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A Comparison of Numerical Techniques f o r  Determining 

the  Parameters of Distr ibuted RC Networks 

I. Introduct ion 

This is one of a series of repor t s  descr ibing the  use of 

d i g i t a l  computational techniques i n  the  ana lys i s  and synthes is  of DLA 

@ i s  tributed-&umped-&tive) networks. 

of th ree  d'is t i n c t  types of elements, namely, d i s t r i b u t e d  elements 

(modeled by p a r t i a l  d i f f e r e n t i a l  equat ions) ,  lumped elements (modeled 

This class of networks cons i s t s  

by a lgeb ra i c  r e l a t i o n s  and ordinary d i f f e r e n t i a l  equat ions) ,  and a c t i v e  

element8 (modeled by a lgebra ic  r e l a t i o n s ) .  Such a charac te r iea t idn  is  

appl icable  t o  a broad class of circuits, espec ia l ly  including those 

usually r e fe r r ed  t o  as l i n e a r  i n t eg ra t ed  c i r c u i t s ,  s ince  the  f ab r i ca t ion  

techniques f o r  such circuits readi ly  produce elements which may be 

modeled as d i s t r i b u t e d  and active, as w e l l  as ones which may be consi- 

dered as lumped. 

One of t he  major problems encountered i n  the  analysie  or 

synthes is  of DLA networks is the  problem of modeling t h e  d i s t r i b u t e d  

elements. Spec i f ica l ly ,  t he re  are two formidable obstacles .  F i r s t ,  

immittances associated with d i s t r i b u t e d  RC networks w i l l ,  i n  general ,  

involve t ranscendental  i r r a t i o n a l  funct ions of the  complex frequency 

var iab le .  

niques d i f f i c u l t ,  t o  say the  least. 

expressions for t he  network funct ions descr ibing these d i s t r i b u t e d  

ements are ava i lab la  f o r  only a f ew-pa r t i cu la r  geogetr ies ,  and e 

This makes the  appl ica t ion  of standard network analys 

Second, closed-form a n a l y t i c a l  

3 .  
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these expressions are completely d i f f e r e n t  f o r  d i f f e r e n t  geometries. 

For example, the  admittance parameters assoc ia ted  with a d i s t r i b u t e d  

network with an exponent ia l  taper'  have a form e n t i r e l y  d i f f e r e n t  from 

the  admittance parameters of a d i s t r i b u t e d  network with a l i n e a r  taper .  

As a r e s u l t  of these  obs tac les  i t  has  become f a i r l y  rout ine  t o  use 

ana lys is  techniques which employ the  d i g i t a l  computer when dea l ing  with 

networks which include d i s  t r i b u t e d  RC elements. Such techniques requi re  

t h e  generat ion of models which f u l f i l l  t he  dua l  r o l e  of accura te ly  

charac te r iz ing  the  d i s t r i b u t e d  elements and a l s o  being amenable t o  

d i g i t a l  computational process. 

made of t he  use of a lumped element model t o  approximate t h e  transmission 

paramerters of d i s t r i b u t e d  BC n e t v o r k ~ . ~  

by an i t e r a t i v e  matrix mul t ip l i ca t ion  process and has the  advantage t h a t  

i t  can be appl ied t o  networks of a completely a r b i t r a r y  taper .  

r epor t  a d i f f e r e n t  approach t o  modeling based on the  use of t he  matr izant  

is presented. 

and t h e i r  appl ica t ion  t o  the  determination of t he  transmission parameters 

of d ie t r ibu ted  RC networks of a r b i t r a r y  taper .  Several  numerical methods 

f o r  using a d i g i t a l  computer t o  determine the  matr izant  are then 

presented. 

e r e n t  methods and the  use of the  lumped element model previously r e f e r  

t o  with respect  t o  the  relative computattonal e f f i c i ency  and accuracy 

the  two approaches. 

