Provided by NASA Technical Reports Server

Metadata, citation and similar papers at core.ac.uk

NASA CONTRACTOR
REPORT

Report No. 61289

PROBABILITY MODELS FOR THE VARIATION IN THE NUMBER
OF THUNDERSTORM HITS PER DAY

By William O. Williford and Michael C. Carter

The University of Georgia C A S E F , L E
Department of Statistics
Athens, Georgia C 0 P Y

July 1969

Prepared for

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama 35812



https://core.ac.uk/display/85240517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TECHNICAL REPORT STANDARD TITLE PAGE’

1. REPORT NO. 2. GOVERNMENT ACCESSION NO.

NASA CR-61289

3. RECIPIENT'S CATALOG NO.

4, TITLE AND SUBTITLE

PROBABILITY MODELS FOR THE VARIATION IN THE NUMBER OF
THUNDERSTORM HITS PER DAY

5. REPORT DATE

July 1969

6. PERFORMING ORGANIZATION CODE

7. AUTHOR(S)
William 0. Williford and Michael C. Carter

8. PERFORMING ORGANIZATION REPORT #

37

9. PERFORMING ORGANIZATION NAME AND ADDRESS
University of Georgia
Department of Statistics
Athens, Georgia

10. WORK UNIT NO.

11. CONTRACT OR GRANT NO,
NAS8-11175

12. SPONSORING AGENCY NAME AND ADDRESS
NASA-Marshall Space Flight Center
Aero-Astrodynamics Laboratory
Aerospace Enviromment Division
Marshall Space Flight Center, Alabama 35812

13. TYPE OF REPOR7 & PERIOD COVERED

Contractor Report

14. SPONSORING AGENCY CODE

13. SUPPLEMENTARY NOTES Distribution of this report is provided in the interest of

information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

16. ABSTRACT

From among three modified discrete probability distributions investigated, a

modified negative binomial distribution is recommended as the 'best" model to

represent the variation in the number of thunderstorms per day which move across a

a launch site at Cape Kennedy, Florida.

[/~

17. KEY WORDS )ﬁ/ ISTRIBUTION STATEMENT

Mj

PUBLIC RELEASE
/ (L/- A”f ./27"( 7 z/r-'(’c -

E. D. GEISSLER
Director, Aero-Astrodynamics Lab, MSFC

19. SECURITY CLASSIF. (of this reporty 20. SECURITY CLASSIF. (of this page)

U U

21. NO. OF PAGES ] 22, PRICE

21

MSFC - Form 3292 (May 1969)



I. Introduction

Three probability distributions are investigated for the purpose of
representing the variation in the number of thunderstorms per day which
move across a particular point, for example, a launch site at Cape Kennedy.
When a thunderstorm moves across the given point, we will call this a
thunderstorm hit (TH). Two of the models were previously derived by Singh
[13,14,15] for the distribution of the number of births to a couple during
a given time interval. The third model is derived here under assumptions
similar to those used by Singh and also by Neyman [11] for the distribution
of the number of schools of fish caught in a fishing area.

From sample data on the number of 'thunderstorm events'" (see section III)
per day, it was found by Falls [6] that the sample variance exceeded the
sample mean. Several distributions have been devised for data which is
overdispersed {1,10]. Among those devised, one which has a number of ad-
vantages in its use is the negative binomial distribution [2,3]. The new
model derived here is a modification of the negative binomial distribution.

Further, since the probability distributions will involve two unknown
parameters, a method developed by Neyman [12] for obtaining BAN (best asymp-

totically normal) estimates of the parameters will be outlined.
ITI. Statistical Models

We made the following assumptions.
1. A probability of a(l-o) is assigned to the possibility of a TH occurrence
(nonoccurrence) on any given day.
2. Pr {TH occurs in a unit of time | A TH not in progress, o # 0} = p.
3. T is the number of units of time in the specified time period. The
positive integer h is defined by the statement
Pr {TH occurs in a unit of time | A TH in the preceeding
h-1 units of time} = 0.
Then the maximum number of occurrences in T units of time is n<[T/h] + 1,

where [T/h] stands for the greatest integer not exceeding T/h.



The assumptions above and the models given below ignore a great many details;
but in order to study real phenomena by statistical methods, we must begin con-
structing some simplified statistical model of these phenomena. See Neyman [11]
section 1. We assume in the following models that the probability p (in
assumption 2) remains constant throughout the day. This is a strong assumption
and perhaps needs to be modified. One modification would be to consider periods
of the day; e.g., afternoon hours, during which the probability of a TH may be
essentially constant. Another would be to consider p as a random variable with
some a priori probability distribution function.

