General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

The Inversion Theci:em and Plancherel's

Theorem in Infinite Dimensions
by

U. Haussmann ${ }^{1}$
Center for Dynamical Systems Division of Applied Mathematics
Brown University
Providence, Rhode Island 02912

SEP 1969

RECEIVED NASA STI FACIETM INPUT BRANCH

1 This research was supported in part by NASA under Grant NO. NGL $40-002=015$ and by the National Research Council of Canada. The results constitute a part of the authors doctoral dissertation written under the supervisical of and with the encouragement of Professor P. L. Falb.

Theorem in a Banach Space

1. Introduction

Let G be a locally compact abelian group with Haar measare μ, an let X be a Banach space and C be tic set of complex numbers. A classic theorem due to Plancherel ([.1], [2]) states that the Fourier transform maps $L_{1}(G, C) \cap L_{2}(G, C)^{+}$onto a dense subset of $L_{2}(\hat{G}, C)$ (\hat{G} is the dual group of G and has Haar measure m) in such a way that. $\left.\int_{G} \alpha(g) \bar{\beta}(g) \mu(d g)=\int_{\hat{G}} \hat{\alpha}(\gamma) \overline{\hat{\beta}(\gamma)} m^{\prime}, d \gamma\right)$ for all α, β in $L_{1}(G, C) \cap L_{2}(G, C)$ where $\hat{\alpha}$ is the Fourier transform of α, given by $\hat{\alpha}(\gamma)=\int_{G} \overline{(g, \gamma)} \alpha(g) \mu(d g)$ for all r in \hat{G}. Here ($\left.g, \gamma\right)$ denotes the action of the character γ on g in G. In this paper we extend this result to functions taking values in an inner product subspace of a Banach algebra.

Another well-known theorem ([1], [2]) states that if α is a positive definite element of $L_{1}(G, C) \cap L_{\infty}(G, C)$ the.. $\hat{\alpha}$ is in $L_{1}(\hat{G}, C)$ and

$$
\begin{equation*}
\alpha(g)=\int_{\hat{G}}(g, r) \hat{\alpha}(\gamma) m(d \gamma) \tag{1.1}
\end{equation*}
$$

[^0]for (almost) all g in G. This inversion theorer is also generalized to functions assuming values in certain admissible Banach spaces.

Our work relies heavily on an extension of Bochner's theorem established in [3]. We show that if p is in $L_{1}(G, X) \cap L_{\infty}(G, X)$, if p is positive definite (positivity is defined with respect to a particular cone in X), and if $p(0)$ satisfies a certain finiteness condition, then \hat{p}, the Fourier transform of p, is in $L_{1}(\hat{G}, x)$ and the inversion formula 1.1 given for α holds for p. A sharper theorem states that if p is in $L_{1}(G, X) \cap L_{\infty}(G, X)$, if p is positive definite, and if there is a real, finite, regular Borel measure λ such that $\left\|\int_{G} \alpha(g) p(g) \mu(d g)\right\| \leqq \int_{\hat{G}}|\hat{\alpha}(r)| \lambda(d \gamma)$ for all α in $L_{1}(G, C)$, then \hat{p} is in $L_{1}(\hat{G}, X)$ and 1.1 is satisfied by p.

Using this theory we give new proofs of some results due to Hewitt and Wigner ([4]).

Now assume G is compact and \mathscr{N} is the set of HilbertSchmidt operators on a separable Hilbert space H. Then we show that the closed maximal ideals of the algebra $L_{2}(G, \mathcal{M})$ are in a one to one correspondence with \hat{G}. The same result holds for $L_{2}(G, A)$ where A is any separable simple H^{*}-algebra.

Finally we prove existence and uniqueness theorems for equations of the form

$$
\begin{equation*}
q(g)=r(g)+\int_{G} p\left(g-g^{\prime}\right) q\left(g^{\prime}\right) \mu\left(d g^{\prime}\right) \tag{1.2}
\end{equation*}
$$

where r is in $L_{2}(G, N), p$ is in $L_{1}(G, \mathcal{L}(H, H))$, H is a separable Hilbert space and $\mathcal{L}(H, H)$ is the space of continuous linear operators mapping H into H (so $\mathscr{N} \subset \mathscr{L}(H, H)$). Solutions q are to be elements of $I_{2}(G, N)$.

2. Bochner's Theorem and Dominated Functions

Let X be a Banach space, X^{*} the dual of X and $X^{* *}$ the dual of X^{*}. For φ in X^{*} we denote the action of φ on $x \in X$ by (x, φ). Given a subset of X^{*} we can define a cone of "positive" elements in X .

DEFTNITION 2.1. Let Φ be a subset of X^{*}. The subset K_{Φ} of X given by

$$
\begin{equation*}
K_{\Phi}=\{x \in X:(x, \varphi) \geqq 0 \text { for all } \varphi \in \Phi\} \tag{2.2}
\end{equation*}
$$

is called the cone determined by Φ.
Sometimes we write simply K if Φ is fixed by the contex. K_{Φ} is the set of "positive" elements.

Let G be a σ-finite locally compact abelian group with Haar measure μ and let \hat{G} be its dual group with Haar measure m. DEFINITICN 2.3. Let p be a measurable map of G into X. Then p is Φ-positive definite if

$$
\begin{equation*}
\sum_{n=1}^{N} \sum_{m=1}^{N} c_{n} \bar{c}_{n n}\left(p\left(\varepsilon_{n}-g_{n}\right), \varphi\right) \geqq 0 \tag{2.4}
\end{equation*}
$$

for any integer N, any c_{1}, \ldots, c_{N} in C, any g_{1}, \ldots, g_{N} in G, and all φ in 9. If p is in $L_{\infty}(G, X)$ then p is integrally ©-positive definite if

$$
\begin{equation*}
\left(\int_{G} \int_{G} \alpha(g) \bar{\alpha}\left(g^{\prime} T p\left(g-g^{\prime}\right) d \mu d \mu, \varphi\right) \geqq 0\right. \tag{2.5}
\end{equation*}
$$

for all α in $L_{1}(G, C)$ and all φ in Φ.
Next we impose a condition which relates Φ to the topology
of X .

DEFINITION 2.6. The family Φ is full if there is a $\rho>0$ such that

$$
\begin{equation*}
\|x\| \leqq \rho \sup _{\substack{\varphi \in \Phi \\ \varphi \neq 0}}\{|(x, \varphi)| /\|\varphi\|\} \tag{2.7}
\end{equation*}
$$

for all x in x.
The following two propositions examine the relationship between the two notions of positive-definiteness.

PROFOSITION 2.8. If Φ is full and p is Φ-positive definite then p is in $L_{\infty}(G, X)$ and $p(0)$ is in K_{Φ}.

Proof: It is readily shown that for g in G, φ in $\Phi,|(p(g), \varphi)| \leqq$ $(p(0), \varphi)$ so that $\|p(g)\| \leqq p\|p(0)\|$.

PROROSITIION 2.9. Let p be in $L_{\infty}(G, X)$ such that one version of p is ωX-continuous ${ }^{+}$. Then p is Φ-positive definite if and only if p is integrally Φ-positive definite.

Proof: See [3] or [7].
We shall aee shortly (corollary 2.15) that all those elements of $L_{\infty}(G, X)$ of interest to us have the continuity required in proposition 2.9.

Next we recall some results from measure theory, Let S be a locally compact topological space and let $\Sigma(S)$ be the Borel field of S (i.e. the smallest σ-field containing the closed sets of S).

DEFINITION 2.10. A vector measure v is a weakly countably additive set function defined $\quad \Sigma(\mathrm{S})$ and taking values in $\mathrm{X} . \quad v$ is weakly regular if the scalar measures $(\nu(\cdot), \varphi)$ are regular ${ }^{++}$for all φ in $X^{*} . v$ is Φ-positive if $(\nu(E), \varphi) \leqq 0$ for all φ in Φ and E in $\Sigma(s)$.

DEFINITION 2.11. A set function $v^{* *}$ mapping $\Sigma(S)$ into $X^{* *}$ is weak-*-regular if $\left(\varphi, v^{* *}(\cdot)\right)$ is a regular scalar measure for all φ in $X^{*} . \nu^{* *}$ is Φ-positive if $\left(\varphi, \gamma^{* *}(E)\right) \geqq 0$ for all φ in Φ, E in $\Sigma(s)$.
${ }^{+}$The mapping f of G into X is ωX-continuous if it is continuous when the weak topology is imposed on X. G retains its usual topology. ${ }^{++}$A scalar measure λ is regular if, given $\epsilon>0$ and $E \in \Sigma(s)$ with $\|\lambda\|(E)<\infty$ (i.e. λ has finite variation on E), then there is a compact $K \subset E$ and an open $0 \supset E$ such that $\|\lambda\|(0-K)<\epsilon$.

If v is a vector measure we denote its variation on a
measurable set E by $\|v\|(E)$ and its semi-variation by $|v|(E)$ ([5], [6]). The following theorem, an extension of Bochner's theorem, is essential to our work. The proof is given in [3]. We assume \varnothing is full.

THEOREM 2.12. (A) If v is a weakly regular Φ-positive vector measure defined on $\Sigma(\hat{G})$ and if

$$
\begin{equation*}
p(g)=\int_{\hat{G}}(g, \gamma) v(d \gamma) \tag{2.13}
\end{equation*}
$$

then p is an integrally Φ-positive definite element of $L_{\infty}(G, X)$.
(B) If p is an integrally Φ-positive definite element of $I_{\infty}(G, X)$, then there is a set function $v^{* *}$ mapping $\Sigma(\hat{G})$ into $X^{* *}$ such that (i) $v^{* *}$ is weak-*-regular, Φ-positive with finite semi-variation and (ii)

$$
\begin{equation*}
(p(g), \varphi)=\int_{\hat{G}}(g, \gamma)\left(\varphi, \nu^{* *}(d \gamma)\right) \tag{2.14}
\end{equation*}
$$

for all φ in X^{*} and almost all g in G.