I n  a previous r epor t  an evaluat ion w a s  

Such a model may be analyzed 

I n  t h i s  

The r epor t  begins by developing the  theory of matr izants  

F ina l ly ,  a comparison is made between the  use of these  d i f f -  



11. The General Theory of t h e  Use of t he  
Parameters of a Dis t r ibu ted  RC Netwo  

I n  t h i s  s e c t i o n  of t he  r e p o r t  t he  gene ra l  the0  

method f o r  determining t h e  t ransmiss ion  parameters of a d i s t r i b  

network Fa presented.  F i r s t  of a l l ,  cons ider  t h e  network shown be lo  

The p a r t i a l  d i f f e r e n t i a l  equa t ions  desc r ib ing  t h i s  netknrk are 

where v(x, t )  a d  i (x , t )  are the  ins tan taneous  values of t he  v o l t a  

c u r r e n t  a long  t h e  l i n e ,  r (x)  is t h e  r e s i s t a n c e  p e r  unit: l ength  a l o  

l i n e  and C(X) is t h e  capac i tance  p e r  u n i t  l eng th  a long  t h e  l i n e .  

e U p l a c e  t ransformat ion  wi th  xesperct to  t i m e  to  these  equa t ion  

App 

cond i t ions  are zero, w@ o b t a i n  



- r(x) ~ ( x , p )  - - - pc(x) V(x,p) 

dx 

dx 

where V(x,p) and I(x,p)  are the  Laplace t ransforms of v(x , t )  and i (x , t )  

r e spec t ive ly .  I f  w e  d e f i n e  the  matrix K(x,p) as 

K(x,p) * ~ ' ~ ]  (3) 
PC(X) ' 

then  t h e  r e l a t i o n s  of (2) may be w r i t t e n  as 

This  f i r s t - o r d e r  mat r ix  d i f f e r e n t i a l  equat ion  may be i n v e s t i i a t  

first cons ide r ing  a gene ra l  matrix equat ion  o f  t h e  form 

where w(y) and R(y) are v e c t o r s ,  A(y) is a square  mgtrix and the  prime 

( I )  i n d i c a t e s  d i f f e r e n t i a t i o n  wi th  r e s p e c t  t o  y. 

equat ions  l e t  us first assu(ILIB a product  s o l u t i o n  for w(y) having t h e  form 

To solve such a set of 

W.(Y) * P(Y) X ( Y )  ( 6 )  

where P(y) is a square  matrix and z(y) is a vec to r  and both t h e s e  q u n t  

ties are t o  be determined. D i f f e r e n t i a t i n g  ( 6 )  and s u b s t i t u t i n g  t h e  

r e s u l t  i n  ( 5 )  we o b t a i n  



Since 

These 

P(y) is not  s p e c i f i e d ,  le t  us s t i p u l a t e  t w o  

are 

Since P(y) is not  s p e c i f i e d ,  le t  us s t i p u l a t e  t w o  r e q u i  

These are 

P(0) = I 

In t h i s  case the  o r i g i n a l  r e l a t i o n  as given i n  (7) becom-8~ In t h i s  case the  o r i g i n a l  r e l a t i o n  as given i n  (7) becom-8~ 

P(Y) Z 7 Y )  - R(Y) ' 

-1 Let us now assume t h a t  P (y) x is ts .  Then w e  m y  write 

I f  we i n t e g r a t e  t h i s  r e l a t i o n  and note  t h a t  z(0) w(0) we o b t a i n  

If we now mul t ip ly  both sides of t h i s  r e l a t i o n  by P(y) w e  o b t a i n  

Thus, we have found a gene ra l  s o l u t i o n  f o r  w(y) and,  i n  the  reduced set 

of  equat ions  i n  which R(y) is ze ro ,  t he  s o l u t i o n  has t h e  form 

W(Y) ea P(Y) w(0) 

Our problem is now one of f i n d i n g  a matrix P(y) such t h a t  t h e  rela 

of (8) are satisfied. Let us  b g i n  by i n t e g r a t i n g  both s i d e s  of t 

r e l a t i o n  of (8) and i n s e r t i n g  t h e  second r e l a t i o n  i n  the  r e s u l t .  

anging terms we o b t a i n  



Since the  elements of 

i n t e g r a t i o n  from zero 

func t iona l ly  dependent on A(y) and on 

is convenient t o  use t h e  symbol 

r ep resen t  P(y). Let us now a~isuec9 a series s o l u t i o n  f o r  P(y) having the  

f o m  

S u b s t i t u t i n g  t h i s  i n  t h e  i n t e g r a l  equat ion of (14) we ob ta in  

00 Y Q) 

kP0 0 k=O 
5. Pk(Y) I + \  A(Y) pk(y) dY (16) 

It may be shown t h a t  t h e  series given i n  (15) converges abso lu te ly  and 

uniformly i n  every i n t e r v a l  i n  which t h e  alemetnts A(y) are continuous. 

