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AN APPLICATION OF ORDER STATISTICS

IN MIXTURE OF EXPONENTIAL DISTRIBUTIONS

H. I. Patel

SUMMARY

This paper is concerned with a distribution of an order statistic

when a sample of n is composed of n., observations coming from a

1

population with density

-t6

fl(t) = ele 1, o<t, o0<6

1
and the remaining n2(=n-n1) observations coming from a population with
density

-t6

fz(t) = eze 2, o<t, 0<8

2
In particular the expected value of the nth order statistic has been
obtained when the sample is composed of two types of components and
when it is composed of three types of components. The distribution of

the nth order statistic in the most general situation has been obtained.

A smail application has been mentioned at the end.
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AN APPLICATION OF ORDER STATISTICS

IN MIXTURE OF EXPONENTIAL DISTRIBUTIONS

By
H. I. Patel

The University of Georgia

I. Introduction

Numerous writers including Pearson [10], Charlier [2,3], Wicksell
[3], Rrider [11], Blischke [1], Cohen [4,5,6,7,8], Hasselblad [9] and
others have dealt with the problem of estimating parameters in mixture
of distributions of various types. In this paper, we are concerned not
with parameter-estimation, but rather with the expected value of order
statistics in a mixture of two exponential distributions. The problem
involved arises from a consideration of the '"time to restore'" service
in a system composed of various types of components, wherein the failure
of any component renders the system inoperative. As an example, the
range support equipment at a missile test facility might constitute such
a system. Let the system under consideration be composed of two types
of components which we designate simply as type-A and type-B. Let the
time to repair (i.e., restore to service) components of type-A be a random
variable with density.

-t6
£(8) =88 L ... (1)

and let the corresponding density for type-B components be

, —t62
fz(t) = Sze ...... (2)

where the parameters el and-92 are known at a given moment, but suppose
that n, components of type-A and n, components of type-B are in need of
repair in order to restore the system to operating condition. Let us
further assume that repair can be started simultaneously on all failed
components and that the several repair times involved are independently
distributed. The expected time required to ''restore service' is then

the expected value of the nth order statistic in a random mixed sample



consisting of n, observations from (1) and n, observations from (2).
Let Tn designate this order statistic and we proceed to determine E(Tn),

where n = n1 +n,.

II. Distribution of kth order statistic, when the number of observations

coming from each of the populations is known.

Let us consider two independent sets of observations. Suppose the
observations in each set are distributed independently with probability
density functions given by (1)} and (2).

Let ny be the number of observations in the ith set, such that
n, +n

1 2
We shall obtain the distribution of the kth order statistic, X(k)’

= n.

in the combined sample of n, o+ n, observations. x(k) is obviously the
observation from either of the two sets.

(a) Suppose x(k) is the observation from the first set. Let k1 be
the number of observations from the first set below X(k)’ (kljﬁ—l).

Then in this case the distribution of Y = X( is given by

k)
k1 k-kl—l nl—kl-l nz-k+k1+l
k-1 n In,'F, " ()F, (¥) [1-F1(y)] [1-F2(>')] dF, (y)
dG, = z ] 1) 7 R 1
1 k1=o kl.(n1 k1 1).(k-k1 1).(n2-k+k1+1).
w Kk 1 -1~ 1 -
0<y<w, 1< min (k,nl), n, 1 k1< min (n k+1,n1). ....... (3)
(b) Suppose X(k) is the observation from the second set. Then the
distribution of x(k) is given by
k1 k-k, -1 nl-k1 nz-k+k1
k-1 n;!n,!'F " (y)F, (¥) [1-F, (y)] [1-F,(y)] dF, (y)
4G = . 17271 2 1 2 2
2 - c o= ! 1 - ]
kl-o kl.(k—kl—l).(nl—kl)!mz-k+k1).
0<y<w, k1< min(k,n1+1) and nl-k1< min (n—k+1,n1+l) ..... (4
In (3) and (4) we have
-eix —eiy
Fi(y) = fy eie dx = 1-e for i = 1,2.

(¢}




Writing dG1 = gl(y)dy and dG2 = gz(y)dy, the density function of

Y = X(k‘ will be given by
hy) = g4+ g,
.. k-1 .
= coefficient of 8 in
n k;l (nl—l)(nz )ek'l k1 k-kl—l nl—kl-l n2—k+k1+1f o)
1, ° k.’ k-k -1 Py Py 4 92 1Y
kl-O 1 1
k-1 n;, n, -1 k, k-k,-1 n -k, n,-k+k
1,,2 k-1 "1 1 171 72 1
*+n, I ()G )8 Py Py q 9, £,(y), Ozy<e
k1=0 1 1
= coefficient of 85! in
nl—l n, n, n,-1
nlfl(y}[ep1+1—p1} [9P2+1-PQ +n2f2(y)[9p1+q1] [6p2+q2] s -o--(5)

where p; = F;(y), p, = F,(y), q; = 1-p;,q, = 1-p,

_eiy
and fi(y) = eie , 1 =1,2,

It should be shown that h(y)dy, 0<y, stands for the distribution of
Y, by showing that

of h(y)dy = 1.
k-1

Now jh h(y)dy = coefficient of 8 "% in
)

