
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19690025523 2020-03-12T05:21:34+00:00Z



,^ *fir: •,m+:;	 s

yj

^	 M

1 ` ►

4
7

i

c

^^1920^12^^
,^	 ^,

....	 i	 N ^' O'^	 0D

Ef

N 6 ,9C).^, o	 (ACC[i[tON	 O,̂t1J	 NUMn Rt
t

/	 (TN ) ---------

J	 (PAGES)u
(COO[)

( A A R OR E R NYMSER)
(CATEGORY)

ENGINEERING MECHANICS RESEARCH LABORATORY

THE UNIVERSITY OF TEXAS	 AUSTIN, TEXAS



i

SUBOPTIMAL COMPENSATION OF GYROSCOPIC COUPLIIJG
FOR INERTIA-WHEEL ATTITUDE CONTROLI-

b
W.L. Garrard 2 and L.G. Clark3

EMRL RM 10 111	 November, 1967

}

1 This work was partially supported by NASA Grant NAS 8-18120.

2Assistant Professor, Department of Aeronautics and

y
	 Engineering Mechanics, University of ;Minnesota, Minneapolis,

Minnesota.

3 Professor, Department of Engineering Mechani;,_, University
:,f mexas, Austin, Texas.



Abstract

Two procedures are developed for the synthesis of inertia-

wheel systems for three-dimensional attitude control. 	 Both

techniques compensate for inter-axis coupling due to the

angular momentum of the inertia wheels.	 In addition, both

procedures approximately minimize the integral of a quadratic

- function of system error and control effort and are suboptimal

in a mathematical sense. 	 The techniques developed in this

- paper are applied to the design of an attitude control system

for a large axially symmetric spacecraft similar to the

proposed Orbiting Astronomical Observatory.	 In a computer

simulation, the suboptimal systems were shown to respond

faster and more accurately than those designed by conventional

transform techniques or by optimization procedures based on

time-invariant approximations of the equations of motion. 	 The

suboptimal systems also had lower peak torque and peak power

requirements than system designed by standard transform

techniques.



Nomenclature

I i = moment of inertia of the spacecraft about the B 	 axis

J i moment of inertia of the inertia wheel rotating about
the B 	 axis

w i	total angular velocity of the spacecraft about the

B 
	 axis

angular velocity of the inertia wheel rotating abc,i:i, rp,,,..
B 	 B  axis relative to the spacecraft

T	 = sum of the disturbance torques about the B 	 axis
Di

w = total •-rn•ular velocity in terms of the body axes

W  - angular veioc-ity of the spacecraft relative to the
reference axes in terms of the bodv axes

Q  = angular velocity of the reference axes in terms of the
reference axes

L = a 3X3 orthogonal matrix relating the reference axes
to the body axes

x - the angular position and velocity of the spacecraft
relative to the reference axes

A = matrix of the coefficients of the tide- invariant coupling
terms

C(t) = matrix of the coefficients of the time-varying coupling
terms

u = control torque available from the inertia wheels

g(t) = summation of internal and external disturbance torques

Io



SUBOPTIMAL COMPENSATION OF GYROSCOPIC COUPLING

FOR INERTIA-WHEEL ATTITUDE CONTROL

1. Introduction

In many attitude control situations, motor-driven inertia

wheels may be preferable to gas jets as the primary source

of control torque [1-3]. The most serious problem in the

synthesis of such inertia-wheel systems arises from inter-

axis coupling due to the angular momentum of the wheels. In

many cases such coupling is considered to be negligible

[1, 4-7], 4 and design procedures are based on time-invariant

approximations of the equations of motion. In some cases this

assumption is Justifiable; however, in many cases inter -axis

coupling can adversely affect system performance if ignored [3].

In the prevent study, two procedures are presented for

the synthesis of inertia-wheel systems for three-dimensional

attitude control. Both techniques compensate for inter-

axis coupling due to the angular momentum of the inertia wheels.

In addition, both procedures approximately minimize the integral

of a quadratic function of system error and control effort and

are suboptimal in a mathematical sense. The methods proposed

are applicable to the design of attitude control systems for

fine control (the correction of small errors).