Therefore,  i f  we ke t h e  following assignments 

Po I 

f Y  

< .  

Then t h e  r e l a t i o n  given i n  (16) is satisfied and the  quan t i ty  $(A) 

B er matrix func t ion  of A c a l l e d  t h e  This then gives  
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o l u t i o n s  t o  t h e  gene ra l  d i f f e r e n t i a l  equat ion  given i n  (S), namely, 

we o b t a i n  

I n  t h e  s i m p l i f i e d  case which we w i l l  d i s c u s s  he re  where R(y) - 0 we 

To use t h e  m a t r f t a n t  approach t o  s o l v e  t h e  matrix d i f f e r e n t i a l  

equat ion  desc r ib ing  t h e  d i s t r i b u t e d  network g iven  i n  (4) it is conven- 

i e n t  t o  make a change of v a r i a b l e  by s u b s t i t u t i n g  d-y f o r  x where x is . 

t h e  o r i g i n a l  v a r i a b l e  f o r  p o s i t i o n  a long  the  l eng th  of t h e  d i s t r i b u t e d  

l i n e ,  y is t h e  new v a r i a b l e ,  and d i s  a cons tan t  spec i fy ing  t h e  t o t a l  

l eng th  of  t h e  d i s t r i b u t e d  l i ne .  

s i o n a l  axis shown'oa 

and y - d is t h e  l e f t  end of t h e  l i n e .  With t h i s  s u b s t i t u t i o n  t h e  ma t r ix  

d i f f e r e n t i a l  equat ion  of (4) becomes 

This i n  e f f e c t  r e v e r s e s  t h e  one-dimen- 

3 ao t h a t  y = 0 is t h e  r i g h t  end of t h e  l i n e  

The s o l u t i o n  to  t h i s  equa t ion  i n  terms of t h e  matrizant is t h w  g iven  as 

I f  we  now evaluate t h i s  express ion  for y - d,  Le. ,  t h e  c o n d i t l o n s - a t  t h e  

left  end of t h e  network shown on page 3, we o b t a i n  
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The quan t i ty  V(O,p), however, is simply the  conventional input  po r t  

vo l tage  V1,(p). 

t he  conventional po r t  va r i ab le  I1(p) V2(p) a d  -12(p). Thus, the  

r e l a t i o n s  of  (22) may be w r i t t e n  as 

S imi l a r ly ,  the, q u a n t i t i e s  I(0,p) V(d,p) , and I(d,p) are 

From t h i s  r e l a t i o n  we see t h a t  t he  matr izant  I$ (A) is a c t u a l l y  the  

transmission matrix of a d i s t r i b u t e d  RC l ine  of length  d i n  which the  

resistance and t h e  capaci tance f o r  a r b i t r a r y  taper are spec i f i ed  by t h e  

q u a n t i t i e s  r(x) and c(x). Obviously, B determinat ion of the  matr izant  

provides a s o l u t i o n  t o  t he  problem of obta in ing  a set of parameters or a 

model f o r  a two-port d i s t r i b u t e d  RC network. I n  the  next s e c t i o n  of t h i s  

r epor t  we w i l l  i a v e a t i g a t e  some ways of asking such ahe te rmina t ion .  

rical Methods f o r  Finding the  mtrizant 

The b a s k  problem i n  the  determinat ion of t h e  mtrizant is t h a t  

of determining a matrix P(y) which s a t i s f i e s  ( 8 ) .  Ut us f i r s t  consider  

a Taylor 's  expansiou for such a matrix. If we assume t h  t P(y) is known 

and y + h is a po in t  i n  t h e  v i c i n i t y  of y then w e  may express  P(y + h) as 

f 01 lows 
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where D is t he  d e r i v a t i v e  operator  dldy. 

