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The Inversion Theorem and Plancherel's

Theorem in a Banach Space

1. Introduction

Let G be a locally compact abelian group with Haar meas-
ure M, amc let X be a Banach space and C be tuc set of complex
numbers, A classic theorem due to Plancherel ([.1], [2]) states that
the Fourier transform maps Ll(G,C) N L.2(G,C)+ onto a dense subset
of Le(a,c) (6 is the dual group of G and has Hear measure m)
in such a way that qu(g)Ezéﬁh(dg) = fa&(ngz;;ﬁ(dyj for all «,B
in Ll(G,C) N L,(G,C) where & is the Fourier transform of a, given
by a(y) = fé(é:?ﬁz(g)u(dg) for all v in G. Here (g,v) denotes
the action of the character - ¥ on g in G. In this paper we ex-
tend this result to functions taking values in an inper product sub-
space of a Banach algebra.

Another well-known theorem ([1], [2]) states that if o is
a positive definite elemsnt of Ll(G,C) nL(GC) the. @ is in

L,(G,0) and

(1.1) o(g) = f3(e, ol rIm(dr)

*For 1 s PSS LP(G,X) is the spaee of p-measurable functions

f mapping G into X. For 1 S p <= we use the norm ”'”P’ where
I, = UQle(e)IPuee))?, and for p == v use the nom |l
which is the (u) essential supremum of |[|f(g)] on G. ||°]] denotes

the norm in X.



for (almost) all g in G. This inversion theorer is also generalized
to functions assuming values in certain admissible Banach spaces.

Our work reliecs heavily on an extension of Bochner's theorem
established in [3]. We show that if p is in L.(G,X) N L (G,X),
if p is positive definite (positivity is defined with respect to a
particular cone in X), and if p(0) satisfies a certain finiteness
condition, then 5, the Fourier transform of p, is in Ll(ﬁ,x) and
the inversion tormula 1.1 given for « holds for p. A sharper
theorem states that if p is in Ll(G,X) n LQ(G,X), if p is posi-
tive definite, and if there is a real, finite, regular Borel measure
A such that ||/ .o(e)p(g)u(de)ll = fgla(v)|Mdy) for all a in
L,(G,C), then B is in L (G,X) and 1.1 is satisfied by p.

Using this theory we give new proofs of some results due to
Hewitt and Wigner ([4]).

Now assume G is compact and .# is the set of Hilbert- |
Schmidt operators on a separable Hilbert space H. Then we show
that the closed maximal ideals of the algebra L (G,#) are in a
one to one correspondence'with G. The came result holds for Lé(G,A)
where A is any separable simple H*-algebra.

Finally we prove existence and uniqueness theorems for equa-

‘“

tions of the form

(1.2) a(e) = r(e) + [;p(e-g')a(e" )nu(de')




where r is in LE(G, #), p is in Ll(G,;C(H,H)), H is a separable
Hilbert space and £(H,H) is the space of continuous linear opera-
tors mapping H into H (so # C #£(H,H)). Solutions gq are to be

elements of L,(G, #).

2, Bochner's Theorem and Dominated Functions

Let X be a Banach space, X* the dual of X and X¥¥
the dual of X*, For @ in X* we denote the action of ¢ on
xe€X by (x,9). Given a subset of X*¥ we can define a cone of

"positive" elements in X.

DEFINITION 2.1. Let ® be a subset of X*, The subset K<I> of X

given by
(2.2) Kp = (x e Xt (x,0) 20 for all ¢ € ¢}

_i_s_ called the cone determined _t_)z 0.

Sometimes we write simply K if ¢ is fixed by the context.

K, is the set of "positive" elements.,

®

Let G be a o-finite locally compact abelian group with

Haar measure | and let G be its dual group with Haar measure m,

DEFINITICN 2.5. Let p be a measurable map of G into X. Then p

3‘._§_ o-gositive definite _1_{




»-

N N .
(2.4) nzi mgicncm(p(gn-zm),w) 2 0

S -

for any integer N, any CirevesCy in C, any €s-++28 in G,

and all ¢ in ¢. If p is in L (G,X) then p is integrally

d-positive definite if

(2.5) (Jof e(e)aleNp(e-¢' Jauau,) 2 0

for all o in Ll(G,C) and all ¢ in &,
Next we impose a condition which relates ¢ to the topology

of X.

DEFINITION 2.6. The family & is full if there isa p >0 such

that

(2.7) Il = e sup (] (x,0)]/llol}
Ped
PFO

for all x in X.
The following tﬁb propésitions evamine the relationship

between the two notions of positive-definiteness.

PROFOSITION 2.8. If ¢ is full and p 1is ¢-positive definite then

P isin L(GX) and p(0) is in K.

Proof: It is readily shown that for gin G, 9 in ¢, |(p(g),9)| =

(2(0),9) so that [n(e)ll = eln(o)].
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PROPOSITION 2.9. Let p be in L (G,X) such that one version of

p is wX-continuous®. Then p is ¢-positive definite if and only

if p 4is integrally ¢-positive definite,

Proof: See [3] or [T].

We shall azee shortly (corollary 2,15) that all those ele-
ments of Lm(G,X) of interest to us have the continuity required
in proposition 2.9,

Next we recall some results from measure theory. Let S
be a locally compact topological space and let ZXS) be the Borel
field of S (i.e. the smallest o-field containing the closed sets

of 8).

DEFINITION 2.10. A vector measure v is a weakly countably additive

set function defined »n Z(S) and taking values in X. v is weakly

regular if the scalar measures (v(-),p) are regular++for all @

in X%, v is O-positive if (w(E),p) 20 for all ¢ in @ and
E in X(S).

