General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

UNIVERSITY OF ILLINOIS

 URBANA
FULL-WAVE CALCULATIONS OF REFLECTION COEFFICIENTS FROM D-REGION ELECTRON-DENSITY PROFILES

by
W. A. Viertel
C. F. Sechrist, Jr.

June 1, 1969

Supported by
National Aeronautics and Space Administration
Grant GROH 3 NGRー14-005-013

Aeronomy Laboratory Department of Electrical Engineering University of Illinois Urbana, Illinois
t

CITATION POLICY

The material contained in this report is preliminary information circulated rapidly in the interest of prompt interchange of
$*$ scientific information and may be later revised on publication in accepted aeronomic journals. It would therefore be appreciated if persons wishing to cite work contained herein would first contact the authors to ascertain if the relevant material is part of a paper published or in process.

A ERONOMY REPORT N O. 33

FULL-WAVE CALCULATION
 OF REFLECTION COEFFICIENTS
 FROM D-REGION ELECTRON-DENSITY PROFILES

by

W. A. Viertel
C. F. Sechrist, Jr.

$$
\text { June 1, } 1969
$$

Supported by National Aeronautics and Space Administration Grant NGR-013 NGR-14-005

Aeronomy Laboratory
Department of Electrical Engineering
University of Illinois
Urbana, Illinois

ABSTRACT

This report considers the reflection of VLF radio waves from the Dregion of the ionosphere. In particular, the calculation of the reflection coefficient matrix below the ionosphere is described. Full-wave theory is employed in a FORTRAN IV computer program for use with the IBM 360 computer. The program is checked by comparing computed reflection coefficients with those obtained by an analytical method for the case of a vertical geomagnetic field and an exponential electron density model, and also with full-wave computations done by other groups for a more general case. The report concludes with suggestions for the application of the full-wave program to the computation of VLF reflection coefficients from D-region electron density profiles measured by ground-based and rocket techniques.

TABLE OF CONTENTS

Page
ABSTRACT iii
LIST OF FIGURES vi
LIST OF TABLES. viii

1. THE D REGION OF THE IONOSPHERE 1
1.1 Introduction 1
1.2 VLF Studies of the D Region 6
2. RAY THEORY. 9
2.1 The Theory of Booker 9
2.2 The Necessity for Full-Wave Theory 17
3. FULL-WAVE THEORY. 18
3.1 General Magnetoionic Theory. 18
3.2 The Relevant Equations 26
4. FULL-WAVE SOLUTIONS 30
4.1 The Starting Solution. 30
4.2 The Numerical Integration. 31
4.3 Checks of the Full-Wave Program. 39
4.4 Suggestions for Applications of the Full-Wave Program. 45
APPENDIX 49
REFERENCES 65

LIST OF FIGURES

Figure
Page
1.1 The F-region (after Farley, 1966), E-region (after Monro and
Bowhill, 1969), and D-region (after Mechtly and Smith, 1968)
of the ionosphere 2
1.2 Electron collision frequency profiles (after Deeks, 1964). . . . 5
1.3 Components of the field at the ground (after Bracewell, 1952). . 7
2.1 ray path for a wave-packet incident obliquely upon an
inhomogeneous, isotropic, collisionless ionosphere (after
Booker, 1938). 10
2.2 Group- and phase-rays of the (a) extraordinary wave, and the (b) ordinary wave, for an inhomogeneous, anisotropic, collisionless ionosphere (after Booker, 1938) 12

2.3 The Booker quartic roots q as a function of electron density N,
for oblique incidence upon an inhomogeneous, anisotropic ionc
sphere (after Booker, 1938). The dashed curve represents the
extraordinary wave; the solid curve represents the ordinary
wave 14

2.4 Another possible form of (a) q as a function of N for oblique
incidence upon an inhomogeneous, anisotropic ionosphere with
collisions included, and (b) the corresponding group-ray
diagram (after Booker, 1938) 16

3.1 Height variation of v_{M} the collision frequency of mono
energetic electrons of energy kT (full curve) and $v_{\text {eff }}$, the
effective classical collision frequency for very long wave
calculations (dashed curve), (after Deeks, 1966a). 22

3.2 The relevant coordinate system at the transmitter. The wave
vector $\overline{\mathrm{k}}$ is in the xz plane. $\overline{\mathrm{B}}$ is in the plane of the magnetic
meridian. β, γ, Δ are the arccosines of the direction cosines
$1, \mathrm{~m}, \mathrm{n}$ of the gecmagnetic field vector, $\overline{\mathrm{Y}}$ 25
4.1 Flow chart depicting (a) input portion of main program, including (b) subroutine PREFN 32
4.2 Flow chart depicting initial solution (after Sheddy, 1968) portion of main program. 33
4.3 Flow chart depicting numerical integration subroutine DRKGS. 37

LIST OF FIGURES (Continued)

Figure Page
4.4 Flow chart depicting subroutines (a) FCT and (b) OUTP called from within DRKGS subroutine 38
4.5 Flow chart depicting final output portion of main program. 40
4.6 A comparison of the full-wave results, reflection coefficient magnitude vs angle of incidence, for v constant, $\phi=90^{\circ}$, and $\alpha=90^{\circ}$, of (a) Budden (1955b) (solid line), Budden using the formulas of Heading and Whipple (1952) (dashed line), and the author (points marked x) for $X=\exp (.295 z), Z=8$ and (b) Budden (1955b) (solid line) and the author (points marked x) for $X=\exp (2.36 z), Z=2$ 44
4.7 D-region electron density profiles for night, dawn, and day- time periods (after Smith et al., 1966) deduced from ground- based measurements 46
4.8 D-region electron density profiles over the sunrise period measured with rockets (after Mechtly and Smith, 1968). 47

LIST OF TABLES

Table Page
4.1 A comparison of the author's numerically calculated starting solutions with those of Fedor, et al., (1964) of NELC. 42
4.2 A comparison of full-wave solutions for the nighttime electron density profile of Deeks (1964) and the collision frequency profile of Fejer and Vice (1959) 43

1. THE D REGION OF THE IONOSPHERE

1.1 Introduction

The D region of the ionosphere is the region between 60 and 90 km , coinciding roughly with the mesosphere and lower thermosphere. A daytime profile showing its place in the entire ionosphere is shown in Figure 1.1. The F region and the topside of the ionosphere are from the observation of the equatorial ionosphere of Farley (1966), who used the incoherent backscatter technique to measure them. The E region portion of the profile was obtained from Nike-Apache rocket measurements at Wallops Island, Virginia, and is from Monro and Bowhill (1969). The D region representation, measured in the same way as the E region, is due to Mechtly and Smith (1968). The entire profile will vary with latitude, longitude, solar zenith angle, season, the solar cycle, and the instantaneous level of solar disturbances.

At sunset with the disappearance of the ionizing solar radiation, the D region electron density drops markedly. At dawn the number of free electrons at any given height gradually returns to its daytime value. The exact shape of the profiles is not universally agreed upon, however, as shown in the comparison made by Deeks (1964). Some show a minimum followed by a maximum at lower altitude in the daytime profile, while others show a more monotonically decreasing electron density with decreasing altitude, apart from some slight fine structure. It may be that when the time and place, as well as the manner of measurement or deduction, are all taken into account and D region theory is better understood, these profiles will be shown to be generally consistent with one another. The difficulty in understanding the D region stems

Figure 1.1 The F-region (after Farley, 1966), E-region (after Monro and Bowhill, 1969), and D-region (after Mechtly and Smith, 1968) of the ionosphere.
from its relative inaccessibility to measurements, having an atmospheric concentration too low for aircraft and too high for satellites. Thus rockets and ground-based equipment are the chief tools for studying the D region.

Several types of radiation are thought to be important causes of ionization in the D region. Solar radiations penetrating below 85 km , given by Nicolet and Aikin (1960), are X-rays of $\lambda<10 \AA$, Lyman $\alpha(\lambda=1215.7 \AA$) and radiation in other nearby atmospheric windows, and radiation of $\lambda>1800 \AA$. The X-rays and ultraviolet radiation (Lyman β and the Lyman continuum) are probably important above 85 km during periods of normal solar activity, while an enhanced X-ray flux may affect all constituents, chiefly $\mathrm{O}_{2}, \mathrm{~N}_{2}$, A and O at lower D region heights during solar flares. NO is one of the few species having a sufficiently low ionization potential to be ionized by Lyman α. The importance of the ionization of NO by Lyman α relative to the ionization of other constituents by other radiations depends upon the quantities of NO assumed to be present as is shown by Aikin, et al., (1964). In any case, it seems to be most important in the region around 77 km . Radiations of $\lambda>1800 \AA$ require constituents with very low ionization potentials, such as calcium ($\lambda \leq 2028 \AA$) and sodium $(\lambda \leq 2413 \AA$).

Below the region where ionization of NO is important, galactic and solar cosmic rays are thought to be the principal causes of ionization, although their contribution to the number of tree electrons is tempered at these lower D region altituries by the importance of negative ions due to attachment. The relative importance of contributions to ionization by protons, α-particles, and H-nucleii is treated by Velinov (1968).

Recently metastable $O_{2}\left({ }^{1} \Delta\right)$ has been suggested by Hunten and McElroy (196,) as a significant source of ionization in the D region. It can be ionized by
the wavelength band 1027-1118 \AA, some of which penetrates to the D region through atmospheric windows. In addition, the reaction of this excited 0_{2} with N may be the most important source of nitric oxide in the D region.

Corpuscular radiation in the form of electrons with energy greater than 40 kev precipitating from the radiation "belts" has also been suggested as an important ionization source at D region altitudes by Tulinov (1967). Further discussion of the chemical and meteorological factors affecting D region free electron concentrations may be found in the record of the Third Aeronomy Conference held at the University of Illinois, September 23-26, 1968.

