https://ntrs.nasa.gov/search.jsp?R=19690027971 2020-03-12T05:10:32+00:00Z

FINAL REPORT

NASA CONTRACT NAS8-21484

Solution of Systems of Nonlinear Equations

Submitted by Victor J. Law, Principal Investigator

ABSTRACT

A generalized method called Diagonal Discrimination for nonlinear algebraic and transcendental equations is described. A computer program which implements the Diagonal Discrimination technique has been written in TORTRAN IV for the Univac 1108 computer. A users manual is included which gives detailed instructions of how to implement the computer program.

I. Diagonal Discrimination for Nonlinear Equation Solving

The method of Diagonal Discrimination (DD) was first described by Fariss and Law (1). A brief description of the algorithm will now be given.

DD belongs to a class of methods such that the computations always begin from a point \underline{x}° in n-dimensional space and a move or increment, $\underline{\Delta x}$, is computed such that $\underline{x}^{1} = x^{\circ} + \underline{\alpha \Delta x}$ forms a search vector along which a "better" point is sought. This logic is repeated until no further improvement is possible. The choice of the scalar α is made by a one-dimensional search procedure.

The success of the method depends on a property of the Δx vector which shall be called <u>truncation convergence</u>. An algorithm for minimization has this property if, for sufficiently small α the objective function $q(\underline{x}^{\circ} + \underline{\alpha}\Delta x)$ takes on a smaller value than $q(\underline{x}^{\circ})$. What this means is that $\underline{\Delta x}$ must point in a direction such that q decreases at least locally. Hence, a better point can always be found by truncating α to some small positive value.

DD uses a unique combination of the method of weighted steepest descent and the Gauss-Newton method to minimize a sum of squares function. A brief review of these methods will now be given.

I. 1. Formulation as a Minimization Problem. The specific problem to which attention is now given is that of finding the value of an n-vector \underline{x} such that the equations

$$f_{j}(x) = 0; \quad j = 1, 2, ..., n$$
 (1-1)

are satisfied. The f functions, in general, are nonlinear. This problem may easily be formulated as a minimization problem by forming the sum of squares of residual as an objective function.

$$q = 1/2 \sum_{j=1}^{n} f_{j}^{2}$$
 (1-2)

Clearly, if q is minimized to its absolute minimum of zero, then a solution to the original problem has been obtained.

I. 2. Ordinary Steepest Descent. Perhaps the oldest and still very popular method for unconstrained minimization is the method of steepest descent (SD). Strictly speaking, this method is a continuous one rather than a discrete one in that the path of steepest descent is a continuous curve. For practical use, however, the direction of steepest descent is found at the <u>base point</u>, \underline{x}^{o} , and this direction is used to form the search vector.

The direction of steepest descent is given by

$$\underline{\Delta x} = \frac{-\gamma \underline{g}(\underline{x}^{\circ})}{\left|\underline{g}(\underline{x}^{\circ})\right|}$$
(1-3)

where $\underline{g} = \frac{\partial q}{\partial \underline{x}}$, i.e., the gradient of q γ = steepest descent distance factor

· -2-

The search vector then becomes

$$x = x^{o} + \alpha \Delta x \qquad (1-4)$$

The value of α is usually selected by performing a one-dimensional search for a minimum in q with respect to α . Perhaps the most popular one-dimensional search is the Golden Section Search (2). A more sophisticated method is described by Fariss and Law (1) and is the one implemented in the computer programs listed in this report. It is also possible to simply find a value of α for which q is smaller than at the base point rather than finding the minimum. There is no generally "best" procedure to use. Judicious selection of γ can greatly enhance the performance of (SD). It is efficient to select this value of γ based on the optimal α from the previous iteration. One means of accomplishing this is to use the following relationship:

$$\frac{\gamma^{(i+1)}}{\gamma^{(i)}} = \begin{cases} a ; \alpha_0^{(i)} = 0 \\ b ; \alpha_0^{(i)} > b \\ \alpha_0^{(i)} ; 0 < \alpha_0^{(i)} \le b \end{cases}$$
(1-5)

where $\alpha_{0}^{(i)}$ = optimal value of α from the ith iteration $\gamma^{(i)}_{\cdot}$ = γ from iteration i $\gamma^{(i+1)}_{\cdot}$ = γ for iteration i+1 a = lower limit on correction factor b = upper limit on correction factor This formula is purely arbitrary and merely attempts to update γ based on past experience while not allowing large changes in it from one iteration to the next. The previous γ is multiplied by a factor between a and b, with a corresponding to $\alpha_{o}^{(i)}=0$ and b to $\alpha_{o}^{(i)}>b$. If $\alpha_{o}^{(i)}=1$, γ is not changed. Recommended values for a and b are 1/4 and 4, respectively.

The Δx vector of Equation (1-3) is normal to the objective function contour at the base point and is guaranteed to have the truncation convergence property. This is obvious in that

$$\frac{\mathrm{dq}}{\mathrm{d\alpha}}\Big|_{\alpha \to 0} = \underline{g}^{\mathrm{T}} \frac{\mathrm{dx}}{\mathrm{d\alpha}}\Big|_{\alpha \to 0} = -\underline{g}^{\mathrm{T}} \underline{g} = -\left|\underline{g}\right|^{2} \quad (1-6)$$

The most serious drawback of the method of steepest descent is the zig-zag tendency especially when near the solution. This property is best explained in the two-dimensional case. Referring to Figure 1-1, it is easily seen that successive directions of steepest descent will be orthogonal (perpendictular in 2-dimensions).

In order to overcome this difficulty, several techniques have been suggested [see, for example, Booth (3)]. One particular modificaton is the Method of Parallel Tangents developed by Shah, Buehler and Kempthorne (4). Weighted steepest descent is another modification and will be described in the sequel.

I. 3. The Gauss-Newton Method (GN). This method uses Newton's method as a basis. That is, the equation for determing Δx is given by

$$\frac{\partial^2 q}{\partial x^2} \Delta x = \frac{\partial q}{\partial x}$$
(1-7)

A useful and effective approximation is made for the Hessian, $\frac{\partial^2 q}{\partial x^2}$, however. In terms of the sum of squares q function, Equation (1-2),

$$\frac{\partial q}{\partial x_{i}} = \sum_{j=1}^{n} f_{j} \frac{\partial f_{j}}{\partial x_{i}}$$
(1-8)

and

$$\frac{\partial^2 q}{\partial x_i \partial x_k} = \sum_{j=1}^n \frac{\partial f_j}{\partial x_i} \frac{\partial f_j}{\partial x_k} + f_j \frac{\partial^2 f_j}{\partial x_i \partial x_k}$$
(1-9)

Now, for equation solving the $f_j \neq 0$ as the solution is approached. Therefore, the so-called Gauss-Newton approximation is to omit the second term in the expression for $\frac{\partial^2 q}{\partial x_i \partial x_k}$. That is,

$$\frac{\partial^2}{\partial x_i \partial x_k} \sim \sum_{j=1}^n \frac{\partial f_j}{\partial x_i} \frac{\partial f_j}{\partial x_k} = G_{ik}$$

Thus, the relation for step size determination becomes

$$G \Delta x = -g$$
 (1-10)

In the absence of singularity of the G matrix, the (GN) procedure is very efficient at converging to the solution from a near point (i.e., where the sum of squares function becomes nearly quadratic and the f_j are small). This behavior could be anticipated from the approximate quadratic representation of q by using the G matrix as an approximation to $\partial^2 q / \partial x^2$. Thus, quadratic convergence is obtained in the neighborhood of the solution.

As a protection against very long search trials, it is customary to limit the length of the search vector to some arbitrary value. While this will usually force convergence, it has one distinct disadvantage. In order to clearly understand why this is so, consider a problem where only one variable causes the singularity. In such a case the moves predicted for all other variables would be quite good. Thus, the truncation of the entire search vector is clearly inefficient in that only the move in the maverick variable need be truncated. This justifies the need for the following two operations:

(1) Sorting those variables which cause the singularity in G.

(2) Selectively truncating only the moves for these variables. More will be said about this later.

The (GN) method is equivalent to the well known Newton-Raphson (5) (NR) method for equation solving. The (NR) method uses as its basis the linearization of each equation in the neighborhood of the base point. Thus,

$$f_{j}(\underline{x}) \approx f_{j}(\underline{x}^{\circ}) + \sum_{i=1}^{n} \frac{\partial f_{j}(\underline{x}^{\circ})}{\partial x_{i}} \Delta x_{i} ; j=1, 2, ..., n \quad (1-11)$$

The move is then determined so that each $f_j(\underline{x})$ would become zero if all functions are linear. In vector-matrix form, these relations become

$$J \Delta x = -f \qquad (1-12)$$

where

J = the Jacobian matrix with J. =
$$\frac{\partial f_1}{\partial x_1}$$

In equation (1-12) is premultiplied by J^{T} (superscript T indicates the matrix transpose), there results

$$(J^{T}J) \Delta x = -J^{T}\underline{f}$$
 (1-13)

Which is identical to Equation (1-11). That is,

$$G = J^{T}J$$
 (1-14)

$$\frac{\partial \mathbf{q}}{\partial \mathbf{x}} = \mathbf{J}^{\mathrm{T}} \mathbf{\underline{f}}$$
 (1-15)

Equation (1-14) constitutes a proof that G is always at least positive semi-definite in that this property always holds for a product of a matrix and its transpose.

I. 4. <u>Weighted Steepest Descent (WSD)</u>. Weighted steepest descent is a modification of the method of steepest descent. It arises from modifying the elements of the search vector by non-equal positive multiplicative factors chosen so as to produce a more effective vector. Specifically, these factors may be selected so that, under favorable circumstances (i.e., when G is strongly positive definite), the search vector will coincide with the one produced by Newton's method, provided the method is applied in a coordinate system where, in relation to the quantity being minimized, there is <u>no local interaction of variables</u>. The necessity of using such a coordinate system will be made clear in the sequel.

The coordinate system required may be created by transforming the G matrix into diagonal form. Let T by a non-singular transformation matrix such that

 $T^{T}GT = D$

(1-16)

where D is diagonal. Methods for computing such transformation matrices are discussed by Wilde and Beightler (6). If this transformation is applied to Equation (1-10), there results

$$T^{T}GTT^{-1} \Delta x = -T^{T}g \qquad (1-17)$$

By defining the new variables (coordinates)

$$\underline{y} = T^{-1} \underline{\Delta x}$$
 (1-18)

Equation (1-17) for the search vector \underline{y} in terms of transformed coordinates may be written as

$$D\underline{y} = -T^{T}\underline{g}$$
 (1-19)

On the same basis, the steepest descent equation becomes

$$\underline{y} = -T^{T}\underline{g}$$
 (1-20)

In order for coincidence to exist between Newtonian and steepest descent vectors, Equation (1-20) must be modified to

$$\underline{\mathbf{y}} = -\mathbf{k} \mathbf{D}^{-1} \mathbf{T}^{\mathrm{T}} \underline{\mathbf{g}}$$
 (1-21)

in which kD⁻¹ supplies the necessary weighting. The scalar factor k is indeterminate (but positive), since steepest descent is intended to define only the direction of the search vector.

The general form of the weighted steepest descent equations, on a transformed coordinate basis, may then be written as

$$\underline{y} = -WT^{T}\underline{g}$$
 (1-22)

in which \underline{W} is a diagonal matrix of positive elements. Consequently, coincidence between Newtonian and steepest descent vectors can be achieved only if all diagonal elements d_{ii} , are non-zero positive, that is, if the G is positive definite. Furthermore, experience has shown that, <u>if reasonable external scaling has been applied</u>, weighting factors which are excessively large to yield an effective search vector will result from Equation (1-21) when one or more are orders of magnitude smaller than others. It may be concluded from this that the favorable circumstances under which it is feasible and reasonable to weight steepest descent so as to force coincidence with the Newtonian search vector are confined to cases where all d_{ii} are positive and of the same order of magnitude.

An important feature of the weighted steepest descent method is that it can be adapted to deviate from Newton's method when circumstances do not warrant their coincidence. This can be achieved by adapting the calculation of the weight factors. The suggested method for doing this will now be described. First, assume that the diagonal elements, d_{ii} and the corresponding columns of the transformation matrix, T, are rearranged to achieve descending algebraic order. That is, $d_{11} > d_{22} > \dots > d_{nn}$. If k in equation (3-: is chosen as d_{11} , then

and ideal weighting (i.e., that which causes coincidence with Newton's method) is given by

$$w_{ii} = \frac{d_{11}}{d_{ii}}$$
; i = 2, 3, ..., n (1-23)

An adaptation of the ideal case which has been used successfully is, for i=1, 2, ..., n

$$w_{ii} = \begin{cases} \frac{d_{11}}{d_{ii}} & \text{if } \frac{d_{11}}{d_{ii}} \leq \beta \text{ and } d_{ii} > 0 \\ \\ \beta & \beta & \beta \text{ or } d_{ii} \leq 0 \end{cases}$$
(1-24)

In Equation (1-24), β is the maximum weight factor allowed. Thus, if $d_{ii} << d_{ll}$ or if $d_{ii} < 0$, w_{ii} deviates from the ideal one and is assigned the value β . It should be pointed out that Equation (1-24) is not the only choice which can be made for non-ideal weighting but is one which has been used successfully. An outline of the weighted steepest descent method follows:

- 1) Select a distance factor γ and a base point \underline{x}^{o} .
- 2) Compute g and G at the base point.
- 3) Find the transformation matrix T and the corresponding diagonal matrix D. Reorder D and columns of T so that the resulting d_i are in descending algebraic order.
- 4) Compute a set of weighting factors from Equation (1-24).
- 5) Compute the <u>y</u> vector as follows:
 - a) First compute an interim <u>y</u> indicated here by <u>y</u>ⁱ as follows:

$$y_i^i = -w_{ii} p_i$$
; $i = 1, 2, ...n$
where $\underline{p} = T^T \underline{g}$.

b) Set
$$y_{\text{max}}^{i} = \max \left| y_{i}^{i} \right|$$
 (1-25)
 $\mu = \gamma/y_{\text{max}}^{i}$ (1-26)

(1-27) Then,
$$y_{i} = -\mu w_{ii} p_{i}$$

Note that the y of largest magnitude has a magnitude equal to γ .

6) Perform a one-dimensional search along the vector

$$\mathbf{x} = \mathbf{x}^{\mathbf{o}} + \alpha \Delta \mathbf{x} \tag{1-28}$$

where
$$\Delta x = Ty$$
 (1-29)

- Update γ based on the experience of the one-dimensional search [see Equations (1-5)].
- 8) Go to step (2) and repeat until convergence is achieved.

Equations like (1-22) and (1-23) could also be applied to define a weighted steepest descent algorithm for the original, untransposed coordinate system. The best analogy to Equation (1-24) would involve using the diagonal elements of the G in place of the d_{11} . This approach requires substantially less computation to determine a search vector, since only the diagonal of the G is required, and the diagonalization calculation is not used. However, if interaction is at all significant, there will be no coincidence at all with the Newtonian vector, and this approach will be subject to most of the inefficient convergence problems usually experienced with ordinary steepest descent. One significant reason for this is that it is impossible, in general, to weight the Δx_i to make the SD search vector coincide with the NM search vector. To see this more clearly, consider a quadratic function with contours as shown in Figure 1-2.

Fig. 1-2. SD and Exact Search Vectors.

-13-

The SD direction produces positive values for both Δx_1 and Δx_2 whereas the exact search vector requires Δx_1 to be negative and Δx_2 to be positive. Thus, no <u>positive</u> weighting factors exist. It is not proper to use negative weight factors since the property of truncation convergence would be destroyed. To see this, consider a <u>diagonal matrix</u> of weights, V. Then a weighted SD direction would be

$$\Delta x = -Vg \qquad (1-30)$$

Then Equation (1-6) becomes

$$\frac{dq}{d\alpha}\Big|_{\alpha \to 0} = \underline{g}^{\mathrm{T}} \frac{d\underline{x}}{d\alpha} \Big|_{\alpha \to 0} - \underline{g}^{\mathrm{T}} \underline{V} \underline{g}$$
 (1-31)

Thus $\frac{dq}{d\alpha}\Big|_{\alpha \to 0}$ will be always negative only if V is positive definite. Hence, each scale factor must be positive.

Therefore, scaling the <u>y</u> vector is another means of accelerating the convergence of steepest descent. As long as the d_{ii} are positive, the <u>ideal</u> weighting factors given by Equation (1-23) can be quite effective toward this end. However, if there is a large difference in the magnitudes of the d_{ii} or if any d_{ii} are negative or zero, the ideal weighting is either dangerous or not possible. In these situations it has been found that the concept of weighting the <u>y</u> vector is still useful but must be suitably modified. One practical means of accomplishing this is that given by Equation (1-24).