COROLLARY 2.15. If p is an integrally Φ-positive definite element of $L_{\infty}(G, X)$, then one version of p is ωX-continuous. If p is given by 2.13, where v is a weakly regular Φ-positive vector measure defined on $\Sigma(\hat{G})$, then p is a continuous map of G into X.

Proof, This follows from the relevant regularity. See also [7]. With the aid of theorem 2.12 we can prove a useful inversion theorem. However, a different version of Bochner's theorem will allow us to establish a sharper theorem. We require first the following

DEFINITION 2.16. p in $L_{\infty}(G, X)$ is dominated if there exists a finite, regular, positive Bore measure λ, such that

$$
\begin{equation*}
\left\|\int_{G} \alpha(g) p(g) \mu(d g)\right\| \leqq \int_{\hat{G}}|\hat{\alpha}(r)| \lambda(d r) \tag{2.17}
\end{equation*}
$$

for all α in $L_{1}(G, C)$, where $\hat{\alpha}$ is the Fourier transform of α, i.e. $\hat{\alpha}(\gamma)=\int_{G} \overline{(g, r)} \alpha(g) \mu(d g)$.

DEFINITION 2.18. Let Φ be a subset of X Assume there is a function ϕ_{0} mapping K_{Φ} into $R^{+} U\{\infty\}^{*}$ in a linear manner such that φ_{0} is uniformly positive on K_{Φ}, i.e. there exists $k>0$ such that $k\left(x, \varphi_{0}\right) \geqq\|x\|$ for all x in K_{Φ}. Furthermore assume there is an at most countable sequence $\left\{\varphi_{i}\right\}$ in Φ and a sequence $\left\{c_{i}\right\}$ in R^{+}such that $\left(x, \varphi_{0}\right)=\sum_{i=1}^{\infty} c_{i}\left(x, \varphi_{i}\right)$ for all x in K_{ϕ}. Then we say that the pair (Φ, x) is admissible. We let,$K_{0}=$ $\left\{x \in K_{\Phi}:\left(x, \varphi_{0}\right)<\infty\right\}$.

LEMMA 2.19. If (Φ, X) is admissible, if Φ is full, and if $p \in$ $\frac{\mathrm{I}_{\infty}(\mathrm{G}, \mathrm{X}) \text { is integrally } \Phi \text {-positive definite with } \mathrm{p}(0) \text { in } K_{0} \text {, then }}{{ }^{*} \mathrm{R}^{+} \text {is the set of non-negative real numbers. }}$
p is dominated.

Proof: We note first that $p(0)$ is well defined by corollary 2.15.
Let $\psi(\alpha)=\int_{G} \alpha(g) p(g) \mu(d g)$ for all α in $I_{1}(G, C)$, then $(\psi(\alpha), \varphi)=$ $\int_{\hat{\mathrm{G}}} \hat{\alpha}(\gamma)\left(\varphi, \nu^{* *}(\mathrm{~d} \gamma)\right)$ for some weak-*-regular, Φ-positive set function $\nu^{*}: *$ given by theorem 2.12. We can actually define $\hat{\psi}(f)$ mapping $C_{0}(\hat{G})^{+}$into X by $(\hat{\psi}(f), \varphi)=\int_{\hat{G}} f(\gamma)\left(\varphi, v^{* *}(d r)\right)$. Then $\hat{\psi}$ is a bounded Linear map, $\|\hat{\psi}(f)\| \leqq\|f\|_{\infty}\left|v^{* *}\right|(\hat{G})$.

If f is in $C_{0}(\hat{G})$ then $f=f_{1}-f_{2}+i f_{3}-i f_{4}$ where f_{1} is in $C_{0}(\hat{G}), f_{i}(r) \geqq 0$, and each pair of functions $\left(f_{1}, f_{2}\right),\left(f_{3}, f_{4}\right)$ has disjoint support. Hence $f_{i}(\gamma) \leqq|f(r)|$, and $\hat{\psi}\left(f_{i}\right)$ is in K_{Φ} so that $\left\|\hat{\psi}\left(f_{i}\right)\right\| \equiv k\left(\hat{\psi}\left(f_{i}\right), \varphi_{0}\right)=k \sum_{j=1}^{\infty} c_{j}\left(\hat{\psi}\left(f_{i}\right), \varphi_{j}\right)=k \sum_{j} c_{j} \int_{\hat{G}_{i}} f_{i}(\gamma)$ $\left(\varphi_{\infty}, v^{* *}(\mathrm{~d} r)\right)$. Consider now the set function λ given by $\lambda(E)=$ $\left.\sum_{i=1}^{\infty} c_{j}{ }^{\prime} \mathcal{F}_{i}, \nu^{* *}(E)\right), E \in \Sigma(\hat{G})$. Then $\lambda(E) \geqq 0$ for all E in $\Sigma(\hat{G})$, and also λ is additive. Moreover $\lambda(E) \leqq\left(p(0), \varphi_{0}\right)<\infty$ as $p(0)$. is in K_{0}.
λ is countably additive because $\lambda\left(U E_{j}\right)=\sum_{i} \sum_{j} c_{i}\left(\varphi_{i}\right.$, $\left.v^{* *}\left(E_{j}\right)\right)=\sum_{j} \sum_{i} c_{i}\left(\varphi_{i}, v^{* *}\left(E_{j}\right)\right)=\sum_{j} \lambda\left(E_{j}\right)$, if the E_{j} are disjoint (note that $c_{i}\left(\varphi_{i}, v^{* *}\left(E_{j}\right)\right) \geqq 0$ for all $\left.i, j\right)$. Also λ is regular, for given $\in>0$ and E in $\Sigma(\hat{G})$, there is a number N such that $\sum_{N+1}^{\infty} c_{i}\left(\varphi_{i}, \nu^{* *}(\hat{G})\right)<\epsilon / 2$ and there is., a compact $K \subset E$ and an open $0 \supset E$ such that $\left(\varphi_{i}, v^{* *}(0-K)\right)<\epsilon / 2 N c_{i}, i=1,2, \ldots, N$. Hence $\lambda(0-K)<\epsilon$.
${ }^{{ }^{+} C_{0}(\hat{G})}$ is the space of continuous functions mapping \hat{G} into C, which vanish at ∞ if \hat{G} is only locally compact.

Then $\|\hat{\psi}(f)\| \leqq \sum_{i=1}\left\|\hat{\psi}\left(f_{i}\right)\right\| \leqq k \sum_{i} \int_{\hat{G}^{\prime} f_{i}}(\gamma) d \lambda \equiv 4 k \int \hat{G}^{\prime} \mid f(\gamma)_{i}^{\prime} d \lambda$. It follows that if $\lambda^{\prime}=4 \mathrm{k} \lambda$ then $\|\psi(\alpha)\| \leqq \int_{\hat{G}}|\hat{\alpha}(r)| \alpha \lambda^{\prime}$. This establishes the lemma.

We can now state the alternate version of Bochner's
theorem. Assume Φ is full and countable.

THEOREM 2.20. p is a dominated, integrally Φ-positive definite element of $\mathrm{L}_{\infty}(\mathrm{G}, \mathrm{X})$ if and only if there is a weakly regular Φ positive vector measure v mapping $\Sigma(\hat{G})$ into X such that v has finite variation, i.e. $\|v\|(\hat{\mathrm{G}})<\infty$, and such that

$$
\begin{equation*}
\mathrm{p}(\mathrm{~g})=\int_{\hat{\mathrm{G}}}(\mathrm{~g}, \gamma) v(\mathrm{~d} \gamma) . \tag{2.21}
\end{equation*}
$$

For the proof see [3]. In this case, of course, p is continuous by corollary 2.15 .
3. Inversion Theorems

$$
\text { If } p \in L_{1}(G, X) \text { we recall that the Fourier transform of }
$$

p is given by

$$
\begin{equation*}
\hat{p}(r)=\int_{G}(g, r) p(g) \dot{ }(d g) . \tag{3.1}
\end{equation*}
$$

For convenience we let $\mathscr{P}=\left(\mathrm{p} \in \mathrm{I}_{\infty}(\mathrm{G}, \mathrm{X}): \mathrm{p}\right.$ is integrally Φ -
positive definite $)$ and $\mathscr{P}=(\mathrm{p} \in \mathscr{P}: \mathrm{p}$ is dominated $)$. We recall
that if $p \in \mathscr{P}$ then p is ωx-continucus (corollary 2.15). If (Φ, X) is admissible then \mathscr{T}_{0} is the set of functions p mapping G into X such that p is ωX-cor inuous and such that $p(0) 13$ in K_{0} "where K_{0} is defined in 2.18.

PROPOSITION 3.2. (A) If $p \in \operatorname{span}\left(L_{1}(G, x) \cap \mathscr{P}\right)$ and if $\varphi \in$ span (ϕ) then $(\hat{p}(\cdot), \varphi) \in L_{1}(\hat{G}, C)$ and (R) if the Haar measure of C is fixed then the Haar measure of $\hat{\mathrm{G}}$ can be so normalized that

$$
\begin{equation*}
(p(g), \varphi)=\cdot \int_{G}(g, \gamma)(\hat{p}(\gamma), \varphi) m(d \gamma) \tag{3.3}
\end{equation*}
$$

is valid for all $p \in \operatorname{span}\left(L_{1}(G, X) \cap \mathscr{P}\right\}$ and all $\varphi \in \operatorname{span}\{\Phi\}$.
Proof: It is evident the results need only hold for $p \in L_{1}(G, X) \cap \mathscr{P}$,
$\varphi \in \Phi$. But this follows from the scalar inversion theorem ([2], p. 22).

A better result is the following.

THEOREM 3.4. Assume Φ is full and countable and (Φ, X) is admissible. (A) If $p \in \operatorname{span}\left(L_{1}(\dot{G}, X) \cap \mathscr{P} \cap \mathscr{T}_{0}\right\}$ then $\hat{p} \in L_{1}(\hat{G}, X)$, and (B) if μ is fixed then m can be so normalized that

$$
\begin{equation*}
\mathrm{p}(\mathrm{~g})=\int_{\hat{G}}(\mathrm{~g}, r) \hat{\mathrm{p}}(r) \mathrm{m}(\mathrm{~d} r) \tag{3.5}
\end{equation*}
$$

for all p in $\operatorname{span}\left\{L_{1}(G, X) \cap \mathscr{P}, \cap \mathscr{T}_{0}\right\}$ and all g in G.