Another relevant factor is the collisions between electrons and neutral constituents. Electron-electron and electron-ion collisions are not so important because of the far greater number of neutrals present. The altitude dependence of collision frequency given by many workers and compiled by Deeks (1964) is shown for the D region in Figure 1.2. Belrose and Bourne (1966) conclude that the greatest seasonal change in collision frequency occurs at high latitudes. They state that no diurnal changes have been detected, but more measurements are necessary to determine the dependence of collision frequency on the solar cycle and solar disturbances. The relevance of this parameter, along with the electron density, is that it affects radio waves propagating through the ionosphere.

The major objective of this thesis is to devise a computer program for use with the IBM 360 digital computer to calculate the theoretical reflection and conversion coefficients for a VLF radio wave obliquely incident upon the ionosphere. The theory for the ionospheric model and for the model of the wave-iczosphere interaction chosen is discussed in detail.

Figure 1.2 Electron collision frequency profiles (after Deeks, 1964).

1.2 VLF Studies of the D Region

One way to study the D region experimentally is to observe its effect on an electromagnetic wave propagated upward from a ground-based transmitter. The frequency of the signal is chosen so that the wave will have its maximum interaction with that portion of the ionosphere in which one is interested. A receiver detects the signal, altered in amplitude and phase in a way dependent upon the electron density, collision frequency, wave-frequency, and geometry of the plane of propagation. The transmitter emits a symmetric signal, but the ionospheric parameters, the location of the receiver, and the wave-frequency determine the height of maximum reflection and hence the angle of incidence. For VLF waves, the reflection is not like that for light from a mirror; it is rather an interaction over a range of heights of the wave fields with the charged particles of the ionosphere, chiefly the free electrons. Qualitatively, some of the energy of the wave is lost to the medium through collisions and the remaining energy is redistributed among the wave fields.

The early work of the British, notably Bain, Best, Bracewell, Budden, Ratcliffe, Straker, Stuart, Weekes, and Wilkes, among others, involved studies of the propagation of steeply incident VLF waves under varying ionospheric conditions. The components of the wave-fields at the ground-based receiver are shown in Figure 1.3 after Bracewell (1952). The groundwave, with subscript 0, is linearly polarized. The downcoming skywave is an elliptically polarized wave arbitrarily split into two linearly polarized components, the normal component, with subscript 1, and the abnormal component with $\overline{\mathrm{H}}$ in the plane of propagation, with subscript 2. Also shown is the skywave reflecting from the ground, which is assumed to be a perfect reflector. The various wavefields making up the total magnetic field at the ground are shown in Figure 1.3B.

Figure 1.3 Components of the field at the ground (after Bracewe11, 1952).

Figure 1.3C depicts the measurable quantities H_{N}, the total normal component, and H_{A}, the total abnormal component, the two vectors in general being out of phase. Basically, this work was a cataloguing of the ionosphere's effect on this received signal as a function of time and space. Various experimental problems, such as isolating the skywave from the groundwave, were worked out at this time.

Then Deeks (1966) performed his pioneering work; by altering an assumed electron density distribution until theoretical full-wave calculations of reflection coefficients and reflection heights for VLF and LF propagation gave results in agreement with experiment, he was able to deduce an electron density distribution for the D region. Although, Bain and May (1967) showed that Deeks' distributions required modifications which amounted roughly to reducing their height by about 6 km , the importance of Deeks' work remains, that of using VLF results to determine ionospheric parameters, not merely ionospheric effects on propagating waves. This is really the inverse problem to the one being treated here, where an electron density profile, either measured or deduced, is used with full-wave theory ${ }^{2}$ to calculate reflection coefficients.

2. RAY THEORY

2.1 The Theory of Booker

Historically, ray theory preceded full-wave theory. According to the ray theory, a wave incident on the ionosphere from below with an angle of incidence θ measured from the vertical may be thought of as a ray, much as one thinks of light rays in geometrical optics. For simple situations, such as no magnetic field and no electron-neutral collisions, the path of the ray may be traced through the atmosphere by following the phase velocity vector. The orientation of this vector changes along the path through the ionosphere according to Snell's Law

$$
\begin{equation*}
\mu \sin \psi=\sin \theta, \tag{2.1}
\end{equation*}
$$

where μ is the phase refractive index and ψ is the angle the phase velocity makes with the vertical. Below the region of ionization in the atmosphere, $\mu=1$. In the inhomogeneous, isotropic, collisionless ionosphere above this free space region, μ decreases with increasing altitude. When the level is reached where $\psi=\frac{\pi}{2}$, the wave has achieved its deepest penetration into the ionosphere, and it then begins its descent. The ray path for such a simple siutation is shown in Figure 2.1. Line $A B$ is the boundary between the free space region and the region of ionization.

Booker (1938) pointed out that the inclusion of the earth's magnetic field makes the situation much more complicated. Upon entering the ionosphere, the incident wave may be thought of as being split into two characteristically polarized components, which may propagate independently. The refractive index is now dependent upon ψ, as well as altitude, in a complicated way, and Snell's

Figure 2.1 A ray path for a wave-packet incident obliquely upon an inhomogeneous, isotropic, collisionless ionosphere (after Booker, 1938).

Law with $\psi=\frac{\pi}{2}$ will no longer give the level of reflection of the wave. The level where the group velocity, not the phase velocity, is horizontal is the true level of reflection. This level was the same for the case of no magnetic field because the group and phase velocity vectors were identical. As a wave-packet propagates through the region of ionization with the group velocity, the individual wave-crests within it are in general moving across the wavepacket with a phase velocity of different magnitude and direction from the group velocity. This results in a cusped ray path for each of the two magnetoionic components, the ordinary and extraordinary waves. These paths are shown in Figure 2.2 along with the corresponding group-rays. The figure shows only the behavior in the $x z$ plane. Thus the phase-rays do not actually show the path followed by the wave-packet, but only the direction at any altitude of the wave-crests moving across the wave-packet. This is also shown in Figure 2.2 by superimposing phase velocity vectors on the group-ray path.

Because of the dependence of μ on the unknown angle of refraction ψ, it proves convenient to approach the problem of obliquely incident propagation by avoiding the use of μ. The propagation of either of the two magnetoionic components is represented by the wave function

$$
\begin{equation*}
\exp [i k\{c t-\mu(\psi)((\sin \psi) x+(\cos \psi) z)\}] \tag{2.2}
\end{equation*}
$$

Using Snell's Law and a newly defined variable q, the wave function becomes

$$
\begin{equation*}
\exp [i k\{c t-(\sin \theta) x-q z\}] \tag{2.3}
\end{equation*}
$$

where q is the only unknown. q contains the electron density, wave-frequency, earth's magnetic field, and angle of incidence as parameters, and the

Figure 2.2 Group- and phase-rays of the (a) extraordinary wave, and the (b) ordinary wave, for an inhomogeneous, anisotropic, coilisionless ionosphere (after Booker, 1938)
propagation of the wave components through the atmosphere can now be represented by plotting q as a function of the electron density N while keeping the other three parameters constant. Such a plot is shown in Figure 2.3. It would be symmetrical for vertical incidence. Below the ionosphere $\mathrm{N}=0$ and $q=\cos \theta$. There is a critical electron density $\left(N_{A}\right.$ or N_{B} in Figure 2.3) for each magnetoionic component, above which that component will not penetrate for a given wave-frequency and angle of incidence. Hence the reflection points (A and B in Figure 2.3) are represented by $\frac{\partial q}{\partial N} \rightarrow \infty$, not $\psi=\frac{\pi}{2}$ or $q=0$ (D and E in Figure 2.3) as was the case for the isotropic ionosphere.

Following the example of Appleton, whose wave-function one may retrieve from Booker's by letting $\theta=0$, the wave function, which was the assumed form of the electromagnetic wave-fields and the polarization, was substituted into the wave, equations obtained from Maxwell's equations, resulting in a quartic equation in q, instead of the quadratic obtained by Appleton, represented by

$$
\begin{equation*}
F(q) \equiv \alpha q^{4}+B q^{3}+\gamma q^{2}+\delta q+\varepsilon=0 \tag{2.4}
\end{equation*}
$$

The four Booker quartic roots correspond to the upgoing ordinary, downgoing ordinary, upgoing extraordinary, and downgoing extraordinary waves. The exact nature of the coefficients in the Booker quartic equation depends on the assumptions concerning electron-neutral collisions and the form of the constitutive relation between the polarization $\overline{\mathrm{P}}$ and the electric field intensity \bar{E}. If the collisional damping due to electron-neutral collisions is included, the coefficients of the Booker quartic equation and the Booker quartic roots become complex quantities.

Figure 2.3 The Booker quartic roots q as a function of electron density N, for oblique incidence upon an irhomogeneous, anisotropic ionosphere (after Booker, 1938). The dashed curve represents the extraordinary wave; the solid curve, represents the ordinary wave.

The quartic equation may be solved at any altitude, even for complex coefficients, by the method of Burnside and Panton (1904). Figure 2.3 may thus be obtained if the variation of electron density with height, the wavefrequency, the angle of incidence at the ground, and the earth's magnetic field vector, which is assumed to remain constant in magnitude and direction over the region of propagation, are specified.

The wave-fields for the upgoing extraordinary wave, downcoming extraordinary wave, upgoing ordinary wave, and downcoming ordinary wave are proportional at any altitude to

$$
\begin{equation*}
\exp \left\{i k\left(c t-(\sin \theta) y-\int_{0}^{z} q d z\right\}\right. \tag{2.5}
\end{equation*}
$$

'vhere the root q used is the one appropriate to the magnetoionic component under consideration. Since the form of the relationship between q and z or N can be very complicated, the integration in (2.5) may have to be performed numerically. The real part of q determines the phase change in the wave, whereas the imaginary part arising from collisional damping determines the attenuation as the integration proceeds. The integration for each magnetoionic component might also involve several separate parts due to a situation such as the one shown in Figure 2.4, where a q vs N plot and the corresponding group-ray diagram are depicted. The upgoing ordinary wave is represented by $I B$ and $A_{2} A_{3}$, the downgoing ordinary wave by $R B$ and $A_{2} A_{1}$, the upgoing extraordinary wave by IA_{1}, and the downgoing extraordinary wave by RA_{3}.

