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An Improved Algorithm for Learning Systems

X. M. Scott

Introduction

An algorithm is developed for implementinz a learning controller based on
the concept of a subgoal. The method differs from previous work in that the
state space need not be quantized, resulting in vastly reduced memory require-
ments and shorter learning times. The method is applicable to linear stationary
systens with unconstrained control variable wherein the system parameters are
specified with uncertainty.

One of the very few known simulations of a fully automated learning control
system has been reported by Waltz and Fu. [1,2]. Since these reports are the
basis for the research discussed in this thesis, it is appropriate to discuss
the general aspects of the Waltz and Fu learning algorithm.

The method proposed by Waltz and Fu utilizes the concepts of sample set
construction and linear reinforcement. Sample set construction involves the
partitioning of the state space into control situations which describe the state
dependence of the control law., Linear reinforcement is the method by which the
control law is adjusted to minimize a given functional, gauging overall system
performance. This particular learning scheme is applicable to nonlinear, non-
stationary systems. The only a-priori information required by the design is the
order of the plant to be controlled. The parameters and the exact form of the
plant may be unknown. As usual, one pays a penalty for such wide-ranging freedom.
In this case, the peralty is realized in the initial phase of learning when the
system must test each available control choice to determine the most appropriate
choice for each possible situation. During thisg initial training period, immediate
improvement is never realized, in fact, the system may be forced into an unstable
situation. However, if sufficient information relating to the plant dynamics 1s
available, then the excitation of unstable modes of the system can be avoided,.

In the case of a linear plant whose parameters are nominally knovn and a quadratic
performance functional, L. E. Jones [3] demonstrated that it is more beneficial

to implement a learning controller on the basis of the nominal parameters than

to accept a control law determined by these nominal values alone. The details in
the development of these two related learning systems follow.

The method discussed by Waltz and Fu is applicable to the wide range of
systems whose dynamics can be described by a general differential relationship

-]
(1.1 x = £(x.u,t),
where x’ = (xlgxz,.....,xn) is the state vector defined on the state space QX,

and u the control signal chosen from the control space nu. The principal

objective is to determine a control policy (not necessarily linear)
(1.2) u(t) = g(x(t))
which minimizes a given performance index.

The actual learning process is accomplished with the aid of a digital



computer. The inclusion of the computer imposes a number of practical
restrictions on the design of the learning controller. First, the control

law cannot be defined as a explicit functional or analog relationship but
rather it must be described by a relationship between the individual elements
of the state space Qxand the control space ﬂu. Thus for each point in a there

must correspond a point in Qu such that the total correspondence defining the
law minimizes the given performance index. If Qx and Qu are both spaces with

a countably infinite number of points or elements, the computer used in the
learning process must have an infinite storage capability. Thus it becomes
necessary to quantize the state space QX into a finite number of subsets and

restrict the choice of a control signal from a finite control space Qu. In

this case, the functional correspondence defining the control law would be
established between the subsets of Qx and each of the finite number of elements

of Qu. Thus a single control choice would apply to the aggregate of points
defining each subset or sample set in Qx such that the total relationship is
optimal with respect to the given performance index.

The second consideration resulting from the use of the digital computer
is due to the finite time required by the computer to execute an algebraic
operation. Each choice of a control signal from the space Q, must be evaluated

according to its effect on the given performance index. Since each evaluation
requires a finite number of mathematical operations, the information related
to the effectiveness of a particular control choice will not be available at
the same instant the measurement of the performance index is made. Thus it

is necessary to discretize time to allow time for evaluating each decision.

In the discrete case, the control is held constant during the interval of

time required to evaluate the last decision. Hence, the plant is described

by a vector difference equation

(1.3) x(i+1) = F{x(i),u(i),1i).

- Thug the actual implementation of a learning system utilizing a digital
computer requires the following operation:

1) Discretize the independent variable to allow time for making
and reinforcing decisions.

2) Quantize the control input into a finite set of allowable
control actions, and

3) Partition the state space into subsets called sample sets to
reduce the computer storage requirement,

4) Choose a reinforcement algorithm to supervise the learning
process.

The above reinforcement algorithm must be related to the system
performance index in the sense that the control law learned by the system
will eventually approach the optimal control policy. The index of per-



formance of the system is of the form
n

(1.4) ez rxaD)?,
r=1 1

where a is an arbitrary constant selected by the designer. Again, the primary
objective of the reinforcement-type learning control system is to recognize
what control signal should be applied when the plant output is observed within
a certain region (sample set) of the state space. The decision to apply
positive or negative reinforcement as well as the degree of reinforcement
applied to a particular control situation is based on previous observations

of the state vector and the resulting behavior of the system when the control
choice under consideration was applied to the system. The objective of the
system is to learn the control law which minimizes the given index of per-~
formance, called the primary goal, evaluating system behavior over an extended
period of time. Thus, if the reinforcement algoritym is based on this

primary goal, the decision to reinforce a particular control situation at

a given instant of time must be withheld until a performance measure is
available at some later time. It is, therefore, necessary to introduce a
secondary index of performance, referred to as the subgoal, which, when
minimized at each decision, results in near-optimum performance.

