General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

UNIVERSITY OF ILLINOIS URBANA

AERONOMY REPORT NO. 33

· · · · · · ·

FULL-WAVE CALCULATIONS OF REFLECTION COEFFICIENTS FROM D-REGION ELECTRON-DENSITY PROFILES

by W. A. Viertel C. F. Sechrist, Jr.

June 1, 1969

Supported by National Aeronautics and Space Administration Grant NGR 013 NGR-14-005-013 Aeronomy Laboratory Department of Electrical Engineering University of Illinois Urbana, Illinois

CITATION POLICY

al ...

The material contained in this report is preliminary information circulated rapidly in the interest of prompt interchange of scientific information and may be later revised on publication in accepted aeronomic journals. It would therefore be appreciated if persons wishing to cite work contained herein would first contact the authors to ascertain if the relevant material is part of a paper published or in process.

AERONOMY REPORT

N O. 33

FULL-WAVE CALCULATION OF REFLECTION COEFFICIENTS FROM D-REGION ELECTRON-DENSITY PROFILES

by

W. A. Viertel C. F. Sechrist, Jr.

June 1, 1969

Supported by National Aeronautics and Space Administration Grant NGR-013 NGR-14-005-013 Aeronomy Laboratory Department of Electrical Engineering University of Illinois Urbana, Illinois

PRECEDING PAGE BLANK NOT FILMER.

張

ABSTRACT

This report considers the reflection of VLF radio waves from the Dregion of the ionosphere. In particular, the calculation of the reflection coefficient matrix below the ionosphere is described. Full-wave theory is employed in a FORTRAN IV computer program for use with the IBM 360 computer. The program is checked by comparing computed reflection coefficients with those obtained by an analytical method for the case of a vertical geomagnetic field and an exponential electron density model, and also with full-wave computations done by other groups for a more general case. The report concludes with suggestions for the application of the full-wave program to the computation of VLF reflection coefficients from D-region electron density profiles measured by ground-based and rocket techniques.

iii

PRECEDING PAGE BLANK NOT FILMED.

TABLE OF CONTENTS

		Pa	ge
ABSTR	ACT	· · · · · · · · · · · · · · · · · · ·	i
LIST	OF	IGURES	
LIST	OF	ABLES	ii
1. T	THE	REGION OF THE IONOSPHERE	ł.
1	.1	Introduction	
1	.2	VLF Studies of the D Region	E.
2. R	RAY	HEORY	
2	2.1	The Theory of Booker	
2	2.2	The Necessity for Full-Wave Theory	
3. F	ULL	WAVE THEORY	
3	3.1	General Magnetoionic Theory	1
3	3.2	The Relevant Equations	1
4. F	FULL	WAVE SOLUTIONS	
4	4.1	The Starting Solution	
4	4.2	The Numerical Integration	
4	4.3	Checks of the Full-Wave Program	1
4	4.4	Suggestions for Applications of the Full-Wave Program45	
APPEN	DIX		
REFER	RENC	S	

v

LIST OF FIGURES

Figure		Page
1.1	The F-region (after Farley, 1966), E-region (after Monro and Bowhill, 1969), and D-region (after Mechtly and Smith, 1968) of the ionosphere	2
1.2	Electron collision frequency profiles (after Deeks, 1964)	5
1.3	Components of the field at the ground (after Bracewell, 1952)	7
2.1	A ray path for a wave-packet incident obliquely upon an inhomogeneous, isotropic, collisionless ionosphere (after Booker, 1938)	10
2.2	Group- and phase-rays of the (a) extraordinary wave, and the (b) ordinary wave, for an inhomogeneous, anisotropic, collision- less ionosphere (after Booker, 1938)	12
2.3	The Booker quartic roots q as a function of electron density N, for oblique incidence upon an inhomogeneous, anisotropic iono- sphere (after Booker, 1938). The dashed curve represents the extraordinary wave; the solid curve represents the ordinary wave	14
2.4	Another possible form of (a) q as a function of N for oblique incidence upon an inhomogeneous, anisotropic ionosphere with collisions included, and (b) the corresponding group-ray diagram (after Booker, 1938)	16
3.1	Height variation of v_{M} the collision frequency of mono- energetic electrons of energy kT (full curve) and veff, the effective classical collision frequency for very long wave calculations (dashed curve), (after Deeks, 1966a)	22
3.2	The relevant coordinate system at the transmitter. The wave vector \bar{k} is in the xz plane. \bar{B} is in the plane of the magnetic meridian. β , γ , Δ are the arccosines of the direction cosines 1, m, n of the gecmagnetic field vector, \bar{Y}	25
4.1	Flow chart depicting (a) input portion of main program, including (b) subroutine PREFN	32
4.2	Flow chart depicting initial solution (after Sheddy, 1968) portion of main program	33
4.3	Flow chart depicting numerical integration subroutine DRKGS	57

LIST OF FIGURES (Continued)

Figure		Page
4.4	Flow chart depicting subroutines (a) FCT and (b) OUTP called from within DRKGS subroutine	38
4.5	Flow chart depicting final output portion of main program	40
4.6	A comparison of the full-wave results, reflection coefficient magnitude vs angle of incidence, for v constant, $\phi = 90^{\circ}$, and $\alpha = 90^{\circ}$, of (a) Budden (1955b) (solid line), Budden using the formulas of Heading and Whipple (1952) (dashed line), and the author (points marked x) for X = exp(.295z), Z = 8 and (b) Budden (1955b) (solid line) and the author (points marked x) for X = exp(2.36z), Z = 2	44
4.7	D-region electron density profiles for night, dawn, and day- time periods (after Smith <u>et al.</u> , 1966) deduced from ground- based measurements	46
4.8	D-region electron density profiles over the sunrise period measured with rockets (after Mechtly and Smith, 1968)	47

.

.8

.

vii

LIST OF TABLES

Table

Page

4.1	A comparison of the author's numerically calculated starting
	solutions with those of Fedor, et al., (1964) of NELC 42

1. THE D REGION OF THE IONOSPHERE

1.1 Introduction

The D region of the ionosphere is the region between 60 and 90 km, coinciding roughly with the mesosphere and lower thermosphere. A daytime profile showing its place in the entire ionosphere is shown in Figure 1.1. The F region and the topside of the ionosphere are from the observation of the equatorial ionosphere of Farley (1966), who used the incoherent backscatter technique to measure them. The E region portion of the profile was obtained from Nike-Apache rocket measurements at Wallops Island, Virginia, and is from Monro and Bowhill (1969). The D region representation, measured in the same way as the E region, is due to Mechtly and Smith (1968). The entire profile will vary with latitude, longitude, solar zenith angle, season, the solar cycle, and the instantaneous level of solar disturbances.

At sunset with the disappearance of the ionizing solar radiation, the D region electron density drops markedly. At dawn the number of free electrons at any given height gradually returns to its daytime value. The exact shape of the profiles is not universally agreed upon, however, as shown in the comparison made by Deeks (1964). Some show a minimum followed by a maximum at lower altitude in the daytime profile, while others show a more monotonically decreasing electron density with decreasing altitude, apart from some slight fine structure. It may be that when the time and place, as well as the manner of measurement or deduction, are all taken into account and D region theory is better understood, these profiles will be shown to be generally consistent with one another. The difficulty in understanding the D region stems

Figure 1.1 The F-region (after Farley, 1966), E-region (after Monro and Bowhill, 1969), and D-region (after Mechtly and Smith, 1968) of the ionosphere.

from its relative inaccessibility to measurements, having an atmospheric concentration too low for aircraft and too high for satellites. Thus rockets and ground-based equipment are the chief tools for studying the D region.

Several types of radiation are thought to be important causes of ionization in the D region. Solar radiations penetrating below 85 km, given by Nicolet and Aikin (1960), are X-rays of $\lambda < 10$ Å, Lyman α ($\lambda = 1215.7$ Å) and radiation in other nearby atmospheric windows, and radiation of $\lambda > 1800$ Å. The X-rays and ultraviolet radiation (Lyman β and the Lyman continuum) are probably important above 85 km during periods of normal solar activity, while an enhanced X-ray flux may affect all constituents, chiefly O_2 , N_2 , A and O at lower D region heights during solar flares. NO is one of the few species having a sufficiently low ionization potential to be ionized by Lyman α . The importance of the ionization of NO by Lyman α relative to the ionization of other constituents by other radiations depends upon the quantities of NO assumed to be present as is shown by Aikin, <u>et al</u>., (1964). In any case, it seems to be most important in the region around 77 km. Radiations of $\lambda > 1800$ Å require constituents with very low ionization potentials, such as calcium ($\lambda \le 2028$ Å) and sodium ($\lambda < 2413$ Å).

Below the region where ionization of NO is important, galactic and solar cosmic rays are thought to be the principal causes of ionization, although their contribution to the number of free electrons is tempered at these lower D region altitudes by the importance of negative ions due to attachment. The relative importance of contributions to ionization by protons, α -particles, and H-nucleii is treated by Velinov (1968).

Recently metastable $0_2(^1\Delta)$ has been suggested by Hunten and McElroy (1963) as a significant source of ionization in the D region. It can be ionized by

the wavelength band 1027-1118 Å, some of which penetrates to the D region through atmospheric windows. In addition, the reaction of this excited 0_2 with N may be the most important source of nitric oxide in the D region.

Corpuscular radiation in the form of electrons with energy greater than 40 kev precipitating from the radiation "belts" has also been suggested as an important ionization source at D region altitudes by Tulinov (1967). Further discussion of the chemical and meteorological factors affecting D region free electron concentrations may be found in the record of the Third Aeronomy Conference held at the University of Illinois, September 23-26, 1968.

Another relevant factor is the collisions between electrons and neutral constituents. Electron-electron and electron-ion collisions are not so important because of the far greater number of neutrals present. The altitude dependence of collision frequency given by many workers and compiled by Deeks (1964) is shown for the D region in Figure 1.2. Belrose and Bourne (1966) conclude that the greatest seasonal change in collision frequency occurs at high latitudes. They state that no diurnal changes have been detected, but more measurements are necessary to determine the dependence of collision frequency on the solar cycle and solar disturbances. The relevance of this parameter, along with the electron density, is that it affects radio waves propagating through the ionosphere.

The major objective of this thesis is to devise a computer program for use with the IBM 360 digital computer to calculate the theoretical reflection and conversion coefficients for a VLF radio wave obliquely incident upon the ionosphere. The theory for the ionospheric model and for the model of the wave-iomosphere interaction chosen is discussed in detail.

Figure 1.2 Electron collision frequency profiles (after Deeks, 1964).

1.2 VLF Studies of the D Region

One way to study the D region experimentally is to observe its effect on an electromagnetic wave propagated upward from a ground-based transmitter. The frequency of the signal is chosen so that the wave will have its maximum interaction with that portion of the ionosphere in which one is interested. A receiver detects the signal, altered in amplitude and phase in a way dependent upon the electron density, collision frequency, wave-frequency, and geometry of the plane of propagation. The transmitter emits a symmetric signal, but the ionospheric parameters, the location of the receiver, and the wave-frequency determine the height of maximum reflection and hence the angle of incidence. For VLF waves, the reflection is not like that for light from a mirror; it is rather an interaction over a range of heights of the wave fields with the charged particles of the ionosphere, chiefly the free electrons. Qualitatively, some of the energy of the wave is lost to the medium through collisions and the remaining energy is redistributed among the wave fields.

6

The early work of the British, notably Bain, Best, Bracewell, Budden, Ratcliffe, Straker, Stuart, Weekes, and Wilkes, among others, involved studies of the propagation of steeply incident VLF waves under varying ionospheric conditions. The components of the wave-fields at the ground-based receiver are shown in Figure 1.3 after Bracewell (1952). The groundwave, with subscript 0, is linearly polarized. The downcoming skywave is an elliptically polarized wave arbitrarily split into two linearly polarized components, the normal component, with subscript 1, and the abnormal component with \bar{H} in the plane of propagation, with subscript 2. Also shown is the skywave reflecting from the ground, which is assumed to be a perfect reflector. The various wavefields making up the total magnetic field at the ground are shown in Figure 1.3B.

Figure 1.3C depicts the measurable quantities H_N , the total normal component, and H_A , the total abnormal component, the two vectors in general being out of phase. Basically, this work was a cataloguing of the ionosphere's effect on this received signal as a function of time and space. Various experimental problems, such as isolating the skywave from the groundwave, were worked out at this time.

Then Deeks (1966) performed his pioneering work; by altering an assumed electron density distribution until theoretical full-wave calculations of reflection coefficients and reflection heights for VLF and LF propagation gave results in agreement with experiment, he was able to deduce an electron density distribution for the D region. Although, Bain and May (1967) showed that Deeks' distributions required modifications which amounted roughly to reducing their height by about 6 km, the importance of Deeks' work remains, that of using VLF results to determine ionospheric parameters, not merely ionospheric effects on propagating waves. This is really the inverse problem to the one being treated here, where an electron density profile, either measured or deduced, is used with full-wave theory to calculate reflection coefficients.

2. RAY THEORY

2.1 The Theory of Booker

Historically, ray theory preceded full-wave theory. According to the ray theory, a wave incident on the ionosphere from below with an angle of incidence θ measured from the vertical may be thought of as a ray, much as one thinks of light rays in geometrical optics. For simple situations, such as no magnetic field and no electron-neutral collisions, the path of the ray may be traced through the atmosphere by following the phase velocity vector. The orientation of this vector changes along the path through the ionosphere according to Snell's Law

$$\mu \sin \psi = \sin \theta , \qquad (2.1)$$

where μ is the phase refractive index and ψ is the angle the phase velocity makes with the vertical. Below the region of ionization in the atmosphere, $\mu = 1$. In the inhomogeneous, isotropic, collisionless ionosphere above this free space region, μ decreases with increasing altitude. When the level is reached where $\psi = \frac{\pi}{2}$, the wave has achieved its deepest penetration into the ionosphere, and it then begins its descent. The ray path for such a simple siutation is shown in Figure 2.1. Line AB is the boundary between the free space region and the region of ionization.

Booker (1938) pointed out that the inclusion of the earth's magnetic field makes the situation much more complicated. Upon entering the ionosphere, the incident wave may be thought of as being split into two characteristically polarized components, which may propagate independently. The refractive index is now dependent upon ψ , as well as altitude, in a complicated way, and Snell's

Earth

Figure 2.1 A ray path for a wave-packet incident obliquely upon an inhomogeneous, isotropic, collisionless ionosphere (after Booker, 1938).

Law with $\psi = \frac{\pi}{2}$ will no longer give the level of reflection of the wave. The level where the group velocity, not the phase velocity, is horizontal is the true level of reflection. This level was the same for the case of no magnetic field because the group and phase velocity vectors were identical. As a wave-packet propagates through the region of ionization with the group velocity, the individual wave-crests within it are in general moving across the wavepacket with a phase velocity of different magnitude and direction from the group velocity. This results in a cusped ray path for each of the two magnetoionic components, the ordinary and extraordinary waves. These paths are shown in Figure 2.2 along with the corresponding group-rays. The figure shows only the behavior in the xz plane. Thus the phase-rays do not actually show the path followed by the wave-packet, but only the direction at any altitude of the wave-crests moving across the wave-packet. This is also shown in Figure 2.2 by superimposing phase velocity vectors on the group-ray path.

Because of the dependence of μ on the unknown angle of refraction ψ , it proves convenient to approach the problem of obliquely incident propagation by avoiding the use of μ . The propagation of either of the two magnetoionic components is represented by the wave function

$$\exp [ik \{ ct - \mu(\psi) ((sin \psi)x + (cos \psi)z) \}]$$
(2.2)

Using Snell's Law and a newly defined variable q, the wave function becomes

$$\exp [ik \{ct - (sin \theta)x - qz\}]$$
 (2.3)

where q is the only unknown. q contains the electron density, wave-frequency, earth's magnetic field, and angle of incidence as parameters, and the

Figure 2.2 Group- and phase-rays of the (a) extraordinary wave, and the (b) ordinary wave, for an inhomogeneous, anisotropic, collision-less ionosphere (after Booker, 1938)

propagation of the wave components through the atmosphere can now be represented by plotting q as a function of the electron density N while keeping the other three parameters constant. Such a plot is shown in Figure 2.3. It would be symmetrical for vertical incidence. Below the ionosphere N = 0 and q = cos θ . There is a critical electron density (N_A or N_B in Figure 2.3) for each magnetoionic component, above which that component will not penetrate for a given wave-frequency and angle of incidence. Hence the reflection points (A and B in Figure 2.3) are represented by $\frac{\partial q}{\partial N} \neq \infty$, not $\psi = \frac{\pi}{2}$ or q = 0 (D and E in Figure 2.3) as was the case for the isotropic ionosphere.

Following the example of Appleton, whose wave-function one may retrieve from Booker's by letting $\theta = 0$, the wave function, which was the assumed form of the electromagnetic wave-fields and the polarization, was substituted into the wave equations obtained from Maxwell's equations, resulting in a quartic equation in q, instead of the quadratic obtained by Appleton, represented by

$$F(q) \equiv \alpha q^4 + \beta q^3 + \gamma q^2 + \delta q + \varepsilon = 0 \qquad (2.4)$$

The four Booker quartic roots correspond to the upgoing ordinary, downgoing ordinary, upgoing extraordinary, and downgoing extraordinary waves. The exact nature of the coefficients in the Booker quartic equation depends on the assumptions concerning electron-neutral collisions and the form of the constitutive relation between the polarization \bar{P} and the electric field intensity \bar{E} . If the collisional damping due to electron-neutral collisions is included, the coefficients of the Booker quartic equation and the Booker quartic roots become complex quantities.

Figure 2.3 The Booker quartic roots q as a function of electron density N, for oblique incidence upon an inhomogeneous, anisotropic ionosphere (after Booker, 1938). The dashed curve represents the extraordinary wave; the solid curve represents the ordinary wave.