In any case, the reflection coefficients could in principle be calculated by comparing the wave-fields at the end of the path with those at the start

Figure 2.4 Another possible form of (a) q as a function of N for oblique incidence upon an inhomogeneous, anisotropic ionosphere with collisions included, and (b) tine corresponding group-ray diagram (after Booker, 1938).
after all the phase change and attenuation, which occur over the whole path, and all the absorption, which occurs only over the portion of the path in the ionosphere, have altered the wave.

2.2 The Necessity for Full Wave-Theory

A wide variety of situations exist for which the ray theory is invalid; it fails to give a good description of reality. Booker (1938) discusses the failure of the theory in the stratum in which reflection takes place, that is, when the quartic roots for the upgoing and downgoing waves of either the ordinary (or extraordinary) component become nearly equal. He also mentions the failure in a region of coupling when the upgoing (or downgoing) waves of the ordinary and extraordinary component become nearly equal, and the two components thus lose their independence. Failure also occurs when the collisional damping is so great that reflection cannot be considered to occur at one height alone, but occurs partially at different levels. The failure of the medium to be slowly varying at the wave-frequency being used is the common factor in all of the inadequacies of ray theory. Usually, below wavefrequencies of 1 MHz , and always below wave-frequencies of 100 KHz , one must resort to a more exact solution of the electromagnetic wave equations. The form of the wave-fields assumed by Booker is no longer valid. The refractive indices of the ionosphere change appreciably within one wavelength. The upgoing energy is converted by the ionosphere to downgoing energy over a range of heights. Since studies of the D region involve frequencies of a few tens of KHz , it is necessary to employ the more exact full-wave theory.

3. FULL-WAVE THEORY

3.1 General Magnetoionic Theory

To develop a mathematical formalism to describe waves obliquely incident upon a horizontally stratified anisotropic, collisional, non-thermal, nonslowly varying, non-permeable ($\mu=\mu_{0}$), inhomogeneous ionosphere, one must first begin with the equation for conservation of charge, the continuity equation

$$
\begin{equation*}
\mathrm{m}_{\alpha} \frac{\partial \mathrm{N}_{\alpha}}{\partial \mathrm{A}}+\mathrm{m}_{\alpha} \bar{\nabla} \cdot\left(\mathrm{N}_{\mathrm{c}} \overline{\mathrm{v}}_{\alpha}\right)=0 \tag{3.1}
\end{equation*}
$$

and the force equation, the magnetohydrodynamic equation

$$
\begin{equation*}
m_{\alpha} \frac{D \bar{v}_{\alpha}}{D t}=z_{\alpha} e \bar{E}+z_{\alpha} e \bar{v}_{\alpha} x \bar{B}+m_{\alpha} N_{\alpha} \bar{g}-\frac{\bar{\nabla} p}{N_{\alpha}}-m_{\alpha} \nu_{\alpha} \bar{v}_{\alpha} \tag{3.2}
\end{equation*}
$$

where the subscript α indicates a summation over the α charged constituents and the D / Dt is the convective derivative

$$
\begin{equation*}
\frac{D}{\overline{D t}}=\frac{\partial}{\partial t}+\bar{v}_{\alpha} \cdot \bar{\nabla} \tag{3.3}
\end{equation*}
$$

which in this case gives the total time rate of change of the α th constituent's velocity, \bar{v}_{α}, on the left hand side of the force equation. Other quantities appearing in Equations (3.1) and (3.2) are the mass of the ath charged constituent, m_{α}; the number density of the α th charged constituent, N_{α}; the electric field of the skywave, \bar{E}; the total magnetic field, including the earth's magnetic field and the magnetic field of the skywave, \bar{B}; the gravitational acceleration field, \bar{g}; the scalar fluid pressure of the plasma, p; and the collision frequency, measured in collisions per second, of the
α th charged constituent with ions, electrons, and neutral atoms and molecules, ν_{α}. The definition of these quantities makes the nature of each of the force terms on the righthand side of Equation (3.2) self-explanatory.

If it was desired to examine the propagation in the plasma in terms of characteristic modes, one would form perturbed equations using

$$
\begin{align*}
& N_{\alpha}=N_{\alpha 0}+N_{\alpha}^{\prime} \\
& \bar{v}_{\alpha}=v_{\alpha 0}+\bar{v}_{\alpha}^{\prime} \\
& p_{\alpha}=p_{\alpha 0}+p_{\alpha}^{\prime} \tag{3.4}\\
& \overline{\mathrm{E}}=\bar{E}_{0}+p_{\alpha}^{\prime} \\
& \bar{B}=\bar{B}_{0}+\bar{B}^{\prime}
\end{align*}
$$

where the first quantity on the right hand side is the unperturbed ionospheric parameter, and the second is the perturbation due to the passage of the wave. To simplify matters, $v_{\alpha 0}$ and \bar{E}_{o} might be taken to be negligible. The perturbed counterparts of Equations (3.1) and (3.2) would be solved simultaneously for \bar{v}_{α} in terms of \bar{E}, which would then be substituted into the equation for the electric polarization to obtain the constitutive relations with the susceptibility matrix, and finally the dielectric tensor. It is not relevant here to study the propagation in this manner, however, since the total effect of the ionosphere on the received wave is what is desired. Not only will $v_{\alpha o}$ and \tilde{E}_{o}^{n} be neglected, but N_{α} as well. Then if non-linear terms in the perturbed quantities, the α th constituent's velocity and the wave-fields, are neglected, the terms

$$
\begin{aligned}
& m_{\alpha}\left(\bar{v}_{\alpha} \cdot \bar{\nabla}\right) \bar{v}_{\alpha} \\
& z_{\alpha} e^{v_{\alpha}} \times \bar{B}_{\text {wave }}
\end{aligned}
$$

are dropped. This eliminates the need for Equation (3.1). The Lorentz polarization term has been excluded, on the basis of experimental evidence discussed by Budden (1961).

If only a one component plasma is considered, that is, if only the motion of the electrons is considered and not the motion of the heavier, more sluggish ions, as is proper to do if the number density of ions is not much greater than the number density of electrons, then the summation over α charged constituents is no longer necessary, and z_{α} becomes equal to unity. The ions simply cannot respond to the passing wave-fields as rapidly as the electrons, and the motion that they do acquire is too small to be greatly affected by the earth's magnetic field for VLF frequencies, as mentioned by Budden (1961). Finally, neglecting the effects of gravity and the thermal pressure gradient (3.2) reduces to

$$
\begin{equation*}
e \bar{E}_{\text {wave }}+e \frac{\partial \bar{r}}{\partial t} \times \bar{B}_{\text {earth }}=m \frac{\partial^{2} \bar{r}}{\partial t^{2}}+m v \frac{\partial \bar{r}}{\partial t} \tag{3.5}
\end{equation*}
$$

where the ionospheric electric fields have also been neglected. The collision frequency, v, is now that for electrons with ions, electrons, and neutrals, but since the number density of neutrals is so much greater than that of ions, and electrons it may be effectively taken as the collision frequency for electron-neutral collisions. This collision frequency, however, is dependent upon the energy of the electrons, this fact being taken into account by Sen and Wyller (1960) in a generalization of Appleton-Hartree magnetoionic theory.

The inclusion of this energy dependence makes Equation (3.5) invalid, but it can still be used to give good results for VLF studies if the correct collision frequency profile is used, as shown by Deeks (1966a). The use of such an effective collision frequency profile is a mathematical device to equate, as far as possible, the two theories. The profiles of collision frequency for monoenergetic electrons of energy kT used in Sen-Wyller theory and for the effective collision frequency used to make Appleton-Hartree theory give fairly good agreement with the Sen-Wyller results for VLF calculations are shown in Figure 3.1. The dashed curve should be used for all calculations employing the theory of this chapter. The penalty for doing so, according to Deeks (1966a) is slightly increased absorption (smaller reflection coefficient magnitudes) relative to results obtained by using Sen-Wyller theory, but the difference between the results is less than experimental error, especially at VLF frequencies.

Although the wave at the transmitter is spherical, far from the antenna in a localized region it can be approximated by a plane wave of the form

$$
e^{i \omega t-i k \bar{r}}
$$

Thus $\frac{\partial}{\partial t}$ in (3.5) can be replaced by $i \omega$ to produce an equation in the transform domain. Multiplying this transformed version of (3.5) by $\mathrm{Ne} / \mathrm{m} \omega^{2}$, where ω is the angular wave-frequency, and noting that the electric polarization, $\overline{\mathrm{P}}$, and geomagnetic field vector, \bar{Y}, are given by

$$
\begin{align*}
& \overline{\mathrm{P}}=\mathrm{Ne} \overline{\mathrm{r}} \tag{3.6}\\
& \overline{\mathrm{Y}}=\frac{\mathrm{e}}{\mathrm{~m} \omega} \overline{\mathrm{~B}} \tag{3.7}
\end{align*}
$$

Figure 3.1 Height variation of v_{M}, the collision frequency of mono-energetic electrons of energy $k T$ (full curve) and $v_{\text {eff }}$, the effective classical collision frequency for very long wave calculations (dashed curve), (after Deeks, 1966a).
it is a straightforward matter to obtain the constitutive relations for the ionosphere. These are of the matrix form

$$
\begin{equation*}
\bar{P}=\varepsilon_{0} \tilde{M} \overline{\mathrm{E}} \tag{3.8}
\end{equation*}
$$

where $\not \approx$ is the susceptibility tensor given by

$$
\tilde{M}=\frac{-X}{U\left(U^{2}-Y^{2}\right)}\left(\begin{array}{ccc}
U^{2}-1^{2} Y^{2} & -i U n Y-1 m Y^{2} & i U m Y-\ln Y^{2} \tag{3.9}\\
i U n Y-1 m Y^{2} & U^{2}-m^{2} Y^{2} & -i U 1 Y-m n Y^{2} \\
-i U m Y-\ln Y^{2} & i U 1 Y-m n Y^{2} & U^{2}-n^{2} Y^{2}
\end{array}\right)
$$

The quantities of which the susceptibility matrix is composed are

$$
\begin{align*}
& X=\frac{N e^{2}}{\varepsilon_{o} m \omega^{2}}=\frac{\omega_{p}^{2}}{\omega^{2}} \tag{3.10}\\
& Y=|\bar{Y}|=\left|\frac{e \bar{B}}{m \omega}\right|=\frac{\omega^{H}}{\omega} \tag{3.11}\\
& U=1-i Z=1-i \frac{v}{\omega} \tag{3,12}
\end{align*}
$$

where ω_{H} is the gyrofrequency for electrons or the cyclotron frequency, and ω_{p} is the plasma frequency at the altitude corresponding to $N(z)$. The letters $1, m, n$ represent the direction cosines of the geomagnetic field vector, \bar{Y}, with respect to a right-handed coordinate system whose z axis is vertically upward and whose positive x axis is in the direction of the horizontal component of the wave vector, \bar{k}. The direction cosines are given by

```
1=-\operatorname{cos}\phi\operatorname{cos}\alpha
m}=-\operatorname{cos}\phi\operatorname{sin}
n}=\operatorname{sin}
```

where ϕ is the magnetic dip angle, measured down from the horizontal ($0<\phi \leq 90^{\circ}$ for Northern Hemisphere), and α is the azimuth east of magnetic north of the x axis, which is in the plane of propagation. The coordinate system is shown in Figure 3.2.