The difficulty encountered in using the main goal rather than a subgoal
has been compared to playing a game of chess and evaluating each move on the
basis of win or lose information. The chess player must consider some
intermediate goal in making the separate moves. Thus an effective subgoal
must fulfill two conditions:

1) It must evaluate each decision separately,
2) It must be related to the main goal so that fulfilling the
subgoal 1is essentially equivalent to satisfying the main goal.

In the paper by Waltz and Fu, the subgoal was to choose u(i) so as to
maximize

IPS(4) - IPS(i+l) - Au’(d)
max[IPS(1i), IPS(i+l) + A(umax)zl

(1.5)

where

(@ A >0,
(ii) IPS(i) = x'(i)Gx(i) and C is a positive-definite diagonal
matrix, and

(iii) U oax = m?x (ui

:uieﬂu).

The elements of G are determined by a secondary learning loop whose objective
is to find the diagnal matrix G such that the corresponding control law

yields the lowest npumerical value of the primary or main goal. This secondary
learning loop consists of g multidimensional search scheme.

The selection of an appropriate subgoal in the above argument is rather



heuristic. However, if the plant to be controlled is linear and time-invariant,
the performance index (main goal) to be minimized is quadratic, and information
regarding the nominal values of the plant parameters is available, then a less
ambiguous selection of a subgoal can be made as follows.

Given a linear, time-invariant system defined by the vector difference
equation

(1.6) x(i+l) = ¢ (1) + hu(d),
where

(1) =x(i) is an n dimensional vector representing the sampled value
of the state of a continuous process at time t = iT,

(i1) ¢ is an n x n matrix whose elements are nominally known,

(ii1) h is aa n x 1 column vector of nominal parameters, and

(iv) wu(i) is the scalar-valued control variable.

Let the n x n positive semi-definite matrix Q and the positive scalar = define
the quadratic performance index

n-1

(1.7) Tu,xg) = 3 (x" (1+1)Qx(i+1) +=u>(1)).
1=0

If no constraints are imposed on the control variable u(i) and with N fixed,
x(i) free, the optimal control law is known to be a linear function of the
system state, i.e.,

(1.8) u*(1i) = k' (i+1)x(1)

and the minimum value of the index of performance is

(1.9) I*(xo) = I(u*,xo) = xéP(O)xO

where k(i) and P(i) are determined by iterating the following set ot equations
backwards in time starting with P(N) = 0.

(1.10) R(1) = P(1) + Q

h'R(41) ¢

kK (i+l) = - BTE(DE T

(1) = ¢+ hk'(d)

P(i-1) = &'(1)P(1) o(i) +=k(i)k'(1).
Consider a subgoal of the form

(1.11) SG(1) = x'(4+1)G(1)x(1+1) + Au’(d).



Substituting the state equations(1l.6) in (1.11) 2nd minimizing with respect
to u(i) yields a control law of the form

(1.12) u(i) = - %%%fi‘x x (1).

In the case where the exact values of the elements of ¢ and k are known,
the best choice of G(i) and A would be

(1.13) G(i) = R(1) = P(1) + Q

A=mﬂ

Then, minimizing SG(1) at each point t = iT with respect to u(i) is
equivalent to minimizing I(u,x,) over the entire interval (0,NT) in the sense
that the the two approaches yiéld equivalent control policies and therefore
identical minimum values for the performance index I(u*,xo).

In order that the subgoal be optimal with respect to the main goal, it
is necessary, as shown in (1.13), that G be a time variable matrix. If this
requirement is to be maintained, then the required computer memory must be
expanded to permit the storage of G at each sample point t = iT. Thus, in
the interest of reducing the memory requirement, G will be assumed time-
invariant and equal to R(0). Then the subgoal will be suboptimal, and optimal
only in the case where N = o,

In the formulation of the learnirg control problem ignorance of parameter
values is assumed, otherwise there is no need to learn. Thus, the following
question is raised: what is the best learning subgoal in the case of un-
certainty in the parameters? The preceeding argument is no longer applicable
since the exact system parameter values are not available to determine the
optimal control law and subgoal. FKowever, nominal values of these parameters
are given and can be used to determine a subgoal which can be used to super~
vise the learning for the actual system. Consider the special situation when
the actual and nominal values are equivalent. Then the subgoal, when minimized
with respect to the control variable u(i) at each decision point, will yield
the optimal control law for the actual (nominal) plant. 1In fact, it has
been demonstrated by Jones that the control policy determined by this subgoal
is superior in the following sense. Let uF(i) be the control law derived by

solving the optimal control problem for the nominal plant and let IF(xO) be

the resulting value of the performance index when this control is applied to
the actual system. Let uL(i) be the control law determined by the learming

algoritim using the subgoal based on the nominal plant parameters. IL(xo) is

the corresponding value of the performance functional. Then it has been shown
that

(1.14) Io(xo)g_IL(xo) < IF(xo)

where Io(xo) is the minimum cost for the actual system. Thus, it is more



beneficial to learn the control law using a subgoal based on the nominal

parameter values than to accept the control policy determined by the optimal
solution for the nominal plant.

