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1. introduction

In a recent investigation. Gale, Liwshitz, and Sinclair (1)
examine the available radar, micr^wave, Mariner V, and Venera 4
data pertaining to the atmosphere if Venus. Ora the basis of this
evaluation they note that the best fit to all observations obtains
when the lower atmosphere of Venus, from ahout 10 km altitude down
to the mean surface level, is essentially isothermal or possesses
at most a small, subadiabatic temperature lapse rate.

The purpose of the present investigation is to construct
a mathematical model of a two-dimensional circulation pattern
compatible _,.th the above proposed isothermal regime between the
surface and a given altitude level. The term "isothermal regime"
will, in the present paper, mean a layer in which the temperature
does not vary with altitude below some specified 'height; this
layer, however, will display a horizontal temperature variation
between the subsolar and anti-solar points. Such a regime could
prevail if the absorption of radiation had a sharp maximum at some
altitude inside the atmosphere. This is the case, for example, in
the Earth's atmosphere where the presence of ozone causes an almost
total absorption of ultraviolet radiation. Strong localized absorp-,
tion could also be caused by the presence of a cloud layer. We
do not assume, however, that all of the incoming radiation energy
is absorbed in the layer where the opacity peaks, but allow some
of it to penetrate to the surface where it is osorbed and, like
in the above described layer, supports a tempe-0a.ture distribution
that decreases monotonically from the subsolar to the anti-solar
point. This horizontal temperature gradient is the driving force
for the atmospheric circulation.

Since by assumption the atmosphere between the absorbing
layer and the ground is isothermal, its optical properties have lit-
tle effect on the temperature which is governed mainly oy conduc-
tion and convection. The condition for balance of radiative
energy fluxes may be used to determine the distribution of the
absorbing properties of the atmosphere. This will depend on the
postulated vertical profile of the atmosphere undisturbed by the
circulation. We defer the discussion of these considerations to
a later report and proceed here to the mathematical formulation
of the fluid dynamics of the problem.
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II. Formulation of the Boundary Value Problem

If we assume that the variation of surface temperature
is described by night cooling alone, our model ccnsists
of flow in any vertical plane passing through the subsolar point
at x=0 and the anti-solar point at x =7TR, where R is the radius of
the planet; the vertical coordinate is denoted by z. The analysis
can also determine circulation in a meridional plane between the

equator and the pole at x =2.TrR if it is postulated that the polar

cooling is the dominant effect; the change of parameter necessary
to affect this latter interpretation of the results will be indi-
cated in the text.

The governing system of differential equations is obtained
by applying two approximations to the usual equations of fluid
dynamics, expressing the conservation of mass, momentum, and heat.
These approximations are:

The Boussinesq approximation fcr compressible fluids as

derived by Spiegel and Veronis (2) ; it implies that changes
of density are neglected except in the buoyancy force,
ana obtained subsequently from the temperature variation
alone.

2. The neglect of convective transports of momentum and heat.

This latter simplification is suggested by the following
reasoning. The driving force for the atmospheric circulation is
the temperature variation, T s , between the subsolar and anti-solar

points (or between the pole and points on the equator) which is
very small in comparison to the mean temperature, T o . Therefore,

we may think of expanding the solution in powers of T s /T0 ; in that

expansion the convective transport terms, being proportional to
the square of the temperature perturbation, become negligible.
Of course, such a systematic procedure would be only formal and
by itself' does not guarantee that the convective terms will be
smaller than the viscous or conduction terms; for with a spec;-
fied finite driving temperature perturbation the coefficients of
viscosity or conductivit y , when properly nondimensionalized, may
be smaller than the given temperature perturbation, thus reversing
the relative magnitude of terms deduced from the limiting process
T
T s -* 0. Since, in the present problem, we do not have a reference

0
velocity, we cannot properly estimate a priori the relative magni-
tudes of convection and conduction. Hence, we use the above
argument only as a motivation. The consistency of these approx-
imations will be verified a posteriori, in Sec. V.
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We introduce the temperature perturbation T(x,z) by

t = To - YO  + T(x,z)
	

(1)

where t is the total temperature and Y o the actual lapse rate.

Then, with the above mentioned two approximations, the following
four equations describe our problem:

a. Heat conduction equation for the temperature perturba-
tion with the linearized convective term.

