)

summation of internal and external disturbance torgues




SUBOPTIMAL COMPENSATION OF GYROSCOPIC COUPLING
FOR INERTIA-WHEEL ATTITUDE CONTROL

1. Introduction

In many attitude control situations, motor-driven inertia
wheels may be preferable to gas jets as the primary source
of control torque [1-3]. The most serious problem in the
synthesis of such inertia-wheel systems arises from inter-
axis coupling due to the angular momentum of the wheels. In
many cases such coupling is considered to be negligible
{1, 4-7],“ and design procedures are based on time-invariant
approximations of the equations of motion. 1In some cases this
assumption is justifiable; however, in many cases inter-axis
coupling can adversely affect system performance if ignored [3].
In the present study, two procedures sre presented for
the synthesis of inertia-wheel systems for three-dimensional
attitude control. Both techniques compensate for inter-
axis coupling due to the angular momentum of the lnertia wheels.
In addition, both procedures approximately minimize the integral
of a quadratic function of system error and control effort and
are suboptimal in a mathematical sense. The methods proposed
are applicable to the design of attitude control systems for

fine control (the correction of small errors).

4 Numbers in brackets indicate references listed at the
end of the paper,
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The procedures developed in this paper are applied to the
design of an attitude control system for a large, axially
symmetric spacecraft similar to the proposed Orbiting Astro-
nomical Observatory. The resulting control laws are in physi-
cally realizable, feedback form. In a computer simulatidn,
syctems designed on the basis of the procedures outlined in
this study are shown to respond faster and more accurately
than those designed by conventional transform techniques or by
optimization procedures based on time-invariant approximations
of the equations of motlon. Also the suboptimal systems have
lower peak torque and peak power requirements than systems de-
signed by use of standard transform technigues; consequently,
the suboptimal systems could probably be built from smaller

and lighter components.

2. Preliminary Considerations

Attitude control consists of applying torque to a
spacecraft in such a way as to place and hold it in a specific
angular orientation with respect to a three-dimensional frame
of reference. In this study, the reference frame is assumed
to have small angular veloclity and acceleration. The flexi-
bility of the spacecraft is considered negligible, and
control torqgue is available about the three principle axes.
The inertia wheels are assumed to be mounted at the center of
mass of the spacecraft. Many important attitude control

situations fall within the context of the above restrictions.



In Fig. 1, the axes denoted as Bl , B

assumed to be the principle axes of the spacecraft and are

2 s and B3 are

called the body axes. The axes labeled R R, , and R

1 » "2 3
represent the desired orientation of the spacecraft and are
called the reference axes.

The exact dynamical equations for inertia wheel control

are
= O % = i 9] -
TD Jl(flB + O ) (Il + J2/2 + J3/2)wl + J3 B Yo JZQB N3
1 1 1 3 2
* I3+ dg,, = (I + 35,50 )uu,
(1)
- f.z "’ = X Q - Q w
Tp, = J2lfp, * ¥2) = (Ip * Ty 5 + 35,504 + 9y B,"3 73831
¥ Iy dye - (I3 4 3350004
TD3 - J3(“33 tug) = I3+ Jp * 0y 0005 + Jofp 01 = I1p 2
(I, + 35,0 = (I + 33 ,5))00,
Terms of the form Ji(ﬁB + 61) represent electrically
' i
induced torques and are used for attitude control. The
total angular velocity of the spacecraft is
w = wg + Lo (2)



Sincc the control system is to be used to correct small
attitude errors, the equations of motion may be simplified
by use of standard small angle assumptions. 'Terms of second
order and higher involving the angular position and velocity
errors may be neglected. Furthermore, it is not uncommon for
the moments of inertia of the spacecraft to be mcre than a
thousand times as large as those of the control wheels [4,5];
consequently, the muments of inertia of the control wheels
may be ignored when summed with the moments of inertia of the
spacecraft. Under the above assumptions, (1) and (2) may be

written as
X = Ax + C(t)x + Bu + g(t) . (3)

where B 18 a 6x6 matrix such that b,, = 0 except byy = 1/1q,

i
buu = 1/I2 s b66 = l/I3 . The functionil form of the elements
of matrix C(t) are not known a priori.

