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The assumption that a nutrino may have a scalar magnetic charge. of other

than zero was first analyzed in [1]. Obviously, the presence c: a weak

magnetic charge in the nutrino should lead to an entire set of various astro-

physical phenomena; several of these will he analyzed in this work. It is

sufficient to not(, for example, that, as will be shown below, the magr^tic

nutrinos at velocities v < c could form closed trajectories .n the field of

the terrestrial magnetic dipole. In 1931, Dirac produced the fol-lowing

relationship for the value of a magnetic charge [2]:

Ac
µ = ,)e n ,

where e is the electrical charge; µ is the magnetic charge; n is an integer;

h is Planck's constant; c is the speed of light. It follows fron )irac's

theory that a magnetic particle is pseudoscalar. Actually, as we can produce

easily from [3], the Maxwell equation with magnetic flux j 
i 
other than zero

can be written in the coordinate system x.
i
(r, ict) in the following form:

6 ,k* 4:ti

dzk	c Jc,

where F * =
ik	 2'ikZm	 'F

Zm eiklm is th,.- antisy,mmetrical unit tensor; F Zm is the

tensor of the electrom;onetic field. Obviously, the operation of dualization

interchanges the vector components E and H in tensor F Zm . Since in Dirac's

theory H is an axial vector, the point sot:rce of H should be pseudoscalar.

Since in relation (1) k is speudoscalar, n is also pseudoscalar. This can be

I

(1)

(2)
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proven easily if in concluding relationship (1) we select line directions for

which the 0-function of the electrically charged particle is equal to zero,

corresponding to the direction of the force line of the magnetic particle

field [1]. thus, the Dirac monopole should be the source of field H, which

changes upon space reflection just as does the magnetic field of a polar

electric current. The r efore, the affirmation [4] that the monopole may be

scalar or pseudoscalar and that these two possibilities are equally probable

is doubtful, since it follows directly from Dirac's theory that relationship

(1) is correct only for a magnetic pseudoscalar. Many experiments performed

with the purpose of detecting a monopole with magnetic charge as defined by

(1) have been unsuccessful. It was shown in [5] that the upper limit of the

cross section for formation of this monopole is less tnan 10 -40 cm2 , whereas

theoretically a quantity of 10 -3S cm  had been produced. Therefore, it is

natural to analyze the question of whether the theory allows the magnetic

charge of the particle to be changed. If we assume that the magnetic charge

is the source of the potential magnetic field, i.e., field l,, which can be

defined for a given moment in time t as h = -VQ, where 0 is a scalar function

of coordinates (x,y,x), this magnetic charge will be a scalar. Actually, the

sign of the magnetic charge in this case will not depend on the coordinate

system, since its magnetic field h is determined by the polar vector arid,

consequently, the direction of the field is independent of coordinate system.

Let us now prove that the value of the scalar magnetic charge is not deter-

mined by relationship (1). It is well known that the TCP theorem holds true

in quantum electrodynamics, the quantum electrodynamics equations being invar-

iant relative to the transforms P,C,T. Here P,C,T represent respectively

the operators for space reflection, charge conjugation and time reflection.

- 2 -
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The question as to whether the TCP theorem remains correct if we analyze a

field of magnetic particles together with electron-positron and ele a ro-

magnetic fields has not yet been investigated. However, it is shown in [F]

that the equations of classical electrodynamics, in which the flux of

magnetic particles is not equal to zero, are invariant to the transforms:

C' = CM; P' = PM; T' = TM, where M represents the operation of conjugation of

the magnetic charge. In other words, the equations of classical electro-

dynamics are invariant to space reflection only under conditions such that the

electrical charge is not scalar, while the magnetic charge is pseudoscalar

and, consequently, is a Dirac monopole with a charge determined by (1).

Thin, there is in classical electrodynamics a mutually unambiguous relati.il-

shir betw_en invariance to space reflection and the fact that the electrical

char e is scalar, the magnetic charge pseudoscalar. Consequently, if a

magnetic particle is a scalar, the equations of the classical electrodynamics

will not be invariant to the operation of space reflection. It is easy to

I	 show that a system of equations in which the polar vector of the-flux both of
s

electrical and of magnetic particles is not equal to zero will be invariant

individually to the operations CT and MP. This conclusion was produced in

[7], in which it was shown that disruption of parity during the interaction of

a magnetic particle with the field must be analyzed together with disniptior

of parity during the interaction of an electrical scalar with the field.

Therefore, it is natural to expect that it should be possible to produce an

estimate of ti:a value of the scalar magnetic charge from analysis of the

electromagnetic interaction in which parity is not retained. Work [8]

presented an investigation of an electromagnetic interaction in which parity

was disrupted, producing the following relationship:

- 3 -
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4to<e•1,	 (3)

where µ 0 is a Bohr magreton; a is the electrical charge; Z is the length at

which invariance to space reflection begins to be disrupter: in quantum

electrodynamics; ^ is a number characterizing the degree of weakening of the

interaction of the electric charge with the field at which parity is not

retained. Using (1), inequality (3) can be-rewritten in the following form:

uroi
n -j\

where m /n is a scalar; r 0 is the "classical radius" of the electron. Let us

assume that g = 1;(p /n) determines the value of the scalar magnetic field.