I. 5. <u>Diagonal Discrimination (DD)</u>. It was discovered that (WSD) had one significant shortcoming. That is, no consideration is given to the relation between the d_{ii} and the corresponding elements of the transformed gradient, <u>p</u>. Thus, even if d_{ii} is such that ideal weighting is allowed, the y_i produced by (WSD) might be excessively large because of a large p_i . The quadratic approximation of q at <u>x</u>^o upon which Newton's method is based is likely to be poor at points far removed from the base point. Therefore, only in the very fortunate but, unlikely (at least in practical applications) case that q is almost exactly quadratically dependent upon a particular y_i would a long move in that variable be warranted. In order to account for this situation the weighted steepest descent method was modified into another method called diagonal discrimination (DD).

(DD) is a method which involves choosing a superior search vector based upon the following two principles:

- Transformation of the coordinate axes in order to remove local interaction between variables.
- 2) Computing the elements of the search vector discriminantly depending upon the relationships between the diagonal elements of the transformed Hessian and the length of a move as predicted by Newton's method in the transformed coordinate system.

The development of the method is conveniently begun by considering Equation (1-19). Assume again that the columns of T have been rearranged so that the d_i appear in descending algebraic order.

The logic of DD presupposes that reasonable external scaling of the

-15-

variables has been accomplished so that the following assumptions are likely to be valid:

- The acceptability of a move (from a base point) calculated by Newton's method can be judged from its length--long moves are suspect.
- 2) In regard to the diagonalized G, positive d_{ii} which are several orders of magnitude smaller than the largest one are indicative of a linear dependence of q on the associated y coordinate. Negative d_{ii} are associated with those y coordinates for which the objective function tends to exhibit a local maximum rather than a minimum.

Diagonal Discrimination then attempts to combine the best features of the (G-N) method and (WSD) by computing the <u>y</u> vector components discriminantly. That is, if the (G-N) move for a particular y_i is not too long and if the associated d_{ii} is positive and not greatly different from d_{ll} , then the (G-N) calculation is used. Otherwise, y_i is found by (WSD) logic. A step-wise presentation of the logic for DD follows:

- 1) Select a base point; \underline{x}° , a steepest descent distance factor, γ , and a steepest descent threshold factor, δ .
- 2) Compute g and G at the base point.
- 3) Find the T and D. Order D and T so that the d are in descending algebraic order.
- Starting with y₁, the elements of <u>y</u> are computed by (G-N) logic, that is

$$y_{i} = -p_{i} / d_{ii}$$
 (1-32)

until either

- a) i=n
- b) d_i ≤εdi ii ≤εd₁₁
- c) $y_i > \delta$
- 5) When the (G-N) sequence is terminated for reason (b) or (c) above, at the <u>kth</u> y variable, then a switch is made to weighted steepest descent logic treating y_K as the first (WSD) variable. That is, y_K is assigned a weighting factor of 1 and y_K, y_{K+1}, ..., y_n are computed by the (WSD) method as described above.
- 6) If any $d_{ii} \leq \varepsilon d_{1l}$, set $y_i = 0$ (these are called null-effect parameters and are discussed in the next subsection).
- 7) The resulting y vector is converted back into a Δx vector by

$$\Delta x = Ty \qquad (1-33)$$

and a one-dimensional search is performed along the \underline{x} vector as given by Equation (1-28).

8) The distance factor, γ , is updated using Equation (1-5).

9) Go to step (2) and repeat until convergence is achieved.

It can be shown in that the DD search vector has the property of truncation convergence. A discussion of parameter selection (β , γ , δ , ε) is given below.

Selection of β :

The choice of β , the maximum allowable weight factor in Equation (1-24) is not critical. That is, the sensitivity of WSD to β is relatively slight. A value of about 10⁴ has been used satisfactorily in almost all applications of DD.

Selection of γ :

If the variables have been scaled (see next section) in any reasonable way their expected value should be about unity, at least within a few orders of magnitude. A change of 20-50% would, therefore, be considered relatively large. Therefore, if γ is chosen to be 0.2, the length of the SD search vector will limit each individual variable increment to be less than 20% of unity. The actual initial choice of γ is not too critical since it is updated at each iteration.

Selection of δ :

The steepest descent threshold factor, δ , should be chosen with the philosophy that if some y_i as calculated by Newton's method is greater than δ , then a switch should be made to WSD logic. Again, if reasonable external scaling has been applied, a value of about 0.2 for δ has been found to be satisfactory.

Selection of ϵ :

The parameter ε is used to distinguish between small d_{ii} and those which should be treated as zero. The choice of ε depends upon the number of significant digits carried in the arithmetic. For digital computer which carry d digits, it is recommended that ε be chosen as follows:

-18-

$$= 10^{-0}$$
 (1-34)

I. 6. <u>Singularity of G and Null Effect Variables</u>. The singularity of the G matrix is usually caused by a phenomenon which shall be called <u>null</u> <u>effect</u>. Those variables which cause this condition will be called <u>null</u> <u>effect variables</u>. Null effect occurs when perturbation of a parameter or of some linear combination of parameters has no significant effect on <u>any</u> of the residuals in the sum of squares function. In a well posed problem, null effect should not, of course, be present at the solution point. For systems of nonlinear equations, however, null effect is common at points removed from the solution. This is caused by local redundancies or inconsistencies in the linearized versions of the equations. In either case, two or more linear equations become parallel to each other and hence no solution exists. As an example, consider the problem illustrated in Fig. 1-3.

Figure 1-3. Illustration of Null Effect

-19-

I. 7. <u>External Scaling</u>. External scaling of variables is desirable (and highly recommended), primarily because of the problem of heterogeneous physical dimensions. Variables which have different physical dimensions will naturally have different ranges of variation and different impact on the object function. In any numerical procedure it is desirable that the variables have similar ranges of variation because of round-off considerations. Vastly different effects on the objective function lead to very elongated contours of the objective function. The latter problem results in large differences in the diagonal elements of the transformed Gauss-Newton matrix, G.

The most natural way to scale variables is by way of dimensional analysis. That is, some variables may be made dimensionless by choosing a natural scale factor. An example of this for temperature as the variables would be to set

$$t^* = \frac{t - t_L}{t_U - t_L}$$
(1-35)

where t* = dimensionless temperature

t_U, t_L = upper and lower bounds on the range of temperature to be considered

In addition to having no physical units, the dimensionless temperature would also, conveniently, vary between zero and one.

However, it is not always possible or practical to scale the problem as suggested on the basis of dimensional analysis. Another way of arriving at scaled variables which has proven to be effective and satisfactory is to choose an increment for numerical differentiation which will cause a change in the objective function in the last three or four digits (as available on the computer to be used). Then choose an external scale factor which will cause the scaled increment for differentiation to be the same for all variables. That is,

$$e_{i} = \frac{\delta y_{i}}{c_{d}}$$
(1-36)

This technique can usually be carried out easily if the problem solver has some basic knowledge of the problem and if sound engineering judgement is applied. Variable scaling is automatically provided in the computer programs described herein. II. User's Manual for Implementing Computer Programs.

II. 1. <u>Basic Characteristics</u>. The basic characteristics of the system are as follows:

- The user sets up arrays containing <u>starting values</u> or simply a range for the parameters being sought, and then starts DD action by the appropriate subroutine calls.
- 2) Thereafter, until the iterative procedure is terminated by the subroutines, the values contained in the parameter array are under control of the subroutines. The user must provide programming to calculate residuals for the equations for any set of values in the parameter array, on demand by the DD algorithm.
- 3) When control is released, the parameter array will contain "best" values, i.e., those which cause the sum of squares of residuals to be a minimum.
- 4) All required partial derivatives are obtained numerically.
- 5) There are no internal limits on the size of problems due to dimensions, etc. It is possible to solve problems as large as about 200 parameters and 200 equations.
- 6) No special NASA system features are required.

II. 2. <u>Skeletal Illustration</u>. A skeletal illustration of a main program which meets the basic requirements for using the subroutines which implement diagonal discrimination is shown in the following:

.COMMON / DDCOM / COM(9), KCOM(13)

EQUIVALENCE (KCOM(1), NCASE), (KCOM(2), NVAR), (KCOM(3), IPRNT)

NCASE = (specify a number of equations)

NVAR = (specify number of unknown parameters)

IPRNT = (specify output option)

X() = (make initial guesses) or (specify range on each variable) XMAX()=

$$KODE = 0$$
 $KODE = 1$

10 CALL CONST

- CALL DDSET (KODE, NVAR, X, XMIN, XMAX, SCALE)
- 20 CALL DDRG (S, SX, G, XX, MODE, RHS, DXBAR, DXX, DQ, DQX, Y, YBASE, DY, X, SCALE, D2Q, SCALR) IF (KCOM(5) .LE. 0) GO TO 100 CALL NEWSCL (X, SCALÈ)
 - Y() = (calculate residuals for all equations)
 - GO TO 20
- 100 IF (KCOM(8) .EQ. 0) GO TO 200

GO TO 10

200 ... (problem completed)

The dimension statements establish memory requirements for all arrays. Minimum space requirements for these are outlined below:

Array Name	Minimum [,] Dimension
X,SCALE,XX,MØDE,RHS,DXBAR,DXX,DQ,DQX,D2Q,SCALR,	NVAR
XMIN, XMAX	
Y,YBASĖ	NCASE
S,SX,G	(NAR) ²
DY	(NVAR)X(NCASE)

where NVAR = Number of parameters to be determined NCASE = Number of equations

The CØMMØN statement creates linkage of the listed variables between the main program and the D.D. subroutines.

The regression calculations are initiated by calling subroutine DDRG, statement 20 above. However, prior to this, <u>four</u> things must have been done:

- 1) Specify NVAR and NCASE.
- 2) Set the print control, IPRNT.
- Put starting values (initial guesses) for the parameter in the X array or specify lower and upper bounds on each parameter (XMIN and XMAX).
- 4) Set regression controls by calling subroutines CONST and DDSET.

The action required after the return from subroutine DDRG depends on the value of KCOM(5) as set by that subroutine:

When KCOM(5)=0, the subroutines have probably completed their operation. If a normal finish was obtained, KCOM(8) will be returned as a zero. At this point the X array will contain the parameter values corresonding to the problem solution, and the final sum of squares, SIGMA, will be $\leq 10^{-9}$. If KCOM(8) $\neq 0$, a false solution was found and a restart (from a different initial guess) should be initiated by returning to the call of CONST. When KCOM(5)>0, the main program must calculate the values of the "residuals" and place these values in the Y array. If the equations are written so that all terms appear on only one side of the equal sign (e.g., $x_1^2 + 2x_2^2 = 0$), then the Y array contains the current value of that side of the equation [e.g., Y(1) = X(1)**2+2.0*X(2)**2].

If it is desired to start the solution of another set of equations, NVAR, NCASE, IPRNT and MASCT should be reset and subroutines CONST and DDSET should be called again before the next initial call of DDRG.

II. 3. <u>Internal Print Control and Output Description</u>. The D.D. subroutines brought into action by the call of DDRG furnish considerable information during the progress of the calculation if the contained print statements are not suppressed. Suppression can be accomplished by setting IPRNT=0. Information for only the last iteration is obtained if IPRRNT=1. However,

·--25-

when new problems are run, it is strongly recommended that the complete internal print facility be used by setting IPRNT=2.

Output items appear in the following sequence:

- 1) Heading line
- 2) Table of starting values and scale factors for parameters
- 3) Table of regression controls
- 4) Iteration line
- 5) Parameter, Internal variable table
- 6) Search table
- 7) Termination explanation

Items 4 through 6 are repeated for each iteration when IPRNT=2.

Items described in the Iteration Line are as follows:

•	ITER NO	Iteration number, beginning with one
	INACTIVE	Number of "null effect" parameters for this iteration
		(see Section I.6.)
	DIST	This is the distance of the desired first try along
		the search vector, in the scaled parameter space.
	FSD	This is the current value of the steepest descent

distance factor.

SIGMA Current value of the sum of squares

Under PARAMETERS are three columns giving respectively the parameter number, the current value and the parameter increment corresponding to the desired first try along the search vector.

Under INTERNAL VARIABLES are four columns, all referring to the transformed coordinates. They are respectively the diagonalized Gauss-Newton matrix, elements, d_{ii}, first partial derivatives of the sum of squares, coordinate increment for first try along the search vector and the MODE of incrementing the transformed coordinates. These MODES are as follows:

- 0 Gauss-Newton
- 1 Steepest Descent
- -2 Null Effect

The one-dimensional search table under SRCHS contains two columns which contain

- FX The factor multiplied by the search vector increment to obtain a trial point. The last one printed is the optimum one.
- ACTION Hollerith information which describes the progress of the search
- SIGMA The value of the sum of squares for the corresponding value of FX

The termination explanation is self-explanatory.

II. 4. <u>Storage Requirements</u>. The large bulk of the required storage for the D.D. program is taken up by the arrays contained in the DIMENSION statement. If there are N equations and N unknowns, this requirement calls for $15N + 3N^2$ words of storage. For a 200 variable problem, this would require about 43,000 words. Thus, this size problem should be well within the storage limits of the Univac 1108 computer.

II. 5. <u>Special Features</u>. There are two special features of the D.D. program which deserve mention. These are an automatic restart procedure and the ability to treat sets of underdetermined or overdetermined nonlinear equations.

The automatic restart procedure operates as follows:

When KCOM(5)=0, the problem has been solved satisfactorily only if KCOM(8)=0. If this is not the case, then a return to the call of CONST and DDSET causes a new (random) starting point to be generated within the feasible space (i.e., XMAX(I) \geq X(I) \geq XMIN(I), I=1, 2, ..., NVAR). Note, therefore, that XMIN and XMAX must be specified even if the K \emptyset DE=0 option were used on the initial start of the problem. This restart procedure will be generated a maximum of five times. The restart procedure can be suppressed by deleting the test of KCOM(8). That is, at statement 100, the problem is complete.

In order to solve sets of underdetermined equations (i.e., more variables than equations) or overdetermined equations (i.e., fewer variables than equations), it is necessary only to provide the proper values for NVAR and NCASE. In the case of overdetermined sets, a compromise solution (i.e., a minimum sum of squares solution) is all that can be expected. Therefore, the automatic restart procedure should be suppressed as described above.

SAMPLE PROBLEM

•

A sample problem is included to illustrate further the programming requirements and usage. In particular, the system of linear algebraic equations

$$2x_{1} - x_{2} = 1$$

$$x_{1} + x_{2} = 1$$

are solved from the initial guess $x_1 = 1/2$, $x_2 = 1/2$. The answers are $x_1 = 2/3$, $x_2 = 1/3$. The solution was not reached in one iteration because the required step size exceeded the limits normally provided and WSD was used.

A listing of the main program and printed output are given below.