In the foregoing discussion, the control variable was assumed to be
unconstrained. Therefore, recalling that it is necessary to restrict the
class of allowable control sets to include only countable sets in order to
reduce the computer memory requirement, the above results are not directly
ameanable to the reinforcement learning algorithm as proposed by Valtz and
Fu., However, the same subgoal can be utilized to implement the reinforcement-
type learning system. Consider the simple example where either positive,
negative, or zero forcing is available, i.e.,

(1.15) u(i)eﬂu = (~1,0,+1).
Then, using the subgoal determined by the optimal solution for the nominal

plant assuming no control constraints, the learning system will converge to
‘the nonlinear control law defined by the two switching lines

(1.16) K'x = a0
where

_ h'G ¢
(.17 kL * - weR =

and x(i+l) = ¢x(i) + hu(i) is the actual system equation. In the general
case, the switching lines are determined by

? = e
(1.18) ka 1/2 (u:j + uj+l)
where uj and uj+1 are elements of the ordered control set
(1.19) 9 = {ul’"°”uj’uj+l’°‘“’up}'

In the preceeding discussion, the entire development was related to
the determination of a subgoal for the reinforcement-type learning control
system. In this type of learning situation, a large memory block is required
to store all the learning parameters. For example, given a second order
system with the state space subdivided into 5 x 5 rectangular sets covering
‘xl.i< 50 and ‘x L_ 50, at least 2000 parameters are generated in the process

of learning a relay control law, i.e., u = ¥ 1. Higher order systems, finer
quantizations of the state space, and wider ranges on the choice of the control
variable all increase the memory requirement. Furthermore, the increase in
the required storage capability is accompanied by an increase in the time
required to complete the learning process.

In the succeeding discussion, a different algorithm is developed for a
linear system with unconstrained control. Less severe memory requirements
and shorter learning times are realized by this method.



Uevelopment of Learning Algotithm

Assume for simplicity in the subsequent discussion that the values of the
plant parameters are identical to the actual parameter values. Hence, the
problem becomes one of forcing the system to converge to a given limit point
defined by the optimal solution. Although this problem has no practical
relevance, it does serve to illustrate the procedure for obtaining a sub-
optimal solution when the nominal and actual plant parameters are distinctly
different. Suppose a convergent procedure has been found which satisfies
the conditions of the problem defined above. Then this same procedure will

yield a solution to the problem when there is some degree of ignorance of the
parameters.

The object of this paper is to develop an algorithm which will learn an

optimal control for a linear stationary system described by a vector difference
equation

(2.1) x{i+l) = ¢x(i) + hu(i)

where x(i) is an n-dimensional vector and u(i) is a scalar. The performance
of this system is to be measured by the quadratic cost functional

(2.2) § x'(IH)Qx(i+1) += uP ()
1=0

defined by the n x n positive semi-definite matrix Q and the positive scalar

« , Assuming no constraints on the final point, x(«), the optimal control is
known to be linear

(2.3) u(i) = kix(i),

where k, is defined by

h'R¢ .
(2.4) k% = - WTRR ¥

R is the positive definite symmetric matrix determined by iterating the

discrete matrix Ricatti equations backwards in time until a steady state
solution is obtained.

Following the procedure proposed by Jones [3], an appropriate subgoal
is proposed. Consider a subgoal of the form

(2.5) S6(1) = x*(1+1)Cx(i+1) + rui(d).

The problem is then to determine G and A such that the subsequent statement
applies. If the subgoal is minimized with respect to the constant vector k
defining the linear control law

(2.6) u(i) = k'x(1),

S



then, starting from some arbitrary point ko9 the system will converge to the
optimal control k., defined by (2.3) and (2.4).

The dependence of the subgoal on the vector k becomes evident if the
state equations (2.1) and the linear control law (2.3) are both substituted
in the expression for the subgoal. This substitution yields the following
expression for the subgoal in terms of the state at time 1T, x(i), and the
gain vector k,

(2.7) 8G(1) = x'(i)[¢°Gp + 2kh'R¢ + Bkk'lx(i),
where B = h'Gh + A.

Although (2.5) and (2.7) are equivalent expressions for the subgoal,
it should be stressed that in the actual minimization routine the subgoal will
be evaluated by means of (2.5). Fowever, for analytical purposes, the latter
expression for the subgoal will be used.

In order to illustrate the procedure for minimizing the subgoal with
respect to the vector gain k, consider a simple discrete system defined by
the first-order vector difference equation

(2.8) x(i+1) = x(i) + u(i).

Suppose that a subgoal has been determined which will force the system to
converge to a given control law, k = -1/2, Let that subgoal be defined by

(2.9) SG(1) = x2(i+1) + u?(d).

The equivalent expression for the subgoal is found to be

(2.10) SG(1) = x2(1)(1 + k)2 + K2x2(4).

