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PROCESS TWHK IQ! ES STIJDY 3F INTEGRAThB CTIICUITS 

Quarter ly  Report No. 11 

ABSTRACT 

The purpose of t h i s  program i s  t o  inves t iga te  some of the dominant 
problems confronting planar technology, t o  seek solutions t o  these problems 
and t o  provide instrumental support services t o  NASA-ERC i n  the  areas of 
f a i l u r e  ana lys i s  and instrumental capabi l i t i es .  
are organized under the following four categorjes of activity. 

1. Failure Mechanisms Related t o  Oxide Passivation 
2, 

1, 
2. Instrumental Capability Prof i le  

Areas of investigation 

Investigational Activiti e s : 

Failure Fechanisms Associated with Packaging 

Failure Analysis Service and Consultation 
Services : 

Past program a c % i t i t i e s  on oxide pa:;sivat,ion have Frovi.ded ins tghts  
i.iito the o r i z i n  of atmf.c speciec contriliuting t c  inversion and the o r ig in  
o f  d i e l e c t r i c  defects,  Current a c t i v i t i e s  are concentrated primarily on 
t h e  l a t t e r  problem where i t  has been shown t h a t  most of the d i e l e c t r i c  
defec ts  i n  oxide l aye r s  a re  developed during the cooU.ng of wafers a f t e r  
oxidation and follow an sxponenti.nl decay with increastnf:  oxide t!-.ickness, 
Present cxperirents show t h a t  diffusion h a r r i e r s  introduced pr lor  t o  oxi- 
dation tend t o  redure v i r t u a l  defect dens i t i e s  and lead t o  a l a t e r a l  fori 
migration model t o  account fo r  i n i t i a l  inhomoEeneous oxide disi,ribution. 

Previous packaging investigations have been confine4 %G gas anbierit 
s t cd ie s  i n  whicll the e f f e c t s  of hydrogen and of water were evaluated on 
the performance of various t r ans i s to r  samples. The program has been 
extended t o  other f a i l u r e  problems cf importance t o  packaging as well as 
t o  environmental stirdie:; on integrated c i r cn i t s .  The present repor t  summa- 
r i z e s  inves t i fa t ions  which show the e f f e c t s  of' hydrogen on integrated 
y i r cu i t s  t c  he nonspecific and innocmis. 
po ten t i a l  package comFonentP a l so  has been coKpiled giving thermodynamic 
+ee energy values m i l  k ine t i c  data of possible utilit;;  i n  the prediction 
of long term device stsibility, 

P. l i s t i n g  of in te rac t ions  involving 

Faj l u r e  anal ye? s on :Tase Number CQF-101, comprising 89 npn t r a n s i s t o r s  
has been coKpleted. 

The instrumental capabi l i ty  profi7e provided a t  an early stage of 
t h i s  propran: has been updated i n  the present report. 



PROCESS TECHNIQUES STUDY OF INTEGRATED CIRCUITS 

Quar te r ly  Report No. 11 

1. Failure Mechanisms €?elated t o  Oxide Passivation 
__I- -- 

The occurrence of dle] e c t r i c  defects,  o r  18pinholes11, cons t i tu tes  a 
s igni f icant  f a i lu re  mode i n  modern oxide passivated devices and is  probably 
the  l a r g e s t  remaining ba r r i e r  t o  large scale  integration. 
remedial innovations i n  materials and process techniques have been attempted, 
no r e l i ab le  solut ion t o  t h i s  problem has ye t  been found. 
general convenience and super ior i ty  of thermally grown oxide for  most masking 

and passivating purposes, and because t h i s  application of s i l i con  dioxide 
has been successf i l ly  optimized i n  most other respects,  it seems important t o  
t a k e  full advantage of these cha rac t e r i s t i c s  by determining the process require- 
ments needed t o  remove t h i s  remaining major problem i n  i t s  use. 
ives  of  t h i s  e f fo r t ,  therefore, are  t o  discover why s t ruc tu ra l  defects  are 
produced i n  thermally grown oxides and t o  learn  how they may be prevented. 

Although numerous 

9ecaiise of the 

The object- 

Previous a c t i v i t y  on t h i s  program has sought t o  r e l a t e  the or ig in  of  
d i e l e c t r i c  defec ts  t o  various process factors and s t ruc tu ra l  considerations. 
These r e s u l t s  may be summarized a s  follows: 

A. Factors tending t o  increase d i e l e c t r i c  defects. 
a. Extended processing (generally) . 
b, 
C. Embedded lapping grains i n  the substrate.  

d. Superf jc ia l  HF etching. 
e. Abrupt oxide steps. 

f. Thermal cyclinc. 
g. Mechanical wipi.ng. 

h. 
Factors tending t o  decrease d i e l e c t r i c  defects. 

a. Growth of oxide t o  higher thicknesses. 
b. Chemical e tch  of i n i t i a l  wafer. 

c. 
d. A d d i t i v e s  tending to reduce bond s t r a i n  i n  s i l i c a  glass. 

e. 

Higher compressive s t r e s s  i n  the oxide. 

ilemoval of back oxide layers. 

B. 

Pyrolytic oxide, uniformly applied and properly densified. 

Addition of steam t o  oxidation process gas, o r  termination of 
any d r y  oxidation s t ep  w i t h  a wet oxidation. 
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C, Factors having l i t t l e  or no e f f e c t  on defect  incidewe. 
a, 
b. Mineral content of water used a s  stem, source. 
C. (Ixide growth ra te ,  

d ,  

e, 
f . 

Wafer cooling r a t e s  a f t e r  oxidation, 

Substrate dopiry: ( p n e r a l l y )  , 
Crystal defects (dislocations and stacking faul ts) .  
Certain non-reactive par t iculate  contaminants (such as 
alumina) which do not s t i c k  t o  the oxide during growth. 

Electron phctomicrographs show pile-ups of oxide layers  a t  defect s i t e s ,  
thereby indicating compressive s t r e s s  i n  the oxide as the major cause of 

dqfects, 
exis t ing a t  the oxidation temperature with those exis t ing a f t e r  cooling. 
Fr ief ly ,  the technique consis ts  of terminating an oxidation w i t h  a s h o r t  

HC1 etch which s t tacks  any exposed s i l icon,  producing an  e tch p i t  a t  each 

defect  s i t e .  
phoretic decoration. 
dens i t ies  before and after cooling was found t o  be l:lYS, Most of the 

above findings have been reported previously132 and a l l  a re  consistent 

with the  compressive s t r e s s  model advanced as the originating aFency of 
oxide defects. 

T h i s  idea was confirmed by comparing oxide defect  dens i t ies  

After cooling the  additional defects  a r e  located by electro- 
In an oxide layer grown t o  80008 the  r a t i o  of  defect  

The approaches t o  continued investigation on this program consis t  
of  examining i n  d e t a i l  the inhomogeneities i n  oxide d is t r ibu t ion  evidently 

present a t  the i n i t i a l  stages of oxidation m i n g  the techniques described 
above. 
e x i s t  a t  the processing temperature a f t e r  only a b r i e f  oxidation period, 
thus predisposing oxides t o  a d is t r ibu t ion  of t h i n  spots a t  l a t e r  stages 

of oxidation, It is postulated t h a t  a portion of these t h i n  spots  yield 

Experiments have shown t h a t  a s ign i f icant  number of defects may 

t o  the compressive s t r e s s  produced on cooling and t h a t  the remainder con- 
s t i t u t e  

f l u o r i c  acid. 
l a r i t i e s  could be removed through appropriate process control the finished 
oxide layers  would be f r e e  of  t h i n  spots and capable of withstanding 
the exis t ing s t resses  without rupture, 

the l a t e n t  defect sites opened up by l i g h t  etching i n  hydro- 

It 2s fur ther  postulated t h a t  i f  i n i t i a l  oxidation irregu- 



More quant i ta t ive invest igat ions were conducted t o  compare defect  
dens i t i e s  a t  no stress (Le . ,  before cooling), a t  f u l l  s t r e s s  (i.e,, after 
cooling) and a t  p a r t i a l  s t r e s s  r e l i e f  (Le. ,  a f t e r  removal of the  back 
oxide layer). 
i n  order t o  yield growth dependent p lo t s  as typif ied i n  Figures 1 and 2. 
Conventional oxide growth technique was used (N2: 245 cc/min; 02: 2L5 cc/min 
passed through water a t  s l i g h t l y  l e s s  than 1OOC; temperature: 1180 C) 
followed by HC1-He etching before removal from the growth zone. 
dens i t i e s  were evaluated by standard e tch  p i t  and decoration counts. 
The observed dependence on t2 is charac te r i s t ic  of  a diffusion controlled 

process and has been confirmed by other  investigator^^-^ f o r  the oxidative 
growth of s i l i c a .  
oxide growth a l so  i s  apparent from Figures 1 and 2. Decay of t h i s  number, 
N, may be expressed either i n  terms of growth time, t, or layer  thickness, 

