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The Inversion Theorem and Pl.ancherel's

Theorem in a Banach Space

1. Introduction

Let G be a locally compact abelian group with Haar meas-

ure µ, an( let X be a Banach space and C be tcle set of complex

numbers. A classic theorem due to Plancherel ([1], [2]) stares that

the Fourier transform maps Ll(G, C) n L2 ( G, C) + onto a dense subset

of L2(G,C) (G is the dual group of G and has Haar measure m)

in such a way that jGcx(g)^µ(dg) = jGa( Y) Y)m/ dY) for all Cx,^

in Ll(G, C) n L2(G, C) where a is the Fourier transform of a, given

( Y) = jby a G g, Y ^x(g) µ(dg) for all Y in G. Here (g, Y) denotes

the action of the character Y on g in G. In this paper we ex-

tend this result to functions taking values in an inner product sub-

space of a Banach algebra.

Another well-known theorem ([1], [2]) states that if a is

a positive definite element of L l(G, C) n L,,(G, C) th,__ a is in

L1(G, C) and

(1.1)	 a(g) = Ng, Y)a(r)m(d Y)

+For 1 s p s co Lp(G,X) is the spade of µ-measurable functions

f mapping G into X. For . 1 s p <	 we use the norm 11-li p. where

111 p = { j G„ f(g) l, pµ(c? g) ] 1/p, and for p = co we use the norm l) fl).o

which is the (µ) essential supremum of ll f(g) l) on G. 11 • 11 denotes

the norm in X.
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for (almost) all g in G. This inversion theorer- is also generalized

to functions assuming values in certain admissible Banach spaces,

Our work relics heavily on an extension of Bochner's theorem

established -n [31-  We show that if p is in L1(G, X) n LOO(G) X),

if p is positive definite (positivity is defined with respect to a

particular cone in X), and if p(0) satisfies a certain finiteness

condition, then p, the Fourier transform of p, is in Ll( G,X) and

the inversion formula 1.1 given for a holds for p. A sharper

theorem states that if p is in Ll(G,X) fl LCo(G,X), 
if p is posi-

tive definite, and if there is a real, finite, regular Borel measure

X such that Jj f Ga(g) p(g) µ(dg) (j s f^ j &( y•) X(d T) for all a in

Ll(G,C), then p is in Ll( G,X) and 1.1 is satisfied by p.

Using this theory we give new proofs of some results due to

Hewitt and Wigner ([4]).

Now assume G is compact and A" is the set of Hilbert-

Schmidt operators on a separable Hilbert space H. Then we show

that the closed maximal ideals of thn algebra L2(G,,41) are in a

one to one correspondence with G. The came result holds for L,(G,A)

where A is any separable simple H*-algebra.

Finally we prove existence and uniqueness theorems for equa-

tions of the form

`E	 (1.2)	 q(g) = r( g) + f Gp(g-g') q(gI)p(dgI )

s>e
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where r is in L2 (G ) IV), p is in Ll(G,(Fi,FI)), FI is a separable

Hilbert space and O(H,H) is the space of continuous linear opera,-

tors mapping H into H (so JV C X(H, H)) . Solut;i.ons q are to be

elements of L2(G, A/) .

2. Bochner's Theorem and Dominated Functions

Let X be a Banach space, X- the dual of X and XA-*

the dual of X*. For Cp in X* we denote the action of tp on

x E X by (X, cp ). Given a subset of X* we can define a cone of

"positive" elements in X.

DEFINITION 2.1. Let 0 be a subset of X*. The subset K, of X

given

(2.2)	 K0 = (x: E X: (x,q)) ? 0 for all cp E.0)

is called the cone determined by 0.

Sometimes we write simply K if 0 is fix.ed by the context.

K,, is the set of "positive" elements.

Let G be a a-finite.locally compact abelian group with

Haar measure ^i and let G be its dual group with Haar measure m.

DEFINITIC N 2.3. Let p be a measurable map of G into X. Then p

is 0-positive definite if
:r

7
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2. 4)	 E F cncln(p(gn-g.),CP) ? 0
n=1 m=l

for 2n inte ,er N, an^r c l, ..., eN in C, any gl., ..., gN in G.

and all q^ in 0. If' p is in L,,(G) X) then p is integrally

0-2ositive definite if

	

( 2. 5)	 UGf Ga( g)ag' P( g- g' ) dE,1d µ, CA) ? 0

for all	 a	 in Ll(G, C) and all	 tp in	 G► .

Next we impose a condition which relates	 0	 to the topology

of X.

DEFINITION 2.6. The family o is full if there is a p > 0 such

that

( 2. 7)	 11 x11 s P sup II (x,(P)IAho ll )
(PE0

(PAO

for all x in X.

The following two propositions examine the relationship

between the two notions of positive -definiteness.

PROPOSITION 2.8. If 0 is full and p is 0-positive definite then

p is in L ( G,X) and p(0) is in K

1

I

Proof: It is readily shown that for g in G, cp in 0, (p(g) MCP) s	 r

(p(0),q)) so that 11p(g)JI s Pli p(0 )[1 • A

r

n
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PROPOSITION 2.9. Let p be in L OO(G,X) such tr^ one version of

p is wX-continuous +. Then p is 0-positive definite if and only

if p is integrally' , 0- ,Eositive definite.

Proof: See (31 or [73.

We shall cee shortly (corollary 2.15) that all those ele-

ments of L,,(G,X) of interest to us have the continuity required

in proposition 2.9.

Next we recall some results from measure theory. Let S

be a locally compact topological space and let E(S) be the Borel

field of S (i.e. the smallest a-field containing the closed sets

of S).

DEFINITION 2.10. A vector measure v is a weakly countably additive

set function defined on E(S) and taking values ,n X. v is weakly_

regular if the scalar measures (v(.),(p) are regular ++for all cp

in X*. v is (D-positive if (v(E),(p) ? 0 for all (p in (D and

E in E(s).

DEFINITION 2.11. A set function v** mapping F(S) into X** is

weak-*-re lar if ((p, v** (•)) is a regular scalar measure_ for all cp

in X*. v** is 0-positiveif (c ).y**(E) ? 0 for all ( in 0,.

