NASA CONTRACTOR REPORT

NASA CR 61292

Report No. 61292

AN APPLICATION OF STATISTICS IN MIXTURE OF EXPONENTIAL DISTRIBUTIONS

By H. I. Patel
University of Georgia
Department of Statistics CASE FILE COPY Athens, Georgia

May 1969

Prepared for

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, Alabama 35812

MSFC-Form 3292 (May 1969)

AN APPLICATION OF ORDER STATISTICS

IN MIXTURE OF EXPONENTIAL DISTRIBUTIONS

H. I. Patel

SUMMARY

This paper is concerned with a distribution of an order statistic when a sample of n is composed of n_{1} observations coming from a population with density

$$
f_{1}(t)=\theta_{1} e^{-t \theta_{1}}, o \leq t, o<\theta_{1}
$$

and the remaining $n_{2}\left(=n-n_{1}\right)$ observations coming from a population with density

$$
f_{2}(t)=\theta_{2} e^{-t \theta_{2}}, 0 \leq t, o<\theta_{2}
$$

In particular the expected value of the nth order statistic has been obtained when the sample is composed of two types of components and when it is composed of three types of components. The distribution of the nth order statistic in the most general situation has been obtained. A small application has been mentioned at the end.

AN APPLICATION OF ORDER STATISTICS

IN MIXTURE OF EXPONENTIAL DISTRIBUTIONS
By
H. I. Patel

The University of Georgia

I. Introduction

Numerous writers including Pearson [10], Charlier [2,3], Wicksell [3], Rider [11], B1ischke [1], Cohen [4, 5, 6, 7, 8], Hasselblad [9] and others have dealt with the problem of estimating parameters in mixture of distributions of various types. In this paper, we are concerned not with parameter-estimation, but rather with the expected value of order statistics in a mixture of two exponential distributions. The problem involved arises from a consideration of the "time to restore" service in a system composed of various types of components, wherein the failure of any component renders the system inoperative. As an example, the range support equipment at a missile test facility might constitute such a system. Let the system under consideration be composed of two types of components which we designate simply as type-A and type-B. Let the time to repair (i.e., restore to service) components of type-A be a random variable with density.

$$
\begin{equation*}
\mathrm{f}_{1}(\mathrm{t})=\theta_{1} \mathrm{e}^{-\mathrm{t} \theta} 1 \tag{1}
\end{equation*}
$$

and let the corresponding density for type-B components be

$$
\begin{equation*}
f_{2}(t)=\theta_{2} e^{-t \theta_{2}} \tag{2}
\end{equation*}
$$

where the parameters θ_{1} and θ_{2} are known at a given moment, but suppose that n_{1} components of type-A and n_{2} components of type- B are in need of repair in order to restore the system to operating condition. Let us further assume that repair can be started simultaneously on all failed components and that the several repair times involved are independently distributed. The expected time required to "restore service" is then the expected value of the nth order statistic in a random mixed sample
consisting of n_{1} observations from (1) and n_{2} observations from (2). Let T_{n} designate this order statistic and we proceed to determine $E\left(T_{n}\right)$, where $n=n_{1}+n_{2}$.
II. Distribution of k th order statistic, when the number of observations coming from each of the populations is known.

Let us consider two independent sets of observations. Suppose the observations in each set are distributed independently with probability density functions given by (1) and (2).

Let n_{i} be the number of observations in the ith set, such that $n_{1}+n_{2}=n$.

