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I. Introduction 
Three probability distributions are investigated for the purpose of 

representing the variation in the number of thunderstorms per day which 
move across a particular point, for example, a launch site at Cape Kennedy. 
When a thunderstorm moves across the given point, we will call this a 
thunderstorm hit (TH). Two of the models were previously derived by Singh 
[13,14,15] for the distribution of the number of births to a couple during 
a given time interval. 
similar to those used by Singh and also by Neyman [ll] for the distribution 
of the number of schools of fish caught in a fishing area. 

The third model is derived here under assumptions 

From sample data on the number of "thunderstorm events" (see section 111) 

per day, it was found by Falls [6] that the sample variance exceeded the 
sample mean. 
overdispersed [1,10]. Among those devised, one which has a number of ad- 

vantages in its use is the negative binomial distribution [2,3]. The new 
model derived here is a modification of the negative binomial distribution. 

Several distributions have been devised for data which is 

Further, since the probability distributions will involve two unknown 
parameters, a method developed by Neyman [12] for obtaining BAN (best asymp- 
totically normal) estimates of the parameters will be outlined. 

11. Statistical Models 

We made the following assumptions. 
1. A probability of a(1-a) is assigned to the possibility of a TH occurrence 

(nonoccurrence) on any given day. 
2 .  Pr {TH occurs in a unit of time I A TH not in progress, a # 0 1  = p. 
3. T is the number of units of time in the specified time period. The 

positive integer h is defined by the statement 
Pr {TH occurs in a unit of time I A TH in the preceeding 

h-1 units of time) = 0. 

Then the maximum number of occurrences in T units of time is n<[T/h] - + 1, 
where [T/h] stands for the greatest integer not exceeding T/h. 
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The assumptions above and the models given below ignore a great many details; 
but in order to study real phenomena by statistical methods, we must begin con- 
structing some simplified statistical model of these phenomena. 
section 1. 
assumption 2) remains constant throughout the day. 
and perhaps needs to be modified. 
of the day; e.g., afternoon hours, during which the probability of a TH may be 
essentially constant. 
some a priori probability distribution function. 

See Neyman [ll] 
We assume in the following models that the probability p (in 

This is a strong assumption 
One modification would be to consider periods 

Another would be to consider p as a random variable with 

Under the above assumptions and if X is a random variable denoting the 
number of THIS per time period T, we have the following models: 

Modified Negative Binomial 

(2) 
h- 1 

m= 1 
T- (i- 1) h+i-m- 2 h-ml 

C (  i-1 1s i T-ih T-ih+i-1 i T-ih 
Pr{X=i) = a[P  q ( ) + P q  

Singh's Binomial 

h- 1 T- (i-l)h+i-m-1 h-m i T-ih T-ih+i i T-ih 
m= 1 

( i- 1 19 1 Pr{X=i) = a[P q ( ) + P q  

Pr{X=O) = 

(4)  

(5) 

Singh's Poisson 



3 

1 (8) 
i - A  [T-ih] [ A  (T-ih)lm i- 1 -A [T-ih+h] [A(T-ih+h)lm - C e  m! m! PrIX=i) = a[ 1 e 

m= 0 m=O 

These three models are investigated due to the nature of the data (presented 

in the next section).. When dealing with discrete data the usual practice is to 
compute the mean and variance and then fit the Binomial, Poisson or Negative 
Binomial according to whether the mean exceeds equals, or'is less than the variance. 
However, we are dealing with extremely llJ1' shaped curves and this criterion loses 
its usefulness just as do the mean and variance. Clearly the mode is a much more 
meaningful measure of "central tendency" and with few cells the usefulness of the 
variance (or any other measure of "dispersion") is questionable. As all three 

models have "J" shaped frequency functions for small p (or A )  it would seem there 
is little to distinguish between their usage. 

Aside from any justifications of a physical nature one cannot ascertain from 
the available data on THIS which model does the best job statistically. 
necessity of estimating small "tail" probabilities jeapordizes the use of the 
X goodness of fit test. This problem is discussed more fully in the results 
section. 
tests require continuous underlying distributions and completely specified 
hypotheses-neither of which is present here. 

