
J 6 i X V Z R S I T Y  O F  C O N N E C T I C U T  

S C Z O O L  O F  E f 3 C I Z E E R I ? i G  

S T 0 R 15 S ,  C 0 3 E E C T I C U T  

la,. E. Scott 

Department of Electrical Zngineering 

August 1969 

This vork has been sponsored by the 
Xarional Aerorautics an Jpace Aclministrat&m 

Research Grant Y" tiGL 07-002-002 

https://ntrs.nasa.gov/search.jsp?R=19690026325 2020-03-12T05:17:52+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/85240476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An Improved Algorithm for  Learning Systems 

8. N. Scott  

Introduction 

An algorithm is developed f o r  implementing a learning control ler  based on 
the concept of a subgoal. 
state space need not be quantized, resul t ing i n  vas t ly  reduced memory require- 
ments and shoreer leami%? times. 
systems with unconstrained control  var iab le  wherein the system parameters are 
specified with uncertainty. 

The method d i f f e r s  frm previous work in t ha t  the  

The nethod is applicable t o  linear s ta t ionary 

One of the  very few known simulations of a f u l l y  automated learning control  
system has been reported by Waltz and 3%. [1,2]. S i m e  these reports  are the 
bas i s  for  the research discussed i n  t h i s  thes i s ,  it is appropriate t o  discuss 
the general aspects of the  Waltz and Fu learning algorithm. 

The method proposed by Waltz and E’u u t i l i z e s  the  concepts of simple set 
construction and l inear  reinforcement. 
par t i t ioning of the  state space in to  control s i tua t ions  which describe the s t a t e  
dependence of the  control l a w ,  
control l a w  is adjusted t o  ninimize a given functional,  zauginz overa l l  system 
?er%ormance. This par t icu lar  learnin2 scheme is applicable t o  nonlinear, non- 
stat ionary systems. 
order of the  plant  t o  be controlled.  The parmeters  and the  exact form of the  
plant may be unknown, 
IR t h i s  case, the  pecalty is realized i n  the i n i t i a l  phase of learning when the 
system must test each avai lable  control  choice t o  determine the most appropriate 
choice f o r  each possible s i tuat ion.  
improveneat is  never realized, i n  fact, the system may be forced i n t o  an unstable 
s i tuat ion.  
available,  then the exci ta t ion of unstable modes of the  system can be  avoided. 
I n  the  case of a linear plant whose parameters ate noninally known and a quadratic 
performance functional,  L. E ,  Jones 133 denonstrated tha t  i t  is more beneficial  
t o  itnplettrent a learning cont ro l le r  on the bas i s  of t he  nominal parmeters  than 
t o  accept a control l a w  determined by these nm-inal values alone. 
the development of these two re la ted  learnlng sys t em follow. 

Sample set construction involves the  

Linear reinforcement is the method by which the 

The only a-pr ior i  information required by the desian is  the 

As usual, one pays a penalty f o r  such vide-ran3ing freedom. 

nuring t h i s  i n i t i a l  t ra ic ing period, immediate 

Eowever, i f  suf f ic ien t  information re la t lng  t o  the plant dynamics is 

The d e t a i l s  i n  

The method discussed by Waltz and Fu is applicable t o  the  wide range of 
systems whoee c l y m i c s  can be described by a general d i f f e r e n t i a l  re la t ionship 

0 

(1.1) x = f(X,U,t), 

where x p  = (x~~x~~.....,x~) is the state vector defined on the state space ax, 
and u the control s igna l  chosen from the  control  space Gus  

objective is t o  deternine a control policy (not necessarily linear) 
The principal  

which minimizes a given performance index. 

The ac tua l  learning process is accomplished with the  aid of a digital 



computer. 
r e s t r i c t ions  on the design of the learning control ler .  
l a w  cannot be defined a s  a exp l i c i t  functional o r  analog relat ionship but 
ra ther  it must be described by a relat ionship between the individual elements 
of the  state space QXad the  control space Qu. 

must correspond a point i n  Qu such tha t  the t o t a l  correspondence defining the 

l a w  minimizes the  given performance index. I f  Ox and QU are both spaces with 

a countably i n f i n i t e  number of points or elements, t h e  computer used in the  
learning process must have an i n f i n i t e  storage capabili ty.  Thua i t  becomes 
necessary t o  quantize the state space SZ 

r e s t r i c t  the choice of a control  s ignal  from a f i n i t e  control space Gu. I n  

t h i s  case, the functional correspondence defining the  control  law would be 
established between t h e  subsets of Ox and each o f  the f i n i t e  number of elements 

of nu. 
defining each subset o$ sanple set i n  $2 

o p t h a 1  with respect t o  the given performance index. 

The inclusion of the  computer imposes a number of prac t ica l  
F i r s t ,  the  control  

Thus f o r  each paint i n  QX there  

in to  a f i n i t e  number of subsets and 
X 

Thus a s ingle  control choice would apply t o  the aggregate of points 

such tha t  the t o t a l  re la t ionship is  
X 

The second consideration resul t ing from the  use of the  d i g i t a l  computer 
is  due t o  the f i n i t e  time required by the computer t o  execute an algebraic 
operation. 

according t o  i t s  e f f ec t  on the  given performance index. 
requires a f i n i t e  number of mathematical operations, t he  information related 
t o  the effectiveness of a par t icu lar  control  choice w i l l  not be avai lable  a t  
the same ins tan t  the measurement of the performance index is  made. Thus it 
is necessary t o  d i sc re t i ze  t i m e  t o  allow time for  evaluating each decision. 
I n  the d i sc re t e  case, the control i s  held constant during the in t e rna l  of 
tine required. t o  evaluate the last decision. Nence, t he  plant is described 
by a vector difference equation 

Each choice of a control s igna l  from the space Qu must be evaluated 
Since each evaluation 

(1.3) x(i+l)  = P(x(i) ,u( i )  , i ) .  