Under the above assumptions and if X is a random variable denoting the

number of TH's per time period T, we have the following models:

Modified Negative Binomial

Pr{X=0} = (l-a)+aq’ (@=1-p) (1)

Pr{X=i} = OL[quT-lh(T-l}iHl-l) . quT—lh 5 (T-(1—12?+i-m—2)qh—m] (2)

Pr{X=n} = 1-Pr{X<n} (3)

Singh's Binomial

Pr{X=0} = (1—a)+aqT (=1 -1p) (4
. i T-ih T-ih+i i T-ih"21 7o (i-1)h+i-m-1. h-m
Pr{X=i} = a[P'q 5 )+ P r ( is1 Jg ] (5)
m=1
for 0<i<n
Pr{X=n} = 1-Pr{X<n} (6)

Singh's Poisson

Pr{X=0} = (l-a) + ae T (7




i . . m i-1 . . m
Pr{X=i} = a[ I e—k[T—lh]_[)\_(Il_;_}_hi_ -y e->x[T-1h+h] [)\(T—;‘}'Hh)] ] (8)
m=0 ) =0 )
for O0<i<n
Pr{X=n} = 1 - Pr{X<n}. )

These three models are investigated due to the nature of the data (presented
in the next section).. When dealing with discrete data the usual practice is to
compute the mean and variance and then fit the Binomial, Poisson or Negative
Binomial according to whether the mean exceeds equals, or is less than the variance.
However, we are dealing with extremely '"J" shaped curves and this criterion loses
its usefulness just as do the mean and variance. Clearly the mode is a much more
meaningful measure of "central tendency'" and with few cells the usefulness of the
variance (or any other measure of "dispersion'') is questionable. As all three
models have 'J" shaped frequency functions for small p (or A) it would seem there
is little to distinguish between their usage.

Aside from any justifications of a physical nature one cannot ascertain from
the available data on TH's which model does the best job statistically. The
necessity of estimating small ''tail" probabilities jeapordizes the use of the
X2 goodness of fit test. This problem is discussed more fully in the results
section. This is particularly critical as all other well-known goodness of fit
tests require continuous underlying distributions and completely specified
hypotheses-neither of which is present here.

Any tests of hypotheses involving the estimated parameter values is a
difficult problem for two reasons. Firstly, no information is available to
formulate suitable hypotheses. To demonstrate this problem consider the following
situation. In one case the p value is estimated to be .007. A logical test
would be Ho: p=20vs Hi" p#0. As the calculated value of p is quite small it is
possible that H0 could be accepted. The result Pr{TH occurance | Ho truel = 0,
which then says a=0, given Ho true, is of little practical benefit. Secondly,
any effective tests of hypotheses would necessarily be a multiple decision problem
on o and p (or A). The two parameters are functionally related (a complication
of some importance in determining critical regions) and undoubtedly the estimators

of a and p (or 1) have a very complicated joint distribution.




The crux of this discussion boils down to one fact. We can solve the problem
in three different and equally acceptable ways. Statistically it is impossible to
distinguish between the results by presently known techniques. This fact suggests
some indeterminacy in the available data (or in the process itself). 1In such a
situation the statistician recommends a plausible solution and makes the recipient

aware that this is only one of several (apparently) equivalent alternatives.
IIT. Data

The thunderstorm data sample presently available for Cape Kennedy contains
all the information that can objectively be extracted from the Standard Weather
Observers' Form WBAN-10. (Due to the type of data taken, the number of thunder-
storms per day was not available but only the number of times thunder was heard
(and not heard during the previous 15 minutes) per day. These we call "Thunder-
storm events.') Each '"thunderstorm event' for the period January 1957 through
December 1966 is identified. The information for each 'thunderstorm event"
includes: identification--year, month, day; beginning and ending time of the event;
area by quadrant where thunderstorms were first and last observed; direction of
movement; maximum and minimum intensity; frequency of thunder; whether or not one
or more than one thunderstorm was observed during each event; lightning type and
intensity; and other information on wind, weather, clouds, and visibility. This
data is coded and available on computer cards. This is the first data sample
of its kind for Cape Kennedy and is the best climatic record on thunderstorms
available. The card deck was produced by ESSA, National Weather Records Center,
Asheviile, N. C., under a government cross-service order for the NASA, MSFC,
Aerospace Enviornment Division, Huntsville, Alabama.