1

n_
] 2 dy

o nl-l n, © n,
j. nlfl(y)[ep1+q1] [ep2+q2] dy +.]. nzfz(y)[8p1+q1] [ep2+q2
o o

= coefficient of ek'l in



N
6-1 [6py+a,] “dl6p +q;] "+ 2= f” [6p,+a;] “dlep,+q,]

o]

ffici e k-l 1 ny n
coefficient of 6 in 6:T-[(epl+ql) (6p,+q,)

2400
Io
n.+n

coefficient of %1 in (6 1 2-1)/(6—1)

=1

III. Distribution of nth order statistic

Writing k1 =, -1 and k = n in (3) and k. = n, and kK= n in
(4), we shall get

n -1 n n n_ -1

aH(y) = [nFy 1 O)F, SOIE )+ nF LOIF, B 00E,(01 dy,

o<y<e ... (6)
IV. Expected value of Y = Tn
B =[ 7 yane)
o

[*) n n © n n

[ ve, Zoner ton | vy e, 2
0o

it

n, n; ™ N2
= [y{F, "(y)F, Yoy-1ng ja [{ 2 (-1t ( vl s -1l ( 23 3-11dy
=0 j=0
o N . n . n . n n ..
= "d[ [t (—1)1(il)v1 s 221 ( 2yl w5l 22 (- 1)1+3( Y Hvivydy
i=1 j=1 i=1 j=1 ]
n n n n n .. n n
1 M i1™m, 1 ™ i1 1 M2 iej 1 1, M2
=-=— (-7 (") -=— Z° (-1 —{ ) - - e (G
®1 i=1 11 %2 j=1 | 16,416, ]
JL oqp11,1 o f210; gz( i 1 (?1)(n2), ...... 7
SRR TS B I SR S O I 10,%39; 1 7T

Where v = e 7%1 amd w = e 792




If |91-62| is not large, writing 1/(i61+j62) as approximately equal

to 2/(61+92)(i+j), we shall get the last sum in (7) as

n
- Zl

n

22

i=1 j=1

2

81+e

S

D 201 () ieg) (0,00

I1n n

i

. . N, n ..
Z1 22 (_1)1+J(il)(.2) x1+J—1dx
=1 j=1 J

n n

91+

V. ExamEle

The table for E(Tn) for all possible combinations of n, and n

X

2 L o™ -(-x) * - (1-x) 2«1
. d
6, _f x

o] gt
1
n o~
pief =
e
-
[ee]
L —

1 i=1

1 2°

such that n,+n, =N = 10, with el=2 and 62=3 is given below.
W R LR Bt L ey |
11 21 i=1 j=1 177%2 J n
0 10 -- 0.9663 -- 0.9663
1 9 0.5000 0.9330 0.4017 1.0413
2 8 0.7500 0.8959 0.5543 1.1016
3 7 0.9166 0.8543 0.6231 1.1578
4 6 1.0416 0.8067 0.6481 1.2102
5 5 1.1266 0.7511 0.6435 1.2592
6 4 1.2100 0.6944 0.6141 1.3053
7 3 1.2814 0.6111 0.5589 1.3486
8 2 1.3439 0.5000 0.4695 1.3894
9 1 1.3994 0.3333 0.3198 1.4279
10 0 1.4494 -- -- 1.4494




Remarks:

(i) 1If Yn(l) 1s the nth order statistic in a random sample of size n

-0.x
from the population Fi(x) = %— e ' dx, x>o, 61>0, then
i
. n
ey, Dy - %—- 5oL i=1,2.
n i j=1"
(1)

In this example E(Y_ ) = 1.4494 and E(Y“(z)) = 0.9663

(ii) Min. [E(yn(l)),E(Yn(z))] <E(T ) < max. [E(Yn(l))’ E(Yn(Z))]

Proof:

Let 6.,<06,. Then

1°°2
1 M1 M1 T T i+j 1 i T
sy LB Dops Igle Bl D ey () G
2 i=1 i=1 i=1 i=1 j=1 179%2 J
n n n
< %ﬁ- [ zl-% NS N 3—]
1 =1 i=1 v i=11i
n n .. n n n n n
Hence 1l 1° (-1)*") IE—%Tg— (hed - et %- + 1 %-- ) %-]
i=1 j=1 17%2 ) 2 i=1 i=1 * i=1
n n n
ERCRRE RIS L ST
1 Y2 =l i=1 i=1
n
j_(%—-— é—J [ Zl %—], since n,<n
1 Y2 =l
From this we get
n n n .. n n
1, 2
R L L TN
2 i=1 2 i=1 1 i=1 ij 17772




or E(Yn(z)) < E(T))

