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Two techniques are presented for the synthesis of sub-

optimal systems using motor-driven inertia wheels as the source

of torque for three-dimensional attitude control. These tech-

niques approximately minimize the integral of a quadratic

function of system error and control effort, and both

procedures compensate for nonlinear inter-axis coupling. The

techniques developed in this paper are applied to the design of

an attitude control system for a typical artificial satellite.

The resulting control laws are in feedback form. In a computer

simulation, systems designed on the basis of the procedures

developed are shown to respond faster and more accurately than

those designed by optimization procedures based on linearized

approximations of the equations of motion.
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ON THE SYNTHESIS OF SUBOPTIMAL, INERTIA-WHEEL

ATTITUDE CONTROL SYSTEMS

1. Introduction

Many studies concerning the application of mathematical

optimization techniques to the design of spacecraft attitude

control systems have appeared in recent years. Most research

in this area has been focused on time-'and fuel-optimal, gas-

jet control about a single axis. 1-4 Optimization of attitude

control systems using inertia wheels as the source of control

torque has been treated in considerably less detail. Flugge-

Lotz and Marbach l and Schwartz 5 have proposed minimum-time and

minimum-energy systems for inertia-wheel control about a single

axis. Kalman, Englar, and Bucy 6 have presented a three-dimen-

sional, inertia-wheel, attitude control system which approxi-

mately minimizes the integral of a quadratic function of system

error and control effort, but an exceedingly large response

time limits the usefulness of this system.

In the present study, two procedures are presented for

the synthesis of suboptimal systems using motor-driven inertia

wheels as the source of control torque for three-dimensional

attitude control. These techniques approximately minimize the

integral of a quadratic function of system error and control

effort, and contrary to other treatments 6-9 , both procedures

compensate for nonlinear, inter-axis coupling. The methods

- I -	 1
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proposed are applicable to the design of attitude control

systems which use inertia-wheels for the correction of small

errors.

The procedures developed in this paper are applied to

the design of an attitude control system for a typical artifi-

cial satellite, the Nimbus. In a computer simulation, systems

designed on the basis of the procedures outlined in this study

are shown to respond faster and more accurately than those de-

signed by optimization procedures based on linearized approxi-

mations of the equations of motion.

2. Preliminary Considerations

Attitude control consists of applying torque to a space-

craft in such a way as to place and hold it in a specific

angular orientation with respect to a three-dimensional frame

of reference. In this study, the angular velocity and accel-

eration of the reference frame is assumed to be of an order of

magnitude smaller than the expected angular position and

velocity errors. The spacecraft is considered rigid, and

control torque is available about the three principal axes.

Since the control system is to be used to correct small

attitude errors, the equations of motion may be simplified by

use of standard small angle assumptions, that is, terms of

second order and higher involving the angular position and

velocity errors may be neglected. Also it is assumed that the

angular velocity of the inertia wheels relative to the space-
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craft may be much larger than that of the spacecraft. Further-

more, it is not uncommon for the moments of inertia of the

spacecraft to be more than a thousand times as large as those of

the control wheels 6,7 ; consequently, the moments of inertia of

the control wheels may be ignored when summed with the moments

of inertia of the spacecraft. Many important attitude control

situations fall within the context of the above restrictions.

The simplified equations of motion are

z- Ax +C(y)x+Bu+Bg+Bh

(1)

y --u

where x is a vector representing the spacecraft attitude error

(angular position and velocity); u is a vector representing the

control torque available from the inertia wheels; y is a vector

representing the angular momentum of the inertia wheels rela-

tive to the spacecraft; g and h are vectors representing the

measurable and unmeasurable disturbance torques respectively;

the elements of the matrix C(y) are the angular momenta of the

inertia wheels; and A and B are constant matrices. Typical

forms for A. B and C(y) are presented in Section 4; however, it

should be noted that the functional form of the elements of

C(y) in terms of x and t is unknown.

The value of the integral of a quadratic function of

the system error plus a quadratic function of the control effort
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has been widely used as a measure of control system performance.

Such a performance index is often analytically attractive, and

for inertia-wheel attitude control, a quadratic cost functional

also makes sense from a physical standpoint.