In this simple one-dimensional problem where the subgoal is easily observed
to be a strictly convex function of the argument k, an elementary one-
dimensional search routine is the most appropriate procedure for minimizing
the subgoal with respect to k. An outline of this procedure follows.

a) Starting at some arbitrary initial state x(0), allow the system
to run for one sample period under the influence of the control
u(0) = k.x(0). Measure the state at i = 1 and determine the value
of the subgoal corresponding to ko by substituting in (2.9).

b) Repeat step @ for k, = kq + 6k to determine whether k, lies to
the right or left o% the minimum. If the value of thg subgoal
corresponding to k = k, is less than the value corresponding to
k = k., proceed in the direction defined by k, otherwise, reverse
the d?rection of search.

c) Continue this trial and error procedure until a minimum is
located.



However, a false conclusion might be obtained in step (b) unless the state
observed one sample period prior to the measurement of the subgoal is
identical to the initial state x(0) in step @). Thus, the system state

must be held constant throughout the minimization. The difficulty that may
arise if this restriction is not observed is easlily illustrated in a graph
of SG(1) vs. k with x(i) as a parameter (Fig. 2.1). Suppose x(0) =1,

ko = 1. The value of the subgoal corresponding to these values is five. 1In

step ), let &k = ~1/2 and suppose that the state one sample period prior to
the measurement of the subgoal is equal to two. Then the value of the
subgoal corresponding to these values is ten, indicating that the minimum
lies to the right of kO when, in fact, the minimum lies to the left of k,.

0
Thus, one additional condition should be added to both steps b and c:

Measure the subgoal according to (2.9) only after the system returns
or is forced to return to the state x(i) = x(0).

Then the system will be forced to converge to the desired value k = -1/2,

In the problems where the dimensions of x and k are greater than one,
the same difficulty prevails. Similarly, measurcments of the subgoal are
made only after the system returns or is forced to an arbitrary but fixed
state. This restriction is particularly severe, since the probability that
a particular state will be repeated a finite number of times is practically
zero. A less severe but equally valid restriction would be-

HMeasure the subgoal according to (2.9) after the system returns or

is forced to return to a surface in the state space along which the

value of the subgoal varies only with respect to the vector k.

The problem of finding such a surface is illustrated by considering the
following second order system:

(2.11) x, (1+1) = xl(i) + u(i)

x2(1+1) = xz(i) + u(d).
Again suppose that a subgoal has been determined which will force the system
to converge to a given control law (mot the optimal control law in this case).*
Let
(2.12) SE(1) = x' (H+1)x(i+1) + u’(d),

or equivalently

(2.13) SG(1) = x’(i)A(kl,kz)x(i)

where A(kl’kz) is the n x n positive definite symmetric matrix defined by

* Since (2.11) is uncontrollable, the optimal solution can be shown not to
exist. However, the learning algorithm can still be applied.

-9
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(l+kl) +2k1 k1+k2+3k1k2
k1+k2+3k1k2 (l+k2) +2k2

Since this example will be used repeatedly to illustrate certain aspects of
the learning algorithm, the system equations (2.11) and the subgoal (2.12)
will be referred to collectively as System A.

The obvious choice of a surface satisfying the above condition is a
constant-value contour in the phase plane. In particular let

(2.15) ¢, = {x(i)eEz s x'"(DAQ,Dx(1) = 24}

be one such contour in the two-dimensional phase plane E,. If C1 is to

qualify as a valid measurement surface along which the subgoal SG(1) varies
only with respect to k, then every other contour corresponding to different
values of k, and kz must not intersect Cl. Yet, as seen in (Figure 2.2),
the contour

(2.16) C2 = {x(i)eE2 ¢ xT(DAR,-Dx(1)} = 24

intersects C,, thus invalidating the choice of C, as an appropriate
measurement surface. 1In fact, no such contour ifi the phase plane is an
appropriate surface,

This difficulty, however, can be circumvented by redefining the subgoal.
Let

_x (AKX (L)
(2.17) SG(1) = x (D Bx(D) s

where B is an n x n positive-definite symmetric matrix whose elements are
independent of k. It is observed that (2.17) is constant along rays in the
phase plane passing through the origin. Thus, it 1s necessary to return
the system only to some point on the ray prior to measuring the subgoal.
Let

(2.18) ry = {x(i)eE2 : xl(i) - xz(i) = 0}

be one such ray. Then along r, with B = I, the subgoal as defined by (2.17)
hag the value

; 2, 2
(2.19) SG(1) = 1 + 2(k;+k,) + 3(k k,) +(3/2) (k, “+k, ).

This expression indicates that the redefined subgoal varies only with respect
to k along the ray Ty In fact, the same is true along any arbitrary ray in

the phase plane which passes through the origin. Thus, when x is constrained

-11~



s, = {xeX : SG(1) = 24, k; = 1, k, =1}

S, = {xeX : SG(i) = 24, k, =1, k, = -1}

X
/\2.