The value of the integral of a quadratic function of the
system error plus a quadratic function of the control effort
has been widely used as a measure of control system performance.
Such a performance index is often analytically attractive, and
for inertia-wheel attitude control, a quadratic cost functional
also makes sense from a physical standpoint.

The suboptimal systems developed in this study reduce
the angular position and velocity errors to zero rapidly, and

also approximately minimize,



J(xgs u, t) = lt (x' Q x + u' Ru)dt (4)
(o]

where Q and R are positive-definite, diagonal, constant

matrices.s

A small value of this integral indicates that

both the error and control effort are kept small during most

of the control interval. The error should not be large since
excessive overshoot is to be avoided. The cocntrol effort should
remain small to prevent saturation of the inertia wheels (the
amount of control torque available from the wheels is limited)
and also to conserve the amount of energy used (the torque

output of the inertia wheels, U is proportional to the

current supplied to the electric motors driving the wheels).

3. Development of Suboptimal Techniques

The optimization problem considered is the determination
of the control, u , which transfers any initial state, Xy »
to the origin for the system governcd by (3) and also minimizes
the integral performance index (4).

Three techniques for the solution of the above problem
are the calculus of variations [8], Pontryagins minimum
(or maximum) principle t9], and the Hamilton-Jacobi theory [10].
Each of these approaches gives enough information to determine
the mathematically optimal control for the problem defined

by (3) and (4); however, the Hamilton-Jacobi theory gives the

3 A prime denotes the transpose of a vector or matrix,



most direct anproach to the determination of both optimal and
suboptimal control laws in feedback form. This approach
depends upon the minimization with respect to u of a scalar

function (H) defined by
H(x,p,u,t) = x'Qx + u'Ru + p'Ax + p'C(t)x + p'g(t) + p'Bu (5)

where p(t) 1is a vector of the same dimensionality as x .

The optimal control

X

ut(t) = - % R™1B'p (6)

minimizes H . A scalar functional, called the Hamiltonian
(H*), 1is ohtained by the substitution of (6) intc (5) and is

given by

H* = x'Qx - %p'BR-lB' p + p'Ax + p'C(t)x + p'g(t) (T)

In the Hamilton-Jacobi approach, p(t) 1s set equal to the
gradient of a scalar function of state and time; that 186,
p(t) = Vx(x,t), where V(x,t) 1s & twice-continuously
differentiable function satisfying the partial differential

equation
Ve + HY (x,V ,t) =0, V(0,t) = 0 (8)

Equation (8) is known as the Hamilton-Jacobi equation, and

its solution, V(x,t), evaluated at x and to is the minimum

L]

6 Vx(x,t) = grad V(x,t)




value of the integral performance index (4).
Method I

In the attitude control problem, the analytical solution
of (8) appears impossible. Thus it is necessary to develop
nrocedures for generating control laws which are suboptimal
(approximately optimal). The first procedure for suboptimal
control consists of using the control system to eliminate
the most substantial time-varying terms in the equations of
motion. The resulving system is then treated as linear for
purposes of optiinization. Cannon [2] suggests a similar
prccedure but mathematical optimization is not attempted.

A portion of the control, denoted by u, is used to

eliminate all time-varying terms in (3). From (3)

Bu, =-C (t)x - g(t) (9)

The remainder of the control is denoted by up - Applying u,

to (3) ylelds x = Ax + B u .

The control ur, is to be selected in such a way as to

minimize
J

|
' _
Jt (x'Qx + uLRuL)dt ;
o
Using (9), the Hamilton-Jacobl equation is

& %—v; B R~ B'V, + V.AX + x'Qx = 0 (10)




Kelman [10] has demonstrated that the quadratic function,
V(x) = x'"Px, is a solution to (10) provided P 1is a symmetric

positive definite matrix such that

-1

PA + A'P - PB'R BP+Q=20 (11)

The control, u , is the sum of u, and u,
The attitude response of the spacecraft is determined
by the values selected for the weighting matrices Q and R .
In thc remainder of this work it is assumed that identical
response is desired about each axis of the spacecraft. This
is the case in many attitude control situations. Also, the
above assumption considerably simplifies algebraic manipulations;
although it is not a condition which must be satisfied before
the suboptimal procedures developed in this study can be applied.
Method II
The second method for suboptimal control is an extension
of a technique developed for nonlinear systems by Garrard,
McClamroch, and Clark [11] and is based on a procedure for
gbtaining approximate saolutions to the Hamilton-Jacobi equation.,
The control, u , 1s divided into two components, up and Ug
where Buy = - g(t). Using up » (3) reduces to!