The suboptimal systems developed in this study reduce

the angular position and velocity errors to zero rapidly, and

also approximately minimize,

J(xo , y o , u, to = loo (x'Qx + u'Ru)dt 	 (2)
t0

where Q and R are positive-definite, diagonal, constant

matrices.* A small value of this integral indicates that both

the error and control effort are kept small during most of the

control interval.

3. Development of Suboptimal Techniques

The optimization problem considered is the determina-

tion of the control, u, which transfers any initial state, xo,

to the origin for the system governed by (1) and also minimizes

the integral performance index J.

Three techniques for the solution of the above problem

are the calculus of variations 10 , Pontryagin's maximum

A prime denotes the transpose of a vector or matrix.
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principle ll , and the Hamilton-Jacobi theory 12 . Theoretically,

each of these approaches gives enough information to determine

the mathematically optimal control for the problem defined by

(1) and (2); however, the Hamilton-Jacobi theory gives the

most direct approach to the determination of both optimal and

suboptimal control laws in feedback form. This approach

depends upon the minimization with respect to u of a scalar

function

H(x,y,u,t) - x'Qx+u'Ru+p'Ax+p'C(y)x+p'Bg(t)+p'Bh(t)+p'Bu 	 (3)

where p(t) is a vector of the same dimensionality as x.

The optimal control uo (t) - - JSR lB 4 p minimizes H. A scalar

function, called the Hamiltonian is obtained by substitution of

u° into (3), and is given by

Ho - x'Qx - 4p'BR 1B'p + p'AX + p'C(y)x+p'Bg(t) +p'Bh(t).	 (4)

In the Hamilton-Jacobi approach, the vector p(t) is set equal

to the gradient of a scalar function V(x,y,t), (i.e. p(t) -

Vx(x,y,t)), where V is a twice-continuously differentiable

function satisfying the partial differential equation

V  + Ho ( x ,Y,Vx , t ) - 0 ,	 V(O,Y,t) - 0 .
	

(5)
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Equation (5) is known as the Hamilton-Jacobi equation, and its

solution, V(x,y,t) evaluated at x o , y o , and t o is the minimum

value of the integral performance index J.

Met_._ hod I. In the attitude control problem, the analytical

solution of (5) appears impossible. Thus it is necessary to

develop procedures for generating control laws which are sub-

optimal (approximately optimal). The first procedure for

suboptimal control consists of using the control system to

Aliminate the most substantial nonlinear terms and the

measurable disturbance torque. The resulting system is then

treated as linear for purposes of optimization. The control

system must compensate for the unmeasurable disturbance torque

indirectly by controlling the attitude errors created by this

torque; consequently, in the sequel h(t) is omitted from the

equations of motion from which the control laws are derived.

A portion of the control, denoted by u  is used to

eliminate all nonlinear terms and the measurable distuubance

torque in (1). From (1), Bu 	 - C(y)x - g(t). The remainder

of the control is denoted by uL . Applying u  to (1) yields

x Ax + Bu L*

The control u  is to be selected in such a way as to

W

minimize J = jWQX + uL 'RuL )dt. Using uc , the Hamilton-
to

Jacobi equation is
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- 4 Vx ' BR_ 1B'Vx + Vx 'Ax + x'Qx - 0	 (6)

and u  = - ;I R-1B'Vx . Kalman 
12 has demonstrated that the

quadratic function, V(x) = x'Px, is a solution to (6) provided

P is a symmetric, positive definite matrix such that

PA + A'P - PB'R-1BP + Q - 0.	 (7)

The control, u : is the Bum of u  and uc.

The transien'L'-, response of the system is determined by

the values selected for the weighting matrices Q and R. In the

remainder of this work it is assumed that identical response is

desired about each axis of the spacecraft. The above assump-

tion considerably simplifies algebraic manipulations, although

it is not a condition which must be satisfied before the sub-

optimal procedures developed in this study can be applied.

Method II. The second method for suboptimal control is an

extension of a technique developed by Garrard, McClamroch, and

Clark13 . The control, u, is divided into two components, u 

and us , where Bud - g(t). Using ud , (1) reduces to

x - Ax + C(y)x + Bus.

The control us is chosen to approximately minimize

J = f ( x 1 Qx + us 'Rus )dt. The Hamilton-Jacobi equation is
to

A
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'
x '[Ax + C (y)x] -	 Vx ' BR 1B'Vx + x'Qx = 0 , V(O,y) = 0. 	 (8)
. 