4 Numbers in brackets indicate references listed at the
end of the paper.
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The procedures developed in this paper are applied to the

design of an attitude control system for a large, axially

symmetric spacecraft similar to the proposed Orbiting Astro-

nomical Observatory. The resulting control laws are in physi-

cally realizable, feedback form. In a computer simulations

systems designed on the basis of the procedures outlined in

this study are shown to respond faster and more accurately

than those designed by conventional transform techniques or by

optimization procedures based on time-invariant approximations

of the equations of motion. Also the suboptimal systems have

lower peak torque and peak power requirements than systems de-

signed by use of standard transform techniques; consequently,

the suboptimal systems could probably be built from smaller

and lighter components.

2. Preliminary Considerations

Attitude control consists of applying torque to a

spacecraft in such a way as to place and hold it in a specific

angular orientation with respect to a three-dimensional frame

of reference. In this study, the reference frame is assumed

to have small angular velocity and acceleration. The flexi-

bility of the spacecraft is considered negligible, and

control torque is available about the three principle axes.

The inertia wheels are assumed to be mounted at the center of

mass of the spacecraft. Many important attitude control

situations fall within the context of the above restrictions.
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In Fig. 1, the axes denoted as B 1 , B 2 , and B 3 are

assumed to be the principle axes of the spacecraft and are

called the body axes. The axes labeled R 1 , R 2 , and R3

represent the desired orientation of the spacecraft and are

called the reference axes.

The exact dynamical equations for inertia wheel control

are

TP 
1 - 

J1(QB 
1 

+ W  ) _ (Il + 1 2/2 + 13/2)W1 + J3nB 
3 

W 2 - J2nB 

2 

W3
1 

+ (1 3 + 1 3/2 - (I2 + 12/2))W2W3

(1)

TD -
2	

12(nB 
2 

+ w 2 ) _ (I2 + 11/2 + J 3/2
)W 2 + 11^ 1B W3 - 13^ 3

B W1

+ ( I1 + 11/2 - ( I 3 
+ 13/2))W1W2

T D 3 - 1 3 ( 6B3 + ^ 3 ) _ ( 1 3 + 1 2/2 + 11/2)w3 + 1
2 2 B2 W 1	 11QB1W2

+ ( I2 + 12/2 - ( I1 + 1 1/2 )) W 1W2 ,

Terms of the form 7(6B + W i ) represent electrically
i

induced torques and are used for attitude control. The

total angular velocity of the spacecraft is

W - W  + Ls2 R .
	

(2)

3

V



4

t

4

Siriec the control system is to be used to correct small

attitude errors, the equations of motion may be simplified

by use of standard small angle assumptions. 'Perms of second

order and higher involving the angular position and velocity

errors may be neglected. Furthermore, it is not uncommon for

the moments of inertia of the spacecraft to be more than a

thousand times as large as those of the control wheels [4,5];

consequently, the moments of inertia of the control wheels

may be ignored when summed with the moments of , inertia of the

spacecraft. Under the above assumptions, (1) and (2) may be

•	 written as

x - Ax + C(t)x + B u	 g(t)	 (3)

where B is a 6 X 6 matrix such that b ij = 0 except b22 = 1/zl,

b44 
'2

	 , b 6 = l/1 3 . The functional form of the elements

of matrix C(t) are not known a priori.

The value of the integral of a quadratic function of the

system error plus a quadratic function of the control effort

has been widely used as a measure of control system performance.

Such a performance index is often analytically attractive, and

for inertia-wheel attitude control, a quadratic cost functional

also makes sense from a physical standpoint.

The suboptimal systems developed in this study reduce

the angular position and velocity errors to zero rapidly, and

also approximately minimize,



A

5

J(x o , u, t 0 ) -	 (x' Q x + u' R u)dt	 (4)
JWo

where Q and R are positive-definite, diagonal, constant

matrices. 5	A small value of this integral indicates that

both the error and control effort are kept small during most

of the control interval. The error should not be large since

excessive overshoot is to be avoided. The control effort should

remain small to prevent saturation of the inertia wheels (the

amount of control torque available from the wheels is limited)

and also to conserve the amount of energy used (the torque

output of the inertia wheels, u i , is proportional to the

current supplied to the electric motors driving the wheels).

