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Abstract: This report describes the theory and implementation of the use

of the matrizant for modeling a distributed RC network. Three different
techniques for using the digital computer to determine the matrizant ar
discussed. A comparison is made between the use of matrizant methods and
- use of a lumped equivalent circuit to model the distributed RC network

. general, the lumped equivalent model is shown to be superior. o




Table of Contents

I. Introduction . . . ¢ ¢ « ¢ o 2 o o 0o s 8 & s o

IX1. The General Theory of the Use of the Matrizant
Parameters of a Distributed RC Network . . . .

III. Numerical Methods for Finding the Matrizant .
IV. A Comparison of Modeling Procedures . . . . .
V. Conclusions . . . o ¢ o « ¢ o ¢ o ¢ o o 0 s
Table I . o o o o o o o o s o o s o s o s + o o »
References . . . «. o ¢ o o o o o o o o o 0 o a o o
Acknowledgment . . . . . ¢ ¢ 0 ¢ o ¢ 5 0 o o & o o

FIgUres . . .« o o « o 2 s o o s s o o s o o o s o

e o & e o 2 e © &

to Determine the

.12

16
18
19
19

20




A Comparison of Numerical Techniques for Determining
the Parameters of Distributed RC Networks

I. Introduction

This is one of a serles of reports describing the use of
digital computational techniques in the analysis and synthesis of DLA
(Distributed-Lumped-Active) networks. This class of networks consists
of three distinct types of elements, namely, distributed elements
(modeled by partiél differential equations), lumped elements (modeled
by algebraic relations and orﬁinary differential equations), and active
elements (modeled by algebraic relations). Such a characterization 1s
applicable to a broad class of circuits, especially including those
usually referred to as linear integrated circuits, since the fabrication
techniques for such circuits readily produce elements which may be
modeled as distributed and active, as well as ones which may be consi-
dered as lumped.

One of the major problems encountered in the analysis or
synthesis of DLA networks is the problem of modeling the distributed
elements. Specifically, there are two formidable obstacles. First,
immittances assoqiated with distributed RC networks will, in general,
involve transcendental irrational funcfions of the complex frequency
variable. This makes the application of standard network analysis tech-
niques difficult, to say the least. Sécond, closed-form analytical
expressions for the network functions describing these distributed

elements are available for only a few particular. geometries, and even



these expressions are completely different for different geometries.

For example, the admittance parameters assoclated with a distributed
network with an exponential taperl have a form entirely different from
the admittance parameters of a distributed network with a linear taper.2
As a result of these obstacles it has become falrly routine to use
analysis techniques which employ the digital computer when dealing with
networks which include distributed RC elements.3 Such techniques require
the generation of models which fulfili the dual role of accurately
characterizing the distributed elements and also being amenable to
digital computational process. In a previous report an evaluation was
made of the use of a lumped element model to approximate the transmission
parameters of distributed RC networks.a Such a model may be analyzed

by an iterative matrix multiplication process and has the advantage that
it can be applied to networks of a completely arbitrary taper. In this
report a different approach to modeling based on the use of the matrizant
is presented. The report begins by developing the theory of matrizants
and their.application to the determination of the transmission parameters
of distributed RC networks of arbitrary taper. Several numerical pethods
for using a digital computer to determine the matrizant are then
presented. Finally, a comparison is made between the use of these diff-
erent methods and the use of the lumped element model previously referred
to with respect to the relative computational‘efficiency and accuracy bf

the two approaches.



II. The Generai Theory of the Use of the Matgizant to Determine the
Parameters of a Distributed RC Network?»

In this section of the report the general theory of the matrizant; 

method for determining the transmission parameters of a distributed RC

network is presented. First of ail, consider the network shown below:
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The partial differential equations describing this network are

é—"%‘-;ﬁl e - r(x) i(x,t)

(1)
Qi(x,t) = - () gv(x,t)
% S ot

where v(x,t) and i(x,t) are the instantaneous values of the voltage and

~

current along the line, r(x) is the resistance per unit length along the

line and c(x) is the capacitance per unit length along the line. Applying_:
the Laplace transformation with respect to time to these equations and

agsuming that the initial coaditions are zero, we obtain



VOGP o - or(x) I(x,p)

dx

410GR) w - pe(x) V(x,p)