These da ta  were obtained f o r  a se r i e s  of oxidation times 

Defect 

A 

The exponential decrease i n  the number of defects  with 

X ,  according to 

where Nt and NS are  the  corresponding preexponential f ac to r s  (ordinate 
in te rcepts )  and and are  the respective decay factors.  Decay fac tors  
appropriate t o  Figures 1 and 2 are  l i s t e d  i n  Table I: 

TABLE I. OXIDE DEFECT DECAY FACTORS 

Condition (minutes-3) +(per 10008) - /4 
No s t r e s s  1.37 2.22 .62 
F’ull s t r e s s  0.60 1.08 .55 
P a r t i a l  s t r e s s  ’ o.lr5 0.83 . s4 

In te rna l  consistency between the time and thickness data  i s  given by the 
r a t io s ,  A / #  , and i s  be t t e r  than 94 percent. 

Obviously the smaller the decay fac tor  the greater  the defect densi ty  
Kerely by cooling from the oxi- and the more ser ious the pinhole problem. 

dat ion temperature t o  room temperature the  decay fac tor  i s  reduced by 
more than 50 percent and the defect densi ty  increased by roughly an order 
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of magnitude. 
developed i n  the oxide layers  which, for  the  s e t  of wafers under discussion, 
was found by Froficorder analysis  t o  be uniformly 4.1 X 
the range of thicknesses grown (see Appendix A). 
s t r e s s  t h a t  d i f f e ren t i a t e s  the " fx l1  s t ress"  condition (middle curve) from 
the  ''no s t ress f1  condition (lower curve) ex is t ing  a t  the oxidation tempera- 

ture.  
the occurrence of d i e l e c t r i c  defects  with compressive s t ress .  

Simultaneously with coolinq the compressive s t r e s s  is  

ps i lo  over 
It is  t h i s  magnitude of 

And it i s  the difference i n  slopes o f  these two curves t h a t  links 

In  the upper curve s t r e s s  i n  the oxide layer  has been F a r t i a l l y  relieved 
by etching off  the opposite oxide layer. The r e l i e f  mechanism is through 

s t r a i n  o f  the s i l i con  substrate,  yielding an observable warp curvature i n  
the wafer. 

vex curvature which, it i s  postulated, opens up oxide fracture  s i t e s  
previously held together  i n  the more planar " fu l l  s t ress t1  s ta te .  Thus, 
the "pa r t i a l  s t r e s s  r e l i e f "  condition i s  believed t o  introduce st i l l  more 

defects,  a s  evidenced by the slope of the upper curve i n  Figures 1 and 2, 

because of the unbalanced nature of the r e l i e f ,  

r e s u l t s  t h a t  an integrated c i r c u i t  technology t h a t  allowed the back oxlde 
t o  remain on the chip would be somewhat less prone t o  pinhole problems. 

As a r e s u l t  the reraining oxide layer  assumes a conformal con- 

It would appear from these 

A more ser ious problem, however, remains, This  is  the existence of 
a v i r t u a l  defect  densi ty  (N equation 1) of the order of 10 3 2  /cm . Admitting t' 
t h a t  t h i s  extrapolated value i s  f i c t i t i o u s ,  one s t i l l  must assume a very 
la rge  defect  density a t  some small t > O  which increases exponentially with 

thinner oxides. T h i s  problem is especial ly  cr i t ical  t o  MOS-FET technology 
where gate o x i d e s  of 10008, or  less ,  are generally required. 
more important, therefore, t o  understand the physical bas i s  for  the v i r tua l  

defect  density, so t h a t  it can be manipulated downwards, ra ther  than 
attempting t o  increase defec t  decay factors. 

t i o n  t h a t  oxide growth (and defect  mending) must remain cons t i tu t iona l ly  
invariant ,  there would appear t o  be very l i t t l e  opportunity a t  a l l  for  

a f fec t ing  decay fac tors  one way or  the  other. 

It seems 

Furthermore, on the assump- 

From a comparison of Figures 1 and 2 it is seen t M t  the preexponential 
defec t  densi ty  is approximately 50 percent higher for  the thickness dependent 
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curves than f o r  the t h dependent curves. T h i s  difference i s  s ignif icant  

within the experimental limits of e r ror  and suggests that the reaction 
kinet ics  governing the i n i t i a l  phases of oxidation d i f f e r  from those 

applicable t o  the remainder of the process. 
the time dependent curves would tend t o  becoms asymptotic i n  the v i c i n i t y  
of the ordinate, but no f i r m  conclusion of t h i s  nature can be drawn on 
the present evidence. 
afforded by these p l o t s  of nonhomogeneous oxide d is t r ibu t ion  a t  the 
beginning of oxidation, and i t s  possible association with the anomalous 
reaction k ine t ics  i n  t h a t  phase of the process. If t h i s  i s  the case, 
process s teps  or modifications capable of moderating the i n i t i a l  oxi- 
dation kinet ics  should have a s ignif icant  e f f e c t  on the vir tual ,  and 
hence ultimate, defect densit ies,  

It appears reasonable that 

O f  more prac t ica l  significance i s  the evidence 

I n i t i a l  e f f o r t s  t o  t e s t  t h i s  hypothesis were directed toward wafer 
pretreatments des&gned t o  produce diffusion attenuation layers  on the 
surfaces. 
o r  l e s s  thickness range produced by wet chemical methods and have shown 
i n i t i a l  encouraging results.  
the wafers with HF ( t o  remove old oxide), 50 percent KOH a t  50s ( t o  renove 
residual f louride) ,  and hot concentrated n i t r i c  acid ( t o  remove residual 
K3H and ini.ti.ate uniform oxidation). 

r insing with d i s t i l l e d  water. I n i t i a l  t e s t s  revealed zero defects under 
conditions of no s t r e s s  a f t e r  only 15 minutes of oxidation. Therefore 
shorter oxidation times were investigated which were expected, on the 
bas i s  of previous resu l t s ,  t o  yield higher defect densit ies.  Hydrogen 
chloride etch-pits i n  the s i l i con  produced under no-stress conditions 
are  l i s t e d  i n  Table 11. 

These l syers  consist  primarily of s i l i con  dioxide i n  the 2008 

Brief ly  the method consis ts  of t rea t ing  

Each s tep i s  followed by thorough 

Sample 
1 
2 

; 
5 
6 
7 

Oxidation 
Time 

(minute s ) 

2.5 
5 
5 
5 

15 
15 

10 

PRETREATPENT 3 1  IPJJTTIAL ClXI3E DEFECTS 
Volume Etch Pits 

H C l  i n  I4e (average 
(SI per wafer ) 

3.5 
3 e 5  
2.6 
3.0 
3 04 
3.0 
3.9 

00 5 
0.5 
1.0 
3.0 
1.0 
4.0 
0.0 

-7- 



These r e s u l t s  appear t o  indicate t h a t  the pretreatment exer ts  suh- 
s t a n t i a l  control over the incidence of i n i t i a l  defects to  the extent t h a t  
the previously found exponential dependence on growth t ine  is absent and 
no s ignif icant  extrapolation t o  l a t e n t  defect density a t  zero time is  
possible. This  e f f e c t  represents a s ignif icant  departwe from previous 
r e s u l t s  and requires further verification. 