s o l u t i o n  may be made by t runca t ing  t h i s  expansion after the  f i r s t  der iva-  

t i v e  term. Thus, we o b t a i n  

An approximation f o r  such a 

P(Y + h) 9 P(Y) + hD P(Y) ( 2 5 )  

Using (8) we y s u b s t i t u t e  A(y) P(y) = P'(y), thus  t h e  t runcated 

expansion of (25) may be w r i t t e n  in t he  form 

Now le t  us def ine  a matrix E(y) by t h e  expression 

Becal l ing from (8) that P(0) is equal  to  the  i d e n t i t y  matrix,  we may 

write t h e  following expressions for a n  increment 

y rO, h,  Zh, . . Thus we o b t a i n  

eries of values of 

P(h) = E(O) P(0) * E(O) I * E@) 
P(2h) = E(h) P(h) * E(h) E(0) 

P(3h) E(2h) P(2h) = E(2h) E(h) E(0) 

P(i) - P(nk) - E [(n-l)h] _ _  

(28) 

I 1 

8% C(n-2)hJ ... E(h) E(0) * 4 (A) 

The f i n a l  expriassion i n  t h e  above gives  

i.ta., t h e  transmission parameter matrix. 

parameters modelinp: t h e  d i s t r i b u t e d  RC network is simply accompli 

t h e  value of t he  matr izant ,  

Thus, our determination of the  - 

a series of matrix m u l t i p l i c a t i o n s  as indicated i n  t h e  final,  expression 

of (28). 

of determining t h e  matrieant a 

The procedure ou t l ined  above is usual ly  c a l l e d  t h e  



The second numerical method 

rnatrizant i5 one which includes t w o  

10 

which may be used t o  determine t h e  

d e r i v a t i v e  terms from the  bas ic  

Taylor expansion given in (24). Thus, we may write 

D i f f e r e n t i a t i n g  the  exprec~sion P'(y) A(y) P(y) 

r e s u l t  

Thus, t he  truacrtted Taylor series which includes 

term may be expra 

of (8) ,  we ob ta in  the  

(30) 

t he  second d e r i v a t i v e  

I f  we de f ine  the  matrix E(y) as 

then, following t h e  same logic used above, we am that t h e  matr iaant  is 

determined by t h e  expression 

The above method of determining the  matr ieant  is f requent ly  c a l l e d  a 

modified Euler  method. 

p l i c a t i o n  it is 1: a d i l y  implemented on adig i ta l  computer a l though it 

has the  disadvantage that equat ions must be suppl ied €or decsrminiag 

Sfnce it bas i ca l ly  involves only matrix mult i -  
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t he  elements of t he  matrix A'(y) i n  add i t ion  to  those determining t h e  

matrix A(y). 

A t h i r d  method using nllmrsrical techniques t o  determine t h e  mat 

. zan t  is t h e  method of 

conrider  the  y axis as being divided i n t o  sub in te rva l s  as shown i n  the  

following f i g u r e  : 

To apply t h i s  awthod we may 

Now l e t  us def ine  t h e  q u a n t i t i e s  Pk and hk+l by t h e  relations 

pk * p(Yk) 

and 
hk+l * 'k+l - 'k 

Thus, i n t e g r a t i n g  both sideas of t he  firart equat ion of (8 )  we ob ta in  

(34)  

I f  we n w  8 8 8 ~  t h a t  tbta i n t e r v a l  of i n t e g r a t i o n  hae been chosen 

enough so t h a t  P(y) is constant ,  t h e  above equat ion may be w r i t t e n  i n  

t h e  form 
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We may now de f ine  a t r i x  Ek by t h e  r e l a t i o n  

I + %+l %+l 

where 

(3 7) 

We can now comput 

those descr ibed  previously.  The expres  on f o r  doing t h i a  is given i n  

(33). Since n rical in t eg ra t ion  sche s are r e ~ d i l y  ava i l ab le ,  t h i s  

t he  matr izant  by an  i t e r a t i v e  process similar to  

is r e a d i l y  impleavented on the  d i g i t a l  computer. 