3. Development of Suboptimal Techniques

The optimization problem considered is the determination

of the control, u , which transfers any initial state, xo

to the origin for the system governed by (3) and also minimizes

the integral performance index (4).

Three techniques for the solution of the above problem

are the calculus of variations [8], Pontryagins minimum

(or maximum) principle C91, and the Hamilton-Jacobi theory [10].

Each of these approaches gives enough information to determine

the mathematically optimal control for the problem defined

by (3) and (4); however, the Hamilton-Jacobi theory gives the

5 A prime denotes the transpose of a vector or matrix.
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most direct ar,prnach to the determination of both optimal and

suboptimal control laws in feedback form. This approach

depends upon the minimization with respect to u of a scalar

function (H) defined by

H(x,p,u,t) - x'Qx + u'Ru + p'Ax + p'C(t)x + p'g(t) + p'Bu 	 (5)

where p(t) is a vector of the same dimensionality as x .

The optimal control

u*(t) - - T R-1B'p	 (6)

minimizes H . A scalar functional, called the Hamiltonian

(H*), is obtained by the substitution of (6) into (5) and is

given by

H* - x'Qx - gp'BR-1B' p + p'Ax + p'C(t)x + p'g(t)	 (7)

In the Hamilton-Jacobi approach, p(t) is set equal to the

gradient of a scalar function of state and time; that is 6,

P(t) n Vx (x,t), where V(x,t) is a twice-continuously

differentiable function satisfying the partial differential

equation

V  + H* (x,Vx ,t) - 0 ,	 V(01t) - 0	 (8)

Equation (8) is known as the Hamilton-Jacobi equation, and
`-	 its solution, V(x,t), evaluated at x  and to is the minimum

_	 6 Vx (x,t) - grad V(x,t)
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value of the integral performance index (4).

Method I

In the attitude control problem, the analytical solution

of (8) appears impossible. Thus it is necessary to develop

Drocedures for generating control laws which are suboptimal

(approximately optimal). The first procedure for suboptimal

control consists of using the control system to eliminate

the most a.ubstantial time-varying terms in the equations of

motion. The resulting system is then treated as linear for

purposes of optimization. Gannon [2] suggests a similar

procedure but mathematical optimization is not attempted.

A portion of the control, denoted by u c , is used to

eliminate all time-varying terms in (3). From (3)

B uc = - C (t)x - g(t)	 (9)

The remainder of the control is denoted by u 	 Applying uc

to (3) yields z - Ax + B u  .

The control u 	 is to be selected in such a way as to

minimize	 =
J = J (x'Qx + uLRuL )dt .

t0

Using (9), the Hamilton-Jacobi equation is

- 1 VI B R-1 B'Vx + V I Ax + x'Qx = 0	 (10)

and uL = - 1, 
R -1 	 B I 

Vx
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Kalman [10] has demonstrated that the quadratic function,

V(x) . x'Px, is a solution to (10) provided P is a symmetric

positive definite matrix such that

PA + A'P - P B'R-1B P + Q = 0	 (11)

The control, u , is the sum of u 	 and u .C

The attitude response of the spacecraft is determined

by the values selected for the weighting matrices Q and R

In	 remainder of this work it is assumed that identical

response is desired about each axis of the spacecraft. This

is the case in thany attitude control situations. Also, the

above assumption considerably simplifies algebraic manipulations;

although it is not a condition which must be satisfied before

the suboptimal procedures developed in this study can be applied.

Method II

The second method for suboptimal control is an extension

of a technique developed for nonlinear systems by Garrard,

MoClamroch, and Clark [11] and is based on a procedure for

obtaining approximate solutiorls to the Hamilton-Jacobi equation.