A second s e t  o f  wafers, therefore, was pretreated w i t h  n i t r i c  acid 
a s  above and exposed t o  a sequence of  increasing oxidation times without 
a terminal HC1 vapor phase etch, 
Prafers were examined by electrophoretic decoration, yielding the r e s u l t s  
l i s t e d  i n  Table I11 and plotted i n  Figure 3. 

On cooling t o  room temperature these 

2un 
K 
L 

- 
3xid a t ion  

Time 
(minutes ) 

2.5 

5 
10 
15 
20 

30 

Oxide 
T hickne s s 

( Angstroms ) 
1300 
2000 

2700 

3000 

L! I O 0  

5000 

Defects 
per wafer 
(A ve raee ) 
213+18 
172+29 

98+11 
75+ - 6 

LO+ - 3 

- 
- 
- 

50+ - 3 

It is immediately apparent t h a t  the v i r t u a l  (preexponential) defect 
dens i t ies  a re  reduced by a factor  of almost 10 by the wafer pretreatment. 
Yowever, t h i s  i s  s t i l l  substant ia l ly  higher than expected on the bas i s  
of the etch count data i n  Table TI .  The underlying mechanism responsible 
f o r  t h i s  e f f e c t  of the n i t r i c  acid pretreatment is  s t i l l  unresolved. 

It also can be seen from Figure 3 t h a t  the v i r t u a l  defect density 
i s  now higher for  t h e  t i n e  dependent p l o t  than for  the tfiickness dependent 

plot---a reversal  of the trend found for the untreated waf'ers. It appears, 
therefore, t h a t  the wafer pretreatment with n i t r i c  acid does i n  f a c t  slow 
the  i n i t i a l  oxidative attack. T h i s  becomes more apparent by p lo t t ing  

-a- 
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thickness versus (time) Q fo r  the  two s e t s  of wafers as shown LI Figure 4. 
The %rested" curve i s  concave near the or ig in  whereas the "untreated" 
curve i s  convex, again suggesting t h a t  the treatment i n i t i a l l y  a t tenuates  
oxygen diffusion t o  the s i l icon.  
increase i n  water in jec t ion  f o r  the t reated ser ies ,  

The dlfference i n  slopes i s  due t o  an 

The exact natilre of the layers  produced by the n i t r i c  acid st i l l  are  
unknown. 
etching are  r ead i ly  revealed by moisture condensation from a humid environ- 
ment. 
Tally-Surf t racing,  and by interferometry, however, have fai led.  
the  layers  a re  suspected of  being a porous and p a r t l y  hydrated s i l i con  

dioxide, the poss ib i l i t y  of a small component of n i t r i d e  cannot be ruled 
out. 

Boundaries i n  such layers  produced by controlled (masked) HF 

Attempts t o  measure the thickness of the l aye r s  by Proficorder and 
Although 

Following the k ine t ic  c lues  t o  the control  of oxide defects  developed 
above a se r i e s  of wafers was pretreated with a slow-growth oxide layer 

(2508 i n  0.5 hour, 02:N2 = 1:48) pr ior  t o  normal oxide growth t o  varying 
thicknesses (2500-L300 8) .  The r e s u l t s  are plot ted i n  Figure 5 and show 
essen t i a l ly  negl igible  improvement over those plot ted i n  Figure 1. Since 

t h i s  pretreatment was made a t  normal growth temperature it can be assumed 
t h a t  the conditions leading t o  inhomogeneous oxide d i s t r jbu t ion  i n  the 

i n i t i a l  phase o f  oxidation were e s sen t i a l ly  unchanged, 

In  summary it may be sa id  t h a t  the very presence of a v i r tua l  defec t  
densi ty  implies an inhomogeneous d is t r ibu t ion  of oxide a t  the start of 
oxidation which is progressively "mended" by continued oxidation. The 

mending process is  observed t o  be random both in temporal and s p a t i a l  
d i s t r ibu t ion ,  resu l t ing  i n  a population of t h i n  spots  of varying degrees 

of thickness. 
i n i t i a l  inhomogeneity. 
of experiment: extrapolation of oxidation k ine t ic  d a t a  t o  time zero and 

examination of the e f f e c t s  of process var ian ts  onox ide  morphology after 
extremely l imited oxidation. 

The major question t o  be answered is  what produces this 
The answer i s  being sought by the use of two types 

Process var ian ts  investigated thus far include a hot n i t r i c  acid 
10 pretreatment of wafers (previously reportad ) and a slow i n i t i a l  growth 

-10- 
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of oxide achieved by l imit ing the oxygen concentration ( t o  about 2 percent 
v/v) during the first half hour of oxidation, 
experiments indicate  the  following: 

I n i t i a l  r e s u l t s  of these 

1. A kine t ic  anomaly e x i s t s  during the first minute o r  two of 
oxidation which i s  i n  the d i rec t ion  of an accelerated rate 
(vs a strictly l inea r  dependence on t 6 ) f o r  wafers precleaned 

by normal technique and a decelerated rate fo r  wafers pre- 
t reated with ho t  n i t r i c  acid, 

Pretreatment of wafers with hot f i tr ic acid appears t o  reduce 
the v i r t u a l  defect  densi ty  t o  a negligible value for  the 
unstressed condition (i.e. 
defect densi ty  a f t e r  cooling is lower only by a factor  of 
about ten. 
Pretreatment of wafers by slow i n i t i a l  oxide growth (about 2508 

i n  t he  first half  hour) a t  1180 C produces e s sen t i a l ly  no 
reduction i n  v i r t u a l  defect  densi ty  fo r  the f u l l  s t r e s s  condition. 

2, 

before cooling)? but the v i r t u a l  

3. 

The l a t t e r  two observations require fur ther  ver i f ica t ion ,  I f  vali- 
dated, however, they lead t o  the speculation t h a t  the i n i t i a l  r a t e  of 
oxidation of s i l i con  atoms i s  lower (Le., more hindered) than a t  some 
subsequent bu t  s t i l l  incomplete oxidation s t a t e ,  SiOx (x< 2). I Assuming, 
a t  1180 Cy a l a t e r a l  mobility of oxygen ions on a s i l i con  surface, S i0  

Y 
(y<x) ,  any Si0  present w i l l  tend t o  usurp incoming oxygen via t ransport  

X 
through Si0  One way t o  formulate the sequence of events is  as follows: 

Y. 

siox + sioy * sio* + s i  (2)  

si + o2 -+ si0 ( 3 )  Y 
nSiO Y + O2 + (n-1)SiO Y + siox 

The model requires, however 

leave behind an adjacent SiOx t o  continue the l o c a l  propagation. 
model pred ic t s  a d is t r ibu t ion  of l a t e n t  oxide defects  equivalent to the  
i n i t i a l  d i s t r ibu t ion  of SiOx, which is  determined i n  turn  by the surface 
mean f ree  path of oxygen ion diffusion v i a  Si0 

t h a t  each molecular ''unit" of Si02 produced 
The 

Y O  
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A more graphic representation of t h e  model mag be depicted as 
follows : 

The localized oxide aggregates i n  the beginning stages of  oxidation may 
be visualized as follows: 

where the c i r cu la r  contours represent accumulation s i t e s  a t  two s tages  

of oxidation, 
about 1000/cm , 
ion surface migration, 
grow larger, eventually comingling and produchg a s e t  of i n t e r s t i c e s  at  
the same number density,  pictured somewhat as follows: 

Accordinc t o  t he  present evidence the density of sites is 
The arrows indicate  the d i rec t ions  of postulated oxygen 2 

As oxide continues t o  accumilate the areas  should 

A 
4 

d 

P 
4 
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The i n t e r s t i c e s  a re  i n  turn  " f i l l ed  inn a t  a random frequency, as evi- 
denced by t h e i r  exponential decay wi th  oxide growth, producing the th in  
spots  which l a t e r  yield,  i n  varying degrees, t o  such forces a s  compressive 
s t zes s  on cooling, electroFhoretic decoration probing and shorting 
through the oxide on completed,devices. 