We shall obtain the distribution of the kth order statistic, $x_{(k)}$, in the combined sample of $n_{1}+n_{2}$ observations. $x_{(k)}$ is obviously the observation from either of the two sets.
(a) Suppose $x_{(k)}$ is the observation from the first set. Let k_{1} be the number of observations from the first set below $x_{(k)}$, $\left(k_{1} \leq k-1\right)$. Then in this case the distribution of $Y=X_{(k)}$ is given by

(b) Suppose $x_{(k)}$ is the observation from the second set. Then the distribution of $x_{(k)}$ is given by

$$
\begin{align*}
d G_{2}= & \sum_{k_{1}=0}^{k-1} \frac{n_{1}!n_{2}!F_{1}^{k_{1}}(y) F_{2}^{k-k_{1}-1}(y)\left[1-F_{1}(y)\right]^{n_{1}-k_{1}}\left[1-F_{2}(y)\right]^{n_{2}-k+k_{1}} d_{d F_{2}}(y)}{k_{1}!\left(k-k_{1}-1\right)!\left(n_{1}-k_{1}\right)!\left(n_{2}-k+k_{1}\right)!} \\
& 0 \leq y \leq \infty, k_{1}<\min \left(k, n_{1}+1\right) \text { and } n_{1}-k_{1}<\min \left(n-k+1, n_{1}+1\right) \ldots \ldots(\tag{4}
\end{align*}
$$

In (3) and (4) we have
$F_{i}(y)=\int_{0}^{y} \theta_{i} e^{-\theta} \mathbf{i}^{x} d x=1-e^{-\theta}{ }_{i}^{y}$ for $i=1,2$.

Writing $\mathrm{dG}_{1}=\mathrm{g}_{1}(\mathrm{y}) \mathrm{dy}$ and $\mathrm{dG}_{2}=\mathrm{g}_{2}(\mathrm{y}) \mathrm{dy}$, the density function of $Y=X_{(k)}$ will be given by

$$
\begin{aligned}
h(y) & =g_{1}+g_{2} \\
& =\text { coefficient of } \theta^{k-1} \text { in }
\end{aligned}
$$

$+n_{2} \sum_{k_{1}=0}^{k-1}\left({ }_{k}^{n_{1}}\right)\left({ }_{k-k_{1}-1}^{n_{2}-1}\right) \theta^{k-1} p_{1}{ }_{1}^{k_{1}} p_{2}^{k-k_{1}-1}{ }_{q_{1}}^{n_{1}-k_{1}}{ }_{q_{2}}{ }^{n_{2}-k+k_{1}} f_{2}(y), 0 \leq y \leq \infty$
$=$ coefficient of θ^{k-1} in
$n_{1} f_{1}(y)\left[\theta p_{1}+1-p_{1}\right]^{\underline{n} 1^{-1}}\left[\theta p_{2}+1-p_{2}\right]^{n_{2}}+n_{2} f_{2}(y)\left[\theta p_{1}+q_{1}\right]^{n_{1}}\left[\theta p_{2}+q_{2}\right]^{n_{2}-1}, \ldots$
where $p_{1}=F_{1}(y), p_{2}=F_{2}(y), q_{1}=1-p_{1}, q_{2}=1-p_{2}$
and $f_{i}(y)=\theta_{i} e^{-\theta_{i} y}, i=1,2$.
It should be shown that $h(y) d y, 0 \leq y$, stands for the distribution of Y , by showing that

$$
\int_{0}^{\infty} h(y) d y=1 .
$$

Now $\int_{0}^{\infty} h(y) d y=$ coefficient of θ^{k-1} in
$\int_{0}^{\infty} n_{1} f_{1}(y)\left[\theta p_{1}+q_{1}\right]^{n_{1}-1}\left[\theta p_{2}+q_{2}\right]^{n_{2}} d y+\int_{0}^{\infty} n_{2} f_{2}(y)\left[\theta p_{1}+q_{1}\right]^{n}\left[\theta p_{2}+q_{2}\right]^{n_{2}-1} d y$
$=$ coefficient of θ^{k-1} in
$\frac{1}{\theta-1} \int_{0}^{\infty}\left[\theta p_{2}+q_{2}\right]^{n_{2}} d\left[\theta p_{1}+q_{1}\right]^{n}{ }^{n}+\frac{1}{\theta-1} \int_{0}^{\infty}\left[\theta p_{1}+q_{1}\right]^{n}{ }_{1} d\left[\theta p_{2}+q_{2}\right]^{n_{2}}$
$=$ coefficient of $\theta^{\mathrm{k}-1}$ in $\frac{1}{\theta-1}\left[\left(\theta \mathrm{p}_{1}+\mathrm{q}_{1}\right)^{\mathrm{n}}{ }^{1}\left(\theta \mathrm{p}_{2}+\mathrm{q}_{2}\right)^{\mathrm{n}}\right]_{0}^{\infty}$
$=$ coefficient of θ^{k-1} in $\left(\theta^{n_{1}+n_{2}}-1\right) /(\theta-1)$
$=1$
III. Distribution of nth order statistic