The quartic equation may be solved at any altitude, even for complex coefficients, by the method of Burnside and Panton (1904). Figure 2.3 may thus be obtained if the variation of electron density with height, the wavefrequency, the angle of incidence at the ground, and the earth's magnetic field vector, which is assumed to remain constant in magnitude and direction over the region of propagation, are specified.

The wave-fields for the upgoing extraordinary wave, downcoming extraordinary wave, upgoing ordinary wave, and downcoming ordinary wave are proportional at any altitude to

exp {ik (ct - (sin
$$\theta$$
)y - $\int_{0}^{z} qdz$ }, (2.5)

where the root q used is the one appropriate to the magnetoionic component under consideration. Since the form of the relationship between q and z or N can be very complicated, the integration in (2.5) may have to be performed numerically. The real part of q determines the phase change in the wave, whereas the imaginary part arising from collisional damping determines the attenuation as the integration proceeds. The integration for each magnetoionic component might also involve several separate parts due to a situation such as the one shown in Figure 2.4, where a q vs N plot and the corresponding group-ray diagram are depicted. The upgoing ordinary wave is represented by IB and A_2A_3 , the downgoing ordinary wave by RB and A_2A_1 , the upgoing extraordinary wave by IA₁, and the downgoing extraordinary wave

In any case, the reflection coefficients could in principle be calculated by comparing the wave-fields at the end of the path with those at the start

Figure 2.4 Another possible form of (a) q as a function of N for oblique incidence upon an inhomogeneous, anisotropic ionosphere with collisions included, and (b) the corresponding group-ray diagram (after Booker, 1938).

after all the phase change and attenuation, which occur over the whole path, and all the absorption, which occurs only over the portion of the path in the ionosphere, have altered the wave.

2.2 The Necessity for Full Wave-Theory

A wide variety of situations exist for which the ray theory is invalid; it fails to give a good description of reality. Booker (1938) discusses the failure of the theory in the stratum in which reflection takes place, that is, when the quartic roots for the upgoing and downgoing waves of either the ordinary (or extraordinary) component become nearly equal. He also mentions the failure in a region of coupling when the upgoing (or downgoing) waves of the ordinary and extraordinary component become nearly equal, and the two components thus lose their independence. Failure also occurs when the collisional damping is so great that reflection cannot be considered to occur at one height alone, but occurs partially at different levels. The failure of the medium to be slowly varying at the wave-frequency being used is the common factor in all of the inadequacies of ray theory. Usually, below wavefrequencies of 1 MHz, and always below wave-frequencies of 100 KHz, one must resort to a more exact solution of the electromagnetic wave equations. The form of the wave-fields assumed by Booker is no longer valid. The refractive indices of the ionosphere change appreciably within one wavelength. The upgoing energy is converted by the ionosphere to downgoing energy over a range of heights. Since studies of the D region involve frequencies of a few tens of KHz, it is necessary to employ the more exact full-wave theory.

dissions accoleration their g, the realson that preceive of the player.

3. FULL-WAVE THEORY

3.1 General Magnetoionic Theory

To develop a mathematical formalism to describe waves obliquely incident upon a horizontally stratified anisotropic, collisional, non-thermal, nonslowly varying, non-permeable ($\mu = \mu_0$), inhomogeneous ionosphere, one must first begin with the equation for conservation of charge, the continuity equation

$$m_{\alpha} \frac{\partial N_{\alpha}}{\partial A} + m_{\alpha} \overline{\nabla} \cdot (N_{\alpha} \overline{v}_{\alpha}) = 0 ; \qquad (3.1)$$

and the force equation, the magnetohydrodynamic equation

$$\mathbf{m}_{\alpha} \frac{D\bar{\mathbf{v}}_{\alpha}}{D\mathbf{t}} = \mathbf{z}_{\alpha} \mathbf{e}\bar{\mathbf{E}} + \mathbf{z}_{\alpha} \mathbf{e}\bar{\mathbf{v}}_{\alpha} \mathbf{x} \bar{\mathbf{B}} + \mathbf{m}_{\alpha} \mathbf{N}_{\alpha} \bar{\mathbf{g}} - \frac{\bar{\nabla}p}{N_{\alpha}} - \mathbf{m}_{\alpha} \mathbf{v}_{\alpha} \bar{\mathbf{v}}_{\alpha} , \qquad (3.2)$$

where the subscript α indicates a summation over the α charged constituents and the D/Dt is the convective derivative

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \bar{v}_{\alpha} \cdot \bar{\nabla} , \qquad (3.3)$$

which in this case gives the total time rate of change of the α th constituent's velocity, \bar{v}_{α} , on the left hand side of the force equation. Other quantities appearing in Equations (3.1) and (3.2) are the mass of the α th charged constituent, m_{α} ; the number density of the α th charged constituent, N_{α} ; the electric field of the skywave, \bar{E} ; the total magnetic field, including the earth's magnetic field and the magnetic field of the skywave, \bar{B} ; the gravitational acceleration field, \bar{g} ; the scalar fluid pressure of the plasma, p; and the collision frequency, measured in collisions per second, of the

 α th charged constituent with ions, electrons, and neutral atoms and molecules, The definition of these quantities makes the nature of each of the force va. terms on the righthand side of Equation (3.2) self-explanatory.

If it was desired to examine the propagation in the plasma in terms of characteristic modes, one would form perturbed equations using

n

्यत्र ्री 🕈 अस्

$$N_{\alpha} = N_{\alpha 0} + N_{\alpha}'$$

$$\bar{v}_{\alpha} = v_{\alpha 0} + \bar{v}_{\alpha}'$$

$$p_{\alpha} = p_{\alpha 0} + p_{\alpha}'$$

$$\bar{E} = \bar{E}_{0} + p_{\alpha}'$$

$$\bar{B} = \bar{B}_{0} + \bar{B}'$$

where the first quantity on the right hand side is the unperturbed ionospheric parameter, and the second is the perturbation due to the passage of the wave. To simplify matters, $v_{\alpha 0}$ and \bar{E}_{0} might be taken to be negligible. The perturbed counterparts of Equations (3.1) and (3.2) would be solved simultaneously for $ar{v}_{_{\mathcal{N}}}$ in terms of $ar{E}$, which would then be substituted into the equation for the electric polarization to obtain the constitutive relations with the susceptibility matrix, and finally the dielectric tensor. It is not relevant here to study the propagation in this manner, however, since the total effect of the ionosphere on the received wave is what is desired. Not only will $v_{\alpha 0}$ and \tilde{E}_{0} be neglected, but $N_{\alpha}^{(1)}$ as well. Then if non-linear terms in the perturbed quantities, the ath constituent's velocity and the wave-fields, are neglected, the terms ' the and an int as her said task shat , succeeds and to you as out more

the Syrade Postor and a contral to the of a product of a product of the

19

이 습능한테, 관람 두 사람이라고 ~

(3.4)

 $m_{\alpha}(\bar{v}_{\alpha} \cdot \overline{\nabla}) \ \bar{v}_{\alpha}$ $z_{\alpha}e\bar{v}_{\alpha} \times \bar{B}_{wave}$

are dropped. This eliminates the need for Equation (3.1). The Lorentz polarization term has been excluded, on the basis of experimental evidence discussed by Budden (1961).

If only a one component plasma is considered, that is, if only the motion of the electrons is considered and not the motion of the heavier, more sluggish ions, as is proper to do if the number density of ions is not much greater than the number density of electrons, then the summation over α charged constituents is no longer necessary, and z_{α} becomes equal to unity. The ions simply cannot respond to the passing wave-fields as rapidly as the electrons, and the motion that they do acquire is too small to be greatly affected by the earth's magnetic field for VLF frequencies, as mentioned by Budden (1961).

Finally, neglecting the effects of gravity and the thermal pressure gradient (3.2) reduces to

$$e\bar{E}_{wave} + e\frac{\partial\bar{r}}{\partial t} \times \bar{B}_{earth} = m\frac{\partial^2\bar{r}}{\partial t^2} + m v\frac{\partial\bar{r}}{\partial t}$$
, (3.5)

where the ionospheric electric fields have also been neglected. The collision frequency, v, is now that for electrons with ions, electrons, and neutrals, but since the number density of neutrals is so much greater than that of ions, and electrons it may be effectively taken as the collision frequency for electron-neutral collisions. This collision frequency, however, is dependent upon the energy of the electrons, this fact being taken into account by Sen and Wyller (1960) in a generalization of Appleton-Hartree magnetoionic theory. The inclusion of this energy dependence makes Equation (3.5) invalid, but it can still be used to give good results for VLF studies if the correct collision frequency profile is used, as shown by Deeks (1966a). The use of such an effective collision frequency profile is a mathematical device to equate, as far as possible, the two theories. The profiles of collision frequency for monoenergetic electrons of energy kT used in Sen-Wyller theory and for the effective collision frequency used to make Appleton-Hartree theory give fairly good agreement with the Sen-Wyller results for VLF calculations are shown in Figure 3.1. The dashed curve should be used for all calculations employing the theory of this chapter. The penalty for doing so, according to Deeks (1966a) is slightly increased absorption (smaller reflection coefficient magnitudes) relative to results obtained by using Sen-Wyller theory, but the difference between the results is less than experimental error, especially at VLF frequencies.

Although the wave at the transmitter is spherical, far from the antenna in a localized region it can be approximated by a plane wave of the form

 $\bar{Y} = \frac{e}{m\omega} \bar{B}$

the state and the

Thus $\frac{\partial}{\partial t}$ in (3.5) can be replaced by iw to produce an equation in the transform domain. Multiplying this transformed version of (3.5) by Ne/mw², where ω is the angular wave-frequency, and noting that the electric polarization, \bar{P} , and geomagnetic field vector, \bar{Y} , are given by

$$\bar{\mathbf{P}} = N e \bar{\mathbf{r}}$$
 (3.6)

(3.7)

Figure 3.1 Height variation of v_M , the collision frequency of mono-energetic electrons of energy kT (full curve) and v_{eff} , the effective classical collision frequency for very long wave calculations (dashed curve), (after Deeks, 1966a).

it is a straightforward matter to obtain the constitutive relations for the ionosphere. These are of the matrix form

$$\bar{P} = \varepsilon_0^{\mathcal{H}} \bar{E}$$
(3.8)

where \tilde{M} is the susceptibility tensor given by

$$\widetilde{M} = \frac{-X}{U(U^2 - Y^2)} \begin{pmatrix} U^2 - 1^2 Y^2 & -iUnY - 1mY^2 & iUmY - 1nY^2 \\ iUnY - 1mY^2 & U^2 - m^2 Y^2 & -iU1Y - mnY^2 \\ -iUmY - 1nY^2 & iU1Y - mnY^2 & U^2 - n^2 Y^2 \end{pmatrix}$$
(3.9)

The quantities of which the susceptibility matrix is composed are

$$X = \frac{Ne^2}{\varepsilon_0 m\omega^2} = \frac{\omega_p^2}{\omega^2}$$
(3.10)

$$Y = |\bar{Y}| = \left|\frac{e\bar{B}}{m\omega}\right| = \frac{\omega_{H}}{\omega}$$
(3.11)

$$U = 1 - iZ = 1 - i\frac{v}{\omega}$$
(3.12)

where $\omega_{\rm H}$ is the gyrofrequency for electrons or the cyclotron frequency, and $\omega_{\rm p}$ is the plasma frequency at the altitude corresponding to N(z). The letters 1, m, n represent the direction cosines of the geomagnetic field vector, $\bar{\rm Y}$, with respect to a right-handed coordinate system whose z axis is vertically upward and whose positive x axis is in the direction of the horizontal component of the wave vector, $\bar{\rm k}$. The direction cosines are given by

 $1 = -\cos \phi \cos \alpha$ $m = -\cos \phi \sin \alpha$ (3.13) $n = \sin \phi$

where ϕ is the magnetic dip angle, measured down from the horizontal ($0 < \phi \leq 90^{\circ}$ for Northern Hemisphere), and α is the azimuth east of magnetic north of the x axis, which is in the plane of propagation. The coordinate system is shown in Figure 3.2.

A point which often generates much confusion is that Y can be defined so that the gyrofrequency for electrons is negative

$$Y = \frac{e|\bar{B}|}{m\omega} \qquad (3.14)$$

If this is done, however, the signs of the direction cosines are changed, which means that they are the direction cosines of \overline{B} , which is oppositely directed to \overline{Y} . The use of either set of definitions for Y, 1, m, and n will yield the same susceptibility matrix elements.

One other point worthy of mention is that the expression for \bar{P} used in Equation (3.6) is the result of taking an average over a volume containing many electrons. The polarization vector and the wave fields used later in Maxwell's equations are assumed fairly constant over distances much less than a wavelength, but large compared with inter-electron distances even for a nonslowly varying medium. That is, changes in the electron density in the vertical direction are not neglected, but small irregularities are smoothed out. As Budden (1961) mentions, there would be no meaning in speaking of the value of \bar{P} at a specific point in the free space between electrons.

Figure 3.2 The relevant coordinate system at the transmitter. The wave vector \bar{k} is in the xz plane. \bar{B} is in the plane of the magnetic meridian. β , γ , Δ are the arccosines of the direction cosines, 1, m, n of the geomagnetic field vector, \bar{Y} .

3.2 The Relevant Equations

With the form of the plane wave already assumed below the ionosphere and the incident plane wave having its wave normal in the xz plane at an angle θ to the vertical, for all wave-fields

$$\frac{\partial}{\partial x} = -ik \sin \theta$$

$$(3.15)$$

$$\frac{\partial}{\partial y} = 0$$

Equations (3.8) and (3.15) together with Maxwell's electromagnetic equations

$$\overline{\nabla} \mathbf{x} \,\overline{\mathbf{E}} = -\mathbf{i}\mathbf{k}Z_{0}\overline{\mathbf{H}} = -\mathbf{i}\mathbf{k} \,\mathcal{H}$$

$$(3.16)$$

$$\overline{\nabla} \mathbf{x} \,\mathcal{H} = \frac{\mathbf{i}\mathbf{k}}{\varepsilon_{0}} \,\overline{\mathbf{D}} = \frac{\mathbf{i}\mathbf{k}}{\varepsilon_{0}} \,(\varepsilon_{0}\overline{\mathbf{E}} + \overline{\mathbf{P}}) ,$$

where z_0 is the characteristic impedance of the medium and ε_0 is the permittivity of free space, yield the matrix equation

$$\vec{e}' = -i k \vec{T} \vec{e}$$
 (3.17)

where the prime is the partial derivative with respect to altitude, and

$$\bar{e} = \begin{pmatrix} Ex \\ -E_y \\ \Re x \\ \Re y \end{pmatrix}$$
(3.18)

$$\hat{T} = \begin{pmatrix} \frac{SM_{31}}{1+M_{33}} & \frac{SM_{32}}{1+M_{33}} & 0 & \frac{C^2+M_{33}}{1+M_{33}} \\ 0 & 0 & 1 & 0 \\ \frac{M_{23}M_{31}}{1+M_{33}} - M_{21} & C^2+M_{22} - \frac{M_{23}M_{32}}{1+M_{33}} & 0 & \frac{SM_{23}}{1+M_{33}} \\ 1 + M_{11} - \frac{M_{13}M_{31}}{1+M_{33}} & \frac{M_{32}M_{13}}{1+M_{33}} - M_{12} & 0 & \frac{-SM_{13}}{1+M_{33}} \end{pmatrix}$$
(3.19)

and

where $S = \sin \theta$, $C = \cos \theta$, and the M_{ij} are elements of the susceptibility matrix. X and Z are functions of height, since they depend upon the electron density and collision frequency respectively. Therefore the M_{ij} are functions of height, making the T_{ij} functions of height. The wave-fields and their derivatives with respect to z are also naturally functions of height. If it was desired to solve for the actual wave-fields, Equation (3.17) would be treated. Of interest here, however, are the reflection coefficients, which are ratios of the fields at any altitude desired to the incident fields. The reflection coefficient matrix is defined as

$$\hat{\mathcal{R}}_{R} = \begin{pmatrix} \Pi^{R} \Pi & \Pi^{R} \bot \\ \bot^{R} \Pi & \bot^{R} \bot \\ \downarrow^{R} \Pi & \bot^{R} \bot \end{pmatrix} = \begin{pmatrix} \frac{E_{\Pi}^{(R)}}{E_{\Pi}^{(I)}} & \frac{E_{\bot}^{(R)}}{E_{\Pi}^{(I)}} \\ \frac{E_{\Pi}^{(R)}}{E_{\Pi}^{(I)}} & \frac{E_{\Pi}^{(R)}}{E_{\Pi}^{(I)}} \\ \frac{E_{\Pi}^{(R)}}{E_{\Pi}^{(I)}} & \frac{E_{\bot}^{(R)}}{E_{\Pi}^{(I)}} \end{pmatrix}$$
(13.20)

where $E_{||}^{(I)}$ and $E_{\perp}^{(I)}$ are the components of the incident electric field parallel and perpendicular to the plane of propagation respectively, and $E_{||}^{(R)}$ and $E_{\perp}^{(R)}$

are defined similarly for the reflected wave. The dependent variable is then the reflection coefficient matrix and not the wave-field vector. This is the dependent variable used by Budden (1955a). Barron and Budden (1959) resort to another dependent variable, however, termed the admittance matrix \tilde{A} . It is related to \tilde{R} by

$$\widehat{A} = \begin{pmatrix} -\left(\frac{\mathbf{I} \mathbf{R} \mathbf{I}^{+} \mathbf{I}^{+}}{2 \operatorname{RPOLY}^{+}} + 1\right) / C & \frac{\mathbf{I} \mathbf{I}^{R} \mathbf{I}}{2 \operatorname{RPOLY}} \\ -\frac{\mathbf{I}^{R} \mathbf{I} \mathbf{I}}{2 \operatorname{RPOLY}^{-}} & -\left(\frac{(\mathbf{I} \mathbf{I}^{R} \mathbf{I} \mathbf{I}^{-} \mathbf{I})}{2 \operatorname{RPOLY}^{-}} - 1\right) C \end{pmatrix}$$
(13.21)

where

$$\operatorname{RPOLY} = \left(\Pi \frac{R_{\Pi} - 1}{2} \right) \left(\Pi \frac{R_{\Pi} + 1}{2} \right) - \left(\frac{\Pi R_{\Pi}}{2} \right) \left(\frac{\Pi R_{\Pi}}{2} \right) \left(\frac{1}{2} \right)$$
(13.22)

The differential Equations (3.17) become, after this change of variable, in matrix form

$$i\tilde{\vec{A}} = k \left(\tilde{\vec{A}} \begin{pmatrix} -T_{11} & T_{12} \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} T_{44} & 0 \\ T_{34} & 0 \end{pmatrix} \tilde{\vec{A}} + \tilde{\vec{A}} \begin{pmatrix} -T_{14} & 0 \\ 0 & 1 \end{pmatrix} \tilde{\vec{A}} + \begin{pmatrix} T_{41} & -T_{42} \\ T_{31} & -T_{32} \end{pmatrix} \right)$$
(13.23)

where this correct version is given by Barron and Budden (1959), the version in Budden (1961) being incorrect. This equation is clearly too complicated to be solved analytically. After numerically integrating it down through the ionosphere from a known starting solution, however, R can be obtained from A

by

$$\hat{\mathcal{R}} = 2 \begin{pmatrix} -CA_{11} - 1 & A_{12} \\ A_{21} & 1 - A_{22}/C \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ -A_{21} & 1 - A_{22}/C \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ -A_{21} & 0 \end{pmatrix}$$
(13.24)

The wave admittance approach is used here, although the wave-fields as variables are preferred by others such as Pitteway (1965), and the reflection coefficients as variables by still others such as Sheddy (1968).