(2)

where V(x,p) and I(x,p) are the Laplace transforms of v(x,t) and i(x,t)

respectively. If we define the matrix K(x,p) as
0 r (x)
K(x,p) = 3
1 pe(x) . 0

then the relations of (2) may be written as

4 vx.p)| o . V(x,p)
dx I(x,p%] K(x,p) I(X,p)] %)

This first-order matrix differential equation may be invesffzated by

first considering a general matrix equation of the form

w'(y) = AQY) w(y) + R(Y) 5)

where w(y) and R(y) are vectors, A(y) is a square matrix and the prime
(') indicates differentiation with respect to y. To solve such a set of

equations let us first assume a product solution for w(y) having the form

wi(y) = P() z(y) (6)

where P(y) is a square matrix and z(y) is a vector and both these quanti-
ties are to be determined. Differentiating (6) and substituting the

result in (5) we obtain

[P'® - A0 PG 20 + PG 2'() =RG) (D



Since P(y) is not specified, let us stipulate two requirements on it.

These are

P'(y) - A(Y) P(y) = 0

1¢))
P(0) = I
In this case the original relation as given in (7) becomes
P(y) 2'(y) = R(Y) - €))
Let us now assume that P-l(y) exists. Then we may write
-1
z'(y) =P "(y) R(Y) (10)
If we integrate this relation and note that 2(0) = w(0) we obtain
y -1 X
z(y) = w(0) +g P “(y) R(y) dy (11)
0
If we now multiply both sides of this relation by P(y) we obtain
Y oA
) = 2o wo + 2o § 2o ko) gy (12)
0

Thus, we have found a general solution for w(y) and, in the reduced set

of equations in which R(y) is zero, the solution has the form
w(y) = P(y) w(0) (13)

Our problem is now one of finding & matrix P(y) such that the relations
of (8) are satisfied. Let us bégin by integrating both sides of the first f
relation of (8) and inserting the second relation in the result.

Rearranging terms we obtain



y
o) = 1+ a0 ro) 4 (14)

Since the elements of P(y) are functionally dependent on A(y) and on the
integration from}zero to y, it is convenient to use the symbol M%(A) to
represent P(y). Let us now assume a series solution for P(y) having the
form

@D
POY = By + B O) + oo = T RO - My () T as)

Substituting this in the integral equation of (14) we obtain

00 y ®
Z PO =1 +§ AY) 2 P () dy (16)
k=0 0 k=0

It may be shown that the series given in (15) converges absolutely and
uniformly in every interval in which the elements A(y) are continuous.

Therefore, if we make the following assignments

PO = 1

y y
P, = a0 7y 4y = (" A ay
0

0
y
o = (" s 2o o an
o .
: ' .
i Yy !
P = AP ByO) dy

Then the relation given in (16) is'satisfied and the quantity,Mg(A)

defines a matrix function of A called the matrizant. This then gives



the solutions to the general differential equation given in (5), namely,

we obtain
y y Yy -1
we ] @) wO) + M) go [Mo (A)] R(y) dy (18)

In the simplified case which we will discuss here where R(y) = 0 we

obtain

w(y) = M) (&) w(0) (19)

To use the matrizant approach to solve the matrix differential
equation describing the distributed network given in (4)'1t is conven-
ient to make a change of variable by substituting d-y for x where x is
the original variable for position along the length of the distributed
line, y is the new variable, and d is a constant specifying the total
length of the distributed line. This in effect reverses the one-dimen-
sional axis shown'on page 3 so that y = 0 is the right end of the line
and y = d is the left end of the line. With this substitution the matrix
differential equation of (4) becomes

4 vd-y,p| . . V(d-y,p)
dy I(d-y,p;] K(d-y.2) I(d-y,p)] 0

The solution to this equation in terms of the matrizant is thus given as
V(d"y’p) J [ d~ ] V(d,p) . 2
1@d-y,»| = Yo [XEOVP 1,p b