The model appears t o  explain the observations described above but  
is not proved by them. 
layer  of  something l e s s  than 2501, as noted e a r l i e r .  
t o  r e s t r i c t  l a t e r a l  d i f f i s i o n  of oxygen ions a t  growth temperature, o r  
it may contain an i n i t i a l  population of Si0 which is  more dense or  
continuous than S i0  s i t e s  produced thermally, leavinr: a smaller number 
o f  oxide gaps t o  be f i l l e d  i n  by conventional oxidation. 
hand, slow growth of the f i r s t  2508 a t  l l 8 O C  would merely assure the 
d iwre texees  o f  Si0 build-up around i n i t i a l  Si0 s i t e s .  That is  t o  say, 2 X 
it would do nothing t o  reduce the v i r t u a l  defect density, as  a.pparently 
observed . 

Nitric acid pretreatment introduces an oxide 
T h i s  layer  may a c t  

X 

X 
On the other 

Experiments planned f o r  t e s t ing  the model include the following: 
1. Growth of  2502 oxide a t  high temperature according t o  the l a s t  
described pretreatment, but without fur ther  subsequent oxidation, followed 
by t e s t s  for  inhomogeneous d is t r ibu t ion;  2. Exposure of n i t r i c  acid pre- 

t reated wafers t o  oxidation temperature i n  an i n e r t  ambient followed by 
t e s t s  t o  determine whether a nonhomogeneous d is t r ibu t ion  has been produced 
by the postulated l a t e r a l  migration; 3. Prolonged pretreatment of wafers 
i n  h o t  n i t r i c  acid pr ior  to  oxidation t o  determine whet,her deeper layers  
provide b e t t e r  ba r r i e r s  t o  surface ion migration, o r  more uniform SiOx 
d is t r ibu t ion ,  as,evidenccd by the resu l t ing  virtual. defect densit ies.  
If the proposed mechanism i s  borne o u t  by these tests, a log ica l  route 
t o  t h e  elimination of d i e l e c t r i c  defects  w i l l  become possible, 

2, Failure Mechanisms Associated with Packaging 

Present process control  of packaging techniques i s  inadequate i n  
several  respects  and fos t e r s  a va r i e ty  of modes of f s i lu re .  

var ia t ions i n  gas ambient compositions, nonhermeticity, corrosion of leads, 

These include 



i n fe r io r  heat sinks and cracked dice. These problems of ten are  inter-  
dependent and augment each other or addi t ional  f a i lu re  modes. Nonherme- 
t i c i t y  may Contribute to  var ia t ions i n  package ambients and corrosion of 
leads; i n fe r io r  heat sinks may contribute t o  cracked dice, degradation 
of % and metall ization mass transport ,  all  of which are  current r e l i a b i l i t y  
problems. 
of an adequate gross leak t e s t .  
loca te  the sources of these problems i n  process control  techniques and t o  
seek remedies therefor. 

Associated with the problem of nonhermeti.c packages i s  the lack  
The objective of t h i s  invest igat ion is t o  

Previous program a c t i v i t i e s  i n  t h i s  area have been l imited mainly 
t o  the analysis  of package ambients and the invest igat ion of the e f f ec t s  
of  cer ta in  of these gases on transi .stor function. 
and gas chromatoqaphic techniques a large var ie ty  of gaseous species 
were detected i n  the packages of t r ans i s to r s  and integrated c i rcu i t s .  
It was shown t h a t  the presence of moisture ser iously affected the low 
temperature performancc of mesa t r ans i s to r s  but not  of planar t rans is tors .  
It, also was shown t h a t  baking fo r  l imited periods i n  a hydrogen anbient 
produced i r revers ib le  increases i n  the betas  of some grcups of t r ans i s to r s  
but not i n  others. General conclusions could not be reached because of 
the l imited sampling and the insuff ic iency of avai lable  process h i s t h i e s .  

'Jsing mass spectrometric 

The rather  surprisinq var ie ty  of gas compositions detected i n  the  
packages of generally well-made components led t o  considerable concern 

regarding the possible e f f e c t s  of such gases on the  long-term constancy 
of e l e c t r i c a l  parameters. Since i.t was not considered feas ib le  t o  inves- 
t i g a t e  the e f f e c t s  B a l l  of these compositions experimentally an attempt 
was made t o  cakalog poten t ia l  in te rac t ions  on the basis  of available 

thermodynamic and k ine t ic  data with the expectati.on that a t ten t ion  would 
be focused on strongly favored in te rac t ions  and dlverted from those that  

were unl-ikely or  forbidden. T h i s  compilation is  included i n  the present 
report  a s  Appendix E. 
s implified and neglects cer ta in  questions of i n t e re s t ,  such as the 

simultaneous e f f ec t s  chemical and e l e c t r i c a l  po ten t ia l s  or  the e f f e c t s  of 
ce r t a in  decomposition intermediates. 

In i t s  present form the repor t  i s  somewhat over- 

It should be regarded, therefore,  
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somewhat a s  an i n i t i a l  draft, which, through subsequent expansion, w i l l  
evolve in to  a usefu l  t o o l  i n  ca l l ing  a t ten t ion  t o  po ten t i a l  f a i lu re  modes 
and, hopefully, providing an estimate of per t inent  react ion kinetics.  

Following the invest igat ions on t r ans i s to r s  f a c i l i t i e s  were establ ished 
f o r  similar invest igat ions on integrated c i r c u i t s  providing considerable 
f l e x i b i l i t y  i n  the select ion of t e s t  ambient compositions, temperatures 
and pressures. 
such a s  the development of a sa t i s fac tory  gross leak  test. The general 
approach t o  these problems consisted of examining current pract ice  fo r  
c lues  t o  the process or ig ins  of component defects  followed by chemical 
and instrumental f a i l u r e  analysis  by established procedures. 

Investigations a l so  were extended i n t o  other  problem areas, 

A number of environmental t e s t s  were conducted on groups of GPA 

integrated c i r c u i t s  (type 947) with the purpose of es tabl ishing what 
e f f ec t s  the  presence of ambient hydrogen would have on the  long t e r m  
performance charac te r i s t ics .  Accelerated e f f e c t s  were first sought under 
the simultaneous application of e lectr ical .  load and %hemal  stress, This 

proved highly destruct ive t o  the devices, even a t  only 150 C, because of 
localized thermal excursions, 
have undergone no s ign i f i can t  change i n  charac te r i s t ics  due t o  the  presence 
of hydrogen (forming gas) i n  these tes t s .  

Surviving devices, however, were found t o  

I n  subsequent t e s t s  e l e c t r i c a l  b i a s  was eliminated i n  order t o  achieve 
For example, higher ambient temperatures without catastrophic destruction. 

a group of  integrated c i r c u i t s  showed no change i n  room temperature e l e c t r i -  
c a l  perforname a f t e r  baking a t  525 C f o r  nineteen hours under nitrogen. 
A sample of  i den t i ca l  devices, however, displ.ayed subs tan t ia l  degradation 
of outboard t r ans i s to r  betas  a s  a r e s u l t  of baking i n  vacuum. The degra- 
dation was j u s t  noticeable a t  300 C but pronounced a t  350 C. 

experiments showed t h a t  the betas  could be restored by baking i n  hydrogen, 
nitrogen or forming gas, and t h a t  the degradatjon and res tora t ion  apparently 

may be repeated indefini te ly .  

Further 

On the  bas i s  of these and e a r l i e r  r e s u l t s  it appears that the e f fec ts ,  

i f  any, of hydrogen ambients on planar devices are curat ive ra ther  than 
degradative and are not l i k e l y  t o  occur a t  s ign i f icant  rates except a t  

-17- 



w e l l  above use temperatures, 
i n  t h i s  respect  and t h a t  improvement i n  betas  a f t e r  vacuum baking may be 
effected by other gases, such a s  nitrogen. 
e f f ec t s  of vacuum baking are not known a t  t h i s  time but may be o f  fur ther  
i n t e r e s t  i n  view of the  deep space nature of  NASA missions and the uncer- 
t a i n t y  of achieving absolute package hermeticity. 
e f f e c t s  of  hydrogen on planar devices, however, has been discontinued. 

