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f l ( t )  = ele -tel, 0 5 t ,  0 < El1 

t he  remaining n2(= n - nl) observat ions coming from a populat  

f , ( t )  = e2e-te2, o I t ,  o < e2. 

on wi th  -2ns i ty  
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AN APPLICATION OF ORDER STATISTICS 

I N  MIXTURE OF EXPONENTIAL DISTRIBUTIONS 

H. I .  Pate1 

SUMMARY 

This paper is  concerned with a d i s t r i b u t i o n  of  an o rde r  s ta t i s t ic  

when a sample of n i s  composed o f  n 

populat ion with dens i ty  

observat ions coming from a 1 

1 - t e  
1 f , ( t )  = 0 e oLt, 0<0  1 

and t h e  remaining n (=n-n ) observations coming from a populat ion with 

d e n s i t y  

2 1 

- t e 2  
2' f,(t) = e e o < t ,  - o<e 2 

I n  p a r t i c u l a r  t h e  expected value of  t h e  n th  o rde r  s t a t i s t i c  has been 

obtained when t h e  sample i s  composed of  two types of components and 

when it is  composed of t h r e e  types of components. 

t h e  n t h  o rde r  s t a t i s t i c  i n  the  most general  s i t u a t i o n  has been obtained. 

A small a p p l i c a t i o n  has beer? mentioned a t  t h e  end. 

The d i s t r i b u t i o n  of 

iii 
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The University of 

I. Introduction 

Numerous writers including Pearson 

STATISTICS 

DISTRIBUTIONS 

Georgia 

1101 , Charlier [2,3] , Wicksell 
[31, Rider ill], Blischke [11, Cohen [4,5,6,7,8], Hasselblad [9] and 
others have dealt with the problem of estimating parameters in mixture 
of distributions of various types. 
with parameter-estimation, but rather with the expected value of order 
statistics in a mixture of two exponential distributions. The problem 
involved arises from a consideration of the Yime to restore" service 
in a system composed of various types of components, wherein the failure 
of any component renders the system inoperative. 
range support equipment at a missile test facility might constitute such 
a system. 
of components which we designate simply as type-A and type-B. 
time to repair (i.e., restore to service) components of type-A be a random 

variable with density. 

In this paper, we are concerned not 

As an example, the 

Let the system under consideration be composed of two types 

Let the 

-te 
fl(t) = Ole 1 ....... (1) 

and let the corresponding density f o r  type-B components be 

-te2 
f,(t) = 8,e ...... (2) 

where the parameters 0 and e2 are known at a given moment, but suppose 
that nl components of type-A and n2 components of type-B are in need of 
repair in order to restore the system to operating condition. 
further assume that repair can be started simultaneously on all failed 
components and that the several repair times involved are independently 
distributed. 
the expected value of the nth order statistic in a random mixed sample 

1 

Let us 

The expected time required to "restore service'' is then 



consisting of n 
Let T 
where n = n + n 

11. Distribution of kth order statistic, when the number of observations 

observations from (1) and n2 observations from ( 2 ) .  1 
designate this order statistic and we proceed to determine E(Tn), n 

2' 1 

coming from each of the populations is known. 

Let us consider two independent sets of observations. Suppose the 
observations in each set are distributed independently with probability 
density functions given by (1) and ( 2 ) .  

ier n be the number of observations in the ith set, such that i 
n + n  = n .  1 2 

x(k> , We shall obtain the distribution of the kth order statistic, 
is obviously the (k) 

in the combined sample of n + n observations. 
observation from either of the two sets. 

1 2 

(a) Suppose x is the observation from the first set. Let kl be 
<k-I). 