K0 2 T = Y w	 (2)

where K is the eddy heat conductivity, w is the vertical velocity
component, and Y >o is the difference between the dry adiabatic
r and the actual Y o lapse rates, i.e. Y = 

r-YO'

b. Two equations of motion for a slow, viscous flow with
buoyancy force:

pvv2u = p 	 (3)

pv0 2 w = p  - pgaT	 (4)

where p is the density, p-pressure, v -eddy kinematic viscosity,
g-gravitational acceleration, a-coefficient of thermal expansion,
and u-the horizontal velocity.

C. The equation of continuity for incompressible flow:

ux + w z = 0.	 (5)

In equations (2), (3), (4), and (5) u, w and p are considered to
be small perturbations about the state of rest.

To complete the formulation of the problem we must now
discuss the boundary conditions. Subscripts a and b will dis-
tinguish solutions that apply above and below the absorbing
layer, located at z=h. With the assumption that the temperatures
at z=0 and z=h are specified, so that the radiative energy

M.



BELLCOMM, INC.	 - 4 -

balance prevails, we seek a solution that satisfies the following
conditions:

a. at z=0 the temperature is prescribed and both velocity
components vanish, as required for a viscous flow,

b. at z=h the temperature is prescribed and all variables
are continuous functions of z,

C. all perturbations tend to zero as z increases beyond
all bounds.

Expressed in mathematical terms these requirements are:

a. at z=0

T b (x,o) = T	
x

T
s
 cos x

U  (x,0) = 0	 (6)

w 
	 (x,0) = 0;

b. at z=h

T 
	 (x,h) = T a (x,h) = 0 T s cos R

u 
	 (x,h) = u 	 (x,h)

(7)
w  (x,h) = w  (x,h) = 0

P b ( x ) h ) = P a (x,h);

c .	 as z -> -

T a
 
(x, Z) -* 0

u 
3 

(x,z) -* 0	 (8)

w 
	 (x,z) -> 0.

In these equations T s is the amplitude of the temperature varia-

tion, which, as mentioned previously, is the perturbation parameter
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of the problem, and 0 is an arbitrary constant. By specifying
which fractions of the solar flux are absorbed at z=0 and z=h,
0 characterizes, in some approximate sense, the optical properties
of the atmosphere.

All except one of the above conditions are dictated by
the differential equations and the assumption of radiative energy
balance which describe the model. The exception is the vanishing
of the vertical velocity at z=h; this requirement is suggested by
the hypothesis of a stable and stationary absorbing layer.

The specification of the cosine temperature variation
between the subsolar and anti-solar points is not restrictive at
all. Any general temperature distribution may be represented as
a Fourier series and, since the governing system of equations is
linear, the solution is determined for each mode separately. We
present the calculations for the first mode; since it corresponds
to the monotone temperature variation along the boundaries it is
sufficient to characterize the essential dominant features of the
problem.

T!ze origin of the above described formulation and the
nature of the approximations used in the analysis will be dis-
cussed in more detail in Sec. V.

III. Representation of the Solution

The system of Equations (2), (3), (4), and (5) is
linear with constant coefficients and therefore it is natural
to try the following form for the solution:

T = Teaxesz

u = Ueaxesz
	

(9)

w = Weaxe,3z

Then from Eq. (3)

P = C v U( a 2
 + s2)eaxeRz	

(10)CL

where a constant of integration (which may depend on z) is not
needed because it can be incorporated into the unperturbed
hydrostatic pressure.

Substituting (9) and (10) into the remaining three
equations we obtain:

UAW-	 owl _ 	" '^
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K ( a2 + S 2 )	 0	 _1	 ( 'T	 01
Y	 i

_a (a L +	 2)	 (a 2 + S 2 )i	 U 	 0	 (11)

a	 ^	 i
0	 Q	 1	 W	 0

Existence of a nontrivial solution of the above
system is assured by the vanishing of the determinant, which
requires:

3
(^ 2 + a 2 )	 + Ca t = 0	 (12)

where the constant C, an analogue to the Rayleigh number, is
given by:

C=
V 
	 (13)

For our problem the Rayleigh number is zero because we seek
the Solution in an isothermal layer.

Since awill be determined from the boundary conditions,
(12) is an equation for R.

Subject to (12), equation (11) may be solved to yield:

U = - ay ( a 2 + S 2 )T	 (14)

W = Y
a
(2 + ^ 2 )T	 (15)

In this way all variables are determined in terms of
temperature and thus the solution is expressed explicitly in
terms of the boundary conditions and other parameters of the
problem.