An antibultar in operion of the constraint of the action webs of the second of the sec

A set and the particular is required to one of a chieft matches and the particular of the set of

4. FULL-WAVE SOLUTIONS

4.1 The Starting Solution

The starting solution necessary to initiate the solution of the relevant differential equations from the full-wave theory of Chapter 3 can be obtained by the method of Sheddy (1968). This method does not depend on a lengthy, and often too slowly converging, preliminary integration, beginning with a crude estimate of the initial solution, down through a fictitious homogeneous ionosphere with X and Z held constant at their values at the height where the preliminary integration is started. This was the method of Budden (1955a). Such a preliminary integration is terminated when A' is arbitrarily close to zero, and the resultant A is the admittance matrix corresponding to only upgoing waves above the boundary, that is, the matrix for a sharply bounded homogeneous medium. This result may then be used as the starting solution back at the starting level for the preliminary integration, since once A is found which satisfies A = 0, it will not change over a homogeneous ionosphere. Clearly, this starting level must be well above the height in the real ionosphere where waves of a given frequency are interacting with the ionization. The same method could be used if $\overset{\mathcal{H}}{\mathsf{R}}$ were the dependent variable, but the rate of convergence to $\hat{R}' = 0$ would be different.

That the problem is reduced to one of a sharp boundary makes appropriate the boundary matching technique of Crombie (1961), which in turn employs the solutions to the Booker quartic equation with complex coefficients discussed in Chapter 2. The Booker quartic roots may be obtained in closed form using the mathematics of Burnside and Panton (1904). Whereas Crombie's solution was good only for west-east or east-west propagation, Sheddy's method gives the reflection coefficients for a plane of propagation of arbitrary azimuth east of north for a sharply bounded homogeneous ionosphere with a lower boundary at the height where one wishes to commence a full-wave solution.

The flow chart for the initial solution portion of the full-wave program is shown in Figure 4.2, the actual computer printout being given in the Appendix. Flow chart notation follows that of McCracken (1965). This flow chart is preceded by the flow chart in Figure 4.1 for the input portion of the main program, in which all quantities necessary for later calculations are defined or computed.

4.2 The Numerical Integration

later a preserve size to moite

Once the initial solution has been found, the numerical integration down through the real ionosphere is carried out using a modified Runge-Kutta process due to Gill (1951). The pertinent constants of nature, input parameters (indicated by asterisks) and integration variables are defined below. The left-hand symbol is the standard notation; the right-hand symbol is the notation used in the computer program, if it differs from the standard notation. MKS units are used in all calculations. All calculations are performed with double precision accuracy.

е	Charge of the electron (it is negative).
m,ELECM	Mass of the electron.
ε _o ,PERME	Permittivity of free space.
^μ o ^{,PERMM}	Permeability of free space.
c	Speed of light in a vacuum.
В	Magnitude of earth's magnetic field.
θ,THETA(in radians) ANGLE(in degrees)	Angle of incidence between the vertical and the wave normal of the incident wave

below the ionosphere.

Figure 4.2 Flow chart depicting initial solution (after Sheddy, 1968) portion of main program.

(C) ANT (I) AN

kaar at Broker quartra aquation. Elecante of recretion corricent

α,ALPHA(in radians) Azimuth east of magnetic north of positive x axis in the plane of propagation.

Wave-frequency.

horizontal).

with neutrals.

3.2.

Angular wave-frequency, $2\pi f$.

Electron number density.

Collision frequency of electrons

Magnitude of wave vector, ω/c .

Magnetic dip angle (measured down from

Direction cosines of magnetic field vector,

Y, for coordinate system shown in Figure

* AZEN(in degrees)

* f, FREQ

ω,OMEGA

k

\$\$,PHI(in radians)

* DIP(in degrees)

1,m,n;DCL,DCM,DCN

* N,ED(For data points only)

EDENS(in general)

EDPRE(at start of integration)

* v,CF(for data points only)

CFREQ CFPRE(at start of integration)

X, EX Ne.²/m ε_{ω}^{2}

Y,WHY |eB/wm|

The choice of absolute value signs surrounding the whole quantity and the corresponding choice for 1, m, n are discussed in Chapter 3.

v/w

 $\sqrt{-1}$

Susceptibility matrix.

T matrix.

Root of Booker quartic equation.

 $Elements_{2}$ of reflection coefficient matrix, R

i M,M=MR+iMI

Å,T=TR+iTI

q

Ζ

 $R_{11} = \prod^{R} \prod^{R} RC(1) = R(1) + iR(5)$

 $R_{12} = \prod_{R_{\perp}, RC(2) - R(2) + iR(6)}^{R_{12}}$ $R_{21} = \prod_{R_{\perp}, RC(3) = R(3) + iR(7)}^{R_{21}}$ $R_{22} = \prod_{R_{\perp}, RC(4) = R(4) + iR(8)}^{R_{22}}$ $|R_{\parallel}, MAGR$

argR, FAZR

R',DERR

 $A_{11}, AM(1) = Y(1) + iY(5)$

 A_{12} , AM(2)=Y(2)+iY(6)

 A_{21} , AM(3) = Y(3) + iY(7)

 A_{22} , AM(4) = Y(4) + iY(8)

A', DERIV DERIV(I)=DERY(I)+iDERY(I+4)

* NMAX

* PRMT(1)

* PRMT(2)

- * PRMT(3)
- * PRMT(4)
- * ZDATA
- ALT
- IHLF

and do from

C,CC

S,SS

Matrix of reflection coefficient magnitudes or amplitudes

Matrix of reflection coefficient phases or arguments

Matrix of reflection coefficient derivatives with respect to altitude

Elements of wave admittance matrix, Å

Matrix of wave admittance derivatives with respect to altitude

The number of data points comprising the digitized form of the electron density profile (same for collision frequency profile).

Height at start of integration.

Height at end of integration.

Integration interval.

cos θ

Accuracy maintained per step in the integration.

Height interval between data points.

Altitudes corresponding to data points representing profiles of N and v.

Number of times integration interval is halved in order to ensure accuracy supplied in PRMT(4).

 $\sin^4\theta$, because for each the fit

locations for this use of the M

The electron density and collision frequency profiles are specified by data points given every (-ZDATA) meters between PRMT(1) and (PRMT(2) + ZDATA) inclusive. If PRMT(3) < ZDATA, the values in between data points are computed by linear interpolation; no sophisticated fitting of polynomial curves to points is used. PRMT(1) is chosen so that EX \approx 100(1+WHY) and PRMT(2) so that EX < 1 for the frequency being used. Although these limits are vestiges of ray theory, and should not be considered to be related to precise levels of reflection for VLF waves, they give reasonable boundaries for the region of significant wave-ionosphere interactions.

The angle of incidence is computed by geometry, knowing the distance between the transmitter and receiver, and assuming an average height of reflection equal to the altitude where EX = (1+WHY). This height decreases during the sunrise period, causing θ to increase.

PRMT(3) is chosen small enough so that IHLF does not become too large, yet large enough so that an unnecessary number of calculations over gradual electron density gradients are avoided. PRMT(4) is chosen large enough so that IHLF does not become too large over steep electron density gradients, yet small enough so that the final results are meaningful.

Figure 4.3 shows the flow chart for the DRKGS IBM SSP Library subroutine used in the numerical integration. Figure 4.4 shows the flow chart for the subroutines FCT and OUTP called from within DRKGS. Use of the OUTP subroutine can provide a continuous print-out of the reflection coefficients down through the entire ionosphere, producing diagrams analogous to those of Pitteway (1964), who used the penetrating and non-penetrating wave-fields as dependent variables. The locations for this use of the OUTP subroutine are shown as dashed boxes in Figure 4.3. If this is not desired, the OUTP subroutine is not necessary. The

Figure 4.3 Flow chart depicting numerical integration subroutine DRKGS.

Figure 4.4 Flow chart depicting subroutines (a) FCT and (b) OUTP called from within DRKGS subroutine.

FCT subroutine computes the derivatives of the wave admittances as they steadily change down through the ionosphere because of the changing electron density and collision frequency. Figure 4.5 shows the output portion of the program, which gives the final reflection coefficient values below the ionosphere.

No provision was made to prevent numerical swamping, since with the dependent variables being of the same order of magnitude and the computer having great accuracy when operating in the deuble precision mode it was felt unneccessary.

4.3 Checks of the Full-Wave Program

A complicated computer program such as the one used in full-wave solutions cannot be used with any confidence until after its results have been thoroughly checked against known results.

The correctness of the starting solutions was verified in several ways. First, the Booker quartic roots were substituted into the Booker quartic equation to see if they satisfied it. The value of the Booker quartic equation, which should strictly be zero, was always at least 10² times smaller than any of the roots themselves, and often 10⁵ times smaller.

The starting reflection coefficients and admittance matrix elements were checked by substituting them into the differential equations. The values of the derivatives, which again for an exact solution should be zero, were at least 10^4 times smaller than any of the matrix elements themselves, and some of the derivatives were as much as 10^{17} times smaller. In other words, with matrix element magnitudes on the order of unity, the derivatives had magnitudes of 10^{-4} and smaller, or as close to the value zero as one might reasonably expect from a digital computer following all the steps of Sheddy's method while carrying 17 digits in its double precision mode of operation.

Figure 4.5 Flow chart depicting final output portion of main program.

In addition, a comparison was made with results of initial solutions numerically calculated by Fedor, <u>et al.</u>, (1964) for the special case of west-east propagation. Table 4.1 shows the results of the comparison, with all numbers rounded off to 2 places to the right of the decimal for brevity.

The numerical integration and the resulting final solutions were checked by comparing results with those of Budden (1955b), who in turn compared his results with the analytic solutions of Heading and Whipple (1952). The comparison was made for the case of vertical incidence, an exponential electron density profile, a constant collision frequency, a vertically downward magnetic field, and west-east propagation. Figure 4.6a shows Budden's comparison with Heading and Whipple for X = exp(.295z) and Z = 8 where z is in km. Points marked X were calculated by the author. A similar comparison is shown in Figure 4.6b, but the electron density gradient is sharper, X = exp(2.36z), and Z = 2.

A further comparison was made with the computing facilities at NELC and the Radio Research Station, Slough, England. For this check only, the collision frequency profile of Fejer and Vice (1959) was used, along with the nighttime electron density profile of Deeks (1964). The angle of incidence was taken to be 40°, the dip angle 70°, the azimuth of the propagation path 152°, and the wavefrequency 21.4 KHz. The numerical integration was started at 108.00 km and stopped at 63.55 km. Table 4.2 compares the results.

All of the comparisons made indicate that full-wave calculations with the program described can be used with reasonable confidence to find the variation of the reflection coefficient matrix under different circumstances, even for an ionosphere with steep electron density gradients.

TABLE 4.1

A comparison of the author's numerically calculated Starting solutions with those of Fedor, et al., (1964) of NELC.

II^RII NELC VIERTEL A₁₁ A21 A22 A12 NELC 15.26-i15.11 14.96-i15.25 14.96-i15.25 -15.39+i15.11 VIERTEL 9.91-i 9.82 9.75-i 9.97 9.74-i 9.97 -10.05+i 9.81 A'11 NELC VIERTEL

7

TABLE 4.2

A comparison of full-wave solutions for the nighttime electron density profile of Deeks (1964) and the collision frequency profile of Fejer and Vice (1959).

	11 ^R 11		R_	$ \mathbf{T}_{\mathbf{K}} $
RRS	.088	.089	.408	.509
NELC	.085	.088	.436	.573
VIERTEL	.057	.087	.458	.621

.

*

(b)

Figure 4.6 A comparison of the full-wave results, reflection coefficient magnitude vs angle of incidence, for v constant, $\phi = 90^{\circ}$, and $\alpha = 90^{\circ}$, of (a) Budden (1955b) (solid line), Budden using the formulas of Heading and Whipple (1952) (dashed line), and the author (points marked x) for $X = \exp(.295z)$, Z = 8 and (b). Budden (1955b) (solid line) and the author (points marked x) for $X = \exp(2.36z)$, Z = 2.

4.4 Suggestions for Applications of the Full-Wave Program

One important application of the full-wave program would be to test the consistency of theoretical and experimental methods of studying the D region by comparing the temporal behavior of the reflection coefficient matrix over the sunrise period obtained by full-wave solutions with the results from ground-based VLF studies. For the electron density profiles used in the full-wave program, the results of Smith <u>et al</u>. (1966), shown in Figure 4.7, might be used, with suitable lower E region profiles added to the upper portions of the curves to extend them to sufficiently high levels where the integration would be started. For experimental VLF results, those given by Sechrist (1968) might be employed. The results of both Smith and Sechrist were obtained during a period of minimum solar activity, but their measurements were made at mid-latitudes in different hemispheres. Also, Smith's profiles were not all determined in the same season. Clearly, the optimum comparison would involve data obtained at the same place and time, but such information is regrettably scarce.

Another valuable comparison would involve replacing Smith's electron density profiles above, which were deduced from ground-based experiments, with profiles obtained from rocket measurements, such as those of Mechtly and Smith (1968) shown in Figure 4.8. The degree of agreement of the theoretical results, obtained using both sets of sunrise electron density profiles, with the experimental VLF results might solve the controversy over which measurement technique is better for measuring electron densities.

If the degree of agreement between theory and experiment proved to be good, more confidence could be displayed in studying not only the sunrise period, but the similar sunset and eclipse conditions by the theoretical and

experimental means now used. It should be stressed, however, that the lack of agreement could be due to the lack of simultaneous measurements, an incomplete theoretical representation of the physical situation, or a combination of these and other factors. 48

Л

APPENDIX

The full-wave computer program printout is shown for a sample application, that of finding the reflection coefficients for a sunrise electron density profile. The flow charts for this program are given in Figures 4.1-4.5.