It a l s o  appears t h a t  hydrogen is not unique 

The precise reason f o r  the 

The search f o r  unique 

3. Failure Analysis Service 

The objective of t h i s  service i s  t o  examine state-of-the-art components 
per iodical ly  for  inhomogeneities a r i s ing  from process techniques, 

analyses are  being performed i n  d e t a i l  on components i.mportant to the 
Failure Mechanisms Branch, Qual i f icat ions and Standards Laboratory, NASA-ERG. 
T h i s  e f f o r t  cons t i tu tes  a support function which i s  expected t o  reveal  
h i ther to  unsuspected inadequacies associated with fabricat ion s teps  a s  w e l l  
a s  t o  characterize s a l i e n t  r e l i a b i l i t y  problems pecul iar  t o  components from 
spec i f ic  sources. Component anomalies a re  being examined by established 
f a i l u r e  mechanism techniques from which performance predictions can be 

derived appropriate t o  the long term r e l i a b i l i t y  and environmental require- 
ments applicable t o  NASA missions. 

summarized on each group of  components, Groups a re  ident i f ied  by Case 
Number, and individual specimens by Lot Number, Part Number and Sample 

Number. 
is given i n  the Instrumental capabi l i ty  Prof i le  following t h i s  section, 
Analysis o f  Case Number CQF-101, consisting of 89 npn t r ans i s to r s  has been 
completed. 

These 

Analytical r e s u l t s  a re  independently 

Clar i f ica t ion  of t e s t  techniques and instrumentation, where required, 

4. Instrumental Capability Prof i le  

The objective of t h i s  e f f o r t  i s  t o  apprise NASA-ERC of optimum instru-  
mentation and t e s t  sequences from which maximum ins igh t  i n to  f a i l u r e  
mechanisms may be gained. 
second Monthly Report and Quarter ly  Report Number One, giving instrumental  

Original tabulat ions were pcesented i n  the 
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capabi l i ty  ranges, applications t o  f a i lu re  mode and fa i  
invest igat ion and references t o  per t inent  process steps. 
instrumental data have been presented i n  v a r i  
Continuing e f f o r t s  i n  t h i s  area a re  intended 
NASA-ERC of current  instrumental innovations 
f a i l u r e  information, 
t h i s  compilation i s  presented i n  tabular form. 

Su 

On the following pages the most recent updating of 

Present information on the development of improved package leak  
tests i s  not  su f f i c i en t ly  organized t o  be included i n  the accompanylng 
tabulat ion and w i l l  be summarized a t  a l a t e r  date, 
however, are emerging, both of which are  claimed t o  accommodate the 
combined ranges of gross and fine conventional t e s t s ,  
su l fu r  hexafluoride t e s t  and the helium exc i ta t ion  t ransfer  t e s t ,  

Two promising methods, 

These are the 

In  the sulfur  hexafluoride test  provision is made to inoculate the 

package under pressure without a previous outgassing. 
package then is connected t o  a vacuum system containing a cold t r ap  which 
condenses any SF6 pumped out  of the package. 
localized i n  a small volume from which it may be conveniently evaporated 
and admitted t o  a gas chromatograph fo r  anafysis, 
shown the t e s t  t o  be operable from a lower leak r a t e  of 5 X loe7 s t d  cc 
He/min up to t h a t  of a .013 inch diameter hole (#SO d r i l l  hole). 
with the standard helium leak r a t e  test is uncertain a t  present mainly 
because of uncontrolled t e s t  var iables  i n  t h e  conventional method. The 
su l fu r  hexafluoride method i s  tedious, a factor which may cancel out the 
elimination of two separate leak t e s t s .  

The inoculated 

The condensate is thereby 

Recent r e s u l t s  have 

Correlation 

Yowever, i n  the upper range it 
is  far more r e l i ab le  than the present gross leak t e s t ,  , 

The second technique depends on the t ransfer  of exci ta t ion energy 
from a flowing stream of previously excited helium atoms t o  molec1.iles 
of nitrogen or  
is  "detected" downstream from the package as a photoemission (fluorescence) 
as the excited molecules re turn t o  their  ground s t a t e ,  o r  by measurement 
of the accompanying ionizat ion e f fec ts ,  The helium is i n i t i a l l y  excited 
by an rf f i e l d  or  by beta emission from a tritium source. 

rogen escaping from the leak i n  the package. The leak  

Ths test requires  
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S E N S I T I V I T I E S  O F  ~ N S T R ~ E ~ T S  - 
(Physical Propert-ies) 

Crystal character 
0.01 angstroms 

and 10 %o 1,000 
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S E N S I T I V I T I E S  O F  I N S T R U M E N T S  - 
(Electr ical  Properties ) 

-.- 

- ---I--- ----- 
Voltage difference 

Infrared, attenuated 
t o t a l  re f lec t ion  

X-ray spectroscopy 

Emission spectro- 

- 

scopy 
Visible 
X-ray 
Neutron act ivat ion 

- 
Xass spectroscopy 

Gas 
Spark 

Sputter 

* --_I 

Gas chromatography 

c 

Electron spin 
resonance 

-- -. 

- - . . - ( €hemica1 Properties 1 
” --__- 

--I 
- ... 

Detection of metall ic 
& semi-metallic ele- 
ments 

65 elements i n  ppm, 
scopy atomic 

Surface composition Depth i s  about 1 wave- 
length, depending on the 

: angle of reflection. -. I - 
Chemical composition, ~ 10 t o  1,000 ppm 

Chemical compo s i  t ion  
oxidation s t a t e  

L ppm of most elements 
10 ppm of most e l emnt s  
1 ppb of most elements, 

0.02 t o  200 ppn 1 0 ~ ~ 3  torr 
1 ppb of many elements 20 
t o  200 ppb of H, N, C, 0 
1 t o  10 ppm i n  surface which 
i s  removed a t 1 0  to 100 
monolayers per second. Area 

Concentration of 

Chemical composition 
impurities 1 ppm of oxygen .- 

. 

I__________l___l__ ____I_ 

Chemical composition 1 pp 
gram sample 
1 ppm H, I C  ppm Ar, 50 ppn water 
10” H electron spins per 

radicals, excited gauss with I. second integration 
s t a t e s  time. 

- ._I_I I_ I--_-___ --_- 
Dangling bonds, f ree  



S E N S I T I V I T I E S  - O F  1 N . S T R U M E N T S  

(Elec t r ica l  Properties) 
I 

Instrument and 
Procedure __ 

Nuclear magnetic 
resonance 

Charged p a r t i c l e  

Electron microprobe 
spectroscopy 

X-ray mode 

Backscattered 
electrons 

Specimen .cur r e n t  
mode 

Wet chemistry 
Colorimetric 
Fluorimetric 
Ion exchange 

Carbon analyzer 

TJacuum fusion 
_I 

Parameters Measured 

PIolecular s t ructure  

Surface contaminant 
ident i f ica t ion  

Ident i f icat ion & 
amount of chemical 
elements 

variations 
Relative At,. No 

Device topography 
-I- -- -_____ 

Chemical composition 

Carbon determi- 

Chemical composition 
nation 

- 
st Sensi t ivi ty ,  Resolution 

or  Power - -__ -c 
iQ 3 2,000 ppm, 3 x loAu spins, drn 

Atomic number difference of 1 

10 ppm i n  bulk (1,000 ppm 
for  l i g h t e s t  elements) 

0.5 t o  1 micron 

10 picograms 
1 picogram of most elements 
Concentrates ions lOaX 

10 PPm 
- 

50 ppb 9, 200 ppb or  0 or N 

* S e n s i t i v i t i e s  quoted are  the highest given i n  apparatus maker's 
l i t e r a t u r e ,  



ultrapure helium but i s  simple and rapid, and t h e  required instrumentation 
is  r e l a t ive ly  uncomplicated. 
the range covered by the sulfur hexafluoride t e s t .  However, considerable 
work i s  st i l l  required t o  es tab l i sh  a quant i ta t ive correl.ation between 
instrumental readi.ngs and ac tua l  leak rates.  