For the planet Venus we use the following values of
the parameters obtained from the work of Ohring, Tang, and

Mariano(3):

M

M
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a = 2 x 10 -3 per degree

g = 8.8 m/sec2

y = 2 x 10 -3 deg/m

V = K = 10 3 m2/sec

R = 6 x 10 3 km.

Not all of these are firm numbers but they are representative of
the values quoted in the literature. Eddy transport coefficients
are used because our analysis does not aspire to yield local wind
velocities but to describe only the mean motions in the atmosphere.

For the fundamental mode compatible with the boundary
conditions (6) and (7), corresponding to night cooling:

i
a = R .

[	 equator to pole circulation is considered instead
the argument of the temperature variation in (6) and (7) is

2x, and a = R1 ; this is the only change required in the treatment.]

With the above listed values of the parameters:

C1/3a2/3 % 10-2km-2

(X2 ti 2.78 x 10- km -

and therefore in (12) a ` may be neglected in comparison with

C l/3 (X 2/3 to yield for the six .roots of S

j = be Tip 
/3	 (16)

where

	

	 j = 1 3 2,	 6

b = 
x,1/6 

R-1/ 3 - 10- lkm-1
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The solution, with the same approximations as in (16),
is given by:

6	 S.z

T =L Tje	
eax

j=1

e	 a2
w =^ Y L T j S2 e j e a x

j=1

(17)
M

(18)

6
K

u = -
Ya

j=1

6

p=- Ya2•^
=1

S.z	 ax
,T ^ ^ J e J	 e

s z
T
i
 a 

e j eax

(19)

(20)

Condition (8) requires T^ = 0 for those j for which

Res i >0; substitution of expressions (17) to (20) into the

boundary conditions (6) and (7) results in nine linear equations
fo- tkhe remaining T j 's. The matrix of this system is too large

fc, algebraic treatment; however, it depends on a single parameter
h and can easily be inverted numerically for any particular value
of this parameter.

For h = lOkm (i.e.	 for bh =	 1)	 the result,	 in terms of the
two parameters, T s and 6,	 which specify the boundary conditions, 	 is:

Tb = T s I^(.030

r
-	 .111	 e)	 +	 (.090	 -

9

.316	 o)i
L

T 	 = T s (.285 +	 .017	 0)	 +	 (.053	 - .480	 o)i
J

T3 = Ts (.440 + .223 0)

I

T6 = T s 1 (.285 + .017 0) - (.053 - .480 o)i^
L

T5 = T s ^ (.030 - .111 0) - (.090 - .316 o)i

T6 = -Ts (.070 + .033 0)

(21)

T2 = -Ts (.024 + .127 0) + (.004 + .510 0)iI
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T3a = Ts ( . 040 + 1.71  0 )

T4 _ -T S ( .02 4 + .12_7 0) - ( .00 4 + . 510 0)ii
J

IV. Presentation of the Results

Substituting (21) into (17) through (20) produces a
solution of the problem which satisfies the prescribed boundary
conditions. The physically significant real parts are shown
in Figure 1 for 0 = 1.5; this value of 0 is chosen so that for
Y oh = 20 and T s = 40 0 the temperatures at z=0 and z=h are equal.

As can easily be seen from Eqs. (1) and (7) that value of 0 is
given in general by:

h
0 = 1 + T°	 (22)

s

solution shown
of nontrivial
linear function
the total tempera-
Similarly, if

The most significant pr_°ope l ty of the
in Figure 1 is the fact that, even in presence
circulation, the temperature perturbation is a
of z and therefore, when 0 satisfies Eq. (22),
ture will be constant between z = 0 and z = h.
0 is given by

0 = - Yh	 (23)T
s

the atmosphere will possess an adiabatic lapse rate.

The linear variation of temperature perturbation with
altitude does not appear to depend on the special choice of 0;
it has been verified also foi, 0 = 1.