A point which often generates much confusion is that Y can be defined so that the gyrofrequency for electrons is negative

$$
\begin{equation*}
\mathrm{Y}=\frac{\mathrm{e}|\overline{\mathrm{~B}}|}{\mathrm{m} \omega} \tag{3.14}
\end{equation*}
$$

If this is done, however, the signs of the direction cosines are changed, which means that they are the direction cosines of \bar{B}, which is oppositely directed to \bar{Y}. The use of either set of definitions for $Y, 1, m$, and n will yield the same susceptibility matrix elements.

One other point worthy of mention is that the expression for $\overline{\mathrm{P}}$ used in Equation (3.6) is the result of taking an average over a volume containing many electrons. The polarization vector and the wave fields used later in Maxwell's equations are assumed fairly constant over distances much less than a wavelength, but large compared with inter-electron distances even for a nonslowly varying medium. That is, changes in the electron density in the vertical direction are not neglected, but small irregularities are smoothed out. As Budden (1961) mentions, there would be no meaning in speaking of the value of $\overline{\mathrm{P}}$ at a specific point in the free space between electrons.

Figure 3.2 The relevant coordinate system at the transmitter. The wave vector \bar{k} is in the $x z$ plane. \bar{B} is in the plane of the magnetic meridian. β, γ, Δ are the arccosines of the direction cosines, $1, \mathrm{~m}, \mathrm{n}$ of the geomagnetic field vector, $\overline{\mathrm{Y}}$.

3.2 The Relevant Equations

With the form of the plane wave already assumed below the ionosphere and the incident plane wave having its wave normal in the $x z$ plane at an angle θ to the vertical, for all wave-fields

$$
\begin{align*}
& \frac{\partial}{\partial x}=-i k \sin \theta \\
& \frac{\partial}{\partial y}=0 \tag{3.15}
\end{align*}
$$

Equations (3.8) and (3.15) together with Maxwell's electromagnetic equations

$$
\begin{align*}
& \bar{\nabla} \times \overline{\mathrm{E}}=-i \mathrm{kZ}_{\mathrm{O}} \overline{\mathrm{H}}=-i \mathrm{k} \mathscr{H} \tag{3.16}\\
& \bar{\nabla} \times \mathscr{H}=\frac{i \mathrm{k}}{\varepsilon_{\mathrm{o}}} \overline{\mathrm{D}}=\frac{i \mathrm{k}}{\varepsilon_{\mathrm{o}}}\left(\varepsilon_{\mathrm{o}} \overline{\mathrm{E}}+\overline{\mathrm{P}}\right),
\end{align*}
$$

where z_{o} is the characteristic impedance of the medium and ε_{o} is the permittivity of free space, yield the matrix equation

$$
\begin{equation*}
\bar{e}^{\prime}=-i k \widetilde{\widetilde{T}} \overline{\mathrm{e}} \tag{3.17}
\end{equation*}
$$

where the prime is the partial derivative with respect to altitude, and

$$
\bar{e}=\left(\begin{array}{c}
E x \tag{3.18}\\
-E_{y} \\
y_{x} \\
y_{y}
\end{array}\right)
$$

and

$$
\approx \xlongequal[\tau]{ } \because=\left(\begin{array}{cccc}
-\frac{\mathrm{SM}_{31}}{1+\mathrm{M}_{33}} & \frac{\mathrm{SM}_{32}}{1+\mathrm{M}_{33}} & 0 & \frac{\mathrm{C}^{2}+\mathrm{M}_{33}}{1+\mathrm{M}_{33}} \tag{3.19}\\
0 & 0 & 1 & 0 \\
\frac{\mathrm{M}_{23} \mathrm{M}_{31}}{1+\mathrm{M}_{33}}-\mathrm{M}_{21} & \mathrm{C}^{2}+\mathrm{M}_{22}-\frac{\mathrm{M}_{23} \mathrm{M}_{32}}{1+\mathrm{M}_{33}} & 0 & \frac{\mathrm{SM}_{23}}{1+\mathrm{M}_{33}} \\
1+\mathrm{M}_{11}-\frac{\mathrm{M}_{13} \mathrm{M}_{31}}{1+\mathrm{M}_{33}} & \frac{\mathrm{M}_{32} \mathrm{M}_{13}}{1+\mathrm{M}_{33}}-\mathrm{M}_{12} & 0 & \frac{-\mathrm{SM}_{13}}{1+\mathrm{M}_{33}}
\end{array}\right)
$$

where $S=\sin \theta, C=\cos \theta$, and the $M_{i j}$ are elements of the susceptibility matrix. X and Z are functions of height, since they depend upon the electron density and collision frequency respectively. Therefore the $M_{i j}$ are functions of height, making the $\mathrm{i}_{i j}$ functions of height. The wave-fields and their derivatives with respect to z are also naturally functions of height. If it was desired to solve for the actual wave-fields, Equation (3.17) would be treated. Of interest here, however, are the reflection coefficients, which are ratios of the fields at any altitude desired to the incident fields. The reflection coefficient matrix is defined as

$$
\approx \sim\left(\begin{array}{lll}
\left\|^{R}\right\| & \|^{R} \perp \tag{13.20}\\
\perp^{R} \| & \perp^{R} \perp
\end{array}\right)=\left(\begin{array}{ll}
\frac{E_{\|}^{(R)}}{\frac{E_{\perp}^{(R)}}{E_{\|}^{(I)}}} & \frac{E_{\|}^{(I)}}{E_{\|}^{(R)}} \\
\frac{E_{\|}^{(R)}}{E_{\perp}^{(I)}} & \frac{E_{\perp}^{(R)}}{E_{\perp}^{(I)}}
\end{array}\right)
$$

where $E_{\|}^{(I)}$ and $E_{\perp}^{(I)}$ are the components of the incident electric field parallel and perpendicular to the plane of propagation respectively, and $E_{\|}^{(R)}$ and $E_{\perp}^{(R)}$
are defined similarly for the reflected wave. The dependent variable is then the reflection coefficient matrix and not the wave-field vector. This is the dependent variable used by Budden (1955a). Barron and Budden (1959) resort to another dependent variable, however, termed the admittance matrix $\tilde{\AA}$. It is related to \widetilde{R} by
where

$$
\begin{equation*}
\text { RPOLY }=\left(\frac{11^{R_{11}-1}}{2}\right)\left(\frac{\perp_{\perp}+1}{2}\right)-\left(\frac{11^{R_{1}}}{2}\right)\left(\frac{\perp^{R_{1}}}{2}\right) \tag{13.22}
\end{equation*}
$$

The differential Equations (3.17) become, after this change of variable, in matrix form

$$
\begin{align*}
& i \tilde{\widetilde{A}}=k\left(\tilde{\widetilde{A}}\left(\begin{array}{cc}
-T_{11} & T_{12} \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
T_{44} & 0 \\
T_{34} & 0
\end{array}\right) \tilde{\AA}+\tilde{\AA}\left(\begin{array}{cc}
-T_{14} & 0 \\
0 & 1
\end{array}\right) \tilde{\AA}\right. \\
&\left.+\binom{T_{41}-T_{42}}{T_{31}-T_{32}}\right) \tag{13.23}
\end{align*}
$$

where this correct version is given by Barron and Budden (1959), the version in Budden (1961) being incorrect. This equation is clearly too complicated to be solved analytically. After numerically integrating it down through the ionosphere from a known starting solution, however, \widetilde{R} can be obtained from $\widetilde{\AA}$ by

$$
\underset{\widetilde{R}}{ }=2\left(\begin{array}{cc}
-\mathrm{CA}_{11}-1 & A_{12} \tag{13.24}\\
A_{21} & 1-A_{22} / C
\end{array}\right)^{-1}+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The wave admittance approach is used here, although the wave-fields as variables are preferred by others such as Pitteway (1965), and the reflection coefficients as variables by still others such as Sheddy (1968).

4. FULL-WAVE SOLUTIONS

4.1 The Starting Solution

The starting solution necessary to initiate the solution of the relevant differential equations from the full-wave theory of Chapter 3 can be obtained by the method of Sheddy (1968). This method does not depend on a lengthy, and often too slowly converging, preliminary integration, beginning with a crude estimate of the initial solution, down through a fictitious homogeneous ionosphere with X and Z held constant at their values at the height where the preliminary integration is started. This was the method of Budden (1955a). Such a preliminary integration is terminated when $\tilde{\AA}^{\prime}$, is arbitrarily close to zero, and the resultant $\tilde{\AA}$ is the admittance matrix corresponding to only upgoing waves above the boundary, that is, the matrix for a sharply bounded homogeneous medium. This result may then be used as the starting solution back at the starting level for the preliminary integration, since once \AA is found which satisfies $\AA \neq 0$, it will not change over a homogeneous ionosphere. Clearly, this starting level must be well above the height in the real ionosphere where waves of a given frequency are interacting with the ionization. The same method could be used if $\underset{R}{\approx}$ were the dependent variable, but the rate of convergence to $\tilde{\mathrm{R}}^{\prime}=0$ would be different.