Writing $k_{1}=n_{1}-1$ and $k=n$ in (3) and $k_{1}=n_{1}$ and $k=n$ in
(4), we shall get
$d H(y)=\left[n_{1} F_{1}{ }^{n_{1}-1}(y) F_{2}{ }^{n_{2}}(y) f_{1}(y)+n_{2} F_{1}{ }^{n}(y) F_{2}{ }^{n_{2}^{-1}}(y) f_{2}(y)\right] d y$,
IV. Expected value of $Y=T_{n}$

$$
\begin{aligned}
& E(Y)=\int_{0}^{\infty} y d H(y) \\
& =\int_{0}^{\infty} y_{0}{ }_{2}^{n_{2}}(y) d F_{1}{ }^{n}(y)+\int_{0}^{\infty} y F_{1}{ }^{n} 1(y) d F_{2}{ }^{n}(y) \\
& =\left[y\left\{F_{2}{ }^{n_{2}}(y) F_{1}{ }^{n_{1}}(y)-1\right\}\right]_{0}^{\infty}-\int_{0}^{\infty}\left[\left\{\sum_{i=0}^{n_{1}}(-1)^{i}\left(_{i}^{n_{1}}\right) v^{i}\right\}\left\{\sum_{j=0}^{n_{2}}(-1)^{j}\left({ }_{j}{ }^{n_{2}}\right) w^{j}\right\}-1\right] d y \\
& \left.=-\int_{0}^{\infty}\left[\sum_{i=1}^{n_{1}}(-1)^{i}\left(_{i}^{n_{1}}\right) v^{i}+\sum_{j=1}^{n_{2}}(-1)^{j}\left({ }_{j}^{n_{2}}\right) w^{j}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}}(-1)^{i+j}{ }_{\left({ }_{i}\right.}^{n_{1}}\right)\left({ }_{j}^{n_{2}}\right) v^{i} w^{j}\right]^{d y}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{\theta_{1}} \sum_{i=1}^{n} \frac{1}{i}+\frac{1}{\theta_{2}} \sum_{i=1}^{n} \frac{1}{i}-\sum_{i=1}^{n} \sum_{j=1}^{n_{2}}(-1)^{i+j} \frac{1}{i \theta_{1}+j \theta_{2}}\left({ }_{i}^{n}\right)\left({ }_{j}^{n}\right), \tag{7}
\end{align*}
$$

Where $v=e^{-y \theta} l$ amd $w=e^{-y \theta} 2$

If $\left|\theta_{1}{ }^{-\theta}\right|$ is not large, writing $1 /\left(i \theta_{1}+j \theta_{2}\right)$ as approximately equal. to $2 /\left(\theta_{1}+\theta_{2}\right)(i+j)$, we shall get the last sum in (7) as