Thus the ac tua l  implementation of a learning system u t i l i z i n g  a d i g i t a l  
computer requires the following operation: 

1) 

2) 

3) 

4) 

Discretize the independent var iab le  t o  allow t i m e  f o r  making 
and reinforcing decisions, 
Quantize the  control  input in to  a f i n i t e  set of allowable 
control actions,  and 
Pa r t i t i on  the state space in to  subsets cal led sample sets t o  
reduce the computer storage requirement. 
Choose a reinforcement algorithm t o  supervise the learning 
process 

T'ne above reinforcement algorithm must be re la ted  t o  t h e  system 
performance index i n  the  sense tha t  the  control  l a w  learned by the  system 
w i l l  eventually approach the  optimal control  policy, The index of per- 
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fonnance of the  system is of the form 

the  designer. Again, the  primary 
control system is to  recognize 

where a is an a rb i t ra ry  constant selected by 
objective of the  reinfoxcement-type learn in i  
what control s igna l  should be applied when the  plant output is observed within 
a ce r t a in  region (sample s e t )  of the state space. 
posi t ive o r  negative reinforcement as w e l l  as the d.egree of reinforcement 
applied t o  a par t icu lar  control s i t ua t ion  is based on previous observations 
of the  state vector and the resul t ing behavior of the  system when the control 
choice under consideration was applied t o  the system. The objective of the  
system is t o  learn the control  l a w  which minimizes the given index of per- 
formance, cal led the primary goal, evaluating system behavior mer an extended 
period of time. 
primary goal,  the  decision t o  re inforce a par t icu lar  control  s i t ua t ion  a t  
a given ins tan t  of t i m e  must be withheld u n t i l  a performance measure is  
avai lable  a t  some later time. It is, therefore,  necessary t o  introduce a 
secondary index of performance, referred t o  as the subgoal, whichp when 
ninimized a t  each decision, r e su l t s  i n  near-optimum performance. 

The decision t o  apply 

Thus, i f  t he  reinforcement algoritym is based on t h i s  

The d i f f i c u l t y  encountered i n  using the main goal ra ther  than a subgoal 
has been compared t o  playing a game of chess and evaluating each move on the 
bas i s  of win or lose  information. 
intermediate goal i n  making the separate moves. 
must f u l f i l l  two conditions: 

The chess player must consider some 
Thus an ef fec t ive  subgoal 

1)  
2) 

It must evaluate each decision separately, 
It must be related t o  the nain goal so t ha t  fu l f i l l iny!  the 
subgoal is essent ia l ly  equivalent t o  sa t i s fy ing  the main goal. 

I n  the  paper by rnlaltz and E’u, the subgoal was t o  choose u ( i )  so as t o  
maximize 

2 I P S ( i )  - XPS(i4-1) - Au (i) (1*5) 
max[IPS(i) , IPS(i+l) + X(umax)21 

where 

(i) A ’ 0 ,  
(ii) 

(iii) i A -  i u 

IPS(i) = x’(i)Gx(i) and C- is a posit ive-definite diagonal 
matrix, and 

= mar, (u ou ea ). 

The elements of G are determined by a secondary learning loop whose objective 
is t o  f ind the  dfagnal matrix G such tha t  the corresponding control law 
yields  the  lowest numerical value of the  primary o r  uain goal. 
learning loop consises of a multidimensional search scheme. 

This secondary 

The select ion of an appropriate subgoal i n  the above argument is  ra ther  
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heuristic., 
t he  performance index (main goal) to be minbizecl is quadratic, and information 
wegardim the nominal values of the plant parameters is available,  then a less 
ambiguous select ion of a subgoal can be made as follows. 

Ziowever, i f  t h e  plant t o  be controlled is l inear  and time-invariant, 

Given a l inear ,  time-invariant systesm defined by the vector difference 
equation 

where 

( i )  

(ii) 
( i i i )  
(iv) u ( i )  is the  scalar-valued control  variable.  

x ( i )  is an n dimensional vector representing the  samnled value 
of the state of a continuous process a t  time t = iT, 

(1, is an n x n matrix whose elements are nomjlnally known, 
h ls an n x 1 column vector of nominal parameters, and 

L e t  the n x n posi t ive semi-definite matrix Q and the  posi t ive s c a l a r e  define 
the quadratic performance index 

n-1 n 

I f  no constraints  are -Imposed OR the control  var iable  u(i)  and with M fixed, 
x(N) free, the  optimal control  l a w  is known t o  be  a l i nea r  function of the 
system state, i.e., 

and the minimum value of t he  index of performance is 

where k( i )  and P ( i )  are determined by i t e r a t ing  the following set o t  equations 
backwards i n  time s t a r t i n e  with P(N) = 0. 

(I) 5 $ +  hkq( i )  

Consider a subgoal of the  form 

(1 * 11) SG(i) = x'(i+l)G(i)x(i+l) 4- Xu*(i). 
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Substi tuting the state equations(l.6) i n  (1.11) and minimizing with respect 
t o  u( i )  yields  a control law of the  form 

( 1  * 12) 

I n  the case where the  exact values of t he  elements of 4 and Ii are known, 
the  best  choice of G(i) and X would be 

h = = *  

Then, minimizing SG(i) a t  each point t = i T  with respect t o  u t i )  is 
equivalent t o  minimizing I(u,x,) over the e n t i r e  interval (0,Pu’T) i n  the  sense 
tha t  the the two approaches yield equivalent control po l ic ies  and therefore 
ident ica l  minimum values €or the performance index I(u*,xg). 

is necessary, as shown i n  (1013), tha t  G be a time var iab le  matrix. 
requirement i~ t o  be maintained, then the required computer memory must be 
expanded t o  permit the storage of G a t  each sample point t = i T .  Thus, i n  
the in t e re s t  of reducing the memory requirement, G w i l l  be assumed t i m e -  
invariant and equal t o  B(O), Then the  subgoal w i l l  be suboptimal, and optimal 
only i n  the case where M = -. 

I n  order tha t  the subgoal be optimal with respect t o  the main goal, i t  
I f  t h i s  

In  the formulation of the learninzg control problem ignorance of parameter 
values is assumed, otherwise there  is no need t o  learn.  
question is raised: 
cer ta in ty  i n  the parameters? 
siace the exact system parameter values are not avai lable  to  determine the 
optimal control  l a w  and subgoal. 
are given and can be used t o  determine a subgoal which can be used t o  super- 
v i s e  the learning f o r  the ac tua l  system. 
the actual  and nominal values are equivalent. 
with respect t o  the control var iab le  u ( i )  a t  each decision point, w i l l  yield 
the  optimal control  l a w  fo r  the ac tua l  (nominal) plant.  
been demonstrated by Jones tha t  the control policy determined by t h i s  subgoal 
is superior i n  the following sense. L e t  u,(i) be the  control l a w  derived by 

solving the optimal control  problem f o r  the nominal plant and l e t  IF(xO) be 

the  resul t ing value of the  performarrce index when t h i s  control  2s applied t o  
the actual system. L e t  u,(i) be the  control  l a w  determined by the learning 

algorit lm using the  subgoal based on the nominal plant parameters. 

the corresponding value of the  performance functional. 
t ha t  

Thus, the  following 
what is the  best  learning subgoal i n  the case of un- 

The preceeding argument is no longer applicable 

Eowever, nominal values of these parameters 

Consider the special  s i t ua t ion  when 
Then the  subgoal, when minimized 

I n  f ac t ,  i t  has 

IL(xo) is 
Then it  has been shown 

(1.14) 

where Io(xo) is the  minisum cost €or the ac tua l  system. Thus, it is more 
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beneficial  t o  learn the  control l a w  using a subgoal based on the nominal 
parameter values than t o  accept the control policy determined by the optfmal 
solut ion for  the nominal plant.  