An approximate solution to the above equation may be obtained

by assuming V(x,y) to be represented by a power series in a of

the form

V( x ,Y) _

	

	 E(r.-2)Vn(x,Y).	 (9)
n=2

Substituting (9) into (8) and equating coefficients of powers

of E to zero gives

av2 ^
	
3v2 1 _1 

3V ax Ax - P4-ax BR B' ax + x'Qx = 0 ,

av t	 av	 av	 av
ax Ax + ax Cx -	 ax BR 1B' ax = °	 (10)

aVn' Ax 
+ aVn-1 Cx -	

n^ 
ayk^ BR-	 aVn+2-k	 0.

ax	 ax	
k>2 ax
	 ax

In order to determine V2 , V3 , .... Vn , the above

equations must be solved successively. The first equation of

(10) is identical to (6). The remaining equations in (10) are
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linear, partial differential equations; solutions can be

obtained by assuming V  = x'Mn (y)x for n > 3, where Mn (y) is

treated as a symmetric matrix. Substituting into (10) yields

the following set of linear algebraic equations

M3 (A-BR 1B'P) + (A' - PB'R 1B)M 3 = PC - C'P

(11)

n
Mn (A-BR 1B'P) + (A'-PB'R-1B)Mn = 

IM
kBR-1 BIM n+2-k-Mn-lC-C'Mn-1k>3

These equations may be solved for Mn(y), and the control, us,

is given as

us = -R-1B' [P +	 E(n-2)Mn(y)Jx.	 (12)
n= 3

The complete control, u, is the summation of its two components

us and ud .

if the nonlinear coupling terms, C(y)x, are ignored,

minimization of J yields a control law, u, which is nearly

identical to uL. This procedure is called linearization in

the sequel, and as demonstrated in the next section, a control

designed on the basis of such a procedure may prove inadequate.

i
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4. Suboptimal Control of a Non-Symmetric Satellite

The suboptimal control laws eveloped in the previous

section are applied to the synthesis of an inertia-wheel con-

trol system for an artificial earth satellite. The nominal

distance from the surface of the earth to the center of mass

of the satellite is 500 nautical miles, and the orbital

eccentricity is 50 nautical miles. The earth is assumed to be

spherical. In Fig. 1, the set of orthogonal axes R l , R2 , and

R3 are the reference axes with which the spacecraft is to be

aligned. The R3 axis is assumed to point toward the center of

the earth, and the R2 axts is perpendicular to the orbital

plane; consequently, the angular velocity of the reference

axes is a 
R I 

= [ 0, 12R , 01, where 0R is the angular velocity
2	 2

of a line connecting the center of mass of the satellite with

the center of the earth. (nominally 9 R = 0.85x10 -3 rad/sec).
2

The set of orthogonal axes B l . B2 , and B 3 are the

principal axes of the spacecraft and are denoted as the roll,

pitch, and yaw axes respectively. The components along the

body axes of the angular velocity of the spacecraft relative

to the reference axes are called the roll, pitch, and yaw

rates, and the angular errors between the body and reference

axes are the roll, pitch, and yaw angles.

The maximum expected values of the roll, pitch, and

yaw angles are 0.175 rad, and the maximum expected angular

t
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velocity is 0.01 rad/sec about each axis. The control system

must reduce the roll, pitch, and yaw angels to 0.0175 rad

within four minutes. The moments of inertia of the spacecraft

are 200 slug-ft 2 about the roll axis, 150 slug-ft 2 about the

pitch axis, and 100 slug-ft 2 about the yaw axis. The maximum

allowable inertia-wheel angular momentum is 10 slug-ft 2/sec

about the roll axis, 7.5 slug-ft 2/sec about the pitch axis,

and 5 slug-ft 2/sec about the yaw axis. The system character-

istics and performance specifications outlined abover are

nearly identical to those for the Nimbus satellite6.