Proof: Agaila we need only prove the results for P in $L_{1}(G, X) \cap \mathscr{P}$ $\cap \mathscr{\sigma}_{0}$. For such a p and for φ in Φ we have from 3.3 and 2.14

$$
\begin{equation*}
(p(g), \varphi)=\int_{\hat{G}}(g, \gamma)(\hat{p}(\gamma), \varphi) m(d \gamma)=\int_{\hat{G}}(g, \gamma)\left(\varphi, \nu^{* *}(d \gamma)\right) \tag{3.6}
\end{equation*}
$$

so that for any $E \in \Sigma(\hat{G}), \varphi \in \Phi \quad \int_{E}(\hat{p}(r), \varphi) m(d r)=\left(\varphi, \nu^{* *}(E)\right) \geqq 0$. So, in fact, for any $p \in L_{1}(G, X) \cap \mathscr{P}$ we have

$$
\begin{equation*}
(\hat{p}(\gamma), \varphi) \geqq 0, \varphi \in \Phi, r \in \hat{G} \tag{3.7}
\end{equation*}
$$

Now $\infty>\left(p(0), \varphi_{0}\right)=\sum_{i=1}^{\infty} c_{i}\left(p(0), \varphi_{i}\right)=\sum_{i=1}^{\infty} c_{i}\left(\varphi_{i}, v^{* *}(\hat{G})\right)=$ $\sum_{i=1}^{\infty} c_{i} \int_{\hat{G}}\left(\hat{p}(\gamma), \varphi_{i}\right) m(d \gamma) \stackrel{i=1}{=} \int_{\hat{G}}\left(\hat{p}(\gamma), \varphi_{0}\right) m(d \gamma) \geqq \int_{G} \hat{l}\|\hat{p}(\gamma)\| m(d \gamma)$ using the monotone convergence theorem, the fact that $\hat{p}(\gamma) \in K_{\Phi}$ for all $r \in \hat{G}$, and the fact that \hat{p} is continuous so $\|\hat{p}(\cdot)\|$ is measurable. As p is measurable and G is σ-finite, then p is essentially soparably valued and so is \hat{p}. As \hat{p} is also continuous it is measurable. Hence (A) is established.

Now 3.6 yields $(p(g), \varphi)=\left(\int_{\hat{G}}(g, \gamma) \hat{p}(\gamma) m(\mathrm{~d} \gamma), \varphi\right)$ for any $\Phi \in \Phi$ and almost all $g \in G$. As Φ is full and countable we have $p(g)=\int_{G}(g, r) \hat{p}(r) m(d r)$ for almost all g. This proves the theorem.

We give now the sharper theorem which does, however, require \hat{G} to be σ-finite.

THEOREM 3.8. Assume Φ is full and countable and \hat{G} is σ-finite.
(A) if $p \in \operatorname{span}\left(L_{1}(G, X) \cap \mathscr{P}_{d}\right)$ then $\hat{p} \in L_{1}(\hat{G}, X)$, (B) if μ is fixed then m can be so normalized that 3.5 holds for all $p \in$ $\underline{\operatorname{span}}\left(\mathrm{L}_{\mathrm{l}}(\mathrm{G}, \mathrm{X}) \cap \mathscr{P}_{\mathrm{d}}\right)$.

Proof: If $p \in L_{1}(G, X)$ then $\hat{p} \in L_{\infty}(\hat{G}, X)$. If $p \in \mathscr{P}_{d}$ also and $p(g)=\int \hat{G}(g, r) v(d \gamma)$ as in 2.21, then $v(E)=\int_{E} \hat{p}(\gamma) m(d r)$ for $E \in \Sigma(\hat{G})$ such that $m(E)<\infty$. Then $\|v\|(E)=\int_{E}\|\hat{p}(\gamma)\| m(d \gamma)$ for $m(E)<\infty$, or, for any such $E, \int_{H}\|\hat{p}(\gamma)\| m(d \gamma) \leqq\|v\|(\hat{G})<\infty$ as v has finite variation. Now \hat{G} is σ-finite so if $\left\{\hat{\mathrm{G}}_{\mathrm{n}}\right\}$ is a sequence in $\Sigma(\hat{G})$ increasing to \hat{G} then $\int_{\hat{G}}\|\hat{p}(r)\| m(d r)=$ $\lim _{n \rightarrow \infty} \int_{\hat{G}_{n}}\|\hat{p}(\gamma)\| m(d \gamma) \leqq\|\nu\|(\hat{G})<\infty$. It follows by the monotione convergence theorem that $\hat{p} \in L_{1}(\hat{G}, X)$. (B) follows readily. We note that lemma 2.19 and theorem 3.8 give an immediate proof of theorem 3.4 if G is σ-finite. Actually theorem 3.4 is the more useful theorem although theorem 3.8 is sharper.

COROLLARY 3.9. If p is given by

$$
\begin{equation*}
p(g)=\int_{\hat{G}}(g, r) v(d r) \tag{3.10}
\end{equation*}
$$

where v is a weakly regular Φ-positive vector measure with finite variation and if p is in $L_{1}(G, X)$, then 3.5 holds.

4. The Plancherel Theorem

As usual this theorem is set in a Hilbert space and so
we must first develop the necessary structure. Assume now that X is a Banach algebra with continuous involution $x \rightarrow x^{*}$.

DEFINITION 2.14. The triplet $\left(\Phi, X_{0} X_{0}\right)$ is strongly admissible if (i) (Φ, X) is admissible, (ii) X_{0} is a nontrivial subspace of X such that $x x^{*}$ is in K_{0}^{+}for all x in X, and (iii) there exists $k_{0}>0$ such that if $x \in X_{0}$ then

$$
\begin{equation*}
k_{0}\left\|x x^{*}\right\| \geqq\|x\|^{2} \tag{4.2}
\end{equation*}
$$

We note that 4.2 is satisfied if X is a C^{*}-algebra. Now we have

PROPOSITIION 4.3. If X is a Banach algebra and if (Φ, X, X_{0}) is strongly admissible then X_{0} is a Hilbert space under the norm $\|\cdot\|_{0}$ where $\|x\|_{0}^{2}=\langle x, x\rangle_{0}$ and $\langle x, y\rangle_{0}=\left(x y^{*}, \varphi_{0}\right)$. Proof, φ_{0} is only defined on K and we do not know that if $x, y \in X_{0}$ then $x y^{*} \in K$. However we can extend φ_{0} by setting $\left(x y^{*}, \varphi_{0}\right)=\sum_{i=1}^{\infty} c_{i}\left(x y^{*}, \varphi_{i}\right)$ were $\left\{c_{i}\right\},\left\{\varphi_{i}\right\}$ define φ_{∞} on K. Then $|<x, y\rangle_{0}\left|=\left|\left(x y^{*}, \varphi_{0}\right)\right|=\left|\sum_{i=1}^{\infty} c_{i}\left(x y^{*}, \varphi_{i}\right)\right| \equiv \sum_{1}^{\infty} c_{i}\left(x x^{*}, \varphi_{i}\right)^{1 / 2}\right.$ $\left(y y^{*}, \varphi_{i}\right)^{1 / 2}$ where the last inequality follows because φ_{i} is a positive functional. Hence we can define $\langle x, y\rangle_{0}$ for $x, y \in X_{0}$ and $\left|<x, y>_{0}\right| \leqq\|x\|_{0}\|y\|_{0}$. It follows from 2.18 and 4.2 that $\mathrm{kk}_{0}\|x\|_{0}^{2} \geqq\|x\|^{2}$ and that $\|\cdot\|_{0}$ is a norm.
${ }^{+} K_{0}$ is defined in 2.18.

If $\left\{x_{n}\right\}$ is Cauchy in $\|\cdot\|_{0}$ then it is Cauchy in $\|\cdot\|$, so $x_{n} \rightarrow x \in X$. As K is closed then $x x^{*} \in K$. Also $\left\{x_{n}\right\}$ is bounded in $\|\cdot\|_{0}$ because it is Cauchy, so $\sum_{i=1}^{\infty} c_{i}\left(x_{n} x_{n}^{*}, \varphi_{i}\right) \leqq M$, hence $\sum_{i=1}^{\infty} c_{i}\left(x x^{*}, \varphi_{i}\right) \leqq M$ or $x \in K_{0}$. Choose $m(\epsilon)$ such that if $n, m>\underset{N}{i=1}(\epsilon)$ then $\left\|x_{n}-x_{m}\right\|_{0}<\epsilon$. Then $\sum_{i=1}^{N} c_{i}\left(\left[x-x_{m}\right]\left[x-x_{m}\right] *, \varphi_{i}\right)=$ $\lim _{n \rightarrow \infty} \sum_{i=1}^{N} c_{i}\left(\left[x_{n}-x_{m}\right]\left[x_{n}-x_{m}\right] *, \varphi_{i}\right) \leqq \lim _{n \rightarrow \infty} \sup _{i=1} \sum_{i=1}^{\infty} c_{i}\left(\left[x_{n}-x_{m}\right]\left[x_{n}-x_{m}\right]^{*}, \varphi_{i}\right)<\epsilon^{2}$ n $n \rightarrow \infty=1$ for $m>m(\epsilon) \quad\left\|x-x_{m}\right\|_{0}<\epsilon$, or X_{0} is a Hilbert space. If X is a Banach algebra and G is σ-finite, then $L_{1}(G, X)$ is also a Banach algebra ([8]). If X has the involution $x \rightarrow x^{*}$, then we can define an involution on $L_{1}(G, X)$ as $p \rightarrow p^{*}$ where $\mathrm{p}^{*}(\mathrm{~g})=\mathrm{p}(-\mathrm{g})^{*}$.