The actual i m p l e ~ n t a t i o n  of  the  th ree  thods of determining 

the  matr izant  given above and the  r e s u l t s  obtained from w i n g  t h e  r e s u l -  

t a n t  models t o  represent  a d i s t r i b u t e d  RC network element are given i n  

ttmrt following sec t ion .  

IV. A Comparison of Modeling Procedures 

I n  the  s e c t i o n s  given above w e  introduced the  matrizant and 

showed how it may be used t o  de f ine  the  t ransmi 

d i s t r i b u t e 4  RC network and t h  

I n  a d d i t i o n ,  t he  theory of t h ree  n rical method$ f o r  determining the  

matrizant war present  d. In thisl s e c t i o n  w e  o h a l l  presrent some r e s u l t  

obtained frun programming the  th ree  matthods for t he  d i g i t a l  computer and 

comparing the  r e a u l t s  obtained from them with t h e  r e s u l t s  obtained from 

the  use of the lumped elemnt model descr ibed in 

, t o  provide a mo 

4 previous report .  

thoda were progr 

6400 d i g i t a l  computer. 

i n  For t ran  I V  and programs were run i n  

d i s t r i b u t e d  RC network conf igura t ion  
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t e s t e d  was a w e l l  known one, namely, an exponent ia l ly  tapered network i n  

which r(x) and c(x) are defined by the  r e l a t i o n s  

-4X c(x) 0 c0 e (39) 

t ransmission para  t e r o  of the  network were valuated under 

d a l  s teady  state condi t ione f o r  a r nge of f requencies  from 0.1 t o  1,000 

rad /sec  and f o r  models of  10, 20, and 50 s e c t i o n  . Three d i f f e r e n t  

1&1 of  t ape r  were i n v e s t i g a t  d for values  of a lpha  r e spec t ive ly  equal  

t o  1, 2,  and 3. For conveniencem the  qu 

and the  length of the  network wer i t y ,  thus providing a 

convenient frequency and i dance normalization. 

ties ro and eo given i n  (39) 

It was found that the  Euler  method and the  method of  mean coef- 

f i c i e n t s  gave almost i d e n t i c a l  answers f o r  every case. Thus a11 the  

n t s  on the  Euletr thod apply squa l ly  well t o  the  method 

oE mean c o e f f i c i e n t s ,  except f o r  computer time. 

amount of CDC 6400 computer t i  

Table I s l ~ ~ s  t he  

required t o  compute the  t ransmission 

This t a b l e  shows that t h e  method of 

mean c o e f f i c i e n t s  (using 5 i t e r a t i o n s  f o r  t he  t rapezoida l  in tegra t ion)  

rametera at  a given frequency. 

is by f a r  the  most c o s t l y  of computer t i m e  of t he  th ree  methods. The 

. re - la t ive  accuracy of t h e  var ious methods is summarized i n  Figures  1 t o  

10. 

Figurers 1 and 2 show the  magnitude and phase e r r o r ,  r e spec t ive ly ,  

of the 10, 20,  and 50 s e c t i o n  Eul r method and the  10 s e c t i o n  modified 

Euler  method so lu t ions  f o r  t he  A parameter of the  network with o( = I, 

Figures  3 and 4 show the  same information f o r  t h e  C parameter. The 
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other  two paraiwters  have characteristics which are q u i t e  similar t o  

these. From these f igu res ,  one can conclude t h a t  t he  10 sec t ion  modi- 

f i e d  Euler so lu t ion  is c l e a r l y  auperior  t o  the 10 and 20 sec t ion  Eulcar 

ro lu t ion r  and is v a l i d  over a lo rge r  frequency range. The SO aec t ion  

Euler so lu t ion  is roughly comparable t o  the LO section d l f i e d  Euler 

so lu t ion  i n  accuracy, but it requi res  alamst twlce as much computer time. 