I n  the  foregoing discussion, the control var iab le  was assumed t o  be 
Therefore, recal l ing t h a t  it is necessary t o  restrict the unconstrained. 

class of allowable control  sets t o  include only countable sets i n  order t o  
reduce the computer mernory requgrement, the  above r e s u l t s  are not d i r e c t l y  
ameanable t o  the reinforcement learning algorithm as proposed by i la l tz  and 
Fu, 
type learning system. 
negative, or  zero forcing is available,  i .e.,  

Sowever, the  same subgoal can be u t i l i zed  t o  implement the  reinforcement- 
Consider the  simple example where e i ther  posit ive,  

(1.15) U(i)€QU = (-IsO9+l) e 

Then, using the  subgoal determined by the optimal solut ion for  the nominal 
plant assuming no control  constraints ,  the  learning system w i l l  converge t o  
t h e  nonlinear-control l a w  defined by the  

(3.,16) 

where 

(1.17) 

4- " tx  = - 1/2 

hgG 4 % = -  h'Gh +a 

and x( i+l)  = @x(i) + hu(i) is the ac tua l  
case, the  switching l i n e s  are determfned 

two switching l i n e s  

system equation. I n  the peneral 
bY 

fl.18) 

where u and u are 3 j4-1 
(1.19) 

elements of the ordered control  set 

Qu = ( U 1 ~ . . . . , U j , U j ~ l ~ . . . , U  1 9  

P 

I n  the preceeding discussion, the e n t i r e  development was related t o  
the determination of a subgoal f o r  the reinforcement-type learning control  
system. 
t o  s t o r e  a l l  the  learning parameters. 
system with the state space subdivided in to  5 x 5 rectangular sets covering 

of learning a re lay  control  l a w ,  i.e. s u = t 1. 
quantizations of t he  state space, and wider ranges on the  choice of the control 
var iab le  a l l  increase the  memory requirement. 
the required storage capabi l i ty  is accompanied by an increase i n  the  time 
required t o  complete the learning process. 

I n  t h i s  type of learning s i tua t ion ,  a la rge  memory block is required 
For example, given a second order 

< 50 and x < 50, at  least 2000 parameters are generated in  the process 
l"1 I -  I 21- 

Higher order systems, f i ne r  

Furthermore, the  increase i n  

I n  the  succeeding discussion, a d i f f e ren t  algorithm i s  developed fo r  a 
linear systein with unconstrained control. 
and shorter learning times are realized by t h i s  method. 

Less severe memory requirements 
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Assume f o r  s implici ty  i n  the  subsequent discussion t h a t  the  values of the  
plant  parameters are iden t i ca l  t o  the  actual parameter values. 
problem becomes one of forcing the  system t o  converge to a given l i m i t  point 
defined by the  optimal solution. 
relevance, it does serve t o  i l l u s t r a t e  the procedure f o r  obtaining a sub- 
optimal solut ion when the  nominal and ac tua l  plant  parameters are d i s t i n c t l y  
d i f fe ren t .  Suppose a convergent procedure has been found which s a t i s f i e s  
t he  conditions of the problem defined above. 
yield a solut ion t o  the  problem when there  is some degree of ignorance of the  
parameters. 

Eence, the  

Although t h i s  problem has no p rac t i ca l  

T'nen t h i s  same procedure w f l l  

The object: of t h i s  paper is  t o  develop an algorithm which w i l l  learn an 
optimal control  f o r  a linear s ta t ionary  system described by a v e c t o r  difference 
equation 

where x( i )  is an n-dimensional vector and u ( i )  is  a scalar. The performance 
of t h i s  system is t o  be measured by the  quadratic cost  functional 

m 
m 

(2.2) c x ~ ( i f l ) Q x ( i + l )  + a  u2( i )  
2 4  

defined by the n x n posi t ive semi-definite matrix Q and the posi t ive scalar 
a . Assuming no constraints  on the  f i n a l  point ,  x(-), t he  optimal control  is 
known t o  be l i nea r  

where IC; is deEfned by 

(2.41 hqR4 . 
hPRh 4-4: k$ - 

R is the  pos i t ive  d e f i n i t e  symmetric matrix determined by 
d i sc re t e  matrix Bicatti equations backwards i n  time u n t i l  
solut ion is obtained. 

i t  era t in8 the  
a steady state 

Following the  procedure proposed by Jones [3] ,  an appropriate subgoal 
is proposed, 

( 2 . 5 )  SG(i)  = x'(i+l)Gx(i+l) + Xu (i). 

The problem is then t o  determine G and h such tha t  t he  subsequent statement 
applies.  I f  t h e  subgoal is minimized with respect t o  the constant vector k 
defining the  l inear  cont ro l  l a w  

(2 6 )  

Consider a subgoal of t he  form 

2 

u ( i )  = k P x ( i ) ,  



then, s t a r t i ng  from some a rb i t r a ry  point ko, the  system w i l l  converge t o  the  
optimal control k* defined by (2.3) and (2.4). 

The dependence of the subgoal on the vector k becomes evident i f  the 
state equations (2.1) and the  l inear  control  l a w  (2.3) are both substi tuted 
i n  the expression f o r  the  subgoal. This subs t i tu t ion  yields  the following 
expression fo r  the subgoal i n  terms of the state a t  time i T ,  x ( i ) ,  and the  
gain vector k, 

where B = hPGh + A .  

Although (2.5) and (2.7) are equivalent expressions f o r  t he  subgoal, 
i t  should be stressed tha t  i n  the ac tua l  minimization routine the subgoal w i l l  
be evaluated by means of (2.5). 
expression f o r  the subgoal w i l l  be used. 

Eowever, fo r  ana ly t ica l  purposes, t he  latter 

In order t o  i l l u s t r a t e  the procedure for  minimizing the subgoalv i th  
respect t o  the  vector gain k, consider a slmple d i sc re t e  system defined by 
the  f i rs t -order  vector difference equation 

Suppose tha t  a subgoal has been determined which w i l l  force the system t o  
converge t o  a given control  l a w ,  t = -1/2. 