X =Ax + ¢C (t) x + Bus . The control ug is chosen to

- . » f .
approximately minimize J = J (x'Qx + uéRus)dt . The
t

o]

T The parameter ¢ has been introduced for notational
convenience.




Hamilton-Jacobi equation 1is

1

V, + VI[AX + ¢ C(t) x] - % ViBRTIB'V_ + x'Qx = 0, V(0,t) = 0

t
(12)
An approximate solution to the above equation may be obtained
by treating C(t) as & constant matrix. If C(t) 1s assumed
constant, V 1s a function of the state alone. The scalar
function V(x) 1s assumed to be represented by a power series

expansion in x of the form

vix) = ] By (x) (13)
n=2

Substituting (13) into (12) and equating powers of € to zero

glves

1
Y Y oV
2 1 2 -1 2
?TAX-H_Q;BR B! 5?-+x'Qx= 0
'
V. 3V AV 3V
2 L " 2 apel .
H—AX‘Fa—x— CX-§ﬁ—BR B! X 0 (14)
' L]
ov_ v n+2 av 9
n n-1 1 k -1 Lo
Iz Mig Ox-p L ogm BB =0
922

where Kk + g = n+2
In order to determine V2, V3,... Vn, the above equations
must be solved successively. The first equation of (1l4) is

identical to (10), and the solution is given by (11). The
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remaining equations in (14) are linear, partial differential
equations; however, an exact, analytical solution appears
impossible. Approximate solutions can be obtained by assuming
Vn = x'Mnx for n > 3, where Mn is treated as a constant,

symmetric matrix. Substituting into (1l4) yields the

following set of linear algebraic equations

M3(A-BR—1B'P) + (A" - PBR-lB')M3 = PC - C'P
. (15)
-1 ) -1 nte -1
o ' 1 ' ~ M - - O
M (A-BR™'B'P) + (A'-PBR™IB')N_ k§3 MBR™'B'M - M__.C - C'M,
223

where k + 2 = n + 2, These equations may be solved for Mn 5

and the control, Ug s is given as

ug = - R™IB' [P+ | (n=2)y 3¢, (16)
n=3 2

Mn is a function of C , and C 1is a function of time. Con-
sequently ug contains linear terms with variable coefficients.
The complete control, u , is the summation of 1its two
components, ug and up -

In deriving control law (16), a number of assumptlons
have been made, and convergence to the optimal control is
questionable. In actual practice, however, only a few terms

can be used in chcosii.e a suboptimal control law; consequently,

convergence 1s not of primary importance.
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4., Suboptimal Control of a Large, Axially Symmetric Spacecraft

In Fig. 1, the B1 axls 1s to be aligned with the R

axis. The B1 axis 1s fixed in the spacecraft, and the

R, axis is non-rotating (QR = 0). The complement of the

1

angle between the Rl and B3 axes, o, is called the
pitch angle, and the angular velocity about the B2 axis
is the pitch rate. Similarly, the complement of the angle
between the R and B

axes, Y is called the yaw angle,

1L 2 (14
and the angular velocity of the spacecraft about the B3
axis is the yaw rate. The angular velocity about the B1

axis is the roll rate. The B Bz, and B3 axes are the roll,

19
pitch, and yaw axes respectively.

Gas Jets are used for coarse control, and inertia wheels
are used for fine control. Gas-jet control i1s begun when the
spacecraft leaves the last stage of 1ts booster vehicle. The
gas-jet system must reduce the pitch and yaw angles to 0.15
radians and must drive the roll, pitch, and yaw rates to
0.0005 radians/sec.