Figures 5 and 6 show the  e r r o r  of the 10, 20, and 50 sec t ion  

d t f f e d  Euler method eo lu t ions  f o r  the  A paraamter of t he  network w i t h  

o(-  1. 

Thwe figures show that as the  number of section@ used to  approximate 

ThfB reauIt8 f o r  the  o t b r  three par ters are almost i den t i ca l .  

the network i s  increased, the upper l i m i t  of t he  u re fu l  frequency range 

ased. The 10 section approximation is goad for W C= 10 rad/aec,  

the  20 8dtCtiOn on% for W< 30 rad/sac,  and the  50 sec t fon  o m  far 

W< 100 rad/sec. 

Figures 7 and 8 show the  e r r o r  of the 10 section modifled Euler  

method for M a 1, o( 2, and o( 3. The r e s u l t s  for t h i s  case are 

t y p i c a l  and ahow e s s e n t i a l l y  no d i f f e rence  i n  accuracy for the  three  

d i f f e r e n t  tapers. This r e s u l r  wos also found t o  hold true for the  

To enable 8 comparison t o  be made between the  matriaant approach 

for modeling a ditatributed RC network as charactcarised by t he  r e r u l t a  

derrcribed above, and the  lumped elemeat d e l  previously i n v e s t i w t e d ,  

tests similar t o  those used above were -de on the  lumpmi element 

model. In add i t ion  t o  test8 of 10, 20, and SO sections, the 100 sec t ion  

d element model was a l s o  tes ted .  The computation times for the  
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r e s u l t s  are tabula ted  in Table I. It is r e a d i l y  v e r i f i e d  t h a t  f o r  an  

equiva len t  number of  s e c t i o n s ,  the running times are a l l  lower than the  

most e f f i c i e n t  of the, m t r i & a n t  methods which were evaluated, namely, t he  

Euler  method. 

In Figwea  9 and 10 t h e  r e l a t i v e  magnitude and phase error f o r  

the, A parmatisr f o r  10, 20, 50 and 100 section lumped elmmnt models are 

p l o t t e d  as func t ions  of frequency. Note that the  C curve shown i n  Figure 

9 for the  SO eec t ion  lumped elemeat model is, in genera l ,  supe r io r  t o  the  

B curve of  Figure 5 f o r  t h e  20 s e c t i o n  modified Puler  model, d e s p i t e  t he  

f a c t  that (from Table I) the  lat ter required s l i g h t l y  more computational 

t b ,  n a m l y ,  0.082 seconds compared with .080 seconds. S imi l a r ly ,  t he  

D curve of  Figure 9 f o r  t he  100 s e c t i o n  lumped e n t  model is, i n  

geLuBlral, f a r  super ior  than t h e  C curve shown in Figure 5 for a 50 s e c t i o n  

modified E u h r  d e l .  Again, t he  running times were considerably Ln 

favor of t h e  1 

When low numbers o f  s e c t i o n s  are used i n  the lumped element model, however, 

the r e s u l t s  may not  be as g o d  as t h e  modified Euler  method. 

elenmat: m o d e l ,  namsly, 0.136 seconds vs 0.158 seconds, 

For 

example, t he  A curve of Figure 9 for t h e  20 sec t fon  iumped element model 

ehows r e s u l t s  which are,, i n  g%netal, poorer than t h e  A ctvve of Figure 5 

for t he  10 eection modified Euler  model. However, tha  20 Election lumped 

n t  d e 1  .required less computation tiam, namely, 0.048 rreconds vs  

0.056 seconds f o r  t h e  m o d i f i d  Euler method, Conclwionrp similar to  the 

abova with  rerpct to  the  phase of A parameter nay be found by comparing 

the  r e s u l t s  shown in Figw’e 10 for the  lumped element model and Figure 6 

for t he  modified Euler  model. Studies made of the  other t ransmission 
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p6uameters, i n  general ,  yielded r e s u l t s  which are similar to  t h a e  included 

with t h i r  report .  