E in E(S).

I

4

'The mapping f. of G into X is WX-continuous if it is continuous

when the weak topology is imposed can X. G retains its usual topology.

++A scalar measure X is regular if, given e > 0 and E e E(S) with
r

.	 p
11 XII ('E) < co (i. e. X has finite variation on E), then there is a compact
K C E and an open 0 D E such that	 (0-K) < e.

s

f
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If v is a vector measure we denote its variation on a

measurable set E by j) vjj (E) and its semi-variation by I vI (E)

( [ 53, [ 61). The following theorem, an extension of Bochner's theorem,

is essential to our work. The proof is given in [3]. We assume

is full.

THEOREM 2.12. (A) If v is a weakly regular O-positive vector

measure defined on E(G) and if

(2.13)	 p(g) = !G(g,r)v(dr)

W.
then p is an integrally , 0-positive definite element of LW(G,X).

(B) If p is an integrally- 0-positive definite ele-

ment of L (G X) then there is a set function v** mapping ^(G)

into X** s uch that (i) v** is weak-*-regular, 0-positive with

s finite semi -variation and (ii)

(2.14)	 (p(g),q)) = fG(g,r)((sv**(dr))

r
for all (p in X* and almost all g in G.

COROLLARY 2.15. If p is an integrally 0-positive definite element

of L o(G,X), then one version of p is mX-continuous. If p is

'.	 given by 2.13, where v is a weakly regular ^-positive vector measure.	 ^	 s

defined on E(G) then p is a continuous Map of G into X.	 `_

4
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Proof, This follows from the relevant regularity. See also [71-

With the aid of theorem 2.12 we can prove a useful inver-

sion theorem. However, a different version of Bochner's theorem will

allow us to establish a sharper theorem. We require first the fol-

lowing

DEFINITION 2.16. p in L O(G) X) is dominated if there exists a

finite regular,, positive Borel measure X. such that

( ' r)	 d 'r)( 2.17) 	 JjfCp(g)p(g)P(dg)jj 9 f^1 Aa

for all a in L,(G,,C) ., where a is the Fourier transform of a,
i.e. a(y) = fGT9-,—rTa ( g) ji ( d g)•

DEFINITION 2.18. Let 0 be a subset of X . Assume there is a

function 0 ma2ping K into R+ U (oo)* in a linear manner such

that (p
0
 is uniformly piasitive on 

Kv 
i.e. t here ex.. ists k > 0

such that k(XA0	
jjxjj for all x in K.. Furthermore assum(,,

there is an at most countable sequence (q) j) in 0 and a sequence

(ci) in R+ such that (X. 
0	

ci(xj,(pi) for all x in K..
i

Then we Laa that the pair (0., X) is admissible. We let K
0

oil
x e KO : x., 1p 0) < co) .

LEMMA 2.19. If (O .,X) is admissible ., if 0 is full., and if p C

L.(GO X) Ls integrally O-EaEltive definite with p(0) in KoJ9 then

+
R is the set of non-negative real numbers,



r

p is dominated.

Proof: We note first that p(p) is well defined by corollary 2.15.

Let *ka) = f Ga(g) p(g) µ(dg) for all a in I,1(G, C), then (*(a),q))

fGa(lr)(cp,v**(dr)) for some weak-*-regular, O-positive set function

vx.* given by theorem 2.12. We can actually define *(f) mapping

Co(u) + into X by (W), cp ) = f Gf (r) (cp, v** (d r)) . Then y+ is a

bounded linear map,	 f )!!	 !1 fl! !	 1( G) .

If f is in C0(G) then f = fl-f2+3,f3 -if4 where fi

is in C0(G), fi(r) 9 0, and each pair of functions (fl, f2 ), (f3 , f4)

has disjoint support. Hence fi(r) 5 1 f(r)! , and(fi) is in K.
ao

so that !! '( f i)!!	 k( y(t'i ),Cp o) = k E c j (y^(fi ) .0 j )	 k	 c j fGfi( r)
j =1	 j

(q)
j'

v** (d r)) . Consider now the set function X given by X(E)
ao

E c 
J. `
f^ 

i
, vx^* (E) ) .t E e E(G) . Then h(E) 9 0 for all E in E(G),

i=1 

and also X is additive. Moreover X(E) s (p(0),gp o) < oo as p(0).

is in Ko.

X is countably additive because h(U Ej ) = E E ci((^i,

V** ( r" )) = E E c(cp ., v*^- (E )) = E X(E . ), if the E	 arejdisjoint
^	 j i i i	 j	 j	 J	 j

(note that ci(q^ i, v* (E^)) ? 0 for all i, j) . Also h is regular,
w

for given e > 0 and E in E{G), there is a number N such that
ao

E ci(cp i , v**(G)) < E/2 and there is..a compact K C E and an open
N+1
0 Z) E such that (q)i, u*-* (0-K)) < e/2Nci, i 1, 2, , . N. Hence

X(0-I^) < e .	 r

	C0 ( AG) is the space of continuous functions mapping G into C,	 f
which vanish at	 if G is only locally compact.

y



9

Then	 ^^ w( f )^^ -	 ^^ y ( fi ) ^^	 ^:	 jGri (Y) dJ^	 ^^^: jG^
i=1	 i

	

It follows that if' X' = 40,then	 V((x)11 ` jGl C( Y) I dX' . This es-

tablishcs the lerrima..

We can no ,.,r : t•ate tht- alte.rnute version of Bochner' s

theorem. Assume (D is full anJ countable.

T11BOREM 2.20. p is a dominated, integrally (D-positive definite

element of Lc.(G,X) if and only if there is a weakly regular 0-

positive vector mcasure v mapping Y,G) into X such that v

has finite va riation, i. e. Il vII ( G) < ^, and such that

(2.21)
	

P(g) = jG( g, Y) v ( d Y) •

For the proof see [3]. In this case, of course, p is

continuous by corollary 2.15.