Those occurrences which were classified as TH's from the data sample were of
the following two types.

1. A thunderstorm was actually reported overhead.

2. A thunderstorm was first reported in a sector and last reported in the
opposite sector. This is assuming thunderstorms move in a straight line
(over small areas, at least).

Some additional situations not accounted for in the models comes to light
here. No provision for the number of thunderstorms in the immediate area is made,
but thunderstorm density about the 'point' undoubtedly affects the likelihood of
a TH. A model in the form of Poisson occurrance of thunderstorms in an area and

a binomigl process over the point, given thunderstorms in the area, might be




useful. However, the data to ''calibrate' such a model is not available, so again
we must simplify.

The summer months of June, July and August were selected for examination. The
thunderstorm activity is more intense during this period of the year and these months
demonstrate a '"J'" shaped curve. A preliminary review of the other months indicates
the generality of such a curve and the other months differ only by possessing a
larger"O" class.

The period is 24 hours and T is taken to be 48 units. The value of h is taken
as 2 which means that, given a TH occuring, another cannot occur for 30 minutes.

Further note that only 907 of 920 days are accounted for in the data sample.

Event (TH's per day) June July August Combined
0 263 274 269 806
1 23 22 29 74
2 3 7 15
3 4 1 1 6
4 or more 4 1 1 6
Total 299 301 307 907

IV. Estimation

Each of the models proposed involves two unknown parameters o and p (or q).
A statistic is called a Minimum Chi-Square (MCS) estimator of o if it is obtained

by minimizing, with respect to a, the expression

2
X2 _ n [Ni - Npi(a’ P)]
i=0 Ny

(10)

See Neyman [12], Kendall and Stuart Vol. II, 91-93 [8] and Singh [14] for a
fuller explanation of BAN estimators. Neyman [12] has shown that the class of
MCS estimators are also best asymptotically normal (BAN) estimators. These
estimators are consistent, asymptotically normal, and asymptotically efficient.
Let Pi(a, p) be the probability for i(i=0, 1, ..., n) TH's per day, and

satisfying the regularity conditions given in Neyman [11].



Since

[Ni-NPi(a, p)]2

0 Ny i

NP, (o, p)]°
— ) - N (11)
0 i

P

It
N~ s
n ™~ 3

i
to minimize equation 10 (with respect to o) set

o’
30

NP, (a, ) ONP, (a, p)

=2
i=0 i %

n o3

and solve for the estimator of a. The same procedure can be repeated to obtain
the estimator of p.

If Pi(a, p) is linear in a and p, the estimates can easily be found; other-
wise we can linearize them at a properly chose point (a, p) and use the linearized
Pi(u, p)'s instead of the original Pi(a, p)'s to find the estimates. The
estimates obtained in this fashion are also BAN, if the point estimates (o, p)
are consistent.

The linearization about (a, p) is accomplished by solving

N N

/y =P (a, P), Uy =P (o, p) (13)

and naming the solution (a, p). The solutions o and p can be shown to be
!
consistent estimates of « and p. Letting Pi(a, p) be the new linearized
probabilities we have
BPi(u, P) __BPi(a, P)

Pi(a, p) = P,(3, P) + (00) ——— | _ _+ (p-PI—5—] (14)

(o, p) (o, p)

as the general equation. In particular, we have

Modified Negative Binomial

(T-1)

Py (o, p) = 1-a(1-q) + (p-P) & T Q (15)

P, p) = 2P, B+ e-pdatp TG or-in)p-idle)




h-1 . .
5 5{1—1)6-(T-1h+h-m)[ia-

+ - (T-ih+h-m)p]QS(i,m) } (16)
m=1
where O<ien, Q(i) = ("), es@,m = (MU
1 n-1 '
P (a, p) =1- iEOPi(a, p) 17)

Singh's Binomial

These formulas are of exactly the same type as those of the Négative Binomial

when we redefine Q(i) = (T-;h+1) and QS(i,m) = (T-(i;};h+i-m—1).
Singh's Poisson
' = -
Py(a,) = l-a(l-e ) - (-Dare (18)
. R i .
' — = —— ; -A{T-ih+h) (T-ih+h —1-1
P(e,)) = 2P, @1 + (-1 {7 ) Iheh) 3y
- . T | .
_e-A(T—lh) (T;?h) (le (19)
for O0<i<n .
' n-1 '
Pn(a,)\) =1 - iio Pi(a,A). (20)