DEFINITION 2.11. A set function v** mapping 2(S) into X** is

weak-*-regular if (@,w*(-)) is a regular scalar measure for all @

in X%, v is O-positive if (9,¥**(E)) 20 for all ¢ in @,
E in X(s).

+The mapping f of G into X 1s wX-continuous if it is continuous

when the weak topology is imposed en X. G retains its usual topology.

**A scalar measure A is regular if, given € >0 and E ¢ Z(S) | with

IMI(E) <@ (i.e. . has finite variation on E), then there is a compact'
KCE and an open 0 D E such that ||)~||(O -K) < e. s



If v 1is a vector measure we denote its variation on a
measurable set E by ||v]|(B) and its semi-variation by |v|(E)
({51, [6]). The following theorem, an extension of Bochner's theorem,
is essential to our work. The proof is given in [3]. We assume ¢

is full.

THEOREM 2.12, (A) If v is a weakly regular ¢-positive vector

measure defined on X(G) and if

(2.13) p(e) = J5(e, M)v(dy)

then p 1is an integrally ¢-positive definite element of Lw(G,X).

(B) If p is an integrally ¢&-positive definite ele-

ment of L (G,X), then there is a set function w** mapping 7(G)

into X** such that (i) v** is weak-*-regular, ®-positive with

finite semi-variation and (ii)

(2.1%) (5(€),9) = [3(&,7)(9,v**(ar))

for all ¢ in X* and almost all g in G.

COROLLARY 2.15. If p is an integrally ¢-positive definite element

of L (G,X), then one version of p is wX-continuous. If p is

given by 2, 13, where v is a weakly regular ®&-positive vector measure

defined on Z(a),_ then p is a continuous map of G into X.




Proofs This follows from the relevant regularity. See also [7].
With the aid of theorem 2.12 we can prove a useful inver-

sion theorem. However, a differcnt version of Bo.chner's theorem will

allow us to establish a sharper theorem, We require first the fol-

lowing

DEFINITION 2.16. p in L (G,X) is dominated if there exists a

finite, regular, positive Borel measure A, such that

(2.17) I/ e(e)ple)u(ae)l s fgla )l alar)

for all o in Ll(G,C‘), where a is the Fourier transform of aq,

i.e. o(y) = /(& Nale)n(de).

DEFINITION 2.18. Let © be a subset of X . Assume there is a

. , + |
function ¢ mapping K<D into R U («}* in a linear manner such

that P is uniformly positive on K¢, i.e. there exists k >0

such that k(x,9 ) 2 lxll for all x in Ko+ Furthermore assum

there is an at most countable sequence (@i} in ¢ and a sequence

00
N
(e;} in R such that (x,9) =i§lci(x,q>i) for all x in K,.

Then we say that the pair (@,X) 4is admissible. We let K, =

(x ¢ Kp: (x,q>°) < «},

LEMMA 2.19. If (0,X) is admissible, if @ is full, and if p e

L,(G,X) is integrally d-positive definite with p(0) in K, then |

% .
RY is the set of non-negative real numbers,




p 1is dominated.

Proof: We note first that p(0) is well defined by corollary 2.15.
Let V(@) = qu(g)p(g)u(dg) for all « in Ll(G,C), then (¥(a),p) =
fa&(rj(@,v**(dr)) for some weak-*-regular, ®-positive set function
vir  given by theorem 2.12, We can actually define @(f) mapping
Co(ﬁ)+ into X by (@(f),w) = faf(r)(w,v**(dr)). Then ¥ is a
bounded linear map, ||V(£)| = £l ] ve*] (G).

. If f dsin c(G) then £ = £,-fp#ify-1f)  where £
is in Co(a), £,(v) 2 0, and each pair of functions (£1,£5), (f3,fh)
has disjoint support. Hence fi(77m§ | £(y)], and @(fi) is in Ky
so that |¥(£,)) = k(¥(1),0 ) = kJZlcj(?v(fi),wd) =k L e far(7)
(2ﬂ,v**(d7?). Consider now the setgfunction A givendby ME) =
iglcingi,w*(nz)), Eec (8. Then AME) 20 for all E in XG),
and alzo A is additive. Moreover A(E) = (p(0),9.)) <= as p(0)
is in Kc’

A 1is countably additive because MU Ey) = il? ey (9,

are disjoint

J
(note that ci(¢i,v**(EJ)) 20 forall i,j). Also A is regular,

v**(ra’j)) = ?% ci(cpi,v**(EJ)) = 2 A.(EJ.), if the E

for given € >0 and E in Zxa), there is a number N such that
-] S
z ci(cpi, w+(G)) < ¢/2 and there is,a compact K C E and an open
N+l
0 DE such that (9,,»*(0-K)) < e/2Nci, i=1,2,...,N. Hence

MO-K) < €. -

+Co(a) is the space of contiquous functions mapping ¢ into C,

which vanish at  if G is only locally compact.




L
Then ||3(£)] = M) £ x 2 Jar.(v)an = bkfs| £(v; ] ax.
i=1 gl #
It follows that if A' = LkA then ||y(a)| < fal of(Y)|d\'. This es-
tablishes the lemma.
We can now state the alternate version of Bochner's

theorem., Assume ¢ 1is full and countable.

THEOREM 2.20. p 1is a dominated, integrally &-positive definite

element of L (G,X) if and only if there is a weakly regular -

positive vector measure v mapping 5(G) into X such that v

has finite variation,i.e. ||v]|(G) < =, and such that

(2.21) p(e) = [3(e,M)v(dr).

For the proof see [3]. In this case, of course, p is

continuous by corollary 2.15.

3. Inversion Theorems

If pe Ll(G,X) we recall that the Fourier transform of

P 1is given by

(3.1) p() = [4(& ¥)p(e)u(de).