3. Inversion Theorems

If p c Ll(G,X) -ire recall that the Fourier transform of

p is given by

(3.1)	 P(Y) = jG ( g,'f) P( g ) .L(dg)

For convenience we let -5' = (p c LOO(G,X): p is integrally (D-

positive definite) and ^ _ (p E,60: p is dominated). We recall
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that if p e 9 then p is wx.- continucu;7, ( corollary 2.15) . If

(0) X) is admissible then o is the set of functions p mapping

G into X such that p is cA-cor ,inuous and such that p(0) is

in K *where K	 is defined ire 2.13.0	 0.

PROFOSITION 3.2. (A) if p f span { Ll(G, X) n 9}	 and if cp E

span( O) then (p( • ) ,cp) E Ll('6, C) and (R) if the Hear measure of

G is fixed then the Haar measure of G can be so normalized that

(3 . 3)	 (P(g),T) =.fG(g,r)(AP(r),(P)m(dr)

is valid for all p c s an{L1(G,X) n	 and all cp a span(o).

Proof; It is evident the results need only hold for p e L1(G,X) n

cp a 0. But this follows from the scalar inversion theorem ([2],

p. 22).

A better result is the following.

THEOREM 3.4. As_ sume 0 is full and countable and (O,X) is ad-

missible. (A) If p e spdn { Ll(G,X) n g nmoo} then p e Ll(G,X),

and (B) if p is fixed then m can be so normalized that

(3-5)	 P(g) = IG(g"OP(r)m(dy

for all p in span( Ll(G, X) n y n . /o} - and all gin G	
^t

R

v
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Proofs Again we need only prove the results for r in Ll(G,X) (1 9
n. /o. For such a p and for cp in 0 we have from 3.3 and 2.11

(3.6)	 (P(g),(P) = 1G( g) Y)(P( r),y))m(d7) = fG(€, r)(Ty VI `'(dr))

so that for any F c Z(G), T	 e 0	 fE(p(Y'))^P)m(dy) 	 = (cp,vx-*(E)) z 0.

So, in fact, for any	 P E Ll(G,X) n g we have

(3 . 7j'(P( Y), Cp ) Z?! 0, cp E (D, r E G.

CO	 w
Now CO > (P(0)..cPo) = F ci (P( 0 ) ' Ti ) _	 ci(cpi,VY,*(Ĝ))
00 
E ci f G(P( Y), cPi) m( d r) = fG(P( Y))cPo)m(dr) z fGIIP( r)Ijm(dr) using
i=l
the monotone convergence theorem, the fact that p(r) E K. for

all Y E G, and the fact that p is continuous so ^^ p( • ) ^) is

measurable. As p is measurable and G is v-finite, then p

i& essentially s°aoarably valued and so isp. As p is also con-

tinuous it is measurable. Hence (A) is established.

Now 3.6 yields. (P( g),(p ) = (fG( g, r)P( Y)m(dY), CP) for any

Cp e 0 and almost all g E G. As 0 is full and countable we .	 I

have p(g) f G(g, Y)F( r) m(dr) for almost all g. This proves

the theorem.

We give now the sharper theorem which does, however,

require G to be ar-finite.

T

t

t

.^,
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THEOREM j. 8. Assume 0 is full and countable and G is a-finit e.

(A) if p E sLen (Ll(G,X) n mod) then p E Ll(G,X), (B) if. p as

fixed then m can be so normalized that 3.5 holds for all p E

aan(Ll(G,X) n .d } .

Proof: If p E Ll(G,X) then p E L^(G,X). If p E ^d also and

P( g) = fG( g, r) l'( d r) as in 2.21, then v(E)	 j
E
p( r)m(dr) for

E E F,(G) such that m(E) < oo. Then Il vll (E) = f Ell p( r) ll m(d r) for

m(E) < oo, or, for any such E, f 
Ell 

p( r) II m(d r) s 11 vll (G) < oo as v

has finite variation. Now G is ar -finite so if (Gn) is a se-

quence in E(G) increasing to G then jell P( Y) it m( d r) =

].—) jGi t p( r) II m( d r) 5 ll vll (G) < oo . It follows by the monotone Con-
n —^ oon
vergence theorem that p E L 1(G,X). (B) follows readily.

We note that lemma 2.19 and theorem 3.8 give an immediate

proof of theorem 3.4 if a is o-finite. Actually theorem 3.4

is the more useful theorem although theorem 3.8 is sharper.

COROLLARY 3.9. If p is given by

(3.10)	 P(g)	 fG(g,r)v(dr)

where v is a weakly regular 0-positive vector measure with finite

variation and if p is in 'L (G,X) then 3.5 holds.	
It

fl
r,
t^

4. The Planeberel Theorem
a

As usual this theorem s set in a Hilbert space and so
r.

i

1

at
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we must first develop the necessary structure. Assume now that

X is a Banach algebra with continuous involution x -->xx.

DEFINITION 2.14. The triplet (O,X,X0) is strongly admissible if'

(i) ((D)X) is admissible, (ii) X 	 is a non-trivial subspace of X

such that xx:* is in 
Ko+ 

for all x. in X. and (iii) there exists

k  > 0 such that if x. e X  then

( l+. 2)	 kON xx * 11 z 11 
x11 2 .

We note that 4.2 is satisfied if X is a C*-algebra.

Now we have

PROPOSITION 4.3. If X is a Banach algebra and if (0,X,X0) is

strongly admissible then X  is a Hilbert space under the norm

11 . 11	 where 11 x ^1) o = < x., X. >o and < x,, y >o = ( xy^-,cp o) .

Proof] cp o is only defined on K and we do not know that if

x,y a Xo then xy* a K. However we can extend (P o by setting

(x.y*,cp o} _	 ci(x.y ,cp i} were {ci}, tcp i} define (p o on K.