(k) 
the number of observations from the first set below x (k)' (kl- 
Then in this case the distribution of Y = X is given by 

(k) 

dF1 (Y) 
n -k -1 1 1  k-k -1 kl 1 k-1 n !n !F (;-)F2 ( y )  [l-F1(y)] 

d G =  C -  

1 

1 2 1  - 
k ! (n -k -l)! (k-k 1 -1) ! (n 2 -k+kl+l) ! k =o 1 1 1  

, k < min (k,n ), n -1-k < min (n-k+l,n ) .  . . . . . . .  (3 )  1 1 1 1 1 o<y<m - -  
(b) Suppose x is the observation from the second set. Then the 

(k) 
distribution of x is given by 

(k) 

n -k 
[1-F2(Y)1 

1 1  k-k -1 kl k-1 n 1 2 1  !n !F (y)F2 (+) [l-F1(y)] 

k =o 1 
dG2 = C 

k !(k-kl-l)!(n -k )!p -k+k 1 ) !  1 1 1  2 

< min(k,n +1) and n -k < min (n-k+l,nl+l) . . . . . ( 4 )  kl 1 1 1  o<y<m, - -  

In ( 3 )  and (4)  we have 

- 8 . x  1 -0iY 
F.(y) = 1 Y f3.e dx = 1-e for i = 1,2. 

1 1 
0 

2 



Writing dG1 = gl(y)dy and dG2 = g2(y)dy, the density function of 

Y = X will be given by 
(k> 

h(Y) = g1+ 82 
k-1 in = coefficient of 8 

k-l kl k-kl-1 n -k -1 n2-k+kl+l 1 1  k-1 n -1 n2 1 
k =O 1 
' ( kl)(k-kl-l ) e  PI P2 91 42 fl (Y) 

k-1 n n -1 k- 1 kl k-kl-1 n 1 1  -k n 2 -k+kl 1 2  ' (kl) (k-kl-l ) e  P1 P2 91 42 f2(Y) 2 0:Y:m 
kl=O 2 + n  

k-1 in = coefficient o f  0 

It should be shown that h(y)dy, O<y, - stands for the distribution of 

Y, by showing that 

h(y)dy = 1 .  Jm 
k-1 in Now Imh(y)dy = coefficient of 6 

0 

0 0 

k-1 in = coefficient of 8 

3 



W 

2 
n n n n W 

1 1  

n k- 1 1 1 2 m  

k- 1 1 2  

n 
= c o e f f i c i e n t  o f  8 i n  - e- 1 [(epl+ql) (@p2+q2) 10 

n +n 
- I ) /  (e-1) = c o e f f i c i e n t  of 8 i n  (e 

= 1  

111. Dis t r ibu t ion  of n th  order  s t a t i s t i c  

Writing ki = n -1 and k = n i n  ( 3 )  and kl  = z1 a d  k =  fi i n  i 

(4), we s h a l l  ge t  

n I V .  Expected va lue  of Y = T 

. . . . . . . . ( 6 )  

2 n n 

C ( - l ) j ( . 2 ) J ? - l ] d y  J 
n. 

i = O  j = O  

i l i  1 n 
W 

1 n 2 n 
= [Y{FZ (Y)F1 (Y)-1>3: -I [ {  C (-1) (i  )v  

0' 

n n n n n  i + j  n n  1 2 i j 
1 i 1 i +  wj + C1 C2(-1) ( i - ) ( j  )v  w ]dy 

w n  
= y [ c (-1) ( i  )v  

i= 1 j = l  i=l j = 1  

n n  1 i 1  1 i + j  1 1 2  n n  2 n 2 n 1 n n 
- 1 C (-1) T(i ) - 7 c ( -1 ) j  L(. ) - 2 C2(-1) ie + j e 2 ( i ' ) ( j  ) '1 i=l 2 j = l  j J i=l j=1  1 

4 



e -e I is not  l a rge ,  wr i t ing  1/( iOl+je2)  as approximately equal .  

e 2 ) ( i + j ) ,  we s h a l l  g e t  t he  last sum i n  (7) as 
1 2  

dx 
2 

n 1 n 
(1-x)" - ( l - x )  - (1-x) +1 dx 

2 - 
X 

0 

. . . . . . . . . . . (8) 