$$
\begin{align*}
& -\sum_{i=1}^{n} \sum_{j=1}^{n_{2}}(-1)^{i+j} 2\left({ }_{i}^{n}\right)\left({ }_{j}^{n_{2}}\right) /(i+j)\left(\theta_{1}+\theta_{2}\right) \\
& =-\frac{2}{\theta_{1}+\theta_{2}} \int_{0}^{1} \sum_{i=1}^{n} \sum_{j=1}^{n}(-1)^{i+j}\left(_{i}^{n}\right)\left({ }_{j}^{2}\right) x^{i+j-1} d x \\
& =-\frac{2}{\theta_{1}+\theta_{2}} \int_{0}^{1} \frac{(1-x)^{n}-(1-x)^{n} 1-(1-x)^{n_{2}}+1}{x} d x \\
& =-\frac{2}{\theta_{1}+\theta_{2}}\left[\sum_{i=1}^{n} \frac{1}{i}+\sum_{i=1}^{n} \frac{1}{i}-\sum_{i=1}^{n} \frac{1}{i}\right] \tag{8}
\end{align*}
$$

V. Example

The table for $E\left(T_{n}\right)$ for all possible combinations of n_{1} and n_{2}, such that $n_{1}+n_{2}=n=10$, with $\theta_{1}=2$ and $\theta_{2}=3$ is given below.

${ }^{n} 1$	n_{2}	$\frac{1}{\theta_{1}} \sum_{1}^{n}{ }^{1} \frac{1}{i}$	$\frac{1}{\theta_{2}} \sum_{1}^{n} \frac{1}{i}$	$\sum_{i=1}^{n} \sum_{j=1}^{n_{2}(-1)^{i+j}} \frac{1}{i \theta_{1}+j \theta_{2}}\left({ }_{i}{ }^{n}\right)\left({ }_{j}{ }^{n}{ }^{\text {a }}\right.$	$E\left(T_{n}\right)$
0	10	--	0.9663	--	0.9663
1	9	0.5000	0.9330	0.4017	1.0413
2	8	0.7500	0.8959	0.5543	1.1016
3	7	0.9166	0.8543	0.6231	1.1578
4	6	1.0416	0.8067	0.6481	1.2102
5	5	1.1266	0.7511	0.6435	1.2592
6	4	1.2100	0.6944	0.6141	1.3053
7	3	1.2814	0.6111	0.5589	1.3486
8	2	1.3439	0.5000	0.4695	1.3894
9	1	1.3994	0.3333	0.3198	1.4279
10	0	1.4494	--	--	1.4494

Remarks:

(i) If $Y_{n}{ }^{(i)}$ is the nth order statistic in a random sample of size n from the population $F_{i}(x)=\frac{1}{\theta_{i}} e^{-\theta_{i}} \mathrm{x} d x, x \geq 0, \theta_{1}>0$, then

$$
E\left(Y_{n}{ }^{(i)}\right)=\frac{1}{\theta_{i}} \sum_{j=1}^{n} \frac{1}{j}, i=1,2 .
$$

In this example $E\left(Y_{n}{ }^{(1)}\right)=1.4494$ and $E\left(Y_{n}{ }^{(2)}\right)=0.9663$
(ii) Min. $\left[E\left(y_{n}{ }^{(1)}\right), E\left(Y_{n}^{(2)}\right)\right] \leq E\left(T_{n}\right) \leq \max .\left[E\left(Y_{n}{ }^{(1)}\right), E\left(Y_{n}{ }^{(2)}\right)\right]$.

Proof:
Let $\theta_{1}<\theta_{2}$. Then

$$
\begin{gathered}
\frac{1}{\theta_{2}}\left[\sum_{i=1}^{n_{1}^{1}} \frac{1}{i}+\sum_{i=1}^{n_{2}} \frac{1}{i}-\sum_{i=1}^{n} \frac{1}{i}\right] \leq \sum_{i=1}^{n_{1}^{1}} \sum_{j=1}^{n_{2}}(-1)^{i+j} \frac{1}{i \theta} 1_{1}^{+j \theta} \\
\\
\leq \frac{1}{\theta_{1}}\left[\sum_{i=1}^{\sum_{1}^{1}} \frac{1}{i}+\sum_{i=1}^{n_{2}^{2}} \frac{1}{i}-\sum_{i=1}^{n} \frac{1}{i}\right]
\end{gathered}
$$