; DIMENSION X(2), SCALE(2), S(4)	. SX(4) . GL	6) . XX[2] . M	0DF(2)	- 1
-1 RHS(2),DXBAR(2),DXX(2),DQ(2				•
2 SCALR(2), DY(4), XMIN(2), XMAX		· · · · ·	<u>المعامة المعامة المعام</u>	1
COMMON /TDCOM/			; ;	!
1 SSCAL, FIT, FDSCD, FDERV	, DSTMN, FS	D,SIGMA,DX	MAX, DSCAL,	NCASE,
2 NVAR, IPRNT, MAXCT, ICODE, INEW	I, ICASE, KL	UE, ITER, NK	ICK, NRET,	
3 I.VAR, NEWSTR	i t		1 1	ł
NCASE = 2	i ;		1	<u> </u>
NVAR = 2				· .
<u>IPRNT = 2</u>	Į . į	۰ ا		· · · · · · · · · · · · · · · · · · ·
• DO 2 I=1,NVAR	1 1		1	
XMIN(I) = 0.0	1	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
$2 \times MAX(I) = 1.0$; ;			
x(1) = 0.5	- 1 	i	1 1.	ء
X(2) = 0.5	· ·	· , ·		•
KODE = 0				
10 CALL CONST	VHAY CCAL	C NEUCTON		•
CALL ODSET(KODE,NVAR,X,XMIN, 1 CALL DDRG (S,SX,G,XX,MODE,R)			V. VRASE DV	
1 SCALE, D2Q, SCALR)	IS JUNDAR 10	WYPORT DAY	I FIDHOLSUI	101
IF(ICODE .LE. 0) GO TO 100		-		,
CALL NEWSCL(X,SCALE)			1	• ;
C	•	<u>. k</u>		
8 Y(1) = 2.*X(1) - X(2) - 1.0	4		2 2	
Y(2) = X(1) + X(2) - 1.0	```		· · ·	•
GO TO 1		,	1	· ·
C				-
100 IF(KLUE .EQ. 0) GO TO 200	5	•		
GO TO 10	· · ·	t	, s	;
200 CALL EXIT	•	1 -		<u> </u>
END				

				5									محد مدمن السمي		
NONLINEAR EQUATIONS VIA	D.D. !		2 4 7			i L			· .	. !	E B B				1 2 1
STARTING VALUE	SCALE			-		, ì					: ;	 			
· · · · · · · · · · · · · · · · · · ·	_0.5000E_00	£	، ا 		· ·				1	· · ·		; ;	1 1 1		. 1
2 0.500000E 00	0.5000E 00					; 			 			!	i 1 	· .	:
PARAMETER VALUES FIT0.1000E-08				1					1 .			<u> </u>			;
MAXCNT = 20 DXMAX = 0.1000E_C2									;	!		<u> </u>	i ! i		
DSCALE = 0.2000E 01 SSCALE = 0.2000E 01	1	· · ·	; ;						-			•	1	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	: *
FSD = 0.2000E CO $NVAR = 2$					1			r 				:	:	•	_
NCASE = 2 FDERIV = 0.1000E-02		· · · ·	;	· · · ·		1	1 1 1 1		Î	:	- !	•	<i>;</i> 	•	:
DSTMIN = 0.5000E-01 FDSCRD = 0.0000E-38				• • !			1	:	¦ ,		:		!	· · ·	
ITER NOINACTIVE		_FSD		-	:	i				· '	;	_SIGMA			-
1 0	0.25476	0.20000	1		•		• :		•			0.250	000E	00	
PARAMETER	s .		t	IN	TERNAL	VARIAB	LES			:		4	-	<u> </u>	
1 0.500000E 00 0 2 0.500000E 00 -0	.842193E-01 .789034E-01	* ¥,					0.200 0.157		1 _ 1						
SRCHS	· · · · · · · · · · · · · · · · · · ·	······································													
FX ACTION	2.50	GMA 000E-01			, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
1.0000E 00 JRY MCRE 2.0000E 00 TAKE	- 6.38	643E-02 2 <u>97E-04</u>		·			·								
ITER_NOINACTIVE	DIST 0.02589	FSD 0.27826				n		· · · · · · · · · · · · · · · · · · ·	<u>``</u>			_SIGMA 0.14			
PARAMETER				TA	TERNAL	VASIAB	· · = s								
	•177206E-02	*	0.2234		,	• •••••••	0.000				·			,	
	.885993E-02	*	0.2108				-0.025		0			i			
SRCHS	· · ·	GMA		•	· · ·							!		• 1	·
FX ACTION	<u> </u>	297E <u>-04 '</u> _	I		; ;		1 			<u></u>					
1.0000E 00 TRY MGRE 2.0000E 00 TAKE PRE		638E-14 297E-04		- <u>i</u>			t	L	· · · ·		<u>-</u>	· · · · · ·	، جرمیسی مسی		
ITER NO -INACTIVE-	DIST	FSD	1	 	· ·	• •			:		:	_SIGMA			•
3 0	0.00000	0;27826	•	; ;		i	1 2		; ;		:	0.31	3638E	-13 	
PARAMETER	· · ·	1	;		TERNAL					·	•		_ !		
	0.769900E-07 0.993354E-08	· *	0.2222			33E-06 605-08	0.000 -0.000		0		1			<u>}</u>	
D.D. FINISH NORMAL					1 1 1 1			ļ	1	-•		-	1		1

LISTING OF FORTRAN IV COMPUTER PROGRAMS

	1 SUBROUTINE NEWFSD	(FX, 1	QDZB, F	SD)
Ċ		·····	i i	
I.,	11 IF (FX) 12,12,21		1	-
İ	12 FACT = 0.25		1 i	
	13 GO TO 31 "	1 *		
Ċ.		Ť		
ł	2.1 Z = 0.88255 * ATAN(0.56654	4*ALOG(f	-X}}
÷	$22 \text{ FACT} = \text{EXP}(Z) \cdot$;	
С		•		
:	31 FSD = FSD * FACT	· · · · · · · · · · · · · · · · · · ·	· · · ·	
1	32 RETURN	-		
C	· · · · · · · · · · · · · · · · · · ·	;	· · · · ·	
	END			
•	•			
	- · · · · · · · · · · · · · · · · · · ·	;	: :	
	:	1	:	•

	SUBROUTINE CON	151 ·		., пи <i>к</i> т			MEDOLS	Į	۱ ۲
<u> </u>	THIS SUBROUTIN	E SEIS	<u>IHE NU</u>	KMAL	REGRES	STUR CU	NINULS	<u> </u>	
Ç			1	ł	1		i		ļ
C	i	۱ <u> </u>		!	<u> </u>	i ! 		<u></u>	
1	COMMON /TDCOM/	,		;	¢	1	1	-	
1	Í SSCAL,	IT, EDSCI	D, FDER	V; DST	MN, FSD	SIGMA,	DXMAX,	DSCAL	<u>, NC</u>
1	2 NVAR, IPRNT, MA	XCT, ICO	DE, INE	W.ICA	ŠĒ,KLU	E, ITER	NKICK,	NRET,	
	3 IVAR, NEWSTR					: :			
	SSCAL = 2.0		1.		. 1	!			
F	FIT = 0.1		Ì		1	1 j		:	
	FDSCD = 1.0	1	1	1	•		1		
-	FDERV = 0.001		1	1	!		i	!	
1	DSTMN = 0.05		1	i '	1	1	-	. :	
٠	FSD = 0.2	•		i I					
	DXMAX = 10.0						f		
	DSCAL = 2.0	3			×	1			
	$\frac{1}{1}$	· · · · · · · · · · · · · · · · · · ·	ť	:	· · ·		1		
•	NKICK = 1					•	1	. :	
	MAXCT = 20							•,	
ĩ	FIT = 1.E-09	•		1	E .		•		
	FDSCD = 0.0						1	•	
	NEWSTR = 0			- :	•				
C				1		1	;	 ,	
~	RETURN				-			. <u> </u>	
	END		·····	1		•			
	•	•			•	•		`	

	1. SUBROUTINE TOVEC (N, NRES, SIGMA, DQ, ND2Q, D2Q, FSD, FSCAL,
Ċ	11 FDSCR , DX, MODE, INACT, NSD, NOEX)
<u> </u>	THIS SUBROUTINE PERFORMS ROTATIONAL DISCRIMINATION LOGIC TO
	DETERMINE A SEARCH INCREMENT VECTOR
<u>0</u> .	INPUT=
<u>c</u>	N - NO. OF VARIABLES (SPACE DIMENSION) NRES - NO. OF RESIDUALS
č	<u>SIGMA – SUM OF SQUARED RESIDUALS</u>
<u>C</u>	DQ - ARRAY OF PARTIAL DERIVATIVES OF SIGMA
	ND2Q - REPEAT CYCLE FOR D2Q
<u>с</u>	D2Q - MATRIX OF SECOND PARTIAL DERIVATIVES OF SIGMA
<u></u>	FSDLIMITING DISTANCE FOR VARIABLE MOVE
	FSCAL - LOG(10) OF UPPER BOUND FOR INTERNAL SCALING FACTORS
_C	<u>FDSCRD-, UPPER BOUND FOR ACCEPTABLE STANDARD DEVIATION IN</u>
C	VARIABLE ESTIMATION SET ZERO IF STATISTICAL
<u>_C</u>	TEST IS TO BE IGNORED
C	
<u>_c</u>	GUTPUT=
С c'	DX - SEARCH INCREMENT VECTOR
<u> </u>	MODE - ARRAY INDICATING CALCULATION MECHANISM FOR ELEMENTS
	IN DX= 0 - GAUSS-NEWTON
<u>_C</u>	O — GAUSS-NEWTON 1 — STEEPEST-DESCENT
_ <u>č</u> _	2SD_TRUNCATED_BY_FSD_LIMIT
-Č-	-1 - DEACTIVATED DUE TO STANDARD DEVIATION FOR
<u>C</u>	MOVE, AS CALC BY GAUSS-NEWTON, BEING
C	ESTIMATE BEING ABOVE UPPER BOUNDS AND
C	LESS THAN ST DEV OF ESTIMATE
C	-2 - DEACTIVATED DUE TO SECOND DERIV BEING
<u> </u>	•LE. 10-9 X LARGEST SECOND DERIV
Ç	INACT - NO. OF DEACTIVATED VARIABLES
<u>_</u>	NSD - NO. OF VARIABLES IN SD (MODES 1 OR 2)
с С	NOEX - NO. OF VARIABLES NOT DEACTIVATED BUT WITH EXCESSIVE
<u>_c</u>	ST_DEV_OF_ESTIMATE
с С	NOTC-
č	THIS PROGRAM USES ONLY THE DIAGONAL ELEMENTS OF D2Q. IF THESE HAVE ALREADY BEEN CONDENSED, I.E., PUT IN A ONE-
_C _C 	DIMENSIONAL ARRAY OF DIAGONAL ELEMENTS ONLY, USE THIS ARRAY
Ĉ	$\frac{AS D2Q AND SET ND2Q = 0.}{}$
C	
	2 DIMENSION DQ(1); DX(1), MODE(1), D2Q(1)
C	
	11 NSD = 0
	12 INACT = 0
i	NOEX = 0
	ISD = 0.0
,	13 IF (N) 999,999,14
ļ	14 ND2QP = ND2Q + 1
·	$\frac{15 \text{ DCHK}}{16 \text{ WARIA}} = \frac{1.0\text{E}-9 \text{ * ABS(D2Q(1))}}{16 \text{ WARIA}}$
ł	-16 VARIA = SIGMA/SQRT(FLOAT(NRES)) 17 IF (FDSCR) 21,21,18
<u> </u>	

C	21 II = 1
	22 CO 92 1 = 1 N
-	KEX = 0
	23 IF (FDSCR) 31,31,24
	24 IF (D2Q(II), - VCHK) 25,31,31
	25 IF (DQ(I)**2 - VARIA *D2Q(II)) 26,30,30
	26 MODE(1) = -1
	$\frac{1}{27} \text{ INACT} = \text{INACT} + 1$
	28 DX(I) = 0.
	29 GO TO 91
C	
	30 KEX = 1
	31 IF (D2Q(11) - DCHK) 32,32,34
;	32 MODE(I) = -2
	33 GO TO 27
	34 NOEX = NOEX + KEX
Ċ	
	41 IF (NSD) 42,42,61
	42 IF (ABS(DQ(L)) - FSD*D2Q(II)) 43,43,51
	$\frac{12}{43} \text{ DX(I)} = -\text{DQ(I)}/\text{D2Q(II)}$
	44 MODE(I) = 0
	45 GO TO 91
С	
	51 ISD = 1
· · ·	52 HSD = H
	53 CALL RESCAL (N-ISD+1, ND2Q, D2Q(IISD), FSCAL, 54 DX(I) = -SIGN(FSD,DQ(I))
	55 MODE(I) = 1
	56 NSD = NSD + 1
	57 GO TO 91
С	
	51 IF (DQ(1)) 71,62,71
	52 CX(I) = 0.
	53 MODE(1) = 0
	54 GO TO 91
r	71 IE (ARS(DO(I)) - ARS'DO((ICD)) (x^{1} (1)****) 70 70
C	71 IF (ABS(DQ(I)) - ABS(DQ(ISD))/DX(I)**2) 72,72 72 DX(I) = -DQ(I) * FSD * DX(I)**2 / ABS(DQ(ISD)
-	てん ロハティス モージロロモモス や たいけ や ロストトナがベス・アールメンチロロトモントキ
	73 GO TO 55
ċ	73 GO TO 55
ċ	73 GO TO 55 B1 DX(I) = -SIGN(FSD, DQ(I))
ċ	73 GO TO 55 B1 DX(I) = -SIGN(FSD, DQ(I)) B2 MODE(I) = 2
ċ	73 GO TO 55 B1 DX(I) = -SIGN(FSD, DQ(I))
ċ	73 GO TO 55 B1 DX(I) = -SIGN(FSD, DQ(I)) B2 MODE(I) = 2 B3 GO TO 56
Ċ	73 GO TO 55 B1 DX(I) = -SIGN(FSD, DQ(I)) B2 MODE(I) = 2 B3 GO TO 56 P1 II = II + ND2QP
Ċ Ċ	73 GO TO 55 B1 DX(I) = -SIGN(FSD, DQ(I)) B2 MODE(I) = 2 B3 GO TO 56
Ċ	73 GO TO 55 81 DX(I) = -SIGN(FSD, DQ(I)) 82 MODE(I) = 2 83 GO TO 56 91 II = II + ND2QP 92 CONTINUE
Ċ C	73 GO TO 55 81 DX(I) = -SIGN(FSD, DQ(I)) 82 MODE(I) = 2 83 GO TO 56 91 II = II + ND2QP 92 CONTINUE IF(ISD .EQ. 0) GO TO 999
Ċ	73 GO TO 55 81 DX(1) = -SIGN(FSD, DQ(1)) 82 MODE(1) = 2 83 GO TO 56 91 II = II + ND2QP 92 CONTINUE IF(ISD .EQ. 0) GO TO 999 , YBIG = 0.0
Ċ	73 GO TO 55 81 $DX(I) = -SIGN(FSD, DQ(I))$ 82 $MODE(I) = 2$ 83 GO TO 56 91 $II = II + ND2QP$ 92 CONTINUE IF(ISD .EQ. 0) GO TO 999 .YBIG = 0.0 .DO 93 I = ISD,N
Ċ	73 GO TO 55 81 DX(1) = -SIGN(FSD, DQ(1)) 82 MODE(1) = 2 83 GO TO 56 91 II = II + ND2QP 92 CONTINUE IF(ISD .EQ. 0) GO TO 999 , YBIG = 0.0

		DO 94	I=ISD,N	<u>i</u> 1		
	94	DX(I)	=(DX(I)	/ YBI	G) *	FSD
C		i		<u>i 4</u>		<u> </u>
- 1	999	RETURN	\$	1	-	1
C		•	1	1 1	•	
		END		•		j · .
•	•	1				
		; ;				1
			;	1 1	,	<u> </u>

11 LTER, MODE, DX,	NUCKZ	UCKC	15/111	i	1	·		
			;		ļ	ļ	i	1
2 DIMENSION MODE(1)	• UX(1);	DERZ	11	·····!		<u> </u>	•	
	, THC DETC						ng Enn	•
C THIS_SUBROUT		KMINE:		<u>ek ken</u> Ticev	CONVE		<u>rs_run</u>	
C CRITERION.	E SMALL		1 IU SA	;			<u> </u>	<u>.</u>
C 	-	с ; ;	- <i>i</i> i	1		1	•	;
.; 12 IF (N) 998,998,21 C	. ;		• 1	Į ,	۰ ۱	5	!	•
21 IF (FDSCR). 22,22		;	•				· .	1
22 IF (SIGMA - FIT)	998,998,	<u> </u>						<u> </u>
C · · 31 IF (NDEX) 32,32,9	99	. :	•		:	!	•••	•
· 32 IF (NSD - (N-INAC		,33,9	99					
33 IF (ITER) 34,34,3	5			ŗ	: •		•	· · · ·
34 IF (INACT) 35,35,	999	•		ł			•	
. 35 NDF = NCASE - N +	INACT				```	1		
37 IF (NDF) 999,999,	38 .		• :	,	į	1		,
38 EPS = SQRT(SIGMA)	/FLOAT(N	DF)		:	· · · · · · · · · · · · · · · · · · ·			
<u> </u>				•	,		-	
41 I'I = 1								
42 DO 45 I = 1,N					4	· •		
43_IF (MODE(I)) 45,4	4,44					-		,
44 IF (SQRT(ABS(DER2	(II.)))☆A	BSIDX	(1)) -	FIT*E	PS), 45	,45, 9	99	
45 II = II + NDER2 +	1							
46 GO TO 998					-	;		
С			<u> </u>					
998 IEXIT = 1	;					:	•	
999 RETURN		•		•	-	•		