	

i=1	 00	 00
Then	 < x.,y 

>0 = 1 ( x.Y*)Cp o)1	 ) E ci(xy",4Pi)	
^

^	 Eci (xx	 3. 
112

i=l	 1	 .^)
(,cp i ) 112 where the last inequality follows because ^ i i a

positive functional. Hence we can Define < x, y >o for x:, y E Xo

and I < x,, y 0j :-5 11 x.11 oi) y110. It follows from 2.18 and 4.2 that

	

oil al o ? it 112	 11 11 0kk x	 x	 and that ^	 is a norm.	 ,^
",

+Ko is defined in 2.18.

a

F
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If (xn ) is Cauchy in 11 • f 1 o then it is Cauchy in 
11 - 11.9

so x.n -a x E X. As K is closed then xx x- E K. Also ( xn } is
G

bounded in^) o because it is Cauchy, so	 ci(XX 1(- pi )	 M,

hence	 ci(x,c^i)	 M or x E Ko . Choose m(e) such that if
i=1	 N

n, m > M(c) then li xn-xmjj o < E. Then 1 iciQ x.-xm] [ x- m] * ' CP i )

2Jim	 F, ei([ x.n-xm ] [ xn-xm	 s] x ,cpi) 	 Lim s^ p 
i

up E ci ( [ x.n-xm] [ xn-xm] , cp i ) < E
n es i=1	 n	 1
so that for m > m(E) 11 x-x mIJ o < E, or Xo is a Hilbert space,

If X is a Banach algebra and G is ar-finite, then

Ll(G, X) is also a Banach algebra ([8]). If X has the involution

X -4 xx-, then we can define an involution on Ll( G ) X) as p -4 pk

where g1 (g) = p(-g)* .

THEOREM 4.4. If q is ar-finite, X is a Banach algebra with con

-tinuous involution, 0 is a full and countable subset of X* and

(O, X, Xo} is strong admissible, th en (i) if ( ea) is an ortho-

normal basis for X  and there exists kl such that ( < x,ea >01 s

kljj xjj for x E Xo and all a, then the Fourier transform maps

Ll(G, X) n L2 (G, Xo) onto a dense subset of L2 (G, Xo), (ii) for q, r e

Ll(G,X) n L2(G,Xo)

( 4. 5)	 fGq(g)r(g) p(dg) :'- fGq(r)r(r)m(dr)^

$i

for q, r e Ll(G, X)- n L2( G, Xo)
;t

(4.6)	 <q,r>_<q,r>,

-	 r.

ri
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where < q ,r > = f G < q ( g) , r ( g) oµ(dg) and < q, r > = f G < q( Y),

r( Y) >om(d Y) .

Proof: We shall put wi l = f G II q ( g) II µ (d g) and II qII 2 =

(f GII q( g)11
2
 oµ(dg) )1/2 for q E Ll(G, X) n L2 (G, Xo) . Let p(g)

(q * q^') (g) . As q E Ll(G, X) so is p with I) pII l s II qII 1	 it

can also be shown that p e Co(G, Xo) + as q E L2(G, Xo) . Now p(0)

fGq( g) q( g)* p ( dg) E K so (P( 0 )1%) = (fGq(g)q(g)*µ(dg),cpo) =

cifG(q(g)q(g)*,(Pi)µ(dg) = fG(q(g)q(g)*,4po)µ(dg) = fGIIq(g)Iloµ(dg)
1=12
II g 1I 2 < 00 using the monotone convergence theorem. Hence p E

L1(G, X) n Jo.

Now C0(G, Xo) C Co(G, X) so p E L„ (G, X) . Also

fGfe(g)a g' p(g-g')µ(dg)µ(dg') = f G[fGa( g) q( g-e')N, ( dg)][fGa( g' )

q(g'-g")µ(dg')1^*µ(dg”) = fGq'(g)gl(g)*µ(dg) using the Fubini and

Tonelli theorems with a E L l(G, C) . q' = a * q E L2(G, Xo) ([ 8] )
so q' (g) a Xo a. e . or ql (g) q l (g) * E K 	 a. e. Hence if c' e ;P

then (fGg1(g)q'(g)*µ(dg),q)) = fG(q'(g),g1(g)*,(p)p(dg) ? 0 or p e

Consequently theorem 3.4 yields p(g) = f^ ( g. Y)P( Y) m(dY) .
0

Then oo > II gI12 = < q,q > =	 ci(P(0),(Pi) _	 cifG(P( Y),(Pi)m(dY)
i=1	 i

f^ (p( r),q) )m(d r) - < q, q >. We have used the monotone convergence

theorem again. Hence the Fourier transform maps intoL2(G,XO).
if

By the usual expansion < q,r > _ < q,r >. This establishes (iii).
JJ

♦If Y is a Banach space then Co(G,Y) is the space of continuous

functions mapping G into Y, which vanish at infinity if G is only

M	
locally compact rather than compact.'

x

,. x	 ks.	 ,
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Moreover f Gq ( g) q ( g) *p ( dg) = u(o) = f Gp( Y)m(dY)

f Gq( Y) q( r)*m(d y) . Also if x, y are elements of a Aanach algebra

with involution then

( 14 , .7)	 4xy* _ (x.+y) (x+y) .x. - (x-y) (x-y)* + i(x:+iy) (x+iy)* - i(x-iy) (x-iy) *

so that (ii) is also proved.

We need only show that Q = (q E 1:,2 (G, Xo) : q in L1(G, X) n

L2 ( G ) Xo)) is dense in L2(G,X0
). As g is translation invariant

so is L1(G,X) n L2(G, ^) and hence Q is invariant under multi-

plication by (g,-)	 for any g e G. If r E 1,2(G,X0) and

< q, r > = 0 for all q E Q, then f^ (q( Y)r ( Y)* ,cp ) (g, Y)m(d Y) = 0

for all q e Q and g E G. As (q( • )r(• )* ,(po) E Ll(G, C) it fol-

lows that (q( y')r(y')*,cpo) = 0 a. e. for every q E Q, or < q( Y),

r( Y) >o = 0 a.e. As Ll(G,X) n L2(G,Xo) is invariant under multi-

plication by (- j r) ) Y E G, then Q is invariant under translation.+

Hence to every Yo e	 there corresponds qo E Q such that

q0000 so qo( Y) ¢ 0 in a neighborhood of Y o 
as qo is

continuous. If ( ea} is the basis of X  mentioned in the state-

ment of part (i), then qo ( • ) = Z ga( • )ea so there exists ao	 .