$$
\text { Hence } \begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n_{2}}(-1)^{i+j} \frac{1}{i \theta 1+j \theta_{2}}\left({ }_{i}^{n_{1}}\right)\left({ }_{j}^{n_{2}}\right)-\frac{1}{\theta_{2}}\left[\sum_{i=1}^{n_{1}} \frac{1}{i}+\sum_{i=1}^{n_{2}^{2}} \frac{1}{i}-\sum_{i=1}^{n} \frac{1}{i}\right] \\
& \leq\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{2}}\right)\left[\sum_{i=1}^{\sum_{i}^{1}} \frac{1}{i}+\sum_{i=1}^{n_{2}} \frac{1}{i}-\sum_{i=1}^{n} \frac{1}{i}\right] \\
& \leq\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{2}}\right)\left[\sum_{i=1}^{n_{1}^{1}} \frac{1}{i}\right], \text { since } n_{2}^{\leq n}
\end{aligned}
$$

From this we get

$$
\frac{1}{\theta_{2}} \sum_{i=1}^{n} \frac{1}{i} \leq \frac{1}{\theta_{2}} \sum_{i=1}^{\sum_{2}} \frac{1}{i}+\frac{1}{\theta_{1}} \sum_{i=1}^{n} \frac{1}{i}-\sum_{i} \sum_{j}(-1)^{i+j} \frac{1}{i \theta_{1}+j \theta_{2}}\left({ }_{i}^{n}\right)\left({ }_{j}^{n}\right)
$$

or $E\left(Y_{n}{ }^{(2)}\right) \leq E\left(T_{n}\right)$
Similarly it can be shown that
$E\left(Y_{n}{ }^{(1)}\right) \geq E\left(T_{n}\right)$
(iii) If we want to compute $E\left(T_{n}\right)$ for a new set of parameters θ_{1}^{\prime} and θ_{2}^{\prime}, such that $\frac{\theta_{1}^{\prime}}{\theta_{2}^{\prime}}=\frac{\theta_{1}}{\theta_{2}}$, then $E\left(T_{n}^{\prime}\right)=\frac{\theta_{1}^{\prime}}{\theta_{1}} \cdot E\left(T_{n}\right)$, where T_{n}^{\prime} is the nth order statistic in a mixed sample of the populations with the new set of parameters.
VI. General Case

Let there be k populations. Let $Y^{(i)}(i=1,2, \ldots k)$ be independent random variables with the distribution

$$
d F_{i}=\theta_{i} e^{-y \theta} i_{d y}, \quad 0 \leq y \leq \infty, \theta_{i}>0
$$

Let $Y_{n_{i}}^{(i)}$ be the n_{i} th order statistic in a random sample of size n_{i} in the ith group $(i=1,2, \ldots, k)$. Let $n_{1}+n_{2}+\ldots+n_{k}=n$.

Then the distribution of $X=T_{n}$, the nth order statistic in a mixed sample will be given by

$$
\begin{aligned}
& d G(x)=P\left(Y_{n_{i}}^{(i)}<x, i=1,2, \ldots, k-1 \mid Y_{n_{k}}^{(k)}=x\right) \cdot h_{k}(x) d x \\
& +P\left(Y_{n_{i}}^{(i)}<x, i=1,2, \ldots, k-2, k \mid Y_{n_{k-1}}^{(k-1)}=x\right) h_{k-1}(x) d x
\end{aligned}
$$

$$
+P\left(Y_{n_{i}}^{(i)}<x, i=2,3, \ldots, k \mid Y_{n_{1}}^{(1)}=x\right) \cdot h_{1}(x) d x
$$