)
Replacing Pi(u,p) by Pi(a,p) in equations (11) and (12), we obtain a

modified form of x>

[N, -P, (@,p)]° (21)

0 Ny

o) =
1

n s

which is minimized: (with respect to a) by setting




3(X2)' I

aa

NP;(Q,P) aNP;(u,p)
0 ( N, ) 3 =0 (22)

| =]

i

and (with respect to p) by setting

—

B(XZ)' _, £ (NPi(a,p)) BNPi(a,p) o 23)

o iz0 N %P

From (22) and (23) we divide out unnecessary constants and solve the resulting
linear equations simultaneously for & and p. Then the solutions & and p of
equations (22) and (23) are those values which minimize (xz)' and are BAN
estimates of o and p.

To facilitate the considerable computational task involved in estimation,
a FORTRAN program was written. The program fits all three models and the output
consists of a simple probability, frequency table along with the calculated x2
value. Maximum generality has been allowed in the determination of T, h, and
number of cells. A listing of the FORTRAN program and variable definitioms is
appended.

V. Results

This section discusses the results obtained and possible areas of future
investigations. One table (I) is presented and it contains all pertinent data
from the analysis.

As mentioned in Section 2 the X2 goodness of fit test does not work well
with these data. The June or Combined data furnish the best results. With the
exception of the Negative Binomial on Combined data every set of expected
frequencies would need to be 'lumped'" into two cells in order to get the usual
expected frequency value of 5 deemed necessary to efficiently apply the test.
Considering the number of parameters estimated this is an unacceptable procedure.

However, it should be noted that all models fit particularly well in the
0, 1, 2 frequencies and generally very poorly in the 3,4 classes. The notable
exception is the Negative Binomial on the August data.

The other interesting result is the relationship between the three sets

of parameter estimates. To make comparisons easier the data is reproducted below:
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June July August

Combined

a plor 1) a plor 1) a plor ) a plor 1)
N. Binomial .2607 .0155 .2979 .0072 .3102  .0105 .2526  .0114
Binomial .1887  .0159 .2822 .0073 .2993  .0107 .2402  .0116
Poisson .1871  .0162 .2783  .0075 .2948  .0110 .2375  .0118

The Negative Binomial consistently estimates o higher and p lower with the
Poisson at the other end of the spectrum. On combined data the difference in
a-estimates is 1.5% which might be deemed important for some purposes. Assuming
o is of considerable interest the possible range of this difference seems to
merit some investigation.

As the Negative Binomial and Poission are the extremes and the Binomial is
sort of an '"average', two possibilities seem worthy of future interest. Firstly,

a mixture of the two extreme distributions and possibly the Binomial might better
describe the data better in some situations and would be as good in any case.

The mixing weights would likely be functions of the parameter estimates. Secondly,
as the distributions are extremely close together they are essentially independent
of the parameter estimates (Independence meaning any one of the three sets of
estimates would give good results in one of the other models). This suggests

they are '"distribution-free" in a rough sense. Using this result some investigat-
ions into a ''general' way to estimate o and p and a general distribution function

based on conditional probabilities could be of benefit.
VI. Summary

All three models fit the data well and would likely be equival:znt were a good
statistical criterion available to judge them by. The Negative Binomial Modificat-
ion fits best in most cases and is always best in the 0, 1, 2 classes. Based on
this fact and considering the possible usage, The Modified Negative Binomial is

recommended as the '"best'" model.
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APPENDIX

This program is written in the IBM 7094 version of FORTRAN IV. It
is presently set up to handle values of T up to 200 and number of cells
up to 50. It is not anticipated that usage would exceed these values
but changing the dimensioned values of FACT, FACE, FADE and QS would
be the only alteration required to use a larger T, and those with present
dimension values of 50 would require changing to accomodate larger cell

numbers.

Variables required are:

N : number of cells

T : number of units in T interval

H : value of h.

FN(I) : number of observations for class I-1 {(computer doesn't

recognize 0 subscripts, hence the correction)
Using this program requires the following cards after program deck

DATA : (or Monitoring System Counterpart)

CARD I : N, T, H in (I2, 2F, 5.0) format

CARD 2 : FN(I), I =1, N in (10F 8.0) Format for as many cards
: as required

CARD N

CARDN+ 1 : N, T, Hin (I2, 2F 5.0) format, etc.