cmputer runs, we can, in gexwral, conclude t h a t  (beyond a c e r t a i n  miniawn 

number of sactiom) the  lumped e l  at mb1, for a given unt of computer 

From a study of this data obtained from these  various 

, w i l l  produce more accurate r e a u l t s  than any of t h e  t i ca l  mthods  

used to  compute the matr isants  which have been i n v e r t i  

V. Conclusions 

I n  th i s  repor t  th ree  d i f f e r e n t  numerical mthods ,  namaely, the 

thod, tha modified Euler methad, and the method of m8n coe f f i c i en t s ,  

have been applied to  generate a matriaant model for R d i s t r ibu ted  RC 

n e t w r k  of exponential  taper.  

with the  r e s u l t s  obtained from the use of .a l+d element model fo r  such 

a network. 

i n  eect ion IV show t h a t  for the ana lys i s  of an exponential taper d i s t r i -  

buted RC network, t he  10 sec t ion  modified Euler method gives results which 

are at least as good tts models w i n g  the  Ruler method or t h e  

man coe f f i c i en t s  and using up to 50 sections.  

section modifird Eultsr method model uses much l e a s  computer t i  

The best of thess r e s u l t s  have been compared 

I n  colaparing the  th ree  matrizant methods t h e  r e s u l t s  given 

I n  addi t ion ,  t h e  10 

lcicrrl methods used t o  determ-lne the matrizant inveetigated in 

t h f s  study, only t h e  10 ataction Eulcar 

in general, ware only va l id  f o r  frequencies less than 2 rad/scac. 

i n  that range the  r e l a t i v e  magnitude error o f  the  B and G par  

approached values of 4 per cent. 

d e l ,  on the o t  r hand, gives accurate  r e s u l t s  f o r  vatuaa'of frequency 

thod was faster and i t a  resu l t$ ,  

Even 

Thar 10 sectiorr modified Euler method 

up to  10 rQd/sec, and, using 50 eecttom, the  range may b extended very 
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nearly t o  100 rard/sec. 

e f f e c t  on the accuracy of t 

~ t r e ~ n e ~ s  of taper appears t o  have ve 

the  matriaant modeling procedure with the  

elamarnt d e l ,  i n  general ,  the  lumped element model was found to bc3 

superior ,  

cormparable vi th  the  twdif ied  Eule r  d e l ,  the  uee of such addi t iona l  

sectionre -ET, in $e&W#ral, found to  requfre  l ea s  computation ti-. For 

Although mom sec t ions  were required to achieve accuracies 

le, a 100 rmetion 1 d. lasqwivalent model ha8 an accuracy in the  low 

frequency range which is approximately the s 

uuxlifbd Eulsr  matrimant d e l ,  i s  va l id  Owar a 

and tuea about 15 per cent less coreputation81 t 

a8 t h a E  of t 

ter f reqwacy range , 

aquivalerrf; d e l  has t of bing  able  t o  accuxately 

B in which the functions r(x) and c(x) are not continuous. 

Such t apers  cannot be t r ea t ed  by the  modif d Euler approach due to  the 

cmccp@sity of! providing eqrrmrtionsr descr ibing the der iva t ive  of these 

functions. In e y ,  it La fe l t  t h a t  although the naatrirant approach 

M y  be r l f g h t l y  superi#r  t o  the n t  model in specific applica- 

wral, the  1 d e l  of (B d i s t r ibu ted  RC network 

ha$ more f l e x i b i l i t y  and use& l e e s  computer tima f o r  a given dasirrsd 

accuracy. Althoulgh the r e s u l t s  given in t h i s  repor t  have been derived 

only with res et  t o  the exponentially tapered di8 t r ibu ted  RC ne-rk, 

gained i n  ming the  varioua 

d i f f e r e n t  tap& b.8 a u b r t a n t h t e d  the conclusions 

networks. 

alar f o r  natworks o f  

given above for such 
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Method - 
Euler 

Modified Euler 

Method of Mean 
Coef f i c i e n t s  
(5 i terations)  

Lumped Element 

Sect ions 

10 

20 

50 

10 

20 

50 

10 

20 

50 

10 

20 

50 

100 

Table I 

Computer Time 
(seconds) 

0.046 

0.062 

0.108 

0.056 

0.082 

0.158 

0.078 

0.124 

0,262 

0.034 

0.048 

0.080 

0.136 

Time Required to Compute Transmission Parameters a t  a Single 

Frequency on CDC 6400. 