<u>C</u>	1	SUBROUTINE	· ·	1	1 .	: :			· · · · ·	<u> </u>
	2	DIMENSION A	(1), B(1), C	(1)	,				i i
<u>c</u> c		MATRIX MULT	IPLICAT	ION	= J	AXE	3	1		ł
Č	1		J) = A) <u>X B</u>	(<u>MK, M</u>	<u> }</u>			
<u>C</u> .	i i		•				•	1	i ł	[[
<u> </u>	REPE	AT CYCLES=_	ABS V	<u>ALUES</u>	OF_MA	, <u>M</u> B,	MC	:	NECA	TIVE
C	TO	USE INVERSE	OF A,	B, OR	C MAI	KE MA	MB y I	UK MU	NEGA	1175
<u>_C</u>	, , , , , ,	OR B IS DI		C E T	MT CD	M 1 =	<u> </u>		. <u></u> ,	
		RUE DIMENSI	AGUNAL OMS MI:	, SEI = M.1 = MK		110	v	1	1	;
<u>2</u> 0		KOE DIMENSI								;
č	του	SE_CONDENSE	D DIAG	ONAL F	ORM (XCOND	<u>(I)</u> =	X(I,)	[,])	
C	SET	MA, MB, OR	MC = 0					.!		
<u>С</u> С				1						
		THIS VERSIC	IN HAS	NO DOU	BLE P	RECIS	ION U	PILUN		т т
<u>C</u>							<u> </u>		1	
		KREV = 0	(1 1)	-	н ^с			i	! •	!
·		_IF_(MI) 12, IF (MJ) 13,			· • • • • • • • • • • • • • • • • •					!
		JREM = MJ	.)I I I J	• '	•	4 •	•	Ī		
		JREMO = JRE	M				•		1	•
		KRESE = MM		• •				·		
		IREM = MI	<u></u>			;	-		i	•
<u>C</u>				;						
		IF (MA) 23	,22,22			-		•	3	:
	22	IKOIN = 1	·······			aa				
		IKINC = MA							;	- 1
		_GO TO 24 	NRS MA					<u> </u>		<u></u>
	22	IKINC = 1	1001007							
	·24	IF (MB) 26	,25,25				,		Ē	
		KJOIN = M								<u> </u>
		KJINC = 1								:
		_GO TO 27	- 		1					;
	26	KJOIN = 1				•		_		
	~~~~	KJI.NC = IA	RZIMRI							 !
	21	KJXIN = O MMC = MC			÷		ł	1	;	;
		GO TO 71				5	· · · ·			
С		00 10 11		• ;				:		•
		IF (MJ) 42	,61,42					•		,
		JREM = MJ			· .	:	<u> </u>	·		····
		JREMO = JR		•		f	ŝ	:		•••
		IREM = JRE							1	<u> </u>
		KRESE = 1		C / H / Y	-		:	; ; ;		1
		IKOIN = 1		SIMAI			· · ·		· ;	
		MMB = MB MMC = MC	•	: -		. 1	r I	- [		1
	. 43	IF (MMB) 4	5,44,4	4	-	· · ·				 !
		KJOIN = M			t 1	:	!	2	i	   
	·	KJXIN = I	·	- - 1	1	1	!	i 1		i i
	•	GO TO 46	,	1	• !		- :	ì	ļ	,

	ł	i 1		1		ļ		t
$\frac{45 \text{ KJOIN} = 1}{\text{KJXIN} = \text{IABS(MMB)}}$			•					1
46 GO TO 71	1	: : •		1				i
	1		1	l				1
C 51 JREM = MI	1	1	1	1				; 
JREMO = JREM					i	1		ł
		I	;					
IREM = JREM			i		!	1		
KRESE = 1	;	1	1	1		1		t
IKOIN = 1 + IABS(MB)	<u> </u>					1		
PMB = -MA				1			· .	:
PMC = -MC		· · · · · · · · · · · · · · · · · · ·				·/	 ,	
KREV = 1	• :	1.		1	1	ľ	1	ŧ
GO TO 43						1		1
C	1	•	1	1		1		. 1
61 IF (MC) 62,65,62						- <u> </u>		
62 IJDEL = IABS(MC)	- :		_ <b>i</b>	i	1	1	:	•
$IJO_{=}1$			<u>_</u>					
EO 64 I = 1, MK	<u>!</u> .	• i	1	i	;	1	5	
IJ = IJO	<u> </u>							
CO 63 J = 1, MK	;		1	1			1	1
C(LJ) = 0	·						·	
63 IJ = 1J + 1	; .	•		1		-	}	
64 IJO = IJO + IJDEL		i		i i			<u></u>	
65 IREM = MK		1				1	•	
KRESE = 1			•	:				
JREM = 1		:		1		1 1		
JREMO = 1					i			
66  IKOIN = 1 +  IABS(MA)	_	•		1		1		
KJXIN = 1 + IABS(MB)					<u> </u>	<u>-</u>		
IJOIN = 1 + IABS(MC)		:			•	1	ţ	
GO TO 101			2		<u> </u>	!	3	
С		1		ļ	•	1	ł	
71 IF (MMC) 73,72,72			1	i	<u>.</u>	!		
72 IJINC = MMC		ý				2 1	ŧ	•
IJOIN = 1	• •	:	ļ	i	<u> </u>	i	;	·
GO TO 74		i	1			:	·i	
73  IJINC = 1				÷	•		·	
$\frac{1}{1 \text{ JOIN}} = 1 \text{ ABS (MMC)}$		,	1				1	
- 74 GO TO 101		•	,	•				
C 14 60 10 101					· · ·		•	
	- :	1	•	1	•	;		•
$\begin{array}{c} 101  IJ = 1 \\ \hline IJ0 = IJ \end{array}$				, <u> </u>	. <u> </u>		- <u>.</u>	
	1	;		1	•		i	
1K = 1	<u></u>		;					
IKO = IK		:	1	1	- 1	1		
KJ = 1			<u>_</u>		1	1		:
102 KJO = KJ	:	ł	i	I	1	1	:	÷
KJX = KJ		<u> </u>		<u></u>		<u>;</u> r		1
103 KREM = KRESE		:		i	ļ	• 1	1	
SUM = 0.	,	······						I
<u> </u>		•	i	ļ	1	;	t	:
111 IF (KREV) 112,112,115			<u>}</u>		<u> </u>		<u>;</u>	
112 IF (A(IK).) 113,121,11	.3	•	ŧ	1		į		1 X
113 IF (B(KJ)) 114,121,11	.4	•	<u> </u>	<u> </u>			<u>`</u>	
114 SUM = SUM + A(IK)*B()	(J)	- 1	:	1	i I		Į	
GO TO 121	·•	í		<u> </u>	· }		<u>i</u>	<u></u>

115 IF (A(KJ)) 116,121	. 116	ŧ	-			
116 IF (B(IK)) 117,121				i	 i	r
			'i		l l	i i
$\frac{117 \text{ SUM} = \text{SUM} + \text{A(KJ)}}{2}$	<u> 11 KI</u>			1		
C I I I I I I	-	1	i		į	
<u>. 121 KREM = KREM - 1</u>						
IF (KREM) 123,123,	122		:	I	1	
$\frac{122 \text{ IK} = \text{IK} + \text{IKINC}}{122 \text{ IK} = \text{IK} + \text{IKINC}}$	1	t		<u></u>	· · ·	
KJ = KJ + KJINC	2	;	1	i		
GO TO 111	•	:			<u>i</u>	- [ ]
C	1	•	1	F		
123 C(IJ) = SUM	;		,			i
IJ = IJ + IJINC		: .				ł
JREM = JREM - 1			•		· .	· · ·
IF (JREM) 131,131,	124		3			1
124 KJO = KJO + KJOIN		1	•	:	;	
$\cdot$ KJ = KJO				£	,	1 .
$\mathbf{\tilde{I}K} = \mathbf{IKO}$	•		·			i :
GO TO 103	-		•	•	·	
C	•			•		i - L
131  IREM = IREM - 1			•		í.	· · !
IF (IREM) 999,999,	132					·
132 IJO = IJO + IJOIN				-		1
IJ = IJO		-				•
JREM = JREMO					- <u>·</u>	
- IKO = IKO '+ IKOIN					;	
IK = IK0				1		,
				,	-	
$\underline{KJ} = KJX + KJXIN$						
GO TD 102					3	•
999 RETURN			•	•	•	
<u>C</u>						
END						

	1 SUBROUTINE RESCA	L (R, N	DIAG.		, F10	r SCA	L ) l	.i	ļ 	
0 .C	INPUT=	·	1:					L F	-	
<u>.</u> C	<u> </u>						•	<u> </u>		
C	NDIAG - L									
<u>_C</u>		<u> []</u> F_]D				<u>S I.ONA</u>	<u>L. SE</u>	<u>t_ND</u>	I <u>AG=0</u> )	
G	DIAG - CO							، مربع	•	
<u> </u>		<u>F_TWO-</u> D			<u> </u>	TROLL	ING_E	LEME	VIS MU	12.1
Ç		E ON DI						. !	.'	
<u>_</u> C	<u>. F10 - MAX</u>	IMUM CY	CLES	<u>OF 10</u>	<u>_ALLO</u>	WED 1	N SCA	<u>L.:</u>		
C	OUTPUT=							1	ł	
<u> </u>	SCAL - AR	RAY OF	<u>N_RES</u>	CALE	FACIU	<u>IRS</u>				
C	· · · · · · · · · · · · · · · · · · ·		<i>,</i>	• •	•	i	1.	Į	, 1	
	2 DIMENSION DIAG(1	J, SCAL	· · · · · · · · · · · · · · · · · · ·	••••••						
C			. ::	. :	:	!	;	• '		
	<u>11 IF $(N - 1)$ 999,1</u>				·			· · · · ·		
•	12 IF (F10) 13,13,2	.1			•	•	ł	1	•	
	<u>13 CO 14 I = 1,N</u>			. <u></u>	<u> </u>	<u> </u>	,	<u> </u>		
	14  SCAL(I) = 1.0	:	:			:		Ì		
	<u>15 GO TO 999</u>						<u> </u>	<u>.</u>		
. C		•	,	:		1	-	i	•	
	21  DMAX = DIAG(1)		<u>:</u>				•			
-	22  II = 1	•	•	1	•	5	L		•	
	23 CO 25 I = 2, N	· · · ·							. <u></u> ,	
	$24 \cdot 11 = 11 + NDIAG$							1	,	
	25  CMAX = AMAX (DM)									
6	26 IF (DMAX) 13,13	121		•				• , .		
<u> </u>						• • • • •	. <u>.</u>			
	31  II = 1	14610	-	_			2	-	;	
<del></del> *-	<u>32 FACT = ALOG(10.0</u>	<u> </u>			··			;		
	33 CO 39 I = 1,N 34 IF (DIAG(II)/DM)	141 25 -	25 27			l •		:		
÷	$\frac{34}{35} \text{ SCAL(I)} = \text{EXP}(F)$		<u> </u>		,					
		4617			•			*		
<u>-</u>	36_GD_TO_38 37_SCAL(1) = EXP(F)			<u>v D ( 0 )</u>	5 * 11 0/		21111		1/EAC	T)
	38  II = II + NDIAG		, — с.	AT: ↓ <b>U</b> # 1	-ALU			DIAN		
								;		
~	39 CONTINUE			, 1	•	•			•	
<u> </u>	999 RETURN									
ć			7	;	1	ì	÷	1	1	
<u> </u>	END	<del></del>	<u>,</u>			• •		· F · · · ·		, ,
	END				· · · ·	•				

1 SUBROUTINE IDENT (N, S, NS)	······································	1 1 1 I I I I I I I I I I I I I I I I I
C I THIS IS SUBROUTINE IDENT		
· C.		
C CALL IDENT (N. S. NS) CAL	ISES AN IDENTITY	MATRIY (NYN) TO
BE PLACED IN SN WITH LEF	DIMENSION OF S	$= NS_{-}$
C IF NS = 0, ACTION IS SKIT	'	
	PPED	I . I. I. I.
<u>C</u>	i	
2 DIMENSION S(1)		
11 IF (N) 999,999,12		
$\frac{12 \text{ IF (NS) } 999,999,13}{13 \text{ IJX} = 1}$	· · · · · · · · · · · · · · · · · · ·	· · · ·
-14 CO 19 I = 1.N		
+ 15  JJ = 1  JX	,	2 1 1 . 1
16  CO  18  J = 1, N		
17 S(I,J) = 0.		, , , , , , , , , , , , , , , , , , ,
18  IJ = IJ + 1		
19 IJX = IJX + NS	1 E	
С	· · · · ·	
21 IJ = 1		
22  INC = NS + 1		
23 CO 25 I = $1,N$		-
$\frac{24.S(IJ) = 1.0}{25 IJ = IJ + INC}$	· · · · · · · · · · · · · · · · · · ·	د مر
$\frac{25}{10} = 10 + 100$		
999 RETURN	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
C		۵
END	······································	
	,	: · · ·

		SUBR							ļ	ł
<u>C</u>		<u>THI</u>	<u>s is</u>	<u>SUBP</u>	LOUTI	<u>NE M</u>	<u> 0VE</u>	•	<u>:</u>	ŧ
C			•	2		:		:		
	2	DIME	NSID	V A()	), B	<u>(1).</u>			!	
C		i (			•	1			1	
1	<u>    11    </u>	<u>IF (</u>	<u>N] 9</u>	99,99	99,12	L		ļ		
i	12	CO 1	3 I -	=. l,r	1	-		1	1	
;	13	B(I.)	<u>= A</u>	(I)		· ·		<u>į                                    </u>	!	
С						. !			1	1
•	999	RETU	<u>RN</u>			ł		<u> </u>	<u>.!</u>	
C				1	1	1		1	i	
		END			:	I	<u>,</u>	·	!	
•		1	5	1	. !	ł			ŧ	
		;	-	ł	•	!		· ·	; 	
		!	ŧ	÷	• •	:	;	1	. :	
		•		i	:	I		!	•	

	1 SUBROUTINE ORDS (N, NSEP, MDIAG, DIAG, MS, NS, S)	
<u> </u>	THIS IS SUBROUTINE ORDS	
C		1
	2 DIMENSION DIAG(1), S(1)	·
C	THIS SUBROUTINE INTERCHANGES THE DIAGONAL ELEMENTS OF	
<u>C.</u> .C	WATRIX DIAG SO THAT THE NSEP SMALLEST VALUES OCCUPY THE	•
<u>ب</u> .	LAST NSEP DIAGONAL POSITIONS IN DESCENDING ORDER. IT	
<u>`c</u> c	ALSO MAKES THE CORRESPONDING CHANGES IN MATRIX S BY	
	INTERCHANGING COLUMNS	:
<u>-C</u>	INTERCHAROTRO COLOMO	• •
	INPUT=	:. 
- <u>č</u>	: N - ABS(N) = NO. OF ROWS AND COLUMNS IN DIAG AND	) S
č	SGN(N) = +, ORDERING IS TO BE BASED ON MAGNI	TUDE
<u>-č</u>	SGN(N) = -, ORDERING IS TO BE ALGEBRAIC	
ō.	NSEP = NO. OF DIAGONAL ELEMENTS TO BE ORDERED_AT	BOTTO
<u> </u>	MDIAG = LEFT DIMENSION OF DIAG (IF DIAG IS A COM	IDENSED
Ċ	I.E., ONE-DIMENSIONAL ARRAY, SET MDIAG	S_=_0)
C	DIAG = MATRIX WHOSE DIAGONAL ELEMENTS ARE TO BE	
C	REORDERED	<u>.                                    </u>
	MS = LEFT DIMENSION OF MATRIX S	è
С	NS = NO. OF ELEMENTS PER COLUMN IN S	
C	S = MATRIX WHOSE COLUMNS ARE TO BE REORDERED	
<u> </u>	•	
C	OUTPUT=	<b>t</b>
_ <u>C</u>	DIAG, S = REORDERED MATRICES	
C		
. <u> </u>	$\frac{11}{NN} = IABS(N)$	•
	12 IF (NN) 999,999,13	
	13  NSTOP = MAXO(1, NN-NSEP)	
С		•
	21 NREP = NN 22 IF (NREP - NSTOP) 999,999,23	
	23 IMIN = 1	
<u></u>	24 IF (N) 25,25,27	
	25  XMIN = DIAG(1)	
•	26 CO TO 31	1
	27  XMIN = ABS(DIAG(1))	
Ċ		
	31 II = 1	1
	O31 IIMIN = 1	ł
-	32 CO 45 I = 2, NREP	
	33 II = II + MDIAG + 1	t
	34 IF (N) 35,35,37	
	$35 \times = DIAG(II)$	
	36 GD TO 41	
	37 X = ABS(DIAG(LL))	1
С		
 ,	41 IF (X - XMIN) 42,42,45	<u> </u>
:	42 XMIN = X	
	43  IMIN = 1	
	44 TIMIN = II ,	

I	51	IF (IMIN - NREP) 52,71,52
	152	X = DIAG(11MIN)
1	<u>53</u>	CIAG(IIMIN) = DIAG(II)
1	54	DIAG(II) = X
1	55	IF (NS) 71,71,61
0		· · · · · · · · · · · · · · · · · · ·
;	61	IJMIN = 1 + MS*(IMIN - 1).
,	62	IJ = 1 + MS * (NREP - 1)
	63	DO 68 I = 1, NS
	64	X = S(IJMIN)
-	65	S(IJMIN) = S(IJ)
	66	S(I,J) = X
	67	IJMIN = IJMIN + 1
	68	IJ = IJ + 1
С		
	· 71	NREP = NREP - 1
	72	GO TO 22
C		1997 Ali Cali in ali ali ali ali ante a construir a construir a construir de la construir de la construir de l
<u></u>	999	RETURN
С	-	
•		END

1	UBROUTINE DD X,SCALE,D2Q,	SCALR)	•			<u> </u>	1			
C	······································	1				;		1		1
	HIS IS THE U	NIVAC 11	08 VERS	I UN C		<u>.</u>	i			
C ·	REPARED FOR			TANG	NA \$ 8-	-21484		i i	!	1
	Y V. J. LAW,	DRINCIP			TOR	<u>L140</u>	<u>.</u> !	.1	]	!
,	I Ve Je LANY	FRINCIT		51107		I	t I	1 -	1	:
C [	OCUMENTATION		NG THIS	SUB	ROUTIN	VE MA	Y BE I	FOUND		
C . 1	IN THE FINAL	CONTRACT	REPORT	002		•••	_		:	1
<u> </u>								•		
۰ ۲	IMENSION SX	1),SCALR	(1),XX(	1),X	(1),D(	QX(1)	, DY (1.	).,Y(1	),YBA	SE(1)