As many data sets as desired can be processed at one time. The final data
card should be followed by the 'end of file" card (a 7-8 card or its counter-
part).

As stated in the report, the output is very simple with all numbers

being adequately identified for immediate interpretation.
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DIMENSION FACE(200)9FN(50)sPA(50)sPD(50)+sPL(50)sP(50)1+EP{50),QS5(50

19200)sFACT(200) +Q(50)FADE(200)
1C00 READ(S9400)NsToH
400 FORMAT(I292F549)
READ(59401)(FN(TI)sI=1sN)
401 FORMAT(10F8.0)
FNT=0,
DO 216 I=1sN

216 FNT=FNT+FNI(T)

NDF=N=-3
IH=H
THMI1=1H-1
1T=7
FADE(1)=0,

DO 402 1=2,IT
FI=1
452 FADE(1)=FADE(I-1)+ALOG(FI)
NMIN1=N-1
NMIN2=N-2
Q(1)=T-H
DO 416 I=24NMIN2
JEIT-I*IH+1-1
JJ=0-1
Q(1)=EXP(FADE(J)~FADE(T)-FADE(JJ))
DO 417 M=1,THMI1
J=I1T=M=(1-1)*IH+I-2
JJ=J-11-1)
417 QS{1sM)=EXP(FADE(J)~FADE(I~1)=FADE(JJ))
416 CONTINUE

1JK=1
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GO TO 418

419 Q(1)=T-H+1.
DO 500 I=24NMIN1
JI=1T-I1%1H+!
JIT=JI-1
QUIY=EXP(FADF(JI)-FADF(I)-FADF(JIT))
NO 500 M=1s1HMI1
JI=IT-{I-1)%IH-M+1-1
JIT=JI-(1-1)

500 QS(IsM)=EXP{FADE(JI)-FADFE(I-1)~-FADE(JIL})
1JK=2

418 DO 501 M=1,s1HMI]

501 QS{1sM)=1.

NN=101
B=1e
A=100,

5§02 DO 503 JL=19sNM

PI=R-AT/A
TF{(14~PI)¥*IT=,200000001150355034505
505 SUM=0,
DO 507 M=1sTHMI]
507 SUM=SUM+(14-PT ) #*%([H=M)
F=(1e=FN(1L)/FNT)¥PI*(1e~=PI) %% (IT=IH)*¥(Q(1)+SUM)/(1le=(1e-PI)%*]T)-F
IN(2)/FNT
IF(F)503,508+509
503 CONTINUE
509 TF(ABRS(F)-,0000011508+5084510

510 R=R=-{AT=-14)/A

A=10e¢%A




511
508

515

514

523

NN= (NN-1)%10+1
GO TO 502

PB=P1
AB=(1e=FN{1)/FNT)/(1e=(1e~P1)%%1T)
PB1= 1l.-PI

DO 514 I=1sNMIN2
Ti=1

DSUM=0,

SUM=0.,

DO 515 M=1sIHMI1
TM=M

SUM=SUM+QS (1 sM) #PB1*% [ IH-M)

DSUM=DSUM+PB1## (IT-1%#IH+IH-M=1)*(TI*PB1-(T-TI*H+H-TM) *¥PB ) *¥QS (1 sM)

DSUM=DSUM*PB*x (1-1)

PA(T)=PBx*]%PB1*%(IT-1*#IH)*(Q(I)+SUM)

PLIT)=ABXPAL(I)

PD(I)=PB®* (-1 ) *PBI**¥(IT-I*[H=-1)*(TI*¥PB1-(T-TI*H)*PB)*Q(1)+DSUM

PD(1)=AB*PDI(T)
PAZER=PB1#*¥]T-1,
PBZER=-T*AB*PB1#**(1T-1)
PLZER=14-AB*(14-{1e=PB)**T)
PA(NMIN1)=-PAZER
PD(NMIN1)=-PBZER
PLINMIN1)=1.-PLZER

DO 523 I=1sNMIN2
PA(NMIN1)=PA(NMINI)=PA(T)
PD(NMIN1)=PD(NMIN1)=PD(1)
PL(NMIN1)=PL(NMIN1)=PL(])
BAA=O.

BPP=0,

A11=0.

15
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516

518

517

A12=0.