A t  the present time it appears t o  exceed 

Further r e s u l t s  on these and other techniques w i l l  be reported a s  
they become available. 

COMPLETION MFORMATION 
Approximate physical completion (current f i s c a l  year) 60% 
Approximate expenditures 58% 

ACTION REGTJIRXD RY NASA 
None 
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APPEMOIX A 

MEASUREMENT OF COMPRESSIVE STRESS IN OXIDE LAYERS 

The compressive s t r e s ses  associated with oxide layers  o f  various 
thicknesses and defect  dens i t ies  a re  list,ed i n  Table A-I. Determinations 
were made by Praficorder t racing arranged to give both the s tep thickness 
of an e tch  mark and the de l t a  curvature, or deflection, over a given t race 
distance produced by removal of an oxide layer. 
the compressive stress is  computed using the following relat ion:  

From the def lect ion data 

where Es i s  the modulus o f  e l a s t i c i t y  of s i l i con  (27.3 X I d 6  ps i ) ,  Zs 
and Zo a re  the thicknesses (inches) of the s i l i con  and oxide l aye r s  
respectively,  d 

the length of Proficorder traverse,  yielding the compressive stress, 801 
i n  psi. 
wafer. 

i s  the  def lect ion produced by oxide removal and I is 
S 

Putua?.ly perpendicular Proficorder t races  were made on each 

Error  i n  these measurements arose from two sources: s tep thickness 
determinations (*2501) and curvature f r r e g u l a r i t i e s  i n  about, 50 percent 
of the Proficorder t races .  The thickness e r ro r  i s  apparent from Table I 
where the calculated s t r e s ses  deviate from t h e  average most for the th inne r  

oxides (i.e., where the  measurement e r ror  i s  proportionately greater) .  
There is, however, no apparent change i n  stress with oxide €h ichess ,  8s 
a s  deduced e a r l i e r  from more l imited evidence. Curvature j r r e g u l a r i t i e s  

were dea l t  with by area summation technique applied to the  regions enclosed 
by t h e  pre- and post-oxide removal curve traces.  
improvement of about 50 percent ( t o  4.4  percent) over e a r l i e r  computations, 

The magnitude of the compressive stress i n  the  oxide (4 X lo-' p s i )  

- 

This resul ted i n  an 

- 

is  considered subst,antial enough t o  rupture 8 l a rge  proportion of ex is t ing  
t h i n  spots  i n  the  oxide on cooling from the oxidation temperature. 
t h i n  spots, although fractured, may be held together by the residual  
compressive stress and escape detection by electrophoret ic  decoration, 

Other 
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These spots appear i n  turn t o  be opened up (i.e., they become d 

by decoration) by the convex curvature and r e l i e f  o 
by back oxide removal. The conire 
apparent from the Proficorder t r a  

TABLE A - I .  CORRELATION OF DEFECT DENSITIES WITH OXIDATION AND STRESS 

Run 

A 

B 
C 
D 
E 
J 
F 

0 

- 

Oxid a t  ion 
time, t h i c k n e s s  t 
(minute s ) (Angstroms ) 

2,24 1720 
? .16 1995 
3.87 2590 

lc.L7 3125’ 
5.00 2 916 
5.00 3760 
6.32 4C1C 
7,81 q 5  

No Ful l  Pa r t i a l  
Stressa Stressb StressC 

131 54s 987 
35 5x1 6t4 
10 3 t 3  479 

5 111 1.46 
8 170 353 
0.: 205 333 
1 31 140 
0 24 90 

Ne a sur ed 
S t ress  d 

(psi 10-3) 

Iro . 3 
t9.S 
76.8 
40.0 

IQ b 1  
37.3 
41.4 
L2.6 

a. Si l icon  e k h  pit count produced before cooling. 
n count a f t e r  cooling. 

n t  a f t e r  removal of back oxide layer. 
icorder trace method described i n  text.  
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APPENDIX B 

-* THER&)DYNAMIC ANALYSIS OF AMf3Il3NT GAS EFFECTS 

Introduction 
S i l icon  device ctnd integrated c i r c u i t  technology, which represents 

one of the major areas  of progress i n  electronics,  depends heavily on 
the  sophisticated use of highly specialized materials, 
of such materials needed t o  produce the desired e lec t ronic  function a l so  
of ten contains the seeds of  long-term d r i f t  o r  de te r iora t ion  of t h a t  
very function. 
becmse of the specialized nature of the mater ia ls  and the i n t r i c a t e  
manner i n  which they are  assembled, As a first  s t ep  i n  ant ic ipat ing such 
long-term in te rac t ions  it should a t  ].east be determined which of them are  
thermodynamically permissiSle and which can be eliminated from fur ther  
consideration, 
components t h a t  have. been encountered by inetrumental techniques, such 
a s  gas chromatography and mass spectrometry, i n  the packages of integrated 
c i r c u i t s  , 

The juxtaposit ion 

The mechanistic reasons f o r  t h i s  frequently are unobvious 

The present analysis  attempts t o  do t h i s  f o r  gaseous 

Gases consi.dered were: nitrogen, hydrogen, argon, helium, methane, 
oxygen, water vapor, carbon dioxide, carbon monoxide, benzene, toluene, 
methylcyclohexane, and freon. Additional gases will be included a s  they 
a re  revealed by instrumental analysis. 

Solid surfaces under examination were: s i l icon,  s i l i con  dioxide, 
aluminum, and aluninum oxide. Other surface compositions w i l l  be added 

i n  order of frequency and general reac t iv i ty ,  

Chemical react ions fo r  the foregoing gases and so l ids  were considered 
i n  terms of the simple thermodynamic free energy of reaction. 

A l i t e r a t u r e  survey concerned with integrated circuits and a d i e n t  
gases i s  appended. 



Free anergy Values 
An important thermodynamic property is the f ree  energy of reaction, 

f o r  it is  the magnitude and alzebraie sign of t h i s  quantity which describes 
the chemical species which w i l l  e x i s t  under equilibrium conditions a t  a ' 

given temperature. 
f ree  energy for  a chemical reaction and i t s  sign o f f e r s  a means for the 
prediction t h a t  ambient gases w i l l  or  w i l l  not chemically reac t  with the 
sol id  surface materials present i n  packaged integrated c i rcu i t s .  With 
t h i s  connotation i n  mind Tables B - I  and 9-11 s m a r i z e  per t inent  standard 
f ree  energy values for  temperatures, 298, 500 and 1000°K. The standard 
state is 298OK a t  atmospheric pressure. For gases a correction must be 
made for  f a c t  t h a t  a r e a l  gas i s  not a perfect  gas. F~rthermore, it 
is  important t o  note t h a t  the standard free encrg:y of f o r m t i o n  of an 
element is, b:; def ini t ion,  zero f o r  the standard s ta te .  It i s  through 
application of equation (1) t h a t  the standard change i n  f ree  energy is  
calculated for  possible chemical reaction between ambient gases and 

s o l i d s  i n  packaged integrated circui ts .  

Thus, the free energy of reaction or  the change i n  
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Conclusions 

The r e s u l t s  of f ree  energy calculat ions are summarized i n  Table B-111. 
The data  predict  for  the indicated ambient gas-solid surfaces i n  contact, 
a t  the indicated temperatures, chemical react ions i n  a l l  .cases where the 
standard f ree  energies are  negative. 
s i l i con  and oxygen gas, sol id  s i l i con  and carbon monoxide o r  carbon dioxide, 
gaseous benzene and sol id  s i l i con  t o  form s i l i con  carbide and hydride,  

toluene 
and s i l i c o n  t o  form s i l i con  fluoride,  s i l i con  chloride and carbon, 

These a re  the react ions between so l id  

vapors and sol id  s i l i con  t o  form the carbide orhydride,and CF2C12 

Si l icon dioxide sol id  i s  very s table  and much l e s s  react ive than 
s i l icon.  Free energy calculat ions fo r  sol id  s i l i con  dioxide with ambient 
gases were negative i n  only one instance, i.e., t h e  chemical react ion with 
difluoro-dichloro-methane. 