such that0 in a neighborhood of r . If
0

then p	 paea and as p
.
E L2(G,X0

), pa a L2(G,C). By hypothesis
a

< x, ea >01 s k11 1 x1l so pa a L1(G, C) ana pa( Y)	 qa( Y) • Hence
,^	 v

+By this we mean that f 	 is in Q for any Yo in G if f is
o

in Q and fY (Y) = f (y+Yo) .
0

1
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pa (-)e a E Ll(G, X) n L2(G, Xo) for any	 a	 and	 Pa ea( • ) =
0 0

q	 N e	 E Q.	 Sincea for each r	in a neigh4orhood of Yoao

(qa ( Y") ea)a forms a compltte set in	 Xo, and since	 0 = < qa ( y) ea,
0 0

r( Y) >o, then	 r( y) = 0	 in a neighborhood of 	 Yo .	 But r'o	 was

arbitrary so	 r := 0, or	 Q	 is orthogonal only to 	 0	 in L(G2	 , Xo),

a Hilbert space.	 Hence	 Q	 is dense in	 L2(a,X0).	
This completes

the proof.

COROLLARY 4.8. Under the assumptions of the theorem the Fourier

transform can be extended in a unique mann er to an isometry of

L2(G, Xo) onl;o L2(G) Xo) .

Yl

Proof: We need only show Ll(G, X) n L2 ( G ) Xo)

But Cc(G,X0)" is dense in L2(G) Xo) VD. H,

then there exists ( fn)1 C Cc(G, Xo ) n L2 (G, Xo)

Then fn E Cc(G,X) and fn is measurable so

Remark: The equality (4.5) holds for awl q,r

.5. Examples

Here we give some examples of admissible pairs and strongly

admissible triplets.

EXAMPLE ,5.1. Let X = Ll([O, l], C) so X is weakly complete, and	 1

let 0 consist of elements ci such that

Cc(G, Xo) denotes the set of functions in C0(G, Xo) having compact

support.

is dense in L2 (G, Xo) .

ance if f E L2(G,Xo)

such that 11 fn-42,-4 0.

fn e Ll(G, X) .

E L2 ( G ) Xo ) .
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I	
.;

(5.2)
	

(x,(pi) = f0_1X (t)x(t)dt
	

x E X

ti

A

where Xi ( • ) is the indicator function of one of a countable col-

lection of sets 
(Ei) 

dense in F([0,11) under the usual Hausdorff

metric. Assume E1 = [0,11. Then it can be shown ([31, [71) that

0 is full and that K is the cone of non-negative (a.e.) functions.

Let (x,T ) = ( mp l) = f 1x(s) ds = jj xjj 1 for x. E K. Hence ((D, X)
0

is admissible and K	 K.
0

If p is in 9 then p(0) is in K = Ko by propositions

2.8 and 2.9 and by corollary 2.15. So p E .,/o and the inversion

theorem states that if p E sp(Ll(G, Ll([ 0, 11, C)) n -9) then p E

Ll( G, Ll([ 0,11, C)) and p( g ) = f^ ( g, Y) ^P(r) m(d Y) .

The author does not know of any non-trivial subspace Xo

which would :Hake (QD,X,Xo) strongly admissible.

EXAMPLE-5.3- Let X = H, a separable Hilbert space with a fixed

orthonormal basis (e 
00

10 
Let Ho be the set of elements of H

with all but a finite number of components zero, with non-zero

components being real, rational non-negative, and with norm less

than or equal to one. Then 0 = Ho is full ([31, (71) and count-

able and K. = (h E H. hi ? 0). + Let (h,Cpi) = < h,ei >,
00

1, 2,	 and cp
o 
= cpi. Then cpo maps K into [0, co], and for

1
-­_h ,in K	 ?

+h. 
< h, el )
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( h )T o ) 2 = (F hi ) 2 >- Y hi = ^I11112

A
00

so that (o, H) is admissible and	 K 	 = (h c Ks hi < 00)
l

	
00

H	 becomes a Ranaeh algebra if we define hk = E hikiei,
1

Let	 h* _	 hie i . For h	 in	 H	 hh*	 is in K and	 (hh,*)cpo)

Z, hihi =	 11 h,1 2 . We do not have	 kjj hh Y j)	 ? 11 hJ1 2 for some	 k > 0,
i
but we do have 11 hil = jj hjj	 which is sufficient to show that	 X 	 : H.o

Hence (4), H, H) is strongly admissible, and the Plancherel theorem

applies. Note that the condition I	 < h,e i > 1 s 11hI)	 also holds.

EXAMPLE 5.4. Let X = X(H,H), the linear bounded operators mapping

the separable Hilbert space H into itself. Lzt Ho be a countable

dense subset of the unit ball Im H and let 0 = (cp a X x-: (T,T) = < Th, h >,

T e e(H,H), heH0) . Let (ei)	 lso be in HQ for sc,me orthonormal

is full and countable and K. is the cone

00

([ 31 ox` (71) . Let (T,cp o ) 	 < Te i , e  >.
1

trace, where (T,cpi) = < Tei, ei >. Then

tr T ? 111, 1 1 if T is positive. Hence

ible and K- is the cone of positive operators

of finite trace and so a subset of the trace class.

We can see that in one case the condition p e .% is

necessary for the inversion theorem to hold. Let G be the circle

group so that G is countable. Label its elements

and let the set function v be given by

1

basis (ed . Then 0

of positive operators
00

So q) o = q) i is the
1

90: K --> [0.00], (T,4po)

(0,X(H,H)) is admiss:
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(5.5)	 < v ( ( Yn) ) ei' ei > = pn8nisnj' i, j , n = 1$2).#@

A

where w > M 1 pn ;?! 0. v can be extended to a countably additive

measure of finite semi-variatioa in the obvious way. Let p be

given by

00 it Y.
(5.6)	 p(t) = Z e	 nv(( Yn) )

n=1

Then p is in 9 (theorem 2.12 (A)) and p is in Ll(G, X) be-

cause G is compact and 11p(t)J, s M. If p is to be in Ll(G,X)
00

then jj vjj (G) must bf, finite or 	 pn = tr p(0) < 00.