2 2 (2.3) 

L e t  tha t  subgoal be defined by 

SG(i) = x ( i+ l )  + u (i). 
The equivalent expression €or the subgoal is  found t o  be 

2 2 2  (2.10) SG(i) = x2(&) ( l  f IC) + k x (i). 

In  t h i s  simple one-dimensional problem where the subgoal is eas i ly  observed 
t o  be a s t r i c t l y  convex function of the argument k, an elementary one- 
dimensional search routine is the most appropriate procedure f o r  minimizing 
the subgoal with respect t o  k. An out l ine  of t h i s  procedure follows. 

Star t ing a t  some a rb i t r a ry  in i t ia l  state x(O), allow the system 
t o  run f o r  one sample period under the influence of the control 
u(0) = kox(0). 
of the subgoal corresponding t o  ko by subst i tut ing i n  (2.9). 

Repeat s t ep  @ f o r  k 
t he  r igh t  or l e f t  o$ t he  minxmum, 
corresponding t o  k = kl is  less than the value corresponding to 
k = k 
the  dyrection of search. 

Xeasure the s ta te  a t  i = 1 and determine the value 

= Ito -+ 6k t o  determine whether k lies t o  
f f  the value of th? subgoal 

proceed i n  the d i rec t ion  defined by k, otherwise, reverse 

Continue t h i s  t r i a l  and er ror  procedure u n t i l  a minimum is 
located. 

-8- 



Emever, a f a l s e  conclusion might be obtained i n  step(b)unless the state 
observed one sample period pr ior  t o  the measurement of the subgoal is 
ident ica l  t o  the i n i t i a l  state x ( 0 )  i n  step@). Thus, the  system state 
must be held constant throughout the minimization. 
arise i f  t h i s  r e s t r i c t i o n  is  not observed is  eas i ly  i l l u s t r a t e d  i n  a graph 
of SG(i) vs. k with x ( i )  as a parameter (Pig. 2.1). 
ko = 1. The value of the  subgoal corresponding t o  these values is f ive .  I n  

s t e p  @I9 let  6P = -1/2 and suppose tha t  the state one sample period pr ior  t o  
the measurement of the  subgoal is equal t o  two. 
subgoal corresponding t o  these values is ten,  indicating tha t  the minimum 
lies t o  the  r i g h t  of ko when, $n f a c t ,  the  minimum l ies  t o  the l e f t  of ko. 
Thus, one additional condition should be added t o  both s teps  b and c: 

The d i f f i c u l t y  tha t  may 

Suppose x ( 0 )  = 1, 

Then the value of the 

Xeasure the subgoal according t o  (2.9) only a f t e r  t he  system returns  
or  is forced t o  re turn  t o  the state x(i) = x(0). 

Then the system w i l l  be forced to  converge t o  the  desired value k = -1/2. 

I n  the  problems where the dimensions of x and k are greater than oneg 
the same d i f f i c u l t y  prevails. Similarly, measurements of the subgoal are 
made only a f t e r  the  system returns  or is  forced t o  an a rb i t r a ry  but f i x e d  
state. This r e s t r i c t i o n  is par t icu lar ly  severe9 s ince the probabili ty tha t  
a par t icular  state w i l l  be repeated a f i n i t e  cumber of times is prac t ica l ly  
zero. A less swere but equally val id  r e s t r i c t i o n  would be. 

Ileasure the subgoal accordin8 t o  (2.9) a f t e r  the system returns  or 
is forced t o  re turn  t o  a surface i n  the state space along which the 
value of the subgoal varies only ~ 7 i t h  respect t o  the vector 1%. 

The problem of finding such a surface is i l l u s t r a t e d  by considering the 
following second order system: 

(2.11) Xlfi+l) = Xl(i) + u( i )  

x2(i+l) - x$if + u( i ) .  

Asain suppose tha t  a subgoal has been determined which w i l l  
t o  converge t o  a given control  l a w  (not the  optimal control  
L e t  

force the  system 
l a w  i n  t h i s  case).* 

(2.12) 2 
SG(i) = x'( i+l)x( i+l)  + u ( i ) ,  

or  equivalent 1 y 

(2.13) SG(i) = 'x' (i)A(klglc2)x(i) 

where A(klckp) is the  n x n posi t ive d e f i n i t e  symmetric matrix defined by 

* 
exis t .  However, the learning algorithm can still be applied. 

Since (2.11) is uncontrollable, t he  optimal solut ion can be shown not t o  



x2(1 + 2k + 2k2> 

' 20 

-1 

x=2 

W '  % 

1 k 

Figure 2.1 
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Since t h i s  exmple w i l l  be used repeatedly t o  i l l u s t r a t e  ce r t a in  aspects of 
the  learnfng algorithm, the  system equations (2.11) and the  subgoal (2.12) 
w i l l  be referred t o  col lect ively as System A. 

The obvious choice of a surface sat isfying the  above condition is a 
constant-value contour i n  the phase plane, 

(2.15) 

I n  par t icu lar  let  
/ 

C1 = {x(i)cE2 : x'(i)A(191)x(i) = 243 

be one such contour i n  the two-dimensional phase plane Ep. 
qualify as a val id  measurement surface along which the subeoal SG(i) var ies  
only with respect t o  k, then every other  contour corresponding to  d i f fe ren t  
values of k and k must not in te rsec t  C1, 
the  contour 

I f  C1 is t o  

Y e t ,  as 5een i n  (Figure 2.2) 1 2 

(2.16) C2 = (x ( i ) cE2  z X'(i)A(19-l)x(i)) 24 

in te rsec ts  C 
measurement surIace. 
appropriate surface. 

thus invalidating the choice of C1 as an appropriate 
1 9  I n  f a c t ,  no such contour i n  the  phase plane is an 

This d i f f i cu l ty ,  however, can be circumvented by redefinjlng the subgoal. 
L e t  

(2.17) 

where E is an n x n posit ive-definite symmetric matrix whose elements are 
independent of It. 
phase plane passing through the or igin.  Thus, it is necessary t o  re turn  
the  system only t o  some point on the ray pr ior  t o  measuring the subgoal. 
L e t  

It is  observed tha t  (2.17) is constant along rays i n  the 

(2.18) r1 J (x(i)&E2 x l ( i )  - x,(i) 03 

be one such ray. Then along rl 
has the  value 

(2.19) SG(i) = 1 + 

This expression indicates  tha t  

with E = I, the subgoal as defined by (2.17) 

the  redefined subgoal varies only with respect 
t o  k along the r ay  r 
the phase plane which passes through the orsgtn. 