The control, u , is divided into two components, u 	 and us ,

where Bu  = - g(t). Using u  , ( 3) reduces to 

x	 Ax + r C (t) x + Bu s	The control us is chosen to

approximately minimize	 J = J00 (x'Qx + u'Rus)dt 	 The
t

0

7 The parameter a has been introduced for notational
convenience.
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Hamilton-Jacobi equation is

Vt + V'EAx + e C(t) x] - 1 VX BR_ 1B'Vx + x'Qx = 0, V(O,t) = 0
X	 IT

(12)

An approximate solution to the above equation may be obtained

by treating C(t) as a constant matrix. If C(t) is assumed

constant, V is a function of the state alone. The scalar

function V(x) is assumed to be represented by a power series

expansion in x of the form

m

	

V(x) =	 e(n-2)Vn(x)	 (13)
n=2

Substituting (13) into (12) and equating powers of a to zero

gives

a 1'	 av`	 av
7x2 Ax - 1 

a2 BR-1B' ax2 + x'Qx = 0

av'	 aV2	 1 3V  -1 ay3
ax

3 Ax + 
ax	

C x - 2 TX_ BR B' ax = 0	 (14)

av `	aV	 n+2 aV	 av
axn Ax + axn-1 Cx - I11-	 axk BR-1B'ax^	 0k,2

r,2

where k +	 n+2

In order to determine V 2 , V3 ,... Vn , the above equations

must be solved successively. The first equation of (14) is

identical to (10), and the solution is given by (11). The

0
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remaining equations in (14) are linear, partial differential

equations; however, an exact, analytical solution appears

impossible. Approximate solutions can be obtained by assuming

V  = x'Mnx for n > 3, where Mn is treated as a constant,

symmetric matrix. Substituting into (14) yields the

following set of linear algebraic equations

M 3 (A-BR-1B'P) + (A' - PBR-1B')M3 = PC - C'P

(15)

n+2
Mn(A -BR-1B'P) + (A'-PBR-1B')Mn = I MkBR-1 B I M k- Mn-1C - C'Mn-1

k33
9, :3

where k + k = n + 2. These equations may be solved for Mn

and the control, u s , is given as

	

us = - R-1B'[P+ I E (n-2) Mn ]x	 (16)
n=3

Mn is a function of C , and C is a function of time. Con-

sequently u s contains linear terms with variable coefficients.

The complete control, u , is the summation of its two

components, u s and u  .

In deriving control law (16), a number of assumptions

have been made, and convergence to the optimal control is

questionable. In actual practice, however, only a few terms

can be used in chcosii-.w a suboptimal control law; consequently,

:.	 convergence is not of primary importance.
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4. Suboptimal Control of a Large. Axially Symmetric Spacecraft

In Fig. 1, the B 1 axis is to be aligned with the R1

axis. The B 1 axis is fixed in the spacecraft, and the

R 1 axis is non-rotating (nR - 0). The complement of the
F

angle between the R 1 and B 3 axes, a c , is called the

pitch angle, and the angular velocity about the B 2 axis

is the pitch rate. Similarly, the complement of the angle

between the R 1 and B2 axes, Y c , is called the yaw angle,

and the angular velocity of the spacecraft about the B3

axis is the yaw rate. The angular velocity about the B1

axis is the roll rate. The B 12 B2 , and B 3 axes are the roll,

pitch, and yaw axes respectively.

Gas jets are used for coarse control, and inertia wheels

are used for fine control. Gas-jet control- is begun when the

spacecraft leaves the last stage of its booster vehicle. The

gas-jet system must reduce the .pitch and yaw angles to 0:15

radians and must drive the roll, pitch, and yaw rates to

0.0005 radians/sec.

After the gas-jet system has sufficiently reduced the

attitude error, inertia wheels are used to further stabilize

the spacecraft. The inertia-wheel system must reduce the

pitch and yaw angles to 0.003 radians and must drive the pitch

and yaw rates to zero within 10 minutes following the end of

gas-,jet control. The roll rate must be held to about 0.0005

radians/sec. The moments of inertia of the spacecraft are
f
E	

1000 slug-ft 2 about the pitch and yaw axes and 900 slug-ft2
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about the roll axis. The performance specifications outlined

above are almost identical to those for the proposed Orbiting

Astronomical Observatory [5].