1 
Finally let X  =1Y, the Hilbert-Schmidt operators ([5a]).

Then for T in 11; TT11 is in the trace class and is positive so

that TT* is in Ko . Also X(H,H) is a C*-algebra so ((D,X(H,H),A

is strongly admissible. A basis for .41 is given by (Tip } where

< Ti j ek,
 e I > = 8ik5j I., k

) I
	

1, 2, ...	 Then I < T, 
Tii >01

< Tei, e j >1 s 11 T') , and the condition in (i) of theorem 4.4 also

holds.

6. On a Theorem of Magnus

We use the preceeding theory to deduce a result of Hewitt

and W ert s 4	 Let U- be a continuous n-dimensional

unitary representation of G i.e. U(g+gt )	 U(g)U(g' ), U(0) _ I

and U is a continuous mapping of G into '(Cn,Cn). Then there

is a unitary matrix V and characters r I ... ,rn such that

+	 is the Kronecker delta.
sni
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for all g in G ([9)). flence U( • ) is given as a function of

n characters. Let A be a symmetric compact neighborhood of 0

in (, having finite positive treasure, and let E(rl) . • ., yn) be
the function on Gn which equals 1 if rj-rk is in A for all

j,k, and equals zero otherwise. Let p be in L l(G,x.(Cn,Cn)) and

let

( 6.2 )
	

P(U) = f GP( g) U( g) µ( d g)

Theorem 6.5.	 If	 p	 is in	 Ll(G,-(Cn,Cn)) n L,,(G,i(Cn,Cn)) and if

for any	 a	 in	 Ll(G ) C) fGfe( g)a( gI ) p( g- gt ) p ( dg) p ( dg ') is posies

semidefinite , then there is a constant	 K. 0 < K < oo	 such that

( 6.4)	 K P( g) = fGnP(u)U(" g) E(Yl,...,rn) m(drl) ... m(drn).

Proof; Using the setting of example 5.4 with H Cn we have p e

Then p is continuous and trace p(0) < w so that p is in Jo.

Hence P( g) = f G( g, r) P( r)m(d r) by theorem 3.4. But U(g)
n
E i where the 7r are projections onto mutually orthogonal79 .777ii=1

y

K
I

s
.z

Jr
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one-d imcnsiorial subspaces Q9 1) .  Then
n „

n(Yi }7ri ana p( U ) U(` g) _	 p(Yi)7ri

Now let K = fF(Yi,...,Yn)m(dyj).'
G

gration with respect to ri . Theli K

the value of Ti by the choice of E,

p(U) = f Gp(g)U(g)'*g)

( g, Y. )7r . -	 P( Yi) ( g, Yi )7rj -1 Cad d	 i=1

.m(dr.) where we omit inte-

is independent of i and of

and 0 < K s m(A ) n-1 < W. Now

we have

fGnp(U}U( ` g) E ( Yl, ..., Yn}m(dYl )...m(drn)

n
f oJ( Yi)( g, Yi ) E( Yl,...,-rn)m(drl)...m(d-rn )Vi

i=l G
n
E KfGp( Ya ) ( g, Yi ) m( d Yi)7ri

i=l

= K P(g)

and the theorem is established.

Note that p could actually be a finite _inear combination

of functions satisfying the requirements of the theorem. The exten-

Sion of this theorem to infinite dimensions will be treated elsewhere.

The other result , of [ 4] 'is

THEOREM 6. ^, If p is in Ll(G,X(Cn , Cn)) n L2(G,^(Cn, Cn) ), then r

( 6.6)	 K trace f Gp(g)p( g)*µ(dg)

t4
tr.. e 1„np( U)p(U)*E(yl,..., rn )m(d rj)...m(dYn)

G

r

rt

Y	 .^
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Proofs The method of proof is similar to the one . given above but

uses Planeherel's theorem which yields

f GP( g ) p ( g) [I ( dg ) = f(1 r) P( r)'kift( d r)

7. The Maximal Ideals of L2(G,,4,)

Assume G is a compact abel:ian group and _X is the space

of Hilbert-Schmidt operators in ^(H,H), where H is a separable

Hilbert space. We show that the (closed) maximal ideals of L2(G,A

correspond to a.

LEMMA 7.1. If h is a continuous *-homomorphism of L2 (G,-.,r) ont o

JY, then M = kernel(h) is a maximal closed self-adjoint ideal such

that ML is isometrically *-isomorphic to A.

Proof: h is continuous so M is a closed 2-sided ideal. M is

self a.d jof nt as h is a * -homomorphism. .!f is a full matrix, algebra

so it is a simple H*-algebra. Also iY and L2(G,../1)/M i.e. ML

are homeomorphically *-isomorphic Qq), p. 181), so Ml is a mini-

mal closed ideal and M is a maximal ideal.

Note that if H is infinite dimensional, then M is not

a	 regular for if it were there would exist p E L 2(G,/Y) such that for

all q e L2(G, , 41 pK- q-q E M' or h(p) h(q) h(q) . This means h(p)

would be an identity in ./Y, but the identity I e X(H,H) is not in

+If the isomorphism takes x -a T then x* -*T* the adjoint of T

V
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_/Y. If H is finite dimensional then such a p exists as I is

in ./Y and h is onto.	 A

THEOREM 7.2. To every Y in G there corres onds a closed maxi -

mal ideal M of L2(G,.JI) given by M = kernel(h) and

(7.3)	 h(P) = p( r)

Proof.	 Fix	 r	 in	 G	 and define	 h	 by 7.3.	 As	 G is compact

then	 L2(G,_/Y) C L1(G,-*)	 and so	 p	 is given by the usual inte-

gral if	 p	 is in	 L2(G )./Y).	 Direct computation shows h	 is a

,.-homomorphism with norm less than or equal to 	 1.	 We need only

show	 h	 is onto, then the result follows by the preceeding lemma.

U	 r
Given	 U	 in JY let	 q(%) _ Then	 q	 is

0	 X	 r

in	 L2(G,1Y).	 (N.B.	 G	 is discrete, m((r)) = 1).	 By the Plancherel

theorem there exists 	 p	 in	 L2 (G,.JY)	 such that	 p = q.	 Then

P( r) = U	 or	 h	 is onto.