Figure 2.2
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to lie along any such ray, the problem is reduced to one of minimizing a
function of two variables. -

The existence of an absolute minimum of the subgoal in the gain parameter
space K will now be examined. The subgoal as defined by (2.17) can be written
as

(2,20) SG(1) = k'M(x)k + 2k'Mx)v + s(x),
where
M(x) = %é%%%%é%%y is an n x n matrix,

v = ¢'Gh 1s an n x 1 column vector, and

x'(1)¢'Gox(1)

% (D) Bx(D) is a scalar.

s(x) =

Equation (2.18) reflects the fact that the subgoal is a quadratic function of
the parameter k. Thke locus of points at which the gradient of the subgoal

(2.21) vkse = 2M(x)[Bk + v]

equals zero defines the extreme points of SG(i). Fowever, since M(x) is a

singular matrix of rank one, the solutions of VkSG(i) = 0 lie on a one-

dimensional hypersurface in the space k. Thus, there is no unique minimum
with respect to k.

The consequence resulting from the fact that xx’ is a singular matrix
can be demonstrated in the case of System A, where minimizing the subgoal
produces a minimum that lieg along the line

(2.22) 3k1 + 3k2 + 2 =0,

Thus, the limit point of the minimization procedure would depend upon both
the search method and the point at which the search was initiated. Consider,
for example, that the first step of the method employed to find a minimum
involved a search in the k, direction. Then, starting at the point (1,1),
the procedure would converge to the point (~5/3,1) in one step. On the other
hand, suppose the initial search was made in a direction parallel to the kz

axis. Then, with the same initial condition, the point (1,-5/3) would be
reached in a single step. Since the principal objective is to converge on a
unique point, regardless of the starting point and method, this condition is
very undesirable. However, this undesirable result can be eliminated by
redefining the subgoal.

Consider first the second order example. Let r and r, be two distinct

rays in the state space which intersect the origin and let x and y be points

on ry and r, respectively. Consider now the following choice of a subgoal.

-13-
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Let

= X (1)AK)x(1) y' (1)A(K)y(1)
(2.23) SG(i) X'(i)BX(i) + y’(i)BY(i)

or equivalently in the form of (2.18).

(2.24) SG (i) = k'M(x,y)k + 2k'M(x,y)v + s8(x,y)
where
1 1
Mx,y) = xfgx + yzgy is a 2 x 2 matrix,

v = ¢'Gh 1is a 2 x 1 column vector, and

x'0'Gox |y’ Goy

ey 3By is a scalar.

s(x,y) =

%
In this case, M(x,y) is a positive-definite and non-singular matrix (see
Appendix A). Thus the gradient

(2.25) V.56 = 24(x,y) [Bk + v]
equals zero at the unique point

- oy/g = . 2GR
(2.26) k v/B TR

Then by an appropriate choice of G and A, the system can be forced to converge
to any given point in the space k. Furthermore, this point will be uniquely
determined by G, A, and the system parameters, independently of the choice of
the rays L and Tye

The System (2.11) and subgoal (2.23) will be called System B. To
illustrate the effect of this modified subgoal on the existence of an absolute
minimum, consider the case of System B. Since the choice of ry and r, is

%k
arbitrary , let Ty be the Xy axis and let r, be the X, axis. Then, with
G=38=1and A =1, the subgoal (2.23) has the value

2 2
1 2"

The graph of the constant-value contours (Fig. 2.4) indicates that an absolute

(2.27) 56 = I+ + 262 + (k)% + 2k

* M(x,y) is required to be positive definite in order that the optimum
solution be a minimum,.

*% It should be noted that the choice of rays for higher order systenms,
as noted in Appendix A, is not arbitrary, in that the rays must be linearly
independent.

-15-



Figure 2.4
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ninimum is attained at the unique point (-1/3,-1/3).

Using the subgoal defined by (2.27), the procedure for finding the
minimum point is outlined below.

a) Starting at some arbitrary initial state x(0) on a given ray r.,
allow the system to continue under the influence of the contro}

u(i) = ke'x(O). Measure the state at t = T and compute the value
of

(2.28) %' (1)Cx(1) + Au2(0)
x* (0)Bx(0) ‘

b) After the system has attained or is forced to attain a state on
a second given ray r, at time t = nT, allow the system to continue

under the influence of the same control law as was applied in step
(a). leasure the state at t = nT + T and compute the value of

(2.29) x 7 (mFL)Gx(tl) + Au>(n).
%' (n)Bx(n)

c) Add (2.28) and (2.29) to obtain the value of the subgoal corres-
ponding to k = kO'
d) After the system state returns or is forced to return to a point
on the ray Tys repeat steps a, b, and ¢ for a different value of

k to obtain the corresponding value of the subgoal.

e) Using this information, adjust k in an appropriate manner and
repeat the procedure until a minimum is located. The convergence of
this method is assured by the fact that the subgoal is a strictly
convex function of the vector k.

For systems of order greater than two, two rays are not sufficient to
guarantee that the resultant quadratic will be positive definite. It can

be shown, however, that linearly independent vectors VysVgseeesVy are
sufficient to generate a positive definite matrix of the form
n vivi'
(2.30) My 90sesV ) = § —=—"
] AR A Bvi

The proof of this is given in Appendix A. The schedule of operations

involved in the learning process must also be amended to include measurements
at these additional rays. For an otP order system, step (b) of the preceeding
five-step outline of the minimization routine should be repeated n ~ 2 times
before a complete measure of the subgoal is obtained.