The 
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This i s  particularly critical as all other well-known goodness of fit 

Any tests of hypotheses involving the estimated parameter values is a 
difficult problem for two reasons. 
formulate suitable hypotheses. 
situation. In one case the p value is estimated to be .007. A logical test 
would be Ho: p = 0 vs Hilt p#O. 
possible that Ho could be accepted. 
which then says a=O, given Ho true, is of little practical benefit. 
any effective tests of hypotheses would necessarily be a multiple decision problem 
on a and p (or A). The two parameters are functionally related (a complication 
of some importance in determining critical regions) and undoubtedly the estimators 
of a and p (o r  A )  have a very complicated joint distribution. 

Firstly, no information is available to 
To demonstrate this problem consider the following 

As the calculated value of p is quite small it is 
The result Pr{TH occurance I Ho true) = 0, 

Secondly, 
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The crux of this discussion boils down to one fact. We can solve the problem 
in three different and equally acceptable ways. 
distinguish between the results by presently known techniques. 
some indeterminacy in the available data (or in the process itself). 
situation the statistician recommends a plausible solution and makes the recipient 
aware that this is only one of several (apparently) equivalent alternatives. 

111. Data 

Statistically it is impossible to 
This fact suggests 

In such a 

The thunderstorm data sample presently available for Cape Kennedy contains 
all the information that can objectively be extracted from the Standard Weather 
Observers' Form WBAN-10. (Due to the type of data taken, the number of thunder- 
storms per day was not available but only the number of times thunder was heard 
(and not heard during the previous 15 minutes) per day. These we call "Thunder- 
storm events.") 
December 1966 is identified. The information for each "thunderstorm event" 
includes: identification--year, month, day; beginning and ending time of the event; 
area by quadrant where thunderstorms were first and last observed; direction of 
movement; maximum and minimum intensity; frequency of thunder; whether or not one 
or more than one thunderstorm was observed during each event; lightning type and 
intensity; and other information on wind, weather, clouds, and visibility. This 
data is coded and available on computer cards. This is the first data sample 
of its kind for Cape Kennedy and is the best climatic record on thunderstorms 
available. 
Asheville, N. C., under a government cross-service order for the NASA, MSFC, 
Aerospace Enviornment Division, Huntsville, Alabama. 

Those occurrences which were classified as THIS from the data sample were of 

Each "thunderstorm event" for the period January 1957 through 

The card deck was produced by ESSA, National Weather Records Center, 

the following two types. 
1. 
2. 

A thunderstorm was actually reported overhead. 
A thunderstorm was first reported in a sector and last reported in the 
opposite sector. 
(over small areas, at least). 

This is assuming thunderstorms move in a straight line 

Some additional situations not accounted for in the models comes to light 
here. 
but thunderstorm density about the "point" undoubtedly affects the likelihood of 
a TH. A model in the form of Poisson Occurrance of thunderstorms in an area and 
a binomial process over the point, given thunderstorms in the area, might be 

No provision for the number of thunderstorms in the immediate area is made, 
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use fu l .  However, t h e  d a t a  t o  "ca l ibra te"  such a model i s  not  a v a i l a b l e ,  so  again 

w e  must s impl i fy .  

The summer months of June,  J u l y  and August were s e l e c t e d  f o r  examination. The 

thunderstorm a c t i v i t y  is  more in t ense  during t h i s  per iod  of t h e  year  and these  months 

demonstrate a "J" shaped curve. 

t h e  g e n e r a l i t y  of such a curve and t h e  o ther  months d i f f e r  only by possessing a 

larger"0" c l a s s .  

A prel iminary review of t h e  o the r  months i n d i c a t e s  

The per iod is  24 hours and T i s  taken t o  be 48 u n i t s .  The va lue  of h is taken 

as 2 which means t h a t ,  given a TH occuring, another cannot occur f o r  30 minutes. 

Fur ther  no te  t h a t  only 907 of 920 days a r e  accounted f o r  i n  t h e  d a t a  sample. 

Event (THIS p e r  day) June J u l y  August Combined 

0 263 274 269 

1 23 22 29 

2 5 3 7 

3 4 1 1 

4 o r  more 4 1 1 

To ta l  299 30 1 30 7 

806 

74 

15 

6 

6 

907 

I V .  Estimation 

Each of t h e  models proposed involves two unknown parameters a and p (or  9). 