THEOREM 4.4. If \rightarrow is σ-finite, X is a Banach algebra with contenuous involution, Φ is a full and countable subset of X^{*} and (Φ, X, X_{0}) is strongly admissible, then (i) if $\left\{e_{\alpha}\right\}$ is an orthonormal basis for X_{0} and there exists k_{1} such that $\left|<x, e_{\alpha}\right\rangle_{0} \mid \leqq$ $k_{1}\|x\|$ for $x \in X_{0}$ and all α, then the Fourier transform maps $L_{1}(G, X) \cap L_{2}\left(G, X_{0}\right)$ onto a dense subset of $L_{2}\left(\hat{G}, X_{0}\right)$, (ii) for $q, r \in$ $L_{1}(G, X) \cap L_{2}\left(G, X_{0}\right)$

$$
\begin{equation*}
\int_{G} q(g) r(g) \mu(d g)=\int \hat{G}^{\hat{q}}(r) \hat{r}(r) m(d r), \tag{4.5}
\end{equation*}
$$

(iii) for $q, r \in L_{1}(G, X) \cap L_{2}\left(G, X_{0}\right)$

$$
\begin{equation*}
\langle q, r\rangle=\langle\hat{q}, \hat{r}\rangle, \tag{4.6}
\end{equation*}
$$

where $\left\langle q, r>=\int_{G}\langle q(g), r(g)\rangle_{0} \mu(d g)\right.$ and $\langle\hat{q}, \hat{r}\rangle=\int_{\hat{G}}\langle\hat{q}(r)$, $\hat{r}(r)>{ }_{\mathrm{o}}^{\mathrm{m}}(\mathrm{d} r)$.

Proof: We shall. put $\|q\|_{I}=\int_{G}\|q(g)\| \mu(d g)$ and $\|q\|_{2}=$ $\left(\int_{G}\|q(g)\|_{o}^{2} \mu(d g)\right\}^{1 / 2}$ for $q \in L_{1}(G, X) \cap L_{2}\left(G, X_{o}\right)$. Let $p(g)=$ $\left(q * q^{*}\right)(g)$. As $q \in L_{1}(G, x)$ so is p with $\|p\|_{1} \leqq\|q\|_{1}^{2}$. It can also be shown that $p \in C_{0}\left(G, X_{0}\right)^{+}$as $q \in L_{2}\left(G, X_{0}\right)$. Now $p(0)=$ $\int_{\mathrm{g}} \mathrm{q}(\mathrm{g}) \mathrm{q}(\mathrm{g}) * \mu(\mathrm{dg}) \in \mathrm{K}$ so $\left(\mathrm{p}(0), \varphi_{0}\right)=\left(\int_{\mathrm{G}} \mathrm{q}(\mathrm{g}) \mathrm{q}(\mathrm{g}) * \mu(\mathrm{dg}), \varphi_{0}\right)=$ $\left.\sum_{i=1}^{\infty} c_{i} \int_{G}(q(g) q(g))^{*}, \varphi_{i}\right) \mu(d g)=\int_{G}\left(q(g) q(g)^{*}, \varphi_{o}\right) \mu(d g)=\int_{G}\|q(g)\|_{o}^{2} \mu(d g)=$ $\left\|=\frac{i=1}{2}\right\|_{2}^{2}<\infty$ using the monotone convergence theorem. Hence $p \in$ $\mathrm{L}_{1}(\mathrm{G}, \mathrm{X}) \cap \mathscr{T}_{0}$.

Now $C_{0}\left(G, X_{0}\right) \subset C_{0}(G, X)$ so $p \in L_{\infty}(G, X)$. Also $\left.\int_{G} \int_{G^{\prime}} \alpha(g) \bar{\alpha} \overline{g^{\prime}}\right) p\left(g-g^{\prime}\right) \mu(d g) \mu\left(d g^{\prime}\right)=\int_{G}\left[\int_{G} \alpha(g) q\left(g-g^{\prime \prime}\right) \mu(d g)\right]\left[\int_{G} \alpha\left(g^{\prime}\right)\right.$ $\left.q\left(g^{\prime}-g^{\prime \prime}\right) \mu\left(d g^{\prime}\right)\right] * \mu\left(d g^{\prime \prime}\right)=\int_{G^{\prime}} q^{\prime}(g) q^{\prime}(g) * \mu(d g) \quad$ using the Fubini and Tonelli theorems with $\alpha \in \mathrm{L}_{1}(\mathrm{G}, \mathrm{C}) . q^{\prime}=\alpha * q \in \mathrm{I}_{2}\left(\mathrm{G}, \mathrm{X}_{0}\right)$ ([8]) so $q^{\prime}(g) \in X_{0}$ a.e. or $q^{\prime}(g) q^{\prime}(g)^{*} \in K_{0}$ a.e. Hence if $\varphi \in \varphi$ then $\left(\int_{G^{\prime}}(g) q^{\prime}(g) * \mu(d g), \varphi\right)=\int_{G}\left(q^{\prime}(g), q^{\prime}(g) *, \varphi\right) \mu^{\prime}(\mathrm{dg}) \geqq 0$ or $p \in \mathscr{P}$.

Consequently theorem 3.4 yields $p(g)=\int_{\hat{G}}(\mathrm{~g}, r) \hat{p}(\gamma) \mathrm{m}(\mathrm{d} r)$. Then $\infty>\|q\|_{2}^{2}=\langle q, q\rangle=\sum_{i=1}^{\infty} c_{i}\left(p(0), \varphi_{i}\right)=\sum_{i} c_{i} \int_{\hat{G}}\left(\hat{p}(r), \varphi_{i}\right) m(d r)=$ $\int_{\hat{G}}\left(\hat{p}(\gamma), \varphi_{0}\right) m(d \gamma)=\langle\hat{q}, \hat{q}\rangle$. We have used the monotione convergence theorem again. Hence the Fourier transform maps into $\mathrm{L}_{2}\left(\hat{\mathrm{G}}, \mathrm{X}_{0}\right)$. By the usual expansion $\langle\mathrm{q}, \mathrm{r}\rangle=\langle\hat{\mathrm{q}}, \hat{r}\rangle$. This establishes (iii).

[^1]Moreover $\int_{G} q(g) q(g)^{*} \mu(d g)=p(0)=\int_{\hat{G}} \hat{p}(r) m(d r)=$ $\int_{\widehat{G}} \hat{q}(\gamma) \hat{q}(\gamma) * m(d r)$. Also if x, y are elements of a Banach algebra with involution then

$$
\begin{equation*}
4 x y^{*}=(x+y)(x+y)^{*}-(x-y)(x-y)^{*}+i(x+i y)(x+i y)^{*}-i(x-i y)(x-i y)^{*} \tag{4.7}
\end{equation*}
$$

so that (ii) is also proved.
We need only show that $Q=\left\{\hat{q} \in L_{2}\left(\hat{G}, X_{0}\right): q\right.$ in $L_{1}(G, X) \cap$ $\left.L_{2}\left(G, X_{0}\right)\right\}$ is dense in $L_{2}\left(\hat{G}, X_{0}\right)$. As μ is translation invariant so is $L_{1}(G, X) \cap L_{2}\left(G, X_{0}\right)$ and hence Q is invariant under multiplication by (g, \cdot) for any $g \in G$. If $r \in J_{2}\left(\hat{G}, X_{0}\right)$ and $<q, r>=0$ for all $q \in Q$, then $\int_{\hat{G}}\left(q(r) r(r)^{*}, \varphi_{0}\right)(g, r) m(d r)=0$ for all $q \in Q$ and $g \in G$. As $\left(q(\cdot) r(\cdot)^{*}, \varphi_{0}\right) \in L_{1}(\hat{G}, C)$ it follows that $\left(q(\gamma) r(\gamma)^{*}, \varphi_{0}\right)=0$ a.e. for every $q \in Q$, or $<q(\gamma)$, $r(r)>_{0}=0$ a.e. As $L_{1}(G, X) \cap L_{2}\left(G, X_{0}\right)$ is invariant under multiplication by $(\cdot, \gamma), \gamma \in \hat{G}$, then Q is invariant under translation. ${ }^{+}$ Hence to every $r_{0} \in \hat{G}$ there corresponds $q_{0} \in Q$ such that $q_{0}\left(r_{0}\right) \neq 0$ se $q_{0}(r) \neq 0$ in a neighborhood of r_{0} as q_{0} is continuous. If $\left\{e_{\alpha}\right\}$ is the basis of X_{0} mentioned in the statement of part (i), then $q_{0}(\cdot)=\sum_{\alpha} q_{\alpha}(\cdot) e_{\alpha}$ so there exists α_{0}
such that $q_{\alpha_{0}}(\gamma) \neq 0$ in a neighborhood of r_{0}. If $q_{0}(\cdot)=\hat{p}(\cdot)$ then $p=\sum_{\alpha} p_{\alpha} e_{\alpha}$ and as $p \in L_{2}\left(G, X_{0}\right), p_{\alpha} \in L_{2}(G, C)$. By hypothesis $\left|<x, e_{\alpha}\right\rangle_{0}^{\alpha} \mid \leqq k_{1}\|x\|$ so $p_{\alpha} \in L_{1}(G, C)$ and $\hat{p}_{\alpha}(\gamma)=q_{\alpha}(r)$. Hence
${ }_{\text {By this we mean that }} f_{r_{0}}$ is in Q for any γ_{0} in \hat{G} if f is in Q and $f_{r_{0}}(r)=f\left(r+r_{0}\right)$.
$p_{\alpha_{0}}(\cdot) e_{\alpha} \in L_{1}(G, X) \cap L_{2}\left(G, X_{0}\right)$ for any α and $p_{\alpha_{0}} e_{\alpha}(\cdot)=$ $q_{\alpha}(\cdot) e_{\alpha} \in Q$. Since for each r in a ncighmorhood of r_{0} $\left\{q_{\alpha_{0}}(\gamma) e_{\alpha}\right\}_{\alpha}$ forms a complete set in x_{0}, and since $0=<q_{\alpha_{0}}(\gamma) e_{\alpha}$, $r(r)>_{0}$, then $r(r)=0$ in a neighborhood of r_{0}. But r_{0} was arbitrary so $r=0$, or Q is orthogonal only to 0 in $J_{2}\left(\hat{G}, X_{0}\right)$, a Hillbert space. Hence Q is dense in $L_{2}\left(\hat{G}, X_{0}\right)$. This completes the proof.