In the above procedure, the probability that the system will encounter
a particular ray in the state space more than once is practically zero.

-17-



Hence, it becomes necessary to implement a controller which will force the
system to return to a given ray a finite number of times to allow the learning
controller to make the appropriate measurements. State feedback will be
employed to force the system to behave in this prescribed manner. In order

to demonstrate this procedure, let A represent the system matrix of the closed
loop system, i.e.,

(2.31) A= ¢ + hk'.

Then N x N matrix A can be expanded in dyadic form as

i)
(2.32) A=F e

i=1

N

+
1> M8y

where

i) Ai is an eigenvalue of A,
i) e; is the eigenvector corresponding to A,,
and

iii) ei+ is the dual vector associated with the eigenvector e

Using this notation, the system response to an initial condition x(0) can
be written as

N n +
(2.33) x(nT) =X e, > Ai. < ey ,x(0)>.
=1 ~

Since the eigenvectors constitute a bisis for the state space, the initial
state x(0) can be expressed as a linear combination of these eigenvectors.

Ry

(2.34) x(0) = L * = _e
j=1 j j'

Substituting (2.34) in (2.33), and utilizing the fact that

+ =
(2.35) < ey 9ej> 6ij°

the response can be written as

N
(2.36) x(nT) = & «
i=1

n
iM%

Thus it is easily seen that if magnitudes of all but one of the eigenvalues,
say Al’ are forced to have values much less than one, then the system
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response will eventually approach the vector Alne . The rate of convergence
will depend on the relative magnitudes of the “othier ¥ - 1 eigenvalues.

Consider again the system described by (2.11). The eigenvalues of the
system matrix are both one and the eigenvectors of the open loop system are
el’ = (1,0), and ez’ = (0,1). With u = -0.9x2, the eilgenvalues of the closed

loop system are ll = 1.0, Az = 0.1. The corresponding eigenvectors are

el' = (1,0), ez' = (1,1). Thus, the system response will approach a point on
the Xy axis. Likewise, with u = ~0.9x1, the state vector will tend to align

itself with the X, axis.

The entire strategy is now applied to System 2. A method proposed by
#M.J.D. Powell (see Appendix B) is used to determine the point in the K space
at which the subgoal is a minimum. The advantage of this particular method
is that no derivative measurements are required. The search is begun at the
point XK = (1,1) and converges to the point K = (-1/3,1/3) as desired (Fig. 2.5).
The response of the system for one complete measurement cycle is shown in
Fig, 2.6. The letters a,b, and ¢ adjacent to each segment of the trajectory
correspond to the steps a, b, and c in the outline on page

This completes the development of the learning algorithm. The three
principal, results of this section are summarized below:

1) Since the subgoal must be held constant with respect to x while
it is minimized with respect to k, the originally defined subgoal was altered
to allow measurements to be made along a line in the state space rather than
at a single point,

2) To guarantee the existence of a unique limit point, the subgoal was
again altered. If the subgoal was evaluated on the basis of measurements
on n distinct rays in the state space, it was shown that the resulting
function was strictly convex in the vector k thus assuring the existence of
an absolute minimum.

3) It was shown that state-feedback can be used to force the system
to return to the two distinct rays in the state space that are required in
the evaluation of the subgoal.
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Example

Consider the second-order system described by the vector differential
equation

(3.1 x(t) = Ax(t) + bu(t),
where
o 1 0
(3.2) A= , and b = .
0 -a 1

%

If the states are sampled uniformly every T seconds and the continuous plant
is preceded by a zero~order hold, then the equivalent vector difference
equation is

(3.3) x(i+1) = ¢x(i) + hu(i),
where
1 -1
a “[l-exp(-aT)]
(3.4) % =
0 exp(~aT)
and, ) -
a”%[aT-lexp(-aT)]
(3.5) h = -1
a “[l-exp(~aT)]

The principal objective 1s to control this plant optimally with respect to
the infinite time performance index

(3.6) (k) = ¥ x'(1+1)0x(i41) + u’(3)

/ i=0
where, in this example, Q is chosen to be positive defirite, and is given the
value

20 0
(3.7) Q= .
0 1

A priori, it is known that the actual a = 1.0 T 20%. Thus, the “best"

subgoal is determined by solving the discrete optimal control problem for
the nominal system, i.e., when a = 1.0. With T = 0.1 sec. the optimal
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control law is found to be
(3.8) u(l) = ~3.9853x1(i) - 2.1533x2(i),
while the associated minimum value of the cost function is x'(0)Px(0) and

138.555 44,6394
(3.9) P = .
44,6824 22.4974

The corresponding subgoal is quadratic

(3.10) 56(1) = x' (4+1)Gx(i+1) + v2(4),

with

158.585 44,6394
(3.11) G=P+Q=

44 6894 23,4974

The next step is the selection of appropriate feedback gains so that
the resulting closed-loop systems exhibit: 1) an unstable mode and 2) a
stable mode whose influence dies out rapidly, The eigenvalues of the nominal

system are %1 = 1.0 and %2 = exp(~0.1) = 0.9048, indicating that no state

feedback is required to generate the necessary unstable mode. It is only
necessary to decrease the magnitude of AZ in order to effect the domination
by the unstable mode. With

(3.12) u(i) = -8.46 xz(i)9
%1 remains unchanged vhile *2 = 0.,1. The corresponding nominal eigenvectors
are 1
1 -0.06
(3.13) e = and ¢, = .
0 1

A second unstable mode is generated by applying

(3.14) u(i) = xl(i) - 8.46 xz(i).