Similarly it can be shown that
(1)

E(Y ") > E(T )

(iii) 1If we want to compute E(Tn) for a new set of parameters

%

2. %

nth order statistic in a mixed sample of the populations with the new

]
1] 1 61 61 1]

8., and 8,, such that — = —, then E(T ) =
1 2 e' o n

|
« E(T_), where T_is the
n n

8]

set of parameters.

VI. General Case

Let there be k populations. Let Y(l) (i=1, 2, ...k) be independent

random variables with the distribution

_yei
dFi = eie dy, O0O<y<w, ei>0

Let Yﬁl)be the nith order statistic in a random sample of size n, in the
i

ith group (i=1,2,...,k). Let n1+n2+..+nk = n.

Then the distribution of X = Tn’ the nth order statistic in a mixed

sample will be given by

dG (x) = p(yﬁi) < x, i=1,2,...,k—1|Y§k)= x)+h_(x)dx
i K

+P(Y£1) < x,i=1,2,...,k—2,k|Y§k—1) =

x) h {(x)dx
i k-1 k-1

2 < xi=2,3, kY - e (0ax,
n. n 1
i 1
ni-l
where hi(x)dx = ni[Fi(x)] fi(x)dx stands for the distribution of the

nith order statistic in the ith group (i=1,2,...,k).

Now since Y_,Y ,...,Y are independently distributed,
n,’'n, n,



p(Yﬁf) < x,i=1,2,...j-1,j+1,...k|Y£?) = x)
i J

= P(Y£1)< x,i=1,2,...,j-1,j+1,...,k)

1
j-1 . k .
=1 P(Yﬁl) <x) 1 Py < x), for j=1,2... k.
i=1 i i=j+1 i
k j-1 n. k n. n,
Thus dG(x) = I 1 [F.(x)] T [F,(x) YIF, (x)] 7, 0<x<w
j=1 i=1 i=j+1 J

VII. Expected value Tn in case of 3 types of components.

Now we shall find the expected value of X=Tn in case of 3 groups.

f ) xdG(x)

0

E(X)

1

oo 3 n.
[ e et

o) i=1

S

[e} 1

n.
[F, ()] Lo1)dx.

I = W

1

Writing v = exp (—elx), w=exp (—ezx) and z=exp (—esx), we get

E(X)

o« n n n
- [ 1o Tas 2ase e
(0]

i g
§ TZi)(1+.Z TSi)_l]dx

1 i=1

© nl
_j‘ [(1+ R Tli)(1+.

i=1 i=

n n n
E T.. + _E T.. + _i TSi + I X TliTZj +

1 2 3
+ z z . .
T,.T + I z z TliTZjTSk) dx

i=1 j=1 1 i=1 j=1 k=1

(%)

DR

i=1 j=1

T

11135




3 n . n. n n .. n n
1 ' il 1 o2 1 1, M2
== = P2 - 0T e OGO
j=1 %3 i=1 i=1 j=1 J J
S T ivj 1 ", M3 n, 3 i+j 1 ny B3
i=1 j=1 17772 J i=1 j=1 17373 J
n n n .. n n n
1 22 U3 +j+k 1 1, "2, "3
- X )X z (—1)1 J m (i ) (. )(k ) I (10)
i=1 j=1 k=1 177727%%3 J
i M, i i M2, i i34
Where Tli = (—1) (i )V ’TZi = (-1) (1 )W ’TSi = ("1) (i )Z .

VIII. Application

Suppose a mining company surveys n different points randomly selected
in some area. A fixed amount of ore is collected from each location
(corresponding to each point selected). Now the company's main interest is
in analysing these samples of ores in the minumum period of time in order
to make some important decisions. Suppose there are two laboratories work-
ing at different efficiencies. Let us further assume that in each
laboratory the work of analysing n samples can commence simultaneously
at n counters.

Let us define the following parameters:

¢c. = Cost of analysing a sample in laboratory i, i=1, 2.
d = Cost per unit time that the company has to wait until all the
results are known.
n. = Number of samples sent to laboratory i, i=1, 2.
= Random variable denoting the time required for analysing a
sample in ith laboratory. The distribution of t, is assumed
to be exponential with parameter ei, i=1,2.
T = Number of units of time the company has to wait until the
decision is taken.
Then the company would wish to send n, samples to the ith laboratory

such that the expected cost

¢ n = E(dTn + ¢ 0y + cznz)
1, 2

is minimum.
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