For convenience we let % = (p ¢ L (G,X): p is integrally -

positive definite} and & = (p €e?. p is dominated}. We recall
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that if p ¢ & then p is aX-continucus (corollary 2.15). If

'

(0,X) 1is admissible then .7;) is the set of functions p mapping
G into X such that p 1is «X-cor .inuous and such that p(0) is

in xo ‘wherc Ko is defined in 2.18.

PROFOSITION 5.2. (A) If p € span [Ll(G,X) N2 and if ¢ e

span{¢} then (f)(-),cp) € Ll(?},C) and (R) if the Haar measure of

G 4is fixed then the Haar measure of G can be so normalized that
®

(5.3) (p(g),®) = [(e, )(B(1),9)m(dr)

is valid for all p ¢ sEan[Ll(G,X) N} and all ¢ e span(d}.

Proof: It is evident the results need only hold for p e L;(G,X) N P

® € ®. But this follows from the scalar inversion theorem ([2],
p. 22).

A better result is the following.

THEOREM 3.4, Assume @ is full and countable and (9,X) is ad-

missible. (A) If p ¢ span (L(G,X) N P n J) then b e Ly(G,X),

and (B) if u is fixed then m can be so normalized that

K
*

(3.5) (&) = J3(e B(r)n(ay)

for all p in span(L (G,X) N # N 7} -and all g in G.
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Proof: Again we need only prove the results for p in Ll(G,X) n &

n .9:. For such a p and for ¢ in @ we have from 3.3 and 2,14

(3.6)  (p(e),0) = [3(e, (R(1),0)m(ar) = fale, 1)(o,v(an))

so that for any FE € X(G), ¢ e @ fE(iS( ,e)m(dr) = (p,v¥*(E)) 2 0.

So, in fact, for any p € L,(G,X) N & we have
(3.7 ((N,») 20, 9 ¢ 9, Ted

Now @ > (p(0),95) = Zey(2(0),05) = Ze;(py,w*(8)) =

iglcifa( i’( T) :cPi)m( d Y)

[3(3(1),0,)m(a) = [Al8(¥)Im(ar) using
the monotone convergence theorem, the fact that 5(7) € K.<I> for
all y e G, and the fact that B is continuous so |[|p(-)|| is
measurable. As p 1is measurable and G is o-finite, then p
is essentially s@®parably valued and so is 5. As P is also con-
tinuous it is measurable. Hence (A) is established.

Now 3.6 yields (p(e),9) = (/3(e, NB(N)n(ar),0) for any
¢ € & and almost all g € G. Aé ® 1is full and countable we
have p(g) = fa(g,y)ﬁ(y?m(dy) fof.gimost ail g. This proves
the theorem, )

We give now the sharper theorem which does, however,

require G to be o-finite.




12

&

THEOREM %.8. Assume ® is full and countsble and G is o-finite.

(A) if p e span (L;(G,X) N P,) then B e L (G,X), (B) if p is

fixed then m can be so normalized that 5.5 holds for all p e

sEan{Ll(G,X) n 9%} .

Proof: If p e L(G,X) then B e L (G,X). If pe &, also and
p(g) = fa(g, Y)v(dy) as in 2.21, then v(E) = fEf)(Y)m(dr) for
E € Y(G) such that m(E) < . Then [|V|[(E) = fEH'ﬁ( )Im(dy) for
m(E) < =, or, for any such E, fEH’f)( Plin(dr) s V(@) <= as v
has finite variation. Now G is o-finite so if (an} is a se-
quence in X(G) increasing to G then fall'f)( Dm(ay) =

1im fa I Pm(ay) s |v|(G) < ». It follows by the monotone con-
ze-:g:ncrel theorem that D ¢ Ll(a,X). (B) follows readily.

| We note that lemma 2.19 and theorem 3.8 give an immediate

proof of theorem 3.4 if & is o-finite. Actually theorem 3.k

is the more useful theorem although theorem 3.8 is sharper.

COROLLARY 3.9. If p 1is given by
(3.10) p(e) = [5(e v)v(ay)

where v 1is a weakly regular ‘<D-pos:i..tive vector measure with finite

~ b

variation and if p is in 'IL,(G,X), then 3.5 holds.

' 4, The Plancherel Theorem

As usual this theorem :.s set in a Hiibert space and so
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we must first develop the necessary structure. Assume now that

X is a Banach algebra with continuous involution x - xX,

DEFINITION 2.14. The triplet ~(¢,X,Xo) is strongly admissible if

(i) (o,x) is admissible, (11) X, is a non-trivial subspace of X

such that xx* is in K for all x in X, and (iii) there exists

e —— . S o — ——y v

k, >0 such that if x e X, Shen

(h.2) k Jlaoe] 2 [l

We note that 4.2 is satisfied if X is a C¥-algebra.

Now we have

PROPOSITION 4.3. If X 4is a Banach algebra and if (2,X,X)) is

strongly admissible then Xo is a Hilbert space under the norm

I " where ”x” =< X,x > and <Xy > = (xy*,¢o)-

Proof’, ¢° is only defined on K and we do not know that if

X,y € X then xy* € K. However we can extend ¢ by setting
(xy*,m ) = Z c. (xy*,¢ ) ‘were (c. }, (9. } define ¢_ on K.
Tmn|<XJ>| Iuw@)|-|2cuw@)| &(mﬂmﬁﬂ
(vv*,. ) 1/2 where the last 1nequalrty follows because Py is a
positive functional. Hence we can define < x,y >, for xyeX
and | < x,y >bl s "xﬂouyuo. vIt follows from 2.18 and 4.2 that

ik 12 2 )% and that |||, is a norm. -

+Ko is defined in 2.18.