1. 

2. 

3. 

4. 

EES Report No. 18, Engineerfng Experiment S ta t ion ,  University of 

Arizona, Tucson, September 1968. 

5 .  B e r t n o l l i ,  E. C . ,  Exact and numerical analyses  of d i s tr ibuted  parameter 

RC networks, Specia l  Report No. 5 7 ,  Kansas S ta te  University Bul l e t in ,  

vol. 49,  no. 9 ,  September 1965. 

6 .  B e r t n o l l i ,  E .  6 .  and C. A. Halijak,  Distributed par 

analysfsr, IEEE International  Conv. Ree., vol .  14, part 7 ,  pp. 243-249, 

1966. 



* w  M L  

I 

, 

4 

I 
I 
I 

, 
I 
I 

L 

I 
9 
1 

I 
I 
I 
I 
I 
I 

I 
I 

I 
I 

1 
I 
I 
i 
t 
I 
I 
I 

I 
I 

I 
I 
I 

I 
I 

I 
I 
I 
I 

I 

I 
I 
i 
I 
I 
I 

! 

I 

I 
t 
I 
1 
I 

I 

4 

i 
1 
I 
t 
i 
1 

I 
I 

I 

I 

I 

c 

I '  

I t i  



iu8F.n = 

I 

I 
, 

I 
I 
I 
I 
I 

f 

f 
I 

I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

! 
i 

I 

1 
I 

I 
I 
I 
I 
1 
I 
I 
1 I 

; 
I 
I 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

! 

I 
I 

1 
I 
I 

I 

I 
I 
I 

1 



1 

I 

t 
i 
I 
I 
I 
I 

I 
t 
I 

I 

! 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

i 
I 
I 
I 
I 
I 
1 
I 
I 

I 
I 

, 

1 
! 
I 
I 
t 
I 

I 
I 
I 

I 
I , 
I 

I 

1 
I 
I 
I 
I 
I 
i 
I 

I 
I I 
I 
I 
I 

I 
I 

I 
$ 
I 
I 
! 

4 

5 0  Sccti  

a 

! n I I- Lulcr j  
$ '  I 

1 

I I 

n t- E u l c r ,  I 



, 
I 
I 

I 
I 

I 
I 
f 
I 
I 
I 
I 
I 
I 
I 
I 
I 

! 

I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
1 

I 
I 
I 
I 
I 
1 
I 

I 

; 

I 
I 
I 
I 

I 
! 
I 
I 
I 
t 
I 

I 

I 
4 
t 

1 
I 
I 
t 

, -  
! 
i 

I 

I 

I 
I 
1 
I 
I 

I 
I 

1 
t 
I 
i 
I 
I 

I 

- 

1 r ro r  



LFA = 1 

, 

I 

I 



I 

I 
I 
I 
I 
I 
I 
I 
i 
I 

I 

I 
I 
I 
I 
I 

I 

i 
i 

I 

I , 

, 
, 
I 
i 
I 

I 

I 

1 
I 
I 

I 

I 

I 
I 
I 
I 
i 



I 
P' 

I 

I 

8 

I 

1 
I 
I 

I 
L 
t 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
1 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

I 
I 

, I  
I 
I 
1 
I 
I 
I 

I 

I 



I 

1 
3 
g 
! 

, 
I 

1 

I 

I 
i 
I 

I 
I 
I 
I 

1 
I 

I 
I 
I 

I 
I 

I 

I 1 
I 
I 

1 
I 
I 

I 
I 
I 

I 

: I  
I 
I 
I 
1 .  

I 
I 

I 
1 
! 

I '  
I 
I 
I 
I 
I 
I .  

I '  





I 

I 
i 

I 

I 

i 
I 

I 

1 
I 
I 
I 
I 

I 
I 
I 
1 

I 
I 
I .  
! 

i 
t * i 
I 
I 

I 
I 
I 
I 
I 

i 
1 