11-63

Y ACLES

•

ж

- 8 24

S

	\$JOB KP=29,LINES=3000,TIME=900,PAGES=100	
1	DIMENSION PRMT(5), DERY(8), AUX(8,8), ED(119), CF(119), ALT(120),	VAR TABLE
	CTR(4,4),TI(4,4),MR(3,3),MI(3,3),Y(8),R(8),MAGR(4),FAZR(4),T(4,4),	
	CDERIV(4), QSNGL(4), RSC(4), M(3,3), BEE(5), BE(4), W(3), ES(3), ARE(3)	
	CQ(4),QUP(2),D11(2),D13(2),D31(2),DELTA(2),PEEP(2),TEE(2),RC(4),	
	CAM(4), ZERD(4), AMS(4), RS(8), YS(8), DERR(4)	
2	REAL*4 FNR, SNGL, REAL, AIMAG, REEL, IMAG, RGSG, IGSG, RS, YS	
3	REAL*8 PRMT, Y, DERY, PERME, PERMM, E, EX, WHY, Z, C, B, DMEGA, K, FREQ, DCL,	
-	CDCM, DCN, ELECM, PHI, THETA, CC, SS, X, ED, CF, PI, UNITY, MAGR, FAZR, R,	
Constitution of the local division of the	CDCOS, DSIN, DABS, TR, TI, MR, MI, UR, UI, EDPRE, CFPRE, ALPHA, AUX, UPOLYR,	
	CUPOLYI, YPOLYR, YPOLYI, UDENOM, DSQRT, DBLE, ALT, DATAN, MDENOM, YDENOM	
Contraction of Street, or other	C, ANGLE, DIP, AZEN, ZDATA	
4	COMPLEX*8 CSQRT, CMPLX, CLOG, CEXP, GSG, FNS, QSNGL, RSC, AMS	*
5	COMPLEX*16 M,HH ,GG ,BEE,BE,HHH, III,GGG,ARE,Q,QUP,ZERO,D11,D12,	
-	CD13, D31, D32, D33, DELTA, PEEP, TEE, DELT, RC, AM, RPDLY, P, LP, LPCR, CRP, ES,	
	CFN, CDLOG, CDEXP, CDSQRT, DCMPLX, W, DCONJG, U, I, COEFF	
	C, T, DER IV, DERR, CYU, ZIP	
6	EXTERNAL FCT,OUTP	
•	C	
	C THE FOLLOWING ARE CONSTANTS OF NATURE	
	C E IS THE ELECTRON CHARGE	
	C ELECM IS THE ELECTRON MASS	
	C PERME IS THE ELECTRIC PERMITTIVITY UF FREE SPACE	
	C PERMM IS THE MAGNETIC PERMEABILITY OF FREE SPACE	
	C C IS THE SPEED OF LIGHT IN A VACUUM	
	C B IS THE EARTH'S MAGNETIC FIELD	
	C THE FOLLOWING ARE INPUT VARIABLES	
	C THETA IS THE ANGLE OF INCIDENCE	
	C PHI IS THE MAGNETIC DIP ANGLE, MEASURED FROM THE HORIZONTAL.	
	C IF B FIELD DIPS DOWN AS IN NORTHERN HEMISPHERE, PHI IS POSITIV	E
	C AND OKPHIKO. IF B FIELD DIPS UP AS IN SOUTHERN HEMISPHERE.	E
	C PHI IS NEGATIVE AND -90 <phi<o.< td=""><td></td></phi<o.<>	
	C ALPHA IS THE AZIMUTH OF PROPAGATION, MEASURED EAST OF MAGNETI	c
	C NORTH, THAT IS, IT IS THE ANGLE BETWEEN MAGNETIC NORTH AND THE	
	C POSITIVE X AXIS, WHERE THE XZ PLANE IS THE PLANE OF PROPAGATIO	
	C POSITIVE Z IS UPWARDS, POSITIVE X IS IN THE DIRECTION OF THE	
	C HORIZONTAL COMPONENT OF K, THE WAVEVECTOR. THE COORDINATE	
	C SYSTEM IS RIGHT-HANDED.	
	C FREQ IS THE FREQUENCY OF THE INCIDENT PLANE WAVE C ED IS THE ELECTRON DENSITY, WHICH IS A FUNCTION OF CHI, THE	
	C SOLAR ZENITH ANGLE, AS WELL AS ALTITUDE (ED PROFILE IS ONDATA	
	C CARDS)	
	C CF IS NU, THE COLLISION FREQUENCY(CF PROFILE IS ON DATA CARDS	
		nc
	C X = ALTITUDE C DCL, DCM, DCN ARE THE DIRECTION COSINES OF-B WITH RESPECT TO	
	C A COORDINATE SYSTEM WHOSE XZ PLANE IS THE PLANE OF INCIDENCE AND	
	C WHOSE Z AXIS VERTICAL.	
	C ALL VALUES ARE IN MKS UNITS	
7	E =-1.6021D-19	
8		
9	ELECM = 9.1091D-31	
10	PERME = 8.8542D-12	
	PERMM = 1.25664D-6	
11	C = 2.997925D8	
12	PI = 3.141593DC	
13	B = 0.560D-4	VARIABLE
	C CHI = 95.4	VARIABLE
14	ANGLE = 37.800	VARIABLE
15	DIP = 70.000	VARIABLE
16	AZEN =152.000	VARIABLE
17	FREQ = 21.40D3	VARIABLE
18	NMAX = 119	VARIABLE
19	EDPRE = 3.70D10	VARIABLE
20	CFPRE = 9.40D04	VARIABLE
21	PRMT(1) = 94000.000	VARIABLE
22	PRMT(2) = 64750.000	VARIABLE
23	PRMT(3) =-25.CD0	VARIABLE
24	PRMT(4) = .001CCD0	VARIABLE
25	ZDATA =- 250.0D0	VARIABLE
26	NDIM = 8	

27			DEADLE SEA ED CE	
		2.6	READ(5,25) ED,CF	
28		2:	5 FORMAT(11(1P10D8.2/),1P9D8.2/(1P1D8.2))	
	С		THE FOLLOWING VARIABLES ARE FUNCTIONS OF THE ABOVE INPUT VARIABLES	
29			THETA =ANGLE*PI/18C,0DC	
30			PHI = DIP * PI / 18C.0DC	
31			ALPHA = AZEN*PI/18C.ODC	
32			OMEGA =2.0DO* PI * FREQ	
33			K = CMEGA / C	
34			CC = DCOS(THETA)	
35			SS = DSIN(THETA)	
36			DCL = -DCOS(PHI) * DCOS(ALPHA)	
37			DCM =-DCOS(PHI) * DSIN(ALPHA)	
38			CCN =+CSIN(PHI)	
30	-			
	C		THE FOLLOWING CARDS ENSURE THE CORRECT VALUES OF DCL AND DCM.	
	С		THEY ARE NECESSARY BECAUSE OF THE FINITE ACCURACY OF THE COMPUTER.	
39			IF(90.0D0 - DIP)92,91,92	
40		91	$L CCL = C \cdot ODO$	
41			$DCM = C \cdot ODO$	
42	10.00	0.1	2. IF(90.000 - AZEN) 54, 93, 94	
43	-		3 DCL = C.0DO	
44		94	+ UNITY = DCL*DCL + DCM*DCM + DCN*DCN	CHECK
45	1000		WRITE(6,1) UNITY	CHECK
46		1		CHECK
	C			0112 011
17	С		BEGIN CALCULATION OF INITIAL SOLUTIONS USING METHOD OF SHEDDY.	
47			CALL PREFNIM,T ,SS,CC,DCL,DCM,DCN,EDPRE,CFPRE,OMEGA,ELECM,	
			CPERME, E, K, B)	
48			BEE(4) = 1.000 + M(3,3)	
49			BEE(3) = SS * (M(1,3) + M(3,1))	
50			BEE(2) = -((CC* CC) + M(3,3)) *(1.0D0+ M(1,1)) + (M(1,3)*M(3,1))	10.00
50				
			C+(M(2,3)*M(3,2))-(1.0DC+M(3,3))*((CC*CC) + M(2,2))	
51			BEE(1) = SS*(M(1,2)*M(2,3) + M(2,1)*M(3,2) - ((CC* CC) + M(2,2))	
			C*(M(1,3) + M(2,1)))	1.21
52			BEE(5) = (1.0D0+ M(1,1))*((CC* CC) + M(2,2))*((CC* CC) + M(3,3))	
			C+M(1,2)*M(2,3)*M(3,1) + M(1,3)*M(2,1)*M(3,2) -M(1,3)*((CC* CC)+	
			CM(2,2))*M(3,1)-(1.CDO+ M(1,1))*M(2,3)*M(3,2) -M(1,2)*M(2,1)*((
press			C CC* CC) + M(3,3))	S. S. A.
53			BE(3) = BEE(3)/(4.0D0*BEE(4))	
54			BE(2) = BEE(2)/(6.CDC*BEE(4))	1.
55		1.1.1	BE(1) = BEE(1)/(4.CDC*BEE(4))	
56			BE(4) = BEE(5)/BEE(4)	
57			WRITE(6,3) BE(3),BE(2),BE(1),BE(4)	
58	1.1.1	3	3 FORMAT(25x,2HBE/4(20x,1P2D19.10/)//)	
59			HHH = BE(2) - (BE(2) * BE(3))	
60			III = $BE(4) - (4 \cdot CDC* BE(3) * BE(1)) + (3 \cdot CDO* BE(2) * BE(2))$	
61			GGG = BE(1)-(3.0D0* BE(3) * BE(2)) +(2.0D0* BE(3) * BE(3) * BE(3))	
62			HH = - I I I / 12.000	
63			GG = -(GGG * GGG/4.CDO) - (HHH * ((HHH*HHH)) + (3.0DO* HH)))	
64		110	P = (-GG + CD SQRT((GG * GG) + (4.0D0 * HH * HH + HH)))/2.0D0	
65			W(1) = (1.000, 0.000)	
66			W(2) = DCMPLX(DCOS(2.0D0*PI/3.0DC), DSIN(2.0D0*PI/3.0D0))	1.00
67			W(3) = DCMPLX(DCOS(4.0D0*PI/3.0DC),DSIN(4.0D0*PI/3.0D0))	
68			LP =CDLOG(P)	
69			LPCR = LP/3.000	
70			CRP =CDEXP(LPCR)	
71			00 4 L=1,3	
72			ES(L) = W(L) * CRP	A. Marine
73			ARE(L) = CDSQRT(ES(L) - (HH/ES(L)) - HHH)	
74		,	4 CONTINUE	
14				
	С		TEST(IS - 2.0*ARE(1)*ARE(2)*ARE(3)/GGG = 1.0?)	
75			GSG = GGG	
76		12	IGSG = AIMAG(GSG)	
77			RGSG = REAL(GSG)	
78			IF(RGSG)6,5,6	
79			5 IF(IGSG)6,9,6	
80			5 FN = -2.0*ARE(1)*ARE(2)*ARE(3)/GGG	
81		1.97	WRITE (6,7) FN	
82	11	3147	7 FORMAT(25X,2HFN/2CX,1P2D19.10//)	
83	1.4 1946		FNS = FN	
		-	FNR = REAL(FNS)	and the second second
84				
85			IF(FNR)8,9,9	
86			ARE(1) = -ARE(1)	
87	1	•	9 CONTINUE	

51

.

-	C SOLUTIONS TO THE BCOKER QUARTIC	
88	Q(1) = ARE(1) + ARE(2) + ARE(3) - BE(3)	
89	Q(2) = ARE(1) - ARE(2) - ARE(3) - BE(3)	
90	Q(3) = -ARE(1) (ARE(2) - ARE(3) - BE(3))	
91	Q(4) = -ARE(1) - ARE(2) + ARE(3) - BE(3)	
92	WRITE(6,10) Q(1),Q(2),Q(3),Q(4)	
93	10 FORMAT(25X, 1HQ/4(2CX, 1P2D19.10/)///)	HECK
94	$\frac{DO 11 LLL=1,4}{ZERO(LLL) = Q(LLL) + Q(LLL) + Q(LLL) + 4.0D0 + BE(3) + Q(LLL) + Q(LLL) + C(LLL) + C(LL) + C($	HECK
45		HECK
96		HECK
97		HECK
98		HECK
99	I = (0.0DC, 1.CDC)	
	C D SIGNIFIES A DISPERSION MATRIX ELEMENT	
-	C WE CHOOSE THE SOLUTIONS TO THE QUARTIC EQUATION WHICH CORRESPOND	
	C TO UPGOING WAVES, THOSE WITH POSITIVE REAL AND NEGATIVE IMAGINARY P	ARTS
100	JJ = 1	
101	D12 = M(1,2) D32 = M(3,2)	
103	D33 = (CC*CC) + M(3,3)	
104	DO 13 KK=1,4	
105	QSNGL(KK) = Q(KK)	
106	REEL = REAL(QSNGL(KK))	
107	IMAG = -AIMAG(QSNGL(KK))	
108	IF(.NOT. (IMAG .GT. 0.0))GO TO 13	
109	QUP(JJ) = Q(KK)	
110	D11(JJ) = 1.0D0+ M(1.1) - (QUP(JJ) * QUP(JJ))	
111	D13(JJ) = M(1,3) + (QUP(JJ) * SS)	
112	$\frac{D31(JJ) = M(3,1) + (QUP(JJ) * SS)}{DELTA(JJ) = D11(JJ) * D33 - D13(JJ) * D31(JJ)}$	
114	PEEP(JJ) = (-C12*D33 + D13(JJ)*D32)/DELTA(JJ)	
115	TEE(JJ) = QUP(JJ) *PEEP(JJ) - (SS*(-D11(JJ)*D32 + D12*D31(JJ)) /	
	CDELTA(JJ))	1
116	JJ = JJ + 1	
117	13 CONTINUE	
118	WRITE(6,14) QUP(1),QUP(2)	
119	14 FORMAT(25X, 3HQUP/2(20X, 1P2D19.10/)///)	
120	DELT = (TEE(1)* CC + PEEP(1))*(CC+QUP(2)) - (TEE(2)* CC + PEEP(2)	
121	$\frac{C}{C} = ((TEE(1)) + CC - PEEP(1)) + (CC + QUP(2)) - (TEE(2)) + CC - CC + CC + QUP(2)) - (TEE(2)) + CC +$	
121	CPEEP(2))*(CC + QUP(1)))/DELT	
122	RC(2) =-2.0D0*CC*(2UP(1) - CUP(2))/DELT	
123	RC(3) =-2.0D0*CC*(TEE(1)*PEEP(2) - TEE(2)*PEEP(1))/DELT	
124	RC(4) = ((TEE(1)* CC + PEEP(1))*(CC - QUP(2)) - (TEE(2)* CC +	
	CPEEP(2))*(CC - QUP(1)))/DELT	1.000
125	DO 15 NN=1,4	
126	I I=NN+4	
127	RSC(NN) = RC(NN)	
128	$\frac{RS(NN) = REAL(RSC(NN))}{R(NN) = DBLE(RS(NN))}$	
130	RS(II) = AIMAG(RSC(NN))	
131	R(II) = DBLE(RS(II))	
132	15 CONTINUE	
	C R(1)=REAL (PARA R PARA) R(5) = IMAG(PARA R PARA)	
	C R(2)=REAL (PARA R PERP) R(6) = IMAG(PARA R PERP)	
•	C $R(3)=REAL (PERP R PARA)$ $R(7) = IMAG(PERP R PARA)$	
	C R(4)=REAL (PERP R PERP) R(8) = IMAG(PERP R PERP)	
133	WRITE(6,40) RC	HECK
134	$\frac{40 \text{ FORMAT(28X,18HINITIAL VALUE DF R/4(20X,1P2D18.10/))}}{\text{DERR(1)} = -(1/2.0DC)*(-T(1,1)+T(4,4)-(T(1,4)/CC)+CC*T(4,1)+RC(1)*}$	HECK
135	C(T(1,1)+T(4,4)-(T(1,4)/CC)-CC*T(4,1))+RC(3)*((T(1,2)/CC)-T(4,2))	
-	C - (T(1,1)+T(4,4)+(T(1,4)/CC)+CC*T(4,1))*RC(1)-(-T(3,1)-(T(3,4)/CC))	
	C*RC(2)-RC(1)*RC(1)*(-T(1,1)+T(4,4)+(T(1,4)/CC)-CC*T(4,1))-RC(1)*	1
	CRC(2)*(T(3,1)-(T(3,4)/CC))-RC(1)*RC(3)*(-(T(1,2)/CC)-T(4,2))-RC(2)	
	C*RC(3)*(-CC+(T(3,2)/CC)))*K	
136	DERR(2) = -(1/2.0D0) * ((T(1,2)/CC) - T(4,2) + (T(1,1) + T(4,4) - (T(1,4)/CC))	
-	C-CC*T(4,1))*RC(2)+((T(1,2)/CC)-T(4,2))*RC(4)-(-(T(1,2)/CC)-T(4,2))	
	C*RC(1)-(CC+(T(3,2)/CC))*RC(2)-RC(1)*RC(2)*(-T(1,1)+T(4,4)+(T(1,4)/	
	<u>CCC)-CC*T(4,1))-RC(2)*RC(2)*(T(3,1)-(T(3,4)/CC))-RC(1)*RC(4)*(-(T(1 C,2)/CC)-T(4,2))-RC(2)*RC(4)*(-CC+(T(3,2)/CC)))*K</u>	