A s t a t i s t i c  i s  c a l l e d  a Minimum Chi-square (MCS) es t imator  of CL i f  it i s  obtained 

by minimizing, with r e spec t  t o  a ,  t h e  expression 

See Neyman [12], Kendall and S t u a r t  Vol.  11, 91-93 [8] and Singh [14] f o r  a 

f u l l e r  explanat ion of BAN es t ima to r s .  Neyman [12]  has shown chat t h e  c l a s s  of 

MCS es t ima to r s  a r e  a l s o  b e s t  asymptot ical ly  normal (BAN) es t imators .  These 

e s t i m a t o r s  are cons i s t en t ,  asymptot ical ly  normal, and asymptot ical ly  e f f i c i e n t .  

Let P .  ( a ,  p)  be t h e  p r o b a b i l i t y  f o r  i ( i = O ,  1, ..., n) THIS per  day, and 

s a t i s f y i n g  t h e  r e g u l a r i t y  condi t ions given i n  Neyman [ l l ] .  
1 
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Since 
n [ N . - N P ~ ( c L ,  P)I  2 n [NPi(ay PI1 2 

x = c  2 1 = c (  1 - N  
i = O  Ni i = O  Ni 

t o  minimize enyEatim IC (with r e spec t  t o  a) s e t  

and solve f o r  t h e  est imator  of a. 

t h e  est imator  of  p .  

The same procedure can be repeated t o  ob ta in  

If P . ( a ,  p) i s  l i n e a r  i n  a and p, t h e  est imates  can e a s i l y  be found; o the r -  
1 

wise we can l i n e a r i z e  them a t  a properly chose po in t  (K, I;) and use t h e  l i n e a r i z e d  

Pi(ay p ) ' s  i n s t ead  of  t he  o r i g i n a l  Pi(", p ) ' s  t o  f i n d  t h e  e s t ima tes .  

es t imates  obtained i n  t h i s  f a sh ion  a r e  a l s o  BAN, i f  t h e  po in t  es t imates  (g, F) 
a r e  c o n s i s t e n t .  

The 

The l i n e a r i z a t i o n  about (g, F) i s  accomplished by so lv ing  

and naming t h e  so lu t ion  (T, F). The s o l u t i o n s  and can be shown t o  be 

cons i s t en t  es t imates  of ct and p.  

p r o b a b i l i t i e s  we have 

1 

Lett ing P . ( a ,  p) be t h e  new l i n e a r i z e d  
1 

a s  t h e  general  equation. In p a r t i c u l a r ,  we have 

Nodified Negative Binomial 

-T - - (T-1) P '  ( a ,  p) = 1-a(1-q ) + (p-F) a T q 0 

I 

[ (T- i h  ) p- iq] Q ( i ) - _ _  (i-l)--[T-ih-l) a - -  
a 1  P i b y  PI = = p .  ( a ,  p) + (p-p)a{p 9 



[iq - (T-ih+h-m)F]QS(i,m) 1 -(i- 1)- (T-ih+h-m) h- 1 
+ C P  q 

m= 1 

1 (T-ih+i-1 T- ( i- l)h+i-m-2 
where O<i<n, Q(i)  = 1, Qs(i,m) = ( i-l i 

I n-1 I 

Sineh 's  Binomial 

These formulas a r e  of exac t ly  the  same type  as those  of t h e  Negative Binomial 
T- ( i - l )h+i-m-1 when we r ede f ine  Q(i)  = (T-y+i)  and QS(i,m) = ( i-l 1. 

Singh's Poisson 

- - 
1 - -  -AT -AT Po(a,A) = l - a (1 -e  ) - (A-A)aTe 

1 a -- -- - A  (T-ih+h) (T-ih+h)i (r) i- 1 
i! P i ( a , i )  = - P.(a ,x)  + ( A - A ) c c  { e  a 1  

- 
(7) -A(T-ih) (T-ih)i+l - e  i! 

f o r  O<i<n . 
1 n-1 I 

Pn(a,X) = 1 - c Pi(a,A). 
i = O  

1 

Replacing P .  (a,p) by P .  (a,p) i n  equat ions (11) and (12) , w e  ob ta in  a 
1 l 2  modified form of x 

1 2 
n [Ni-Pi(a,P) 1 

i = O  Ni 
(X2)l = c 

which i s  minimized: (with r e spec t  t o  a)  by s e t t i n g  
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I From (22) and (23) w e  d i v i d e  out unnecessary constants  and solve t h e  r e s u l t i n g  

l i n e a r  equations simultaneously f o r  B and p .  
equations (22) and (23) are those values  which minimize (x ) and a r e  BAN 

es t imates  of a and p .  