Then we produce for n = 1 that g < e(Z/r 0 ). Since Z < r0 , g < e. In [8], the

value t = 10 -13 is produced; therefore, g = 6.85 . 10 -12 e, whereas, according

to (1), the value of the pseudoscalar magnetic charge µ whose interaction with

the electromagnetic field remains invariant to space reflection is 68.S e.

The weakening of the charge is a result_of disruption of parity during its

interaction with the field. Invariance of the equations of electrodynamics

with non-zero pc r flux of magnetic particles to NIP means that for the inter-

ac*.ion of the scalar magnetic charge with a field, the principle of combined

inversior of L. D. Landau l [9] may be fulfilled. Consequently, it can be

assumed that the nutrino has a non-zero scalar magnetic charge, since this is

the only particle which has only weak interaction. It will be shown below

that the value of the charge g = 6.8 . 10 -12 e agrees well with the value

produced from experimental data on the cross section for ionization of the

the nutrino. It is shown in [1] that if the nutrino has a nor,-zero magnetic

—^ See the end of this article.

(4)
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charge, it is quite probable that the rest mass of this particle i s also other

than zero.

1. Estimate of Magnetic Charge of Nutrino on the Basis of Ionization Cross

Section

Upon moving through matter, a magnetic scalar will lose energy to excita-

tion and ionization of atoms of the medium-. Let us analyze the problem of the

loss of energy of a particle to ionization upon interaction with the electrons

of atoms without considering interaction with the magnetic moments of the

atoms. It should be noted that in the external field of the partcle, the

magnetic moment will undergo the influence of a force couple which tends to

orient it either along or strictly against the field. Therefore, the inter-

action of the field of the magnetic particle with magnetic moments of the

electrons cannot produce any significant contribution to the relationship for

energy loss to ionization. however, magnetic polarization of the medium is

possible, causing some additional energy loss of the particle. Detailed

analysis of the effect of polarization is to be performed at a later date. In

order to solve the problem, let us use the theory of N. Bohr [10] which basic-

ally correctly describes the pasfage of electrically charged particles through

matter. Let us find the value of the electric field created by magnetic

scalar g upon movement through matter at velocity 0 = v/c. In coordinate

system K', in which the particle is at rest, its magnetic and electrical

I	 fields are, respectively:
t

'	 rT 	
gr 	 E' = 0.

.r
i

Suppose tensor B ik of the electromagnetic field of the magnetic scalar has the

- 5 -
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B13 = Y

1-
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B43	 i ,8 13
B43

13.3= B23 =0;

Boa = P:1

•

following form in arbitrary coordinate system xI(r,ict):

0 —Ej F., —iNYi

	

E:	 0 —E.'; t t''1 .
BSA = _ E

y EX	 o — at:

	

I1tiY	ii1 J ! lf ^	 C)

The components of this tensor in system K' are defined by the following

relationships:

jerl

	

73	 B34'

^-

B12= B13==B:3==0.

When we go over to coordinate system K, relative to which system K' moves at

velocity 0, the components of the tensor 
BA 

will be transformed in the same

Way as are the corresponding components of the ordinary electromagnetic tensor

F ik (see, for example, [11]). We produce:

Performing substitution and considering that the transition from coordinates

(x'y'z't') of system K' to the coordinates (xyzt) of system K is performed

using a Lorentz transformation, we obtain the following formulas for field compo-

nents E and H in system K:

- 6 -
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(x -- 3c!) (1 —	 ; ").	 -- ^J"' 	 aY

RJ

lit	 ^:	 ran	 Y•• j	 ^3^

r

°k; (1	 ^S = );	 t%x -- Fx - 0,

where

Since E x = 0, field E in system K is in a plane perpendicular to the direction

of movement of the particle:

y	 Z ,

It is e	 ' to show that vector E is directed at a tangent to the circle of

radius P with its center on the X axis in system K, i.e.,

where Inj = 1. The direction of vector n corresponds to the direction of a

tangent to the circle. Let us now determine the momentum transmuted by the

magnetic scalar to the electron at distance P from the trajectcry of the

magnetic particle. It was s'lown in [1] that the equation of movement of an

electron in an external field created by a scalar magnetic charge g in coord-

inate system x i (r,ict) is

We will assume that the interaction of the electron with the field of the

(S)

7 -



•

magnetic particle results primarily from the second term in formula (6). It

should be noted that this is a natural assumption, since it is unknown in

advance just :hat the contribution of .he first term to the formula for the

Lorentz force will be. However, this contribution should be small, since it

is difficult to assume that the potential magnetic fiel.i could change the

energy of the electric charge in the same manner as are ordinary electric

field. Therefore, we assume that the first term in (6) is negligibly small in

comparison to the second term. Suppose the electron is free and its movement

during the time of the collision is slight. If m and Dl are the masses of the

electron and magnetic particle respectively, the condition m v M will be

fulfilled. Therefore, we can write the equation of movement of the electron

(6) in the following form:

dt
	dP — CE,	 (7)

where P is the zomentum transmitted to .the electron during the time of the

interaction.	 note that the expression	 for E can be represented in the form

E _(v	 r 1 A	 1 —•:
= L

X-9-

r' (1 — N:sin=

where r is the vector connecting particles g and e; 6 is the angle between r

and the X axis. It follows from this relationship that vector E is axial.

