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ON FD(ED LINEAR SYSTEMS WITH A
GENERALIZED PERFORMANCE CRITERIA

ABSTRACT

This paper considers optimization and sensitivity problems as

related to a fixed linear system with a generalized performance criteria.

A technique is used which solves for the performance index as a poly-

nomial in the system initial conditions. The method is not restricted

to quadratic form loss functions, -but applies to any index whose

inte% and is the product of a time function and a homogeneous polynomial

in the states and controls.
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I. 114TRODUCT10N

Considerable research is currently in progress concerning pro-

blems that come under the broad headings of optimization and sensitivity

studies. These problems, however, are difficult in their complete

generality while significant results have been obtained by considering

restricted systems, in particular, systems linear in the states and

controls. Methods have been found to design optimally linear plants

with quadratic loss functions, with some solutions [1,21 assuming the

states to be continuously measurable and others [31 optimizing with

respect to a set of control release coordinates, the controller having

been synthesized by classical means. Controls that are in some sense

both optimal and insensitive were generated in [41 by adding a weighted

sensitivity function to the performance index. This paper utilizes the

results of (31 and [41 and extends them in that the integrand of the per-

formance index is not restricted to a quadratic form but may be a time

function multiplying a homogeneous polynomial in the states and controls.

The technique is simple in that it consists mainly of a gradient operation

and a matrix inversion, but may be tedious, since the matrices involved

may be non-numerical in nature.
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II. STATEMENT OF THE PROBLEM

The problem may be stated as follows. A plant and controller

are given which may be described by the linear state equations

it = Ax+Bu	 (1)

u - Cx + Du	 (2)

where x and x are n-vectors, u and t1 are m-vectors and A, B, C and D

are n x n, n x m, m x n and m x m time invariant matrices respectively.

The optimization problem is to find the control initial condition u(0) so

as to minimize a performance measure of the form

J'=  f(t)Q(x, u)dt	 (3)
0

j =

where f(t) is a Laplace transformable function of time and Q(x, u) is a

homogeneous polynomial in x and u. The "optimally-insensitive"

solution will be that initial condition u(0) which makes a measure of

the form of (3) small yet relatively insensitive to variations of para-

meters in the matrices of (1) and (2). The importance of the value of

the index relative to its sensitivity to parameter variations will be

decided by a sensitivity weighting matrix, much as the coefficients

of the polynomial Q(x, u) determine the importance of the states vs.

controls.
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III. PROBLEM SOLUTION

MacFarlane [51 has devised a technique to calculate functionals

of the form

J = 1 0
 

f(t)R(x)dt	 (4)

for a system

*= Fx	 (5)

where f(t) is Laplace transformable, R(x) is a homogeneous polynomial

in x, and the system of (5) is such as to insure the existence of the

integral of (4) . Application to the problem of (1), (2) and (3) is immediate,

simply considering the augmented system

A	 B
Y-	 ... ••	 y

C D

= HY
	 (6)

where y and t are m+n vectors and H is an (m+n) x (m+n) matrix. It is

assumed that the augmented matrix H assures the existence of the integral

of (3) and is stable. This assumption of the existence of the integ --11 may

be more restrictive than the requirement that H be stable, since the addi-

tion of an explicit dependence on time in the integrand may cause diver-

gene of the integral even for an asymptotically stable system. Conversely,

certain time-weighting functions may cause the integral to exist even for

unstable systems..
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Using the results of (51 directly, it may be shown that

f m Q(x, u)dt = -P(x(0), u(0))	 (7)
0

where P(x, u) satisfies

Q(x, u) - P ,u [Ax + Bu1 + P(x ' u [Cx + Du1,
ax	 BU

or

Q(x, u) _ (T Hy,	 (8)

superscript T denoting transpose, and that P(x, u) will be a homogeneous

polynomial in x and u of the same degree as Q(x, u) . Defining the vector

z so that each of its components is of the form of a term of Q(x, u), then

for appropriate constant vectors p and q,

Q(x, u) = q 
T 

z	 (8)

and

P(x, u) = p T z .	 (14)

Using the identity (8), equating the coefficients of tike terms of z yields

a matrix M such that

q = MTp.	 0 1)

For H a stable matrix, Lyapunov (see [61) has shown that (8) has a unique

solution for P(x, u), and hence the transformation M is non-singular giving
p- (MT)-1q.	 (12)

In this manner, the coefficients of P(x, u) may be determined from those

Of Q(x, U) .