1h

If {x,} is Cauchy in ““o then it is Cauchy in |-|,
so x —xeX As K is closed then xx* € K. Also [xn} is

00
i . » N 1 1 3 [ w <
bounded in I ”o because it is Cauchy, so i{:lci(xnx;l,mi) s M,
hence X ci(xx”-,qvi) =M or xc¢€ K Choose m(e) such that if
i=1

N
n,m >m(e) then |[|x -x || <e. Then X c,([x-x J[x-x }¥,0.) =
N n “m'o i m m i

i=l 00
. “ :aa . 2
lim .Z ci([x.n—xm][x.n-xm]x,cpi) £ lim sup .Z ci([x.n-xm][xn-xm]* ,cpi) <€
1, — o l=l n -—» o l=l .
so that for m > m(e) [lx-x.mﬂo <e or X  is a Hilbert space.

If X 1is a Banach algebra and G is o-finite, then
L,(G,X) is also a Banach algebra ([8]). If X has the involution
x - x¥, then we can define an involution on Ll(G,X) as p - pt

where p*(g) = p(-g)*.

THEOREM 4.4, If 4 1is o-finite, X is a Banach algebra with con-

tinuous involution, & is a full and countable subset of X¢ and

(@,X,Xo) is strongly admissible, then (i) if [ea} is an ortho-

normal basis for X, and there exists k; such that | <x,e, > =

klllxll for x e X and all @, then the Fourier transform maps

Ll(G,X) n L2(G,Xo) onto a dense subset of Lg(a,xo), (ii) for aq,r €

L,(G,X) N Ly(G, X))

(4.5) © Jale)r(e)uas) & fZA(NF(rIn(ar),

(iii) for gq,r € Ll(G,X) n L2(G,Xo)

,(’4.6) ~ <q,r>=,<a,?'>,
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where < q,r > = fG < Q(g):r(g) >0“(dg) and <q,r > fa < Q(T):

2 7) >bm(d7).

n

Proof: We shall put |lgl; = [ola(e)lln(deg) and [lal,
Ua@Zu(ae)? sor a e 1)(6,0) 0 1y(6,X). Let p(e) =
(2% @)(e). As q€L(GX) sois p with [sly s llalf. 1t
can also be shown that p ¢ CO(G,XO)+ as q € LE(G’XQ)' Now p(0) =
/a(e)a(e)*u(de) ¢ K so (p(0),9.) = ([ ale)ale)*r(de),o,) =
:'E e;fglal@)a(2)*,9; n(ae) = [ (a(e)ae)*,0 Iu(ag) = fJlale)lZu(de) =
H q||2 < o using the monotone convergence theorem, Hence p ¢
Ll(G,X) n g..
Now co(e,xo) C co(G,X} so peL(G,X). Also
[of &)l )p(e-e" Ju(de)u(de') = [[/ A g)a(e-€")n(de) 10/ A &)
a(e'-g")n(ag' ) 1*u(ae") = [;a'(8)a’ (g)*n(dg) using the Fubini and
Tonelli theorems with o € Ll(G,C). Q' =a*x q € L2(G,Xo) (81)
so q'(g) € X, a.e. or a'(g)a'(g)* ¢ K, a.e. Hence if @ < @
then ([.a'(g)a'(g)*u(de),e) = [,(a'(e),a"(&)*,0)u{dg) 20 or pe &
Consequently theorem 3.4 yields p(g) = fa( g. Y)ﬁ( Y)m(dr).
Then = > |dl = <q,a > = .Zlci(p(o),cpi) = 2 e, Ja(8(1),9,)m(ar) =
i= 1

fa(f)( r),cpo)m(dr) =< a,a >. We have used the monotone convergence

theorem again. Hence the Fourier transform maps into Le(’é_,xo).

By the usual expansion < g,r > =< ’d,? >. This establishes (iii).

@ *If Y is a Benach space then CO(G,Y) is the spaée of continuous

- functions mapping G into Y, which vanish at infinity'if G 1is only

" locally compact rather than compact.
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Moreover [.a(e)a(e)*u(de) = p(0) = [gh(1)m(dy) =
aa(yja(yj*m(dr). Also if x,y are elements of a Banach algebra

with involution then

(4.7) eyt = (xay) (x4y)% = (x=y)(x-y)% + L(x+iy)(x+iy)* = i(x-1y)(x-iy)*

so that (ii) is also proved.
We need only show that Q = {q Lg(a,xo). a in Ly(G,X) N
L2(G,Xo)} is dense in Le(a,Xb). As p 1is translation invariant
so is L](G,X) n LQ(G,XC) and hence Q is invariant under multi-
plication by (g,*) tfor any ge G, If T ¢ Ié(a,xo) and
<gq,r >=0 for all q e Q, then fa(q(7)r(yj*,¢o)(g,7)m(dy) =0
for all 9 ¢ Q and ge G. As (q(e)r(.)*,¢o) € Ll(a,c) it fol-
lows that (Q(v)r(wj*,wo) =0 a.e. for every q ¢ Q, or <a(y),
v 7) >, =0 a.e. As Ll(G,X) n L2(G,Xo) is invariant under multi-
plication by (,¥), v e G, then Q is invariant under translation,”
Hence to every Yb e & there corresponds q, € Q such that
. . . !
qo(Yb) £0 oo qo(yﬁ # Q in a'nelghborlood of r o 85 9 is
continuous. If [ea} is the basis of Xo mentioned in the state-
3 ment of part (i), then qo(-) = g.qq(-)%u so there exists a
such that q, (¥) £ O in & neighborhood of 1. If q (*) = B(-)
o o 0 ~

then p = g, Py, and as pe L2(G,Xo), P, € Ly(G,C). By hypothesis

| < X, €, > § kllxl]  so P, € 1;(6,C) and ga(yj = q (7). gence

*By this we mean that . dsin Q for any 7y, in 6 if £ is
i o)
in Q and fo(yj = f(ywyb).