After the gas-jet system has sufficiently reduced the
attitude error, inertia wheels are used to further stabilize
the spacecraft. The inertia-wheel system must reduce the
pitch and yaw angles to 0.003 radians and must drive the pitch
apd yaw rates to zerc within 10 minutes following the end of

gas-jet control. The roll rate must be held to about 0.0005

radians/sec. The moments of inertia of the spacecraft are
2

2

1000 slug-ft“ about the pitch and yaw axes and 900 slug-ft




12,

about the roll axis. The performance specifications outlined
above are almost 1dentical to those for the proposed Orbiting
Astronomical Observatory [5]. .

A functional block diagram of the combined gas-jet and
inertia-wheel pitch axis control system is presented in Fig. 2.
During gas-jet control, the angular velocity about the pitch
axis 1s sensed by a rate gyro, and the attitude error is deter-
mined by optical sensors [5]. The attitude error signal is
limited in magnitude and added to the pitch rate signal. This
signal 1s used to actuate the gas-jet. After the gas-jet
system reduces the pitch and yaw angles to 0.15 radians and
the pitch, yaw and roll rates to 0.0005 radians/sec., the
mode control logic switches to inertia-wheel control. The
inertia-wheel control logic regulates the torque output of the
inertia-wheel and motor combination, and this torque is used
to control the piltch angle and the angular velocity about the
pitch axis. The motor 1s assumed to provide torque proportional
to the actuating signal [12].

In the inertia-wheel control mode the angular velocity
of the spacecraft becomes very small ahd cannot be measured
by the rate gyro; therefore, the attitude error must be
differentiated in order to obtain an approximate value for
the angular velocity about the pitch axis. Differentiation
may be accomplished by analog or digital means, and the value
of the differentiated attitude error approaches the actual

angular veloc¢ity as the attitude error approaches gero.
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The gas-Jjets are used to desaturate the inertia wheel
when 1ts angular momentum becomes large. When the angular
velocity of the inertia wheel reaches a given value, the
gas Jet fires and creates an angular velocity error about the
pitch axis. The angular velocity error created by firing the
gas Jet is in the opposite direction to the angular veloclity
of the inertia wheel, and as the inertia-wheel system corrects
this error, the angular velocity of the wheel 1s reduced.
Further conslderation of desaturation 1s beyonc. the scope of
this study.

A block diagram of the yaw-axls control system is nearly
identical to Fig. 2 except the limited altitude error signal
is subtracted from rather than added to'the yaw=-rate signal.
A block diagram of the roll-axis control system 1s presented
in Fig. 3. This system regulates the roll rate, and in the
gas-jet phase, the control system 1s actm:ted by the output
signal from a rate gyro which measures the angular velocity about
the roll axis.

Gas-jet control could be used exclusively for control
about the roll axis; however, in order to conserve fuel,
an inertia wheel is used to regulate small errors. The
inertia wheel system exerts full torque to oppose roll rate
errors larger than 0,0005 radians/sec, but no effort is made
to control smaller errors.

The value of the roll rate is used in implementing

control logic for both methods for suboptimal, inertia-wheel




stabilization. Since small values of this angular velocity
cannot be measured, the roll rate is calculated by integrating
the equation of motion about the roll axis. Since the space=-
craft is axially symmetric, 12 = I3 = I. Under the assumptions
outlined in Section 2, and neglecting disturbance torques,

the approximate equations of motion are

J.0 J.e
) 2B, . 33, . u
1 © 1 € 1
J.Q 7.0
- 1B 3B u
e . ——s 2
a4y =Y, =% * - (17)
. J2%, T1%s ug
Yo " T 91 =% °c+Il

The suboptimal, inertia-~-wheel attitude control systems
developed in this study are designed using these approximate
equations of motion. Terms of the form JiaBi represent the
angular momentum of the inertia wheels end vary with time,
These terms are often ignored [4-7] or treated as constant;
however, 1f the control system does not compensate for the
effects of these terms, the attitude response of the space-
craft may be adversely affected. The procedures for sub-
optimal control developed in this study take into account
the time varying natuie of these inter-axis coupling terms,
and consequently yield better response than systems designed

on the basis of a time-invariant approximation of the equations

of motion.