If xl = roll angle, x 2 = roll rate, x 3 = pitch angle,

x 4 = pitch rate, x5 = yaw angle, x 6 = yaw rate, and y i = angu-

lar momentum relative to the spacecraft of the i-th inertia

wheel, the elements of A are zero except a 12 = a34 = a56 = 1,

the elements of B are zero except b 21 = 1/I l , b 42 = 1/I2,
1.

b63 = 1/1 3 (I i is the moment of inertia of the spacecraft about

the i-th principal axis),

0	 0	 0	 0	 0	 0

0	 0	 0	 -y 3 /I 1	0	 y2/I1

0	 0	 0	 0,	 0	 0
C(Y)

0

	

Y3 /1 2
	0	 0	 0	 yl/I2

0	 0	 0	 0	 0	 0

0	 -y2/13	 0	 -yl/13	 0	 0



and !g(t) = Cy 3 n R2a I 2 Si R2,

The inertia-wheel

linearization and the two

the previous section. Th,

is

12

yl I 2 ]'

control logic is synthesized by

suboptimal procedures developed in

control obtained by linearization

1	 _ 
I 1p 22 x2	 I 2p l2 x 1 	 y3aR2

U2 = - I 2p 22 x 4 - I2p12x3 - I26R2	
(13)

u3	 - 1 3p 22 x 6 - 1 3p l2x 5 + yl"R2

If nonlinear coupling, C(y)x, were indeed negligible, values

Of p12 = 3.5x10 -2rad/sec and p22 - 5.75x10-4rad/sec 2 would

yield adequate transient response. However, this is not the

case as is demonstrated later.

Method I for suboptimal control yields

ul a - I lp 22x2 - I lp l2x l - 
y3aR2 + 

y 3x4 - y2x6-

U2 = - I 2p 22x 4 - I2p12x3 - I26R2 - y 3x 2 - y lX6	 (14)

u3 = 1 3p 22 x6 	 1 3p l2x5 + y1OR2 + y2x2 + ylx4
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Using Method II, a two-term approximation of (12) is

(I1 - I 2 )	 (I1 - 13)
uls = - I 1p22x2 - Ilpl2xl -	 2	 y3x4 _	 3	 y2x6

_ p12 (^Z1 + I2)	 (I + 1 )_ p12	 1	 3

P 2	 2	 y3x3 p 2	 3 y2x5

(I 1 - I 2 )	 (13 - I2)

u2s	 - I2p22x4 - I2pl2x 3 +
	 1	 '3 x 2	 13	 ylx6

(15)

p12 (I l + I2)	 p12 (I 2 + 13)

+ p22	 I1	 y3-1 + 2p 22	 13	 ylx5

(I l - I 2 )	 (I - 1 2 )

u 3
	

- 13p22x6 - 1 3pl2x 5 +	 21l	 y2X2 +	
3 
21

2 
	 y1x4

P12 12 + 1 3 )	 p12 (Ii + 13)

- 22	 2	 ylx3 + p 2	 I1	
y2x1

Stability of (1) under the action of control laws of the

general form of (15) has been demonstrated by Garrard and

Walker14 . A functional block diagram of the spacecraft and

control system is illustrated in Fig. 2.

In simulating the characteristics of the spacecraft

and the control system on a digital computer, control laws
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TABLE I

Initial Conditions - Pitch, Yaw, and Roll Angels = 0.175
radians
Pitch, Yaw, and Roll Rates 	 0.1
radians/sec

Method of Suboptimal: Suboptimal:
control Linearization Method I Method II
System
Design

Initial 0 60 0 60 0 60
Inertia-
Wheel
Angular
Momentum
(% of
Maximum)

Response 4.0 15.0 3.0 3.2 3.7 3.2
Time
(idinutes )

Peak 4.501 5.083 4.501 6.583 4.501 13.952
Torque
(ft-lbs x

10-4)

Peak 92.69 611.42 91.32 789.9 126.0 3345.4
Power 
(ft-lbs/sec

x 10-3)

Energy 107.7 1194.5 112.5 859.1 105.0 857.6
Consumed
(ft-lbs x

10-3)

L

ratic 9.170 13.060 8.930 12.190 10 310 9 641
ormance
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given by linearization and suboptimal Methods I and II were

employed for several sets of initial conditions. Values of

zero and 60 per cent of the maximum for the initial, inertia-

wheel angular momentum were used for each set of initial

conditions. The exact equations of motion were used in the

simulation, and disturbance torques due to the gravity

gradient were included. The results of a typical simulation

are given in Table 1.