P e s YA e
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Pao(')ea € Ll(G,X) N L2(G,Xo) for any « and paoea(') -
qao(-)ea € Q. Since for each 7y in a ncigh&prhqod of 7,

[qao(T)ea]a:forms a complete set in Xo, and since 0 =< qao(yjea,
r(Y) >0 then r(y) = 0 in a neighborhood of Y, But Y, was
arbitrary so r=0, or Q is orthogonal only to 0O in Lg(a,xo),
a Hilbert space., Hence Q is dense in Le(@,Xb). This completes

the proof.

COROLLARY U4.8. Under the assumptions of the theorem the Fourier

transform can Eg extended 1

—————

a unique manner to an isometry of

L2(G,Xo) onto L2(G,Xo).

Proof: We need only show Ll(G,X) n LQ(G:XO) is dense in I?(G,Xo).
+ o : .
But C,(G,X_ )" is dense in Ly(G,X ) ([7]). Hence if f € Ly(G,X.)
. co
then there exists (£ }; C C (G,X ) N L,(G,X_ ) such that an-fuei-ao.

Then f e CC(G,X) and f  is measurable so f ¢ Ll(G,X).

Remark: The equality (4.5) holds for all gq,r € LQ(G,XO).

5. Examples

Here we give some examples of admissible pairs and strongly

"
‘s

admissible triplets.

EXAMPIE 5.1. Let X = L ([0,1],C) so X is weakly complete, and

let & consist of elements ?; such that

¥bc(G,X°) denotes the set of functions in Co(G’Xo) having compact

support.
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(5.2) (x%,0;) = [ox (8)x(t)at X e X

n

where Xi(°) is the indicator function of one of a countable col-
lection of sets {Ei} dense in 2{[0,1]) under the usual Hausdorff
metric. Assume E, = [0,1]. Then it can be shown ([3]), [7]) that
® is full and that X is the cone of non-negative (a.e.) functions,
Let  (x,9,) = (x,9;) = féx(s)ds = ”x”l for x € K. Hence (0,X)
is admissible and Ko = K.

If p is in 2 then p(0) is in K = K, by propositions
2.8 and 2.9 and by corollary 2.15. So p € ;7; and the inversion
theorem states that if p e sp(L,(G,L,([0,1],C)) NP} then D e
L,(G,1,([0,11,¢)) and p(e) = f3(g, VB(1)m(ar).

The author does not know of any non-trivial subspace X

(o)

which would make (@,X,Xo) strongly admissible,

EXAMPLE 5.3. Let X = H, a separable Hilbert space with a fixed
orthonormal basis {ei};. Let Ho be the set of elements of H
with all but a finite number of compocnents zero, with non-zero

componénts being real, rational non-negative, and with norm less

than or equal to one. Then ¢ = H, is full ({31, [7]) and count-

+ ‘s
able and Ky = {h emH: h; 2 0}." Let (h,wi) =<he, > 1=
l,2,... and wo = Z:wi. Then @o maps K into [0,~], and for

1 :

~h..in K

- :
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()" = (Z0)% 2 Tkl = [n]?

N
-
so that (¢,H) is admissible and Ko = (h ¢ Ks 2, hi < ),
1
H becomes a Banach algebra if we define hk = 2, h k. e

1 i
Let h* = Z‘Hiei' For h in H hh* is in K and (hh*,mo) =

z hiﬁi = “h”e. We do not have k|hhr|| 2 Hh“2 for some k >0,
i
but we do have |hH = ||b| which is sufficient to show that X, = H.

Hence (0,H,H) is stroagly admissible, and the Plancherel theorem

A

epplies. Note that the condition | < hye; >| = [|bl| also holas,

EXAMPLE 5.4, Let X = #£(H,H), the linear bounded operators mapping
the separeble Hilbert space H into itself. Lct Hy be a countable

dense subset of the unit ball ‘n H and let ¢ = {9 ¢ X*: (T,p) = < Th,h >,
T € £(H,H), heH }. Let (e;} .lsobe in H = for scme orthonormal

basis [ei}. Then ¢ is full and countable and K@ is the cone

of positive operators ([3] or [7]). Let (T,0,) = Z~< Te,, ey >

So @ = Z:Qi is the trace, where (T,9,) =< Tel,e >. Then

i

P.¢ K -9[0,w], (1,9 ) =tr T 2|t 4if T is positive, Hence

(0,£(H,H)) is admissible and X, is the cone of positive operators

of finite trace and so a subset of the trace class.

N We can see that in one casg the condition p ¢ 19; is
‘% necessary for the inversion theorem to hold. Let G be the circle

,§ group so that G is countable. Label its elements Yy:Ypseee,

and let the set function v be given by
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+

(5.5) < V([Yh))ei’ej > = pnsnisnj’ i,J,n = 1,2,..,

A

where o > M 2 P, 2 0. v can be extended to a countably additive

measure of finite semi-variation in the obvious way. Let p be

given by
c it‘fn

(5.6) p(t) = Ze "W{r))
n=1

Then p is in & (theorem 2.12 (A)) and p is in L;(G,X) De-
cause G is compact and ||p(t)|] s M. If D is to be in Ll(a,X)
then |v|(G) must be finite or E p, = trp(0) <.

Finally let X =/, thi Hilbert-Schmidt operators ([5al).
Then for T in A4, TT* is in the trace elass and is positive so
that TT* is in K_. Also £(H,H) is a C*-algebra so (®,£(H,H),H)
is strong;y admissible., A basis for _# is given by {Tij] where

13Kk’ €y ik ;4
|< Tey, e, > = ||Tll, and the condition in (i) of theorem U4, 4 also

4 <T, .e,e>=28,86 , kf=12.... Then |<T’Tij >) =

»

holds.