æ

137	DERR(3) = -(1/2.0DC)*(T(3,1)+(T(3,4)/CC)+(-T(3,1)+(T(3,4)/CC))*RC	
	C(1) + (-CC - (T(3,2)/CC)) * RC(3) - RC(3) * (T(1,1) + T(4,4) + (T(1,4)/CC) + CC)	
	$\frac{CCC*T(4,1)}{CT(4,4)+(T(1,4)/CC)-CC*T(4,1)} - RC(1)*RC(1)*RC(3)*(-T(1,1)+CT(4,4)+(T(1,4)/CC)-CC*T(4,1)) - RC(1)*RC(4)*(T(3,1)-(T(3,4)/CC))$	
	C-RC(3)*RC(3)*(-(T(1,2)/CC)-T(4,2)) -RC(3)*RC(4)*(-CC+(T(3,2)/CC)))	
	C *K	
138	DERR(4) = -(1/2.0DC)*(CC-(T(3,2)/CC)+RC(2)*(-T(3,1)+(T(3,4)/CC))	1
	C+RC(4)*(-CC-(T(3,2)/CC)) -RC(3)*(-(T(1,2)/CC)-T(4,2)) -RC(4)*(CC+	
	C(T(3,2)/CC)) = RC(2) * RC(3) * (-T(1,1) + T(4,4) + (T(1,4)/CC) - CC * T(4,1))	
	C-RC(2)*RC(4)*(T(3,1) - (T(3,4)/CC)) - RC(3)*RC(4)*(-(T(1,2)/CC)-T(4, C)) - RC(3)*RC(4)*(-(T(1,2)/CC)-T(4, C)) + RC(4)*(-(T(1,2)/CC)-T(4, C)) + RC(4)*(-(T(1,2)/CC)-T(4)) + RC(4)*(-(T(1,2)/CC)-T(4)) + RC(4)*(-(T(1,2)/CC))	
139	C2)) -RC(4)*RC(4)*(-CC+(T(3,2)/CC)))*K WRITE(6,33) DERR	
140	33 FORMAT(28X,21HINITIAL VALUE OF DERR/4(20X,1P2D18.10/))	
141	MAGR(1) = DSQRT((R(1)**2) + (R(5)**2))	
142	MAGR(2) = DSQRT((R(2) * * 2) + (R(6) * * 2))	
143	MAGR(3) = DSQRT((R(3)**2) + (R(7)**2))	
144	MAGR(4) = DSQRT((R(4) * * 2) + (R(8) * * 2))	1
145	FAZR(1) = DATAN(R(5)/R(1))*180.0/PI	
146	FAZR(2) = DATAN(R(6)/R(2))*180.0/PI FAZR(3) = DATAN(R(7)/R(3))*180.0/PI	
148	FAZR(4) = DATAN(R(E)/R(4))*180.0/PI	
149	WRITE(6,16)	
150	16 FORMAT(///25X, 32HSTARTING REFLECTION COEFFICIENTS//27X, 4HMAGR, 14X,	a shares
	C4HFAZR//)	
151	WRITE(6,17)MAGR(1),FAZR(1),MAGR(2),FAZR(2),MAGR(3),FAZR(3),	
160	CMAGR(4), FAZR(4) 17 FORMAT(4(20X, 1P2D19.10/))	
152 153	$RPOLY = \{((RC(1) - 1.CD0)/2.0D0)*((RC(4) + 1.0D0)/2.0D0) -$	
133	C(RC(3)/2.0D0)*(RC(2)/2.0D0))	
154	AM(1) = -(((RC(4) + 1.0D0)/(2.0D0 * RPULY)) + 1.0D0)/CC	1.1
155	AM(2) = -RC(2)/(2.0DO*RPOLY)	1.3.11
156	AM(3) = -RC(3)/(2.0DO*RPCLY)	
157	AM(4) = -(((RC(1) - 1.0D0)/(2.0D0 * RPOLY)) - 1.0D0) * CC	in the second
158	DO 18 MM=1,4	
159	LL = MM + 4 $AMS(MM) = AM(MM)$	
161	YS(MM) = REAL(AMS(MM))	
162	Y(MM) = DBLE(YS(MM))	
163	YS(LL) = AIMAG(AMS(MM))	
164	Y(LL) = DBLE(YS(LL))	
165	18 CONTINUE	
	C Y(1) =REAL (A11) Y(5) = IMAG (A11) C Y(2) =REAL (A12) Y(6) = IMAG (A12)	
	C Y(3) =REAL (A21) $Y(7) = IMAG (A21)$	
	C Y(4) =REAL (A22) Y(8) = IMAG (A22)	and the second
166	WRITE(6,19)	
167	19 FORMAT(///30X,18HINITIAL VALUE OF Y/27X,5HREALY,14X,5HIMAGY/)	1
168	WRITE(6,20) AM	
169	20 FORMAT(4(20X,1P2D15.1C/))	CHECK
170	DERIV(1) =(-I*(T(4,4)*AM(1) -T(1,1)*AM(1) +T(4,1) +AM(2)*XM(3) C -T(1,4)*AM(1)*AM(1))*K	CHECK
171	DERIV(2) = (-I*(T(4,4)*AM(2) + T(1,2)*AM(2) - T(4,2) + AM(2)*AM(4))	CHECK
		CHECK
172	DERIV(3) =(-I*(-T(1,1)*AM(3) +T(3,4)*AM(1) +T(3,1) +AM(3)*AM(4)	CHECK
	C -T(1,4)*AM(1)*AM(3)))*K	CHECK
173	DERIV(4) =(-I*(T(1,2)*AM(3) +T(3,4)*AM(2) -T(3,2) +AM(4)*AM(4)	CHECK
	C -T(1,4)*AM(2)*AM(3)))*K	CHECK
174	WRITE(6,22)	CHECK
175	22 FORMAT(///28X,21HINITIAL VALUE OF DERY/24X,8HREALDERY,14X,8HIMAGDE CRY/)	CHECK
176	WRITE(6,23) DERIV	CHLOR
177	23 FORMAT(20X, 1P2D19.10/20X, 1P2D19.10/20X, 1P2D19.10/20X, 1P2D19.10//)	CHECK
	C END CALCULATION OF INITIAL SOLUTIONS.	
178	24 DERY(1) = .1250D0	
179	DERY(2) = .1250D0	
180	DERY(3) = .1250D0	
181	CERY(4) = .1250D0	
182 183	DERY(5) = .1250D0 DERY(6) = .1250D0	
183	DERY(7) = .125000	
185	DERY(8) = .1250D0	

106	C ASSOCIATE ALTITUDES WITH ED AND CF DATA POINTS. NMAXI = NMAX + 1	
186	DO 32 J=1,NMAXI	
188	ALT(J) = PRMT(1) + (PRMT(3)*(J-1))	
189	32 CONTINUE	
109	C IT MUST BE REMEMBERED THAT THE INDEPENDENT VARIABLE X	TN THIS
	C PROGRAM REPRESENTS Z OR H + THE ALTITUDE + NOT	
	C DIRECTION, THAT THE DEPENDENT VARIABLE Y REPRESENT	
	C ADMITTANCE MATRIX A, NOT THE Y DIRECTION, AND THAT	
	C CF(N) / OMEGA, NOT THE Z(OR H OR VERTICAL	
	C THIS IS CONFUSING NOTATION BUT ELIMINATES THE NEC	SS114 10
	C CHANGE VARIABLE NAMES IN THE DRKGS SUBROUTINE.	
	C THE INTEGRATION IS STARTED ARBITRARILY WHERE EX= 100 #	
	C , I.E., WELL ABOVE THE HEIGHT OF REFLECTIONS, AND CONTIN	NUES DUWN TU
	C LEVELS WHERE N < 1 ELECTRON/CM**3	
	C BEGIN CALCULATIONS OF FINAL SOLUTIONS.	
190	CALL DRKGS (PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX, ALT,	
	CMR, MI, R, CC, DCL, DCM, DCN, WHY, SS, ED, CF, OMEGA, ELECM, PERME,	
191	$\frac{YPDL YR=-1.0D0 - (CC*Y(1)) + (Y(4)/CC) + Y(1)*Y(4) - Y(5)*Y(1)}{(1)}$	(8) -Y(2)*Y(3
	C) +Y(6)*Y(7)	
192	YPOLYI= -CC*Y(5) +(Y(8)/CC) +Y(1)*Y(8) +Y(4)*Y(5) -Y(2	2)*Y(7)
	C-Y(3)*Y(6)	
193	YDENOM = (YPOLYR**2) + (YPOLYI**2)	
194	R(1) =(2.0D0 * (YPCLYR*(1.0D0-(Y(4)/CC))-(Y(8)*YPOLY1/	CC))/YDENOM
	C)+ 1.0D0	
195	R(2) = -2.0D0*(Y(2)*YPOLYR +Y(6)*YPOLYI)/YDENOM	
196	R(3)= -2.0D0*(Y(3)*YPOLYR +Y(7)*YPOLYI)/YDENOM	
197	R(4) = (-2.000*(YPCLYR*(CC*Y(1) + 1.0D0) + YPOLYI * CC	(*Y(5))/
	CYDENOM) - 1.000	
198	R(5) = (-2.0DO*(YPOLYI*(1.0D0 - (Y(4)/CC)) + YPOLYR*()	(18)/(C))/
	CYDENOM)	
199	R(6)=-2.0D0*(-Y(2)*YPOLYI +Y(6)*YPCLYR)/YDENOM	
200	R(7)=-2.0D0*(-Y(3)*YPOLYI +Y(7)*YPOLYR)/YDENOM	
201	R(8) = 2.0D0*(-YPOLYR*CC*Y(5) + YPOLYI*(CC*Y(1)+1.0D0)	1/YDENOM
202	DO 46 LA=1,4	in isenon
203	L0 = LA + 4	
204	MAGR(LA) = DSQRT((R(LA) * R(LA)) + (R(LC) * R(LC)))	
205	FAZR(LA) = (DATAN(DABS(R(LO)/R(LA))))*180.0/PI	
206	IF(R(LO))41,43,43	
207	41 IF(R(LA))42,45,45	
208	42 FAZR(LA) = FAZR(LA) + 180.0	
209	GOTO 46	
210	43 IF(R(LA))44,46,46	
211	44 FAZR(LA) = FAZR(LA) + 90.0	
212	GOTO 46	
213	45 FAZE(LA) = FAZE(LA) + 270.0	
214	46 CONTINUE	
215	WRITE(6,26)	LEG CONTRACTOR
216	26 FORMAT(///7X,1HX,8X,4HIHLF,7X,5HREALY,14X,5HIMAGY,12X,	SHREALDERY,
Children of	C11X, 8HIMAGDERY, 13X, 5HREALR, 14X, 5HI MAGR/19X, 1HN/)	
217	WRITE(6,27)X, IHLF, Y(1), Y(5), DERY(1), DERY(5), R(1), R(5),	
	CDERY(2), DERY(6), R(2), R(6), Y(3), Y(7), DERY(3), DERY(7), R((3),R(7),
1.1.1	CY(4), Y(8), DERY(4), DERY(8), R(4), R(8), N	N. W. Statistics
218	27 FORMAT(1X, 1P1D16.10, 13, 1P6D18.10/20X, 1P6D18.10/20X, 1P6	D18.10/
	C20X, 1P6D18.10/120//)	and the second second
219	WRITE(6,28)MAGR(1),FAZR(1),MAGR(2),FAZR(2),MAGR(3),FA	ZR(3),
	CMAGR(4), FAZR(4)	
220	28 FORMAT(////30X, 35HFINAL REFLECTION COEFFICIENT VALUES	5//36X.
	C4HMAGR, 18X, 4HFAZR//15X, 5H11R11, 5X, 1P2D22.10/15X, 5H11R	
	C1P2D22.10/15X,5H+ R11,5X,1P2D22.10/15X,5H+ R +,5X,1P2D	
221	29 STOP	
222	END	
E E E		

54

.

*

224	CPERME, E, K, B)	
224	DIMENSION M(2,3) C,T(4,4)	CHE
225	REAL*8 SS,CC,DCL,DCM,DCN,EDPRE,CFPRE,OMEGA,ELECM,PERME,E,K	
665	CB, EX, WHY, Z	
226	COMPLEX*16 M,U,COEFF,I	
220	C,T,UNDER	CHE
	C CALCULATIONS ARE DONE IN COMPLEX NUMBERS.	CHE
227	EX = EDPRE*E *E/(PERME*ELECM*OMEGA*OMEGA)	
228	WHY =-E*B/(OMEGA*ELECM)	
229	Z = CFPRE/OMEGA	
	C = U = UR + I * UI	
230	I = (C.0D0, 1.CD0)	
231	U = 1.000 - I * Z	
232	COEFF = -EX/(U*(U*U-WHY*WHY))	
233	M(1,1) = COEFF*(U*U - DCL*DCL*WHY*WHY)	
234	M(1,2) = COEFF*(-I*U*DCN*WHY -DCL*DCM*WHY*WHY)	
235	M(1,3) = COEFF*(I*U*DCM*WHY -DCL*DCN*WHY*WHY)	
236	M(2,1) = COEFF*(I*U*DCN*WHY -DCL*DCM*WHY*WHY)	
237	M(2,2) = COEFF*(U*U - DCM*DCM*WHY*WHY)	
238	M(2,2) = COEFF*(-I*U*DCL*WHY -DCM*DCN*WHY*WHY)	
239	M(3,1) = COEFF*(-I*U*DCM*WHY -DCL*DCN*WHY*WHY)	
240	M(3,2) = COEFF*(I*L*DCL*WHY -DCM*DCN*WHY*WHY)	
241	M(3,3) = CDEFF*(U*U - DCN*DCN*WHY*WHY)	
242	UNDER = $1.000 + M(3.3)$	CHE
243	T(1,1) = -SS*M(3,1)/UNDER	CHE
244	T(1,2) = SS*M(3,2)/UNDER	CHE
245	T(1,2) = (0.CDC, 0.CDC)	CHE
246	T(1,4) = ((CC*CC) + M(3,3))/UNDER	CHE
247	T(2,1) = (0.0D0, 0.0D0)	CHE
248	T(2,2) = (0.0D0, 0.0D0)	CHE
249	T(2,3) = (1.CD0, 0.0D0)	CHE
250	f(2,4) = (C,CD0,C,OD0)	CHE
251	T(3,1) = (M(2,3)*M(3,1)/UNDER) - M(2,1)	CHE
252	T(3,2) = (CC*CC) + M(2,2) - (M(2,3)*M(3,2)/UNDER)	CHE
253	T(3,3) = (0.0D0, 0.0D0)	CHE
254	T(3,4) = SS*M(2,3)/UNDER	CHE
255	T(4,1) = 1.0D0 + M(1,1) - (M(1,3)*M(3,1)/UNDER)	CHE
256	T(4,2) = (M(3,2)*M(1,3)/UNDER) - M(1,2)	CHE
257	T(4,3) = (C.CDC, C.ODO)	CHE
258	T(4,4) = -SS*M(1,3)/UNDER	CHE
259	WRITE(6,41)M(1,1),M(1,2),M(1,3),M(2,1),M(2,2),M(2,3),M(3,1),	CHE
	CM(3,2),M(3,3)	CHE
260	41 FORMAT(40X, 16HM(COMPLEX CALC.)/3(2X, 1P2D18.10, 2X, 1P2D18.10, 2X,	CHE
	C1P2D18.10/))	CHE
261	WRITE(6,42)T(1,1),T(1,2),T(1,3),T(1,4),T(2,1),T(2,2),T(2,3),	CHE
	CT(2,4),T(3,1),T(3,2),T(3,3),T(3,4),T(4,1),T(4,2),T(4,3),T(4,4)	CHE
262	42 FORMAT(40X,16HT(COMPLEX CALC.)/4(2X,1P2013.5,2X,1P2013.5,2X,	CHE
4	C1P2D13.5,2X,1P2D13.5/))	CHE
263	RETURN	
264	END	

• /

•

265	SUBROUTINE FCT(X,Y,CERY,TR,TI,MR,MI,SS,CC,DCL,DCM,DCN,ED,CF,OMEGA,
266	CELECM, PERME, E, K, ALT, PRMT, N, EVE, ZDATA) DIMENSION Y(8), DERY(8), TR(4,4), TI(4,4), MR(3,3), MI(3,3), PRMT(5),
	CED(119) , CF(119) , ALT(120) VARIABLE
267	REAL*8 X, Y, DERY, TR, TI, MR, MI, SS, CC, DCL, DCM, DCN, ED, CF, OMEGA, ELECM, CPERME, E, K, B, EX, WHY, Z, UR, UI, UPOLYR, UPOLYI, UDE NOM, MDENOM, DABS
1	C,ALT,EDENS,PRMT,EVE,ZDATA,CFREQ
	C CALCULATIONS ARE DONE IN REAL NUMBERS- COMPLEX NUMBERS SEPARATED
	C INTO REAL AND IMAGINARY PARTS. C BETWEEN ALTITUDES FOR WHICH ED AND CF HAVE BEEN SPECIFIED ON DATA CARDS
	CED AND CF ARE LINEARLY INTERPOLATED.
268 269	N = -((PRMT(3)-X) / ZDATA) + 1 L = N + 1
270	EDENS= -((ALT(N)-X)*ED(L)/ ZDATA) +(ALT(L)-X)*ED(N)/ZDATA
271	CFREQ= - ((ALT(N)-X)*CF(L)/ ZDATA) + (ALT(L)-X)*CF(N)/ZDATA
272 273	IF(EVE-EDENS)47,46,47 47 EVE = EDENS
274	B = C.560D-4
	C EX IS DIMENSIONLESS AND IS THE RATIO OF THE SQUARE OF THE PLASMA C FREQUENCY TO THE SQUARE OF THE WAVE FREQUENCY
	C FREQUENCY TO THE SQUARE OF THE WAVE FREQUENCY C PERMM IS NOT INCLUDED IN WHY IN MKS UNITS, WHY IS DIMENSIONLESS
	C AND IS THE RATIO OF THE GYROFREQUENCY TO THE WAVE FREQUENCY
	C Z IS DIMENSIONLESS AND IS THE RATIO OF THE COLLISION FREQUENCY C TO THE WAVE ANGULAR VELOCITY(OR 2*PI*WAVE FREQUENCY)
275	EX = EDENS*E*E/(PERME*ELECM*OMEGA*OMEGA)
276	WHY = DABS(E*B/(OMEGA*ELECM))
277	$Z = CFREQ/OMEGA$ $C \qquad U = UR + I * UI$
278	UR = 1.0
279	UI = -Z
280	<u>C</u> UPOLY = UPOLYR + I * UPOLYI UPOLYR = (UR**3) - (3.CDO*UR*(UI**2)) - (UR * (WHY**2))
280	UPOLYI = -(UI**3) + (3.CDO+UI*(UR**2)) - (UI * (WHY**2))
282	UDENOM = UPOLYR**2 + UPOLYI**2
283	C M = MR + I * MI MR(1,1)=-EX*((UPOLYR*((UR**2)-(UI**2)-((DCL**2)*(WHY**2))))+(
	CUPOLYI*2.0DO*UI*UR))/UDENOM
284	MI(1,1)=-EX*((UPOLYR*2.0DO*UI*UR)-(UPOLYI*((UR**2)-(UI**2)-((DCL**
285	C2)*(WHY**2))))/UDENCM MR(1,2)=EX*((UPOLYR*((DCL*DCM*(WHY**2))-(UI*DCN*WHY)))+(UPOLYI*UR*
	CDCN*WHY))/UDENOM
286	MI(1,2)=EX*((UPOLYI*((UI*DCN*WHY)-(DCL*DCM*(WHY**2))))+(UPOLYR*UR*
287	CDCN*WHY))/UDENOM MR(1,3)=EX*((UPOLYR*((DCL*DCN*(WHY**2))+(UI*DCM*WHY)))-(UPOLYI*UR*
	CDCM*WHY))/UDENOM
288	MI(1,3)=EX*((UPDLYI*((UI*DCM*WHY)+(DCL*DCN*(WHY**2)))+(UPDLYR*UR* CDCM*WHY))/(-UDENDM)
289	MR(2,1)=EX*((UPOLYR*((DCL*DCM*(WHY**2))+(UI*DCN*WHY)))-(UPOLYI*UR*
200	CDCN+WHY))/UDENOM
290	MI(2,1)=EX*((UPOLYI*((UI*DCN*WHY)+(DCL*DCM*(WHY**2)))+(UPOLYR*UR* CDCN*WHY))/(-UDENCM)
291	MR(2,2)=-EX*((UPDLYR*((UR**2)-(UI**2)-((DCM**2)*(WHY**2))))+(
292	CUPOLYI*2.0D0*UI*UR))/UDENCM MI(2,2)=-EX*((UPOLYR*2.0D0*UI*UR)-(UPOLYI*((UR**2)-(UI**2)-((DCM**
676	C2)*(WHY**2)))))/UDENCM
293	MR(2,3)=EX*((UPOLYR*((DCN*DCM*(WHY**2))-(UI*DCL*WHY)))+(UPOLYI*UR*
294	CCCL*WHY))/UDENOM MI(2,3)=EX*((UPOLYI*((UI*DCL*WHY)-(DCN*DCM*(WHY**2))))+(UPOLYR*UR*
	CDCL*WHY))/UDENOM
295	MR(3,1)=EX*((UPDLYR*((DCL*DCN*(WHY**2))-(UI*DCM*WHY)))+(UPDLYI*UR*
296	CDCM*WHY))/UDENOM MI(3,1)=EX*((UPOLYI*((UI*DCM*WHY)-(DCL*DCN*(WHY**2))))+(UPOLYR*UR*
-	CCCM*WHY) 1/UDENOM
297	MR(3,2)=EX*((UPOLYR*((DCM*DCN*(WHY**2))+(UI*DCL*WHY)))-(UPOLYI*UR*
298	CDCL*WHY))/UDENOM MI(3,2)=EX*((UPOLYI*((UI*DCL*WHY)+(DCM*DCN*(WHY**2))))+(UPOLYR*UR*
	CDCL+WHY))/(-UDENOM)
299	MR(3,3)=-EX*((UPOLYR*((UR**2)-(UI**2)-((DCN**2)*(WHY**2))))+(CUPOLYI*2.0DO*UI*UR))/UDENCM
300	MI(3,3)=-EX*((UPOLYR*2.0DO*UI*UR)-(UPOLYI*((UR**2)-(UI**2)-((DCN**
	C2)*(WHY**2))))/UDENOM
301	$ \begin{array}{l} MDENCM = ((1.0D0 + MR(3,3)) * * 2) + (MI(3,3) * * 2) \\ C T = TR + I * TI \\ \end{array} $
302	TR(1,1)=-(SS*((MR(3,1)*(1.0D0+MR(3,3)))+(MI(3,1)*MI(3,3)))/MDENOM
	TI(1,1)=-(SS*((-MR(3,1)*MI(3,3))+(MI(3,1)*(1.0D0+MR(3,3)))))/MDENO

-

24

5

.