In this case, the eigenvalues of the resulting closed-loop nominal system are
%, = 1.79 and T, = ~0.21, and the corresponding nominal eigenvectors are

T T ~0.054
(3.15) %l = , £ = .
0.951 1
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N
N
The vectors ey and fl are then the approximate, non-collinear vectors used

to measure the value of the subgoal. Each evaluation of the subgoal at
" various points in the parameter space K consists of the following steps:

1) Starting at some initial state x(0), apply the control option
u{i) = -8.46 x,(i). Maintain this control function until t = nT when the
following condition is satisfied: '

(3.16) <x(n) ;x(n-1)> 1- ¢
x(n)| “x(nml)“ .
In the above expression, € is a small positive number and < *,'> and lt' H

denote respectively the inner product and norm relations defined on the two
dimensional Euclidean space. Atmt = nT the vector output is assumed to be
coincident with the vector e =e + Ael. The perturbation in s Ae19 is

due to the inexact knowledge of the parameter a.

2) Evaluate the partial subgoal for gains kl and kz by applying the

control u(n)==gfi(n)-%kéx2(n3 and evaluating the functional

2
_ %' (o)Gx(n+l) + u(n)
(3.17) 5G(n) = %' (0)Bx(n)

at time t = (n+l)T. B is an arbitrary positive definite matrix. In this
example, B is chosen as the identity matrix.

3) Starting at the point x(ntl), apply the control option u(i) =
xl(i) -~ 8.46 xz(i). Maintain this control function until t = nT (m > n)

when the following condition is satisfied.

o <x(m) ,x(m+1)> _
(3.12) “x(m)“ “x(m—l)“> 1-c¢

4) Evaluate the partial subgoal for gains kl and kz by applying the

control u(m) = klxlom) + kzxz(m) and evaluation of the functidnal

2
o X" (m1)ex(mtl) + uf(m)
(3.19) 5G(m) %' (m)Bx (m)

at time t = (m+l)T.

5) Add the partial subgoals determined at times t = nT and t = mT
(steps 2 and 4) to determine the value of the complete subgoal for the gains

kl and kz.
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The entire procedure is repeated as many times as is necessary to
conplete the search for the minimum.

The minimum search routine used in this example was the method proposed

by Powell (Appendix B). The maximum of the function along a line in the
parameter space k, l.e.,

(3.20) min :f(k.0 + lkA)

was determined by measuring the subgoal at three points and solving for the
minimum on the basis of a quadratic fit through these points. The value of
A for which the function is a minimum along the line is given by

(FN - FP)
(3.21) A=6/2) GERTEY s

where

Fii = £(k.~=k,) - £(k,)
(3.22) 0 a 0

FP = F(k0+°=l<A) - f(ko) .

The entire minimum search routine including the above procedure was applied to
the second-order example. First, a check of the accuracy of this routine was
made by applying the learning algorithm to the nominal system. A measure of
the accuracy is obtained by comparing the learned linear control law with

the optimal linear control law. For this example, the maximum deviag%on in
either component of the learned control gain vector was less than 10 ~,

The learning algorithm was then used to determine kL assuming the actual

a = 0.9, The minimum search begins at the point k.. The succession of points
encountered in the search routine is shown below in tabular form.

k k

1 2
~3.9853 ~2.1533
=& Q043 ~2.1533
~4.,0042 ~2.1654
b 3013 ~2.1€69

(3.23) ~4.,0013 ~2.1729
~3.9994 -2.1713
~-3.9%61 -2.1790
-3.9961 ~2.1790

Thus, k, ' = (-3.9961,-2.1790). The entire learning process was completed
in less than 13 seconds -..real time, not computer time.

A check of the learning system's advantage can be made by comparing the
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cost associated with the learned system with the cost obtained by implementing
a system with the fixed feedback gain determined by the optinal solution for
the nominal plant. The cost for the learned system is given by

(3.24) £(0) [ $ x'(n+l)Qx(n+l) + Auz(n)} 2(0)
n=0 .
= x" (0)P(=)x(0)
where
P(I) ¥¢“ o™ ??@ W& 76" and
7y = e ! ’ an
(3.25) n=1 n=0 L

¢I>=¢+hkL'

The matrix P(~) can be approximated by computing P(i7) for increasing values of
N until the increase in P(N) with each increment of iI is nepligible. The cost
for the learned system above was found to be

136.994 44,6975
(3.26) IL(x(G)) = x’(0) x(0).
44,8975 23,3396

The cost associate with the second alternative design was similarly determined
and found to be

137.014  44.6971
(3.27) I,(x(0)) = x'(0) x(0).
44,6971  23.39%

L

The difference in cost for the two options is

(3.23) L&) - I (x(0)) = x'(0)Ex(0)
where
S |
1.97351 x 10 . -3
(3.29) D = ~3.99736 x 10

~3.9978€ x 1072 6.83201 x 1072

Since the matrix U is positive definite, the learned system is shown to be
superior for all initial conditions.