In all cases, the system designed on the basis of

linearization failed to sufficiently reduce the angular error

within the required time for an initial, inertia-wheel angular

momentum of 60 per cent of the maximum expected value. Both

suboptimal systems had adequate response times for all sets

of initial conditions tested; however, the system designed on

the basir> of Method I appears to have smaller torque and power

requirements than does the system designed on the basis of

Method II.

The performance of the system designed by linearization

approached the performance of the suboptimal systems for zero

initial, inertia-wheel angular momentum. This was to be ex-

pected since all three control laws are nearly the same for

small values of inertia-wheel angular momentum.

The response of the spacecraft is illustrated in

Figs. 3 and 4 for a value of initial, inertia-wheel angular

momentum of 60 per cent of the maximum, and the unacceptable

I'
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response of the system designed on the basis of linearization

is evident. Fig. 3 shows that the system synthesized by use

of Method II gives less overshoot than the system designed by

use of Method I. However, the suboptimal system based on

Method II yields extremely oscillatory response; this is

illustrated in both figures.

Kalman et al. 6 synthesized a control system for the

satellite considered in this example. In this design all

linear, time-invariant terms in the equations of motion were

retained, but all nonlinear terms were neglected. Optimization

was performed with respect to a quadratic performance index;

however, the best response time obtained was over two hours.

5. Conclusions

The suboptimal control techniques developed in this

work appear to provide effective methods for synthesizing

inertia-wheel attitude control systems. Both procedures take

nonlinear inter-axis coupling into account. As demonstrated

in the example, unacceptable system response may result if

such coupling is ignored. Both techniques yield control

laws in feedback form, and the suboptimal systems developed in

this study give considerably more accurate control that is

provided by systems based on linearized approximations of the

equations of motion.

Results obtained from application of the two
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techniques of for suboptimal, inertia-wheel control indicate

that Method I is slightly superior in the following ways:

(1) The control system designed by use of Method I

has lower torque and power requirements.

(2; Method I yields more accurate response.

(3) Method I is computationally easier to use and

gives simpler control laws.

Better results might be obtained from Method II if more terms

were used in the approximate solution of the Hamilton-Jacobi;

equation.
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Fig. 2 Functional Block Diagram of Spacecraft and Inertia-
Wheel Control system



t	 .

M
,-tkti ^i

w
0

r-+ ae
o

o
^ n
+JI
a^

o ^

N
bo O

n rn

cd

tU

N

A

N H
Cd

r-I

Ti
a ^^ ^.

o
m

H
E o a^i

cd

(

3

b
b 
0

A
^ H

bo +3

A o
A

M \
\

H
cd ^ ^

cd

4-11

cn

cV H
`

R 1 H

bo

r-t

"^.{	 r-t	 r1 ri O	 O	 O O o	 O
O	 O	 O O O	 O	 O	 O O O	 O M

1 1	 1
:.1

su$TPBa aTBuy TToH
A4



I ti

I

I1

tU O L(1

.0,O

O O
^

^^ 1

^ 1

0 M 1

N AN
-H

i

^ A td
S
,-I

E-4

-H
io

0 0
`a Io i

cd
u4

fw ^
bo .r
cr
A

_r- --

_J

NO a\	 co	 t--	 Ilu	 Lt1 M CV	 O	 H

oas/suvTpvaE-OT 94VH Troll

0
0

cdz
CH

O

tpt
O
^O

II

0
O

cd
H

bo

z
Q

ri
N
O

1
cd

a^

H

cd
-H
4J
M

O
H

v

E-+

a^
P
N

a

r-i

O
a

bo

>r,

x


	GeneralDisclaimer.pdf
	0035B03.pdf
	0035B04.pdf
	0035B04_.pdf
	0035B05.pdf
	0035B06.pdf
	0035B07.pdf
	0035B08.pdf
	0035B09.pdf
	0035B10.pdf
	0035B11.pdf
	0035B12.pdf
	0035C01.pdf
	0035C02.pdf
	0035C03.pdf
	0035C04.pdf
	0035C05.pdf
	0035C06.pdf
	0035C07.pdf
	0035C08.pdf
	0035C09.pdf
	0035C10.pdf
	0035C11.pdf
	0035C12.pdf
	0035D01.pdf
	0035D02.pdf
	0035D03.pdf
	0035D04.pdf