I n  f a c t ,  the  same is t r u e  along any a rb i t r a ry  ray i n  1' 
Thuss when x is constrained 
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t o  l i e  along any such ray,  t he  problem is reduced t o  one of minimizing a 
function of two var iables .  

The existence of an absolute minimum of the subgoal i n  the  gain parameter 
space K w i l l  now be examined. 
as 

The subgoal as defined by (2.17) can be written 

(2,201 SG(i) = kgi4(x)k 4- 2kPH(x)v + s(x)$ 

where 

x'i)x'(i) is an n x n matrix, NX) = X ' ( i ) B % ( i )  

v 0 4'Gh is an n x 1 column vector, and 

Equation (2.18) r e f l e c t s  t he  fact t h a t  the  subgoal is a quadratic function of 
the paraneter k. The locus of points a t  which the gradient of t he  subgoal 

(2.21) VkSG = 2Z(x)[Bk + v] 

equals zero defines the  extreme points of SG(i). 
s ingular  matrix of rank one, the  solut ions of VkSG(i)  = 0 l i e  on a one- 

Cimensiollal hypersurface in the  space k. 

Fowever, s ince V ( x )  is a 

Thus, there  is no unique minimum 
with respect t o  k. 

The consequence resu l t ing  from the  f a c t  tha t  xx' is  a singular matrix 
can be demonstrated ir! the  case of System A ,  where minimizing the  subgoal 
produces a minimum tha t  l i es  along the  l i n e  

(2.22) 

Thus, the  l i m i t  point of t h e  minimization procedure would depend upon both 
the  search method and. the  point a t  which the  search w a s  i n i t i a t ed .  
f o r  example, t ha t  t he  f i r s t  s t ep  of t he  nethod employed t o  find a minim& 
involved a search i n  the  kl direct ion.  
the procedure would converge to-  the  point  (-5/3,1) in one step.  
hand, suppose the i n i t i a l  search was Eade i n  a di rec t ion  pa ra l l e l  t o  the k2 

axis. 
reached i n  a single s tep.  Since the pr inc ipa l  object ive is  t o  converge on a 
unfque point,  regardless of the s t a r t i n e  point and method, t h i s  condition is  
very undesirable. 
redefining the  subgoal. 

3 5  9 3k2 9 2 = 0. 

Consider, 

Then, s t a r t i ng  at  the  point (191), 
On the other 

Then, with the  same i n i t i a l  conditicm, the point (lP-5/3) would be 

However, t h i s  undesirable r e s u l t  can be eliminated by 

Consider f i r s t  the second order example. L e t  r and r2 be two d i s t i n c t  

rays i n  the state space which in t e r sec t  the or ig in  and let  x and y be points 
on r1 a d  r2 respectively.  

1 

Consider now t h e  following choice of a subgoal. 
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L e t  

(2.23) 

o r  equivalently i n  the form of (2,113). 

where 

v = 4’Gh is a 2 x 1 column vector,  and 

* 
I n  t h i s  caseg B(x,y) is a posit ive-definite and non-singular matrix 
Appendix A) .  Thus the  gradient 

(see 

(2.26) cp !Gh 
hPGb+’-j; ‘ k -v/$ - 

Then by an appropriate choice of G and A ,  the system can be forced t o  converge 
t o  any given point i n  the space k. Furthermore, t h i s  point w i l l  be uniquely 
determined by G, A ,  and the  system garameters,indegendently of the choice of 
the  rays rl and r2. 

i l l u s t r a t e  the e f f ec t  of t h i s  modified subgoal on the  existence of an absolute 
minimum, consider the  case of System B. Since the choice of r1 and r2 is 

a rb i t r a ry  le t  r be the x ax i s  and le t  r2 be the  x2 axis.  Then, with 
G = B = I and A = 1, the subgoal (2.23) has the value 

The System (2.11) and subgoal (2.23) ail1 be cal led System 2.  To 

** 
1 1 

(2.27) SG = (l+kl) 2 f 2k: 4- (l+k2) 2 .+ 2k2 2 . 
The graph of the constant-value contours (Fig. 2.4) indicates  tha t  an absolute 

* 
solut ion be a minhm.  

N(x9y) is required t o  be posi t ive de f in i t e  in order tha t  the optimum 

** 
as noted i n  Appendix R ,  is not a rb i t ra ry ,  i n  tha t  the  rays muet be l inear ly  
independent. 

It should be noted tha t  the choice of rays f o r  higher order systems, 
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minimum is at ta ined a t  the  unique point (-1/3 ?-1/3). 

Using the subgoal defined by (2.27), the procedure f o r  finding the 
minimum point is outlined below. 

Star t ing a t  sme 
allow the  system 
u( i )  = kowx(0). 
Of 

r a rb i t r a ry  i n i t i a l  state x(0) on a given ray r 
t o  continue under the  influence of the  contro 
Heasure the  state a t  t .D T and compute the value 

After the system has at ta ined o r  is forced to a t t a i n  a state on 
8 second given ray  r2 at  time f: if nT, allow the  system t o  continue 

under the  influence of the same control  law as was applied i n  s tep  
(a).Ileasure the state a t  t = nT f T and compute the  value of 

Add (2.28) and (2.29) t o  obtain the value of the  subgoal corres- 
ponding t o  k = ko. 

After the system state returns  or is  forced t o  re turn  t o  a point 
on the ray r19 repeat s teps  a, b, and c fo r  a d i f f e ren t  value of 
k t o  obtain the corresponding value of the  subgoal. 

Using t h l s  information, adjust  IC i n  atr, appropriate manner and 
repeat the procedure u n t i l  a minimum is located. 
t h i s  method is  assured by the  f a c t  tha t  the subgoal is a s t r i c t l y  
convex function of the  vector IC. 

The convergence of 

For systems of order greater  than two, two rays are not suf f ic ien t  t o  
guarantee tha t  the resu l tan t  quadratic w i l l  be posftj[?ve def in i te .  
be shown, howeverg t h a t  l inear ly  independent vectors  V ~ ~ V ~ ~ . . . > V  are 
su f f i c i en t  t o  generate a posi t ive d e f i n i t e  matrfx of t he  form 

It can 

n 

n (2.31)) 

The proof of t h i s  is  given i n  Appendix A. 
involved i n  the learning pxocess must a l so  be mended t o  include measurements 
at  these addi t ional  rays. 
Eive-ste? out l ine  of the  minimization rout ine should be repeated n - 2 times 
before a complete measure of the subgoal is obtained. 