· 1	D2Q(1),DQ(1)	,S(1),DX	BAR(1),	DXXC	1),RH	S(1),	SCALE	(1),		G(1)
Į	DIMENSION MOD	)E(1)								- 
	IMENSION ACT	ION(7) + C	ONST (34	)	*	ı i	-	ŀ	1	,
С			· ·			, 			·	
	TOCON TOCON	1/				T -	, 11. DV		CC-3.1	NC A C
1	SSCAL	FIT, FDSC	D, FDERV	1051		U,SIG		TCK	DET.	NCHD
	NVAR, IPRNT,	AAXCI,ICL	DE, INEW	, ICA	SE‡KL'	UCIII	EK INN	I UK SIN	NL I P	
. 3	I.VAR, NEWSTR		<u> </u>	·					:	;
C	1F(KLUE) 9,10						ł	i	}	
-	$\hat{K}_{LUE} = 0$	<u> </u>			<u> </u>			1		·
	NRET = $1$			•		•	:	1		
	GD TO (20,50	.60.102)	NRET				4			
C 10	00 10 120100	10011021		-	•	-			-	
- <u>c</u>	LIST STARTIN	GVALUES						1.		
č				•		•		· ·	-	
20	IF(IPRNT) 31	,31,22	<u></u>							
22	WRITE(6,1022	)(I,X(I)	SCALE	[),1=	1,NVA	R)				
1022	FORMAT(1H1,4	X,29HNON	LINEAR D	EQUAT	IONS	VIA	D. D	.5X//1	261	
10221	8HSTARTING/		LUE,12X	5HSC	ALE/1	н / ( )	6,E10	S. 0, E1	.5.411	
	WRITE(6,1023	)						-ov. ns	TMN.F	- DSCD
1	FIT, MAXCT, D	XMAX, DSC	AL 1.550AI	L,FSL	LUES/	77	<u>, , , , , , , , , , , , , , , , , , , </u>			
	FORMAT(1H0,4	X, I 9HPAR	AMEIEK					•		
10231	8HFIT =,	E11.4/7X E11.4/7X	JOHMAAU	NI - 1		178.5	NJZZHA	ST F =	E11.	+/7X,
10232	BHDXMAX =, 8HFSD =,	E11.4/7X	10103CA		16/7>	( 8HN(	CASE	=,16/	/7X -	
10233	8HFDERIV =		Y. SHDST	MIN'=	FIT	417X	8HFD	SCRD =	EIT.	4)
10234	ONFUENIV -	9 5 1 1 6 77 1	74011031		,		• • • • • •			
<u>c</u>	INITIALIZE -				<u> </u>		<u></u>	:		
C ·	INTERCE	• ••• •	• •					•		
31	ITER = 1						1			•
~~	ICODE = 1			•		;	•	•	••	<b>_</b>
	[NEW = 1			1	:		a		•	
	IQUIT = 1			!	1		\$ 		• 	
	NN = NCASE *	N V A R			:	ł		!	•	
	KICK = 0	::	· · ·	1.	•	i	•	L		. <u></u>
	EKICK = 0		• •	-	1	I	•	1	-	÷
: -	NSQU = NVAR	* NVAR			3	i	;			,
•	CALL IDENT (	VAR,SX,N	IVAR)		:	1	•		: ;	. !
	ILIM = 1			1	••	1	3	1	, ·:	
	FXMAX = 1.E	F08								

·.			-,	i
С · .	NOTE SX IS S FROM PREVIOUS ITERATION	1		- !
	DU 32 I=1,NVAR	i T	1	:
. 32	SCALR(I) = 1.0	£		
C,		1 t	ļ	
<u>C</u>	CALC AT BASE POINT .		<u> </u>	
C.		t -	•	:
41	CALL MOVE (NVAR, X, XX)			:
ļ	NRET = 2		1.	:
 	<u>GO TO 998 '                                     </u>			
C				•
; 50	CALL MOVE (NCASE, Y, YBASE)		!	
••	CALL MATMPY(1,1,NCASE,-NCASE,NCASE,1,YBASE,YBASE,	SIGMA	()	
<u> </u>		_ <u></u>		
С	ACCUMULATE G MATRIX AND RHS VECTOR	1	, t	;
<u>C</u>			;	t.
· ·	DO 51 I=1,NVAR		-	•
1	DQX(I) = SCALR(I) * FDERV	<u></u>	<u>!</u>	
51	RHS(I) = 0.0	1		
	_ D0_52_J=1,NSQU	<u>_;</u>		
52	G(J) = 0.0		a a	•
<u>· · ·</u>	IVAR = 1			
55	DO 56 I=1, NVAR	1		:
	ISX = L + NVAR * (IVAR - 1)	<u> </u>	<u> </u>	
56	X(I) = XX(I) + DQX(IVAR) * SCALE(I) * SX(ISX)			
	<u>NRET = 3</u>	<u>-</u>		
	GO TO 998	: `		
<u> </u>		<u></u>		••••
60	DD 61 ICASE = 1, NCASE		•	
	IJ = ICASE + NCASE*(IVAR - 1) DY(IJ) = (Y(ICASE) - YBASE(ICASE))/DQX(IVAR)	,		
61	DY(IJ) = (Y(ICASE) - YBASE(ICASE))/DQX(IVAR)		•	
<u> </u>	IF(IVAR - NVAR) 72,80,80			
		1		
72	GO TO 55			
r				1
_ <u></u>	CALL MATMPY (NVAR, NVAR, NCASE, -NCASE, NCASE, NVAR, DY		<u>6)</u> .	
. 80	CALL MATMPY(NVAR, 1, NCASE, -NCASE, NCASE, NVAR, DY, YE	ASE.	RHS)	
<u>5</u>	CALL MAINFILMVARYIAMOROLY MOROLYMOROLAMOROLAM	10 V.F.L		
C ·	APPLY DD LOGIC FOR SEARCH VECTOR			•
- <u>C</u>	APPET DU LUGIC FUR SCAROT VECTOR	<u></u>	·`	
C	CALL DIAG(NVAR, NVAR, G, S, X, 1.E-08)	Į-	1	
	CALL ORDS (-NVAR, NVAR, NVAR, G, NVAR, NVAR, S)	3	 ! ·	
	II = 1	•	i	
	DO 83 I=1, NVAR			
, ,	D2Q(I) = G(II)	r i	:	
02	II = II + NVAR + 1			
60	CALL MATMPY (NVAR, NVAR, NVAR, NVAR, NVAR, NVAR, SX, S, G)	}		
	CALL MATMPY(1, NVAR, NVAR, 1, NVAR, 1, RHS, S, DQ)	<u></u>		
	CALL TDVEC (NVAR, NCASE, SIGMA, DQ, 0, D2Q, FSD, SSCAL +	FDSCD	DXBA	R.
	1 MODE, INACT, NSD, NOEX)			
	CALL MATMPY(NVAR,1,NVAR,NVAR,1,1,G,DXBAR,DXX)	1	•	
<del>;</del>	- OREF OR THE FURTHER FRANK FR			
	CALL MATMRY (1.1. NVAR-1.1.1.1.00.DXBAR-DOD7.)	1 .	•	
	CALL MATMPY(1,1,NVAR,1,1,1,DQ,DXBAR,DQDZ)			
	CALL MATMPY(1,1,NVAR,1,1,1,DQ,DXBAR,DQDZ) CHECK STEP SIZE			

	CALL MATMPY(1, 1, NVAR, 1, 1, 1, DXBAR, DXB	AR, DI	ST)		<b> </b>	
	DIST = SQRT(DIST) DO 84 I=1, NVAR	t 1		.		:
84	DXX(I) = SCALE(I) * DXX(I)	l				
1084	IF(IPRNT - 1) 87,87,85 IF(IPRNT - 1)88,85,88					, 
<u>. 85</u>	WRITE(6,1085)		l	1 ·		•
1085	* ENTINGUIDISTI SUPSION			ł		
	FORMAT(1H0,3X,7HITER N0,4X,10H-INAC 61X,5HSIGMA/18,10X,13,5X,2F12.5,54	TIV.E-	<u>,5X,4</u>	DIST - 8	(,3HF	SD,
<u>;</u>	WRITE(6,2085)			:	۰.	•
2085	FORMAT(1H0,17X,10HPARAMETERS,34X,18	HINTE	RNAL \	ARIABLE	S/1H	}
	DD 86 I=1,NVAR WRITE(6,1086)	!	;	· · · · · · · · · · · · · · · · · · ·		····
. 1	•	(I).D	XBAR()	.).MODE	1)	
86	CONTINUE					
<u>1086</u> 88	FORMAT(16,2E16:6,8X,1H*,E15.4,E14.4	<u>, F11.</u>	5,15)	•,		
00	GO TO (87,1200,1202,1204), IQUIT				7	
<u> </u>	TEST FOR CONVERGENCE					·
2			· · ·		; 	
. 87	CALL CONRE(NVAR, FDSCD, F.IT, SIGMA, NCA ITER, MODE, DXBAR, 0, D2Q, IE	SE IN	ACT 1 NO	IEX,NSD,		
	IF(IEXIT)90,90,200	<u>X117</u>				
	IF(ITER MAXCT) 91,202,202				-	•
91 1091	IF(KICK - NKICK) 1091,204,204					
2091	IF(LKICK) 4091,4091,2091 IF(IPRNT - 1)4091,4091,3091		· · · · · · · · · · · · · · · · · · ·			
3091	WRITE(6,5091) KICK					
5091	FORMAT(1H0,4X,39HABNORMALLY SMALL S	TEP E	XIT SU	IPPRESSE	D -,	131
						1.57
6001	LKICK = 0			a 	·	
4091 92			<b>,</b>	a 	· 	
92	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94	:		3 ~ ~	•	
92	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST	1	· · ·	•		
92 93 94	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94		÷ _	:	•	
92 93 94	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	:		
92 93 94	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH		; ;	· · · ·		
92 93 94	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST	· · ·		· · · · ·		
92 93 94	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST Q0 = SIGMA					· · · · · · · · · · · · · · · · · · ·
92 93 94	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST		· · ·	· · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·
92 93 94	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSTONAL SEARCH FXMIN = FDERV / DIST QO = SIGMA Q = QO QS = 0.0 ICON = 0		· · ·	* • • • • • • • • • • • • • • • • • • •		
92 93 94	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST QO = SIGMA Q = QO QS = 0.0 ICON = 0 IF(IPRNT - 1)317,317,316		· · ·	· · · · · · · ·	· • • • • •	· · · · · · · · · · · · · · · · · · ·
92 93 94	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST QO = SIGMA Q = QO QS = 0.0 ICON = 0 IF(IPRNT - 1)317,317,316 PRINT 1316	· · · · · · · · · · · · · · · · · · ·		: : : : : :		· · · · · · · · · · · · · · · · · · ·
92 93 94 316 1316 317	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST QO = SIGMA Q = QD QS = 0.0 ICON = 0 IF(IPRNT - 1)317,317,316 PRINT 1316 FORMAT(1H0,4X,5HSRCHS/7X,2HFX,10X,6	· · · · · · · · · · · · · · · · · · ·	ON, 14)	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
92 93 94 316 1316 317	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST QO = SIGMA Q = QO QS = 0.0 ICON = 0 IF(IPRNT - 1)317,317,316 PRINT 1316 FORMAT(1H0,4X,5HSRCHS/7X,2HFX,10X,6 CALL SRCHS(ICON,QS,DQDZ,FX,NVAR,FXM	· · · · · · · · · · · · · · · · · · ·	ON, 14) MAX, I1		· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
92 93 94 316 1316 317	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST QO = SIGMA Q = QO QS = 0.0 ICON = 0 IF(IPRNT - 1)317,317,316 PRINT 1316 FORMAT(1H0,4X,5HSRCHS/7X,2HFX,10X,6 CALL SRCHS(ICON,QS,DQDZ,FX,NVAR,FXM IF(ICON + 2)206,206,322	· · · · · · · · · · · · · · · · · · ·	MAX, II	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
92 93 94 316 1316 317	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST QO = SIGMÀ Q = QO QS = 0.0 ICON = 0 IF(IPRNT - 1)317,317,316 PRINT 1316 FORMAT(1H0,4X,5HSRCHS/7X,2HFX,10X,6 CALL SRCHS(ICON,QS,DQDZ,FX,NVAR,FXM IF(ICON + 2)206,206,322 IF(IPRNT - 1)326,326,323	· · · · · · · · · · · · · · · · · · ·	ON, 14) MAX, II		· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
92 93 94 316 1316 317 , 322 , 323 324	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST QO = SIGMA Q = QO QS = 0.0 ICON = 0 IF(IPRNT - 1)317,317,316 PRINT 1316 FORMAT(1H0,4X,5HSRCHS/7X,2HFX,10X,6 CALL SRCHS(ICON,QS,DQDZ,FX,NVAR,FXM IF(ICON + 2)206,206,322 IF(IPRNT - 1)326,326,323 IF(ACTION(1))324,324,325 PRINT 1324,ACTION(2),(ACTION(I),I=5	HACTI IN, FX	MAX, II	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	· · · · · · · · · · · · · · · · · · · ·	
92 93 94 C C C C 316 1316 317 C , 322 , 323	LKICK = 0 IF(DIST - DXMAX) 92,92,93 FX = 1.0 GO TO 94 FX = DXMAX / DIST CONTINUE SET UP ONE-DIMENSIONAL SEARCH FXMIN = FDERV / DIST QO = SIGMÀ Q = QD QS = 0.0 ICON = 0 IF(IPRNT - 1)317,317,316 PRINT 1316 FORMAT(1H0,4X,5HSRCHS/7X,2HFX,10X,6 CALL SRCHS(ICON,QS,DQDZ,FX,NVAR,FXM IF(ICON + 2)206,206,322 IF(IPRNT - 1)326,326,323 IF(ACTION(1))324,324,325	HACTI IN, FX	MAX, II		· · · · · · · · · · · · · · · · · · · ·	

	PRINT_1325, (ACTI) FORMAT(5X,6A4,1P)		<u></u>	1	1	1	i		1	·······
i 326 ·	LF(ICON) 122,122		1		1		1 .	1	:	
		· !	1		1			1	1	
331	DO 332 I=1, NVAR	i		l			I - I	1		
	X(I) = XX(I) + F	X*DXX(I)	ł	ł	I	· ·	1	· . ·	l	
	<u>NRET = 4</u>	. 1			1				2	
	GO TO 998 .		l ;	1	1	1	1	:	1	
			1		1	1				
	CALL MATMPY(1,1,1) $QS = Q - QO$	VUASE +-NUA:	SE, NUAS	E 9 1 9 1	(•Y•Q)	i		;		:
	GO TO 317		<u>ı</u>		<u>`</u>	- <u></u>				
· •	00 10 911	: :		:	1	;		1	,	
	IF(NSD) 124,124,	123 .	í	<u>i</u> 1	i .	•		1		
	CALL NEWFSD(FX,Q,		:		•		:	1	••	
	DO 125 I=1, NVAR				1	1		;		
125	X(I) = XX(I) + F				}	Į	7	t	<u>.</u>	
	CALL MOVE (NSQU,			•	•	1	3			
	CALL RESCAL(NVAR,	D, D2Q, DSCA	L, SCALR	.)	_;	•				
•	XVAR = NVAR		•		;	-	•••	•		
	XSD = NSD + 1				,		1			
·. ·	IF(FX # DIST - F	DERV * SQR	F(XVAR)	7 XS	50): 12	6,12	5,127			
126	<u>KICK = KICK + 1</u> LKICK = 1		<u> </u>			·		}		
127	CONTINUE			-	•	k T				
121	IJER = ITER + 1			••••••						
	GO TO 41		•	;		•		•		
		· · · · · · · · · · · · · · · · · · ·								
5	TERMINATION (SET	ICODE = 0	)							
;	KLUE = 0	0.K.			•		:			
	<u> </u>	<u>MAX NO I</u>								
-	3	LAST STE	P ∆RNAR	MALEN	CMAL	1				
					SMAL	•				
	-1	SEARCH N				<b>-</b>				
200	- <u>1</u> KLUE = 0	<u>SEARCH N</u>				• 				
	-1 KLUE = 0 IQUIT = 2	SEARCH N				:			3	
200	-1 KLUE = 0 IQUIT = 2 GO TO 1084							; ;	3	
200	-1 KLUE = 0 IQUIT = 2 GO TO 1084 _IF(IPRNT)999,999					- - -	:		3	
200 1200 201	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNŤ)999,999 WRITE(6,1201)	,201	0_60						•	
200	-1 KLUE = 0 IQUIT = 2 GO TO 1084 _IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18	,201	0_60			: : :		· · · · · · · · · · · · · · · · · · ·	3	
200 1200 201 1201	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNŤ)999,999 WRITE(6,1201)	,201	0_60				- - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	3	