Inertia-wheel control about the roll axis is given by

-4

a _{- 0.025 sgn (w,) ft-lbs for ‘5x10"u <|w1|rad1ans/sec (18)
1 2
0 for |w1|<5x10 radisns/sec

Laws for control about the pitch and yaw axes are synthesized
using the two suboptimal techniques developed in the previous
section. The results obtained are compared to those given by
ignoring all coupling in the equations of motion (time-

invariant linearization). Letting w; = X;, a, = X,, &c = x5,

Yo = Xy and ;c = x5, the approximate equations of motion

are given by (3) where aij = 0 except agy = agg = 0
[ Q 2
J3 B3 J2 B2
1 ; 1
0 0 0 0 0
Q f
Jy B ¥y By
c(t) = | 22 o 0 0 ——
"0 0 0 0 0 !
|
- - ;
i J2 B2 ; ) Jl Bl o 0
E :
-
g(t) = 0, and u' = [ul, 0, uy, 0, u3]

The roll-axis control law is given by (18) and the logic for

control about the pitch and yaw axis is selected to approximately




Is

1
' + Ru_)dt
. (y'Qy uy y)

minimize a performance index of the form J = J
e}

!
where y' = [x2, X35 Xy x5] and u, = Lo, u,, 0, :3].
The Hamilton-Jacobi equation (8) is

1 -1 .
Ve +¥y'Qy - T Vy B'R "B vy + VAX + V. C(t)x = 0 (19)
where B is a 4x4 matrix such that b = 0
except b = b = 1/1.
¥a2 Yyy

It all time varying terms, C(t)x , are ignored;
933 " 933 " 9 &hd g5, " Gy = Q; ; AN Py =Py =1

5 » = l B = [
and r,, = r,, 12 ; then V(x) X'PXx where

p 1s a 5x5 matrix such tchat p1J = 0 except,

. . 1/2,1/2

)1/2 . From (6), the suboptimal

P32 = Pa3 = Psy ® Pys = (9
control based on the above time-invariant approximations of the

equations of motion is

Uy = = Ipy X3 -1P; %
(20)
Uz = = Ipy X5 - 1Py, Xy
If time-vavying terms are ignored, values of I Por ™ 15.5
ft-lbs-sec and I P1o "™ .09 ft-=1bs yield adequate transient
response.
Using Method I for suboptimal control, the control about

the pitch and yaw axes is
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u, = - lS.Sx3 - .09x2 - J3na3xl - Jlnle5
(21)

uz = - 15.5x5 - .09xu - Ja“ale + Jlnle3
and from Method II, a first-order approximation of (16) gives
the following suboptimal control law

(22)
= = 15.5x

- .09xu - Jzﬂ - .006JlﬂB X

1 2

X
B,"1

43 5
Results obtaineéd from a digital computer simulation of

the spacecraft and inertia-wheel control system are presented

in Tables IA - IC. Control logic was generated by time-

invariant linearization (20) and Methods I (21) and II (22)

for suboptimal control. Computer simulation was carried out

for several sets of initial conditions and for each set,

values of zero and 4 slug - ftz/sec (80% of the maximum)

were used for the initial angular momentum of the inertia wheels.

In implementing the various control laws approximate values

for angular velocities about the pitch, roll, aﬁd yaw axes

were used, However, system dynamics were simulated using the

exact equations of motion.

For an initial inertia-wheel angular momentum of 4

slug-ttzlsec about each axis, the control system designed on




the basis of time-invariant linearization failled to drive the

attitude

error to within the necessary bounds; consequently,

this system would be unacceptable unless the inertia wheels

were desaturated frequently. The systems synthesized by use

of both suboptimal control methods reduced the attitude error

to within 0.003 radians within 10 minutes or less for all sets

of initial conditions.

The results presented in Tahles IA - IC may be summarized

as follows:

(1) Method I gives a system which appears to have slightly

(2)

(3)

(4)

lower peak power and torque requirements than the
system designed on the basis of Method II.