Alummm lnetal i s  a common component in integrated c i r c u i t  technology, 
Accordingly, simple standard free energies of  reaction were calculated 

fo r  sol id  aluminum-ambient gas systems. 
t h a t  the formation of aluminum n i t r ide  sol id ,  aluminum oxide so l id ,  (from 
both water vapor and oxygen, a s  well a s  carbon monoxide and dioxide), are 
probable reactions which occur between ambient gases and so l ids  i n  packaged 
integrated c i rcu i t s .  
dichloro-difluoro-methane, reac ts  with alxminum t o  form halide salts and 
carbon. 

These thermodynamic data disclosed 

As i n  the case of  s i l i con  metal and s i l i c a ,  the freon, 

Aluminum oxide, sol id ,  showed no chemical r e a c t i v i t y  with any of the 
ambient gases commonly found i n  c i r c u i t  packages, 

A few general statements can be made concerning the calculated data 

(1) 

i n  Table B-111. 
Only chemical reactions between ambient gases and so l ids  most 
commonly used i n  packaged integrated c i r c u i t s  were considered. 
Other materials can be .included. 
l r e e  energy calculat ions fo r  methylcyclohexane react ions a re  
not shown as the r e su l t s  show t h a t  these reactions a re  l e s s  
favorable than those  of benzene a& toluene. 

(2 ) 
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( 3 )  No l i m i t s  of error  were associated with thermodynamic values 
used a s  they were not available i n  many cases, 
The predictions nade concerning ambient gas-sol i d  chemical 
reactions a re  for  the equilibrium condition, 
can be qui te  d i f fe ren t ,  
chemical product from the reaction a t  equilibrium can cause a 
complete s h i f t  i n  the equflibrium t o  form more of  the react ion 
rxoducts .  Uuring t h i s  shif t ing condition the processes may be 
steady s t a t e  and are kinetic i n  nature u n t i l  the new equi l i -  
brium i s  achieved, 

(4) 
The k ine t ic  picture 

For example, the kinet ic  removal of one 

( 5 )  3nl.y over-all chemical reactions were considered. The par t ic i -  
pat ion of r o t e n t i a l  chemical intermediates and/or activated 
s t a t e s  was omitted from consideration, 

Reaction of hydrogen with Si,  SiOz, A 1  and A 1  0 

dy-.anically disallowed , 
(6) i s  thermo- 2 3  
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The e f f e c t s  of  the ambients are correlated t o  device 
parameters with fur ther  implications, 

9. Lehman, H.S,, "Chemical and Ambient Ef fec ts  on Surface Condaction in 
Pamivated S i l icon  Sei ence Abstracts R, Electr ical .  
Engineering 68, 98113 (1965); I 3 M  J. 9es. and Development (USA) i, 
Yo. b., 422-lr% September (19hk). 

'?ha e f f e c t  of processing variables on the  surface cond;iction 
properties of passivated s i l i con  junction devices has been 
studied, Insulated gate f i e l d  e f f e c t  t r a n s i s t o r s  fabricated 
i n  p-type s i l i c o n  were used as an experimental tool.. Varying 
the metal used as the gate electrode is  shown t o  strongly 
influence the surface conductivtty o f  the f i e l d  e f f e c t  device. 
The e f f e c t s  of hea t  treatrrent i n  various ambients and variation 
i n  the in su la to r s  used a re  a l so  discussed. Surface conduction 
i s  shown t o  be a comFlex function of materials t h e m a  h i s to ry  
and proco ssing . 

10, Rrattain, V,H. and Garrett, COS, "Protection of S i l icon  Conductive 
Devices by Gaseous Ambients". 
January 15, 1957. 

(Se l l  Telephone Lab,) US Pat. No. 2,777,974, 

The use of a n  arrbient atmosphere of olxygen t o  control the 
surface cha rac t e r i s t i c s  of junction devices by preventing ox 
i.nhibiting the formation of undesirable conducting paths 
(channels) a t  o r  near the surfaces of these devices is ( l i s -  
discussed. The e f f e c t s  of the  oxy6en i s  t o  form a layer of 
p-type material  on the surface of  the crystal which prevents 
the  formation of n-type channels on the p-type region. 

11, Many, A. and Gerlick, E, 
face Stryicture of Germanium, 
the  Electrochem, 

"The Effect  of Gaseous Ambients on t h e  Inter-  
(uebrew 1Tnj.v. ) 

Simultaneous measurenents of  surface recombination ve loc i ty  and 
trapped charge densi ty  i n  the fas t  state as a function of sur- 
face po ten t i a l  were reported. The surface poten t ia l  was varied 
over a wide range by the application of la rge  AC f i e l d s  normal 
t o  the surface, It was found t h a t  the d i s t r ibu t ion  and charac- 
ter is t ics  of the f a s t  state were markedly affected by the 
surrounding anbients. I n i t i a l l y  with the sample i n  vacuum, 

Recent news abstracts of 
Soc ., Semiconductor Syxposium, Kay (19%') , 
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The Fermi po ten t i a l  of  a ca t a lys t  i s  re la ted  t o  the e lec t ronic  
exchance level of the reacting molecules. 
dimensional term scheme the r e l a t ions  are Eeneralized, On the 
bas i s  of  r e s u l t s  one can determine whether an n- o r  p-type 
ca t a lys t  must be used f o r  a reaction. ?'urthermore, the import- 
ant r i l e  of the space charge i n  the ca t a lys t  i s  discussed with 
i t s  e f f e c t  upon the reaction Mnetics,  

Applying a t h  

13. Sta t t z ,  He, iJeFars, GOA,, Davis, 1,. Jr., Adam, A. Jr., (naytheon 
Manufactx-ing Co . 
Pennsylvania B e s s )  '139-168-m 

Semiconductor Surf ace l-hysics (;Jniversity of 
-__y--- 

Steady s t a t e  and nonsteady s ta te  inversion lacyer conductance 
on s i l i c o n  and qermanim are  discussed i n  terms of two types 
of siirface s ta tes .  The second type s ta te  i s  located a t  the 
surface of the oxide with perhaps some states i n  the oxide 
film, 
DependSng upon the surrounding gas they a re  e i t h e r  predomi- 
nantly acceptor o r  donor type and it is  2rincipal ly  the states 
which determine the d i rec t ions  i n  which the  bands a t  the  sure  
face a re  bent. 
energy of the  in te r face  s t a t e s  from nonsteady s t a t e  inversion 
layer  conductance measurement. It is  found t h a t  high f i e l d s  
across the oxide film can inzluence the densi ty  of these s t a t e s  
i n  s i l i con  ly ing  above the  middle of the gap. Anomalous inver- 
s ion  layer conductances a re  found when va2ors of  certain 
l i qu ids  a re  ad  sorbed . 

The s t a t e s  r e s u l t  mainly from adsorbed gas molecules. 

It i s  possible t o  determine the number and. 

1L. Kozlouskaya, V.M. 'Wass Spectrometric ne termination of the Amount 
and Composition of Gases Adsorbed on the  Sllrface of  Germanium and 
Si l icon  Monocrystalsf1. Solid S ta te  Abstract 1,6046 (1.960-1961) j 
Soviet Phys., Solid state 9&009b6 January T1960). 

15. 



16. Kammere, Y.C., “Thermal Evaluation of High Density Electronic Packages”. 
Solid State Abstract 2, 16912 (1962) Electron Design - 9, 121-7.22 
December (1961) . 

A monograph t o  determine the design 1 
packages exposed t o  thermal stress. 
t igated were: t o t a l  temperature be 
the center of the package, thermal conductivity of package 
material, cooling technique and s ize  and configuration of maxirmVn. 

17. fislev, A.TJ. and Lygin, V.T. Wniversity of MOSCOW~~. 
Abstract 5,  28828 (1964); Surface Science - 2, 236-244 (1964). 