Since d(P(x, u))/dt - Q(x, u),

dt (p Z) - 
qTz

_ (MTp)Tz

- pTMz,

and (13) is satisfied by

I - Mz

giving

z = eMtz(0) .

Using (9) and (15) in (3),

j - 1 10 ONTeMtz(0)dt
0

- gTF(M)z(0)

where

F(M) = r® f(t)eMtdt.
J0

As is discussed in [51, F(M) is easily evaluated by noting that

F(-M) - J : f(t)e Mtdt,
0

which may be thought of as the matrix equivnient of the Laplace trans-

form. Hence, examples would be

f(t) - 1	 F(M) _ -M-1

f(t) - eat	 F(M) - -[M-all=1

f(t) = tr 	F(M) = rl [-M-llr+i

f(t) a sin (at)	 F(M) - a(M2+a21]-1

6

(13)

(14)

(15)

(15)

(17)
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where I denotes the identity matrix.

With the index given in the form of (16), the solution of the

system of algebraic equations

.Ai—) = 0
	

(18)

will yield necessary conditions for the existence of a minimum of J.

If information concerning the sensitivity of the index with respect

to certain variable parameters is desired, evaluation of j is accomplished

as above, except that the matrix to be inverted will now be non-numerical.

Thus, the index will be given by (16) as ration of polynomials in para-

meters of the matrices of (1) and (2) multiplying control initial conditions.

At this point, considerable information concerning the sensitivity of the

system is readily available. Specifically, the infinitesimal performance

index sensitivity is given by

of I f nominal
	 (19)

where f is any one of the parameters. Unfortunately, this information

is often of limited value since it only serves as some indication of the

effects of a finite parameter change. These finite changes can be in-

vestigated, however, with the index given in essentially polynomial

form. For the variable f and some maximum permissible index value

I max, an inequality solution of (16) will yield constants fl and f2 such

that
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j < j max	 (20)

if

fl < f -S f2 . (21)

Additional information might be desired concerning the effects of varia-

tions in state and control initial conditions. This is again simple and,

for example, for a single state - single control system with a homogeneous

polynomial of order 4 in the loss function, (16) will yield constants

0 0 , $ 1 , ..., 04 such that

Al E Oi[x(0)iu(0)4-i x(Q)nominalu(d) nominal]	 (22)
1-0

where

Aj = j - 7nominal	 (23)

Although the above information ; doubtless of value, it is

basically of an analysis nature yielding littler information concerning

the deign of a more acceptable solution. This latter problem was

investigated in [41 by the addition of a sensitivity term to the performance

index. Although the controls were restricted to a fa m

u - Kx (24)

with a quadratic loss function, the results are here extended to include

controls of the form of (2) with loss functions of the form of (3).

It is assumed that the matrices of (1) and (2) contain an 4-vector,

w, of variable parameters with nominal value wo. Defies the sensitivity
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of the performance index with respect to changes in the parameter

vector as

AL _^ W—	 A T
	

(25)
dw .

AL-
wl awl	 Bwi

a new index is formed

I = ^' °° f(t)Q(x, u)dt +Qw/Y Go
	 QL'"^

T	 (26)

where G is a positive semi-definite t x.t weighting matrix and evaluation

is made at w = wo . The G matrix determines the importance of the

sensitivity of the performance index relative to its actual value. That

is, as the norm of G approaches infinity, the problem is concerned com-

pletely with sensitivity while if the norm approaches zero, the problem

is again a pure optimization.