A22=0,

DO 516 I=1sNMINI
BAA=BAA+PL(T)*PA(T)/FN(1+1)
Al11=A11+PA(1)**2/FN(1+1)
BPP=BPP+PL(I)¥PD(I)/FN(TI+1)
A12=A12+PA(T1)*PD(I)/FN(1+]1)
A22=A22+PD(T1)%*2/FN(1+1)
BP=~BPP-PLZER*PBZER/FN(1)
BA=~BAA~PLZER*PAZER/FNI(1)
All1=A11+PAZER*%2/FN(1)
Al12=A12+PAZER*PBZER/FNI(1)
A22=A22+PBZER*¥2/FN(1)
E=A11%A22-A12%%*2
AHAT=AB+(A22%BA-A12%BP)/E
PHAT=PB+(A11%BP-A12%BA)/E
PZER=1e~AHAT*(1e~(1e=PHAT)**IT)
EPZER=PZER*®FNT
CHISQ=(EPZFR-FN{1))**¥2/EPZER
DSUM=0,

DO 517 I=1sNMIN2

SUm=0,

DO 518 M=1,IHMI]
SUM=SUM+QS (T sM) *¥(1e-PHAT ) %% ( IH=-M)
PII)y=AHATXPHAT* %I % (] ¢~PHAT)#¥%(TT-I*IH)*{Q(1)+SUM)
DSUM=DSUM+P (1)

EP(1)=P(1)%FNT
CHISQ=CHISQ+(EP(I)-FN(T+1))*%*2/EP (1)
P(NMIN1)=14-PZER-DSUM

EP(NMIN1)=FNT*P(NMIN1)
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CHISQ=CHISQ+(FN(N}-EP(NMIN11)**¥2/EP (NMIN1)

IF(IJUK=1)530+5309531

530 WRITE(6+532)

532 FORMAT(1H1,430H MODIFIED NEGATIVE BINOMIAL )
GO TO 533

531 WRITE(69534)

534 FORMAT(1H1417H SINGHS BINOMIAL )

533 WRITE(6s17)FNT

WRITE(69535)TsH
535 FORMAT(1H +30Xs12H T INTERVAL 93XsF5,0910X912H H INTERVAL +3XsF540

1)
WRITE(639536)AHAT»PHAT
536 FORMAT(1HO+30X910H ALPHA IS 33XsF10e5910Xs6H P IS 93XsF1045)
WRITE(6+18)
WRITE(6+19)FN(1)9EPZER,PZER
DO 520 I=14NMIN1
J=1+1
520 WRITE(6921)FNIJ)sFP(TI)sP ()]
WRITE(6922)NDF +CHISQ
IF(I1JK-114199419+600
600 CONTINUE
200 NN=101
B=1l.
A=100,
205 DO 201 IK=1sNN
Al=1K~1
ALP=B-AI/A
PI==(1e/T)*ALOG(((FN(1)/FNT)+ALP=14)/ALP)
GT=EXP(~P1)

F=ALPH¥GT#*¥IT*( (1¢/GT)##IH*(1+PI*(T-H))-14)=-FN(2)/FNT
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IF(F)2035202+201

201 CONTINUE
503 IF(ARS(F)=-,000011202,202+204
204 B=R-(AI=14)/A
A=104%A
NN=(NN=1)%10+1
250 GO TO 205
202 AB=ALP
PB=P1
GT=EXP(~PB)
Q1) =GT*% (IT-TH)*(1e+PB*(T~H)-GT%*IH)
DO 220 I=1sN
220 FACF(I)=FEXP(FADE(I))
DO 207 I=24NMINZ
Q(1)=0,
QS(191)=0,
SUM=0.
FI=1
DO 208 M=1s1
208 SUM=SUM+(PB¥(T—FI%H) )**M/FACE (M)
DSUM=0,
IM=1-1
PO 209 M=1sIM
209  DSUM=DSUM4 (PR¥* ( T-FI*H+H) ) ¥*¥M/FACE (M)
QUIY=GTH#¥(IT-I*TH)%#(1¢+SUM)=GT*%(IT=T%IH+TH)*(1,+DSUM)
QSU1s1)=GTR* (I T=T#TH)*PB**¥ (1 =1 )k (GTX*[H* (T=FI*¥{+H) ¥ * I /FACF(T=-1)=(T
1-FI*H)*% ([+1)*PB/FACE(1))
207 CONTINUE
QS(191)=GT**(IT—TH)*(GT**[H*T=(T=H) **2%PR)