If we now evaluate this expression for y = d, i.e., the conditions_at the

left end of the network shown en page 3, we obtain



v(0,p) d . v(d,p) 22

woop| = Y% [XEev] 1@l 3
The quantity V(0,p), however, is simply the conventional input port
voltage Vl(p). Similarly, the quantities 1(0,p), V(d,p), and I(d,p) are

the conventional port variables Il(p), Vz(p) and -Iz(p). Thus, the

relations of (22) may be written as

vlcp)] = o [xew)] vz(p)]' 23)
I, “1,(0 |

From this relation we see that the matrizant Mg {(A) is actually the
transmission matrix of a distributed RC line of length d in which the
resistance and the capacitance for arbitrary taper are specified by the
quantities r(x) and c(x). Obviously, a determination of the watrizant
provides a solution to the problem of obtaining a set of parameters or a
model for a two-port distributed RC network. In the next section of this

report we will investigate some ways of making such é;Hetermination.

III. Numerical Méthods for Finding the Matrizant

‘Thc basic problem in the determination of the matrizant is that
of determining a matrix P(y) which satisfies (8). Let us first consider
'é Taylor's expansion for such a matrix. If we assupq'that P(y) is known
and y + h i8 a point in the vicinity of & then we may express P(y + h) as
follows

Co. 2 )
Pt = P() + S Po) + G- p) + .. (28)



where D is the derivative operator d/dy. An approximation for such a
solution may be made by truncating this expansion after the first deriva-

tive term. Thus, we obtain

P(y + h) = P(y) + hD P(y) (25)

Using (8) e may substitute A(y) P(y) = P'(y), thus the truncated

expansion of (25) may be written in the form

P(y +h) = [1+nD]R( (26)

Now let us define a matrix E(y) by the expression

E(Y) = I+ hA®) 27

Recalling from (8) that P(0) is equal to the identity matrix, we may
write the following expressions for an incremental series of values of

y=0, h, 2h, ... Thus we obtain

P(h) = E(0) P(0) = E(0) I = E(0)
P(2h) = E(h) P(h) = E(h) E(0) (28)
P(?h) = E(2h) P(2h) = E(2h) E(h) E(O)

B(@ = P@h) = E [(a-Dh] E [(@-2h] ... E®) EO = @

The final expréssion in the above gives us the value of the matrizant,
i.e., the transmission parameter mat;ix. Thus, our determinatign of the
parameters modeling the distributed RC network is simply accomplished by
a series of matrix multiplications as indicated in the final expression
of (28). The procedure outlined above is usually called the Euler method

of determining the matrizant.
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The second numerical method which may be used to determine the
matrizant is one which includes two derivative terms from the basic

Taylor expansion given in (24). Thus, we may write

2
Pt = P + 2 2y + BB 2y (29)

»

Differentiating the expression P'(y) = A(y) P(y) of (8), we obtain the

result
Py = [A') + A2 R (30)

Thus, the truncated Taylor series which includes the second derivative

term may be expressed as

hz 2
R(rH) = () + hA) 2D + 5 [a'0) + A2 B () o
; .
~fivmm + 5 [0+ Az(y)]} P(y)
1f we define the matrix E(y) as
2
BY) = 1+ hae) + 5= [a'0) + 4700 ] (32)

then, following the same logic used above, we see that the matrizant is

determined by the expression
P(d) =E [(a-Dh]| E [(a-2h] ... E(b) E©O) =¥ (&) (33)

The above method of determining the matrizant is frequently called a

modified Euler method. Since it basically involves only matrix multi-

plication it i3 readily implemented on;a‘digital computer although it

has the disadvantage that equations must be supplied for determining
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the elements of the matrix A'(y) in addition to those determining the
matrix A(y).
A third method using numerical techniques to determine the matri-

zant is the method of mean coefficients. To apply this method we may

consider the y axis as being divided into subintervals as shown in the

following figure:

41 Yo Ty y§&1 Y£_1 Yh

S|

X y >
0 d

Now let us define the quantities Pk and h by the relations

k+l

P, = POy
and (34)
Bl ™ Va1 " Yk K

Thus, integrating both sides of the first equation of (8) we obtain

y
P -p +§k+1

k+l k A(y) P(y) dy (35)
Y

1f we now assume that the interval of integration has been chosen small
enough so that P(y) is constant, the above equation may be written in
the form -

k+1

AW) dﬂ P (36)
"

Pl © [} +
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We may now define a matrix Ek by the relation

E, = I+bh o A (37)
where
1 Y+l
A o A(y) dy (38)
k+1 h
k+1 Yie

We can now compute the matrizant by an iterative process similar to
those described previously. The expression for doing this is given in
(33). Since numerical integration schemes are readily available, this
procedure is readily implemented on the digital computer.