The schedule of operations 

For an nth order system, s t ep  (b) of the  preceeding 

I n  the  above procedure, the probabili ty t h a t  t he  system will encounter 
a par t icu lar  ray i n  the  state space more than once is practZcally zeroI 
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Hence, it becmes necessary to implement a cont ro l le r  which wi.11 force the 
system t o  re turn  t o  a given ray a f i n i t e  number of times t o  allow the  learning 
cont ro l le r  t o  make the  appropriate measurements. 
employed t o  force  the system t o  behave i n  t h i s  prescribed nanner. 
t o  demonstrate this proqedure, l e t  A represent t he  system matrix of the  closed 
loop system, f.e.9 

S ta t e  feedberek w i l l  be 
I n  order 

(2.31) A = + hk'. 

Then N x Id matrix A can be expaoded i n  dyadic form as 

(2.32) 
TJ 

i=l 
P- = c ei > x < ei+ , i 

where 

i) Ai is an eigenvalue of As 

ii) e is the  eigenvector correspondins t o  hi, i 
and 

e: is t he  dual vector associated with the  eigenvector el. iii) 

Using t h i s  notation, the, system response t o  an i n i t i a l  condition x(0) can 
be wr i t ten  as 

(2.33) 

Since the  eigenvectors cons t i t u t e  a b i s i s  f o r  the state space, the  i n i t i a l  
state x ( 0 )  can be expressed as a l i nea r  combination of these eigenvectors. 

( 2 . 3 4 )  

Substi tuting (2.34) i n  (2.331, and u t i l i z i n g  the  f a c t  t h a t  

(2.35) 

the  response can be wri t ten  as 

(2.36) 
E 

i=l 
x(nT) = X a i  AineF. 

Thus it  is eas i ly  seen tha t  i f  magnitudes of a l l  but one of t he  eigenvalues, 
say h are forced t o  have values much less than onep then the system 

1 9  
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response w i l l  eventually approach the vector A ne 
w i l l  depend on the  relative magnitudes of t he  'ot&r IiJ - 1 eigenvalues. 

The rate of convergence 

Consider again the system described by (2.11). The eigenvalues of t he  
system matrix are both one and the eigenvectors of the open loop system are 

loop system are X 
els = <190)9 e2 ' = (L,l). 

the  x1 axis, 
i t s e l f  with the  x2 axis. 

14.J.D. Powell (see Appendix B) is used t o  determine the point i n  the  K space 
a t  which the subgoal is a minimunn, 
is tha t  no der ivat ive measurements are required, The search is  begun at  the  
point R = (2,l) and converges t o  the  point K = (-1/3,1/3) as desired (Fig. 2.5). 
The response of the system fo r  one coaplete measurement cycle is shmm i n  

correspond t o  the s teps  a, b, and c i n  the out l ine  on page 

= (190)9 and eZ9 = (O>l)* With u = - 0 . 9 ~ ~ ~  the  eigenvalues of the  closed 

The corresponding eigenvectors are 
Thus, the  system response w i l l  approach a point on 

el ' 
= 1.0, ha = 0.1, 1 

Likewise, with u = -0.9~ the  state vector will tend t o  a l ign  
1 9  

The e n t i r e  s t ra tegy is now applied t o  System 3.  Amethod proposed by 

The advantage of t h i s  par t icular  method 

2.6. The letters a9b, and c adjacent t o  each segment of the t ra jec tory  

This completes the  development of the  learning, algorithm. The three 
pr incipaLresu1ts  of t h i s  sect ion are summarized below: 

1) Since the  subgoal must be held constant with respect to  x while 
it is minimized with respect t o  k, the  or ig ina l ly  defined subgoal w a s  a l te red  
t o  allow measurements to  be made along a l i n e  i n  the state space ra ther  than 
a t  a s ingle  point,  

2) 
again al tered.  
on n d i s t i n c t  rays i n  the  state space, it w a s  shown tha t  the resul t ing 
function was s t r i c t l y  convex i n  t he  vector k thus assuring the  existence of 
an absolute mininrwn. 

To guarantee the existence of a unique l imi t  point,  the  subgoal was 
I f  t he  subgoal was evaluated on the bas i s  of measurements 

3) It w a s  shown tha t  state-feedback can be used to force the  system 
t o  re turn  t o  the  two d i s t i n c t  rays i n  the state space tha t  are required i n  
the evaluation of the  subgoal. 
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Example 

Consider the  second-order system described by the vector d i f f e r e n t i a l  
equation 

x ( t )  = Ax(t) t- bu(t), 

where 

(3.2) A = 1 -~ ] ,  and b = [ ~ ] *  
I f  the  states are sampled uniformly w e r y  T seconds and the continuous plant 
is  preceded by a zero-order hold, then the equivalent vector difference 
equation is 

(3 .3)  x(it-1) = +x( i )  + hu( i ) ,  

where 

(3.4) 

The pr incipal  object ive is t o  control  t h i s  plant  optimally with respect t o  
the  i n f i n i t e  time performance index 

(3.6) 
d 

where, i n  t h i s  example, Q is chosen t o  be pos i t ive  d e f i r i t e ,  and is  given the  
value 

(3.7) 

+ A p r i o r i ,  it is Icnown tha t  the  ac tua l  a - 1.0 . a  20%. Thus, the  "bestrg 
subgoal is determined by solving the  d i sc re t e  optimal control  problem f o r  
the  nominal system, i.e., when a = 1.0. Hith T = 0.1 sec. the optimal 
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control  law is found t o  be 

(3 98) u ( i )  = -3.9GS3x1(1) - 2.1533x2(1), 

while the  associated minimum value of the  cost  function is  xp(0)Px(O) and 

138.585 44 6894 

44.6854 22.4974 
(3.9) 

The corresponding subgoal is quadratic 

2 (3.1C) SG(i) = x'(i+l)Gx(i+l) -k u (e), 
with 

(3.11) 
158.585 44,6894 

44.6894 23.4974 ! G = P + Q =  

The next s tep  is the  se lec t ion  of appropriate feedback gains so tha t  
t h e  resu l t ing  closed-loop systems exhibit :  1) an unstable mode and 2) a 
s t ab le  mode whose influence d i e s  out rapidly.  The eigenvalues of t he  n m i n a l  

% 'L 
system are h = 1.0 and X2 = exp(-O,l) = 0.9048, indicat ing t h a t  no state 1 
feedback is required t o  generate the  neEessary unstable mode. 
necessary t o  decrease the  magnitude of X2 i n  order t o  e f f ec t  the domination 
b ; ~  the  unstable mode. Yith 

It is  only 

(3.12) u ( i )  = -8.46 X 2 ( i ) >  

'L 'L X1 remains unchanged while X2 = 0.1. 

are 

(3.13) 

The corresponding nominal eigenvectors 

A second unstable mode i s  generate2 by applying 

(3.14) ~ ( i )  = tr,(i) - 8.46 x2( i ) .  