COROLLARY 4.8. Under the assumptions of the theorem the Fourier transform can be extended in a unique manner to an isometry of $\mathrm{I}_{2}\left(\mathrm{G}, \mathrm{X}_{\mathrm{o}}\right)$ onto $\mathrm{L}_{2}\left(\hat{\mathrm{G}}, \mathrm{X}_{\mathrm{o}}\right)$.

Proof: We need only show $L_{1}(G, X) \cap L_{2}\left(G, X_{0}\right)$ is dense in $L_{2}\left(G, X_{0}\right)$. But $C_{c}\left(G, X_{0}\right)^{+}$is dense in $L_{2}\left(G, X_{0}\right)([7])$. Hence if $f \in L_{2}\left(G, X_{0}\right)$ then there exists $\left\{f_{n}\right\}_{1}^{\infty} \subset C_{c}\left(G, X_{0}\right) \cap L_{2}\left(G, X_{0}\right)$ such that $\left\|f_{n}-f\right\|_{2} \rightarrow 0$. Then $f_{n} \in C_{c}(G, X)$ and f_{n} is measurable so $f_{n} \in L_{1}(G, X)$.

Remark: The equality (4.5) holds for all $q, r \in I_{2}\left(G, X_{0}\right)$.

5. Examples

Here we give some examples of admissible pairs and strongly admissible triplets.

EXAMPLE 5.1. Let $\mathrm{X}=\mathrm{L}_{1}([0,1], \mathrm{c})$ so X is weakly complete, and let Φ consist of elements φ_{i} such that ${ }^{F_{C}}\left(G, X_{0}\right)$ denotes the set of functions in $C_{0}\left(G, X_{0}\right)$ having compact support.

$$
\begin{equation*}
\left(x, \varphi_{i}\right)=\int_{0}^{1} x_{i}(t) x(t) d t \quad x \in X \tag{5.2}
\end{equation*}
$$

where $X_{i}(\cdot)$ is the indicator function of one of a countable collection of sets $\left\{E_{i}\right\}$ dense in $\Sigma([0,1])$ under the usual Hausdorff metric. Assume $E_{\perp}=[0,1]$. Then it can be shown ([3], [7]) that Φ is full and that K is the cone of nonnegative (ae.) functions. Let $\left(x, \varphi_{0}\right)=\left(x, \varphi_{1}\right)=\int_{0}^{1} x(s) d s=\|x\|_{1}$ for $x \in K$. Hence (Φ, X) is admissible and $K_{0}=K$.

If p is in \mathscr{P} then $p(0)$ is in $K=K_{0}$ by propositions 2.8 and 2.9 and by corollary 2.15. So $p \in \mathscr{T}_{0}$ and the inversion theorem states that if $p \in \operatorname{sp}\left(I_{1}\left(G, I_{1}([0,1], C)\right) \cap \mathscr{P}\right)$ then $\hat{p} \in$ $I_{1}\left(\hat{G}, L_{1}([0,1], C)\right)$ and $p(g)=\int_{\hat{G}}(g, \gamma) \hat{p}(\gamma) m(d \gamma)$.

The author does not know of any nontrivial subspace X_{0} which would make ($\Phi, X_{0} X_{0}$) strongly admissible.

EXAMPLE 5.3. Let $X=H$, a separable Hilbert space with a fixed orthonormal basis $\left\{e_{i}\right\}_{1}^{\infty}$. Let H_{0} be the set of elements of H with all but a finite number of components zero, with nonzero components being real, rational non-negative, and with norm less than or equal to one. Then $\Phi=H_{0}$ is full ([3], [7]) and countable and $K_{\Phi}=\left\{h \in H: h_{i} \geqq 0\right\} .^{+} \operatorname{Let}\left(h, \varphi_{i}\right)=\left\langle h, e_{i}\right\rangle, i=$ $1,2, \ldots$ and $\varphi_{0}=\sum_{i}^{\infty} \varphi_{i}$. Then φ_{0} maps K into $[0, \infty]$, and for whin K

$$
\overline{t_{i}}=\left\langle h, e_{i}\right\rangle
$$

$$
\left(h, \varphi_{0}\right)^{2}=\left(\sum h_{i}\right)^{2} \geqq \sum h_{i}^{2}=\|h\|^{2}
$$

so that (Φ, H) is admissible and $K_{0}=\left(h \subset K_{i} \sum_{1}^{\infty} h_{i}<\infty\right)$.
H becomes a Banach algebra if we define $h k=\sum_{l}^{\infty} h_{i} k_{i} e_{i}$. Let $h^{*}=\sum \bar{h}_{i} \epsilon_{i}$. For h in H h h h^{*} is in K and (hh*, ρ_{0}) = $\sum_{i} h_{i} \bar{h}_{i}=\|h\|^{2}$. We do not have $k\left\|h h^{x}\right\| \geq\|h\|^{2}$ for some $k>0$, but we do have $\|h\|_{0}=\|h\|$ which is sufficient to show that $X_{0}=H$. Hence ($\Phi, \mathrm{H}, \mathrm{H}$) is strongly admissible, and the plancherel theorem applies. Note that the condition $\left|\left\langle h, e_{i}\right\rangle\right| \leqq\|h\|$ also holds.

EXAMPLE 5.4. Let $X=\mathcal{L}(H, H)$, the linear bounded operators mapping the separable Hilbert space H into itself. Lot H_{0} be a countable dense subset of the unit ball in H and let $\Phi=\left\{\varphi \in X^{*}:(T, \varphi)=\langle T h, h\rangle\right.$, $\left.T \in \mathcal{L}(H, H), h \in H_{0}\right\}$. Let $\left\{e_{i}\right\}$ lso be in H_{0} for some orthonormal basis $\left\{e_{i}\right\}$. Then Φ is full and countable and K_{Φ} is the cone of positive operators ([3] or [7]). Let $\left(T, \varphi_{0}\right)=\sum_{i}^{\infty}\left\langle T e_{i}, e_{i}\right\rangle$. So $\varphi_{0}=\sum_{1}^{\infty} \varphi_{i}$ is the trace, where $\left(T, \varphi_{i}\right)=\left\langle T e_{i}, e_{i}^{l}\right\rangle$. Then $\varphi_{0}: K \rightarrow[0, \infty],\left(T, \varphi_{0}\right)=\operatorname{tr} T \geqq\| \|_{1}$ if T is positive. Hence $(\Phi, \mathscr{L}(H, H))$ is admissible and $K_{\mathcal{U}}$ is the cone of positive operators of finite trace and so a subset of the trace class.

We can see that in one case the condition $p \in \mathbb{T}_{0}$ is necessary for the inversion theorem to hold. Let G be the circle group so that \hat{G} is countable. Label its elements r_{1}, r_{2}, \ldots, and let the set function v be given by

$$
\begin{equation*}
\left\langle v\left(\left(\gamma_{n}\right\}\right) e_{i}, e_{j}\right\rangle=p_{n} \delta_{n i} \delta_{n j}^{+}, i, j, n=1,2, \ldots \tag{5.5}
\end{equation*}
$$

A

where $\infty>M \geqq p_{n} \geqq 0$. v can be extended to a countably additive measure of finite semi-variation in the obvious way. Let p be given by

$$
\begin{equation*}
p(t)=\sum_{n=1}^{\infty} e^{i t r_{n}} v\left(\left(r_{n}\right\}\right) \tag{5.6}
\end{equation*}
$$

Then p is in \mathscr{P} (theorem $2.12(A)$) and p is in $L_{1}(G, X)$ because G is compact and $\|p(t)\| \leqq M$. If \hat{p} is to be in $L_{1}(\hat{G}, X)$ then $\|v\|(\hat{G})$ must be finite or $\sum_{1}^{\infty} p_{n}=\operatorname{tr} p(0)<\infty$.

Finally let $\mathrm{X}_{0}=\mathscr{N}$, the Hilbert-Schmidt operators ([5a]). Then for T in $\mathscr{N}, T T^{\%}$ is in the trace class and is positive so that $T T^{*}$ is in K_{0}. Also $\mathcal{L}(H, H)$ is a C^{*}-algebra so ($\left.\Phi, \mathcal{L}(H, H), N\right)$ is strongly admissible. A basis for \mathcal{N} is given by $\left\{T_{i j}\right\}$ where $\left\langle T_{i j} e_{k}, e_{\ell}\right\rangle=\delta_{i k} \delta_{j \ell}, k, \ell=1,2, \ldots$. Then $\left|\left\langle T, T_{i j}\right\rangle_{0}\right|=$ $\left|\left\langle T e_{i}, e_{j}\right\rangle\right| \leqq T \|$, and the condition in (i) of theorem 4.4 also holds.