QZFR=1e~GT**1T




225

210
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QSZER=THGT**1T

PLZER=1¢-AB¥*(14~GT*¥*]T)
PAZER=GT**#1T~-1.
PDZER=~THAB®GT**]T
PL{NMIN1)=1+—-PLZER
PD(NMIN1)=-PDZER
PA(NMIN1)=-PAZER

DO 225 I=1sNMIN2
PLIIN=Q(1)*AB

PA(INI=Q(])

PD(I1)=AB*QS(1+1)
PA(NMINLIY=PA(NMIN1)-PA(I])
PD(NMIN1)=PD(NMIN1)=-PD(I)
PL(NMINI)=PL(NMINL)-PLI(I}
SOLVING FOR ALPHA-HAT AND LAMBDA-HAT
BAA=0.

BPP=0e

Al1=0.

Al2=0.

A21=0.

A22=0.

DO 210 I=1sNMIN1
BAA=BAA+PL{I)%PA(T)/FN(T+])
BPP=BPP+PL{T)%PD(T)/FN(TI+1)
Al1=A11+PA(1)%*2/FN(I+1)
Al12=A12+PA(1)*PD(I)/FN(I+1)
A22=A224PD(T1)%*%2/FN(I+1)
BA=-BAA-PLZER*PAZER/FNI(1)
BP=~-BPP-PLZER*PDZER/FN(1)

A11=A11+PAZER**2/FN(1)
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A12=A12+PAZER*PDZER/FNI(1)

A22=A22+PDZER*%2/FN(1)
D=A11%A22-A12%%2
AHAT=AB+(A22*BA-A12%*8BP) /D
PHAT=PB+(A11%BP-A12%BA) /D
HAT ESTIMATES COMPUTED
GT=EXP(-PHAT)
PZER=1e—AHATH*(1¢-GT**¥IT)
Pl1)=AHAT*#{GT%* (IT-IH)* (1 +PHAT*(T-H)=GT**IH))
EP(1)=FNT*P(1)
VAT=0,
DO 211 I=2sNMIN2
Pl1)=0,
FI=1
IMINl1=1-1
SUM=0.,
DSUM=0,
DO 212 M=1s1

212 SUM=SUM+(PHATH*(T-FI%*H))**M/FACE (M)
DO 221 M=1,IMIN1

221 DSUM=DSUM4+(PHAT*(T—F I%H+H) ) XXM/ FACE (M)
P(I)=AHAT®(GT*% (IT-I*TH)*¥(1e+SUM)=GT**(IT-I*#TH+IH)*(1e+DSUM))
VAT=VAT+P (1)

211 EP(I)=FNT*P(TI)
P(NMIN1)=1,~-PZER-VAT-P(1)
EP(NMIN1)=FNT*P (NMINI)

CHIS0=0,
DO 213 I=1sNMINI
213 CHISO=CHISQ+(FP(I)-FN(I+1))%¥%¥2/EP (1)

CHISQ=CHISQ+{PZER¥FNT~-FN(1)) *%2/(PZER%*FNT)




214

222

215

21
22

17

19

18

21
EPZER=PZER*FNT

WRITE(6+214)

FORMAT(1H1s12H POISSON FIT)
WRITE(6s17)FNT
WRITE(69535)TsH

WRITE(69222)AHATsPHAT

FORMAT{1HOs30Xs 10H ALPHA IS s3XsF1045910Xs11H LAMBDA IS +3XsF10.5)
WRITE{6+18)

WRITE(6919)FN(1)9EPZERSPZER

DO 215 I=1sNMIN1

J=1+1

WRITE(6921)FN(J)sEP(T) 9P (1)1

WRITE(6+22 )INDF 4 CHISQ

FORMAT(1HO s 18X osFB8e2916XsFBe2916XsF10e5912Xs12)

FORMAT (1HDs16H CHI-SQUARE WITHs1XsI1248H DeFe IS5,3X9E1245)
FORMAT (1HO 930X 19H TOTAL OBRSERVATIONS 46XsF540)

FORMAT(1HO 918X 9yFBe?516XsF8e2916XsF105512Xs2H 0 )

FORMAT (1HO 10X s 24H OBSERVED FREQUENCY s 24H EXPECTED FREQUENC
2Y 226H PROBABILITY OF 1 THS #1CH 1 )

GO 7O 1000

END