Solid State 
- 

The s h i f t  of the absorption band of s i l i c a  surface hydroxyl 
groups on adsorption of molecules of d i f fe ren t  e lectronic  
s t ructures  i s  i n  accordance with t h e i r  heats  of adsorption and 
ionization potent ia ls ,  On the bas i s  of  vibrational theory the 
spectra of water and ammonia molecules adsorbed on si l ica and 
zeol i tes  have been analyzed. 

1.8. Routin, H. and Frask, H. 
Alumina and s;ilica by Slow Neutron Ine las t ic  Scatteringll. 
Abstract - 5 ,  28830 (19614); Surface Science 2, 261-266 (1964). 

Wtudy of Water Vapor Absorption on Gamma 
Solid S ta te  

The energy spectrum of neutrons, i ne l a s t i ca l ly  scattered by 
hydrogenous groups adsorbed on the sol id  surface i s  able t o  
provide information concerning the degree o f  mobility of 
those groups, the nature and s t renzth of the binding with the 
adsorbent and the frequencies of ro ta t iona l  o r  vibrational 
motions ranging from 20 t o  1,000 cm-l. 
technique is  given and i s  applied t o  water adsorbed on si l ica 
and gamma alumina a f t e r  the samples have been heated t o  a 
150° under vacuum. Two typos of water molecules e x i s t  on the 
surface: dis tor ted molecules with hydroxyl groups hydrogen- 
bonded t o  oxygen atoms, and te t rahedral  molecules similar t o  
the l iquid.  Additional water layers  on the surface become 
more water-like. 

The principle of the 

19.  Volkenstein, F.F. and Karpenke, 1.V. l’Theory of Photoadsorptive Effect 
i n  Semiconductorstt. 
3457A December (1.964) AD60!??33. 

Solid State Abstract 2, 30709 (1964); STAR 2, 

The sign of the photo-adsorptive e f f ec t  i n  semiconductors 
depends on select ion of t h e  system, on the mode of experlment 
and the preparation of the sample fo r  experiment. Report 
o f fe rs  formulas for  establishing basic  criteria for  determi- 
nation of the photo-adsorption effect .  

20. Farnsworth, H.E. and Campbell, B.D. (Brown University) Wtudy of the 
Surface Properties of Atomically Clean Metal and Semiconductorstt. 
Solid State  Abstract 6, 37205 (1966); Contract DA28304 ANC 0029E US 
Government Research aEd Development Reports 40, 1L6A May 20, (1965) 
AD 31-699. 
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Oxy6:en adsorption on the (0001) ma 
an intense l i g h t  was incident on t 
oxygen exposure i n  intense 

dark c o n d x t i v i t y  and g rea t ly  decre 
1.izht . 
surface (0001) specular surface was not  effected by exposure t o  
l i g h t  

Photo-adsorpti on of oxygen is  indicated . ’Jnlike matte 

21. Hobson, ,J.F. II.4 New Method fo r  F i r d i n g  Heterogeneous mercy  Distri- 
but3.or.s from Physical Adsorption Isothermsft, 
I 6 ,  4161.7 (1966); Canadi.an J. Phps. I k, 1.?3h Moverber (1965). 

Solid S ta t e  Abstracts 

A model i s  described which assumes t!-at a, hetergeneous surface 
has a di s t r i t x t i o n  of a.dsoryk”cn emrg ies  f o r  pbysical adsorption, 
A nev sol.ution i s  presented giving a number of s t ep  types: 
l o c a l  isothermE, whi.ch a re  chosen t o  re r resent  varying degrees 
of adsorbat,e-adsorbate interaction. 
t l i  s t r ibi i t ions t o  he obtai.ned m i t e  simply frsm isotherm da ta  
a t  one temperature. T h i s  so lu t ion  m y  be ueed t o  cal.culate 
isotherms a t  other temperatwes . 

The so lu t ion  permits energy 

3 3 .  Yowling, l3.V. “Phot,c,electri.c Kesponsa 3f N e t a l  Surfaces i n  Ambient 
Solid State Ahstract 7, 2~8039 (1967); J. Appl. Fhys. At,nosphereslr. - 37, l % ! l  (1960). - 

bxperinients are described which exaxine vmi.ati.ons i n  the  9hoto- 
e l ec tx i c  response of  metal surfaces immersed i n  
Work function charyes have been prduced by gas bomban-lment, 
electrode heating, deposition of small amounts of K on the sur- 
face. Eg operating the electrode under study as the eathqde of 
geiger n ~ i l l e r  photon counter, photoc?rrrents as low as I@”-’- A 
could be meamred . Factors which inf l ixnce  i r r eve r s ib l e  changes 
3.n work functions have been explored. 
i r i  work function which i s  thermally activated has been demon- 
stra ted  . 
iron/hyd rogen, pl.atinum/hJd rogeri, palad ium/hyd roeen, r !xnium/hyd rogen ; 
a l so  nitrogen, neon, argon and amnionia. 

gas atmospheres. 

A less well known increase 

tiinF: s t e n/hyd r ogen , n i c  ke l/h:d r ogen, S ys tems inclucl ed we re : 

23. Logm, R.M. and Stickney, R.E., “Simple C l a w i c a l  Plodel for  the  
Scattering of ?as Atoms from a Solid Surfaceft. 
116468 (1967); J. Cher?. Phys. 44 

Solid S ta te  Ahstract ‘7, 
-’ 

r i n g  of  gas  atons from a 
nd i ts  charac tPr i s t ics  di scussed. 

a r e  obtained fo r  the angular d i s t r ibu t ion  of scattered 
es. The model correctJy predic t s  the General appearance 
sca t te r ing  pat tern,  and i ts  dependence upon the angle of 

incidence of the heam and on the temperature and m s s e s  of t h e  
gas and surface atoms. 



314. Lu, lei-Kao, "The General Rate Equation for  Gas Solid F,ea.ction i n  
Metallurgical Processes with the Tes t r ic t ions  of Revers ib i l i ty  of 
Chemical Reaction and Gaseous Equimolar Counter-Diffusion" . 
Sta t e  Abstract - 7, 46669 (1967); A D @ .  Trans, - 236, 531 (1965). 

Solid 

An improved general  r a t e  equation f o r  a one dimensional gas- 
solid system has been derived. 
reac tan t  and product have been calculated with r e l a t ions  furnished 
by the following cons t ra in ts  on the system: 
and equimolar counter d i f fus ion  of gases, 
chemical react ion f s  taken a s  1st order with respect t o  the 
concentration of  the gases involved, 
dependence on gas composition and on so l id  s t ruc ture  through 
the r e l a t ive  values of Knudsen a d  norrna.1 d i f fus iu i t i e s .  

The concentrations of gaseous 

quasi-steady s t a t e  
The i n t e r f a c i a l  

The equation has proper 

75. Michelett i ,  F,B., and Nark, P., "Effects of Chcni-sorbed 3xjrgen on 
the E l e c t r i c a l  Properties of Chemically Sprayed CdS Thin Films". 
Electronics  and Communications Abstracts 6, 14467 (1967); Appl. F h p .  
Le t te rs  -L LO, No, 4, 136-138 (1967). - 

Fieasurernants with spray deposited semiconducting CdS f i l m s  are 
reported t h a t  denonstrate the primary e f f e c t  of oxygen chemi- 
sorption is the reduction of h a l l  mobility. 

26. Blum, J., Warwick, R. and Genser, M, 
Planar Junction Structurestt .  Presented a t  the  Spring Meeting o f  the 
Electrochemical Society, Toronto, Canada, May 3-7 (1964) (Gen. Prec. 
Aerospace ., Kearfott Div. ) 

"Surface Studies with S i l icon  

Changes in: 
Surface recombination veloci ty  limits beta and i s  i n  tu rn  determined 
by the dens i ty  of f a s t  in te r face  s t a t e s  and. the surface potent ia l .  
Changes i n  cha rac t e r i s t i c s  of s i l i con  npn planar t r a n s i s t o r s  were 
observed a f t e r  heating fo r  various times a t  temperatures between 
30O-35O0C i n  forming gas (15% !I2, 8% N2), oxygen, vacuum and 
nitrogen. 

emit ter  current  gain, beta, with co l lec tor  current. 
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