To find the initial conditions u(0) minimizing I, the integral

portion of (26) is evaluated as a function of w and u(0). The gradient

operation is performed, evaluation is made at w = wo, and there results

I as a function only of the control initial conditions. Hence, the

solution of

a_I = 0	 (27)Bu(0)

will yield necessary conditions for a minimum of I.
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N, EXAMPLE PROBLEM

As an example of a non-quadratic time-weighted performance

index, consider the system

is = -x+ u

--x- u

X(0) = 1

with the index defined by

1 = f ine t(x4+u4)dt.
0

Proceeding with the solution,

qT=[10001],

4x
3x u
2 2Z =	 x u

3
xu

4u

-4	 -1	 0 0	 0

4	 -4	 -2 0	 0

MT = 0	 3	 -4 -3	 0

0	 0	 2 -4	 -4

0	 0	 0 1	 -4

and

0,176 0.118 0.059 0.020 0.004
-0.029 0.147 0.073 0.025 0.005

F(M)= 	 0.098 -0.049 0.141 0.049 0,010
-0.005 0.025 -0.073 0.147 0.029
0.004' -0.024 0.€159 -0.118 0.176
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From (16) ,

I = 0.180u(0)4- 0.098u(0) 3+ 0.118u(0) 2+ 0.098u(0) + 0.180,

and (18) yields a minimum of j at u(0) = -0.267. This gives an index

value of j = 0.166, compared with that of j = 0.180 for starting the

control at the origin.

Now from the sensitivity viewpoint, the previous problem will

be reconsidered including the effects of a variable parameter. That is,

given the system

}C=-x+wu

u = -x- u

X(0) = 1

wo = 1

with original index

j = f CO e t(x4 + u4)dt,
0

it is desired to minimize the new index

I = j1 W= } 10 Q!Lw I,,.

Evaluation of the integral portion of I by (16) yields

j =

	

	 [(24w2+400w+649) + (200w2+500w+120)u(0)
5(64w +500w}625)

• (4A• • 3+300w2+48w+300)u(0)2+(120w3-200w-500)u(8)3

• (24w4+24w2+400w+625)u(0)41.

t:
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Taking the derivative with respect to w and evaluating at w - 1, I is

given by

I = 5(1189) [1073+580u( 0)+696u(0)2-580u(0)3+1073u(0)4]

+{ 1	 [1189(448+900u(0) +792u(C`)2+130u(0)3+.44u(0)4)
5(1189)2

- 628(1073+580u(0)+696u(0) 2-580u(0) 3+1073u(0)4)]}2 (10).

Finally, the minimum of I is found to be 0.180 for an initial condition

u(0) $ -0.144. A graph of I and J versus u(0) is given in Figure 1.

V. CONCLUSIONS AND DISCUSSION

A method has been presented which allows the evaluation of a

generalized performance index in terms of initial conditions and system

parameters. This evaluation allows sensitivity analysis and the genera-

tion of control initial conditions that are either optimal or "optimally-

insensitive". While the method is rather complex algebraically, some

recent papers have been concerned with the reduction of the complexity

of the problem. Specifically, [7] gives a method for evaluating M 1

which depends upon finding the eigenvalues and eigenvectors of F,

while [8] gives an algorithm for finding M efficiently and finding M - 1

by inverting matrices of smaller order than M.

Of course, the major disadvantage of this process is that the

control must be designed "a priori". With this in mind, an attempt
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has been made to leave as free parameters the elements of the C and D

matrices of (2), evaluate the index as a function of these parameters,

and then optimize with respect to them. That is, an attempt was made

to find a control optimal over the space of all controls of the form of (2) .

A difficulty was immediately encountered, however, as is evidenced by

the following scalar example. Given a system

is = ax + bu	 (28)

A = cx + du	 (29)

and a performance index

j = J, (x2 + u2)dt,	 (30)
0

the globally optimal control is known by standard techniques to be

u = kx	 (31)

with control initial conditions

u(0) - kx(0).	 (32)

This control is obviously an element of the restricted control space since

u = kX

= kax + kbu .	 (33)

Consequently, the values ka, kb and kx(0) would be found for c, d and

u(0) by the process presented herein. Examination of the augmented

system, however, reveals that the augmented matrix is singular, an

obviously unacceptable solution.
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