where $h_{i}(x) d x=n_{i}\left[F_{i}(x)\right]^{n_{i}-1} f_{i}(x) d x$ stands for the distribution of the n_{i} th order statistic in the ith group ($i=1,2, \ldots, k$).
Now since $Y_{n_{1}}, Y_{n_{2}}, \ldots, Y_{n_{k}}$ are independently distributed,
$P\left(Y_{n_{i}}^{(i)}<x, i=1,2, \ldots j-1, j+1, \ldots k \mid Y_{n_{j}}^{(j)}=x\right)$
$=P\left(Y_{n_{i}}^{(i)}<x, i=1,2, \ldots, j-1, j+1, \ldots, k\right)$
$=\prod_{i=1}^{j-1} P\left(Y_{n_{i}}^{(i)}<x\right) \quad \prod_{i=j+1}^{k} P\left(Y_{n_{i}}^{(i)}<x\right)$, for $j=1,2 \ldots, k$.

Thus $d G(x)=\sum_{j=1}^{k} \prod_{i=1}^{j-1}\left[F_{i}(x)\right]^{n_{i}} \underset{i=j+1}{k}\left[F_{i}(x)^{n_{i}}{ }_{d\left[F_{j}(x)\right]^{n}} \quad, 0 \leq x \leq \infty \quad \ldots\right.$
VII. Expected value T_{n} in case of 3 types of components.

Now we shall find the expected value of $X=T_{n}$ in case of 3 groups.

$$
\begin{aligned}
E(X) & =\int_{0}^{\infty} x \operatorname{dG}(x) \\
& \left.=\int_{0}^{\infty} \underset{i=1}{3} \prod_{i=1}^{3}\left[F_{i}(x)\right]^{n}-1\right) \\
& \left.=-\int_{0}^{\infty} \underset{i=1}{3}\left[F_{i}(x)\right]^{n}-1\right) d x .
\end{aligned}
$$

Writing $v=\exp \left(-\theta_{1} x\right), w=\exp \left(-\theta_{2} x\right)$ and $z=\exp \left(-\theta_{3} x\right)$, we get

$$
\begin{aligned}
& E(X)=-\int_{0}^{\infty}\left[(1-v)^{n} 1_{(1-w)} n^{n_{(1-z)}}{ }^{n}{ }^{3}-1\right] d x \\
& =-\int_{0}^{\infty}\left[\left(1+\sum_{i=1}^{n} T_{1 i}\right)\left(1+\sum_{i=1}^{n} T_{2 i}\right)\left(1+\sum_{i=1}^{n} T_{3 i}\right)-1\right] d x \\
& =-\int_{0}^{\infty}\left(\underset{i=1}{\sum_{1}^{1}} T_{1 i}+\sum_{i=1}^{n_{2}} T_{2 i}+\sum_{i=1}^{n_{3}} T_{3 i}+\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} T_{1 i} T_{2 j}+\sum_{i=1}^{n} 1 \sum_{j=1}^{n_{3}} T_{1 i} T_{3 j}\right. \\
& \left.+\underset{i=1}{\sum_{j}^{2} \sum_{j}^{n^{3}}} T_{2 i} T_{3 j}+\sum_{i=1}^{\sum_{1}} \sum_{j=1}^{\sum_{2}} \sum_{k=1}^{n_{3}^{3}} T_{1 i} T_{2 j} T_{3 k}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =-\sum_{j=1}^{3} \frac{1}{\theta_{j}} \sum_{i=1}^{n}(-1)^{i} \frac{1}{i}\left({ }_{i}^{n_{j}}\right)-\sum_{i=1}^{n} \sum_{j=1}^{n_{2}}(-1)^{i+j} \frac{1}{i \theta{ }_{1}+j \theta_{2}}\left({ }_{i}^{n_{1}}\right)\left({ }_{j}^{n_{2}}\right) \\
& -\sum_{i=1}^{n_{1}} \sum_{j=1}^{\sum_{2}}(-1)^{i+j} \frac{1}{i \theta_{1}+j \theta_{2}}\left({ }_{i}^{n}\right)\left({ }_{j}^{n}\right)-\sum_{i=1}^{n_{2}} \sum_{j=1}^{n_{3}}(-1)^{i+j} \frac{1}{i \theta_{1}+j \theta_{3}}\left({ }_{i}^{n_{2}}\right)\left({ }_{j}^{n_{3}}\right)
\end{aligned}
$$

VIII. Application

Suppose a mining company surveys n different points randomly selected in some area. A fixed amount of ore is collected from each location (corresponding to each point selected). Now the company's main interest is in analysing these samples of ores in the minumum period of time in order to make some important decisions. Suppose there are two laboratories working at different efficiencies. Let us further assume that in each laboratory the work of analysing n samples can commence simultaneously at n counters.