A functional block diagram of the combined gas-jet and

inertia-wheel pitch axis control system is presented in Fig. 2.

During gas-,jet control, the angular velocity about the pitch

axis is sensed by a rate gyro, and the attitude error is deter-

mined by optical sensors [5]. The attitude error signal is

limited in magnitude and added to the pitch rate signal. This

signal is used to actuate the gas-,jet. After the gas-,jet

system reduces the pitch and yaw angles to 0.15 radians and

the pitch, yaw and roll rates to 0.0005 radians/sec., the

mode control logic switches to inertia-wheel control. The

inertia-wheel control logic regulates the torque output of the

inertia-wheel and motor combination, and this torque is used

to control the pitch angle and the angular velocity about the

pitch axis. The motor is assumed to provide torque proportional

to the actuating signal [12].

In the inertia-wheel control mode the angular velocity

of the spacecraft becomes very small and cannot be measured

by the rate gyro; therefore, the attitude error must be

differentiated in order to obtain an approximate value for

the angular velocity about the pitch axis. Differentiation

may be accomplished by analog or digital means, and the value

of the differentiated attitude error approaches the actual

angular velocity as the attitude error approaches Lero.
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The gas-,jets are used to desaturate the inertia wheel

when its angular momentum becomes large. When the angular

velocity of the inertia wheel reaches a given value, the

gas Jet fires and creates an angular velocity error about the

pitch axis. The angular velocity error created by firing the

gas Jet is in the opposite direction to the angular velocity

of the inertia wheel, and as the inertia-wheel system corrects

this error, the angular velocity of the wheel is reduced.

Further consideration of desaturation is beyonc, the scope of

this study.

A block diagram of the yaw-axis control system is nearly

identical to Fig. 2 except the limited a.titude error signal

is subtracted from rather than added to the yaw-rate signal.

A block diagram of the roll-axis control system is presented

in Fig. 3. This system regulates the roll rate, and in the
gas-Jet phase, the control system is acti-,ted by the output

signal from a rate gyro which measures the angular velocity about

the roll axis.

Gas-Jet control could be used exclusively for control

about the roll axis; however, in order to conserve fuel,

an inertia wheel is used to regulate small errors. The

inertia wheel system exerts full torque to oppose roll rate

errors larger than 0.0005 radians/sec, but no effort is made

to control smaller errors.

The value of the roll rate is used in implementing

control logic for both methods for suboptimal inertia-wheel
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stabilization. Since small values of this angular velocity

cannot be measured, the roll rate is calculated by integrating

the equation of motion about the roll axis. Since the space-

craft is axially symmetric, I 2 = 1 3 = I. Under the assumptions

outlined in Section 2, and neglecting disturbance torques,

the approximate equations of motion are

J20B 2 •	
13n3	

u w l = -	 Il Y c -	 1 a c 
+ I1

J 1 0 B	 J3^B	 u
a= - I 1 +c	

Y 
	 Iwl+ I	 (17)

J2 ^B2_ Jl ^B 1	 u3
Y c =	 I	 wl	 I	 ac + I1

The suboptimal, inertia-wheel attitude control systems

developed in this study are designed using these approximate

	

equations of motion. Terms of the form J 
1 

0 B	
represent the

i
angular momentum of the inertia wheels Pnd vary with time.

These terms are often ignored [4-71 or treated as constant;

however, if the control system does not compensate for the

effects of these terms, the attitude response of the space-

craft may be adversely affected. The procedures for sub-

optimal control developed in this study take into account

the time varying natui•e of these inter-axis coupling terms,

and consequently yield better response than systems designed

on the basis of a time-invariant approximation of the equations

of motion.
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Inertia-wheel control about the roll axis is given by

Ul	 - 0.025 sgn (w l ) ft-lbs	 for 5 X 10 4 <jW l jradi.ans/sec (18)