That the problem is reduced to one of a sharp boundary makes appropriate the boundary matching technique of Crombie (1961), which in turn employs the solutions to the Booker quartic equation with complex coefficients discussed in Chapter 2. The Booker quartic roots may be obtained in closed form using the mathematics of Burnside and Panton (1904). Whereas Crombie's solution was good only for west-east or east-west propagation, Sheddy's method gives
the reflection coefficients for a plane of propagation of arbitrary azimuth east of north for a sharply bounded homogeneous ionosphere with a lower boundary at the height where one wishes to commence a full-wave solution.

The flow chart for the initial solution portion of the full-wave program is shown in Figure 4.2, the actual computer printout being given in the Appendix. Flow chart notation follows that of McCracken (1965). This flow chart is preceded by the flow chart in Figure 4.1 for the input portion of the main program, in which all quantities necessary for later calculations are defined or computed.

4.2 The Numerical Integration

Once the initial solution has been found, the numerical integration down through the real ionosphere is carried out using a modified Runge-Kutta process due to Gill (1951). The pertinent constants of nature, input parameters (indicated by asterisks) and integration variables are defined below. The left-hand symbol is the standard notation; the right-hand symbol is the notation used in the computer program, if it differs from the standard notation. MKS units are used in all calculations. All calculations are performed with double precision accuracy.
e
m, ELECM
ε_{o}, PERME
μ_{0}, PERMM
c
B
θ,THETA(in radians)

* ANGLE (in degrees)

Charge of the electron (it is negative).
Mass of the electron.
Permittivity of free space.
Permeability of free space.
Speed of light in a vacuum.
Magnitude of earth's magnetic field.
Angle of incidence between the vertical and the wave normal of the incident wave below the ionosphere.

Figure 4.1 Flow chart depicting (a) input portion of main program, including (b) subroutine PREFN.

Figure 4.2 Flow chart depicting initial solution (after Sheddy, 1968) portion of main program.
α, ALPHA(in radians)

* AZEN (in degrees)
* f, FREQ
$\omega, 0 M E G A$
k
$\phi, \mathrm{PHI}(i n$ radians)
* DIP(in degrees)
$1, \mathrm{~m}, \mathrm{n} ; \mathrm{DCL}, \mathrm{DCM}, \mathrm{DCN}$
* N,ED(For data points only)

EDENS (in general)

EDPRE (at start of integration)

* $v, C F$ (for data points only)

CFREQ
CFPRE (at start of integration)
$X, E X \quad \mathrm{Ne}^{2} / \mathrm{m} \varepsilon_{o} \omega^{2}$
$Y, W H Y \quad|e B / \omega m|$

Z
i
M̈, M=MR+iMI
$\underset{T}{Z}, T=T R+i T I$
q
$R_{11}=\|^{R}| |, R C(1)=R(1)+i R(5)$

Azimuth east of magnetic north of positive x axis in the plane of propagation.

Wave-frequency .

Angular wave-frequency, $2 \pi f$.
Magnitude of wave vector, ω / c.
Magnetic dip angle (measured down from horizontal).

Direction cosines of magnetic field vector, \bar{Y}, for coordinate system shown in Figure 3.2 .

Electron number density.

Collision frequency of electrons with neutrals.

The choice of absolute value signs surrounding the whole quantity and the corresponding choice for $1, m, n$ are discussed in Chapter 3.
ν / ω
$\sqrt{-1}$
Susceptibility matrix.
T matrix.

Root of Booker quartic equation.
Elements ${ }_{\gtrless}$ of reflection coefficient matrix, \mathbb{R}

```
R
R}21=\perp\mp@subsup{\perp}{}{R}||,RC(3)=R(3)+iR(7
* R
|\tilde{R}|,MAGR
argR,FAZR
\widetilde{~}
A
A
A}21,AM(3)=Y(3)+iY(7
A}22,AM(4)=Y(4)+iY(8
Ǎ', DERIV
    DERIV (I)=\operatorname{DERY}(I)+iDERY (I +4)
* NMAX
* PRMT (1)
* PRMT (2)
* PRMT (3)
* PRMT (4)
* ZDATA
ALT
IHLF
C,CC
S,SS
```

Matrix of reflection coefficient magnitudes or amplitudes

Matrix of reflection coefficient phases or arguments

Matrix of reflection coefficient derivatives with respect to altitude
Elements of wave admittance matrix, \AA

Matrix of wave admittance derivatives with respect to altitude

The number of data points compr sing the digitized form of the electron density profile (same for collision frequency profile).

Height at start of integration.
Height at end of integration.
Integration interval.
Accuracy maintained per step in the integration.

Height interval between data points.
Altitudes corresponding to data points representing profiles of N and ν.

Number of times integration interval is halved in order to ensure accuracy supplied in PRMT (4).
$\cos \theta$
$\sin \theta$

The electron density and collision frequency profiles are specified by data points given every (-ZDATA) meters between PRMT (1) and (PRMT(2) + ZDATA) inclusive. If PRMT (3) < ZDATA, the values in between data points are computed by linear interpolation; no sophisticated fitting of polynomial curves to points is used. PRMT(1) is chosen so that EX $\approx 100(1+$ WHY $)$ and PRMT (2) so that $E X<1$ for the frequency being used. Although these limits are vestiges of ray theory, and should not be considered to be related to precise levels of reflection for VLF waves, they give reasonable boundaries for the region of significant wave-ionosphere interactions.

The angle of incidence is computed by geometry, knowing the distance between the transmitter and receiver, and assuming an average height of reflection equal to the altitude where $E X=(1+W H Y)$. This height decreases during the sunrise period, causing θ to increase.

PRMT (3) is chosen small enough so that IHLF does not become too large, yet large enough so that an unnecessary number of calculations over gradual electron density gradients are avoided. PRMT(4) is chosen large enough so that IHLF does not become too large over steep electron density gradients, yet small enough so that the final results are meaningful.

Figure 4.3 shows the flow chart for the DRKGS IBM SSP Library subroutine used in the numerical integration. Figure 4.4 shows the flow chart for the subroutines FCT and OUTP called from within DRKGS. Use of the OUTP subroutine can provide a continuous print-out of the reflection coefficients down through the entire ionosphere, producing diagrams analogous to those of Pitteway (1964), who used the penetrating and non-penetrating wave-fields as dependent variables. The locations for this use of the OUTP subroutine are shown as dashed boxes in Figure 4.3. If this is not desired, the OUTP subroutine is not necessary. The

Figure 4.3 Flow chart depicting numerical integration subroutine DRKGS.

Figure 4.4 Flow chart depicting subroutines (a) FCT and (b) OUTP called from within DRKGS subroutine.

FCT subroutine computes the derivatives of the wave admittances as they steadily change down through the ionosphere because of the changing electron density and collision frequency. Figure 4.5 shows the output portion of the program, which gives the final reflection coefficient values below the ionosphere.

No provision was made to prevent numerical swamping, since with the dependent variables being of the same order of magnitude and the computer having great accuracy when operating in the double precision mode it was felt unneccessary.

4.3 Checks of the Full-Wave Program

A complicated computer program such as the one used in full-wave solutions cannot be used with any confidence until after its results have been thoroughly checked against known results.

The correctness of the starting solutions was verified in several ways. First, the Booker quartic roots were substituted into the Booker quartic equation to see if they satisfied it. The value of the Booker quartic equation, which should strictly be zero, was always at least 10^{2} times smaller than any of the roots themselves, and often 10^{5} times smaller.

The starting reflection coefficients and admittance matrix elements wère checked by substituting them into the differential equations. The values of the derivatives, which again for an exact solution should be zero, were at least 10^{4} times smaller than any of the matrix elements themselves, and some of the derivatives were as much as 10^{17} times smaller. In other words, with matrix element magnitudes on the order of unity, the derivatives had magnitudes of 10^{-4} and smaller, or as close to the value zero as one might reasonably expect from a digital computer following all the steps of Sheddy's method while carrying 17 digits in its double precision mode of operation.

Figure 4.5 Flow chart depicting final output portion of main program.

In addition, a comparison was made with results of initial solutions numerically calculated by Fedor, et al., (1964) for the special case of west-east propagation. Table 4.1 shows the results of the comparison, with all numbers rounded off to 2 places to the right of the decimal for brevity.

The numerical integration and the resulting final solutions were checked by comparing results with those of Budden (1955b), who in turn compared his results with the analytic solutions of Heading and Whipple (1952). The comparison was made for the case of vertical incidence, an exponential electron density profile, a constant collision frequency, a vertically downward magnetic field, and west-east propagation. Figure 4.6a shows Budden's comparison with Heading and Whipple for $X=\exp (.295 z)$ and $Z=8$ where z is in $k m$. Points marked X were calculated by the author. A similar comparison is shown in Figure 4.6 b , but the electron density gradient is sharper, $X=\exp (2.36 z)$, and $Z=2$.

A further comparison was made with the computing facilities at NELC and the Radio Research Station, Slough, England. For this check only, the collision frequency profile of Fejer and Vice (1959) was used, along with the nighttime electron density profile of Deeks (1964). The angle of incidence was taken to be 40°, the dip angle 70°, the azimuth of the propagation path 152°, and the wavefrequency 21.4 KHz . The numerical integration was started at 108.00 km and stopped at 63.55 km . Table 4.2 compares the results.

All of the comparisons made indicate that full-wave calculations with the program described can be used with reasonable confidence to find the variation of the reflection coefficient matrix under different circumstances, even for an ionosphere with steep electron density gradients.

TABLE 4.1

A comparison of the author's numerically calculated
Starting solutions with those of Fedor, et al., (1964) of NELC.