Let us define the following parameters:
$c_{i}=$ Cost of analysing a sample in laboratory $i, i=1,2$.
$\mathrm{d}=$ Cost per unit time that the company has to wait until all the results are known.
$n_{i}=$ Number of samples sent to laboratory $i, i=1,2$.
$t_{i}=$ Random variable denoting the time required for analysing a sample in ith laboratory. The distribution of t_{i} is assumed to be exponential with parameter θ_{i}, $\mathbf{i = 1 , 2}$.
$T_{n}=$ Number of units of time the company has to wait until the decision is taken.

Then the company would wish to send n_{i} samples to the i th laboratory such that the expected cost

$$
\phi_{n_{1,}} n_{2}=E\left(d T_{n}+c_{1} n_{1}+c_{2} n_{2}\right)
$$

is minimum.

ACKNOWLEDGEMENT

The author wishes to express his sincere thanks to Dr. A. Clifford Cohen and Dr. Rolf E. Bargmann of the University of Georgia and Dr. C. G. Khatri of the Gujarat University for their encouragement and guidance in the preparation of this paper.

REFERENCES

1. Blischke, W. R., 1955. "Estimating the parameters of mixtures of binomial disiributions.: Journal of the Am. Stat. Association, 59, 510-528.
2. Charlier, C. V. L., 1906. 'Researches into the theory of probability." Meddelanden frau Lunds Astron. Observ., Sec. 2, Bd. 1.
3. Charlier, C. V. L. and Wicksell, S. D., 1924. "On the dissection of frequency functions." Arkiv for Matematik, Astronomi Och Fysik, Bd. 18, No. 6.
4. Cohen, A. Clifford, Jr., 1953. "On some conditions under which a compound normal distribution is unimodel." Technical Report No. 7, Contract DA-01-099 ORD-288, Univ. of Georgia.
5. Cohen, A. Clifford, Jr., 1963. "Estimation in mixtures of discrete distributions." Proceedings of the International Symposium on the Classical and Contagious Discrete Distributions, Montreal, Pergamon Press, 373-378.
6. Cohen, A. Clifford, Jr., 1964. "Estimation in mixtures of two Poisson distributions." Aero-Astrodynamics, Research and Development, Research Review No. 1, NASA TM X-53189, 104-107.
7. Cohen, A. Clifford, Jr., 1965. "Estimation in mixtures of Poisson and mixtures of exponential distributions." NASA Technical Memorandum, NASA TM X-53245, George C. Marshall Space Flight Center, Huntsville, Alabama.
8. Cohen, A. Clifford, Jr., 1967. "Estimation in mixtures of two normal distributions." Technometrics Vol. 9 (1967).
9. Hasselblad, Victor, 1966. "Estimation of Parameters of a mixture of normal distributions." Technometrics Vol. 8 (1966), pp. 431-444.
10. Pearson, Karl, 1894. "Contributions to the Mathematical Theory of Evolution." Philosophical Transactions of the Royal Society, 185, 71-110.

REFERENCES (Con'd.)

11. Rider, Paul R., 1962. "Estimating the parameters of mixed Poisson, binomial and Weibull distributions by the method of moments." Bulletin de l'Institute International de Statistique, $39 . ~_{\text {I }}$
12. Wilks, S. S. Mathematical Statistics. (New York: John Wiley and Sons) 1962.