The actual 1mp1ement#tion of the three methods of determining
the matrizant given above and the results obtained from using the resul-
tant models to represent a distributed RC network elewment are given in

the following section.

IV. A Comparison of Modeling Procedures

In the sections given above we introduced the matrizant and
showed how it may be used to define the transmission parameters for a
distributed RC network and thus, to provide a model for such a network.
In addition, the theory of three numerical methods for determining the
matrizant was presented. In this section we shall present some results
obtained from programming the three methods for the digital computer and
comparing the results obtained from them with the results obtained f:om
the use of the lumped element modei.debcribed in a previous report.4
The three methods were programmed in Fortran IV and programs were run in

a CDC 6400 digital computer. The distributed RC network configuration
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tested was a well known one, namely, an exponentially tapered network in

which r(x) and c(x) are defined by the relations

r) =r, &* c(x) = c, e Tx 39

The transmission parameters of the network were evaluated under sinusoi-
dal steady state conditions for a range of frequencies from 0.1 to 1,000
rad/sec and for models of 10, 20, and 50 seé¢tions:. Three different
degrees ofttaper were investigated for values of alpha respectively equal
to 1, 2, and 3. For convenience, the quantities Ty and N given in (39
and the length of the network were set to unity, thus providing a
convenient frequency and impedance normalization.

It was found that the Euler method and the method of mean coef-
ficients gave almost identical answers for every case. Thus all the
following comments on the Euler method apply equally well to the method
of mean coefficients, except for computer time. Table I shows the
amount of CDC 6400 computer time required to compute the transmission
parameters at a given frequency. This table shows that the method of
wean coefficients (using 5 iterations for the trapezoidal integration)
is by far the most‘éostly of computer time of the three methods. The
relative accuracy of the various methods is summarized in Figures 1 to
10.

Figures 1 and 2 show the magnitude and phase error, respectively,
of the 10, 20, and 50 section Euler method and the 10 section modified
Euler method solutions for the A parameter of the network with ™ = 1,

Figures 3 and 4 show the same information for the C parameter. The
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other two parameters have characteristics which are quite similar to
these. From these figures, one can conclude that the 10 section modi-
fied Euler solution is clearly superior to the 10 and 20 section Euler
solutions and is valid over a larger frequency range. The 50 section
Euler solution is roughly comparable to the 10 section modified Euler
solution in accuracy, but it requires almost twice as much couputer time.

Figures 5 and 6 show the error of the 10, 20, and 50 section
modified Euler method solutions for ;he A parameter of the network with
o= 1. The results for the other three parameters are almost identical.
These figures show that as the number of sections used to approximate
the network is increased, the upper limit of the useful frequency range
s increased. The 10 section approximation is good for W< 10 rad/sec,
the 20 spection one for w< 30 rad/sec, and the 50 section one fog
W< 100 rad/sec.

Figures 7 and 8 show the error of the 10 section modified Euler
method for ® = 1, A= 2, and (= 3, The results for this casgse are
typical and show essentially no difference in accuracy for the three
different tapers. This result was also found to hold true for the
other methods.

To enable a comparison to be made between the matrizant approach
for modeling a distributed RC network as characterized by the rc'ulfs
described above, and the lumped element model previously investigated,
tesfa similar to those used above were made on the lumped element
model. 1In addition to tests of 10, 20, and 50 sections, the 100 section

lumped element model was also tested. The computation times for the
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results are tabulated in Table I. It is readily verified that for an
equivalent number of sections, the running times are all lower than the
most efficifent of the matrizant methods which were evaluated, namely, the
Euler method.