I n  t h i s  case, the  eigenvalues of t he  resu l t ing  closed-loop nominal system are 
7~ 

(3.15) 

= 1.79 and v2 = -0.21, and t he  corresponding nominal eigenvectors are 1 

0.951 
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I, % 
The vectors e and f 

t o  measure the value of the  subgoal. 

are then the approximate, nori-collinear vectors used 1 1 
Each evaluation of the  subgoal a t  

' various points i n  the  parameter space H cons is t s  of the fol lo~~ring steps:  

1) Star t ing a t  some i n i t i a l  state x ( O ) ,  apply the control option 
u ( i )  = -8.46 x,,(i). 
following con&tiun is sa t i s f i ed  : 

Zlaintairr t h i s  control  function u n t i l  t = nT when the 

(3.16) 

I n  the  above expressiozl, E is a small pos i t ive  number and < * * >  and 
denote respectively the  inner product and norm r e l a t ions  defined on the  two 
dimensional Euclidean space. 
coincident with the vector el =: e + del. 

due t o  the inexact knowledge of t he  parameter a. 

[ I  e 1 I 
At,t = nT the vector output is  assumed t o  be 

The perturbation in el, AelP is 1 

2) Evaluate the p a r t i a l  subgoal for gains k1 and k by applying the 2 
control u(n) = %%(F.) ik x (n) and evaluating the  functional 2 2  

(3.17) 

a t  t h e  t = (nS1)T. 
example, B is chosen as the  Ident i ty  matrix. 

B is an a rb i t r a ry  pos i t ive  d e f i n i t e  matrix. I n  t h i s  

3) Star t ing a t  the point ~ ( n 4 - 1 ) ~  apply the  control option u ( i )  = 
x,(i) - 8,46 x2( i ) .  

when the followin3 condition is sa t i s f i ed .  
l iaintain t h i s  control  function u n t i l  t = ml' (m > n) 

(3.18) 

4) Evaluate the  p a r t i a l  subgoal for gains kl and k2 by applying the 

control u(m) 7 klXl(m) + k2x2(m) and evaluation of the Succtidnal 

(3.19) 

a t  time t - (m+l)T. 

2 x Q  (m+l)Gx(lP.t.l) + u (rn) 
x ' (m)Bx(m) SG(m) = 

5) 
(steps 2 and 4) t o  determine the value of the  complete subgoal €or the gains 
k and k2. 

Add the p a r t i a l  subgoals determined a t  times t = nT and t = mT 

1 
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The e n t i r e  procedure is  repeated as many times as is necessary t o  
complete the  search f o r  the  minimum. 

The minimum search rout ine used i n  t h i s  example was  the  method proposed 
by Powell  (Appendix 3). 
parameter space IC, i.e. 

The maximum of t h e  €unction along a l i n e  i n  the  

(3.20) min f (kO f A k b )  
x 

was determined by measuring t h e  subgoal a t  three points and solving f o r  the  
minimum on the bas is  of a quadratic fit through these points. The value of 
X for which the  function is  a miniuum along the  l i n e  is given by 

(3.21) 

where 

(3.22) 

The e n t i r e  minimum search rout ine including the above procedure was applied t o  
the  second-order example. 
made by apply iw the  learning algorithm t o  the nominal system. 
t he  accuracy is obtained by comparing the learned l i nea r  control l a w  with 
the optimal l inear  control  l a w .  
e l t he r  component of the  learned control  gain vector w a s  less than 10 
The learning algorithm v7as then used t o  deternine 
a = 0.9. 
encountered i n  the  search rout ine is shown below in tabular form. 

F i r s t ,  a check of the  accuracy of t h i s  routine v7as 
A measure of 

For t h i s  example, t he  ~aximum deviat  on i n  -5 
e 

assuming the  actual  
The minimum search begins a t  t he  point kp. The succession of points 

kl 
-3.9853 
-4.0043 
-4 .oocz 
-4 0 2013 

(3.23) -4.OO13 
-3.9994 
-3.9961 
-3.9961 

-2,1533 
-*2.1533 
-2.16S4 
-2.1669 
-2.1729 
-2.1713 
-2.1790 
-2.1790 

Thus, %' = (-3.9961,-2.1790) e 

i n  less than 13 ssconds -.-real time, not computer time. 
The e n t i r e  learning process was completed 

A check of the  learning system's advantage can be made by comparing the  
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cost associated with the  learned system with t he  cost  obtained by implementing 
a system with t h e  fixed feedback gain determined by the  opt ina l  solut ion for 
the  nominal plant ,  The cos t  f o r  the  learned system is given by 

where 

(3.25) 

The aatr ix  I?(=) car, be  approximated 'by computing P(i1) for increasing values of 
E u n t i l  the increase i n  P(E) with each increment of I? is  nepligible.  The cost  
f o r  the learned system abwe  was found t o  be 

x ( a  * 1 136 994 44 6975 

44.6375 23,3393 
(3 26) IL(X(0)) = x'(0) 

The cost  associate  v i t h  the  second al terr ta t ive design was similar ly  determined 
and found t o  be 

x(0) 1 137.014 44.6971 

44 6971 23.3966 
(3.27) fF(X(0)) = XP(O)  

The difference in cost  for  the two options is  

(3.2d) 

where 

(3.29) 

Since the matrix 2 is pos i t ive  de f in i t e ,  the learned systen is shown t o  be 
superior for a l l  i n i t i a l  conditions. 

An icientfcal analysis  was performed f o r  d i f f e ren t  valces of the gerameter 
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a9 within the intended range (0.8,1.2). 
Figures 3.1 and 3.2. versus q w h i l e  Pieure 3.2 
is a p lo t  of the determinant of D versus a. 
above the a axis indicates  t ha t  the comparison matrix D is  posi t ive de f in i t e  
for  a l l  a. 
conditions and for  a l l  values of a, i n  the given range. 

The results are shown graphically i n  

Thelgact t ha t  both praphs l i e  
Figure 3.1 is a graph of d 

Tiius, it i s  shown tha t  learning is  superior f o r  a l l  in i t ia l  

Summary and Conclusions 

An algorithm has been developed f o r  implementing a learninq control ler  
based on Jones' formulation of a learning subgoal. 
a subgoal was appropriately modified t o  f a c i l i t a t e  the evaluation of the  sub- 
goal from measurements of the system state and a l so  t o  guarantee absolute 
convergence of the process. 
example and t h i s  learning control ler  was shown t o  yield be t t e r  r e su l t s  than a 
fixed control policy based on the best  avai lable  model of the plant.  