Observe that	 M = ker(h) = (p: p(r) = 0) 	 or M

( p E L2(G,./4/): < p(-) ej , ei > = pij ( • )	 E Mr,,	 i, j = 1...} where	 Mr
{

is the ideal in	 L2 (G,C)	 corresponding to	 r	 in	 G. (N.,B. There

is a	 1-1	 correspondence between	 and the maximal ideals of	 L2(G)C)

{ [ 1}) .)	 As	 ^I PIS 2 = 1G	 , L pi • (g) I	 p(dg) 	 pi •^^ 2s	 we can say thatij
M=MrXMrX...

w



1

w^

i

25

LEMMA 7. 11. Let Pij be the projection of .JY onto the ij th basis

element. If M is an ideal in L2(G,,,JY) then P..M is an ideal

in L2(G,C).

Proof: The basis elements bij of -Al are determined by

bijer' es > = 6is5Jr where ( er } is a fixed basis of H. Then

PijP = < p,bij o - < pb el , el > - prs(bi j )	 - pij . Let a
2	 rs	 rs

be an element of L2(G, C) and set q(-) = a(•) b j j . Then px q , is

in M if p is in M as M is an ideal. Hence

Pij(p,<q) _ pi,* qlj	 pil*abIj = pij a
2	 ,^

or pij *a is in PijM.

Let us write PijM = Mij.

LEMMA, 7.5.	 It'	 M	 is a closed ideal in	 L2(G,	 then the	 Mij

Y	 are all identical and closed.

Proof:	 First we show Mij	 is closed. Assume	 an a Mij , an -4 a.

-4 abi 	 = Pn EThen	 anbi .	 Let	 anbi L2(G,../Y) .	 Then rs (Pn) = 0j	 j j

for	 r	 i, s	 j, and 0 E Mrs , so	 Prs(pn) E Mrs	 for all	 r, s.

Hence	 pn	 is in	 M. Now	 (, pn-pm^ l 2 ;^ Ran am^^ 2	 and so p'	 is	 '

Cauchy, hence converges to an element p	 of	 M as	 M is closed.

AlsoP	 -^ P. (p)j (pn)	
ii

by continuity of projections.	 Hence	 a

Pij( p) E Mij , or	 Mij is closed.

4

w .Y

a

*q
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Now if p E M, q E 1,2(G,,,4"') then p;; q E M and Pi j (p, q) E

Mij or	
qi, p2 j E 

Mij . But gi,2-x pil j E 
Miat, as pI j E Mj j , so if

q)	 ?n ;,2(G,C) is an approximate identity for L2(0. ,C), ([1]),

1and if q = cpE(-)b 
ik' 

then the dense subset (cp C*pkj : p E M, E = n,

n = 1,2,...) of Mkj is also a subset of Mij . As Mij is closed

then Mk j C Mij for any i, j, k. So Mij = Mk j for any i, k, j.

Now using q\, p we obtain Mij = Mik for any i,k,j, so the Mij

are all identical.

THEOREM 7.6. There is a 1-1 correspondence between the closed

maximal ideals of L2(Cr,A and G, i.e, the regular maxima l ideals

of L2(G, C) or Ll(G, C) . Thi s correspondence is given by

(7.7)	 Mr = ( p E L2 ( G,-X) : P( r) = 0) .

Proof: By Theorem 7.4 we know every r corresponds to a closed

maximal ideal in L2(G,../Y) and 7.7 describes this correspondence.

Conversely if M E L2(G,-Y) is closed, maximal then there exists

Mo, a closed ideal in L2(G,C) and 11,4 = (p E L2 ( G,Jy): pii e Mo).
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N1, the orthogonal complement: of N i , is a regular.

if M  is not a r.eguls,r maximal ideal, then M  C
A

re Ml is a regular maximal ideal. But Lhen y

iE1([1]) and

maximal ideal.

Ml) M  ^ M1 whe
N

corresponding to Ml gives rise to a closed maximal ideal M E

L2 (G, /V) and M D M, M ^ M. This contradicts the maximality of M.

Hence M  is a regular maximal ideal, and moreover, 7.7 holds.

This proves the theorem.

We note that if H is infinite dimensional then _V is,

and none of the closed maximal ideals are regular, whereas if H

is finite dimensional P11 are. We also note that if H has di-

mension n < oo then by an argument similar to the one in [1],

page 161, the closed ideals of Ll(G,.E(H, H)) = Ijl(G,.JY) correspond

in a one to one fashion to the closed ideals of L (G,/V) and so

the maximal ideals of Ll(G, -P (H, H)) can be studied through the

transform on G. Unfortunately we cannot prove this for non-compact

groups.

8. Convolution Equations for Operators

The above theory can be used to solve operator integral

equations much as in the scalar case. Let G be a locally compact,

abelian, a-finite group, H be a separable Hilbert space, and

e(H.O H), JV be as before.

PROPOSITION 8.1. If E L	 /Y)	 q EE L.,s(I H)) then px g	 2G(,	 P	 l(w

L (G,-*)	 and. II p" gl1 2 s II p41 111 gl12 •	 OOE

I
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Proof: This is straightforward and will be omitted. See also [7).
Consider now

A

(8.2)	 q(g) = !G P( g -,g ' ) q ( g ' ) µ( dg, ) + r(g)

or equivalently

(8.3)	 q = pK•q + r

where p E Ll(G,e.(H)H)), r E L2(G,./f7. We are looking for solutions

q of 8.3 in. L2 (G,./Y) .

THEOREM 8.4. If r is in L2(G) _-4), p is in Ll(G,X(H,H)) and if

suk 11 ̂( Y) II < 1 then 8.3 has a solution in L2(G,.4/) .
YeG

Note that (I PII l ? II P( Y}I) , Y E a•

Proof: Consider I-p( Y) . As (I p( r) (I < 1. we know that (I_p( Y,,-) -1

exists for each r E G and II ( I -p( Y)) ' j s (l-II p( Y)II) -1 • It follows

(I-p( • ))
-1 

E L^(a,.e(H,H))- and so II(I-p(•))-lr (')II2 s II(I -p('))-lIi^Ilr(`)II2•

Hence there exists q e L2(G) A such that q( • ) = (I-p(•)) r(-)

b the Plancherel theorem. Let w	 ^	 so w e 'L Gy	 (g)	 ( p^ q) ( g)	 2( ,-4j

by proposition 8.1. It can be shown by an approximation argument

that p* q( Y) = P( Y) q( Y)	 Then rr+~ẁ = r+w = r+pq = (I+p(') (I-P(•)) -1) r
1..