In Figures 9 and 10 the relative magnitude and phase error for
the A parameter for 10, 20, 50 and 100 section lumped element models are
plotted as functions of frequency. Note that the C curve shown in Figure
9 fo; the 50 section lumped elemeat model is, in general, superior to the
B curve of Figure 5 for the 20 section modified Euler model, despite the
fact that (from Table I) the latter requireé slightly more computational
time, namely, 0.082 seconds compared with .080 seconds. Similarly, the
D curve of Figure 9 for the 100 section lumped element model is, in
general, far superior than the C curve shown in Figure 5 for a 50 section
modified Euler model. Again, the running times were considerably in
favor of thellumped element model, namely, 0.136 seconds vs 0.158 seconds.
When low numbers of sections are used in the lumped element model, however,
the results may not be as good as the modified Euler method. For
example, the A curve of Figure 9 for the 20 section lumped element model
shows results which are, in general, poorer than the A curve of Figure 5
for the 10 section modified Euler model. However, the 20 section lumped
element model required less computation time, namely, 0.048 seconds vs
0.056 seconds for the modified Euler method. Conclusions similar to the
above with respect to the phase of A parameter may be found by comparing
the results shown in Figure 10 for the lumped element model and Figure 6

for the modified Euler model. Studies made of the other transmission
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parameters, in general, yielded results which are similar to those included
with this report. From a study of the data obtained from these various
computer runs, we can, in general, conclude that (beyond a certain minimum
number of sections) the lumped element model, for a given amount of computer
time, will produce more accurate results than any of the numerical methods

used to compute the matrigants which have been investigated here.

V. Conclusions

In this report three different numerical methods, namely, the
Euler method, the modified Euler method, and the method of mean coefficients,
have been applied to generate a matrizant model for a distributed RC
network of exponential taper. The best of these results have been compared
with the results obtained from the use of a lﬁmped element model for such
a network. In comparing the three matrizant methods the results given
in section IV show that for the analysis of an exponential taper distri-
buted RC network, the 10 section modified Euler method gives results which
are at least as good as models using the Euler method or the method of
mean coefficients and using up to 50 sections. In addition, the 10
section modified Euler method model uses much less computer time. Of all
the numerical methods used to determine the matrizant investigated in
this study, only the 10 section Euler method was faster and its results,
in general, were only valid for frequencies less than 2 rad/sec. Even
in that range the relative magnitude error of the B and C parameters
approached values of 5 per cent. The 10 section modified Euler method
wodel, on the other hand, gives accurate results for values of frequency

up to 10 rad/sec, and, using 50 sections, the range may be extended very
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nearly to 100 rad/sec. Extremeness of taper appears to have very little
effact on the accuracy of these methods.

In comparing the matrizant wmodeling procedure with the lumped
element model, in general, the lumped element model was found to be
superior. Although more sections were required to achieve accuracies
comparable with the wodified Euler model, the use of such additional
sections was, in general, found to require less computation time. For
example, & 100 section lumped equivalent model has an accuracy.in the low
frequency range which is approximntely the same as that of the 50 section
modified Euler matrizant model, is valid over a greater frequency'rangc,
and uses about 15 per cent less computational time. In addition, the
lumped equivalent model has the advantage of being able to accurately
model tapers in which the functions r(x) and c(x) are not continuous.
Such tapers cannot be treated by the modified Euler approach due to the
necessity of providing dquations describing the derivative of these
functions. In summary, it is felt that although the matrigzant approach
may be slightly superior to the lumped element model in specific applica-
tions, in general, the lumped element model of a distributed Rclnetwprk
has more flexibility and uses less computer time for a given desired
.accuracy. Although the results given in this report have been derived
only with respect to the exponentially tnpered distributed RC network,
experimental evidence gained in using the various models for networks of
different taper has substantiated the conclusions given above for such

networks.



Method Sections

Euler 10
20

50

Modified Euler 10
20
50
Method of Mean 10
Coefficients

(5 iterations) 20

50

Lumped Element 10
20
50

100

Table 1

18

Computer Time
(seconds)

0.046
0.062

0.108

0.056
0.082

0.158

0.078
0.124

0.262

0.034
0.048
0.080

0.136

Time Required to Compute Transmission Parameters at a Single

Frequency on CDC 6400.
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