NELC
VIERTAL

NELC VIERTEL
$11^{R} \|!$
$9.66 \times 10^{-1}-\mathrm{i} 3.43 \times 10^{-2}$
$9.48 \times 10^{-1}-\mathrm{i} 5.28 \times 10^{-2}$
A_{11}
15.26-i15.11
9.91-i 9.82
$11^{R} \perp$
$3.31 \times 10^{-2}+\mathrm{i} 3.05 \times 10^{-2}$
$5.08 \times 10^{-2}+\mathrm{i} 4.51 \times 10^{-2}$
$\stackrel{1}{\mathrm{R}}^{\text {II }}$
$3.31 \times 10^{-2}+\mathrm{i} 3.05 \times 10^{-2}$
$5.08 \times 10^{-2}+i 4.51 \times 10^{-2}$

A_{21}
 4.96-i15.25
 9.74-i 9.97

$\stackrel{\perp}{R}^{\text {L }}$
$-9.68 \times 10^{-1}+i 3.24 \times 10^{-2}$
$-9.51 \times 10^{-1}+i 4.97 \times 10^{-2}$
A_{22}
$-15.39+\mathrm{i} 15.11$
$-10.05+\mathrm{i} 9.81$
-10.05+i 9.81

TABLE 4.2
A comparison of full-wave solutions for the nighttime electron density profile of Deeks (1964) and the collision frequency profile of Fejer and Vice (1959).

	$\left\|\\|_{11} \mathrm{R}_{1}\right\|$	$\left.\right\|_{\\| 1_{\perp} \mid}$	$\left.\right\|_{\perp} \mathrm{R}_{11} \mid$	$\left.\right\|_{\perp} \mathrm{R}_{\perp} \mid$
RRS	.088	.089	.408	.509
NELC	.085	.088	.436	.573
VIERTEL	.057	.087	.458	.621

Figure 4.6 A comparison of the full-wave results, reflection coefficient alagnitude vs angle of incidence, for v constant, $\phi=90^{\circ}$, and $\alpha=90^{\circ}$, of (a) Budden (1955b) (solid line), Budden using the formulas of Heading and Whipple (1952) (dashed line), nd the author (points marked x) for $X=\exp (.295 z), Z=8$ and (b) Budden (1955b) (solid line) and the author (points marked x) for $X=\exp (2.36 z), Z=2$.

4.4 Suggestions for Applications of the Full-Wave Program

One important application of the full-wave program would be to test the consistency of theoretical and experimental methods of studying the D region by comparing the temporal behavior of the reflection coefficient matrix over the sunrise period obtained by full-wave solutions with the results from ground-based VLF studies. For the electron density profiles used in the fullwave program, the results of Smith et al. (1966), shown in Figure 4.7, might be used, with suitable lower E region profiles added to the upper portions of the curves to extend them to sufficiently high levels where the integration would be started. For experimental VLF results, those given by Sechrist (1968) might be employed. The results of both Smith and Sechrist were obtained during a period of minimum solar activity, but their measurements were made at mid-1atitudes in different hemispheres. Also, Smith's profiles were not all determined in the same season. Clearly, the optimum comparison would involve data obtained at the same place and time, but such information is regrettably scarce.

Another valuable comparison would involve replacing Smith's electron density profiles above, which were deduced from ground-based experiments, with profiles obtained from rocket measurements, such as those of Mechtly and Smith (1968) shown in Figure 4.8. The degree of agreement of the theoretical results, obtained using both sets of sunrise electron density profiles, with the experimental VLF results might solve the controversy over which measurement technique is better for measuring electron densities.

If the degree of agreement between theory and experiment proved to be good, more confidence could be displayed in studying not only the sunrise period, but the similar sunset and eclipse conditions by the theoretical and

Figure 4.7 D-region electron density profiles for night, dawn, and daytime periods (after Smith et al., 1966) deduced from ground-based measurements.

Figure 4.8 D-region electron density profiles over the sunrise period
experimental means now used. It should be stressed, however, that the lack of agreement could be due to the lack of simultaneous measurements, an incomplete theoretical representation of the physical situation, or a combination of these and other factors.

APPENDIX

The full-wave computer program printout is shown for a sample application, that of finding the reflection coefficients for a sunrise electron density profile. The flow charts for this program are given in Figures 4.1-4.5.

$\begin{array}{ll}186 & \text { NMAXI } \\ 187 & \text { DO } 32 \mathrm{JMAX}+1 \\ \\ 188\end{array}$	
$\begin{array}{ll}188 & \text { ALT(J) } \\ 189 & \text { CONTINUE }\end{array}$	
	IT MUST BE REMEMBERED THAT THE INDEPENDENT VARIABLE X IN THIS PROGRAM REPRESENTS Z OR H, THE ALTITUDE, NOT THE X
	DIRECTION, THAT THE DEPENDENT VARIABLE Y REPRESENTS THE
	ACMITTANCE MATRIX A, NOT THE Y DIRECTION, AND THAT Z I IS
	CF(N) OMEGA, NOT THE Z(OR H OR VERTICAL) DIRECTION.THIS IS CONFUSING NOTATION BUT ELIMINATES THE NECESS ITY TO
	THE INTEGRATION IS STARTED ARBITRARILY WHERE EX= 100 * $(1+$ WHY)
	, I.E.,WELL ABOVE THE HEIGHT CF REFLECTIONS, AND CONTINUES DOWN TO LEVELS WHERE $N<1$ ELECTRCN/CM**3
	BEGIN CALCULATIONS CF FINAL SOLUTIONS. CALL DRKGS (PRMT, Y, DERY, NDIM, IHLF,FCT, OUTP, AUX, ALT, X, TR,TI,
190	
	CMR,MI,R,CC,DCL,DCN,DCN,WHY,SS,ED,CF,OMEGA, ELECM, PERME ,E,K, ZDAT A) $Y P O L Y R=-1.000-(C C \neq Y(1))+(Y(4) / C C)+Y(1) * Y(4)-Y(5) * Y(8)-Y(2) * Y(3$
191	
192	```C) +Y(6)*Y(7) YPOLYI= -CC*Y(5) +(Y(8)/CCC) +Y(1)*Y(8) +Y(4)*Y(5)-Y(2)*Y(7)```
$C-Y(3) * Y(6)$	
193	YOENOM $=(Y P O L Y R * * 2)+(Y P C L Y I * * 2)$
194	$\begin{aligned} & R(1)=(2.000 *(Y P C L Y R *(1.000-(Y(4) / C C))-(Y(8) * Y P O L Y i / C C)) / Y D E N O M \\ & C)+1 . O D 0 \end{aligned}$
195	$R(2)=-2.000 *(Y(2) * Y P O L Y R+Y(6) * Y P O L Y I) / Y D E N O M$$R(3)=-2.000 *(Y(3) * Y P O L Y R+Y(7) * Y P O L Y I) / Y D E N O M$
196	
197	$\begin{aligned} & R(4)=(-2.000 *(Y P C L Y R *(C C * Y(1)+1.0 D 0)+Y P O L Y I * C C * Y(5)) / \\ & C Y D E N O M)-1.000 \end{aligned}$
198	$R(5)=(-2.000 *(Y P O L Y I *(1 . O D 0-(Y(4) / C C))+Y P O L Y R *(Y(8) / C C) 1)$ CYDENCM)
199	$R(6)=-2 \cdot 000 *(-Y(2) * Y P O L Y I+Y(6) * Y P C L Y R) / Y D E N D M$ $R(7)=-2.0 D O *(-Y(3) * Y P O L Y I+Y(7)$ *YPOLYR)/YDENDM
200	
201	$R(8)=2.000 *(-Y P O L Y R * C C * Y(5)+Y P O L Y I *(C C * Y(1)+1.000) 1 / Y D E N O M$$D O 46 L A=1,4$
202	
203	$L O=L A+4$
204	$\operatorname{MAGR}(L A)=\operatorname{SSQRT}((R) L L A) * R(L A))+(R(L D) * R(L O)))$
205	```FAZR(LA) = (DATAN(DABS(R(LO)/R(LA))))*180.0/PI IF(R(LO)) 41,43,43```
206	
207	$41 \mathrm{IF}(\mathrm{R}(\mathrm{L} A) \mathrm{l} 42,45,45$
208	$\begin{aligned} & 42 \text { FAZR }(L A)=F A Z R(L A)+180.0 \\ & G O T 0 ~ 4 \epsilon \end{aligned}$
209	
210	$43 \mathrm{IF}(\mathrm{R}(\mathrm{LA}) \mathrm{1} 44,46,46$
211	$44 \mathrm{FAZR}(L A)=$ FAZR $(L A)+90.0$GOTO 46
212	
213	$\begin{aligned} & 45 \text { FAZf ILA) }=\text { FAZR(LA) }+270.0 \\ & 46 \text { CONTINUE } \end{aligned}$
214	
215	26 WRITE $(6,26)$ FRMAT
216	
217	C11X,8HIMAGDERY, $13 X, 5$ HREALR , $14 \mathrm{X}, 5 \mathrm{HI}$ MAGR/ $19 \mathrm{X}, 1 \mathrm{HN} /$)
	$\operatorname{CDERY}(2), \operatorname{DERY}(6), R(2), R(6), Y(3), Y(7), \operatorname{DERY}(3), \operatorname{DERY}(7), R(3), R(7) \text {, }$ $C Y(4), Y(8), \operatorname{DERY}(4), \operatorname{DERY}(8), R(4), R(8), N$
218	27 FORMAT(1X,1P1D16.10,13,1P6D18.10/20X,1P6D18.10/20X,1P6D18.10/ C $20 \mathrm{X}, 1 \mathrm{P} 6 \mathrm{D} 18.10 / 120 / 11$
219	\qquad CMAGR (4), FAZR(4)
220	28 FORMAT $/ / / / / / 30 \mathrm{X}, 35 \mathrm{HFINAL}$ REFLECTICN COEFFICIENT VALUES//36X, C 4 HMAGR $, 18 \mathrm{X}, 4$ FFAZR $/ / 15 \mathrm{X}, 5 \mathrm{H} 11 \mathrm{R} 11,5 \mathrm{X}, 1 \mathrm{P} 2022.10 / 15 \mathrm{X}, 5 \mathrm{H} 11 \mathrm{R}+, 5 \mathrm{X}$,
	C1P $2022.10 / 15 \mathrm{X}, 5 \mathrm{H}+\mathrm{R} 11,5 \mathrm{X}, 1 \mathrm{P} 2 \mathrm{D} 22.10 / 15 \mathrm{X}, 5 \mathrm{H}+\mathrm{R}+, 5 \mathrm{X}, 1 \mathrm{P} 2 \mathrm{D} 22.101$29 STOP
221	
222	END