6. On a Theorem of Magnus

We use the preceeding theory to deduce a result of Hewitt and Wigner's ([4]). Let $U(\cdot)$ be a continuous n-dimensional unitary representation of G i.e. $U\left(g+g^{\prime}\right)=U(g) U\left(g^{\prime}\right), U(0)=I$ and U is a continuous mapping of G into $\mathcal{L}\left(C^{n}, C^{n}\right)$. Then there is a unitary matrix v and characters r_{1}, \ldots, r_{n} such that

[^2]\[

\mathrm{U}(g)=\mathrm{V}^{-1}\left[$$
\begin{array}{ccc}
\left(g, r_{1}\right) & & 0 \tag{6.1}\\
0 & \cdot & \Delta \\
& \left(g, r_{u 1}\right)
\end{array}
$$\right]^{\mathrm{V}}
\]

for all E in $G([9])$. Hence $U(\cdot)$ is given as a function of n characters. Lee A be a symmetric compact neighborhood of 0 in A having finite positive measure, and let $E\left(r_{1}, \ldots, r_{n}\right)$ be the function on \hat{G}^{n} which equals 1 if $r_{j}-r_{k}$ is in A for all j, k, and equals zero otherwise. Let p be in $L_{l}\left(G, z\left(c^{n}, c^{n}\right)\right)$ and let

$$
\begin{equation*}
\hat{p}(U)=\int_{G} p(g) U(g) \mu(d g) \tag{6.2}
\end{equation*}
$$

Theorem 6.3. If p is in $L_{1}\left(G, \mathcal{L}\left(C^{n}, C^{n}\right)\right) \cap L_{\infty}\left(G, \mathcal{L}\left(C^{n}, C^{n}\right)\right)$ and if for any α in $L_{1}(G, C) \quad \int_{G} \int_{G} \alpha(g) \overline{\alpha\left(g^{\prime}\right)} p\left(g-g^{\prime}\right) \mu(d g) \mu\left(d g^{\prime}\right)$ is positive semidefinite, then there is a constant $k, 0<k<\infty$ such that

$$
\begin{equation*}
\kappa p(g)=\int_{\hat{G} n} \hat{p}(U) U(-g) E\left(r_{1}, \ldots, r_{n}\right) m\left(d r_{1}\right) \ldots m\left(d r_{n}\right) \tag{6.4}
\end{equation*}
$$

Proof: Using the setting of example 5.4 with $H=C^{n}$ we have $p \in \mathscr{P}$.
Then p is continuous and trace $p(0)<\infty$ so that p is in \mathscr{T}_{0}. Hence $p(g)=\int_{\hat{G}}(g, r) \hat{p}(r) m(a r)$ by theorem 3.4. But $U(g)=$ $\sum_{i=1}^{n} \overline{\left(g, r_{i}\right)} \pi_{i}$ where the π_{i} are projections onto mutually orthogonal
one-dimonsional subspaces ([9]). Then $\hat{n}(U)=\int_{G} p(g) U(g) \mu(d g)=$ $\sum \hat{p}\left(r_{i}\right) \pi_{i}$ and $\hat{p}(U) U(-g)=\sum_{i=1}^{n} \hat{p}\left(r_{i}\right) \pi_{i} \sum_{j=1}^{n}\left(g, r_{j}\right) \pi_{j}=\sum_{i=1}^{n} \hat{p}\left(r_{i}\right)\left(g, r_{i}\right) \pi_{i}$. Now let $k=\int_{\hat{G}^{n-1}} E\left(r_{1}, \ldots, r_{n}\right) m\left(d r_{1}\right) \ldots m\left(d r_{n}\right)$ where we omit integration with respect to r_{i}. Then k is independent of i and of the value of r_{i} by the choice of E, and $0<K \leq m(A)^{n-1}<\infty$. Now we have

$$
\begin{aligned}
& \int_{\hat{G}^{n}} \hat{p}(U) U(-g) E\left(r_{1}, \ldots, r_{n}\right) m\left(d r_{1}\right) \ldots m\left(d r_{n}\right) \\
&=\sum_{i=1}^{n} \int_{\hat{G}^{n}} \hat{p}\left(r_{i}\right)\left(g, r_{i}\right) E\left(r_{1}, \ldots, r_{n}\right) m\left(d r_{1}\right) \ldots m\left(d r_{n}\right) \pi_{i} \\
&=\sum_{i=1}^{n} k \int_{\hat{G}^{2}} \hat{p}\left(r_{j}\right)\left(g, r_{i}\right) m\left(d r_{i}\right) r_{i} \\
&=\kappa p(g)
\end{aligned}
$$

and the theorem is established.
Note that p could actually be a finite -inear combination of functions satisfying the requirements of the theorem. The extension of this theorem to infinite dimensions will be treated elsewhere. The other result of [4] is

THEOREM 6.5. If p is in $L_{1}\left(G, \mathscr{L}\left(C^{n}, C^{n}\right)\right) \cap L_{2}\left(G, \mathcal{L}\left(C^{n}, C^{n}\right)\right)$ then

$$
\begin{align*}
& \kappa \text { trace } \int_{G} p(g) p(g) * \mu(d g)= \tag{6.6}\\
& \text { trace } \int_{\hat{G}^{n}} \hat{p}(U) \hat{p}(U) * E\left(r_{1}, \ldots, r_{n}\right) m\left(d r_{1}\right) \ldots m\left(d r_{n}\right)
\end{align*}
$$

Proof: The method of proof is similar to the one , Eiven above but uses Plancherel's theoren which yields

$$
\int_{G} p(g) p(g) * \mu(d g)=\int_{G} \hat{p}(r) \hat{p}(r) * m^{n}(d r) .
$$

7. The Maximal Ideals of $\mathrm{L}_{2}(\mathrm{G}, \mathcal{N})$

Assume G is a compact abelian group and \mathscr{N} is the space of Hilbert-Schmidt operators in $\mathcal{L}(H, H)$, where H is a separable Hilbert space. We show that the (closed) maximal ideals of $L_{2}(G, \mathcal{N})$ correspond to \hat{G}.

LEMMA 7.1. If h is a continuous *-homomorphism of $L_{2}(G, \mathcal{N})$ onto \mathcal{N}, then $M=$ kernel (h) is a maximal closed self-adjoint ideal such that M^{\perp} is isometrically $*$-isomorphic to $N_{\text {. }}$

Proof: h is continuous so M is a closed 2-sided ideal. M is self adjoint as h is a *-homomorphism. \mathcal{N} is a full matrix algebra so it is a simple H^{*}-algebra. Also \mathcal{N} and $L_{2}\left(G, \mathcal{M} / M\right.$ i.e. M^{\perp} are homeomorphically $*$-isomorphic ([9], p. 181), so M^{\perp} is a minimal closed ideal and M is a maximal ideal.

Note that if H is infinite dimensional, then M is not regular for if it were there would exist $p \in L_{2}(G, M)$ such that for all $q \in L_{2}(G, \mathcal{N}) \quad p_{*} q-q \in M^{*}$ or $h(p) h(q)=h(q)$. This means $h(p)$ would be an identity in \mathscr{N}, but the identity $I \in \mathcal{L}(H, H)$ is not in

[^3]
N. If H is finite dimensional then such a p exists as I is in \mathscr{N} and h is onto.

THEOREM 7.2. To every r in \hat{G} there corresponds a closed maximaI ideal M of $\mathrm{J}_{2}(G, \mathcal{M})$ giver by $M=$ kernel (h) and

$$
\begin{equation*}
h(p)=\hat{p}(\gamma) \tag{7.3}
\end{equation*}
$$

Proof, Fix r in \hat{G} and define h by 7.3. As G is compact then $L_{2}\left(G, \mathcal{M} \subset L_{1}(G, \mathcal{M})\right.$ and so \hat{p} is given by the usual intergrail if p is in $L_{2}(G, \mathcal{M})$. Direct computation shows h is a *-homomorphism with norm less than or equal to 1 . We need only show h is onto, then the result follows by the proceeding lemma. Given U in N let $q(\lambda)=\left\{\begin{array}{ll}U & \lambda=r \\ 0 & \lambda \neq r\end{array}\right.$. Then q is in $L_{2}(\hat{G}, \mathcal{N})$. (NB. \hat{G} is discrete, $m(\{\gamma\})=1$). By the Plancherel theorem there exists p in $L_{2}(G, M)$ such that $\hat{p}=q$. Then $\hat{p}(\gamma)=U$ or h is onto.

Observe that $M=\operatorname{ker}(h)=\{p: \hat{p}(\gamma)=0\}$ or $M=$
$\left\{p \in L_{2}(G, \mathcal{N}):\left\langle p(\cdot) e_{j}, e_{i}\right\rangle=p_{i j}(\cdot) \in M_{\gamma^{\prime}} i, j=1 \ldots\right\}$ where M_{γ} is the ideal in $L_{2}(G, C)$ corresponding to r in \hat{G}. (N.B. There is a 1-1 correspondence between \hat{G}° and the maximal ideals of $L_{2}(G, C)$ ([1]).) As $\|p\|_{2}^{2}=\int_{G} \sum_{i j}\left|p_{i j}(g)\right|^{2} \mu(d g)=\sum_{i j}\left\|p_{i j}\right\|_{2}^{2}$, we can say that $M=M_{r} \times M_{r} \times \ldots$

IEMMA 7.4. Let $P_{i j}$ be the projection of \mathcal{N} onto the $i j{ }^{\text {th }}$ basis element. If M is an ideal in $I_{2}(G, \mathcal{N})$ then $P_{i j} M$ is an ideal in $L_{2}(G, C)$.

Proof: The basis elements b_{ij} of \mathcal{N} are determined by $\left\langle b_{i j} e_{r}, e_{s}\right\rangle=\delta_{i s} \delta_{j r}$ where $\left\{e_{r}\right\}$ is a fixed basis of H. Then $P_{i j} p=\left\langle p, b_{i j}\right\rangle_{0}=\sum_{\ell}\left\langle p b_{i j}^{*} e_{\ell}{ }^{e}{ }_{\ell}\right\rangle=\sum_{r S} p_{r s}\left(b_{i j}\right)_{r s}=p_{i j}$. Let α be an element of $L_{2}(G, C)$ and set $q(\cdot)=\alpha(\cdot) b_{j j}$. Then $p * q$. is in M if p is in M as M is an ideal. Hence

$$
p_{i j}(p * q)=\sum_{\ell} p_{i \ell}{ }^{* q} q_{\ell j}=\sum_{\ell} p_{i \ell}{ }_{\ell j}=\delta_{i j} * \alpha
$$

or $p_{i j} * \alpha$ is in $P_{i j}{ }^{M}$.
Let us write $P_{i j} M=M_{i j}$.
LEMMA 7.5. It M is a closed ideal in $L_{2}(G, N)$ then the $M_{i j}$ are all identical and closed.