The circulation follows a three cell pattern in which
a concentrated, relatively high velocity jet at z=h (10 km) carries
the heated gases away from the subsolar point. After cooling,
these gases return to the subsolar point in a nearly symmetrical
pattern giving rise to the first two cells. The third one, extend-
ing from approximately 2h to infinity, corresponds to the circula-
tion usually found in atmospheres that are heated along the bottom
only. The occurence of the second cell between z=h and z=2h, in
which the flow is downward at the subsolar point, can be explained
most conveniently by considering the evolution of the above flow
pattern. Let us imagine that the boundary conditions, specifying
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the temperatures at z_-0 and z=h, are turned on in an atmosphere
at rest with the unperturbed lapse rate Y 0 . Because of the pre-

scribed vanishing of the vertical velocity at z=h., the flow will
initially try to follow a two cell pattern with the same sense of
rotation in both cells for e>0. However, such a configuration
generates a concentrated shear layer at z=h which, in time,
thic.E:ens into a full size cell between z=h and z=2h. In that
cell the circulation is in the opposite direction so as to mini-
mize the shearing stresses inside the fluid.

The above described general pattern is illustrated in
Figure 1 where, in addition, the magnitude of the horizontal
velocity component is presented in terms of the temperature per-
turbation, i.e. the value read off from the Era-.h, when multiplied

by T s 1 C, yields the wind velocity in r. The same holds fora
Figure 2 which represents the variation in the vertical velocity
at tihe anti-solar point.

For a typical value of T s = 41 0°C Figure 1 yields about

40 hr 
as a representative vertical average of the horizontal wind

velocity at the point m.dway between the subsolar and anti-solar
points. Since this velocity decreases In both directions away

from that point, 25 or ^,O hr 
would be an appropriate average to

consider. This value, however, is of the same order of magnitude
as the velocity of the subsolar point along the surface of the

planet due to rotation relative to the Sun which is 13 n .* There-

fore, a steady, two-dimensiona , treatment may not be truly represen-
tative of the actual conditions. We have presently completed an
analysis of the three-dimensional, time dependent circulation in
the atmosphere of Venus, using the approach presented there. These
results will be described separately in the near future.

V. Discussion of the Analysis

In the present section we verify the consistency of the
approximations, using the explicit form of the solution, and ad-
vance some plausibility arguments for the validity of our . model.
The background investigations which led to the present analysis
will also be briefly discussed.

When the neglected convective acceleration terms are
computed for the conditions specified in our problem, they are
found to be only about 1% of the viscous terms retained in equa-
tions (3) arid (4). This is much smaller than one would -xpect

* This fact has been pointed out to the author by G. A. Briggs.
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from the expansion in powers 
Ts 

because such expansion predicts

TQ
that the ratio of the neglected terms to thos- retained should be en

the order of T s, which, for values used in our computations --
T

U

T s = 40" and To = 600 1 -- is almost 10%. The reason for- this for-

tuitous circumstance may be deduced from the observation that the
vertical velocity, w, is only about one thousandth of the hori-
zontal velocity, u, (see Figs. 1 and 2) while the horizontal scale
length, R, is 600 times as large as the vertical one, Y1. Therefore,
in the convective transport process, the relatively large velocity
u convects only a small derivative in the x-direction, and the
relatively large derivative in the vertical, z, direction is con-
vected only with the small velcity w. ais fact, which indicates
that the velocity vector and the gradient operator are nearly per-
pendicular, will be discussed below in more detail. The retained
viscous momentum diffusion terms are always dominated by gradients
in the z direction; this is reflected in the approximation leading
to Eq. (16).

The largest error incurred from the neglect of convective
transport mechanism occurs in Eq. (2) and amounts to about 10% -
15`':, depenaing on the value of 1. Nevertheless, the fact, that the
temperature perturbation, T, is very nearly a linear function of
z (see Fig. 1) indicates that the solution is controlled mainly
by conduction.

We now would like to mention some plausibility argurrierits
which suggest that our analysis, neglecting convective terms, is
not fortuitously self-consister.t, but may be a valid description
of the fluid model, to which the analysis is applied. These :arguments
indicate, moreover, that the orthogonality of velocity and gradient
vectors does not solely depend on the smallness of the ratio h/R.

The typical velocities occuring within our model result

in a Reynolds number, Re = h , of about 200. Therefore, one is

,justified in questioning the applicability of Eqs. (3) and (4) to
the present situation since these equations are usually thought of
as a good approximation in cases when He «l. However, there are
other conditions which may render them valid.

These conditions are illustrated by the following
considerations. The convective acceleration terms neglected
in equations (3) and (4) equal the scalar product of the velocity
with the gradient of the velocity. Now, consider a flow with
rotational symmetry, i.e., where the streamlines are circular.
Under these conditions the velocity and its gradient are always
perpendicular and the convective acceleration vanishes identically

- -gnaw
-=-	 -	 -	 -
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reducing the Navier-Stokes equations to the present linear Stokes
approximation. Thus the reason for the validity of this approxi-
mation - sometimes known as the Stokes linearization - is purely
kinematical and independent of the Reynolds number. A systematic
study of all such flows has been carried out by Weinbaur,, and

O'Brien(4).