Therefore, equation (7) is not invariant to the operation of space reflection,

but is invariant to operation NIP. Suppose during the time of the collision

2T, the value of momentum transmitted OP satisfies the condition P d > OP,

where PO is the momentum of the magnetic particle before the interaction.

Therefore, we will assume that the value and direction of the velocity of the

8 -
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magnetic charge remain unchanged with a single collision. We produce:

Where T ^- c 1 - Qom , the value of AP = ?—R̂--, where T ~ sc am, the quantity

AF = leg	 As follows from the theory of N. Bohr, an electron in an atom upon

cP r
collision with an oncoming particle may be considered free if the time of its

"rotation in orbit" r satisfies the condition r > T. The time of interaction

of two ele-trically charged particles in the to eory of N. Bohr is taken as

P/Qc for velocities Q -1 1. From the relationship produced for the momentum

transmitted, it is obvious that in this case the time of interaction is

(P, ► c)	 Therefore, the electron can be considered free for veloc-

ities of the magnetic particle which satisfy the condition

Pmax
	 (g)

jwhere I is the mean ionization energy of an atom of the material, and P max is

determined from the condition that the kinetic energy Q transmitted where

P	 Pmax is equal to the ionization energy I of the atom in question. The

kinetic -nergy Q transmitted to an electron during the time of the interaction

is equal to

Q = e^_ _ ^,:	
(9)

2,n

Let us now find the expression for the ionization cross section of the mag-

netic charge. Suppose the number of magnetic particles passing through 1 cm2

in one second is equal to n. Then, the cross section for transmission of the

9 -
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energy to the electron froin the value of Q to Q + dQ will be

d{ -	 d"' =_ ^^	 ;^•

Performing elementary conversions, we can find the ionization cross

ection as the magnetic charge p?sses throug ►: mat*er:

nu= 	;	 Qm^ x 	(10)

where Q. ax is the greatest quantity of energy which can be transmitted to the

Plectron in a single collision. The mean value of energy loss -- d °/dx -- can

be found from the following relationship:

nmax,.
--- d`t• _ ,V	 Qd — — c 0 In -'	 01)

114C2 QminAmin

where N is the number -f electrons per cm  of matter. Expressions (10) and

(11) do not include the mass of the magnetic particle. The mean energy loss

depen6S only on the value of the scalar magnetic charge. 'lso, formula (11)

does not include the term 1/v 2 before the logarithm, representing loss to

ionization for electrically charged particles at velocities v < c. This

peculiarity, characteristic only for the loss of energy of a magnetic charge

upon movement through matter, is also noted in r12).

The greatest quantity :;' CT!ergy transmitted to an electron in a collision

is equal to [1.7]

Q^as	 ')^Ic=	` ,C )	 1	 (12)
M m

2rn	 ?,11 ^l^Ic^

- 10 -
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where M and m are the mass of the magnetic scalar and the electron respec-

tively; ghilc 6 is the energy of the magnetic scalar in system K. Substi-

tuting the relationship for 
Qmax 

in (10), we produce

Al

mc= '^ — --	 \
=---1MO

Suppose n = g/e; then,

= 4.-1r,°11= c=
	 I _ i

ru 	 'Qnax

where r0 = e 2/mc 2 = 2.8 . 10
-13

 cm is the "classical radius" of the electron.

Relationship (12), considering condition m -!'> M, as well as	 mc2, can be

rewritten in the following form:

	

,^, 4^	 1	 (14 )

	

^:. ax — L —	 n:c-
1 i 2

Since for various materials the mean ionization energy does not exceed a few

dozen electron volts, inequality I <<Q	 will be fulfilled for E > mc2.
max

Where	 1 Mev, Mc 2 < 250 ev, we produce the following expression for the

ionization cross section as the magnetic particle passes through the material:

5,2.10-21 11'= c.:.-.	 (15)

In works [14-16], upper limits were found for the ionization cross section of

a nutrinc. These data allow us to estimate the value of the magnetic charge
;!

which the nutrino could have:

- 11 -
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es: =) . . . . . .	 10- 13	 G. 10-11	 JG--I

	

n . . . . . . . .	 4,3.10-'=	 3,i•iG'j°	 0,3 . 10 r

We can see that this charge must be extremely small. If we assume that

e 2 /rrc 2	g2/Nlc 2 [17], even for g – 10 -6 e, we find Mc2 _ 0.5 . 10 -6 CV.