Proof: First we show $M_{i j}$ is closed. Assume $\alpha_{n} \in M_{i j}, \alpha_{n} \rightarrow \alpha$. Then $\alpha_{n} b_{i j} \rightarrow \alpha b_{i j}$. Let $\alpha_{n} b_{i j}=p_{n} \in L_{2}(G, \mathcal{M})$. Then $p_{r s}\left(p_{n}\right)=0$ for $r \neq i$, $s \neq j$, and $0 \in M_{r s}$, so $P_{r s}\left(p_{n}\right) \in M_{r s}$ for all r, . Hence p_{n} is in M. Now $\left\|p_{n}-p_{m}\right\|_{2}=\left\|\alpha_{n}-\alpha_{m}\right\|_{2}$ and so p_{n}^{\prime} is Cauchy, hence converges to an element p of M as M is closed. Also $P_{i j}\left(p_{n}\right) \rightarrow P_{i j}(p)$ by continuity of projections. Hence $\alpha=$ $P_{i j}(p) \in M_{i j}$, or $M_{i j}$ is closed.

Now if $p \in M, q \in L_{2}(G, \mathcal{N})$ then $p * q \in M$ and $p_{i j}(p r q) \in$ $M_{i j}$ or $\sum_{\ell} q_{i \ell}{ }^{* p_{\ell j}} \in M_{i j}$. But $q_{i \ell} p_{\ell j} \in M_{\ell i,}$ as $p_{\ell j} \in M_{\ell j}$, so if φ_{ϵ} in $\dot{H}_{2}(G, C)$ is an approximate identity for $\mathrm{L}_{2}(\mathrm{G}, \mathrm{C})$, ([1]), and if $q=\varphi_{\epsilon}(\cdot) b_{i k}$, then the dense subset $\left\{\varphi_{\epsilon}{ }^{*} p_{k j}: p \in M, \epsilon=\frac{l}{n}\right.$, $n=1,2, \ldots\}$ of $M_{k j}$ is also a subset of $M_{i j}$. As $M_{i j}$ iss closed then $M_{k j} \subset M_{i j}$ for any i, j, k. So $M_{i j}=M_{k j}$ for any i, k, j. Now using $q^{*} p$ we obtain $M_{i j}=M_{i k}$ for any i, k, j, so the $M_{i j}$ are all identical.

THEOREM 7.6. There is a l-1 correspondence between the closed maximal ideals of $L_{2}(G, \mathcal{N})$ and \hat{G}, ie. the regular maximal ideals of $L_{2}(G, C)$ or $L_{1}(G, C)$. This correspondence is given by

$$
\begin{equation*}
M_{r}=\left\{p \in L_{2}(G, \mathcal{N}): \hat{p}(r)=0\right\} . \tag{7.7}
\end{equation*}
$$

Proof: By Theorem 7.4 we know every r corresponds to a closed maximal ideal in $L_{2}(G, \mathcal{M})$ and 7.7 describes this correspondence. Conversely if $M \in L_{2}(G, N)$ is closed, maximal then there exists M_{0}, a closed ideal in $L_{2}(G, C)$ and $M=\left\{p \in L_{2}(G, N): p_{i j} \in M_{o}\right\}$. As M_{0} is a closed ideal it can be written as

$$
M_{0}=\sum_{i \in I} \oplus N_{i}=\underset{i \notin I}{\bullet} \mathbb{N}_{i}^{L}
$$

where $\left\{N_{i}\right\}_{1}^{\infty}$ are the minimal ideals of $L_{2}(G, C)$ and $N_{i} \subset M_{0}$ for
$i \in I([1])$ and N_{j}^{1}, the orthogonal complement of N_{i}, is a regular maximal jideal. If M_{0} is not a regular maximal ideal, then $M_{0} \subset$ $M_{\perp}, M_{0} \neq M_{1}$ where M_{1} is a regular maximal ideal. But then r corresponding to M_{1} gives rise to a closed maximal ideal $\tilde{M} \epsilon$ $L_{2}(G, N)$ and $\tilde{M} \supset M, \tilde{M} \neq M$. This contradicts the maximality of M. Hence M_{o} is a regular maximal ideal, and moreover, 7.7 holds. This proves the theorem.

We note that if H is infinite dimensional then \mathscr{N} is, and none of the closed maximal ideals are regular, whereas if H is finite dimensional ell are. We also note that if H has dimension $n<\infty$ then by an argument similar to the one in [1], page 161, the closed ideals of $L_{1}(G, \mathcal{L}(H, H))=I_{1}(G, \mathcal{M})$ correspond in a one to one fashion to the closed ideals of $L_{2}(G, \mathcal{N})$ and so the maximal ideals of $L_{1}(G, \mathcal{L}(H, H))$ can be studied through the transform on $\hat{\mathbf{G}}$. Unfortunately we cannot prove this for non-compact groups.

8. Convolution Equations for Operators

The above theory can be used to solve operator integral equations much as in the scalar case. Let G be a locally compact, abelian, σ-finite group, H be a separable Hilbert space, and $\mathscr{L}(\mathrm{H}, \mathrm{H}), \mathscr{N}$ be as before.

PROPOSITION 8.1. If $\left.q \in L_{2}(G, \mathcal{N}), p \in L_{1}\left(G_{i}, H, H\right)\right)$ then $p * q \in$ $L_{2}(G, \mathcal{N})$ and $\|p * q\|_{2} \leqq\|p\|_{1}\|q\|_{2}$.

Proof: This is straightforward and will be omitted. See also [7]. Consider now

$$
\begin{equation*}
\mathrm{q}(\mathrm{~g})=\int_{\mathrm{G}} \mathrm{p}\left(\mathrm{~g} \cdot \mathrm{~g}^{\prime}\right) \mathrm{q}\left(\mathrm{~g}^{\prime}\right) \mu\left(\mathrm{d} \mathbb{E}^{\prime}\right)+r(\mathrm{~g}) \tag{8.2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
q=p^{v} q+r \tag{8.3}
\end{equation*}
$$

where $p \in L_{1}(G, \mathcal{L}(H, H)), r \in L_{2}(G, \mathcal{M})$. We are looking for solutions q of 8.3 in $I_{2}(G, N)$.

THEOREM 8.4. If r is in $\mathrm{I}_{2}\left(\mathrm{G}, \mathrm{M}, \mathrm{p}\right.$ is in $\mathrm{L}_{1}(\mathrm{G}, \mathcal{L}(\mathrm{H}, \mathrm{H}))$ and if $\sup _{\gamma \in G}\|\hat{p}(\gamma)\|<1$ then 8.3 has a solution in $L_{2}(G, N)$.

Note that $\|\mathrm{p}\|_{I} \geqq\|\hat{\mathrm{p}}(r)\|, \quad r \in \hat{G}$.
Proof: Consider I- $\hat{p}(\gamma)$. As $\|\hat{p}(\gamma)\|<1$ we know that (I- $\hat{p}\left(\gamma_{i}^{\prime}\right)^{-1}$. exists for each $r \in \hat{G}$ and $\left\|(I-\hat{p}(r))^{-1}\right\| \leqq(1-\|\hat{p}(r)\|)^{-1}$. It follows $(I-\hat{p}(\cdot))^{-I} \in I_{\infty}(\hat{G}, \mathcal{L}(H, H))$ and so $\left\|(I-\hat{p}(\cdot))^{-1} \hat{r}(\cdot)\right\|_{2} \leqq\left\|(I-\hat{p}(\cdot))^{-1}\right\|_{\infty}\|\hat{r}(\cdot)\|_{2}$. Hence there exists $q \in L_{2}\left(G, \mathcal{M}\right.$ such that $\hat{q}(\cdot)=(I-\hat{p}(\cdot))^{-I} \hat{r}(\cdot)$ by the Plancherel theorem. Let $w(g)=(p * q)(g)$ so $w \in L^{\prime} L_{2}(G, \mathcal{M}$ by proposition 8.1. It can be shown by an approximation argument that $p * q(r)=\hat{p}(r) \hat{q}(r)$. Then $\widehat{r}+\hat{w}=\hat{r}+\hat{w}=\hat{r}+\hat{p} \hat{q}=\left(I+\dot{\hat{p}}(\cdot)(I-\hat{p}(\cdot))^{-1}\right) \hat{r}=$ $(I-\hat{p})^{-1} \hat{r}=\hat{q}$. Hence q satisfies 8.3 .

COROLIARY 8.5. The above solution is unique in $I_{2}(G, \mathcal{N})$.
Proof: If q_{0} is any other solution of (8.3) in $\mathrm{L}_{2}(G, \mathcal{N})$ then $\hat{q}_{0}=\hat{r}+\hat{p} \hat{q}_{0}$ so $\hat{q}_{0}=(I-\hat{p})^{-1} \hat{r}=\hat{q}$ or $q_{0}=q$.

We wish to extend the above theorem to cases where $\|\mathrm{p}\|_{\perp} \geqq 1$.
This can be done by utilizing some results due to Fall and Freedman ([8]). Let W be the set of all continuous linear operators Z mapping $\mathrm{I}_{2}(G, \mathcal{M})$ into itself such that there is a uniformly continuous function $z(\cdot)$ mapping \widehat{G} into $\mathcal{L}(\mathbb{N}, \mathcal{N})$ with $\mathrm{zp}(\gamma)=$ $z(\gamma) \hat{p}(\gamma)$ for all r in \hat{G}, all. p in $L_{2}(G, N)$. We use the norm

$$
\begin{equation*}
\|z\|_{W}=\sup _{r \in G}\|z(r)\|_{\mathcal{L}}(\mathscr{N}, \mathscr{N}) \tag{8.6}
\end{equation*}
$$

where $\|x\|_{\mathcal{N}}^{2}=\sum_{i}\left\|x e_{i}\right\|^{2}$ for x in \mathscr{N}. For p in $L_{2}(G, \mathcal{N})$ $p(g)=\hat{\hat{p}}(-g) \quad$ for almost all g in G. Also \mathscr{N} is a B-algebra. so W is a B-algebra by the same proof as in [8]. Let B be given by

$$
\begin{align*}
& B=\left\{T \in \mathcal{L}\left(L_{2}(G, H), L_{2}(G, H)\right): T x(g)=\right. \tag{8.7}\\
& \int_{G} p\left(g-g^{\prime}\right) x\left(g^{\prime}\right) d g^{\prime}+\lambda x(g) \text { for some } p \in L_{1}(G, \mathcal{L}(H, H)) \\
& \text { and } \lambda \in C\} \text {. }
\end{align*}
$$

We see that under the norm $\|\cdot\|_{B}$, given by $\|T\|_{B}=\|p\|_{1}+|\lambda|, B$ becomes a Banach space, in fact a B-algebra isometrically isomorphic
to $\mathrm{L}_{1}(\mathrm{G}, \mathcal{f}(\mathrm{H}, \mathrm{H})) \oplus \mathrm{C}$. A.lso if $\mathrm{I}=(\mathrm{p}, \lambda)$ then $\hat{\mathrm{I}}(\gamma)=\hat{\mathrm{p}}(\gamma)+\lambda \mathrm{I}$. We shalli now identify B with \tilde{B}, B-algebra of linear operators of $L_{2}(G, \mathcal{M})$ into itself. For h in H, p in $L_{2}(G, \mathcal{N})$, G in G, and T in B let \tilde{T} be defined by

$$
\begin{equation*}
(\tilde{T} p)(g) h=\mathbb{T}(p(\cdot) h)(g) \tag{8.8}
\end{equation*}
$$

so if $T=(q, \lambda)$ then $\tilde{T} p=q: p+\lambda p$ and $\|\tilde{T}\|=\|T\|_{B}$. Herce \tilde{B} and B are isometrically isomorphic (in the algebra sense). As $\tilde{T} p=\hat{q} \hat{p}+\lambda \hat{p}$ by proposition 8.1 , we have $\tilde{B} \subset W$, although the norms are different.