0	 for lw l l<5X10 -4 radiRns/sec

Laws for control about the pitch and yaw axes are synthesized

using the two suboptimal techniques developed in the previous

section. The results obtained are compared to those given by

ignoring all coupling in the equations of motion (time-

invariant linearization). Letting w  = x 1 , a c = x 2 , a c = x3,

Y c C x 4 , and Y c = x 5 , the approximate equations of motion

are given by (3) where a ij = 0 except a 34 = a55 ' 1,

J ^B	 J2^ B2

	

0	 0	 - 3 1 3	 0	 _	 I
1	 1

I

	

f 0	 0	 0	 0	 0

J ^B
C(t)  C	 -	 0

i
0	 0

S2
J 2 B2 	0

L 
I

R

0	 0	 J1 B1
I

0	 0	 0

JB1 i
- 0 0	 t

I }J

g(t) - 0,	 and u l _ [ul , 0, u2 , 0, u3]

The roll-axis control law is given by (18) and the logic for

control about the pitch and yaw axis is selected to approximately
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minimize a performance index of the form J

go

 (y'Qy + uy Ruy)dt
it o

where y'	 [x 2 , x 3 , x 4 , x 5 ] and uy - [0, u 2 , 0, :33.

The Hamilton -Jacobi equation (8) is

Vt + y I Qy - 1 Vy B'R-1B Vy + VXAx + Vx C(t)x - 0	 (19)

where By is a 4x4 matrix such that b y	= 0
i,j

except b
y22 = 

b y44 = 1/I.

If all time varying terms, C(t)x , are ignored;

q11 ` q 33	 q 	
and q22 = q44 

a 
q2 ; and r11 = r33 s 1

ana r22 = "44 s I2 ; then V(x)	 x'Px where

p is a 5 x 5 matrix such 'chat 
pi,)	

0 except,

P22 ' P44 = gl(g2 + 2(ql) 
112 ) 1/2, 

P 33 ' P55 = P22/ql

P32 
i 

p23 0 P54 ` P4 5 ' ( g 1 ) 1/2	
From (6), the suboptimal

control based on the above time-invariant approximations of the

equations of motion is

u2 ' - I P22 
X3	

I P12 x2

(20)

u 3 • - I P22 x 5 - I P12 x4

If time-va-ying terms are ignored, values of I p22 - 15.5

ft-lbs-sec and I p 12 = . 09 ft -lbs yield adequate transient

response.

Using Method I for suboptimal control, the control about

the pitch and yaw axes is



3d

1

u 2 a - 15.5x 3 - . 09x 2 - 13n8
3 

X 1 - JlnB 
1 
x5

(21)

u 3 - - 15.5x 5 - .09x 4 - J2nB 
2 
x l + i 10 1 x3

and from Method II, a first-order approximation of (16) gives

the following suboptimal control law

u 2 n - 15.5x 3 - .09x 2 - 130B 
3 
x  + .00611na 1 x4

(22)

u3 - - 15.5x 5 - .09x 4 - J21l $2 xi - .006J1n 1B x2

Results obtained from a digital computer simulation of

the spacecraft and inertia-wheel control system are presented

in Tables IA - IC. Control logic was generated by time-

invariant linearization (20) and Methods I (21) and II (22)

for suboptimal control. Computer simulation was carried out

for several sets of initial conditions and for each set,

values of zero and 4 slug - ft 2/see (30% of the maximum)

were used for the initial angular momentum of the inertia whee-s.

In implementing the various control laws approximate values

for angular velocities about the pitch, roll, and yaw axes

were used. However, system dynamics were simulated using the

enact equations of motion.

For an initial inertia-wheel angular momentum of 4

slug-ft 2/see about each axis, the control system designed on
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the basis of time-invariant linearization failed to drive the

attitude error to within the necessary bounds; consequently,

this system would be unacceptable unless the inertia wheels

were desaturated frequently. The systems synthesized by use

of both suboptimal control methods reduced the attitude error

to within 0.003 radians within 10 minutes or less for all sets

of initial conditions.

The results presented in. Tar,1P5 IA - IC may be summarized

as follows:

(1) Method I gives a system which appears to have slightly

lower peak power and torque requirements than the

f
system designed on the basis of Method II.