200 1200 201 1201	-1 KLUE = 0 IQUIT = 2 GO TO 1084 _IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18	,201	0_60				- - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	3	
200 1200 201 1201	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18 GO TO 999	,201	0_60			· · · · · · · · · · · · · · · · · · ·	· · · ·		,	
200 1200 201 1201	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18 GO TO 999 KLUE = 1	,201	0_60						3	
200 1200 201 1201 202.	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18 GO TO 999 KLUE = 1 IQUIT = 3 GO TO 1084 IF(IPRNT)999,999	,201	0_60		: : : : : :		- - - - - - - - - - - - - - - - - - -		, , , ,	
200 1200 201 1201 202 1202 1202 203	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18 GO TO 999 KLUE = 1 IQUIT = 3 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1203)	,201	0_60 SH_NORM	i i i	· · · · · · · · · · · · · · · · · · ·		- - - - - - - - - - - - - - - - - - -		3	
200 1200 201 1201 202. 1202	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18 GO TO 999 KLUE = 1 IQUIT = 3 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1203) FORMAT(1H0,4X,41	,201	0_60 SH_NORM	i i i	· · · · · · · · · · · · · · · · · · ·		· · · · ·		, , , , , , , , , , , , , , , , , , ,	
200 1200 201 1201 202. 1202 203 1203	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18 GO TO 999 KLUE = 1 IQUIT = 3 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1203)	,201 HD.D. FINI	0_60 SH_NORM	i i i	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·		<u>,</u>	
200 1200 201 1201 202 202 1202 203 1203 203	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18 GO TO 999 KLUE = 1 IQUIT = 3 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1203) FORMAT(1H0,4X,41 GO TO 999	,201 HD.D. FINI	0_60 SH_NORM	i i i	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·		, , , , , , , , , , , , , , ,	•
200 1200 201 1201 202. 1202 203 1203	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18 GO TO 999 KLUE = 1 IQUIT = 3 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1203) FORMAT(1H0,4X,41 GO TO 999 KLUE = 3	,201 HD.D. FINI	0_60 SH_NORM	i i i	· · · · · · · · · · · · · · · · · · ·				, , , , , , , , , , , , , , , , , , ,	
200 1200 201 1201 202 202 1202 203 1203 203	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18 GO TO 999 KLUE = 1 IQUIT = 3 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1203) FORMAT(1H0,4X,41 GO TO 999 KLUE = 3 IQUIT = 4	,201 HD.D. FINI	0_60 SH_NORM	i i i	· · · · · · · · · · · · · · · · · · ·				<u>,</u>	
200 1200 201 1201 202 202 1202 203 1203 203	-1 KLUE = 0 IQUIT = 2 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1201) FORMAT(1H0,4X,18 GO TO 999 KLUE = 1 IQUIT = 3 GO TO 1084 IF(IPRNT)999,999 WRITE(6,1203) FORMAT(1H0,4X,41 GO TO 999 KLUE = 3 IQUIT = 4 GO TO 1084	,201 HD.D. FINI ,203 HD.D. HAS	0_60 SH_NORM	i i i	· · · · · · · · · · · · · · · · · · ·				s	

	IY SMAL							<u> </u>	<u>+</u>		<u>,</u>		·····		1
}	GO TO	999		1		Ĩ	* 1	1	ļ	ļ					í
<u>}</u> -	1			1	i		ł			i -	<u>i</u> ·		<u> </u>		
.206	KLUĘ =	-1			ŧ		1	Í	1		ł		ļ	1	
:	WRITE	(6,1)	206)			ł	:	!	·	`. 	1		. <u> </u>		
120	6 FORMA	ับ ( ) ค่	5.4X	.59	SHSOLUT	I ON	I NOT	PDS	SIBLE	,ONE-D	SEAP	RCH	TRUN	ICAT	ED B
.120	1 EY OND	EXMI	N/5X	.5	2HFRROR	PR	OBABLY	DUE	TO I	NCORRE	CT F	UNCT	ION	CAL	CULA
····	2TION).												•		•
~	ZHUNA		•			;	1	1	ŧ	:	1			:	
;						<u>-</u>				1				•	
99				~ `		•	NEUCTO	• •	:		;		•		
	IF(KL	UE •	NE.	01	NEWSTR		NEWSIK	+ 1			<u> </u>		<u>.</u>	<u>.</u>	
	IFINE	WSTR	•61	•	5) NEWS	TR	= 0			1 7	1		i	ţ	
- 99	8 INEW =	NRE	т –	2				а, ,	<u> </u>	i			<u>i</u>		••
	RETUR							;	1		I			:	
-									•	\$	i		2	•	

1 .	SUBROUTINE NEWSCL(X,SCALE)	
	DIMENSION X(1), SCALE(1)	
1	COMMON /TUCOM/ COM(9), KCOM(13	)
Î Î	INEW = KCOM(6)	í _
	NVAR = KCOM(2)	
	IF.(INEW)8,3,8	l
3	DO 7 I=1, NVAR	
	$IF(ABS(X(I)) - 1.E-08)6_{3}6_{7}5$	
5	SCALE(I) = ABS(X(I))	
•	GO TO 7	1 •
6 ·	SCALE(I) = 1.E-08 :	1
	CONTINUE · · ·	
8	RETURN	
	-END	į

DIMENSI	DN X(1)	ÈT (K • XMI	N(1)	XMAX	1) .S	CALE(3	L):	1	1
Z = NEW	and the property second.			1		1		1	
CALL FP	RNDM(Z)		,	1	1		1		1.
IF'(KODE	.EQ. 0	) GÖ	TO 3	3 ; •					1
CALL FP	RNDM(Z)		-	1 -	i .			<u> </u>	i .
DO 2 I=	1.NVAR			,	•		Ì	i	
2' X(I) =		). +	XMAX	(I)) *	۰Z	3		<u> </u>	<u>.</u>
3. DO 4 I=	1, NVAR				1	1.		1.	
SCALE	) = ABS	(X(I	))	• •	:	;			!
IF (SCAL	E(1) .L	T. 1	- E-0	B) SCA	LE(I	$\rangle = 1$	E-08		1
4 CONTINU					•			:	
: KODE =	0			1 .		1		-	i
RETURN	*		:	1		1	•	[	<u> </u>
END			•			;	,	i i	- i
	1		1	•		ł	i	i	

×.,	······	······································	CONST)		· [	1	<u> </u>	1				! i
	3 D.	IMENSION	ACTION(	7), V(4	41)	:	. •	1			ì	
	4 D	TMENSION !	CONST(34	4), ACC	DNST(9	)		;	T	î		-
,	5`E	QUIVALENC	E (ACON	ST(1),	ICONX)	, (ACC	INST (2	21,00	), (AC(	DNST13	),.DQ	0);•
<u>`</u>	51	(ACONST(	4),FXOP	T), (AC	ОМЯТ ( 5	J, FXF	₽ <b>),(</b> Ã(	CONST	(6),Q[	>),		•
	52	(ACONST)	7), EXPP	), (ACO	NST(8)	, QPP)	, ( AC(	DNST (	9),IL	[MX]	_;	
	6 D	ΔTA V/4HD	Q N.4H.	O.K.4H.	. ,3	*4H	<b>,</b> 41	HTRY	<b>,</b> 4HOP	[] <b>,</b> 4HM		4HNG
	61	4HSTOP+4	HCUT ,4	HSTOP	4HPED	,4HOF	PT I ,.41	нм ок	,4HTAI	<e,4h< td=""><td>BESt</td><td>4HT</td></e,4h<>	BESt	4HT
	62	4HOUIT.4	H ON 4	HPREV	4HTAKE	4H F	PRE • 41	ΗV	• 4HTR'	Y 14HM	IUKE,	4HQU
•	63	4H ON ,4	HLOW ,4	HREVE	4HRSE	+4HN	<u>) G,4</u>	HO	,4HNO	<b>,,</b> 4H1	RY ,	<u>4HMU</u>
	64	4H •.4	H LI,4	HMITE,	4HD	/ :			•	ļ		:
<u>C</u>						<del></del>			<u> </u>	i	<u> </u>	<u> </u>
•		ALL MOVE						-	l	1		•
		ALL MOVE			ONSI	4		·				
		NV = FLOA				•	:		1			•
<u></u>		F (ICON)		<u>L</u>	,		•		<del>;</del>			
		CONX = IC			•	1			, , .			
<u>`</u>		LIMX = IL	. I M		ī					1		,
n		LIM = 0		•	;	t		;			į	
·		0 = Q	····		1		· · · · · · · · · · · · · · · · · · ·			 l	!	
	-	F (ICONX)	21 17.	17		:		:	• r	ţ	•	
		F (ICURA)						·				
		X = 0.						•				
<del></del>		CON = -2	= 1.0							;		
	23 4	ACTION(1)	= 1.0 (3, V()	), ACT	ION(2	·····		:		1 		
	23 µ 24 (	ACTION(1) CALL MOVE	= 1.0 (3, V(1	), ACT	10N(2	) )		:		1 t		
 C	23 µ 24 (	ACTION(1)	= 1.0 (3, V(1	), ACT	10N(2	} }		:		1		
 C	23 4 24 ( 25 (	ACTION(1) CALL MOVE	= 1.0 (3, V(1	.), ACT	10N(2	<b>}                                    </b>		- : : ;	· · ·	1 ; ; ; ;		
<u>с</u> с с с	23 4 24 ( 25 (	ACTION(1) CALL MOVE GO TO 999 CONTINUE	= 1.0 (3, V() FOR FIR				ĨŦŢĀĹ		(1001)	; ; ; ; ; ;		
	23 4 24 ( 25 ( 31 (	ACTION(1) CALL MOVE GO TO 999 CONTINUE	(3, V()				ĨŦŢĀĹ		: : (ICON	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
	23 4 24 ( 25 ( 31 ( 41	ACTION(1) CALL MOVE GO TO 999 CONTINUE	(3, V() FOR FIR				ĨIT <u>I</u> ĂĹ 		(1001	i ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	:	
	23 4 24 ( 25 ( 31 ( 41	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980	(3, V() FOR FIF	KST POI ;			ĨIT <u>I</u> AL		: : (ICON	1 ; ; ; ; ; ; ;	:	
- c	23 4 24 ( 25 ( 31 ( 41	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980 PUT	(3, V() FOR FIE FX IN A	ST POI	INT WI		ĨITĪĀL			i ; ; ; ; ; ; ; ;		
- c	23 4 24 ( 25 ( 31 ( 41	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980 PUT	(3, V() FOR FIF	ST POI	INT WI		ÍIT <u>I</u> AL		(1001)		:	
- C - C - C	23 / 24 ( 25 ( 31 ( 41 42 (	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980 PUT TAKE	(3, V() FOR FIR FX IN AC	ST POI	INT WI		ĨIT <u>I</u> ĂL		(1001)	i i i i i i i i i i i i i i	- - -	
- C - C - C - C - C	23 / 24 ( 25 ( 31 ( 41 42 (	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980 PUT TAKE	(3, V() FOR FIR FX IN AC PRIMAR	ST POI	INT WI		ĨITĪĀĒ		: : (ICON	i i i i i i i i i i i i i i		
- C - C - C - C - C	23 / 24 ( 25 ( 31 ( 41 42 (	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980 PUT TAKE ACTION(1) ACTION(2)	(3, V() FOR FIR FX IN A( PRIMAR) = 0. = FX	XST POI : CTION, Y BRANC	INT WI	TH IN		. FX		- - - - - - - - - - - - - - - - - - -		
с с с с с с с с с	23 / 24 ( 25 ( 31 ( 41 42 (	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980 PUT TAKE	(3, V() FOR FIR FX IN A( PRIMAR) = 0. = FX	XST POI : CTION, Y BRANC	INT WI	TH IN		. FX		- - - - - - - - - - - - - - - - - - -		
- C - C - C - C - C	23 / 24 ( 25 ( 31 ( 41 42 (	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980 PUT TAKE ACTION(1) ACTION(2) GO TO (61	(3, V() FOR FIR FX IN A( PRIMAR) = 0. = FX ,81,151	XST POI : CTION, Y BRANC	INT WI	TH IN		. FX		- - - - - - - - - - - - - - - - - - -		
	23 / 24 ( 25 ( 31 ( 41 42 (	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980 PUT TAKE ACTION(1) ACTION(1) GO TO (61 ICON	(3, V() FOR FIR FX IN A( PRIMAR) = 0. = FX ,81,151 = 1	XST POI : : : : : : : : : : : : : : : : : : :	INT WI CH	TH IN		. FX		- - - - - - - - - - - - - - - - - - -		
	23 / 24 ( 25 ( 31 ( 41 42 (	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980 PUT TAKE ACTION(1) ACTION(1) GO TO (61 ICON	(3, V() FOR FIR FX IN A( PRIMAR) = 0. = FX ,81,151	XST POI : : : : : : : : : : : : : : : : : : :	INT WI CH	TH IN		. FX		- - - - - - - - - - - - - - - - - - -		-
	23 / 24 ( 25 ( 31 ( 41 42 ( 51 52 54	ACTION(1) CALL MOVE GO TO 999 CONTINUE EXIT ICON = 1 GO TO 980 PUT TAKE ACTION(1) ACTION(1) GO TO (61 ICON	(3, V() FOR FIF FX IN AC PRIMAR = 0. = FX ,81,151 = 1 SE BETW	XST POI : CTION, Y BRANC , 181, 2 EEN CU	INT WI CH 11,261 T AND	TH IN		. FX		- - - - - - - - - - - - - - - - - - -		

<u>C.</u>	CUT_CHOSEN OPTIMIZE_USI	NG- INITIAL	SLOPE	AND 2	POIN	TS		
C C	IF OPT MORE	THAN 1/4,	ACCEPT	TENTA	TIVEL	Y U.C.C	1 <u>N = 2</u>	)
<u>c</u>		<u>, , , , , , , , , , , , , , , , , , , </u>	!		l   	i		
i 62	IF (ICONX) 401,20	62.2062	۱ د	!	1	t t		
	ASSIGN 71 TO NCAL		· .	:	ţ	1	1	i i
	CALL SETR (1, 0,		ST(10))	) `	· · ·	1 - 1 -	.ji	i
. 64	CALL SETR (1, FX,	0. 2. CON	ST(10);	<u>,</u>	1	1	· ·	1
	CAUL SETR (2, QO)				ţ	į	· · ·	!
	CALL CALXR [3, CO		. <u></u>	, <u>, , , , , , , , , , , , , , , , , , </u>	1		1	
	GO TO NCAL3, 171,		••	ţ	1	i i	ļ.	:
C 01			- <u></u>	;	5 -	•	1	•
-	CALL OPTR (FXOPT,	DELOPT. C	.UNST[](	11	1	t -	1 1	•
	FXP = FX	<u></u>		<u> </u>	•	•	1	;
	QP = Q	• •	· ·		:	1	1	1
75	IF (FXOPT - 0.25*	CV1 121,12	יי ז - 76		i.		<u></u>	;
	CALL MOVE $(3, V(7))$				1	1 1	:	•
	$\frac{\text{UALL MOVE } 13_{1} \text{ vir}}{\text{ICON}} = 2$	<u>]; AUIIQII</u>	<u></u>					
			•	•		•	r t	•
	$\frac{FX}{G0} = \frac{FXOPT}{700}$	<u> </u>	•	,		,	<u></u>	
-	GU IN 220		; -	ı	!		ł	۰.
<u>c</u>		s 	I	· · ·		1		
C C	ICON = 2		· ·	:	•	÷ +	\$	
<u>.</u>	EXAMINE TENT		41			<u></u>	<u> </u>	
C .	IF O.K., KEE			· · · · · ·			<u></u>	
<u> </u>	IF N.D.K. AN					16110	KE_Dec	<u>,</u>
C	IF N.O.K. AN	ND FX IUU 3	SMALL	QUII		3	•	•
<u>C</u>			·		;			
	IF $(Q - QO)$ 141,8				i			
	IF (FX - FXMIN) 8	33+83+2082					4	
	ICONX = -1			•	-		•	
	GO TO 401			<u>:</u>	· · ·			
	CALL MOVE (2, V()	10}, AUIIUr	N(5))		•		•	
	FXOPT = 0.							- <u>-</u>
	CONTINUE			•			•	•