An identical analysis was performed for different values of the paramater
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a, within the intended range (0.8,1.2). The results are shown graphically in
Figures 3.1 and 3.2. Figure 3.1 is a graph of d1 versus a,while Figure 3.2
is a plot of the determinant of D versus a. The %act that both graphs lie
above the a axis indicates that the comparison matrix D is positive definite
for all a. Thus, it is shown that learning is superior for all initial
conditions and for all values of a, in the given range.

Summary and Conclusions

An algorithm has been developed for implementing a learning controller
based on Jones® formulation of a learning subgoal. Jones' original form of
a subgoal was appropriately modified to facilitate the evaluation of the sub-
goal from measurements of the system state and also to guarantee absolute
convergence of the process. This procedure was demonstrated for a second order
example and this learning controller was shown to yield better results than a
fixed control policy based on the best available model of the plant.

The application of the method is restricted to linear, stationary systems
with quadratic performance measures. In addition, the control variable is
assumed to be unconstrained. The advantage of this method over a reinforcement-
type learning controller, assuming that the quantization of the control and
state variables is fine enough, is realized in a considerable reduction in the
number of variables to be stored and the time required to complete the learning
process.

The discussion of this algorithm is by no means complete. Although,
the extension of this method has been theoretically justified, it would be
advantageous to apply the procedure to a third or fourth order system. It
is anticipated that for these higher-order systems the problem of disigning
proper state feedback in order to generate the appropriate rays will be more
complex and tedious. Further attention should be given to the choice of
these measurement vectors and its effect on the rate of convergence of the
algorithm.

Appendix A

Let TysToseesesty be n distinct rays in the n dimensional Euclidean
Space %, Let vy be an arbitrary vector coincident with the ray r,. The

purpose of this section is to demonstrate that the matrix

n wv,v, €@

5 _ 11
(Al) Ei(vls e nsvn) —iil m

is pasgitive definite for every set of linearly independent vectors VisVgseresVp o

The proof is dependent on the fact that M(vl,...gvn) can be represented as the
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product of two non-singular matrices.

1/2

= 4
Let uy vi/(vi Bvi) . Then in order to prove that MCvl,...,vn) is

positive definite, it is sufficient to prove that
n

(A2) H(ul,...,un) = Zluiuiv
q=

is positive definite.

Let P be an n x n matrix with the vectors Uyseesstl 28 the columns of
P, 1.e.,

(A3) P= [ul Uy eees W 1.

Then P’ is an n x n matrix whose rows are the vectors ul“,uz',...,un', i.e.,

- =t

u
(84) pt=| 2],

[+

H
n

Let M be the symmetric n x n matrix formed by the matrix product PP', Then,
observing the rules for block multiplication of matrices, the matrix M can
be expanded as follows '

n
(A5) =% wu,u,'.
=1 i1

Thus, it has been shown that M(ul,uzg...sun) can be represented as the
product of two matrices. If the vectors ug, or equivalently the vectors
vi, are linearly independent, the matrices P and P' are both non-singular
and the symmetric matrix M(vl,vz,...,vn) is positive definite. [4]

Appendix B
Powell [5] describes a simple variation of the well-known method of
minimizing a quadratic function of n variables by changing one parameter at
a time. The function to be minimized is assumed to be of the form
(B1) f(x) =x'Ax+bd'x+c

where x and b are n dimensional vectors, A is a positive definite n x n
matrix, and ¢ is a scalar. The procedure commences with a search along each
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of the co-ordinate directions. The results of this search form the basis for
generating a new search direction p to replace one of the co-ordinate directions.
The search is then repeated for this new set of directions and a second linearly
independent search direction q is determined by the outcome of this search. The
algorithm used to generate p and q is chosen so that the vectors p and q are con-
jugate with respect to the matrix A, i.e., p'Aq = 0. Furthermore, after each
iteration or search down the n linearly independent directions, a new search
direction is generated which is conjugate to all the direction generated by the
previous iterations. Then, after n iterations, all the directions are mutually
conjugate and the absolute minimum of the quadratic is found. The algorithm
used in the generation of the new conjugate directions is outlined below.

Let (51952,,,..,,£n) be the n linearly independent directions of search

and let Py be the point in the n dimensional parameter space at which the
iteration begins. Each iteration consists of the following steps.

1) Forr=1,2,...,n, calculate Ar so that f(pr—l + Argr) is a minimum
and define Py = Ppog tAE

2) Forr=1,2,...,n~1 replace £, by &

3) Replace €, by (pn **RO)'

4) Choose A so that f(pn + A(pn -'pO) is a minimum and replace g by
p. + xp_ - p,)-
n n 0 th

At the conclusion of the n~ iteration, the exact minimum of the quadratic
function £(x) will have been located.

r+l°
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