V .  Example 

2 '  
The t a b l e  f o r  E(T,) f o r  a l l  poss ib l e  combinations of n1 and n 

such t h a t  n1+n2 = n = 10, with 8 =2 and 0 =3 i s  given below. 1 2 

-- 

0.5000 

0.7500 

0.9166 

1.0416 

1.1266 

1.2100 

1.2814 

1.3439 

1.3994 

1.4494 

n 1 2 1  - - c  7 

1 

0.9663 

0.9330 

0 ' 8959 

0.8543 

0.8067 

0.7511 

0.6944 

0.6111 

0.5000 

0.3333 

1 

-- 

0.9663 -- 
0.4017 

0.5543 

0.6231 

0.6481 

0.6435 

0.6141 

0.5589 

1 1.0413 

1.1016 

1.1578 

1.2102 

1.2592 

1.3053 

1.3486 

0.4695 1 1.3894 

0.3198 
-- 

1.4279 

1.4494 

5 



Remarks : 

( i )  

.. 

If Y ( i)  i s  t h e  n th  order  s t a r i s t i c  i n  a random sample of s i z e  n 
I1 

- e . x  
1 from t h e  populat ion F .  (x) = e dx, x>o, e > O ,  then 1 - 

'i 1 

1 

In  t h i s  example E(Yn(l))  = 1.4494 and E(Y-(')) 11 = 0.9663 
.. 

( i i )  Min. [E(yn ( l ) )  ,E(Yn(2))] - <E(Tn) - < max. [E(Yn(l)) ,  E(Yn(2))1 . 

Proof:  

Let 01<02.  Then 

2 n 1 n 2 i + j  1 n n  
(i 1 ( j  1 1 n 2 1  n 1 1  n 

[ e  F +  c 7 -  e , ] <  c1 c (-1) 1 

' 2  i=l  i= 1 i= 1 
- i o  + j e 2  i=l j=1  1 1 1 1 -  

n 
1 1  2 1  I 2 7 -  c - 1  < - [  c T +  

n 1 
1 1 - '1 i=l i= 1 i=l i 

1 n n n 
1 n n  2 1 1 2  n n  

(i I(. 1 - 0 c 
7 " 2  i=l i= 1 i=l i o  + j e  Hence C1 ( - l ) i + J  

i=l j = 1  1 2  

1 1 1  
- < (e- -I[ i 1 i 

n 2 1  n n 
- +  c - 7 -  c - 1  1 1 

1 0 2  1=1 i=l i= 1 

1 1  - < (e - 8) [ c - i 3 ,  s i n c e  n 2- <n 
n 1 1 

1 2 i= 1 

From t h i s  we g e t  

6 



or E(Yn (2)) - < E(Tn) 

Similarly it can be shown that 

(iii) If we want to compute E(T ) for a new set of parameters n 
I I 

1 1 1 el and 0 

nth order statistic in a mixed sample of the populations with the new 
set of parameters. 

such that I = - , then E(T ) = - E(Tn), where Tn is the 2' n 
02 O2 . 

VI. General Case 

Let there be k populations. Let Y (i) (i=l, 2, ... k) be independent 
random variables with the distribution 

Let Yki)be the n.th order statistic in a random sanple of size R in the 
1 i i 

ith group (i=1,2 ,... ,k). Let n +n +.. +nk = n. 

Then the distribution of X = Tny the nth order statistic in a mixed 
sample will be given by 

dG(x) = P(YAi) < x, i=1,2 .... ,k-lIYr)= x)-hk(x)dx 
i k 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+P(Yki) < x,i=2,3, ...,klY(l) = x)*hl(x)dx, 

n -1 i 
1 n i 

where h. (x)dx = ni[Fi(x)] 

n.th order statistic in the ith group (i=lY2 .... ,k). 
f. (x)dx stands for the distribution of the 