<u> </u>						· · · · · · · · · · · · · · · · · · ·		·
	c = QO	•	ì	•	1	ī	÷ -	1
	FX = 0.		<u></u>	• •	<u> </u>			<u> </u>
93	GO TO 900	•						•
С					· · ·			·
	ASSIGN 71 TO-NCAL				:	ļ	1	ž
: 111	CALL SETR (1,_0,					· · · · ·	• .	<u>_</u>
: 111 112		, Q, 2, COI	NST(10)	)	•			
: 111 112	CALL SETR (1, FX						1	
: 111 112 113 114	CALL SETR (1, FX CALL SETR (1, FX	P, QP, 3, (					ſ	
: 111 112 113 114	CALL SETR (1, FX CALL SETR (1, FX	P, QP, 3, 1 , DQO, 4, U	CONST(1	.0)}			*	
: 111 112 113 114 115	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, Q0	, DQO, 4, (	CONST(1	.0)}			3	.:
111 112 113 114 115 116	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, QO CALL CALXR (4, C	, DQO, 4, ( ONST(10))	CONST(1				- i	
111 112 113 114 115 116 117	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, Q0	, DQO, 4, ( ONST(10))	CONST(1		;			- <del> </del>
111 112 113 114 115 116 117	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, Q0 CALL CALXR (4, C) GO TO NCAL4, (71	, DQO, 4, ( ONST(10)) ,161,196,2	CONST(1 13,544)	•	USE	1/4 UN	ILESS	1 1 100 \$
111 112 113 114 115 116 117 C C	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, Q0 CALL CALXR (4, C) GO TO NCAL4, (71 IF CUT CHOS	, DQO, 4, ( ONST(10)) ,161,196,2 EN AND OPT	CONST(1 13,544) L.T.E.	•	USE	174 UN	ILESS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
111 112 113 114 115 116 117	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, Q0 CALL CALXR (4, C) GO TO NCAL4, (71 IF CUT CHOS	, DQO, 4, ( ONST(10)) ,161,196,2	CONST(1 13,544) L.T.E.	•	USE	: 1/4 UN	ILESS	1 1 100 :
: 111 112 113 114 115 116 117 C C C C	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, QO CALL CALXR (2, QO CALL CALXR (4, C) GO TO NCAL4, (71 IF CUT CHOS	, DQO, 4, ( ONST(10)) ,161,196,2 EN AND OPT MALL, QUIT	CONST(1 13,544) L.T.E. )	•	USE	1/4 UN	ILESS	1 1 100 : 
: 111 112 113 114 115 116 117 C C C C C C C C C 121	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, QO CALL CALXR (2, QO CALL CALXR (4, C) GO TO NCAL4, (71 IF CUT CHOS (IF TOO S IF.(0.25*FX - FX	, DQO, 4, ( ONST(10)) ,161,196,2 EN AND OPT MALL, QUIT MIN) 122,1	CONST(1 13,544) L.T.E. ) 31,131	•	USE	1/4 UN	ILESS	
: 111 112 113 114 115 116 117 C C C C C C C 121 122	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, QO CALL CALXR (4, C) GO TO NCAL4, (71 IF CUT CHOS (1F TOO S IF (0.25*FX - FX CALL MOVE (3, V)	, DQO, 4, ( ONST(10)) ,161,196,2 EN AND OPT MALL, QUIT MIN) 122,1 12), ACTIO	CONST(1 13,544) L.T.E. ) 31,131	•	USE	1/4 UN	ILESS	1 TOO :
: 111 112 113 114 115 116 117 C C C C C C C C C 121 122 .: { 123	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, QO CALL CALXR (4, C) GO TO NCAL4, (71 IF CUT CHOS (IF TOO S (IF TOO S) IF (0.25*FX - FX CALL MOVE (3, V) IF (Q - QO) 124,	, DQO, 4, ( ONST(10)) ,161,196,2 EN AND OPT MALL, QUIT MIN) 122,1 12), ACTIO	CONST(1 13,544) L.T.E. ) 31,131	•	USE	1/4 UN	ILESS	
<pre>: 111 112 113 114 115 116 117 C C C C C C 121 122 :: 123 124</pre>	CALL SETR (1, FX CALL SETR (1, FX CALL SETR (1, FX CALL SETR (2, QO CALL CALXR (4, C) GO TO NCAL4, (71 IF CUT CHOS (1F TOO S IF (0.25*FX - FX CALL MOVE (3, V)	, DQO, 4, ( ONST(10)) ,161,196,2 EN AND OPT MALL, QUIT MIN) 122,1 12), ACTIO	CONST(1 13,544) L.T.E. ) 31,131	•	USE	1/4 UN	ILESS	

ć	; ; ; ; ; ; ; , · · .
	L = V(12)
	2 FX = 0.25 * FX
13	3 1CON = 3
1 13	4 GO TO 930
C	
<u> </u>	OPTIM O.K., QUIT
C C	
- 14	1 CALL MOVE (2, V(15), ACTION(5))
	2 GO TO 900
<u> </u>	ICON = 3
õ	EXAMINE CUT POINT
<u> </u>	IF NOK, CUT AGAIN IF POSSIBLE
č	IF OK, OPTIMIZE
C	IF_OPTIM_L.I.E1/4 EX, CUT AGAIN IF POSSIBLE
C	IF OPTIM G.T. 1/4, FX, TRY OPTIM (ICON = 4)
C	
	1 IF (Q - Q0) 152,62,62
	2 IF (ICONX) 155,153,153
	3 ASSIGN 161 IU NCAL4
	5 ASSIGN 161 TO NCAL3P
C 13	0 GU 1U 411 , · · · · · · · · · · · · · · · · · ·
	1 CALL OPTR (FXOPT, DELOPT, CONST(10))
	2 IF (-Q/XNV + (DELOPT - Q)) 163,163,601 .
	3  FXP = FX
	4  GP = Q
	5 IF (FXOPT - 0.25*FX) 166,166,167
· 16	6 IF (ICONX) 131,121,121
	7 IF (FXOPT - FXP) 171,171,168
	8 CALL MOVE (3, V(17), ACTION(5))
	8 IF (Q - QP) 3168,5168,5168
	8 FXOPT = FX
	8 GO TO 169
	8 FXOPT = FXP
	8 FX = FXOPT
, i i i i i i i i i i i i i i i i i i i	1 CALL MOVE (3, V(7), ACTION(5))
	2 FX = FXOPT
	3 ICON = 4
<u> </u>	4 GO TO 930
C	
C	ICON = 4
<u>C</u>	EXAMINE TRIAL OPTIM AND CHOOSE, QUIT
C	
	31 IF (Q - QP) 141,141,182
	32 CALL MOVE (3, V(23), ACTION(5)) 33 FXOPT = FXP
	A CONTINUE
C	
	DI IF (ICONX) 194,192,192 ···
-	22 ASSIGN 196 TO NCAL4

· · · ·	<u>GO TO 112</u>		1		1	1			<u> </u>
194	ASSIGN 196	TO NCAL3P	)		ļ	1	· · · · ·	ł	
1	GO TO 411		1		1	1			1
	Q = QP.						 I		-
1		Į -	!		į .				1
	FX = FXOPT	á	<u>.</u>			-	<u></u>	1	<u>-</u>
198	GO TO 900		1   -		1	i		ł	•
<u>C</u>	· · · · · · · · · · · · · · · · · · ·		<u>.</u>		1	<u>.</u>		<u> </u>	 }
C	I GROWTI	H CHOSEN	•						
С	TRY 2	¢FX	•		1	1	i	1	
<u> </u>	······		·····		}.				-
· 201	IF (ICONX)	206.202.2	202	1	1	•			ł
	ASSIGN 204				1			<u> </u>	1
		IU NCALS		•	;	1	Ţ		
	<u>GO TO 63</u>							1	
	CALL OPTR							ļ	2
205	IF (-Q/XNV	<u>+ (</u> DELOP)	rQ)	)_22(	25,220	<u>05,60</u>	1	· · ·	
2205	IF (FXOPT	- FX) 3209	5,206,	206			•	i i	:
3205	FXP = FX						÷	1	<u>.</u> .
	QP = Q		•		:				
	CALL MOVE	12 1171	ACTIC	MISY	ı	· .		1	
			ACTIC	14(2)	/				
	FX = FXOPT					:	:	÷	•
	ICON = 10			-			<u> </u>		
8205	GO TO 930		•		3	:	1		í
С					:				
. 206	ICON = 5	-				•			
	$F\dot{X}P = FX$						•		•
	GQP = Q		<u>+</u> +					1	<u>_</u>
		12 11261	AC 7 1	ON ( 5	1)	•	•	•	3
	CALL MOVE		<u>1 ACTI</u>		/				
	FX = 2.0  mF	X							
3209	<u>GO TO 930</u>								
						-			
C					·	•		•	1
С С	ICON	= 5						•	•
с с с		= 5 FOR FURTH	ER GRO	) WTH		:		•	, , , ;
С С С			ER GRO	)WTH				•	1 1 2 1 1
с с с	TEST	FOR FURTH		WTH				•	* * *
C C C 211	TEST	FOR FURTH	,2211	WTH		:		•	, , , ,
C C 211 2211	TEST	FOR FURTH	,2211	ЭМТН		• • •		•	:
C C 211 	TEST IF (ICONX) ASSIGN 213 GO TO 112	FOR FURTH 212,2211 TO NÇAL4	,2211	WTH		:			· · · ·
C C 211 2211 3211 212	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213	FOR FURTH 212,2211 TO NÇAL4	,2211	WTH		:		· ·	· · · ·
C C 211 2211 .3211 .3211 _212 2212	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411	FOR FURTH	,2211 P		•	:		• • • •	: : : : : :
C C 211 2211 .3211 .3212 212 2212 213	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 CALL OPTR	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D	,2211 P			:		· · ·	· · · · ·
C C 211 2211 .3211 .3212 212 2212 213	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D	,2211 P			:		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
C C 211 2211 .3211 .3211 .3212 212 213 214	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 GO TO 411 CALL OPTR IF (FXOPT	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221	,2211 P ELOPT,			:		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
C C 211 2211 .3211 .3211 .3212 212 213 214 215	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 GO TO 411 CALL OPTR IF (FXOPT F IF (Q - QP	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 ) 216,241	,2211 P ELOPT, ,215, ,241	CON 215				· · · · · · · · · · · · · · · · · · ·	
C C 211 2211 .3211 .3211 212 213 214 215 216	TEST ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 A IF (FXOPT F (Q - QP F IF (-Q/XNV	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 ) 216,241	,2211 P ELOPT, ,215, ,241	CON 215				· · · · · · · · · · · · · · · · · · ·	
C C 211 2211 .3211 .3211 212 213 214 215 216 2216	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 CALL OPTR IF (FXOPT IF (Q - QP IF (-Q/XNV 5 ICON = 7	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 216,241 + (DELOP	,2211 P ELOPT, ,215, ,241	CON 215				· · ·	
C C 211 2211 .3211 .3212 212 212 213 214 215 216 217	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 CALL OPTR IF (FXOPT 5 IF (Q - QP 5 IF (-Q/XNV 5 ICON = 7 7 FXPP = FXP	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 216,241 + (DELOP	,2211 P ELOPT, ,215, ,241	CON 215				· · ·	
C C 211 2211 .3211 .3211 .3212 212 213 214 215 216 216 216 216 217 218	TEST         IF (ICONX)         ASSIGN 213         GO TO 112         ASSIGN 213         GO TO 411         CALL OPTR         IF (FXOPT         IF (Q - QP         IF (OP XNV         IF (CON = 7         FXPP = FXP         QPP = QP	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 216,241 + (DELOP	,2211 P ELOPT, ,215, ,241	CON 215				· · · · · · · · · · · · · · · · · · ·	
C C 211 2211 .3211 .3211 .3212 212 212 213 214 215 216 216 217 .218 217 .218 219	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 CALL OPTR IF (FXOPT 5 IF (Q - QP 5 IF (-Q/XNV 5 ICON = 7 7 FXPP = FXP	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 216,241 + (DELOP	,2211 P ELOPT, ,215, ,241	CON 215				· · · · · · · · · · · · · · · · · · ·	
C C 211 2211 .3211 .3211 .3212 212 212 213 214 215 216 216 217 .218 217 .218 219	TEST         IF (ICONX)         ASSIGN 213         GO TO 112         ASSIGN 213         GO TO 411         CALL OPTR         IF (FXOPT         IF (Q - QP         IF (OP XNV         IF (CON = 7         FXPP = FXP         QPP = QP	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 216,241 + (DELOP	,2211 P ELOPT, ,215, ,241	CON 215				· · · · · · · · · · · · · · · · · · ·	
C C 211 2211 .3211 .3211 .3212 212 213 214 215 216 216 216 216 217 218	TEST         IF (ICONX)         ASSIGN 213         GO TO 112         2 ASSIGN 213         2 GO TO 411         3 CALL OPTR         4 IF (FXOPT         5 IF (Q - QP         6 IF (-Q/XNV         5 ICON = 7         7 FXPP = FXP         3 QPP = QP         9 GO TO 207	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 216,241 + (DELOP	,2211 P ELOPT ,215, ,241 T - Q	CON 215				· · ·	
C C 211 2211 .3211 .3212 212 212 213 214 215 216 216 217 216 217 216 217 216 217 217 217 217 217 217 217 217	TEST         IF (ICONX)         ASSIGN 213         GO TO 112         2 ASSIGN 213         2 GO TO 411         3 CALL OPTR         4 IF (FXOPT         5 IF (Q - QP         6 IF (-Q/XNV         5 ICON = 7         7 FXPP = FXP         3 QPP = QP         9 GO TO 207	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 216,241 + (DELOP	,2211 P ELOPT ,215, ,241 T - Q	CON 215				· · · · · · · · · · · · · · · · · · ·	
C C 211 2211 .3211 .3211 .3212 212 212 213 214 215 216 216 216 217 216 216 217 216 217 216 217 216 217 217 217 217 217 217 217 217	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 CALL OPTR IF (FXOPT FIF (Q - QP FIF (-Q/XNV CON = 7 FXPP = FXP QPP = QP GO TO 207 RESTR	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 216,241 + (DELOP AIN. GROWT	,2211 P ELOPT ,215,7 ,241 T - Q	CON 215				· · · · · ·	