Jones' o r ig ina l  fonn of 

This procedure wat3 demonstrated for  a second order 

The application of the method is re s t r i c t ed  t o  l i nea r ,  s ta t ionary systerns 
with quadratic performance measures. 
assumed t o  be unconstrained. The advantage of t h i s  method over a reinforcement- 
type learning cor-troller, assuming t h a t  the quantization of the  control and 
state var iables  is f i n e  enough, is real ized i n  a considerable reduction in the 
number of var iables  t o  be stored and the t i m e  required t o  complete the learning 
process 

I n  addition, the control var iable  is 

The discussion of t h i s  algorithm is by no means complete. Although, 
the extension of t h i s  method has been theoret ical ly  j u s t i f i e d ,  it would be 
advantageous t o  apply the procedure t o  a th i rd  o r  fourth order system. It 
is anticipated t h a t  for  these higher-order systetns the  problem of disigninp 
proper state feedback i n  order t o  gerierate the appropriate rays  w i l l  be more 
complex and tedious. 
these measurement vectors  and i ts  effect OR the rate of convergence of the 
alrj or i tim e 

Further a t ten t ion  should be given t o  the choice of 

Appendix A 

L e t  rljr23.0..9r be n d i s t i n c t  rays i n  the  n dimensional. Euclidean 

The 
n n space E . 

purpose of t h i s  sect ion is t o  demonstrate tha t  t h e  matrix 
L e t  vi be an a rb i t r a ry  vector coincident with the ray ri. 

is pas i t ive  de f in i t e  for every set of l i nea r ly  independent vectors V ~ , V ~ ~ . . . ~ V  

The proof! is dependent on the  f a c t  t h a t  M(vl,.. . gv ) can be represented as the 
n' 

n 
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product of two non-singular matrices. 

1'2. Then i n  order t o  prove that H(v19eo .,v ) is L e t  ui = vi/(viDBvi) n 
posi t ive def in i te ,  it is su f f i c i en t  t o  prove t h a t  

n 
i4(ul, ..., u ) = E u u 

i=l n <A21 

is posi t ive def in i te .  
i i  

.;' 
u1 
P o  
9 

P 

ug  n - J 

L e t  P be an n x n matrix with the vectors u ~ ~ . . . ~ u  as the columns of n Q, Le., 

(443) P = [ul u2 . * . a  unl * 

Then 

(A41 

P' is  an n x n  matrix whose 

P' = 

rows are the vectors uIp 9 ~ 2 '  p .  ou t i.e. 
n s  

L e t  M be the symmetric n x n matrix formed by the matrix product PP'. 
obseming the  ru les  f o r  block mult ipl icat ion of matricesg the  matrix M can 
be expanded as follows 

Then, 

n 
14 c u u 

i=l i i  

Thus, it has been shown t ha t  M ( U ~ ~ U ~ ~ . . * ~ U  ) can be represented as the 

product of two matrices. 
V 

n 
I f  the vectors uiD or  equivalently the  vectors 

are l inear ly  independent, the matrices P and P' are both non-singular i' 
and the  symmetric matrix Ivi(vlPv2, e ,v,) is posi t ive def in i te .  143 

Appendix B 

Powell [5] describes a simple var ia t ion  of the  well-known method of 
minimizing a quadratic function of n variables  by changing one parameter a t  
a time. The function t o  be minimized is assumed t o  be of the  form 

where x ant3 b are n dimensional vectors,  A is a pos i t ive  de f in i t e  n x n 
matrix, and c is a scalar. The procedure commences with a search along each 
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of the co-ordinate direct ions,  The r e su l t s  of t h i s  search form the bas is  f o r  
generating a new search direct ion p t o  replace one of the  co-ordinate direct ions.  
The search is then repeated f o r  t h i s  new set of direct ions and a second l inear ly  
independent search d i rec t ion  q is determined by the  outcome of t h i s  search. The 
algorithm used t o  generate p and q is chosen so t ha t  the vectors p and q are con- 
jugate with respect t o  the  matrix A, i.e., p'Aq = 0. 
i t e r a t i o n  o r  search down the  n l inear ly  independent direct ions,  a new search 
d i rec t ion  is  generated which is conjugate t o  a l l  the d i rec t ion  generated by the 
previous i te ra t ions .  Then, a f t e r  n i te ra t ions ,  a l l  the direct ions are mutually 
conjugate and the  absolute mfnimum of the quadratic is found. 
used i n  the generation of the new conjugate direct ions is  outlined below. 

Furthermore, a f t e r  each 

The a l g o r i t b  

L e t  (E1,t2, ., 
and l e t  po be the  poin t  i n  the n dimensional parameter space a t  which the  

i t e r a t ion  begins. 

e e $5,) be the n l inear ly  independent direct ions of search ~ 

Each i t e r a t i o n  cocsis te  of t he  following steps.  

1) For r = 1,2,. , . sn, calculate  A, so t ha t  f (pre1 + A r t r )  is a minimum 
and def ine p, = prW1 -k A r c r e  

For r = 192, .e*3n- l  replace 6, by 

3) geplace En by (pn -;.Po). 
4) Choose A so t h a t  f (pn + A(pn - po) is a minimum and replace po by 

Az the  conclusion of the  nth i t e r a t ion ,  t he  exact minimum of the quadratic 
function f ( x )  w i l l  have been located. 

2) 

P, t- A(P, - P& 

References 

1. 

2. 

3.  

4. 

5. 

" "  I a l t z ,  M e  D e 9  Fu, K. S., "A Learfiing Control System,'? Reprints -- of the  
JACC, 1964. -* 
Waltz, Ha D.$ Fu, 8. S., "A Heuristic Approach t o  Reinforcement Learning 
Control Systems," 
No. 4, October, 1965, pp. 390-396. 
Jones, L. E. 

Transactions - on Automatic Control, Vol. AC-IO, 
.. 
"On the  Choice of Subrroals f o r  Learning Control Systems9" - IEEE Transaceions - on Automatic Control, Vol. AC-13, io. 6, December, 

1966, pp. 613-420. 
FiRkbeikr ,  D. T., Introduction t o  latrices 
W. E:. Freeman and Companys San Fzncisco ,  1960, p. 185. 
Powell, N.f. J. D. 
Function of Several Variables Without Calculating Perivates,'? Computer 
Journal, Vol .  7 ,  1964, pp. 155-162. 

Linear Transformations, 

"An Eff ic ient  Method for  Finding the Minimum of a 