(2) The system synthesized by using Method II appears

to consume less energy than the system designed by

use of Method I.8

(3) In general, Method II yields a slightly smaller

value to performance index (4) than does Method I.

(4) Both methods give nearly the same values for two

widely used indices of performance, the integral

of the sum of the squares of the attitude and

angular velocity errors about the pitch and yaw

axes and the integral of the sum of the squares

of the control effort about the pitch and yaw axes.

8 It is assumed that the inertia.-wheels can restore energy
to the system; hence negative values for energy consumption
appear in Tables IB and IC.
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In Fig. 4-7, the response of the spacecraft and inertia-

wheel system about the pitch axis is illustrated for an

initial inertia-wheel angular momentum of 4 slug-ft2/sec.

The unacceptable pitch angle and pitch rate response of the

system designed on the basis of linearization is shown in

Fig. 4 and Fig. S. The remainder of the results presented
in Fig. 4-8 may be briefly summarized as follows:

(1) Method II yields a control which drives the pitch

angle to a small value faster than tht control

given by Method I; however, the system designed

by Method I exhibits less overshoot (Fig. ''r).

(2) Linearization is shown to yield a system which

gives slightly higher inertia wheel angular

momentum than either of the suboptimal designs

(Fig. b).
(3) The control torques generated by use of the two

suboptimal procedures are so close to one

another as to be indistinguishable; however,

linearization yields a system which uses less

torque over most of the control interval (Fig. 7).

As illustrated in Tables IA - IC, the performance

characteristics of systems designed by time-invariant lineari-

zation and the two suboptimal control procedures are much

the same for an initial, inertia-wheel angular momentum of

zero. This is not surprising since the suboptimal control

laws (21) and (22) approach the control law obtained by time-

invariant linearization (20) as the angular momentum of



the inertia wheels approaches zero.

In Fig. 8 and Fig. 9, the results obtained by application

of the two suboptimal procedures developed in this study

are compared to those obtained by investigators using standard

transform techniques for control system design C51. Conventional

procedures yield a system which is much more oscillatory and

which overshoots the position of zero error much more than

the systems designed by use of the two suboptimal techniques.

The results presented in Fig. B and Fig. '9' are for an initial.,.

inertia-wheel angular momentum of zero. Since conventional

transform techniques do not take into account time-varying,

coupling terms which depend in magnitude on the angular

momentum of the inertia wheels, even less accurate response

may be expected from the conventional system as the angular

momentum of the inertia wheels increases. Such inaccurate

response is noted by Cook and Fleisig 151. As shown in

Table IA, the conventional control system requires almost

ten times more torque and fifty time more power than the

suboptimal systems; 9 consequently, the suboptimal systems

could probably be constructed from small and lighter components.

5. Conclusions

The suboptimal control techniques developed in this

°	 9 Increasing the coefficients of the control law given
i°

	

	 by linearization by a factor of ten gives results similar to
thoss obtained from a conventional control system.

i
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II

work provide effective methods for synthesizing inertia-wheel

attitude control systems. The two procedures for designing

suboptimal, inertia-wheel systems take inter-axis coupling

into account. If this coupling is ignored, unacceptable system

response may result. Both suboptimal techniques yield physically

realizable control laws in feedback form, and as demonstrated

the previous section the suboptimal systems developed in this

study give considerably more accurate control Ghan is provided

by suboptimal systems based on time-invariant approximations

of the equations of motion.

Method I is computationally easier to use and gives

simpler control laws than Method II. However, both of the

methods developed in the present study appear to be applicable,

in a practical sense, to the design of attitude control systems

for a large class of spacecraft.