The system synthesized by using Method II appears
to consume less energy than the system designed by
use of Method 1.8
In general, Method II yields & slightly smaller
value to performance index (4) than does Method I.
Both methods give nearly the same values for two
widely used indices of performance, the integral
of the sum of the squares of the attitude and
angular velocity errors about the pitch and yaw

axes and the integral of the sum of the squares

of the control effort about the pitch and yaw axes.

8

It is assumed that the inertia-wheels can restore energy

to the system; hence negative values for energy consumption
appear in Tables IB and IC.
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In Fig. 4-7, the response of the spacecraft and inertia-

wheel system about the pitch axis is illustrated for an

initial inertia-wheel angular momentum of U4 slug-ftz/sec.

The unacceptable pitch angle and pitch rate response of the

system designed on the basis of linearization is shown in

Fig. 4 and Fig. 8. The remainder of the results presented

in Fig. 4-8 may be briefly summarized as follows:

(1)

(2)

(3)

Method II yields a control which drives the pitch
angle to a2 small value faster than the control
given by Method I; however, the system designed
by Method I exhibits less overshoot (Fig. 4).
Linearization is shown to yield a system which

gives slightly higher inertia wheel angular

- momentum than either of the suboptimal designs

(Fig. &).

The control torques generated by use of the two
suboptimal procedures are so close to one
another as to be indistinguishable; however,
linearization ylelds a system which.use§ less

torque over most of the control interval (Fig. 7).

As illustrated in Tables IA - IC, the performance

characteristics of systems designed by time-invariant lineari-

zation and the two'suboptimal control procedures are much

the same for an initial, inertia-wheel angular momentum of

zero. This 1s not surprising since the suboptimal control

laws (21) and (22) appfoach the control law obtained by time-

invariant linearization (20) as the angular momentum of




the irertia wheels approaches zero.

In Fig. & and Fig. 9, the results obtained by application
of the two suboptimal proceduresvdeveloped in this study
are compared to those obtained by investigators using standard
transform techniques for control system design [5]. Conventional
procedures yleld a system which is much more oscillatory énd
which overshoots the position of zero error much more than
the systems designed by use of the two suboptimal techniques.
The results presented in Fig. & and Fig. © are for an initial,
1nertia:§heel angular moﬁentum of zero. Since conventional
transform techniqueé do not take into account time-varying,
coupling terms which depend in magnitude on the angular
momentum of the inertia wheels, even less accurate response
may be expected from the conventional system as the angular
momentum of the inertia wheels increases. Such lnaccurate
response 1is noted by Cook and Fleisig [5]. As shown in
Table IA, the conventional control system requires almost
ten times more torque and fifty time more power than the

9

suboptimal systems;” consequently, the suboptimal systems

could probably be constructed from small and lighter components.

5. Conclusions

The suboptimal control techniques developed in this

9 Increasing the coefficients of the control law given
by linearization by a factor of ten gives results similar to
thos: obtained from a conventional control system,
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work provide effective methods for synthesizing inertia-wheel
attitude control systems. The two procedures for designing
suboptimal, inertia-wheel systems take inter-axis coupling

into account. If this coupling 1s ignored, unacceptable system
response may result. Both suboptimal techniques yleld physically
realizable control laws in feedback form, and as demonstrated

the previous section the suboptimal systems developed in this
study give considerably more accurate control cthan is provided

by suboptimal systems based on time-invariant approximations

of the equations of motion.

Method I 1s computationally easier to use and gives
simpler control laws than Method II. However, botﬁ of the
methods developed in the present study appear to be applicable,
in a practical sense, to the design of attitude control systems
for a large class of spacecraft.