6. On_a Theorem of Magnus

We use the preceeding'theo;y to deduce a result of Hewitt
and Wigner's ([4]). Let U() be a continuous n-dimensional

unitary representation of G i.e. U(g+g') = U(g)u(g'), U(0) = I

and U 1is a continuous mapping of G into £(Cn,Cn). Then there

is a unitary matrix V and characters 71”"’7h such that

+s . is the Kronecker delta.
ni
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(6.1) u(e) =V [lan) v

| (g,7.)

i1 o

for all g in G ([9]). Hence U(*) is glven as a function of
n characters, Let A be a symmetric compact neighborhood of 0
in G having finite positive measurc, and let E(YyyeeepTy) De
the function on 6" which equals 1 if Y;]'Yk is in A for all
J,k, and equals zero otherwise, ILet p be in Ly(G,z(¢",C")) and

let

(6.2) (V) = [ p()U(&)n(dg)

- . n _n n n
Theorem 6.3. If p is in L,(G,£(C,C")) N L (G%(C,C)) and if

for any o in IL(G,C) foGa(g)a(g')p(g-g’)u(dg)u(dg') is positive

semidefinite, then there is a constant K, 0 < K < ® such that

(6.5)  k p(e) = [gnBWU(-B)E(Ty, ..., 7 )m(dr)) .. m(dT,).

Proof: Using the setting of example 5.4 with H = Cn we have p ¢ .
Then p is continuous and trace p(0) <= so that p is in .?;.
Hence p(g) = fa(g, Yp(7)m(dy) by theorem 3.4, But U(g) =

n .
iZ ig, T; svri where the Ty are projections onto mutually orthogonal
=1




ee

one-dimensional subspaces ([9]). Then P(U) = pr(g)U(g)u(dg) =
n n

A n
L B(ry)m; and p(U)U(-g) = & p(ry)ry px (s,rb)wj = L B(ry) (e rm,.
=L J=l ! i=1

Now let K = fan_lE(ri,...,yh)m(dyi)...m(drh) where we omit inte-
gration with respect to TS Then K dis independent of i and of

the value of 7y, by the choice of E, and 0 <k = m(A)n'l < o, Now

we have

I BOUC-0)B(ry, o Ty omar,)

n
.Zifanﬁ(yi)(g’Yi)E(Yi""’Yh)m(dyi)’"m(th)Wi
i=

n
i= ‘

f

K plg)

and the theorem is established.

Note that p could actualiy be a finite “inear combination
of functions satisfying the requirements of the theorem. The exten-
sion of this theorem to infinite dimensions will be treated elsewhere.

The other result of [4] is

THEOREM 6.5. If p is in L,(G,2(C",C")) N Ly(G,2(C",C")). then

(6.6) K trace [.p(g)p(g)*u(de) =

trace fanB(U-)'ﬁ(U)*E( Yyse et )m(dry) .. m(dr)
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Proofs The method of proof is similar to the one given above but

uses Plancherel's theorem which yields A

~

[op(e)p(e)*u(dg) = [ep()D(r)*m(ay).

7. The Maximal Ideals of L,(G, A)

Assume G is a compact abelian group and A4 is the space
of Hilbert-Schmidt operators in #(H,H), where H is a separable
Hilbert space. We show that the (closed) maximal ideals of L,(G,A#)

correspond to a.

+
IEMMA 7.1. If h is a continuous x-homomorphism of LQ(G,/V) onto

N, then M = kernel(h) is a meximal closed self-adjoint ideal such

that Ml is isometrically x-isomorphic to 4.

.

Proofs h 1is continuous so M 1is a closéd 2-sided ideal. M is
self adjoint as h is a x-homomorphism. _# is a full matrix algebra
so it is a simple H*-algebra. Also A4 and L,(G,#)/M i.e. Mt
are homeomorphically «x-isomorphic ({91, p. 181), so M is a mini-
mal closed ideal and M is a maximal ideal.

Note that if H is infinite dimensional, then M is not
regular for if it were there would e;ist p € Ly(G,#) such that for
all q ¢ LQ(G;,¢0 pxq-g € M° or h(p)h(q) = h(q). This means h(p)

would be an identity in 4, but the identity I e £(H,H) 4is not in

*If the isomorphism takes x — T then x¥* —T* the adjoint of T.
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A, If H is finite dimensional then such a p exists as I is

in A# end h is onto. A

THEOREM T.2. To every v in ¢ there corresponds a closed maxi-

mal ideal M of I,(G,#) givea by M= kernel(h) and
(7.3) h(p) = p(7).

Proofs Fix 7y in 'é and define h by 7.5. As G 1is compact
then LE(G,_/V) - Ll(G,/V) and so f) is given by the usual inte-
gral if p is in L2(G,/V). Direct computation shows h is a

s-homomorphism with norm less than or equal to 1. We need only

show h is onto, then the result follows by the preceeding lemma.

U A=7
Given U in # let q()\) ={ . Then gq is
| 0 AT

in L2(§,./V). (N.B. G is discrete, m((y}) = 1). By the Plancherel
theorem there exists p in L,(G,#) such that P =q. Then
?(v) =U or h is onto.

Observe that 'M.= ker(h) = (p: ’1\3( Y) =0} or M=
(p € 1,(G,4): < p(')ej,e. > = p..(‘) € M, i,j = 1...} where M.
is the ideal in I,(G,C) corresPondmg to v in G. (N. B. There
is a 1-1 correspondence between a and the maximal ideals of L2(G,C)
QD) a5l = Jg 312501 uae) = Zlpy 5, we can say tnet

M=M_XM_X...
T T

.
E
;i
ok
R
A




e2

LEMMA T.4. Let P, be the projection of # onto the ijth basis

J

element. If M is an ideal in I,(G,.#) }:_lg_g_ P.i.,jM is an ideal

LT

ir L,(G,C).