Then t h e  s o l u t i o n s  B and fi of 
2 '  

To f a c i l i t a t e  t h e  considerable  computational t ask  involved i n  e s t ima t ion ,  

2 
a FORTRAN program was w r i t t e n .  

c o n s i s t s  of  a simple p r o b a b i l i t y ,  frequency t a b l e  along with t h e  ca l cu la t ed  x 
value.  Maximum g e n e r a l i t y  has been allowed i n  t h e  determination of  T ,  h ,  and 

number of c e l l s .  

appended. 

V .  Resul ts  

The program f i t s  a l l  t h r e e  models and t h e  output 

A l i s t i n g  of t h e  FORTRAN program and v a r i a b l e  d e f i n i t i o n s  i s  

This s e c t i o n  discusses  the  r e s u l t s  obtained and p o s s i b l e  areas of f u t u r e  

inves t iga t ions .  

from t h e  a n a l y s i s .  

One t a b l e  ( I )  i s  presented and it contains  a l l  p e r t i n e n t  d a t a  

2 A s  mentioned i n  Section 2 t h e  X goodness of f i t  t es t  does not  work wel l  

with these  d a t a .  The June o r  Combined d a t a  f u r n i s h  t h e  b e s t  r e s u l t s .  With t h e  

exception of t h e  Negative Binomial on Combined d a t a  every se t  of  expected 

frequencies  wvuld need t o  be 'lumped" i n t o  two c e l l s  i n  o rde r  t o  g e t  t h e  usual  

expected frequency value of 5 deemed necessary t o  e f f i c i e n t l y  apply t h e  t e s t .  

Considering t h e  number o f  parameters estimated t h i s  i s  an unacceptable procedure.  

However, it should be noted t h a t  a l l  models f i t  p a r t i c u l a r l y  w e l l  i n  t h e  

0 ,  1, 2 frequencies and gene ra l ly  very poorly i n  t h e  3,4 c l a s s e s .  The no tab le  

exception i s  t h e  Negative Binomial on t h e  August d a t a .  

The o the r  i n t e r e s t i n g  r e s u l t  i s  t h e  r e l a t i o n s h i p  between t h e  t h r e e  sets 

of parameter es t imates .  To make comparisons e a s i e r  t h e  d a t a  i s  reproducted below: 

and (with respect  t o  p) by s e t t i n g  

I I 
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Combined June July August 

a p(or  A )  a p(or  A)  ct p b r  A) a p(or 1) 
N. Binomial .2G07 .0155 .2979 .0072 .3102 .0105 .2526 .0114 

Binomial .1887 ,0159 .2822 .0073 .2993 .0107 .2402 .0116 

Poisson ,1871 .0162 ,2783 .0075 .2948 .0110 .2375 .0118 

The Negative Binomial cons i s t en t ly  estimates a higher  and p lower with t h e  

Poisson a t  t h e  o the r  end of t h e  spectrum. 
a-est imates  i s  1.5% which might be deemed important f o r  some purposes. Assuming 

a i s  of considerable  i n t e r e s t  t h e  poss ib le  range of t h i s  d i f f e rence  seems t o  

merit some inves t iga t ion .  

On combined d a t a  t h e  d i f f e rence  i n  

As t h e  Negative Binomial and Poission are t h e  extremes and t h e  Binomial is 

s o r t  of an "average", two p o s s i b i l i t i e s  seem worthy of f u t u r e  i n t e r e s t .  F i r s t l y ,  

a mixture of t he  two extreme d i s t r i b u t i o n s  and poss ib ly  t h e  Binomial might b e t t e r  

descr ibe  t h e  da t a  b e t t e r  i n  some s i t u a t i o n s  and would be as good i n  any case. 

The mixing weights would l i k e l y  be  funct ions of t h e  parameter es t imates .  

as t h e  d i s t r i b u t i o n s  a r e  extremely c lose  toge ther  they a r e  e s s e n t i a l l y  independent 

of t h e  parameter estimates (Independence meaning any one of t h e  t h r e e  sets of  

estimates would give good r e s u l t s  i n  one of t h e  o ther  models). This suggests  

t h e y  

ions i n t o  a "general" way t o  es t imate  a and p and a general  d i s t r i b u t i o n  func t ion  

based on condi t iona l  p r o b a b i l i t i e s  could be of b e n e f i t .  