2.	 Movement of Magnetic Particle in Homo g eneous Magnetic Fields

Let us now analyze the interaction of'A magnetic particle with a homo-

geneous magnetic field 11, created by electrical charges. In analyzing the

equations of movement of the magnetic particle in the external electromagnetic
r

field F ik , we can produce the following equation for the Lorentz force:

	

dpi
	- -	

16
ds =-- ^- ( irk — iFi'^) u,;.	 ( )

Fhe second term in (16) is produced from analysis quite similar to the analysis

performed in [1J. As before, we will assume that the interaction of the

magnetic particle with the external field is determined b^ this term. Thus,

the contribution of the first term is assumed small, and it need not be

considered in analysis of the equations of movement. Suppose the homogeneous

magnetic field Ii is directed along the X axis, while the initial particle

momentum P(0) = 0. Then, it is ^asy to see that during time t the particle

will accumulate energy equal to

^' = Mc= 	 1	
((gNc

T `h1c)

Let us assume that the magnetic nutrino has passed through a sector of homo-

geneous magnetic field H, the size of which is about 1 ps. If 11 ~ 10

17 = g/e – 10-12, N1c 2 < 2S0 ev, after about 10 8 sec its energy will be 9.00 kev.

12 -	 --
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If we assume that the particle has an initial energy of about 1 Mev and

momentum directed along the field, after about 10 8 sec its energy will change

insignificantly. We know that the homogeneous field sectors in the galaxy

have dimensions on the order of hundreds of parsecs [19). If the initial

momentum is directed along the field, the time required to travel this path is

about 10 10 sec. It is easy to see that with an initial energy of 1 mev, a

particle at the end of the path will take on energy about 1.9 Nlev. The solar

system is in the spiral magnetic field of the galaxy; therefore, if a nutrino

has non-zero magnetic charge, it would be expected that the number of high

energy nutrinos approaching the earth along this field would be considerably

greater than the number of particles movinf, in the transverse direction.

Let us now analyze the movement in a perpendicular homogeneous magnetic

field. Suppose field H is directed along the Z axis, and the particle moves

with initial momentum JP(0)I = P O along the X axis. Let us assume that at

moment in time t = 0 the charge enters the external perpendicular field.

Then, obviously, the following equations are correct:

P.

P (v) = 0 • 	PZ ( f ) -_ ,tlt; P,c == c
r

z

P<<^) = 0;	 P, (t) = 0;	 z = 
P1c .

From this

`^ (f) = lo o= ; g
_ H	 -

CyI

where

- 13 -
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Elementary conversions allcw us to produce the following equation for the

particle trajectory:

Let us determine now the radius of curvature of the trajectory of the particle,

R(t). Since during its movement the particle remains in plane (XZ), we can

use the equation for the radius of curvature of the flat curve in the

following form:

(17)
xz—zx

where t is the parameter of the curve. The points represent derivatives with

respect to this parameter. It is easy to see that the following relationships

are correct:

X =	 _^- i^ (C *  P= ;	 xz — zz —	 (P.,PZ — PzPa)

Here P is the momentum of the particle at moment in time t. Subc, ^ituting the

formulas produced in (17), we can find an expression for R(t):

R (t) _=	
c=P3	 (18)

(P.,Pz — 
pZ per)

From (18) for moment in time t = 0 we produce

R (0) _ ITO"gH

	

 .	 (19)

For field H ~ 10 -5 gs , g	 10 -12 e, 9 0
	 1 Nfev and a	 1. we find

R(0) — 33 . 10 18 cm or R(0)	 11 ps. The transverse dimension of the galactic

spiral field in wrhich the solar system is located is about 400 ps. The

- 14' -
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magnetic field of the spiral is homogeneous and has a magnitude of 10 -5 gs

[19]. However, heterogeneities may occur within the homogeneous field, the

dimensions of these heterogeneities varying from tens to hundreds of parsecs.

Consequently, magnetic nutrinos with low energy can be captured by these

heterogeneities as they move along the lines of force of the galactic spiral

field.

3. Bremstrahlung of a Magnetic Particle

Let us now analyze the Bremstrahlung of a magnetic particle in the

external electromagnetic field. In the system of c(, ,) r dinates xi (r,ict), the

equation of movement, considering the force of radiation friction, has the

form

"Pias — - t„^^	 r
--	 C i ^ii k -- 1 is

where f. is the four-dimensional force vector of radiation friction. In order
1

to determine f i , we should note that at particle velocities v < c, its space

components are transformed to components of the radiation friction force

2
vector, which for an individual particle is defined as f = 3 9 V. Also,

components f  should satisfy the identity f 
i 
u i = 0, correct for any four-

dimensional force vector. An expression can be written for the four-dimensional

radiation frictionforce vector satisfying both conditions in the following

form [11]:

2 o2- d=ug	 d-uK ) .

3 C	 ds=	ds=	 ( 21)

It is well known that the condition of acceptability of the theory of

(20)

- is -
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radiation friction in classical electrodynamics is the fact that in the

coordinate system in which the particle is not moving, the Lorentz force

should be much greater than the force of radiation friction. In this approx-

imation, we produce

d-^:k	: ^ aF ^t
(22)

Substituting (22) into (21), we produce

3 _ 0Fik	 2 i!T t	02
	 „-t	 -

3 .ti 0 ca, 
tl tuk — 

3 :tit =c^ F ` t k _ 3 N1=cs 
A 1 u i,	 (23)

where A Z = - iF*Ikuk. For velocities Q 	 1, the last term in (23) increases

more rapidly, in proportion to — ui, whereas the two other terms increase as

ui. Therefore, we can write

2 9'
;— A:cc;	 (24)
J i•l'^

7
Let us find Ai = -(F* ikuk )	 Substituting the components of the tensor F*Zk'

we produce the following relationships for the components of AI:

Az _ 
(ExPI X ; HX

[E XPj Z -' H
A: -- y1= N

Ay = (E.f1 Hy

From this, it is easy to produce an expression for AZ:

1	 (	 )

Substituting (25) in (24), we find:

- 16 -



f, = 3 .fi`r ` ! u! - ((II . ^)= . _ (;I	 (E X 1)'2•	 (26)

In order to produce a fomula for the energy loss per unit length of the

particle path where Q - 1, we must consider that the work of the force of

radiation friction f per unit path length is equal to the energy radiated by

the particle. Consequently, the following relationship is correct:

	

rp	 rp

	

dt	 dx

From (26) we have

i2 r .;	 "- 	 t C is

where r
g 

= g 2 /Dtc 2 . Therefore, we produce the following equation:

^ f _ _ dx ____	 3 . .
dV
	

c	
(27)

Substituting relationship (2S) for A Z in this last expression, we find the

loss of energy to Bremstrahlung under the condition that Q - 1:

d V	 —•2
	 {(H j' — (H (E X

	
(28)

Let us analyze the losses in a homogeneous magnetic field. Suppose the

particle velocity corresponds to the direction of the homogeneous magnetic

field H. From (28), we produce

-- do = s r:% H'	 (79)

or

- 17 -



d 'F	 2 ^ 1
X=	 r'^

dx	 g ,, 1

2
where r0 = 2	 a = m/h1.

Where Q	 1, H ~ 10 -8 gs, n ~ 10-12, a > 2 . 10 3 , we find

d ^^

dx 
> 13,12 . 10-1s 114 ev/cry

Suppose the density of the material is 
10-'24 

g/cm 3 ; then,

— dp i 13,12 . 10c >> ev/g /cml

where ^ is the quantity of material in g/cm2.

If during its movement the particle enters a heterogeneous, moving

magnetic field, it is easy to see that the specific energy loss increases

sharply. Actually, suppose the magnetic charge at velocity Q	 1 enters an

area in which there is a magnetic field H moving at velocity u. The moving

magnetic field H, in the system of c:.ordinates where its velocity is equal to

u .-.id the velocity of the charge is Q,c^eates, if u < c, an electric field

E = -1/c[u x 11]. Therefore, expression (28) for the specific energ y loss

takes on the following form:

d?	 2
dx =
	

r-3 (,ti1c^ 
{(^1 ,':)' — (H	 1/c= jvX (u X i1)])').

Transforming this last expression, we find

dC — 3 ra3
la1c=it {(lis)'=—;H
	

21/c=(u(v H)--11(v u))l= }•	 (30)

0

i

Obviously, where 0 1 H, the following equation is correct:

- 18.-



(31)

112
11 — 

-1- (V • u )J- .C-
— 

dx

•

Where u < c, we produce

^,	 r. 3	
1,	

tl ,
^._ --- 3	 .tlr l	 '

Thus, in this case'the specific energy loss-depends on the energy of the

particle and may become rather large. For example, for Lr" ~ 1 Nlev,

H ~ 10 -5 gs, Mc 2 < 250 ev, we produce

- d`	 21 - 10 1 "	 ev/g/cm2
D

Let us now analyze the question of the angular and spectral distribution of

eremstrahlung when a magnetic particle moves in an external electromagnetic

.ield. It	 is easy to show that in this case the relationships for the mag-

netic particle will be similar to those ich are correct for an electrical

charge [11]. For example, the expression for the magnetic field of the wave

radiated upon accelerated particle movement has the form

H =-- g --73 rX r--C  (rid Xv^^ —rv«
0 rI — c^

—^TV_ /r_ c r1 .(	 3 11,

c	 (32}

From this it is easy to determine the intensity of the flux o!= radiation at

solid angle d0 at distance r from the particle:

dl e t12r2u0.
dl	 /Ja (33)

- 19 -
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At sufficiently long range from the particle, only the first term remains in

(32). Substituting (32) into (33), we produce

v' 1	
V.

dl

dt ^' 4:^c^ `	 /	 vn^.s	
_`n	

v
^11	

n	 (34)

where n = r/Irl is a unit vector directed.£rom the particle to the point of

observation; w = v is the acceleration of the particle. Expression (34)

contains in the deno-inator high posers of the difference (1 - vn/c).

Therefore, if v – c, the intensity will hai; a sharp maximum in the direction

where v • n ~ c, i.e., where n almost corresponds in direction with v. Actually,

1—
vCn = 1	 v1cI Cos 0	 V"C((1-0=;'-?)---02;2.