	306	CM TR(1,3)=0.0DC
	307	TI(1,3)=0.0D0
	308	TR(1,4)=(((CC**2)+MR(3,3))*(1.0D0+MR(3,3))+(MI(3,3)**2))/MDENOM
	309	TI(1,4)=(MI(3,3)*(1.0D0+MR(3,3))-MI(3,3)*((CC**2)+MR(3,3)))/MDENOM
	310 311	TR(2,1)=0.0DC TI(2,1)=0.0D0
	312	TR { 2 + 2 }= 0.0D 0
	313	TI(2,2)=0.0D0
	314	TR(2,3)=1.0D0
	315	TI (2, 3)=0.0D0
	316 317	TR(2,4)=0.0DC TI(2,4)=0.0DC
	318	TR(3,1)=((MR(2,3)*MR(3,1)*(1.0D0+MR(3,3))-MI(2,3)*MI(3,1)*(1.0D0+
		CMR(3,3))+MR(2,3)*MI(3,1)*MI(3,3)+MR(3,1)*MI(2,3)*MI(3,3))/MDENOM)
	210	C-MR(2,1)
	319	TI(3,1)=((MI(2,3)*NI(3,1)*MI(3,3)-MR(2,3)*MR(3,1)*MI(3,3)+MR(2,3)* C(1.0D0+MR(3,3))*MI(3,1)+MI(2,3)*MR(3,1)*(1.0D0+MR(3,3)))/MDENOM)
	training a	C-MI(2,1)
	320	TR(3,2)=((MR(3,2)*MR(2,3)*(1.0D0+MR(3,3))-MI(3,2)*MI(2,3)*(1.0D0+
		CMR(3,3))+MR(3,2)*MI(2,3)*MI(3,3)+MR(2,3)*MI(3,2)*MI(3,3))/(-MDENOM
	321	C))+(CC**2)+MR(2,2) TI(3,2)=((MI(3,2)*MI(2,3)*MI(3,3)-MR(3,2)*MR(2,3)*MI(3,3)+MR(3,2)*
	321	C(1.0D0+MR(3,3))*MI(2,3)+MI(3,2)*MR(2,3)*(1.0D0+MR(3,3)))/(-MDENOM)
	-	C1+MI(2,2)
	322	TR (3,3)=0.000
1 Second	323	TI(3,3)=0.000
	324 325	TR(3,4)=+(SS*((MR(2,3)*(1.0D0+MR(3,3)))+(MI(2,3)*MI(3,3))))/MDENOM TI(3,4)=+(SS*((-MR(2,3)*MI(3,3))+(MI(2,3)*(1.0D0+MR(3,3))))/MDENOM
	363	CM
	326	TR(4,1)=((MR(3,1)*MR(1,3)*(1.0D0+MR(3,3))-MI(3,1)*MI(1,3)*(1.0D0+
		CMR(3,3))+MR(3,1)*MI(1,3)*MI(3,3)+MR(1,3)*MI(3,1)*MI(3,3))/(-MDENO
0007-18-1		C))+1.0D0+MR(1,1)
	327	TI(4,1)=((MI(3,1)*MI(1,3)*MI(3,3)-MR(3,1)*MR(1,3)*MI(3,3)+MR(3,1)* C(1.0D0+MR(3,3))*MI(1,3)+MI(3,1)*MR(1,3)*(1.0D0+MR(3,3)))/(-MDENDM)
		C)+MI(1,1)
	328	TR(4,2)=((MR(3,2)*MR(1,3)*(1.0D0+MR(3,3))-MI(3,2)*MI(1,3)*(1.0D0+
		CMR(3,3))+MR(3,2)*MI(1,3)*MI(3,3)+MR(1,3)*MI(3,2)*MI(3,3))/MDENOM)
	330	C-MR(1,2) TI(4,2)=((MI(3,2)*MI(1,3)*MI(3,3)-MR(3,2)*MR(1,3)*MI(3,3)+MR(3,2)*
	329	C(1.0D0+MR(3,3))*MI(1,3)+MI(3,2)*MR(1,3)*(1.0D0+MR(3,3)))/MDENOM)
		C-MI(1,2)
	330	TR(4,3)=0.0D0
	331	TI(4,3)=0.0D0
	332	TR(4,4)=-(SS*((MR(1,3)*(1.0D0+MR(3,3)))+(MI(1,3)*MI(3,3))))/MDENOM TI(4,4)=-(SS*((-MR(1,3)*MI(3,3))+(MI(1,3)*(1.0D0+MR(3,3))))/MDENOM
	333	CM
	334	46 DERY(1)=(-TR(1,1)*Y(5)-T1(1,1)*Y(1) +TR(4,4)*Y(5) +TI(4,4)*Y(1)
		C-2.0D0*Y(1)*Y(5)*TR(1,4) -(Y(1)**2)*TI(1,4) +(Y(5)**2)*TI(1,4)
	335	C+Y(2)*Y(7) +Y(6)*Y(3) +TI(4,1))*K DERY(2)=(TI(1,2)*Y(1)+TR(1,2)*Y(5) +TI(4,4)*Y(2) +TR(4,4)*Y(6)
	335	C-Y(1)*Y(2)*TI(1,4) - Y(1)*Y(6)*TR(1,4) - Y(2)*Y(5)*TR(1,4)
		C+Y(2)*Y(8) +Y(4)*Y(6) +Y(5)*Y(6)*TI(1,4) -TI(4,2))*K
	336	DERY(3)=(-TR(1,1)*Y(7)-TI(1,1)*Y(3) +TR(3,4)*Y(5) +TI(3,4)*Y(1)
	a stad ich	C-Y(1)*Y(3)*TI(1,4) -Y(5)*Y(3)*TR(1,4) -Y(7)*Y(1)*TR(1,4) +TI(3,1)
	337	C+Y(5)*Y(7)*TI(1,4) +Y(3)*Y(8) +Y(7)*Y(4))*K DERY(4)=(TR(1,2)*Y(7)+TI(1,2)*Y(3) +TR(3,4)*Y(6) +TI(3,4)*Y(2)
	- 331	C-Y(2)*Y(3)*TI(1,4)-Y(6)*Y(3)*TR(1,4) -Y(2)*Y(7)*TR(1,4) -TI(3,2)
		C+Y(6)*Y(7)*TI(1,4) +2.CDO*Y(4)*Y(8))*K
	338	DERY(5)=(TR(1,1)*Y(1)-TI(1,1)*Y(5) -TR(4,4)*Y(1) +TI(4,4)*Y(5)
ALC: NO REAL	1.1.1	C+(Y(1)**2)*TR(1,4) -(Y(5)**2)*TR(1,4) -2.0D0*Y(1)*Y(5)*TI(1,4)
	220	C-Y(2)*Y(3) + Y(6)*Y(7) - TR(4,1))*K
	339	$\frac{\text{DERY(6)} = (-\text{TR}(1,2)*Y(1)+\text{TI}(1,2)*Y(5) - \text{TR}(4,4)*Y(2) + \text{TI}(4,4)*Y(6)}{\text{C+Y}(1)*Y(2)*\text{TR}(1,4) - \text{Y}(5)*Y(6)*\text{TR}(1,4) - \text{TI}(1,4)*Y(6)*Y(1) + \text{TR}(4,2)}$
		C-TI(1,4)*Y(5)*Y(2) -Y(2)*Y(4) +Y(6)*Y(8))*K
	340	DERY(7)=(TR(1,1)*Y(3)-T1(1,1)*Y(7) -TR(3,4)*Y(1) +TI(3,4)*Y(5)
		C+Y(1)*Y(3)*TR(1,4) -Y(5)*Y(7)*TR(1,4) -Y(1)*Y(7)*TI(1,4) -TR(3,1)
	24.1	C-Y(3)*Y(5)*TI(1,4) - Y(3)*Y(4) + Y(7)*Y(8))*K
the state the	341	$\frac{\text{DERY(8]=(-TR(1,2)*Y(3)+TI(1,2)*Y(7) -TR(3,4)*Y(2) +TI(3,4)*Y(6)}{C+Y(2)*Y(3)*TR(1,4) -Y(6)*Y(7)*TR(1,4) -Y(2)*Y(7)*TI(1,4) +TR(3,2)}$
		C-Y(6)*Y(3)*TI(1,4) -(Y(4)**2) +(Y(8)**2))*K
	342	RETURN
	343	END

r

Ŧ

344	-	SUBROUTINE OUTP (X, Y, DERY, IHLF, NDIM, PRMJ, N, R, CC)	
345		DIMENSION Y(8), DERY(8), PRMT(5), R(8)	
346		REAL #8 X, PRMT, Y, DERY, R, YPOLYR, YPOLYI, YDENOM, DABS, CC	
	С	YPOLY = YPOLYR + I * YPOLYI	
347		$\frac{YPOLYR = -1.0DC - (CC*Y(1)) + (Y(4)/CC) + Y(1)*Y(4) - Y(5)*Y(8) - Y(2)*Y(3)}{C}$	2
24.0		C) +Y(6)*Y(7)	
348	-	$\frac{YPOLYI = -CC*Y(5) + (Y(8)/CC) + Y(1)*Y(8) + Y(4)*Y(5) - Y(2)*Y(7)}{C-Y(2)+Y(4)}$	
240		C-Y(3)*Y(6)	
349		YDENOM = (YPOLYR**2) + (YPOLYI**2) R(1) = (2.CDC * (YPOLYR*(1.ODO-(Y(4)/CC))-(Y(8)*YPOLYI/CC))/YDENOM	
350		$C_{1+1.0D0}$	
351		R(2)= -2.0DC*(Y(2)*YPCLYR +Y(6)*YPOLYI)/YCENOM	
352		R(3) = -2.0D0*(Y(3)*YPOLYR + Y(7)*YPOLYI)/YDENOM	
353		R(4) = -2.000*(YPCLYR*(CC*Y(1) + 1.0D0) + YPOLYI * CC*Y(5))/	
203		CYDENOM} - 1.000	
354		R(5) = (-2.0D0*(YPCLYI*(1.0D0 - (Y(4)/CC)) + YPOLYR*(Y(8)/CC))/	
		CYDENCM)	
355		R(6)=-2.0D0*(-Y(2)*YPOLYI +Y(6)*YPOLYR)/YDENOM	
356		R(7)=-2.0D0*(-Y(3)*YPOLYI +Y(7)*YPOLYR)/YDENOM	
357		R(8) = 2.0D0*(-YPOLYR*CC*Y(5) + YPOLYI*(CC*Y(1)+1.0D0))/YDENOM	
358		8 WRITE(6,9)X, IHLF, Y(1), Y(5), DERY(1), DERY(5), R(1), R(5), Y(2), Y(6),	CHECK
		CDERY(2), DERY(6), R(2), R(6), Y(3), Y(7), DERY(3), DERY(7), R(3), R(7),	CHECK
		CY(4),Y(8),DERY(4),DERY(8),R(4),R(8),N	CHECK
359		9 FORMAT(1X, 1P1016.10, 13, 1P6018.10/20X, 1P6018.10/20X, 1P6018.10/	CHECK
		C20X, 1P6D18.10/120//)	CHECK
360		12 RETURN	
361		END	
	С		DRKGS001
	C		DRKGS002
	С		DRKGS003
	С	SUBROUTINE DRKGS	DRKGS004
	С		DRK GS005
	C	PURPOSE	DRKGS006
	С	TO SOLVE A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL	DRKGS007
	C	EQUATIONS WITH GIVEN INITIAL VALUES.	DRKGSOOR
	C		DRKGS009
	<u>c</u>	USAGE	DRKGS010
	C	CALL DRKGS (PRMT, Y, DERY, NDIM, IHLF, FCT, DUTP, AUX)	DRKGS011
	C	PARAMETERS FCT AND OUTP REQUIRE AN EXTERNAL STATEMENT.	DRKGS012
	C		DRKGS013
1. 1.1.1.1	<u>C</u>	DESCRIPTION OF PARAMETERS	DRKGS014
	C	PRMT - DOUBLE PRECISION INPUT AND OUTPUT VECTOR WITH	DRKGS015
	<u>C</u>	DIMENSION GREATER THAN OR EQUAL TO 5, WHICH	DRKGS016
	C	SPECIFIES THE PARAMETERS OF THE INTERVAL AND OF	
	<u> </u>	ACCURACY AND WHICH SERVES FOR COMMUNICATION BETWEEN OUTPUT SUBROUTINE (FURNISHED BY THE USER) AND	DRKGS019
	C	SUBROUTINE DRKGS. EXCEPT PRMT(5) THE COMPONENTS	DRKGS019
	C C	ARE NOT DESTROYED BY SUBROUTINE DRKGS AND THEY ARE	and particular on the state of the state of the particular state of the state of the state of the state of the
	c	PRMT(1)- LOWER BOUND OF THE INTERVAL (INPUT),	DRKGS022
	0	PRMT(2)- UPPER BOUND OF THE INTERVAL (INPUT),	DRKGS023
	č	PRMT(3)- INITIAL INCREMENT OF THE INDEPENDENT VARIABLE	DRKGS024
	C	(INPUT),	DRKGS025
	č	PRMT(4)- UPPER ERROR BOUND (INPUT). IF ABSOLUTE ERROR IS	DRKGS02
	C	GREATER THAN PRMT(4), INCREMENT GETS HALVED.	DRKGSU27
	č	IF INCREMENT IS LESS THAN PRMT(3) AND ABSOLUTE	DRKGS028
	C	ERRCR LESS THAN PRMT(4)/50, INCREMENT GETS DOUBLED.	
	č	THE USER MAY CHANGE PRMT(4) BY MEANS OF HIS	DRKGS030
	C	OUTPUT SUBROUTINE.	DRKGS031
	c	PRMT(5)- NO INPUT PARAMETER. SUBROUTINE DRKGS INITIALIZES	DRKGS03
	č	PRMT(5)=0. IF THE USER WANTS TO TERMINATE	DRK GS033
	č	SUBROUTINE DRKGS AT ANY OUTPUT POINT, HE HAS TO	DRKGS034
	C	CHANGE PRMT(5) TO NON-ZERO BY MEANS OF SUBROUTINE	DRKGS03
	C	OUTP. FURTHER COMPONENTS OF VECTOR PRMT ARE	DRAGSO36
	č	FEASIBLE IF ITS DIMENSION IS DEFINED GREATER	DRKGS031
	C	THAN 5. HOWEVER SUBROUTINE DRKGS DOES NOT REQUIRE	DRKGS038
	C	AND CHANGE THEM. NEVERTHELESS THEY MAY BE USEFUL	DRKGS03
	č	FOR HANDING RESULT VALUES TO THE MAIN PROGRAM	DRK GSO 40
	C	(CALLING DRKGS) WHICH ARE OBTAINED BY SPECIAL	DRKGS041
	-	MANIPULATIONS WITH OUTPUT DATA IN SUBROUTINE OUTP.	
	C	THAT I OCHI OT OT OT OT OT OT OT OT	UTIL VVVIC
	C	Y - DOUBLE PRECISION INPUT VECTOR OF INITIAL VALUES (DESTROYED). LATERON Y IS THE RESULTING VECTOR OF	DRKGS043 DRKGS044