(I-p) - r	 q. Hence q satisfies 8.3.
ut

4f

4
r:



1

29

COROLLARY 8.5, The above: solution is uniq ue in L2(G,./Y) .

A
Proof: If q  is any other solu't'ion of (8-3) in L 2(G,A then
A	 ..	 ..	 „1^
qo - r+pqo so q  = (Z-p) - r = q or q  = q.

We wish to extend the above theorem to cases where li p ll l ? 1.

This can be done by utilizing some results due to Falb and Freedman

([8]). Let W be the set of all continuous linear operators Z

mapping L2(G,../Y) into itself such that there 'is a uniformly con-

tinuous function z(•) mapping G into ;C( IV A with Zp( y')

z(r)^(y)    for all Y in G, a17_ p in L2(G,.,fl . We use the norm

(8.6) II Z ll W = SUR fI Z( r) II . mot')
TeG

where II xll 	 II xei ll 2	 for x; in -A.. For p in L2(G,J41)
..	 i

p(g) = p( -g) for almost all g in G. Also -41 is a B-algebra

so W is a B-algebra by the same proof as in [8].

Let B be given by

(8.7)	 B = (T E '9(L2(G.,H), L2(G,H)): Tx(g) =

f Gp( g-g') x( g') d g' + kx(g) for some p E .Ll(G, X(H, H) )

and X E C),

We see that under the norm II . 11	 given by II T II B = ' II pII l+I X I , B be-
comes a Banach space, in fact a B-algebra isometrically isomorphic

v	 w
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to Ll(G,f(H H)) 0 C. Also if T = (p, %) then T( r) = ^( y) 0J . 
ti

We shall now identify B with B Y s%. B-algebra of linear

operators of L2 (G,.,41) into it. elf. Zbr • h in H,, p in L2(G,A,
ti

g in G. and T in B let T be defined by

ti
(8.8)	 (TP)(g)h == T(p(-)h)(g),

so if T = (q, X) then Tp = qEp+Xp and 11`.I"11 = JIT11 B . Herce B

and B are isometrically isomorphic (in the algebra sense). As

Tp = qp + Xp by proposition 8. l., we have B C W, although the norms

are different.

Let J, be the maximal ideal space of Ll(G, C) ® C (or

just Ll(G,C) if G is discrete), so we can put 	 G U (co),

the one point compactification of G. Then define v(T( r))

(Xt T(r)-XI does not have an inverse in e(H,H)) . Also F,-( 'T") =

(X: T-X does not have an inverse in B), FW(Z) = (A: Z-X does not

have an inverse in W) and ^(T) _ (Xi T-% does not have an in-

verse 'in B) . Evidently , ^ 3(T) _ %(T—). As B, W and B have
N

identities then T-X, Z-X and T-X are defined for h in C.

DEFINITION 8,9. Let T be in B and let (ei } be an orthonormal

j	 basis of H. ' Let H. = span(eh , . ,, en) and let En be the pry c-

ti.on of H onto Hn . Then T	 E TE is in B and T is ap
w

n	 n n	 ---

proximable if Tn( r) converges to T(r) uniformly on G U {oo}

i

s

' r
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PROPOSITION 8.10. T in B is aaroximable if and onlyif each

T( r) 3ss a completelyletely continuous element of 4.(H, }i) for each Y

in G U ( }, and themet r -•a T( r) is continuous on G ^a

Proof: See ( 8).

Now we have

THFOREM 8.11. if fe in B is apkroximable, then F,(T) C

U	 cr(^T( r)) C ;(T)
(CO)

Proof: The proof is the same as that given in [8] for L2(G,H)

rather than L2(G, ///) . We need only note if x; e -Ir, A E X(H, H)

then (IAxIl,41 s 
IIAIIII xll 	 so A e ^(^YiY) and in fact IIAII9(H, H)

II All X( 	 o that sup II T( Y)11^(H^^i) = s^^ II^'(Y)II ^y).
 For

more details see [ 7) a dG[ 8] ,	 Y

We say p in Ll(G, e(H, H)) is approximable if the cor-

responding element (p,0) in B -is.

TI'OREM 8.12. Let  p in Ll(G,ze(H, H)) be approximable, let r be

in L2(G, /Y), and  let 1 D. a domain containing U ^a( p( Y)) in
re 

its interior. Then 8.3 has a unique solution in L2(G..A

REMARKS We note first that if p e :Ll(G,e(H^ H)) then p' is in

C0(G,i(H H)) so p( oo) = 0. Hence p is approximable if and only
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Proofs	 U	 U
yet U ( )	

,, ^r(l)( r) ) U (0) so we can extend D to
QOG

c

DO 
such that I / DO and DO contains U	 y)) in its

r.c. G U ( co)
interior. Now we can define F(p) c W where F(t) = (1-t) -1

is analytic on DO ), a domain containing T(p) .  If A is the

identity in W than F(p)	 c W and F(P( -r)) = (I-^P(Y))- I

r 6 Gp ([9), pa6e 203). If r is a simple closed rectifiable curve

enclosing U	 a( p̂(r)) in DO then we have for x, c L2(G,-4/)
red U

(8.13)	 F(p)x(r)	 fpF(t)(t6-p)- dt x (r)2n ^

f,, ,̂ 'N(t&p) x(y)dt

'27-1 f r F(t)(t-P(Y))- dt ^X(r)

F( p( Y) ) x ( r)

Hence if r e L2(G,_4 and q = F(p)r e L2(G .,A then
^	 A o%o%

q(r) = F(P(r))^r(r) = (I-P(-r))-
1
 r(y). Consequently r+p:fq 

= 
r +pq

A ^	 JA	
—1r+p(i--p) - r (I-p) r = q so by the Plancherel theorem q is a

solution of 8.3.
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