If v	 c, we produce for angle 0 [111:

0--- 1^ 1 — ^ v/C

During movement through a transverse field in the case when the total angle of

deviation of the particle is large in comparison to 0, it can be shown that

radiation occurs on the sector of the trajectory over which the velocity of

the particle is still parallel to the initial direction of movement [11]. In

this case, the main portion of the radiation will be concentrated in the

following frequency area:

G'	
AIC 1 — v=/C' — 31c .11c=

for $	 1 Mev, n – 10-12, NIC 2 < 250 ev, f{ – 10 -5 gs, we produce w > 5.76 Hz,

X < 3.2-10 
10 

cm. Where 9 — 10 bev, we find a < 3.26 m. Thus, the
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electromagnetic radiation of a nutrino could be concentrated into the radio

wavelength range. It is obvi,.us that the Bremstrah ung of a magnetic nutrino

will be directed along the trajectory of the particle and, consequently, will

correspond to the direction of the lines of force of the magnetic field, in

contrast to the magnetic Bremstrahlung of electrons, which has a maximum in

the direction perpendicular to the magnetic field vector. In this connec-

tion, we must note the following fact. Work [20] presents data on radiation

at a wavelength of 3.5 m in the galaxy. According to these data, the intensity

of this radiation increases in the direction along the magnetic field force

lines of the "arm" of the galaxy in which the solar system is located. In the

review of V. L. Ginzburg and S. I. Syrovatskiy [18], it is stated that the

increase in intensity of nonthermal radio radiation along the magnetic lines

of force of the "arm" of the galaxy is difficult to explain if t:e assume that

the source of this radiation consists entirely of relativistic electrons.

However, if the source of this radiation is a magnetic particle, as was shown

above, an increase in the intensity of radiation along the lines of force of

the magnetic field should indeed be expected. It is easy to show from (35)

that 3.5 m corresponds to a nutrino energy of 10.3 bev, if we consider the

rest energy Mc 2	250 ev. Thus, it is possible that a portion of the non-

thermal radio radiation	 `he galaxy results from magnetic nutrinos.

4. Movement of a Magnetic Particle in the Field of the Terrestrial Magnetic

Dipole

As before, we will assume that the equation of movement of the magnetic

particle with charge g in the magnetic field H has the form

- 21 -
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Suppose at the origin of the spherical system of coordinateF (r,0,O) w^ locate

a magnetic moment directed along the Z axis. Usually, the direction of the

dipole moment is selected from the negative fictitious magnetic charge image to the

positive. Since the north magnetic pole is located in the southern, geographic

hemisphere of the earth, usuall y taken as positive, the direction of the

magnetic moment k corresponds to the geographic direction of south. Let us

for clarity analyze movement of a negative particle g < 0 in the field of the

magnetic dipole. Since the external field in which the movement of the charge

being	 analyzed is constant, its Lagrange function does : got depend explicitly

on time. As we know, in this case the energy is retaine( 4,, corresponding with

the Hamilton function. Consequently, the follow;ng egv.ation is correct:

= X —T U,

where ^ is the total energy upon movement of the parti.'e in the external

field; T,U are its kinetic and potential energies respectively; K is the

Hamilton function of the particle. We know that the magnetostatic potential

of the dipole field in the coordinate system selected has the form

U== ' .)

Therefore, let us find the following expression for the Hamiltonian of the

particle:

iG — L c ll:y'_ 3 Cs p_	 gk Cos 0
T r: s

where P is the momentum of the particle during movement through the dipole

- 22 -
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We produce from (36)

ut 
r

where

r	 U

Since 0 is a cyclical coordinate of the particle

equation (37) should be sought in the following

S = — c t + P,( S,) (r ©j

From this we produce the equation for S0

C —	 coy 0 	 1	
I
^

(
aS, N"	 1 1c3S„

r=

- 23 -

field. In order to solve the problem, let us use the Hamilton-Jacoby method.

We note first of all that, since the azimuthal component of the field intensity

in the dipole field tl© - 0, obviously, PO = 0, i.e., F0 is the integral of

movement and, therefore, 0 is a cyclical coordinate of the particle. The

Hamilton-Jacoby equation has the following form [21]:

`/, c/, (r,
as os	 as
 
oU or '	 T 0: 09

	

where S, as usual, represents the action function. 	 Since the system is

conservative, the following equality is correct:

as



If we square this relationship, it i.s not possible to perform separation of

variables r,0 in general form. However, since we must find the solution to

the problem in the case when g ~ 10 -12 e, as we square the expression we need

nit consider the term ~ g 
2 

k 2 cos 2 0/r4 , and therefore separation of variables

r,0 becomes possible. The solution of the problem in this case is similar to

the problem of the movement of a charge g in a dipole field at nonrelativistic

velocities, i.e., when the Hamiltonian has the form:

P' _L. g : cos e
x	 1 r11 '	 r:

For v < c, the problem is analyzed in [22], where it is solved as an electron

moves through the field of an electric dipole. Thus, performing the trans-

forms indicated, we find

L

ft

 
C.	 16r l r	 t•=	 ' stn = 6	 `oy J	 40

Let us introduce the following symbols: e = a l , PO = a 3 , and seek the solu-

	

tion for S O in the form S
0
ir 10) = S l (0) + S, (r) 	 We produce

2

P	 dSl ^ . a_ _ 2alkr cos 0 — x;,
o = dd	 c=	 sin- 8 '

=	 =,--- — -Pr	
Qr	 Z 	 C:	 r'

Consequently, the solution for function S has the form

27, , k cos 0 _ xs 
d

a ,

	