58

 \hat{q}^{\dagger}

c	DEPENDENT VARIABLES COMPUTED AT INTERMEDIATE POINTS X.	DRKGS045 DRKGS046
С	DERY - DOUBLE PRECISION INPUT VECTOR OF ERROR WEIGHTS	DRKGS041
_ <u>C</u>	(DESTROYED). THE SUM OF ITS COMPONENTS MUST BE	DRKGS048
c	EQUAL TO 1. LATERON DERY IS THE VECTOR OF	DRKGS049
<u></u>	DERIVATIVES, WHICH BELONG TO FUNCTION VALUES Y AT	DRKGS050
C	INTERMEDIATE POINTS X.	DRKGS05
<u> </u>	NDIM - AN INPUT VALUE, WHICH SPECIFIES THE NUMBER OF	DRKGS05
C	EQUATIONS IN THE SYSTEM.	DRKGS05
<u></u>	IHLF - AN OUTPUT VALUE, WHICH SPECIFIES THE NUMBER OF	DRKGS054
C	BISECTIONS OF THE INITIAL INCREMENT. IF IHLF GETS	DRKGS05
<u>_</u> C	GREATER THAN 10, SUBROUTINE DRKGS RETURNS WITH	DRKGS050
C	ERROR MESSAGE IHLF=11 INTO MAIN PROGRAM. ERROR	DRKGS05
<u>_</u>	MESSAGE IHLF=12 OR IHL =13 APPEARS IN CASE	DRKGS05
C	PRMT(3)=0 OR IN CASE SIGN(PRMT(3)).NE.SIGN(PRMT(2)-	
<u></u> C	FCT - THE NAME OF AN EXTERNAL SUBROUTINE USED. THIS	DRKGSOG
č	SUBROUTINE COMPUTES THE RIGHT HAND SIDES DERY OF	DRKGS061
c	THE SYSTEM TO GIVEN VALUES X AND Y. ITS "ARAMETER	DRK GS062
č	LIST MUST BE X, Y, DERY. SUBFOUTINE FCT SHOULD	DRKGS06
C	NOT DESTROY X AND Y.	DRKGS064 DRKGS065
č	OUTP - THE NAME OF AN EXTERNAL OUTPUT SUBROUTINE USED.	
C	ITS PARAMETER LIST MUST BE X,Y, DERY, IHLF, NDIM, PRMT.	DRKGS066
č	NONE OF THESE PARAMETERS (EXCEPT, IF NECESSARY,	
<u> </u>	PRMT(4), PRMT(5),) SHOULD BE CHANGED BY	DRKGSO6
č	SUBROUTINE OUTP. IF PRMT(5) IS CHANGED TO NON-ZERO	DRKGS069
C	SUBROUTINE DRKGS IS TERMINATED.	DRKGS07
č	AUX - DOUBLE PRECISION AUXILIARY STORAGE ARRAY WITH 8	DRKGS072
C	ROWS AND NDIM COLUMNS.	DRKGS07
č	KORS AND NOTH COLUMNS.	DRK GS074
C	REMARKS	DRKGS075
č	THE PROCEDURE TERMINATES AND RETURNS TO CALLING PROGRAM, IF	
C	(1) MORE THAN 10 BISECTIONS OF THE INITIAL INCREMENT ARE	DRKGS07
č	NECESSARY TO GET SATISFACTORY ACCURACY (ERROR MESSAGE	
C	IHLF=11),	DRKGS078
č	(2) INITIAL INCREMENT IS EQUAL TO 0 DR HAS WRONG SIGN	DRKGS079
C	(ERROR MESSAGES IHLF=12 OR IHLF=13),	DRKGS080
č	(3) THE WHOLE INTEGRATION INTERVAL IS WORKED THROUGH,	DRKGS081
C	(4) SUBROUTINE OUTP HAS CHANGED PRMT(5) TO NON-ZERO.	DRKGS082 DRKGS083
č	(4) SUBROUTINE OUTP HAS CHANGED PRHILS) TO NON-ZERU.	DRKGS084
C	SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED	DRKGS085
č	THE EXTERNAL SUBROUTINES FCT(X,Y,DERY) AND	DRKGS086
- C	OUTP(X,Y,DERY, IHLF, NDIM, PRMT) MUST BE FURNISHED BY THE USER.	
č	CONTRACTOR AND A DEPORT OF THE COLOR	DRKGS088
C	METHOD	DRKGS089
č	EVALUATION IS DONE BY MEANS OF FOURTH ORDER RUNGE-KUTTA	DRKGS090
C	FORMULAE IN THE MODIFICATION DUE TO GILL. ACCURACY IS	DRKGS091
	TESTED COMPARING THE RESULTS OF THE PROCEDURE WITH SINGLE	DRK GS0 92
- <u>c</u>	AND DOUBLE INCREMENT.	DRKGS093
č	SUBROUTINE ORKGS AUTCMATICALLY ADJUSTS THE INCREMENT DURING	and the second se
C	THE WHOLE COMPUTATION BY HALVING OR DOUBLING. IF MORE THAN	DRKGS09
č	10 BISECTIONS OF THE INCREMENT ARE NECESSARY TO GET	DRKGS09
C	SATISFACTORY ACCURACY, THE SUBROUTINE RETURNS WITH	DRKGS09
c	ERROR MESSAGE IHLF=11 INTO MAIN PROGRAM.	DRKGS098
C	TO GET FULL FLEXIBILITY IN OUTPUT, AN OUTPUT SUBROUTINE	DRKGS099
č	MUST BE FURNISHED BY THE USER.	DRKGS100
C	FOR REFERENCE, SEE	DRKGS101
č	RALSTON/WILF, MATHEMATICAL METHODS FOR DIGITAL COMPUTERS,	DRKGS102
č	WILEY, NEW YORK/LONDON, 1960, PP.110-120.	DRKGS10
č		DRKGS104
Č		DRKGS105
č		DRK GS106
62	SUBROUTINE DRKGS(PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX, ALT, X,	
	CTR, TI, MR, MI, R, CC, DCL, DCM, DCN, WHY, SS, ED, CF, OMEGA, ELECM, PERME, E, K,	
	C ZDATA)	
C		DRKGS108
C		DRKGS109
63	DIMENSION Y(8), DERY(8), AUX(8,8), A(8), B(8), C(8), PRMT(5), TR(4,4),	DRKGS110
$\langle \cdot \cdot \rangle$	C TI(4,4),MR(3,3),MI(3,3),ED(119) ,CF(119) ,ALT(120) ,R(8)	DRKGS111
64	REAL*8 PRMi, Y, DERY,AUX, A, B, C, X, XEND, H, AJ, BJ, CJ,	DRKGS112
	C DELT, DABS, DCL, DCM, DCN, WHY, ED, CF, SS, CC,	
Sectore and the sector with the sector of th	CONTRAL PROVE & FLECH TO TO DO NO NO NO ALT FUE TOATA	
365	COMEGA, PERME, E, ELECM, TR, TI, R1, R2, MR, MI, R, K, ALT, EVE, ZDATA EVE = 0.0D0	

and the second se

5

.

59

.

366		UO 1 I=1,NDIM	DRKGS113
367		1 AUX(8,I)=.C66666666666666667D0 *DERY(I)	DRKGS114
368		X=PRMT(1)	DRKGS115
369		XEND=PRMT(2)	DRKGS116 DRKGS117
37C 371		H=PRMT(3) PRMT(5)=0.DC	DRKGS117
372		CALL FCT(X,Y,DERY,TR,TI,MR,MI,SS,CC,DCL,DCM,DC	the state of the second s
		CELECM, PERME, E,K, ALT, PRMT, N, EVE, ZOATA)	
	C		DRK GS120
70	C	ERROR TEST	DRKGS121 DRKGS122
73	c	IF(H*(XEND-X))38,37,2	DRKGS122
	C	PREPARATIONS FOR RUNGE-KUTTA METHOD	DRK GS124
74	v	2 A(1)=.500	DRK GS125
375		A(2)=.2928932188134525D0	DRKGS126
376		A(3)=1.707106781186548D0	DRKGS127
377		A(4)=.16666666666666667D0	DRKGS128
378		B(1)=2.DO	DRK GS129
379		B(2)=1.DO	DRKGS130
380		B(3)=1.00	DRK GS1 31 DRK GS1 32
381 382		B(4)=2.D0 C(1)=.5D0	DRKGS132
383		C(2)=.2928932188134525D0	DRKGS134
884		C(3)=1.7071C6781186548D0	DRKGS135
85		C(4) = .500	DRK GS136
	С		DRK GS137
	C C	PREPARATIONS OF FIRST RUNGE-KUTTA STEP	DRKGS138
386		DO 3 I=1,NDIM	DRK GS139
387		AUX(1,I)=Y(I)	DRKGS140
388		AUX(2,I)=DERY(I)	DRKGS141
389		AUX(3,I)=0.DC	DRKGS142
390		3 AUX(6,I)=0.D0	DRK GS143 DRK GS144
391 392		IREC=0 H=H+H	DRK GS144
393		IHL F=-1	DRKGS146
394		ISTEP=0	DRKGS147
395		IEND=0	DRKGS148
	С		DRKGS149
	C C		DRK GS1 50
	C	START OF A RUNGE-KUTTA STEP	DRKGS151
396		4 IF((X+H-XEND)*H)7,6,5	DRKGS152
397	-	5 H= XEND+X	DRKGS153 DRKGS154
398	~	6 IEND=1	DRKGS154
	C C	RECORDING OF INITIAL VALUES OF THIS STEP	DRK GS156
399	c	7 IF(PRMT(5))4C,8,40	DRKGS158
400		8 ITEST=0	DRKGS159
401		9 ISTEP=ISTEP+1	DRKGS160
	С		DRKGS161
	С		DRKGS162
	С	START OF INNERMOST RUNGE-KUTTA LOOP	DRKGS163
402		J=1	DRKGS164
403		1C AJ=A(J)	DRKGS165
404		BJ=B(J)	DRKGS166
405		CJ=C(J)	DRKGS167 DRKGS168
406		CO 11 I=1,NDIM R1=H*DERY(I)	DRK GS169
408		R2=AJ*(R1-BJ*AUX(6+I))	DRKGS170
409		Y(1)=Y(1)+R2	DRKGS171
410		R2=R2+R2+R2	DRKGS172
411		11 AUX(6, I)=AUX(6, I)+R2-CJ*R1	DRK GS173
412	A Lines	IF(J-4)12,15,15	DRK GS174
413		12 J=J+1	DRKGS175
414		IF(J-3)13,14,13	DRKGS176
415		13 X= X+.5CO*H	DRKGS171
416		14 CALL FCT(X,Y,DERY,TR,TI,MR,MI,SS,CC,DCL,DCM,DC CELECM,PERME,E,K,ALT,PRMT,N,EVE,ZDATA)	CNJEDICE, UNEGA, DKKGS178
417		GOTO 10	DRKGS179
	С	END OF INNERMOST RUNGE-KUTTA LOOP	DRKGS180
	č		DRK GS181
	C		DRK GS1 82
	С	TEST DP ACCURACY	DRKGS183
418		15 IF(ITEST)16,16,20	DRKGS184
	С		DRKGS185

10 A.C.

60

÷.

.

.

.

1

and the second

19	C IN CASE ITEST=O THERE IS NO POSSIBILITY FOR TESTING OF ACCURACY	DRKGS186
2.0	16 DO 17 I=1,NDIM	DRKGS187
0	17 AUX(4,I)=Y(I)	DRKGS188
21	ITEST=1 ISTEP=ISTEP+ISTEP-2	DRKGS189 DRKGS190
22	151EP=151EP+151EP-2 18 [WLF=IHLF+1	DRKGS190
24	X=X=H	DRKGS191
25	H= .\$00*H	DRKGS192
26	DO 19 I=1,NDIM	DRK G S1 94
27	Y(I) = AUX(I, I)	DRKGS195
28	DERY(I)=AUX(2,I)	DRKGS196
29	19 AUX(6,1)=AUX(3,1)	DRKGS197
30	GOTO 9	DRKGS198
	C	DRKGS199
	C IN CASE ITEST=1 TESTING OF ACCURACY IS POSSIBLE	DRK GS2 00
31	20 IMOD=ISTEP/2	DRKGS201
32	IF(ISTEP-IMOD-IMOD)21,23,21	DRKGS202
33	21 CALL FCT(X, Y, DERY, TR, TI, MR, MI, SS, CC, DCL, DCM, DCN, ED, CF, OMEGA,	DRKGSZOS
24	CELECM, PERME, E, K, ALT, PRMT, N, EVE, ZDATA)	DEKCESOA
34	DD 22 I=1.NDIM AUX(5,I)=Y(I)	DRKGS204 DRKGS205
36	22 AUX(7, I)=DERY(I)	DRKGS205
37	GOTO 9	DRKGS207
	C	DRKGS208
	C COMPUTATION OF TEST VALUE DELT	DRKGS209
38	23 DEL T=0.D0	DRKGS210
39	DO 24 I=1,NDIM	DRK GS211
40	24 DEL T=DEL T+AUX(8,1)*DABS(AUX(4,1)-Y(1))	DRKGS212
41	IF (DEL T-PRMT (4)) 28, 28, 25	DRKGS213
1	C	DRKGS214
	C ERROR IS TOO GREAT	DRKGS215
42	25 IF(IHLF-20)26,36,36	DRKGS216
43	26 DD 27 I=1,NDIM	DRKGS217
44	27 AUX(4,1)=AUX(5,1)	DRKGS218
45	ISTEP=ISTEP+ISTEP-4	DRKGS219 DRKGS220
46	X=X-H IEND=0	DRKGS220
47 48	GOTO 18	DRKGS222
40	C C	DRKGS223
	C RESULT VALUES ARE GOOD	DRKGS224
49	28 CALL FCT(X,Y,DERY,TR,TI,MR,MI,SS,CC,DCL,DCM,DCN,ED,CF,OMEGA.	.KGS225
- Bay	CELECM, PERME, E, K, ALT, PRMT, N, EVE, ZDATAJ	1
50	DO 29 I=1,ND IM	DRKGS226
51	AUX(1,I)=Y(I)	DRKGS227
52	AUX(2,I)=DERY(I)	DRKGS228
53	AUX(3,I)=AUX(6,I)	DRKGS229
54	Y(I)=AUX(5,I)	DRKGS230
55	29 DERY(I)=AUX(7,I)	DDV CC 221
56	IF(PRMT(5))40,30,40	DRKGS231
5 T		DRKGS233
	50 DO 31 I=1,NDIM	DRKGS233 DRKGS234
58	Y(I)=AUX(1,I)	DRKGS233 DRKGS234 DRKGS235
58	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I)	DRKGS233 DRKGS234 DRKGS235 DRKGS235
58 59 60	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF	DRK GS233 DRK GS234 DRK GS235 DRK GS236 DRK GS237
58 59 60	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39	DRK GS233 DRK GS234 DRK GS235 DRK GS236 DRK GS237 DRK GS238
58 59 60	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C	DRK G S2 33 DRK G S2 34 DRK G S2 35 DRK G S2 36 DRK G S2 37 DRK G S2 38 DRK G S2 39
58 59 60 61	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 37 DRK GS2 39 DRK GS2 39 DRK GS2 40
58 59 60 61 62	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 37 DRK GS2 39 DRK GS2 39 DRK GS2 40 DRK GS2 41
58 59 60 61 62 63	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 37 DRK GS2 39 DRK GS2 40 DRK GS2 41 DRK GS2 42
58 59 60 61 62 63 64	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2	DRK G S2 33 DRK G S2 34 DRK G S2 35 DRK G S2 36 DRK G S2 37 DRK G S2 38 DRK G S2 39
58 59 60 61 62 63 64 65	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 38 DRK GS2 39 DRK GS2 40 DRK GS2 41 DRK GS2 42 DRK GS2 43 DRK GS2 44
58 59 60 61 62 63 64 65 66	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 38 DRK GS2 39 DRK GS2 40 DRK GS2 41 DRK GS2 42 DRK GS2 44 DRK GS2 45 DRK GS2 46
58 59 60 61 62 63 64 65 66 65 66 65	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 38 DRK GS2 39 DRK GS2 40 DRK GS2 41 DRK GS2 44 DRK GS2 44 DRK GS2 45 DRK GS2 46 DRK GS2 47
58 59 60 61 62 63 64 65 66 65 66 65 66 65 68 69	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 37 DRK GS2 38 DRK GS2 39 DRK GS2 40 DRK GS2 40 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 45 DRK GS2 46 DRK GS2 47 DRK GS2 48
58 59 60 61 62 63 64 65 66 65 66 65 68 69 70	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 37 DRK GS2 38 DRK GS2 38 DRK GS2 49 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 45 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 44
58 59 60 61 62 63 64 65 66 65 66 67 68 69 70 71	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 37 DRK GS2 39 DRK GS2 40 DRK GS2 44 DRK GS2 44
58 59 60 61 62 63 64 65 66 65 66 67 68 69 70 71	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 39 DRK GS2 40 DRK GS2 40 DRK GS2 44 DRK GS2 44 DRK GS2 45 DRK GS2 45 DRK GS2 46 DRK GS2 47 DRK GS2 48 DRK GS2 49 DRK GS2 49 DRK GS2 49 DRK GS2 51
58 59 60 61 62 63 64 65 66 65 66 67 68 69 70 71	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GDTD 4 C	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 35 DRK GS2 36 DRK GS2 38 DRK GS2 38 DRK GS2 40 DRK GS2 41 DRK GS2 42 DRK GS2 44 DRK GS2 44 DRK GS2 45 DRK GS2 45 DRK GS2 45 DRK GS2 45 DRK GS2 45 DRK GS2 45 DRK GS2 51 DRK GS2 52
58 59 60 61 62 63 64 65 66 65 66 65 66 67 70 71	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GOTO 4 C C	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 36 DRK GS2 38 DRK GS2 39 DRK GS2 40 DRK GS2 41 DRK GS2 42 DRK GS2 44 DRK GS2 44 DRK GS2 45 DRK GS2 45 DRK GS2 45 DRK GS2 46 DRK GS2 45 DRK GS2 51 DRK GS2 52 DRK GS2 53
58 59 60 61 62 63 64 65 66 66 66 66 66 66 70 71 72	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GDTD 4 C C C RETURNS TO CALLING PROGRAM	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 36 DRK GS2 38 DRK GS2 39 DRK GS2 40 DRK GS2 40 DRK GS2 41 DRK GS2 42 DRK GS2 44 DRK GS2 45 DRK GS2 50 DRK GS2 51 DRK GS2 52 DRK GS2 53 DRK GS2 54
58 59 60 61 62 63 64 65 66 66 66 67 70 71 72 73	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GDTD 4 C C C RETURNS TO CALLING PROGRAM 36 IHLF=21	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 36 DRK GS2 36 DRK GS2 30 DRK GS2 40 DRK GS2 41 DRK GS2 42 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 45 DRK GS2 45 DRK GS2 45 DRK GS2 55 DRK GS2 55 DRK GS2 55 DRK GS2 55 DRK GS2 55 DRK GS2 55
58 59 60 61 62 66 66 66 66 66 70 71 72 73	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GDTO 4 C C C C C C C C C C C C C	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 36 DRK GS2 36 DRK GS2 30 DRK GS2 40 DRK GS2 41 DRK GS2 42 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 45 DRK GS2 45 DRK GS2 45 DRK GS2 55 DRK GS2 55 DRK GS2 55 DRK GS2 55 DRK GS2 55 DRK GS2 55
58 59 60 61 62 63 66 66 66 66 66 66 70 71 72 73 73 74	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GDTO 4 C C C C C RETURNS TO CALLING PROGRAM 36 IHLF=21 CALL FCT(X,Y,DERY,TR,TI,MR,MI,SS,CC,DCL,DCM,DCN,ED,CF,OMEGA CELECM,PERME,E,K,ALT,PRMT,N,EVE,ZDATA)	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 36 DRK GS2 39 DRK GS2 39 DRK GS2 40 DRK GS2 40 DRK GS2 41 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 45 DRK GS2 45 DRK GS2 50 DRK GS2 51 DRK GS2 55 DRK GS2 55 DRK GS2 55 DRK GS2 55 DRK GS2 55 DRK GS2 55 DRK GS2 55
58 59 60 61 62 63 64 65 66 65 66 67 68 69 70 71 72 77 77 77	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GOTO 4 C C C RETURNS TO CALLING PROGRAM 36 IHLF=21 CALL FCT(X,Y,DERY,TR,TI,MR,MI,SS,CC.DCL,DCM,DCN,ED,CF,OMEGA, CELECM,PERME,E,K,ALT,PRMT,N,EVE,ZDATA) GOTO 39	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 37 DRK GS2 38 DRK GS2 39 DRK GS2 39 DRK GS2 40 DRK GS2 40 DRK GS2 44 DRK GS2 50 DRK GS2 51 DRK GS2 55 DRK GS2 55 DRK GS2 56 DRK GS2 57 DRK GS2 57 DRK GS2 57
457 458 459 460 461 462 463 464 465 466 465 466 467 468 469 471 473 473 473 475 475	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GDTD 4 C C RETURNS TO CALLING PROGRAM 36 IHLF=21 CALL FCT(X,Y,DERY,TR,TI,MR,MI,SS,CC.DCL,DCM,DCN,ED,CF,OMEGA, CELECM,PERME,E,K,ALT,PRMT,N,EVE,ZDATA) GOTO 39 37 IHLF=12	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 37 DRK GS2 38 DRK GS2 39 DRK GS2 30 DRK GS2 40 DRK GS2 40 DRK GS2 44 DRK GS2 50 DRK GS2 51 DRK GS2 56 DRK GS2 56 DRK GS2 57 DRK GS2 56
58 59 60 61 62 63 64 65 66 65 66 66 70 71 71 77 77 77 77	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT-02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GOTO 4 C C C RETURNS TO CALLING PROGRAM 36 IHLF=21 CALL FCT(X,Y,DERY,TR,TI,MR,MI,SS,CC,DCL,DCM,DCN,ED,CF,OMEGA, CELECM,PERME,E,K,ALT,PRMT,N,EVE,ZDATA) GOTO 39 37 IHLF=12 GOTO 39	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 37 DRK GS2 38 DRK GS2 38 DRK GS2 39 DRK GS2 39 DRK GS2 44 DRK GS2 51 DRK GS2 51 DRK GS2 54 DRK GS2 55 DRK GS2 55 DRK GS2 56 DRK GS2 56
58 59 60 61 62 63 64 65 66 66 66 66 66 66 70 71 77 72 73 77 77 77 77 77	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GEIS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT02DC+PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GOTO 4 C C C C RETURNS TO CALLING PROGRAM 36 IHLF=21 CALL FCT(X,Y,DERY,TR,TI,MR,MI,SS,CC,DCL,DCM,DCN,ED,CF,OMEGA CELECM,PERME,E,K,ALT,PRMT,N,EVE,ZDATA) GOTO 39 38 IHLF=13	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 35 DRK GS2 36 DRK GS2 36 DRK GS2 36 DRK GS2 36 DRK GS2 40 DRK GS2 40 DRK GS2 42 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 44 DRK GS2 45 DRK GS2 45 DRK GS2 50 DRK GS2 51 DRK GS2 55 DRK GS2 55 DRK GS2 56 DRK GS2 56
58 59 60 61 62 63 64 65 66 65 66 65 66 66 70 71 77 77 77 77 77 77 77 77 77 77 77 77	Y(I)=AUX(1,I) 31 DERY(I)=AUX(2,I) IREC=IHLF IF(IEND)32,32,39 C C C INCREMENT GETS DOUBLED 32 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H IF(IHLF)4,33,33 33 IMOD=ISTEP/2 IF(ISTEP-IMOD-IMOD)4,34,4 34 IF(DELT-02DC*PRMT(4))35,35,4 35 IHLF=IHLF-1 ISTEP=ISTEP/2 H=H+H GOTO 4 C C C RETURNS TO CALLING PROGRAM 36 IHLF=21 CALL FCT(X,Y,DERY,TR,TI,MR,MI,SS,CC,DCL,DCM,DCN,ED,CF,OMEGA, CELECM,PERME,E,K,ALT,PRMT,N,EVE,ZDATA) GOTO 39 37 IHLF=12 GOTO 39	DRK GS2 33 DRK GS2 34 DRK GS2 35 DRK GS2 36 DRK GS2 37 DRK GS2 38 DRK GS2 38 DRK GS2 39 DRK GS2 39 DRK GS2 44 DRK GS2 51 DRK GS2 51 DRK GS2 54 DRK GS2 55 DRK GS2 55 DRK GS2 56 DRK GS2 56