Secondly, 

are "d is t r ibu t ion- f ree ' '  i n  a rough sense.  Using t h i s  r e s u l t  some i n v e s t i g a t -  

V I .  Summary 

A l l  t h ree  models f i t  t h e  d a t a  well  and would l i k e l y  be equiva lsn t  were a good 

s t a t i s t i c a l  c r i t e r i o n  ava i l ab le  t o  judge them by. 

ion  f i t s  b e s t  i n  most cases  and is  always b e s t  i n  t h e  0,  1, 2 classes. 

t h i s  fac t  and consider ing the  poss ib le  usage,  The Modified Negative Binomial is 

recommended as t h e  "best" model. 

The Negative Binomial Modificat- 

Based on 
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APPEND I X 

This program i s  w r i t t e n  i n  t h e  I B M  7094 vers ion of  FSRTKAN I V .  I t  

i s  p resen t ly  s e t  up t o  handle values  of T up t o  200 and number of c e l l s  

up t o  50. 

but changing the  dimensioned values  of FACT, FACE, FADE and QS would 

be t h e  only a l t e r a t i o n  required t o  use a l a r g e r  T ,  and those  with p re sen t  

dimension values of 50 would r e q u i r e  changing t o  accomodate l a r g e r  c e l l  

numbers. 

I t  i s  not a n t i c i p a t e d  t h a t  usage would exceed t h e s e  va lues  

Variables  required a r e :  

N : number of c e l l s  

T : number of u n i t s  i n  T i n t e r v a l  

H : value o f  h .  

FN(1) : number of observat ions f o r  class 1-1 (computer d o e s n ' t  

recognize 0 s u b s c r i p t s ,  hence t h e  co r rec t ion )  

Using t h i s  program requ i r e s  t h e  following ca rds  a f t e r  program deck 

DATA : (or  Monitoring System Counterpart)  

CARD I : N ,  T,  H i n  (12, 2 F ,  5 .0 )  format 

CARD 2 : FN(I), I = 1, N i n  (10F 8.0)  Format f o r  as many cards  

as required 

CARD N 

CARD N + 1 : N ,  T,  H i n  (12, 2F 5 . 0 )  format,  e t c .  

As many da ta  s e t s  as des i r ed  can be processed a t  one t ime. 

card should be followed by t h e  "end of  f i l e "  card (a 7-8 card o r  i t s  counter- 

p a r t ) .  

The f i n a l  d a t a  

As s t a t e d  i n  t he  r e p o r t ,  t h e  output  is  very simple with a l l  numbers 

being adequately i d e n t i f i e d  f o r  immediate i n t e r p r e t a t i o n .  



401 FORMAT(10F8oO) 

FNT=O. 

2 1 6  FYT=FNT+FW(I) 

IH=H 

I T=T 

FI=I 

D O  416 I = 2 r N M I N 2  

J=IT-I+IH+I-l 

DO 417 M=l,IHMIl 

4 1 6  CONTINUE 

IJK=l 



14 
GO TO 418 



15 
NN = ( NN- 1 *io+'i 

511 GO TO 502 

5 0 8  PR=PI 

A B = ( ~ ~ - F N ~ I ) / F N T ) / I ~ o ~ ~ ~ o ~ P I ) * * I T )  

Pal= lo-PI 

DO 514 1=19NMIN2 

TI=I 

OSUM=Oo 

SUM=Oo 

DO 515 M=lsIHMIl 

T M = M  

514 PD(I)=AB*PD(I) 

PAZER=PBl**IT-lo 

PRZER=-T*AB*PBl+*(IT-l) 

PCZER=lo-AB*(lo-(1.-PB)**IT) 

PA(NMINl)=-PAZER 

PD(NMINl)=-PBZER 

PL(NMINl)=lo-PLZER 

DO 523 I=lrNMIN2 

P A ( N M I N I ) = P A ( N M I N ~ ) - P A ( I I  



A 2 2 = 0 .  

DO 5 1 6  1 = 1 s N M I N 1  

BAA=RAA+PL(I)"PA(I)/FN(I+l) 

A l l = A l l + P A ( I ) * * 2 / F N ( I + l )  

BPP=BPP+PL( . I ) *PD( I ) /FN! !+~ !  