Let \mathscr{M} be the maximal ideal space of $L_{1}(G, C) \oplus C$ (or just $L_{1}(G, C)$ if G is discrete), so we can put $\mathscr{M} \cong \hat{G} U\{\infty\}$, the one point compactification of \hat{G}. Then define $\sigma(\hat{T}(\gamma))=$ $\{\lambda: \hat{T}(\gamma)-\lambda I$ does not have an inverse in $\mathcal{L}(H, H)\}$. Also $\sum_{B}(\tilde{T})=$ $\{\lambda: \tilde{T}-\lambda$ does not have an inverse in $\tilde{B}\}, \Sigma_{W}(Z)=\{\lambda: Z-\lambda$ does not. have an inverse in $W\}$ and $\Sigma_{B}(T)=\{\lambda: T-\lambda$ does not have an inverse in B]. Evidentiy . $\sum_{B}(T)=\sum_{\tilde{B}}(\tilde{T})$. As B, W and \tilde{B} have identities then $\mathbb{T}-\lambda, Z-\lambda$ and $\tilde{\mathbb{T}}-\lambda$ are defined for λ in C. DEFINITION 8.9. Let T be in B and let $\left\{e_{i}\right\}$ be an orthonormal basis of H. Let $H_{n}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$ and let E_{n} be the projection of H onto H_{n}, Then $T_{n}=E_{n} T E_{n}$ is in B and T is approximable if $\hat{T}_{n}(\gamma)$ converges to $\hat{T}(\gamma)$ uniformly on $\hat{G} \cup\{\infty\}$.

PROPOSITION 8.10. T in B is approximable if and only if each $\hat{T}(r)$ is a completely continuous element of $\neq(H, H)$ for each r in $\hat{\mathrm{G}} \cup[\infty]$, and the $\operatorname{map} \quad \gamma \rightarrow \hat{\mathrm{T}}(\gamma)$ is continuous on $\hat{\mathrm{G}} \cup\{\infty\}$.

Proof: See [8].
Now we have

THEOREM 8.11. If I in B is approximable, then $\Sigma_{W}(\tilde{T}) \subset$ $U_{r \in \hat{G}}^{U} \cup\{\infty\} \quad \sigma(\hat{T}(\gamma)) \subset \sum_{B}(\mathbb{T})=\sum_{\tilde{B}}(\tilde{T})$.

Proof: The proof is the same as that given in [8] for L_{2} (G,H) rather than $L_{2}(G, N$. We need only note if $x \in \mathscr{N}, \mathrm{~A} \in \mathcal{L}(H, H)$ then $\|A x\|_{\mathcal{N}} \leqq\|A\|\left\|_{x}\right\|_{\mathcal{N}}$ so $A \in \mathscr{L}\left(\mathcal{N}, \mathcal{N}\right.$ and in fact $\|A\|_{\mathcal{L}(H, H)}=$ $\|\mathrm{A}\|_{\mathcal{L}(\mathscr{N}, \mathcal{N})}$ so that $\sup _{r \in \hat{\mathrm{G}}}\|\hat{\mathrm{T}}(r)\|_{\mathcal{L}(\mathrm{H}, \mathrm{H})}=\sup _{r \in \hat{\mathrm{G}}}\|\hat{\mathrm{T}}(r)\|_{\mathcal{L}}(\mathcal{N}, \mathcal{N})$. For more details see [7] and [8].

We say p in $L_{1}(G, \mathcal{L}(H, H))$ is approximable if the corresponding element $(p, 0)$ in B is.

THEOREM 8.12. Let p in $L_{1}(G, \mathcal{L}(H, H))$ be approximable, let r be in $L_{2}(G, N)$, and let $1 \leqslant D$, a domain containing $\bigcup_{\gamma \in \hat{G}} \sigma(\hat{p}(\gamma))$ in its interior. Then 8.3 has a unique solution in $\mathrm{L}_{2}(G, \mathcal{M}$.

REMARK: We note first that if $p \in L_{1}(G, \mathcal{L}(H, H))$ then \hat{p} is in $C_{0}(\hat{G}, \mathcal{L}(H, H))$ so $\hat{p}(\infty)=0$. Hence p is approximable if and only if $\hat{p}(\gamma)$ is a completely continuous element of $\mathcal{L}(H, H)$ for every $r \in \hat{G}$.

Proof: $\underset{r \in \hat{G} U(\infty)}{U} \sigma(\hat{M}(r))=U_{r \in \hat{G}^{\sigma}} \sigma(\hat{p}(r)) U(0)$ so we can extend D to
 interior. Now we can define $F(p) \in W$ where $F(t)=(1-t)^{-1}$ is analytic on D^{\prime}, a domain containing $\sum_{W}(p)$. If Δ is the identity in W then $F(p)=(\Delta-p)^{-1} \in W$ and $F(\hat{p}(r))=(I-\hat{p}(r))^{-1}$, $\gamma \in \hat{G},([9]$, page 203). If r is a simple closed rectifiable curve enclosing $\underset{r \in \mathrm{G}}{\mathrm{U}} \cup(\infty){ }^{\sigma}(\hat{\mathrm{p}}(r))$ in D^{\prime} then we have for $\mathrm{x} \in \mathrm{L}_{2}(\mathrm{G}, \mathcal{N})$ (8.13)

$$
\begin{aligned}
\widehat{F(p) x}(r) & =\frac{1}{2 \pi i} \int_{\Gamma} F(t)(t \Delta-p)^{-1} d t x(r) \\
& =\frac{1}{2 \pi i} \int_{\Gamma} F(t)(t \Delta-p)^{-1} x(r) d t \\
& =\frac{1}{2 \pi i} \int_{\Gamma} F(t)(t-\hat{p}(r))^{-1} d t \hat{x}(r) \\
& =F(\hat{p}(r) \hat{x}(r) .
\end{aligned}
$$

Hence if $r \in L_{2}(G, \mathcal{M})$ and $q=F(p) r \in L_{2}(G, \mathcal{N})$ then $\hat{q}(r)=F(\hat{p}(r)) \hat{r}(r)=(I-\hat{p}(r))^{-1} \hat{r}(r)$. Consequently $r+p^{*} q=\hat{r}+\hat{p} \hat{q}=$ $\hat{r}+\hat{p}(I-\hat{p})^{-1} \hat{r}=(I-\hat{p})^{-1} \hat{r}=\hat{q}$ so by the Plancherel theorem q is a solution of 8.3 .

Uniqueness can be proved by the method of corollary 8.5.

Bibliography

[1] L. H. Loonis, An Introduction to Abstract Harmonic Analysis, Van Nostrand, Princeton, New Jersey, 195°.
[2] W. Rudin, Fourier Analysis on Groups, Interscicnce, New York, 1962.
[3] P. L. Falb, U. G. Haussmann, "Bochner's Theorem in Infinite Dimensions", to appear.
[4] E. Hewitt, E. P. Wigner, "On a Theorem of Magnus", Proc. American Math. Soc., (1957) pp. 740-744.
[5] N. Dunford, J. Schwartz, Linear Opera New York, 1958.
[5a] \qquad , Linear Operators, Part II, In erssience, New York, 1963.
[6] N. Dincuieanu, Vector Measures, Deutscher Verlag der Wissenschafft, Berlin, 1966.
[7] U. G. Haussmann, Harmonic Analysis in Banach Space, Ph.D. thesis, Div. of Applied Mathematics, Brown University, June 1970.
[8] P. L. Falb, M. I. Freedman, "A Generalized Transform Theory for Causal Operators", SIAM J. on Control, 7 (1969).
[9] M. A. Naimark, Normed Rings, P. Noordhoff, Groningen, 1964.

[^0]: For $1 \leqq p \leqq \infty \quad L_{p}(G, X)$ is the spare of μ-measurable functions f mapping G into X. For $1 \leqq p<\infty$ we use the norm $\|\cdot\|_{p}$, where $\|f\|_{p}=\left\{\int_{G}\|f(g)\|^{p_{\mu}(d g)}\right\}^{1 / p}$, and for $p=\infty$ we use the norm $\|f\|_{\infty}$ which is the (μ) essential supremum of $\|f(g)\|$ on $G .\|\cdot\|$ denotes the norm in x .

[^1]: ${ }^{+}$If Y is a Banach space then $C_{0}(G, Y)$ is the space of continuous functions mapping G into Y, which vanish at infinity if G is only locally compact rather than compact.

[^2]: ${ }^{+} \delta_{\mathrm{ni}}$ is the Kronecker delta.

[^3]: +If the isomorphism takes $x \rightarrow T$ then $x^{*} \rightarrow \mathbb{T}^{*}$ the adjoint of T.