•

q.

ſ

SENTRY				
UNITY 1.00000000CCD CC				
	(COMPLEX CALC.)			
-3.9785399124D C2 -2.79679C91C8D C2	2.1216613366D 02		-1.24178725260 03 -8.1	
2.12209685450 02 2.31814399320 02	-1.1160852567D 02		6.60260551900 02 4.3	
-1.24177981C8D 03 -8.5336107163D 02	6.6027454799D 02	4.8818417536D 02	-3.8628583396D 03 -2.	7006908802D_03
	(COMPLEX CALC.)			
	-01 -2.81786D-03	-0.00000D-01 -0.0000		The second s
	-01 -0.00000D-01	1.000000 00 0.0000		
	00 -9.615410-01	-0.00000D-01 -0.0000		the self of a first set of the self of the set of the s
2.47780D 00 -9.61571D-01 8.42041D-	-02 9.46303D 01	0.00000D-01 0.0000	0D-01 -1.98088D-01 -	1.439390-03
BE				
9.8511668580D-02	-4.10523405730-05			
-7.4452278704D-01	3.2054206645D-01			
-6.1505255221D-02	2.5630818368D-05			
-8.951342981CD 03	1.5692306167D 00			
The second s				
FN				
-1.0000000616D 00	1.12984770430-08			
Q				
9.7435241374D 00	-4.9398453145D-02			
-9.943538C44CD 00	5.1482942608D-02			
-1.4521257849D+01	9.6101521659D 00			
-4.842C189215D-02	-9.6120724460D 00			
ZERO				
	-3.7385745080D-03			
	-3.7416783549D-03			~
1.151138260CD-03	3.3972853300D-03			
1.1492692111D-03	3.3994246232D-03			
0110				
9.7435241374D CO	-4.9398453145D-02			-
-4.84201892190-02				

8.6910140192D-C1 - 1.0255621493D-C1		
1.0221290519D-01		
-9.18C3711576D-C1	8.53170741150-02	
INITIAL VALU		
2.3378398674D-C8		
-1.5900(82246D-05 1.5200690695D-05 -		
-8.58C7\$63210D-09		
STARTING REFLEC	CTION COEFFICIENTS	
MAGR	FAZR	
8.78344834C2D-01	-8.31964151610 00	
	3.8754469178D 01	
1.2886832410D-01 9.2199296692D-01	3.7518447210D 01 -5.3094848225D 00	
INITIAL V	ALUE OF Y	
REALY	IMAGY	
4.9049952455D CO	-4.8188981424D 00	
4.82558107770 00	-4.8948591669D 00	
4.6283928767D 00 -4.9859671542D 00	-4.8975146836D 00 4.8436374827D 00	
INITIAL VAL		
REALDERY	IMAGDERY	
-1.7527735830D-17	6.3936400016D-17	
8.6526744146D-04	9.2021673507D-04	
-8.6198437341D-04 5.0543953345D-07	-8.8808565503D-04 -3.5497083304D-07	
2002127233130 01	3. 3. 7. 7. 00 33 0 10 01	

D

63

and the second

		-7.8650709482D-	02 -1.54101487990-03		8.45285823560-01	-4.31748222750-01
			01 -1.3093142998D-03			-3.02758434910-01
110	4.54972447010-01	-1.5454688800D	00 -6.7376783577D-04	+ 2.3292883283D-03	-6.19870833880-01	-1.22160630040-01
118						
IHLF N	REALY	IMAGY	REALDERY	IMAGDERY	REALR	IMAGR
4 0	-1.64825533210-01	1,36668190540-	01 6-38759527530-0	5 -2.16141379690-03	4-49635814030-01	-7-26917935660-01
			and any second	and the second	and a second s	-4.31748222750-01
						-3.0275843491D-01
	4.5497244701D-01	-1.5454688800D	00 -6.73767835770-04	+ 2.3292883283D-03	-6.1987083388D-01	-1.22160630040-01
	E INAL DE					
	FINAL REP	FLECTION CUEFFIC	IENT VALUES			
	MA	GR	FAZR			la and and
1R 11	8.54740	92591D-01 3	·2826108915D 02			
TUTT			.9705666408D 02			
1R +	7.45103.	251//0 01 2	.91217723220 02			
	8.36550	301400-01 2				and the second
1R +	8.36550		.9114865971D 02			
	N	N 4 0 -1.6482993321D-01 2.0819946549D 00 1.83250559740 00 4.5497244701D-01 FINAL RE	N 4 0 -1.6482553321D-01 1.3666819054D- 2.0819946549D 00 -7.8650709482D- 1.8325055974D 00 1.1771692887D- 4.5497244701D-01 -1.5454688800D	N 4 0 -1.6482993321D-01 1.3666819054D-01 6.3875952753D-09 2.0819946549D 00 -7.8650709482D-02 -1.5410148799D-03 1.8325055974D 00 1.1771692887D-01 -1.3093142998D-03 4.5497244701D-01 -1.5454688800D 00 -6.7376783577D-04 FINAL REFLECTION COEFFICIENT VALUES	N 4 0 -1.6482993321D-01 1.3666819054D-01 6.3875952753D-05 -2.1614137969D-03 2.0819946549D 00 -7.8650709482D-02 -1.5410148799D-03 -4.6413627779D-04 1.8325055974D 00 1.1771692887D-01 -1.3093142998D-03 -5.4515346748D-04 4.5497244701D-01 -1.5454688800D 00 -6.7376783577D-04 2.3292883283D-03 FINAL REFLECTION COEFFICIENT VALUES	N 4 0 -1.6482553321D-01 1.3666819054D-01 6.3875952753D-05 -2.1614137969D-03 4.4963581403D-01 2.0819946549D 00 -7.8650709482D-02 -1.5410148799D-03 -4.6413627779D-04 8.4528582356D-01 1.8325055974D 00 1.1771692887D-01 -1.3093142998D-03 -5.4515346748D-04 7.7984217674D-01 4.5497244701D-01 -1.5454688800D 00 -6.7376783577D-04 2.3292883283D-03 -6.1987083388D-01 FINAL REFLECTION COEFFICIENT VALUES

REFERENCES

- Aikin, A. C., J. A. Kane and J. Troim (1964), Some results of rocket experiments in the quiet D region, J. Geophys. Res. 69, 4621-4628.
- Bain, W. C. and B. R. May (1967), D region electron-density distributions from propagation data, Proc. Instn. Elect. Engrs. 114, 1593-1597.
- Barron, D. W. and K. G. Budden (1959), The numerical solution of differential equations governing the reflexion of long radio waves from the ionosphere III, Proc. Roy. Soc. A249, 387-401.
- Belrose, J. S. and I. A. Bourne (1966), The electron distribution and collision frequency height profile for the lower part of the ionosphere (the D and lower E regions), Ground-based Radio Wave Propagation Studies of the Lower Ionosphere, Conference Proceedings, 1, 79-96.
- Booker, H. G. (1938), Propagation of wave-packets incident obliquely upon a stratified doubly refracting ionosphere, Phil. Trans. A237, 411-450.
- Bracewell, R. N. (1952), The ionospheric propagation of radio waves of frequency 16 kc/s over distances of about 200 km, Proc. Instn. Elect. Engrs. 99-IV, 217-228.
- Budden, K. G. (1955a), The numerical solution of differential equations governing reflexion of long radio waves from the ionosphere I, Proc. Roy. Soc. A227, 516-537.
- Budden, K. G. (1955b), The numerical solution of the differential equations governing the reflexion of long radio waves from the ionosphere II, Phil. Trans. A248, 45-71.

Budden, K. G. (1961), Radio Waves in the Ionosphere, Cambridge University Press.

- Burnside, W. S. and A. W. Panton (1904), <u>The Theory of Equations</u>, Dublin University Press, Dublin, Ireland.
- Crombie, D. D. (1961), Reflection from a sharply bounded ionosphere for VLF propagation perpendicular to the magnetic meridian, J. Res. NBS <u>65D</u>, 455-463.
- Deeks, D. G. (1964), Some tentative suggestions of electron density profiles in the D region, Internal Memorandum No. 121, Radio and Space Research Station, Slough, England.
- Deeks, D. G. (1966a), Generalised full wave theory for energy-dependent collision frequencies, J. Atmosph. Terr. Phys. 28, 839-846.

Deeks, D. G. (1966b), D-region electron distributions in middle latitudes deduced from the reflexion of long radio waves, Proc. Roy. Soc. <u>291</u>, 413-437.

- Farley, D. T. (1966), Observations of the equatorial ionophere using incoherent backscatter, <u>Electron Density Profiles in Ionophere and Exosphere</u>, North-Holland Publishing Co., Amsterdam, 446-477.
- Fedor, J., L. Fedor and E. E. Gossard (1964), Program for the full-wave calculation of reflection coefficients in an ionosphere continuous in electron density and collision frequency, Interim Report, U. S. Navy Electronics Laboratory, San Diego, California.
- Fejer, J. A. and R. W. Vice (1959), An investigation of the ionospheric Dregion, J. Atmosph. Terr. Phys. 16, 291-306.
- Gill, S. (1951), A process for the step-by-step integration of differential equations in an automatic digital computing machine, Proc. Camb. Phil. Soc. 47, 96-108.
- Heading, J. and R. T. P. Whipple (1952), The oblique reflexion of long wireless waves from the ionosphere at places where the earth's magnetic field is regarded as vertical, Phil. Trans. A244, 469-503.
- Hunten, D. M. and M. B. McElroy (1968), Metastable $O_2(^{1}\Delta)$ as a major source of ions in the D region, J. Geophys. Res. 73, 2421-2428.
- McCracken, D. D. (1965), <u>A Guide to Fortran IV Programming</u>, John Wiley and Sons, Inc.
- Mechtly, E. A. and L. G. Smith (1968), Seasonal variation of the lower ionosphere at Wallops Island during the IQSY, J. Atmosph. Terr. Phys. <u>30</u>, 1555-1561.
- Monro, P. E. and S. A. Bowhill (1969), Minor atmospheric constituents and the ion composition of the E-region, J. Atmosph. Terr. Phys. 31, 103-117.
- Nicolet, M. and A. C. Aikin (1960), The formation of the D region of the ionosphere, J. Geophys. Res. 65, 1469-1483.
- Pitteway, M. L. V. (1965), The numerical calculation of wave-fields, reflexion coefficients and polarizations for long radio waves in the lower ionosphere I, Phil. Trans. A257, 219-242.
- Sechrist, C. F., Jr. (1968), Interpretation of the pre-sunrise electron densities and negative ions in the D-region, J. Atmosph. Terr. Phys. <u>30</u>, 371-389.
- Sen, H. K. and A. A. Wyller (1960), On the generalization of the Appleton-Hartree magnetoionic formulas, J. Geophys. Res. 65, 3931-3950.

Sheddy, C. H. (1963), A general analytic solution for reflection from a sharply bounded ionosphere, Radio Science 3, 792-795.

- Smith, R. A., T. N. R. Coyne, R. G. Loch and I. A. Bourne (1966), Small perturbation wave interaction in the lower ionosphere, Part 3, Ground-based Radio Wave Propagation Studies of the Lower Ionosphere, Conference Proceedings, 1, 335-358.
- Tulinov, V. F. (1967), On the role of corpuscular radiation in the formation of the lower ionosphere (below 100 km), Space Research VII, Vol. 2, 386-390.
- Velinov, P. (1968), On ionization in the ionospheric D-region by galactic and solar cosmic rays, J. Atmosph. Terr. Phys. 30, 1891-1905.