S fir, 0. ^, f) _ — U lf - x^c^ 	 a•:	 c,	 sin= 0	 '

a—(.tilt=)= — a
C2

(41)
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Let us differentiate (41) with respect to constants a l ,a 2 ,(t 3 and set the

expressions thus produced equal to the new constants 0 1 ,0 2 ,0 3 . It is well

known that this operation corresponds to the canonical transform to new

momentums a l ,a 20 a3 and coordinates 0 1 ,0 2 ,0 3 , the Hamilton function being equal

to zero in the new variables [21]. The relationships produced by differ-

entiation allow the coordinates r,4,© to be expressed through time and the

constants a l , a 3 , a 2 , 0 1 ,0 2 , 0 3' This allows us to find the trajectory equations

for the particle. Performing these operations, we find the following relation-

ship:

^':	 cos 0 d0	 ,

2 ,1 1 1'rk COs 0 —	 7t

	

C2	S1I,

 dr
C2, a — 010)z — a 2	 (42)

C2 	 r

2x^gkcos0	 a s 	r:------ — —= (43)
c-

a
3 =	 alg.: cos 0	 _---Si".0 1,^ a: —	 CA — — s:n' d	 (44)

Equation (4Z) allows us to find the . position of the particle on the trajectory

at moment in time t. The two latter relationships (43), (44) determine the

form of the particle trajectory. Let us assume now that P = 0, so that it is

easy to produce from (37) the following condition for points (r l ,e l ) where the

velocity of the particle becomes zero:
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r Y r0 . Let us now analyze the possible forms of trajectories. For this, we

introduce the following symbols:

=	 cos 0 do —

x: f cos 0 _ a
c-	 s:n= 0

do

sir.= 0 ^x = 	2x:.;!^ cos 0 —	 s--	 _
C'...	 sins 0

Suppose t = cos 0 , dt _ - sin Oa0 :

r	 c=

dr

Equation (44) determines the change in angles 0 and 0 as the particle moves.

It can be looked upon as a projection of the trajectory of the particle on a

sphere of unit radius. As was first noted in [22], this expression is

identical to the equation for a spherical pendulum, the center of which is

located at the coordinate origin, wit} the force of gravity directed along the

axis of the dipole. This equation is well known [22, 23]. Therefore, let us

analyze the main properties of (44) briefly. Suppose

Obviously, the integral in (46) has a real value if 0 > 0. Let us analyze the

function 0(^). From equation dy/dt = 0, we can find ^ I and t 2 , for which the
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function v(t) has extreme values. W;, produce

a:c=	 =	 11 ,^ a:t= ^l 1	
-

Let us investigate here the two limiting cases. We will assume a 2 > 0,

a l < 0, gk < 0. Let us assume at first that a 
2 
c 2 > 6a 1 gk. Then ^ l =

a 2 c 2/3a l gk > 1, 2 ~ 02

.,z:;,
(0)

Let us assume that 0(0) > 0. Let us new analyze how ^ (t) changes if t changes

from -- to +m.

I man	 _ ^- ^yry ^
V

-A

^'	 1

Thus, it is easy to see that ^(t) has three roots, which can be represented in

increasing order as t 3 < t4 < t,. For the task at hand, the solution can be

produced in the area where 	 1, while ^(t) > 0, i.e., can change only from

t 3 to t 4' Obviously, the problem has a solution if condition J(0) > 0 is

fulfilled, since if w(0) < 0, the integrals in (46) have no real values for

it < 1. Therefore, angle B changes between arc cos ^ 3 to arc cos t
4 . Since

a3 
= 

P0 .1 PO _ (Mr 2 sin  0 / 41-77-07)0 , where a3 > 0, 0 > 0 or vice versa.

Consequently, angle 0 either decreases alone or increases alone as the

particle moves. Thus, the projection of the trajectory on the sphere of unit

radius will be contained between two parallel lines arc cos t 3 and arc cos t4,
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Equations (42) and (43) can be rewritten

2 V,

where Po

The integrals with respect to r can 1

C!,-	 c Y a

Ru
CE

- 29 -
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which it will contact alternately. Let us analyze the other limit case when

a 
2 
c 2 < 6a l gk. :'hen t 1 2 = s l/r. It is easy to show that in this case the

	

range of possible values of v moves toward negative	 Detailed analysis of

the change in angle © and 0 for the problem of the spherical pendulum can be

found in [22, 23]. Here we will note only the two main results of these

investigations. The projection or the trajectory on a sphere of unit radius

is symmetrical relative to the meridians, passed through the points of contact

of the trajectory with the parallel lines arc cos t 3 and arc cos t 4 . The

azimuthal angle of rotation 0 of the projection of the trajectory resulting

from movement from one contact point to another cannot be less than rr/2.

Let us now analyze the change in r as the particle moves. As before, we will

assume for definition

a: > 0 ,	 a, <0, h, <0.	 (48)



0

Obviously, the solution produced is real if r.? R0 , and also if condition (48)

is fulfilled. We will assume that Jul ^- hic 2 . Then R0 — (c/aI) 2. Thus, the

trajectory of a particle as it approaches the earth will be contained between

the two angles arc cos 
t3 

and arc cos t 4 . The distance r to the dipole will

vary from infinity to R 0 . At distance R 0 , the particle will be reflected and

once more recede to infinity. Obviously, the particle will reach the earth if

Re > R0 . If a3 = PO = 0, the trajectory will be located in the meridian

plane. If, however, Pm 4' 0, even rotation about axis Z will be added to the

movement in the meridian 	 plane. Let us now analyze the movement with particle

velocity v < c. In this case, the Hamilton-Jacoby equation for function

S 0 (r,6) has the form

1 (as^`'__ 1'asp)=	 ^^^^^(	 0
"3% L1 dr ^	 i= \ -	 .- si:^ = u^ _ xl _

	 _ •
	 (49)

The solution of this equation should-be sought in the form:

So (r , 0) _ S, (r ) + S_ (0).