1 1 

1 

are independently distributed, 
"k 

Now since Y 

7 



P(yLi) < x, i=1,2 ,... j - l , j + l ,  ... klY;) = x) 
i j 

= P(YAi)< x , i=1 ,2 , .  . . , j - l , j + l , .  . . ,k) 
i 

j-1 k 
n 

i=l i = j + l  i 
P(YAi) < x) , f o r  j=1 ,2 . .  . , k .  

n k  n n 
Thus dG(x) = C TI [Fi(x)] i Il 

k j - 1  
[Fi(x) i d [F j (x ) ]  J ,  O < X < P J  .. . (9) - -  

j = 1  i=l  i = j  + I  

VII. Expected value Tn i n  case of 3 types of components. 

Now w e  s h a l l  f i n d  t h e  expected value of  X=T i n  case of 3 groups. n 
m 

E(X)  = xdG(x) 
0 

m 3 n 
= J xd( TI [Fi(x)] i - l )  

0 i= 1 

- 3  n 
= - ( TI [Fi(x)] -1)dx. i 

0 i=l 

Writing v = exp (-e,x), w=exp (-0,x) and z=exp ( - e  x), we g e t  3 

n 2 n 1 
E(X)  = - 1 [ ( l - v )  (l-w) (1-2) 3-l]dx 

m n 

0 

3 

0 i=l i=l i= 1 

n 2 n 1 m n 
= -I [ ( l  + C T l i ) ( l +  C TZi)(l+ C T ) - l ] d x  

3i  

n n  1 3  n n  1 2  + ‘ T l i T 3 j  i=l j = 1  T l i T 2 j  i=l  j = l  
+ C  

3 n 

i=l i= 1 i= 1 

n 2 1 m n  

‘ T3i ( C Tli + C T2i + 

8 



n n  1 1 2  n n n  i 1  j n .  3 1  - - -  c - 1' (-1) (i ) - c1 e* ( - l ) i + j  ie + j e  ( i  ) ( j  ) 
i=l j = 1  1 2  e j=1 j i=l 

n i n 3 zi i 2 i  n i l i  
Where Tli = (-1) Ii )v ,TZi = (-1) (i )w yT3i = (-1) (i ) . 

VIII. Applicat ion 

Suppose a mining company surveys n d i f f e r e n t  po in t s  randomly s e l e c t e d  

i n  some area. A f i xed  amount of  ore is co l l ec t ed  from each loca t ion  

(corresponding t o  each po in t  s e l ec t ed ) .  

i n  ana lys ing  these  samples o f  o re s  i n  t h e  minumum per iod  of t i m e  i n  order  

t o  make some important dec is ions .  

ing a t  d i f f e r e n t  e f f i c i e n c i e s .  

l abo ra to ry  t h e  work of analysing n samples can commence simultaneously 

at n counters .  

Now t h e  company's main i n t e r e s t  is 

Suppose the re  a r e  two l abora to r i e s  work- 

Let us f u r t h e r  assume t h a t  i n  each 

L e t  u s  de f ine  t h e  fol lowing parameters:  

- - 
'i 
d =  

n =  i 
- ti - 

- 
Tn - 

Then 

Cost of analysing a sample i n  labora tory  i, i=l, 2.  

Cost per  u n i t  t i m e  t h a t  t h e  company has t o  wait u n t i l  a l l  t h e  

r e s u l t s  a r e  known. 

Number of samples sen t  t o  labora tory  i, i=l, 2. 

Random v a r i a b l e  denoting t h e  time required f o r  analysing a 

sample i n  i t h  laboratory.  The d i s t r i b u t i o n  of t .  is assumed 

t o  be  exponent ia l  with parameter eiY i = 1 , 2 .  

Number of u n i t s  of  time t h e  company has t o  wait u n t i l  t h e  

dec is ion  i s  taken.  

t h e  company would wish t o  send n 

1 

samples t o  t h e  i t h  laboratory i 
such t h a t  t h e  expected cos t  

= E(dT, + clnl + c2n2) % ,"2 

is minimum. 

9 
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