Proof: The basis elements bi;j of # are determined by

<b,.e.,e >=2058,0 where [er] is a fixed basis of H. Then

ijgr-s is jr
= = ] x’ -.'- > -—: » . 0 {
PisP = <Bbyy > §< pbijez,ez > r% prs(blj)rs pjj- Let @

be an element of I,(G,C) and set q(¢) = a(')bjj. Then prq is

in M if p isin M as M is an ideal. Hence

Pig(pea) = %piz*qz;i ) % Py gty = Pyy ¥ @

or piJ. #g 1is in PijM‘

Let us write P.,.M =M,..
ij ij

LEMMA 7.5. Ir M is a closed ideal in I,(G, #) then the Mij

are all identical and closed.

Proof: First we show M., is closed. Assume o € M.., o - Q.
, ij n- ij’ "n
: ‘ Then anbi,j —>ozbiJ.. Let ‘anbij =p, € L,(G,A#). Then Prs(pn) =0
for r £i, s #Jj, and O ¢ M., so P (p)eM  forall r,s.

Hence 'pn is in M. Now llpn.'pmlla'.= ”an-am||2 and so p  1is

Cauchy, hence converges to an element p of M as M is closed.

&
g
kY
b
i

Also PiJ'(pn) - Pi,j(p) by continuity of projections. Hence o =

Pij(P) € My, or Mi,j is ‘closed.
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Now if p e M, q € L,(G,/#) then prq € M and Pij(pmq) €

M.. or 2 qiz*pﬂ'j € Mij' But qiﬁ*pzj € Mz as

i pZJ € sz, so if

1J
L :
¢, Jn ,(G,C) is an approximate identity for I,(G,cC), ([1]),
; : : : N -1
and if q = me(o)bik, then the dense subset [@e*pkj. peM e==x

n=12,...} of Mkj is also a subset of Mij' As Mij is closed
then M . CIMij for any 1i,Jj,k. 8o Mij = Mkj for any 1i,k,J.

Now using g¢p we obtain Mij = Mik for any 1i,k,Jj, so the Mij

are all identical.

THEOREM 7.6, There is a 1-1 correspondence between the closed

maximal ideals of L,(G,#) and G, i.e. the regular maximal ideals

of L2(G,C) or Ll(G,C). This correspondence is given by

(7.7) M = (P ¢ I,(G,.#): (1) = 0).

Proof: By Theorem 7.4 we know every y corresponds to a closed

maximal ideal in L,(G,#) and 7.7 describes this correspondence.
Conversely if M € L2(GrAV) is closed, maximal then there exists
’MO, a closed ideal in I,(G,C) and M = {p e Ly(G,A): Py € M}

As Mo is a closed ideal it can be written as

*s

N

M = 2 &N, i

= N
iel Y if1

where [Ni}; are the minimal ideals of L,(G,C) and N; M, for
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ieX ([1]) and N?; the orthogonal complement of N, is a regular
maximal ideal. If Mg is not a regular maximal ideal, then M, €

N

My, M # M, where M, is a regular maximal ideal. But then ¥y

1’ 1
corresponding to Ml gives rise to a closed maximal ideal M e
Ly(G,#) end MDM, i £ M. This contradicts the maximality of M.
Hence Mb is a regular maximal ideal, and moreover, 7.7 holds.
This proves the theorem,

We note that if H is infinite dimensional then _# is,
and none of the closed maximal ideals are regular, whereas if H
is finite dimensional e#ll are. We also note that if H has di-
mension n < « then By an argument similar to the one in [1],
page 161, the closed ideals of 'Ll(G,i(H,H)) = Ll(G,/W) correspond
in a one to one fashion to the closed ideals of Ly(G, #) and so
the maximal ideals of Ll(G,f(H,H)) can be studied through the

transform on G. Unfortunately we cannot prove this for non-compact

groups.

8. Convolution Equations for Operators

The gbove theory can be used to solve operator intggral
equations much as in the scalar case. Let G be a locally compact,
abelian, o-finite group, H be a seﬁarable Hilbert space,.and

£(H,H), _# be as before.

FROFOSITION 8.1. If q ¢ Ly(G,#), p ¢ Ll(é’%ggsz‘f{H,H))‘ then prq €

LQ(G,I) ?_f}_@_ ”P*quz S ||P”1“C1“2
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Proof': This is straighiforward and will be omitted. See also [7].

Consider now A

(8.2) a(e) = [,p(e-g')ale' ) n(ag') + r(&)
or equivalently
(8.3) | Q= pq e

where p € Ll(G,i(H,H)), r € Ly(G,#). We are looking for solutions

q of 8.3 in IL,(G, ).

THEOREM 8.4, If r is in I,(G,.#), p is in L (G,£(H,H)) and if

sup I3 <1 then 8.% has a solution in I,(G, ).
1eG

Note that |lp], 2 |B(n)|l, v < €.

Proofs Consider I-P(y). As ||B(¥)]| <1 we know that (I-ﬁ(yf)";

exists for each Ye G and "(1-5(7))'1" s (1-"5(7?”)-1. It follows
(1-5()) ™" € 1 (8,2(H,K)) . and so [[(T-B(+))™ 2, = N(T-BC-)) "I JIFC)

Hence there exists q e L2(G,,¢) such that q(*) = (I-ﬁ(-))'l§(-)

o

by the Plancherel theorem. Iet w(g) = (pvqa)(g) so w ¢ 'Ly(6,.4)
by proposition 8.1. It can be shown by an approximation argument
that pxq(7) = B(1)A(¥). Then 4 = Faw = }43q = (T4B(*)(I-B(+)) 17T =

(I-ﬁ)-l? = a. Hence ¢q satisfies 8.3.
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COROLLARY 8.5. The above solution is wiigue in Lp(G,A).