The exact	 solution of (49) was produced in [22]. Let us apply the results

of [22] to the problem of the movement of a magnetic nutrino in the dipole

field of the earth. It can be shown that in the case a 3 = 0 1 a l < 0, a 2 < 0,

the particle forms closed trajectories in the dipole field. The trajectory in

the meridian	 plane is included between the two lines ± arc cos (a 2 /211gk), and

the distance of greatest separation from the dipole moment satisfies the

following equation:

a __	 ( )

^_
	 SO
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The greatest value o

f

f r is achieved at t = -p 1 . The entire trajectory is

covered in time /2/ai.
•

Let us analyze one more form of circular closed trajectory, first found

in [22]. We know that the magnetic field intensity of the dipole is deter-

mined by the expression

3 Pr) r—'0%-r=
js•

The projection of this vector Fi Z on the axis of the dipole is obviously equal

to

ii (3 cos= a -- 1) = tl:.	 (51)

If H z = 0, movement is possible in a plane perpendicular to the axis of the

dipole. These trajectories will be circular [22]. It is obvious from (51)

that the half-angle at the peak of cone on which the trajectory is located is.

determined from condition cos 0 = 1/v'-3-. This movement is possible only if the

force component acting on the particle in the plane perpendicular to the

Z axis is balanced by centrifugal force. From this condition we can produce

an equation correct for the circular trajectory:

I'll-- (52)

where	 = htc 2 /^ is the total energy of the particle. In relationship

(52), g < 0. For g > 0, circular trajectories can arise in the lower hemi-

sphere where 10 > n12. If	 - Mc 2 , in order for condition (S2) to continue

to be observed, r	 co . Consequently, if the particle energy decreases, the

condition of existence of a circular orbit (52) will be fulfilled with high
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values of r. Solving (53) for ^v , we produce

,,/ra^ 	 3r i 
	 (53)

Let us analyze first those r for which • ,ti;c 2y	
v 3r=

Then	 = htc 2 + g 2. Thus, where r	 Re , g ~ 10
-12 

e, k = 8 . 10 25 gs•cm3,

2	
^r	

2
(Iglk /v73--Re )	 0.08 ev. If Nic	 250 ev, then where r — R e the particle energy

on the circular orbit differs very little from Mc 2 . Thus, for particle

energies e > hic 2 , circular orbits are located deep within the earth. If

(I g I k/^r2 )	 Mc 2 , 	 (2IgIk/rr 2 ). Let us define the r beginning with

which this condition is fulfilled. Suppose (Iglk/v r3-r 2 )	 10 htc 2 .	 then

r — 32IgIk1 1013--,%tc 2 . Where N1c 2 < 250 ev, we find r > 23.8 km. Consequently,

circular orbits can be filled with high energy particles at distances

amounting to a few dozen kilometers from the position where the magnetic

dipole k is located. Let us now show that these trajectories will not be

stable. Actually, when moving within the earth a particle will lose energy to

Bremstrahlung and ionization. When the kinetic energy is decreased, condi-

tion (52) will be disrupted and the orbital radius P will decreasf-, decreasing

the centrifugal force acting on the particle. Mien this occurs, force gA11z

arises, perpendicular to the plane of the orbit. Let us take the complete

differential expression (51). Substituting into this expression cos 0 " 1/V"3

and considering that 3H z /3r = 0 where cos 0 = 1/v'-3-, we find the following

condition:

gAFI Z = — 2 f ?k A0.

Since A '0 < 0, g < 0, g-AH z < 0. Consequently, the force arising upon reduction
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of energy g.%II Z will tend to return the particle to the circular orbit, where

cos 0 = 1/r. However, at this point stable motion is impossible, since with

lower valu-s of the radius the kinetic energy required to maintain condition

(52) is greater than the initial energy.

If the radius of the stable orbit increases due to external excitation,

gAli z > 0, since AO > 0. In this case, the particle can return to a circular

orbit under the condition that expression (52) remains correct for the greater

value of radius. Let us note in conclusion the following fact. Since

circular orbits for high energy particles are located where r < R. e , the process

of transmission of energy to the materiAl in the earth from magnetic nutrinos

formed within the earth during Q-decay, and as a result of nuclear reactions, is

possible.

As follows from [1, 8], the theory of the magnetic nutrino is not

T-invariant, llowever, this does not contradict the theory of the weak inter-

action, since after the discovery of nonretention of CP, the problem of the

invariance of the weak interaction in relation to T-reflection remains open.

Furthermore, since this theory is separately invariant in relation to

'	 C' = CM(PT), this fact could explain the experimentally detected failure of

CF-parity.
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