Better results might be obtained from Method II if more
terms were used in the approximate solution of the Hamilton-
Jacobi equation. However, before the tedious calculations
necessary to determine these terms are carried out, the con-
vergence of Method II to the optimal solution should be
investigated. It is felt that modifications of the methods
proposed by McClamroch [13] and others for sensitivity
analysis might yleld information on the convergence properties

of Method II.
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Coordinate System for Example I
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Method of
Control

System
Design

TABLIE TA

Performance Characteristics: for
Inertia-Wheel Control

Initial Conditions - Pitch and Yaw Angles = 0.15 radians
Pitch, Yaw and Roll Rates = 0.0005 radians/sec

Time-Invariant
Linearization

Suboptimal:
Method I

Suboptimal:
Method II

Convent ional
Transform
Techniques

Initial,
Inertia-
Wheel .
Angular
Moment um
(% of

Maximum)

Response
Time
(Minutes)

Peak
.Torque
(ft-1bs x
10-3)

Peak Power
(ft-1bs/sec
x 1073)

Energy
Consumed
(ft-1bs x
10-3)

Quadratic
Performance
Index

Integral of
Quadratic
Function of
Error

Integral of
Quadratic
Function of
Control

8.0 Does 7.3

not
Stabilize

17 .41 17.39 20.0

13.41 145.6 13.4

4.24 - 4 .44

694.8 988.1 694.7

706.2 - 708.0

154,3 - 153.9

80

8.0

20.3

163.0

158.2

703.6

701.1

168.0

7.7 9.0

20.0 18.4

13 .4

443 al.4

714.7

708.1

154.0

a Maximum Available

147.8

695.0

692.5

190.9

13.0 -

1
~
w
(@]
o
W



TABLE IB

Performance Characteristics for
Inertia-Wheel Control

Initial Conditions - Pitch and Yaw Angles = 0,15 radians

Pitch, Yaw and Roll Rates = 0 Radians/sec

e

Method of
Control
System
Design

Suboptimal:
Method II

Time-Invariant
Lineartization

Suboptimal:
Method I

Conventional
Transform i
Techniques

Initial,

Inertia- 0 80 0 80 0 80
Wheel

Angular

Momentum

(% of

Maximum)

Response
Time
(Minutes)

6.8 Does 6.8 7.0 6.8 8.3

not
Stabilize
Peak Torque
(fsslbs X
10 7)

~13.5 13.5 13.5 13.5 13.5 17.1

Peak Power
(ftrlgs/sec
x 1077)

5.31 108.0 5.31 108.0 5.31 136.8

Energy
Consumed

(ft=1bs x
-‘q'a)

0.12 - 0.12 0.1z -56.5

Quadratic
Performance
Index

631.2 - 631.2 653.5 63102

Integral of
Quadratic
Function of
Error

667.0 - 667.0 666.2 667.0

Integral of
Quadratic
Function of
Control

— Tl el

118.8 -

118.8 142.0 118.8

# Maximum available

649.0

11.0 -
- 1702 |

- 4500

Cil




TABLE IC

Performance Characteristics for
Inertia-Wheel Control

Initial Conditions - Pitch and Yaw Angles = 0,15 radians
Pitch, Yaw and Roll Rates =-0.0005 radians/sec

PR X A

Method of Time-Invariant Suboptimal: Suboptimal: Conventional
Control Linearization Method I Method II Transform
System Techniques
Design : -

Initial, (
Inertia- 0 80 0 80 0 80 0 80
Wheel

Angular

Momentum

(% of

Maximum)

Response ’
Time 7.9 Does 9.3 7.5 9.2 10.0 9.7 -
(Minutes) not

Stabilize »
Peak Torque S a
(ftglbs X 14,6 14.6 20.0 19.7 20.0 21.6 - 170
1077) s o

Peak Power
(ft-1bs x 13,5 133.1 13.4 158.,2 13.4 173.5

10-3)

[}
>
wn
(@]
o

o

Energy Consumed
(ft=1bs x 4,12 - 3.9 -151.2 3.9 -149.2 - -
10-3)

Quadratic
Performance 694.8 - 695.4 743.9 695.3 734.7 - -
Index ' _

Integral of S _ _
Quadratic 706.2 - 708.4 711.3 708.4 714 .3 - -
Function of

Errer

Integral of
Quadratic 154 .3 - 154.1 119.9 154.2 185.3 - -
Function of
Contro

fromnctant APPSR SRR eviot (O TPUG USRS PSS S I AR

L e e P 4 18 A e P E I WK
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