In our case, of course, the flow pattern is not composed
of circular cells, but we may surmise that any configuration, in
which the fluid travels along closed, ev:rywhere convex, stream-
lines, approximates a circular pattern in some sense. This expec-
tation is supported to some extent by the work of Weiss and his col-

laborators (5) , who solved numerically the exact Navier-Stokes equations
and the Stokes approximation for a triangular circulation cell and
found that the solutions began to differ only for Reynolds numbers
greater than about 300 when the flow began to exhibit an inviscid
behavior away from the boundaries.

Equations (2"), (3), (4) and (5) constitute an adaptation
of the class cal Boussinesq approximation to the compressible flows

derived by Spiegel and Veronis (2) . They were previously employed

by Ohring, Tang, and Mariano (3) to describe the atmosphere of
Venus, however with simpler boundary conditions prescribing the
temperature only along the planet's surface. Therefo°e, the
solution of Ohring and coworkers corresponds qualitatively to
the behavior of our model above the altitude z = 20 km. Since
they did not encounter the presence of shallow circulation cells
they had no opportunity to use results similar to those in Ref-
erences 4 and 5 to establish the validity of their model. Instead,
they attempted to verify the approximations by solving the non-
linear version of Equations (2), (3) and (4) but failed to complete
the task (3) . Our treatment is also more general because it does
nct rely on the possibility of reducing the system to a single
high order differential equation.

Goody and Robinson 
(6) 

analyzed }he consequences of
the absorption of radiative flux at the -L.-p of the atmosphere
with the simplifying assumption that no heat flux reaches the
bottom of the atmosphere. They also linearized the problem but
did so about the adiabatic lapse rate and not an arbitrary one,
as we have done.

In their work, Goody and Robinson used, instead of the
Stokes approximation, the Prandtl boundary layer equations. These
equations provide an excellent description of the flow in thin
layers along nearly straight walls or slip surfaces but are incap-
able of describing the turning of such layers in corners where the
flow direction ciianges from horizontal to vertical. The present
writer attempted to develop, within the framework of Prandtl's
boundary layer theory, a method which would allow to compute



BELLCOMM, INC.	 - 13

the turning of the flow through an arbitrary angle in a

relatively sharp corner. This work (7) has nct yet been completed,
and the problem remains cutstanding. Thus, Goody and Robinson's
approach cannot give a complete picture of the flow pattern.

In addition, simplifications leading to the boundary
layer equations imply a definite scaling, namely streL.ch ng of
one coordinate with 3Re and the magnification of the corresponding
velocity component by the same factor. Therefore, subsequent
scalings performed by Goody and Robinson should not lead to any
different approximation. This fact is demonstrated, for example,

in the case when the authors discard terms of the order 01/129
where e is their small parameter. When, however, E _ . 15, -- a

reasonably small value suggested by the authors --, E 1112 = . 85
and is no longer negligible in comparison with unity. Thus their
approximations are not always justified and their conclusions,
therefore ., unreliable.

Goody and Robinson's formulation has also been employed

by Stone 
(8) to analyze a Hadley regime of circulation and hi-s results

differ from those of the former authors. It should be pointed out,
however, that the solution of the governing system of equations is
not determined either in Ref. 6 or in Ref. 8; only certain scaling
properties of the equations are discussed from which the authors
attempt to infer the flow pattern.

VI. Concluding Remarks

The analysis presented here indicates that, under
the assumptions introduced, substantial large scale circulation
is possible in . the presence of an isothermal layer above the
surface of Venus. These assumptions imply that the distribution
of absorptive properties in the atmosphere permits representation
of the radiative energy input by concentrated heat sources
along the surface of the planet and at some prescribed altitude
level at which, in addition, the vertical convective velocity
of the atmospheric gases is required to vanish. If supplementary
investigations of the atmospheric heat balance substantiate
these assumptions, the present results will provide a consistent
picture of certain dynamical processes in the atmosphere of
Venus that should be useful in the description of the planet's
atmospheric environment.

V,

1014- IOB - j an	 1. 0. Bohachevsky

Attachments
Figures 1 & 2
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