Better results might be obtained from Method II if more

terms were used in the approximate solution of the Hamilton-

Jacobi equation. However, before the tedious calculations

necessary to determine these terms are carried out, the con-

vergence of Method II to the optimal solution should be

investigated. It is felt that modifications of the methods

proposed by McClamroch 1131 and others for sensitivity

analysis might yield information on the convergence properties

of Method II.
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TABLE IA

Performance Characteristics:for
Inertia-Wheel Control

Initial Conditions - Pitch and Yaw Angles = 0.15 radians
3

Pitch, Yaw and Roll Rates = 0.0005 radians/sec

Method of Time-Invariant Suboptimal: Suboptimal: Conventional
Control Linearization Method I Method II Transform
System Techniques
Design

Initial,
Inertia- 0	 80 0	 80 0 80 0	 80
Wheel .
Angular
Momentum
(% of
Maximum)

Response
Time 8.0	 Does 7.3	 8.0 7.7 9.0 13.0	 -
(Minutes) not

Stabilize
Peak
..Torque 17.41	 17.39 20.0	 20.3 20.0 18.4 -	 170
(ft-lbs x
10-3)

Peak Power a
(ft-lbs/sec 13.41	 145.6 13.4	 163.0 13.4 147.8 -	 4500
x 10-3)

Energy
Consumed 4.24	 - 4.44	 158.2 4.43 *7.4
(ft-lbs x
10-3)

Quadratic
Performance 694,8	 988,1 694.7	 703.6 714.7 695.0 -
Index

-t

Integral of
Quadratic 706.2	 - 708.0	 701.1 708.1 692.5 -	 -
Function of
Error

Integral of
Quadratic 154,3	 - 153.9	 168.0 154.0 190.9 -	 -
Function of
Control

a Maximum Available
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TABLE IB

Performance Characteristics for
Inertia-Wheel Control

Initial Conditions - Pitch and Yaw Angles = 0.15 radians
Pitch, Yaw and Roll Rates = 0 Radians/sec

Method of ConventionalTime-Invariant Suboptimal: Suboptimal:
Control Lineartization Method I Method II Transform
System Techniques
Design

Initial,
Inertia- 0 80 0	 80 0 80 0	 80
Wheel
Angular
Momentum
(% of
Maximum)

Response
Time 6.8 Does 6.8	 7.0 6.8 8.3 11.0	 -
(Minutes) not

Stabilize
Peak Torque
(ft3 lbs x .13.5 13.5 13.5	 13.5 13.5 17.1 -	 170a
10	 )

Peak Power a
(ft-lWsec .5.31 108.0 5.31	 108.0 5.31 136.8 -	 4500
x I0' )

Energy
Consumed 0.12 - 0.12	 -44.0 0.12' -56.5 -	 -
(ft-lbs x I

Quadratic
Performance 631.2 - 631.2	 653.5 631.2 649.0 -	 -
Index

{

Integral of
Quadratic 667.0 - 667.0	 666.2 667.0 664.7 -	 -
Function of
Error

Integral of
Quadratic 118.8 - 118.8	 142.0 118.8 139.5 -	 -
Function of
Control

F	 _ -

a Maximum available



TABLE IC

Performance Characteristics for
Inertia-Wheel Control

Initial Conditions - Pitch and Yaw Angles = 0.15 radians
Pitch, Yaw and Roll Rates = -0.0005 radians/sec

Method of Time-Invariant Suboptimal: Suboptimal: Conventional

Control Linearization Method I Method II Transform

System Techniques

Design

Initial,
Inertia- 0 80 0	 80 0 80 0	 80

Wheel
Angular
Momentum
(% of
Maximum)

Response
Time 7.9 Does 9.3	 7.5 9.2 10.0 9.7	 -
(Minutes) not

Stabilize
Peak Torque a,
(ft-lbs x 14.6 14.6 20.0	 19,7 20.0 21.6 -	 170

10-3)

Peak Power a
(ft-lbs x 13,5 133.1 13.4	 158.2 13.4 173.5 -	 4500

10-3)

Energy Consumed
(ft-lbs x 4.12 - 3.9	 -151.2 3.9 -149.2 -	 -
10-3)

Quadratic
Performance 694..8 - 695.4	 743.9 695.3 734.7 -	 -

Index

Integral of
Quadratic 706.2 - 708.4	 711.3 778.4 714.3 -	 m
Function of
Error

Integral of
Quadratic 154.3 - 154.1	 119.9 154.2 185.3 -	 m
Function of
Control

r

N	

a Maximum available

1
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