304	$\operatorname{TR}(1,2)=+(\operatorname{SS} *(\operatorname{MR}(3,2) *(1, O D O+M R(3,3)))+(\operatorname{MI}(3,2) * M I(3,3))) /$ MDENOM
305	$\begin{aligned} & T I(1,2)=+(S S *((-M R(3,2) * M I(3,3))+(M I(3,2) *(1,0 D 0+M R(3,3))))) / M L=N O \\ & C M \end{aligned}$
306 307	$\begin{aligned} & \operatorname{TR}(1,3)=0.00 \mathrm{C} \\ & \operatorname{TI}(1,3)=0.000 \end{aligned}$
308 309	$\operatorname{TR}(1,4)=(((C C * * 2)+\operatorname{NR}(3,3)) *(1,000+\operatorname{MR}(3,3))+(\operatorname{MI}(3,3) * * 2)) /$ MDENOM $\operatorname{TI}(1,4)=(M I(3,3) * i 1, O D O+M R(3,3))-M I(3,3) *((C C * * 2)+M R(3,3)) / / M D E N O M$
310 311	$T R(2,1)=0.00 \mathrm{C}$ $\operatorname{TI}(2,1)=0.000$
312 313	$\operatorname{TR}(2,2)=0.000$ $\operatorname{TI}(2,2)=0.000$
314 315	$\operatorname{TR}(2,3)=1.000$ $\operatorname{TI}(2,3)=0.000$
316 317	$\begin{aligned} & \operatorname{TR}(2,4)=0.00 \mathrm{C} \\ & \operatorname{TI}(2,4)=0.00 \mathrm{C} \end{aligned}$
318	$\operatorname{TR}(3,1)=((\operatorname{MR}(2,3) * \operatorname{MR}(3,1) *(1, O D 0+\operatorname{MR}(3,3))-\operatorname{MI}(2,3) * \operatorname{MI}(3,1) *(1,000+$ $\operatorname{CMR}(3,3))+M R(2,3) * M I(3,1)$ * $\operatorname{MI}(3,3)+M R(3,1)$ * $M I(2,3) * M I(3,3)) / M D E N O M)$
319	$\begin{aligned} & C-M R(2,1) \\ & \operatorname{TI}(3,1)=((\operatorname{MI}(2,3) * \operatorname{MI}(3,1) * \operatorname{MI}(3,3)-\operatorname{MR}(2,3) * \operatorname{MR}(3,1) * M I(3,3)+\operatorname{MR}(2,3) * \end{aligned}$
	$\begin{aligned} & C(1,0 D 0+M R(3,3)) * M I(3,1)+\operatorname{MI}(2,3) * \operatorname{MR}(3,1) *(1,0 D O+\operatorname{MR}(3,3))) / M D E N O M) \\ & C-M I(2,1) \end{aligned}$
320	$\operatorname{TR}(3,2)=\{(\operatorname{MR}(3,2) * \operatorname{MR}(2,3) *(1,000+\operatorname{MR}(3,3))-\operatorname{MI}(3,2) * \operatorname{MI}(2,3) *(1,000+$ $\operatorname{CMR}(3,3))+\operatorname{MR}(3,2)$ *MI $(2,3)$ *MI $(3,3)+\operatorname{MR}(2,3)$ *MI $(3,2)$ *MI $(3,3)) /(-M D E N O M$
321	```C))+(CC*** 2)+MR(2,2) TI(3,2)={(MI (3,2)*MI (2,3)*MI (3,3)-MR(3,2)*MR(2,3)*MI (3,3)+MR(3,2)*```
	$C(1, O D O+M R(3,3)) * M I(2,3)+M I(3,2) * \operatorname{MR}(2,3) *(1.0 D O+\operatorname{MR}(3,3))) /(-M D E N O M)$ C) + MI $(2,2)$
322 323	$\begin{aligned} & \operatorname{TR}(3,3)=0.000 \\ & \operatorname{TI}(3,3)=0.000 \end{aligned}$
$\begin{aligned} & 324 \\ & 325 \\ & \hline \end{aligned}$	$\operatorname{TR}(3,4)=+\operatorname{SS} *((\operatorname{MR}(2,3) *(1,000+\operatorname{MR}(3,3)))+\operatorname{MI}(2,3) * \operatorname{MI}(3,3)))) / \operatorname{MDENOM}$ $\operatorname{TI}(3,4)=+(\operatorname{SS*}((-\operatorname{MR}\{2,3) * M I(3,3))+(\operatorname{MI}(2,3) *(1,0 D 0+\operatorname{MR}(3,3))))) / M D E N O$
326	CM $\operatorname{TR}(4,1)=((\operatorname{MR}(3,1) * \operatorname{MR}(1,3) *(1 . O D 0+\operatorname{MR}(3,3))-\operatorname{MI}(3,1) * M I(1,3) *(1 . O D O+$
	$\begin{aligned} & \operatorname{CMR}(3,3))+\operatorname{MR}(3,1) * M I(1,3) * \operatorname{MI}(3,3)+\operatorname{MR}(1,3) * M I(3,1) * M I(3,3)) /(-M D E N O M \\ & ())+1, O D O+M R(1,1) \end{aligned}$
327	$\begin{aligned} & T I(4,1)=((M I(3,1) * M I(1,3) * M I(3,3)-\operatorname{MR}(3,1) * \operatorname{MR}(1,3) * M I(3,3)+\operatorname{MR}(3,1) * \\ & C(1 . O D O+M R(3,3)) \neq M I(1,3)+\operatorname{MI}(3,1) * \operatorname{MR}(1,3) *(1.0 D 0+\operatorname{MR}(3,3))) /(-\operatorname{MDENOM}) \end{aligned}$
328	C) + MI $(1,1)$ $\operatorname{TR}(4,2)=((\operatorname{MR}(3,2) * \operatorname{MR}(1,3) *(1, O D O+\operatorname{MR}(3,3))-\operatorname{MI}(3,2) * M I(1,3) *(1, O D O+$
	$\begin{aligned} & \operatorname{CMR}(3,3))+\operatorname{MR}(3,2) * \operatorname{MI}(1,3) * M I(3,3)+\operatorname{MR}(1,3) * M I(3,2) * M I(3,3)) / \operatorname{MDENDM}) \\ & \operatorname{C}-M R(1,2) \end{aligned}$
329	$\begin{aligned} & \text { TI }(4,2)=((M I \mid 3,2) * M I(1,3) * M I(3,3)-\operatorname{MR}(3,2) * M R(1,3) * M I(3,3)+M R(3,2) * \\ & C(1 . O D O+M R(3,3)) * M I(1,3)+M I(3,2) * M R(1,3) *(1,0 D O+M R(3,3))) / M D E N O M) \end{aligned}$
330	$\begin{aligned} & \operatorname{C-MI}(1,2) \\ & \operatorname{TR}(4,3)=0.000 \end{aligned}$
$\begin{array}{r}331 \\ 332 \\ \hline\end{array}$	$\begin{aligned} & \operatorname{TI}(4,3)=0.000 \\ & \operatorname{TR}(4,4)=-\operatorname{SS*}((\operatorname{MR}(1,3) *(1,000+\operatorname{MR}(3,3)))+(\operatorname{MI}(1,3) * M I(3,3)))) / M D E N O M \end{aligned}$
333	$\operatorname{T1}(4,4)=-(S S *(1-\operatorname{MR}(1,3) * \operatorname{MI}(3,3))+(\operatorname{MI}(1,3) *(1,0 D 0+\operatorname{MR}(3,3))))) / M D E N O$ CM
334	$46 \operatorname{DERY}(1)=(-\operatorname{TR}(1,1) * Y(5)-\operatorname{TI}(1,1) * Y(1)+\operatorname{TR}(4,4) * Y(5)+\mathrm{TI}(4,4) * Y(1)$ $C-2.000 * Y(1) * Y(5) * T R(1,4)-(Y(1) * * 2) * T I(1,4)+(Y(5) * * 2) * T I(1,4)$
335	```C+Y(2)*Y(7) +Y(6)*Y(3) +TI(4,1))*K DERY(2)={TI(1,2)*Y(1)+TR(1,2)*Y(5) +TI(4,4)*Y(2) +TR(4,4)*Y(6) C-Y(1)*Y(2)*T I(1,4) -Y(1)*Y(6)*TR(1,4) -Y(2)*Y(5)*TR(1,4) C+Y(2)*Y(8) +Y(4)*Y(6) +Y(5)*Y(6)*TI(1*4) -TI(4,2))*K```
336	$\begin{aligned} & \operatorname{DERY}(3)=(-\operatorname{TR}(1,1) * Y(7)-\operatorname{TI}(1,1) * Y(3)+\operatorname{TR}(3,4) * Y(5)+\operatorname{TI}(3,4) * Y(1) \\ & C-Y(1) * Y(3) * T 1(1,4)-Y(5) * Y(3) * T R(1,4)-Y(7) * Y(1) * \operatorname{TR}(1,4) \text { +TI(3,1)} \end{aligned}$
337	$\begin{aligned} & C+Y(5) * Y(7) * T I(1,4) * Y(3) * Y(8)+Y(7) * Y(4)) * K \\ & \quad \operatorname{DERY}(4)=(T R(1,2) * Y(7)+T I(1,2) * Y(3)+T R(3,4) * Y(6)+T I(3,4) * Y(2) \end{aligned}$
	$\begin{aligned} & C-Y(2) * Y(3) * T I(1,4)-Y(6) * Y(3) * T R(1,4)-Y(2) * Y(7) * T R(1,4)-T I(3,2) \\ & C+Y(6) * Y(7) * T I(1,4)+2 . \operatorname{CDO} * Y(4) * Y(8)) * K \end{aligned}$
338	$\begin{aligned} & \text { DERY }(5)=(\operatorname{TR}(1,1) * Y(1)-\operatorname{TI}(1,1) * Y(5)-T R(4,4) * Y(1)+T I(4,4) * Y(5) \\ & C+(Y(1) * * 2) * \operatorname{TR}(1,4)-(Y(5) * * 2) * \operatorname{TR}(1,4)-2.000 * Y(1) * Y(5) * T I(1,4) \end{aligned}$
339	$\begin{aligned} & C-Y(2) * Y(3)+Y(6) * Y(7)-\operatorname{TR}(4,1)) * K \\ & \operatorname{DERY}(6)=(-\operatorname{TR}(1,2) * Y(1)+\operatorname{TI}(1,2) * Y(5)-\operatorname{TR}(4,4) * Y(2)+T I(4,4) * Y(6) \end{aligned}$
	$\begin{aligned} & C+Y(1) * Y(2) * T R(1,4)-Y(5) * Y(6) * T R(1,4)-T I(1,4) * Y(6) * Y(1)+T R(4,2) \\ & C-T I(1,4) * Y(5) * Y(2)-Y(2) * Y(4)+Y(6) * Y(8)) * K \end{aligned}$
340	$\operatorname{DERY}(7)=(\operatorname{TR}(1,1) * Y(3)-\operatorname{TI}(1,1) * Y(7)-\operatorname{TR}(3,4) * Y(1)+\operatorname{TI}(3,4) * Y(5)$ $C+Y(1) * Y(3) * T R(1,4)-Y(5) * Y(7) * T R(1,4)-Y(1) * Y(7) * T 1(1,4)-T R(3,1)$
341	```C-Y(3)*Y(5)*TI(1,4) -Y(3)*Y(4) +Y(7)*Y(8))*K DERY(8)=(-TR(1,2)*Y(3)+TI(1,2)*Y(7)-TR(3,4)*Y(2) +TI (3,4)*Y{6)```
	$\begin{aligned} & C+Y(2) * Y(3) * \operatorname{TR}(1,4)-Y(6) * Y(7) * T R(1,4)-Y(2) * Y(7) * T I(1,4) \text { +TR }(3,2) \\ & C-Y(6) * Y(3) * T I(1,4)-(Y(4) * * 2)+(Y(8) * * 2)) * K \end{aligned}$
$\begin{aligned} & 342 \\ & 343 \end{aligned}$	RETURN END