A12=A12+PA(I)*PD(I)/FN(I+l) 

5 1 6  A 2 2 = A 2 2 + P D (  I ) * * 2 / F N (  I +1 )  

BP=-BPP-PLZER*PBZER/FN( l )  

B A = - R A A - P L Z E R * P A Z E R / F N ( l )  

EPZER=PZER*FNT 

CHISQ=(EPZFR-FN(1))**2/EPZFR 

DSUM=O. 

DO 5 1 7  I = l * N M I M 2  

S U M = O *  

DO 5 1 8  M = l s I H M I I  

5 1 8  SUM=SUM+QS(IrM)*(i.-PHAT)**(IH-M) 

P ~ I ) = A H A T * P H A T * * I * ~ 1 . - P H A T ~ * * ~ I T - I * I H ~ * ~ Q ~ I ~ + S U M ~  

DSUM=DSUM+P( I )  

E P ( I ) = P ( I ) * F N T  

5 1 7  C H I S Q = C H I S Q + ( E P ( I ) - F N ( I + 1 ) ) + + 2 / E P ( I )  

P ( N M I N l  ) = I  .-PZER-DSUM 

E P (  N M r N l )  = F N T * P ( N M I N l )  



17 
C H I S Q = C H I S Q + I F N ( N ) - E P ( N Y I N 1 ] ) + + 2 / E P ( N M I N ~ ~  

IF(IJK-1)5309530*531 

530 WRITE( 69532 1 

532 FORMAT(lH1930H MODIFIED NEGATIVE BINOMIAL 1 

GO TO 533 

531 WRITE(69534) 

534 FORMAT(lH1*17H SINGHS BINOMIAL 1 

533 WRITE(6917)FNT 

WRITE(695351T9H 

535 FORMAT(1H 930X912H T I N T E R V A L  ~ 3 X ~ F 5 o 0 9 1 0 X 9 1 2 H  H INTERVAL 93X9F5.0 

11 

WRITE(69536)AHAT9PHAT 

536 F O R M A T ( ~ H O * ~ O X I ~ O H  ALPHA IS 93X1F1005910X96H P IS r3X9F10.5) 

WRITE( 6918 1 

W R I T E ( 6 9 1 ) ) F N ( l ) r E P Z E R I P Z E R  

DO 520 I = l r N M I N 1  

J=I+l 

520 W R I T E ( 6 , 2 1 ) F N ( J ) , F P ( I ) , P I I ) , I  

WRITE(69221NDF9CHISQ 

IF(IJK-1)4199419~600 

6 0 0  CONTINUE 

200 NN=101 

B = l o  

A = 1 0 0 o  

205 DO 201 I K = l r N N  

AIZIK-1 

ALP=B-AI/A 

PI=-(Io/T)*ALOC( t(FN(l)/FNT)+ALP-lo)/ALP) 

GT=EXP(-PI) 

F=ALP*GT**IT*( ( l o / G f ) * * I H * ~ l o + P I * ( T - H ) ) - 1 . ) - F N ( 2 ) / F N T  
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I F ( F ) 2 0 3 9 2 0 2 9 2 0 1  

701 CONTINUE 

7 0 3  I F 1 A P S ( F ~ - o O O O O 1 ) 2 0 7 , 2 0 2 , 2 n 4  

704 Q = R - ( A I - l . ) / A  

A = l O o + A  

N N = ( N N - 1 ) * 1 0 + 1  

250 GO T O  205 

202 AB=ALP 

P B = P I  

DO 2 2 0  I = l , N  

220 FACF(I)=FXP(FADE(I)) 

DO 207 I = 2 r N W I N 2  

Q( I ) = O o  

Q S ( I , l ) = O o  

S U M = O o  

FI=I 

DO 208 M = l * I  

2 0 8  SUM=SUM+(PB* (T -F I *H)  ) * * M / F A C E ( M )  

DSUM=O 

I M = I - 1  

DO 2 0 9  M = l t I M  

~ - F I * H ~ * * ~ I + l ~ * P R / F ~ C E o ~  

207 CONTINUE 



19 
QSZER=T*GT*+IT 

PLZER=lo-AB+(lo-GT**IT) 

PAZER=GT+*IT-lo 

PDZER=-T*AB*GT*+IT 

PLtNMINl)=lo-PLZER 

PD(NMINl)=-POZER 

PA(NMINl)=-PAZER 

DO 225 I = l P N M I N Z  

PL(I)=QII)*AR 

PA(I)=Q(I) 

PD( I )=AR*QS( 1 9 1  1 

P A ( N M I N l ) = P A ( N M I N l ) - P A I I )  

PD(NMINl)=PD(NMINl)-PD~II 

225 PL(NMINl)=PL(NMIN-l)-PL(x) 

C SOLVING FOR ALPHA-HAT AND LAMBDA-HAT 

BAAzOe 

RPP=O. 