A
Proofs If q_ is any other solution of (8.3) in ILo(G,#) then

NnAN

q, = r+pq, so q = (I-p)

1A ~
.

r=gq or q  =d. |
We wish to extend ﬁhe above theorem to cases where ”p”l z 1,
This can be done by utilizing some resulls due to Falb and Freedman
([8)). Let W Dbe the set of all continuous linear operators Z
mapping LQ(G,,JQ into itself such that there is a uniformly con-
tinuous function z(+) mapping G into L( 4, #) with zp(y) =

2(Y)B(r) for all vy in G, all p in L,(G,#). We use the norm

(8.6) | Izl = sup V=l s my
Te ’

2 2 . .
where waw, = Z [ETH| for x in A For p in L,(G,A)
A 4 ,
p(g) = p(-g) for almost all g in G. Also 4 is a B-algebra
so W 1s a B-algebra by the same proof as in [8].

Let B be given by

(8.7) B = (T Elf(Lg(G,H)J LQ(G:H))’ Tx(g) =
pr(g-g')x(g')dg’ + Ax(g) for some p e_Ll(G,f(H,H))

and M\ € C}.

We see that under the norm |||, given by |l = |5+ Al,B be-

comes a Banach space, in fact a B-algebra isometrically isomorphic

O N e M S e R BN L T S P AR L N LTI

FT O O
RSN
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to Ll(G,;C(H_.H)) @ C. Also if T = (p,A) then B(y) = B(r)+rI.
We shall now identify B with ﬁ,ﬁa B-algebra of lincar
operators of IL,(G,/#) into itself. TFor.h in H, p in I,(G,A#),

g in G, and T in B let T be defined by

(8.8) (To) (g)h = 7(p(+)h) (&),

so if T = (q,A) then Tp = qeptAp and ||T|| = “T”B. Herce B
and B are isometrically isomorphic (in the algebra sense). As
%p =9p + A\D by proposition 8,1, we have BC W, although the norms
are different,

Let A bve the maximal ideal space of L,(6,c) @ ¢ (or
just L,(G,C) 4if G is discrete), so we can put ;ﬂ': GU (=,
the one point compactification of G. Then define o(T(y)) =

(As T(¥)-MI does not have an inverse in £(H,H)}. Also LX) =

{r: T-A does not have an inverse in B}, Zﬁ(z) = {A: Z-A does not
have an inverse in W} and Z%(T) = (A: T-)A does not have an in-
verse in B)}. Evidently K %, (T) = Zg(ﬁ). As B, W and B have

identities then T-A, Z-A and T-A are defined for A in C.

DEFINITION 8.9. Let T be in B and let [ei} be an orthonormal

basis of H. "Let Hn = Span{el,...,en] and let En be the projec-

tion of H 2232 Hn' Then Tn = EnTEn iﬁ.iﬂ. B ggg T ig_gg-

proximable if @n(v) converges to @(7) uniformly on G U {0} .
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PROPOSITION 8.10. T in B is approximable if and only if each

T(7) is & completely continuous elcment of g,’(H,H) for each 7

in G U (), and the map 71 ->§( Y) is continuous on G U (e} .

Proof: Sce [8],

Now we have

THEOREM 8.11. If % in B is approximaeble, then Zw(?ﬁ) -
L) e ~
o(T(7)) C Zy(1) = X(T).

Proofs The proof is the same as that given in [8] for LQ(G,H)
rather than IL,(G, #). We need only note if x ¢ _#, A e £(H,H)
then "Axl'l/,/ = ||A‘H|X!|/;, so A e #(A#,#) and in fact "A";C(H,H) =
”A“i;( MN) 50 that Su}g “/'f( Y)nf(H,H) = i‘:g "a'( Y)”;C(./V,JV) F"OI‘
more details see [7] and [8].

We say p in Ll(G,;C(H,H)) is approximable if the cor-

responding element (p,0) in B ‘is.

TEEOREM 8.12, et p in Ll(q,f(H,H)) be approximable, let r be

ig I'2(G’/V)’ and let 1 ¢ D, a domain containing Uaa('ﬁ( Y) in
' ‘ Ye
its interior. Then 8.3 has a unique solution in L2(G,./V).

REMARK: We note first that if p ¢ L,(G,£(H,H)) then P is in
Co(a,i’(H,H)) 80 S(oo) = 0. Hence p is approximable if and only
if P(y) is a completely continuous element of Z(H,H) for every

Y eG
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Proofs U O'(i\)('f)) = UA ("( ) U {O) . tend D %
B U () yeao(p T) so we can exte )
D' such that 1 /D' and D' contains Ug o(p(y)) in its
G U (<]

interior. Now we can definc F(p) ¢ W where P(t) = (l-t)"l
is analytic on D', a domain containing Xh(p). If A is the
identity in W then F(p) = (4a-p)L e W and F(B(1)) = (I-B(1))7%,

Y € a, ([9], page 20%3). If I is a simple closed rectifiable curve

enclosing U o(B(¥)) in D' then we have for x e L, (G, #)
v U ()
2N\ . -
(8.13) F(p)x(7) = gy [F(t)(sa-p) Nt % (7)
e
e -
= —-% fph‘(t)(t&p)\:%( y)dt

]

srr RE(E) (5-0(1) "t 3(¥)

F(p(1))*( 7).

Hence if r € L,(G,#) and q = F(p)r € Ly(G,#) then

A AN

~ A PN .

a(r) = P(B(rNP(1) = (I-3(7))"(y). Consequently r+ptq = r+pq =
A A A=A A =]1A A

r+p(I-p) r = (I-p) r = q S0 by the Plancherel theorem q 1is a

solution of 8.3.

Uniqueness can be proved by the method of corollary 8.5.

.

-
‘s
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