initial value of r
8.6910140192D-C1 -1.2709250980D-01
$1.0255621493 \mathrm{D}-\mathrm{Cl} \quad 8.2323240644 \mathrm{D}-02$
$1.0221290519 \mathrm{D}-\mathrm{C1} \quad 7.8483021349 \mathrm{D}-02$
-S.18C3711576D-C1 $8.5317074115 D-02$
initial value of derr
$2.33783986740-C 8 \quad 2.11030774600-08$
$-1.5900 C 82246 \mathrm{D}-\mathrm{C5} \quad 1.8188395264 \mathrm{D}-05$
$1.520069 \mathrm{C6} 5 \mathrm{5D}-\mathrm{C5}-1.8139230186 \mathrm{D}-05$
-8.58C7S63210D-09 -6.6649396075D-09

STARTING REFLECTICN COEFFICIENTS

MAGR
FAZR
$8.78344834 C 2 D-01-8.3196415161000$
$1.315 \mathrm{CS9} 8442 \mathrm{D}-01 \quad 3.8754469178 \mathrm{D} 01$
$1.288683241 \mathrm{CD}-01 \quad 3.7518447210 \mathrm{D} 01$
$9.2199296652 \mathrm{D}-01-5.3094848225000$

INITIAL VALUE OF Y
REALY

4.90499524550 OO -4.8188981424000
$4.8255810777000-4.8948591669000$
4.62839287670 OC -4.8975146836000
$-4.9859671542 D$ OC 4.8436374827000

INITIAL VALUE OF DERY

-1.75277358300-17
$8.652674414 \in D-04$
$-8.61984373410-04$
$5.05439533450-07$
$6.3936400016 \mathrm{D}-17$
S. $2021673507 D-04$
-8.8808565503D-04
$-3.5497083304 D-07$

REFERENCES

Aikin, A. C., J. A. Kane and J. Troim (1964), Some results of rocket experiments in the quiet D region, J. Geophys. Res. 69, 4621-4628.

Bain, W. C. and B. R. May (1967), D region electron-density distributions from propagation data, Proc. Instn. Elect. Engrs. 114, 1593-1597.

Barron, D. W. and K. G. Budden (1959), The numerical solution of differential equations governing the reflexion of long radio waves from the ionosphere III, Proc. Roy. Soc. A249, 387-401.

Belrose, J. S. and I. A. Bourne (1966), The electron distribution and collision frequency height profile for the lower part of the ionosphere (the D and lower E regions), Ground-based Radio Wave Propagation Studies of the Lower Ionosphere, Conference Proceedings, 1, 79-96.

Booker, H. G. (1938), Propagation of wave-packets incident obliquely upon a stratified doubly refracting ionosphere, Phil. Trans. A237, 411-450.

Bracewell, R. N. (1952), The ionospheric propagation of radio waves of frequency $16 \mathrm{kc} / \mathrm{s}$ over distances of about 200 km , Proc. Instn. Elect. Engrs. 99-IV, 217-228.

Budden, K. G. (1955a), The numerical solution of differential equations governing reflexion of long radio waves from the ionosphere I, Proc. Roy. Soc. A227, 516-537.

Budden, K. G. (1955b), The numerical solution of the differential equations governing the reflexion of long radio waves from the ionosphere II, Phil. Trans. A248, 45-71.

Budden, K. G. (1961), Radio Waves in the Ionosphere, Cambridge University Press.
Burnside, W. S. and A. W. Panton (1904), The Theory of Equations, Dublin University Press, Dublin, Ireland.

Crombie, D. D. (1961), Reflection from a sharply bounded ionosphere for VLF propagation perpendicular to the magnetic meridian, J. Res. NBS 65D, 455463.

Deeks, D. G. (1964), Some tentative suggestions of electron density profiles in the D region, Internal Memorandum No. 121, Radio and Space Research Station, Slough, England.

Deeks, D. G. (1966a), Generalised full wave theory for energy-dependent collision frequencies, J. Atmosph. Terr. Phys. 28, 839-846.

Deeks, D. G. (1966b), D-region electron distributions in middle latitudes deduced from the reflexion of long radio waves, Proc. Roy. Soc. 291, 413-437.

Farley, D. T. (1966), Obsorvations of the equatorial ionosphere using incoherent backscatter, Electron Density Profiles in Ionosphere and Exosphere, NorthHolland Publishing Co., Amsterdam, 446-477.

Fedor, J., L. Fedor and E. E. Gossard (1964), Program for the full-wave calculation of reflection coefficients in an ionosphere continuous in electron density and collision frequency, Interim Renort, U. S. Navy Electronics Laboratory, San Diego, California.

Fejer, J. A. and R. W. Vice (1959), An investigation of the ionospheric Dregion, J. Atmosph. Terr. Phys. 16, 291-306.

Ciil1, S. (1951), A process for the step-by-step integration of differential equations in an automatic digital computing machine, Proc. Camb. Phil. Soc. 47, 96-108.

Heading, J. and R. T. P. Whipple (1952), The oblique reflexion of long wireless waves from the ionosphere at piaces where the earth's magnetic field is regarded as vertical, Phil. Trans. A244, 469-503.

Hunten, D. M. and M. B. McElroy (1968), MEtastable $O_{2}\left({ }^{1} \Delta\right)$ as a major source of ions in the D region, J. Geophys. Res. 73, 2421-2428.

McCracken, D. D. (1965), A Guide to Fortran IV Programming, John Wiley and Sons, Inc.

Mechtly, E. A. and L. G. Smith (1968), Seasonal variation of the lower ionosphere at Wailops Island during the IQSY, I. Atmosph. Terr. Phys. 30, 1555-1561.

Monro, P. E. and S. A. Bowhill (1969), Minor atmospheric constituents and the ion composition of the E-region, J. Atmosph. Terr. Phys. 31, 103-117.

Nicolet, M. and A. C. Aikin (1960), The formation of the D region of the ionosphere, J. Geophys. Res. 65, 1469-1483.

Pitteway, M. L. V. (1965), The numerical calculation of wave-fields, reflexion coefficients and polarizations for long radio waves in the lower ionosphere I, Phil. Trans. A257, 219-242.

Sechrist, C. F., Jr. (1968), Intєrpretation of the pre-sunrise electron densities and negative ions in the D-region, J. Atmosph. Terr. Phys. 30, 371-389.

Sen, H. K. and A. A. Wyller (1960), On the generalization of the AppletonHartree magnetoionic formulas, J. Geophys. Res. 65, 3931-3950.

Sheddy, C. H. (1963), A general analytic solution for reflection from a sharply bounded ionosphere, Radio Science 3 , 792-795.

Smith, R. A., T. N. R. Coyne, R. G. Loch and I. A. Bourne (1966), Small perturbation wave interaction in the lower ionosphere, Part 3, Ground-based Radio Wave Propagation Studies of the Lower Ionosphere, Conference Proceedings, 1, 335-358.

Tulinov, V. F. (1967), On the role of corpuscular radiation in the formation of the lower ionosphere (below 100 km), Space Research VII, Vol. 2, 386-390.

Velinov, P. (1968), On ionization in the ionospheric D-region by galactic and solar cosmic rays, J. Atmosph. Terr. Phys. 30, 1891-1905.