A l l = O o  

A12=00 

A21=0o 

A22=Oo 

DO 210 I=lrNMIhll 

RAA=RAA+PL(I)*PA(I)/FN(I+l) 

BPP=BPP+PL(I)*PD(T)/FN(I+l) 

All=All+PA( I )**2/FN( I+1) 

A 1 2 = A 1 2 + P A ( I ) * P D ( I ) / F N I I + 1 )  

210 A22=A22+PD( I )**2/FN( I + l )  

BA=-BAA-PLZER*PAZER/FN(l) 

BP=-BPP-PLZER*PDZER/FN(l) 

A ~ ~ = A ~ ~ + P A Z ' E R * + ~ / F N (  1)  



PHAT=PB+(All*BP-A12*BA)/D 

C HAT ESTIMATES COMPUTED 

GT=EXP (-PHAT ) 

P Z E R = l o - A H A T * ( l o - G T * + I T )  

P(1)=AHAT*(GT**(IT-IH)*(lo+PHAT*(T-H)-GT**IH)) 

EP( 1 ) = F N T * P  ( 1 

VAT=O. 

DO 211 I=2*NMIN2 

P(I)=O. 

F I = I  

IMINlzI-1 

SUM=Oo 

DSUM=Oo 

DO 212 M = l * I  

2 1 2  SUV=SUM+( PHAT* ( T-FISH) )**M/FACE(M) 

DO 221 M = l , I M I N l  

221 D S U M = D S U M + ( P H A T * ( T - F I ~ ~ + ~ ) ) * * ~ / F A C E ( M )  

P ( I ) = A H A T * ( G T ~ * ( I T - I * ~ H ) ~ ( ~ . + S U M ) - C T ~ ~ ( I T - I * I H + I H ) * ~ ~ O ~ ~ S U M )  

VAT=VAT+P(I) 

311 EP(I)=FNT*P(I) 

P(NMINl)=le-PZER-VAT-P(l) 

E P ( N M I N ~ ) = F N T * P ( N M I N ~ )  

CHI S Q = O  

DO 213 I = l r N M I N l  

213 CHISQ=CHISQ+(FP(I)-FN(I+l))**2~FP(I) 

CHISQ=CHISQ+(PZER*FMT-FN(~))**~/(PZER*FNT) 



21 
EPZER=PZER*FNT 

WRITE(69214) 

714 FORMAT(lHlrl2H PDISSON F1T) 

WRITFI6s17)FNT 

WRITE(6,535)T,H 

WRITE(6,222)AHAT,PHAT 

222 FORMAT(lH0,30X,lOH ALPHA IS ,3X,F10.5~10X,llH LAMBDA IS ,3X,F10*5) 

WRITE(6rl8) 

W R I T E ( 6 t 1 9 ) F N ( l ) , E P Z E R , P Z E R  

DO 215 I = l r N M I N l  

J = I + 1  

215 W R I T E ( 6 r 2 l ) F N ( J ) ~ E P ( I ) ~ P ( I ) ~ I  

W R I T E ( ~ , ~ ~ ) N D F I C H I S Q  

21 F O R M A T ( 1 H 0 ~ 1 8 X , F 8 ~ ~ ~ ~ 6 X ~ F 8 . 2 , 1 6 X ~ F l 0 . 5 ~ l ~ X ~ l ~ ~  

22 FORMAT(lH9,16H CHI-SQUARE WITH,lXs12,8H D.F. IS,?X,E12.51 

17 FORMAT(lH0,30X,19H TOTAL ORSERVATIOYS ,6X,F5.0) 

19 F O R M A T ( ~ H O ~ ~ ~ X , F ~ . ? , ~ ~ X , F ~ . ~ , ~ ~ X ~ F ~ O ~ ~ V I ~ X ~ ~ ~  0 1 

18 FORMAT(lHO,lOX,24H O B S E R V E D  FREQUENCY ,24H EXPECTED FREQUENC 

2 Y  926H PROBABILITY OF I THS 91CH 1 1 

GO TO 1000 

END 