C C 211 2211 .3211 .3211 .3212 212 213 214 215 216 216 216 217 .218 216 217 .218 217 .218 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .219 .21	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 CALL OPTR IF (FXOPT IF (Q - QP IF (-Q/XNV ICON = 7 7 FXPP = FXP GO TO 207 RESTR I IF (Q - QP	FOR FURTH 212,2211 TO NCAL4 TO NCAL3 (FXOPT, D - FX) 221 ) 216,241 + (DELOP AIN. GROWT	,2211 P ELOPT ,215,3 ,241 T - Q H H	CON 215	16,22 , , ,	16,60		· · · · · ·	
C C 211 2211 .3211 .3211 .3212 212 212 213 214 215 216 216 216 217 .218 216 217 .218 217 .218 .219 C C C .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .221 .2221 .2221 .2221 .2221 .2221 .2221 .2221 .2221 .2221 .2221 .2221 .2221 .2221 .2221 .2221 .2221 .2221	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 CALL OPTR IF (FXOPT IF (Q - QP FXPP = FXP GO TO 207 RESTR IF (Q - QF 2 IF (-QP/X)	FOR FURTH 212,2211 TO NCAL3 (FXOPT, D - FX) 221 ) 216,241 + (DELOP AIN. GROWT ) 226,222 IV + (DELO	,2211 P ELOPT, ,215, ,241 T - Q ! H H ,222 PT -	CON 215 )) 22	16,22	16,60			
C C 211 2211 3211 3211 212 212 213 214 215 216 216 216 217 216 217 216 217 216 217 216 217 217 217 217 217 217 217 217	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 CALL OPTR IF (FXOPT IF (Q - QP IF (-Q/XNV ICON = 7 FXPP = FXP QPP = QP GO TO 207 RESTR IF (Q - QF A IF (-QP/X) A CALL MOVE	FOR FURTH 212,2211 TO NCAL3 (FXOPT, D - FX) 221 ) 216,241 + (DELOP AIN. GROWT ) 226,222 IV + (DELO	,2211 P ELOPT, ,215, ,241 T - Q ! H H ,222 PT -	CON 215 )) 22	16,22	16,60			
C C 211 2211 3211 3211 212 2212 213 214 215 216 216 217 216 217 216 217 216 217 216 217 217 216 217 217 217 217 217 217 217 217	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 CALL OPTR IF (FXOPT IF (FXOPT IF (Q - QP IF (-Q/XNV ICON = 7 FXPP = FXP QPP = QP GO TO 207 RESTR IF (Q - QF Z IF (-QP/X) 4 CALL MOVE 5 GO TO 242	FOR FURTH 212,2211 TO NCAL3 (FXOPT, D - FX) 221 216,241 + (DELOP AIN. GROWT 226,222 IV + (DELO (3, V(23)	,2211 P ELOPT ,215, ,241 T - Q H ,222 H ,222 H ,227 H	215 )) 22	16,22	16,6(			
C C 211 2211 3211 3211 212 2212 213 214 215 216 216 217 216 217 216 217 216 217 216 217 217 216 217 217 217 217 217 217 217 217	TEST IF (ICONX) ASSIGN 213 GO TO 112 ASSIGN 213 GO TO 411 CALL OPTR IF (FXOPT IF (Q - QP IF (-Q/XNV ICON = 7 FXPP = FXP QPP = QP GO TO 207 RESTR IF (Q - QF A IF (-QP/X) A CALL MOVE	FOR FURTH 212,2211 TO NCAL3 (FXOPT, D - FX) 221 216,241 + (DELOP AIN. GROWT 226,222 IV + (DELO (3, V(23)	,2211 P ELOPT ,215, ,241 T - Q H ,222 H ,222 H ,227 H	215 )) 22	16,22	16,6(			

231	QP = Q	1 7	· · ·		<del></del>			
	CALL M	OVE (3,	V(7),	ACTION (5	))			
	ICON =		1		1	}		
-233	FX = F	XOPT		-				1
234	GO TO	930	i 3			i	i	
C			:	1 	1	1	· ·	ĺ
		OVE (3.	V(20)+	ACTION	5))		i	1
	FXOPT			•	•	1	ĺ	
	CONTIN	UE·.	۰ ،	- ;	• • •			
<u>C</u>			1	1	3	ł		
	.FX = F		1	•	i	ì	i	1
	Q = QP		<u>.</u>		:		í	
	GOTO	900		*****		ţ	-	ł
C C C C			······		; .			<u> </u>
		CON - 6	·	• • • • • • • • •				1
<u>L</u>	<u>K</u>	<u>ETURN FR</u>	TTA MO	EMPT AT	OPTIM	<u>ON</u> GR	<u>.0WTH</u>	
•		001 1/		•	,			
201		- QP) 14	14141	262	<u></u>			
		0VE (3,	V12019	ACTION	211		:	i
C 265	<u>GO TO</u>	242		<u> </u>			•	; ;
C	T	CON = 7	• -	•		i	1	1
с С		ÉTURN FR			utu			
Ċ				HILK OKL	ini i fi			:
-	CALLS	EŤR (1,	FX		ក្រក់ពី			•
272	CALLS	ETR (1,	EXP. 0	P. 2. CC	NST/10	, , , , ,		•
273	CALLS	ETR (1.	FXPP	0PP. 3.		.,, (10))))		
		ALXR (3,			00110 F	,,		;
		PTR (FXC			NSŤĨĨ	<u>.</u>		
	GO TO							•
<u>C</u>		J						
С		NITIAL C						
C	· T	ESTÍSIZE	OF FX	FOR POS	SIBLE	REVER	SING	
С.		<b></b>						1
	FXP =	-			-			
401	QP = Q							\$
401 402		75%CV						
401 402 403	IF (0.			404,404				
401 402 403 404	IF (0. CALL M	OVE (2,	V(31),	ACTION		`		1
401 402 403 404 : 405	IF (0. CALL M FX = -	OVE (2, Amini(f>	V(31),	ACTION		•	·····	
401 402 403 404 : 405 406	IF (0. CALL M FX = - ICON =	OVE (2, Amini(F) 8	V(31),	ACTION		· · · · · · · · · · · · · · · · · · ·	·····	-1
401 402 403 404 : 405 : 406 407	IF (0. CALL M FX = -	OVE (2, Amini(F) 8	V(31),	ACTION		· · ·		
401 402 403 404 : 405 : 406 407	IF (0. CALL M FX = - ICON = GO TO	OVE (2, AMINI(F) 8 930	V(31), (,FXMIN	ACTION(				
401 402 403 404 : 405 : 406 407	IF (0. CALL M FX = - ICON = GO TO	OVE (2, Amini(F) 8	V(31), (,FXMIN	ACTION(		· · · · · · · · · · · · · · · · · · ·		
401 402 403 404 : 405 406 407 C C C	IF (0. CALL M FX = - ICON = GO TO 3	OVE (2, AMIN1(F) 8 930 PT FIT	V(31), (,FXMIN USING	ACTION( ) Q0	5))	· ·		
401 402 403 404 : 405 . 406 407 C C C C 411	IF (0. CALL M FX = - ICON = GO TO 3 CALL S	OVE (2, AMIN1(F) 8 930 PT FIT ETR (1,	V(31), (,FXMIN USING 0, Q0,	ACTION( ) QO	5)) : : : : :		i	
401 402 403 404 : 405 . 406 407 C C C C C C C C C C C C C C C C C C C	IF (0. CALL M FX = - ICON = GO TO 3 CALL S CALL S	OVE (2, AMIN1(F) 930 PT FIT ETR (1, ETR (1,	V(31), (,FXMIN USING 0, Q0, FX, Q,	ACTION( ) QO 1, CONS 2, CONS	5)) 57(10) 57(10)	)	¢	
401 402 403 404 : 405 . 406 407 C C C C 411 412 413	IF (0. CALL M FX = - ICON = GO TO 3 CALL S CALL S CALL S	OVE (2, AMIN1(F) 8 930 PT FIT ETR (1, ETR (1, ETR (1,	V(31), (,FXMIN USING 0, Q0, FX, Q, FX, Q,	ACTION( ) QO 1, CONS 2, CONS P, 3, CO	5)) 57(10) 57(10)	)	· · · · · · · · · · · · · · · · · · ·	
401 402 403 404 405 406 407 C C C C 411 412 413 414	IF (0. CALL M FX = - ICON = GO TO 3 CALL S CALL S CALL S CALL S CALL C	OVE (2, AMIN1(F) 8 930 PT FIT ETR (1, ETR (1, ETR (1, ALXR (3,	V(31), (,FXMIN USING 0, Q0, FX, Q, FX, Q, FXP, Q, CONST	ACTION( ) QO 1, CONS 2, CONS P, 3, CC (10))	5)) 57(10) 57(10) 57(10) 57(10)	)	•	
401 402 403 404 : 405 406 407 C C C C 411 412 413 414 415	IF (0. CALL M FX = - ICON = GO TO 3 CALL S CALL S CALL S CALL S CALL C	OVE (2, AMIN1(F) 8 930 PT FIT ETR (1, ETR (1, ETR (1,	V(31), (,FXMIN USING 0, Q0, FX, Q, FX, Q, FXP, Q, CONST	ACTION( ) QO 1, CONS 2, CONS P, 3, CC (10))	5)) 57(10) 57(10) 57(10) 57(10)	)	· · ·	
401 402 403 404 405 406 407 C C C C 411 412 413 414	IF (0. CALL M FX = - ICON = GO TO 3 CALL S CALL S CALL S CALL S CALL C GO TO	OVE (2, AMIN1(F) 8 930 PT FIT ETR (1, ETR (1, ETR (1, ALXR (3, NCAL3P, (	V(31), (,FXMIN USING 0, Q0, FX, Q, FX, Q, FXP, Q, CONST	ACTION( ) QO 1, CONS 2, CONS P, 3, CC (10))	5)) 57(10) 57(10) 57(10) 57(10)	)	•	
401 402 403 404 405 406 407 C C C C 411 412 413 414 415	IF (0. CALL M FX = - ICON = GO TO 3 CALL S CALL S CALL S CALL S CALL C GO TO	OVE (2, AMIN1(F) 8 930 PT FIT ETR (1, ETR (1, ETR (1, ALXR (3,	V(31), (,FXMIN USING 0, Q0, FX, Q, FXP, Q, FXP, Q CONST 161,19	ACTION( ) QO 1, CONS 2, CONS P, 3, CC (10)) 6,213,50	5)) 57(10) 57(10) 57(10) 57(10)	)	•	

	502	<u>GO TO 4</u>	11						I		+
		IF (DER	RIO,CON	ST (10)	)) 51	1,52	1,521		1,		
· <u>ل</u>	513	CALL OP	TR (FYC		EL OPT.	<u>ו</u> רחאי	57(10	<u>.</u>	i		1
		CALL MO							ł		ļ
		ICON =		<u></u> ••_	1	]	!	1			-
		FX = FX		1	í		4	<u> </u>	` i		i
		GO TO 9		1	:	7 5	1		L i		
<u>C</u>					1	-					ł-
*		FX = 0.		:			1	l.	i		-
		FXOPT =			<u>.</u>	<u> </u>					
		ICON =	-1	r	1	Ì	t ř	1	i		
	<u>274</u>	c = QO CALL MD	VE (2.	V(22)	. ACTI		11		1		
		GO TO 9		11221	P HOII	. UN 2		i		- 1	1
C		00 10 1		•			l.	;	1	i	
č		- IC	ON = 9	•	*	:		<u> </u>		4	
Č	~		TURN AF		EVERS	L AN	D OP1	IMLZ	ATION		1
0					•		. <u></u>	<u></u>			
	531	IF (Q -	QO) 14	41,521	,521		1	•	<b>*</b> .	1	1
<u>_</u> C										,	
C			ON = 10								т. 0. N
<u>2</u> 2		·RE	TURN A	IER A	TIEMP		MMED	LAIE	UPTIM		TUN
ι		TE 10	001 1		ちんつ		•				
• **	241 5/2	_IF_ (Q ASSIGN	567 TO		1942 -						
		GO TO 1		NUALT					:	• ]	
•		CALL OP		DPT, D	ELOPT	CON	ST(1	<b>5))</b>			
•		IF (FXC									
	546	TE (-0P	VXNV +	(DELC	PT -	QP))	551,	551.2	>24	•	
-		1, , 6,									
_C											
_C	551	ICON =	5	<u> </u>					- <u>-</u> -	. <u></u>	
_C	551 552	ICON = FX = 2.	5 0*FXP						- <b>C</b>   		-
_C 	551 552 553	ICON = FX = 2. CALL MO	5 0*FXP )VE (3,	V(35)	, ACT						-
	551 552 553 554	ICON = FX = 2.	5 0*FXP )VE (3,	V(35)	, ACT						- -
	551 552 553 554	ICON = FX = 2. CALL MC GO TO S	5 0*FXP )VE (3, )30		, ACT			-	- <b>(</b>	<u>.</u>	
	551 552 553 554	ICON = FX = 2. CALL MC GO TO S	5 0*FXP )VE (3,		, ACT			-		: :	- -
	551 552 553 554	ICON = FX = 2. CALL MC GO TO 9 TA	5 0*FXP VE (3, )30 KE EX1		, ACT			- - 1		: : :	-
	551 552 553 554 601	ICON = FX = 2. CALL MC GO TO S TA FXOPT =	5 0*FXP VE (3, 30 KE EX1	Τ	• • ACT			- - - -		: : : :	-
	551 552 553 554 601 602	ICON = FX = 2. CALL MC GO TO S TACTION	5 0*FXP )VE (3, )30 <u>XKE EX1</u> = FX (5) = V	Τ	• ACT			· · ·			-
	551 552 553 554 601 602 603	ICON = FX = 2. CALL MC GO TO S TA FXOPT =	5 0*FXP )VE (3, )30 <u>XKE EX1</u> = FX (5) = V	Τ	, ACT			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	-
  	551 552 553 554 601 602 603	ICON = FX = 2. CALL MO GO TO 9 TA FXOPT = ACTION GO TO 1	5 0*FXP )VE (3, )30 <u>XKE EX1</u> = FX (5) = V	T(17)	• ACT			· · ·		· · · · · · · · · · · · · · · · · · ·	-
  	551 552 553 554 601 602 603	ICON = FX = 2. CALL MO GO TO 9 TA FXOPT = ACTION GO TO 1	5 0*FXP VE (3, 30 KE EX1 FX (5) = V	T(17)	• ACT			· · ·		· · · · · · · · · · · · · · · · · · ·	-
  	551 552 553 554 601 602 603 900	ICON = FX = 2. CALL MC GO TO 9 FXOPT = ACTION GO TO 1 90 ICON =	5 0*FXP VE (3, 30 KE EX1 FX 5) = V 42 00 EXIT	T				· · ·			· · · · · · · · · · · · · · · · · · ·
  	551 552 553 554 601 602 603 900 900	ICON = FX = 2. CALL MC GO TO S TACTION GO TO 1 GO TO 1 90 ICON = IF (IL	5 0*FXP VE (3, 30 KE EX1 FX 5) = V 42 00 EXIT 0 IMX) 90	T (17) 3,903,	902	ION(5		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
  	551 552 553 554 601 602 603 900 901 901 902	ICON = FX = 2. CALL MC GO TO S TA FXOPT = ACTION GO TO 1 90 ICON = IF (IL IF (FX	5 0*FXP VE (3, 30 KE EX1 5) = V 42 00 EXIT 0 (MX) 90 - EXMA	T (17) 3,903,	902	ION(5		· · ·			
  	551 552 553 554 601 602 603 900 901 901 902 903	ICON = FX = 2. CALL MC GO TO S TA FXOPT = ACTION GO TO 1 90 ICON = IF (IL IF (FX ILIM =	5 0*FXP VE (3, 30 KE EX1 5) = V 42 00 EXIT 0 (MX) 90 - FXMA 0	T (17) 3,903,	902	ION(5		· · ·			
  	551 552 553 554 601 602 603 900 901 902 903 904	ICON = FX = 2. CALL MC GO TO 9 FXOPT = ACTION GO TO 1 90 ICON = IF (IL IF (FX ILIM = GO TO 9	5 0*FXP VE (3, 30 KE EX1 5) = V 42 00 EXIT 0 (MX) 90 - FXMA 0 999	T (17) 3,903,	902	ION(5		· · · · ·			· ·
  	551 552 553 554 601 602 603 900 901 901 902 903 904 905	ICON = FX = 2. CALL MC GO TO S TA FXOPT = ACTION GO TO 1 90 ICON = IF (IL IF (FX ILI.M =	5 0*FXP VE (3, 30 KE EX1 5) = V 42 0 EXIT 0 MX) 90 - FXMA 0 999 ILIMX	T (17) 3,903,	902	ION(5		· · · ·			
  	551 552 553 554 601 602 603 900 901 901 902 903 904 905	ICON = FX = 2. CALL MC GO TO 9 FXOPT = ACTION GO TO 1 90 ICON = IF (IL IF (FX ILIM = GO TO 9	5 0*FXP VE (3, 30 KE EX1 5) = V 42 0 EXIT 0 MX) 90 - FXMA 0 999 ILIMX	T (17) 3,903,	902	ION(5					
  	551 552 553 554 601 602 603 900 901 902 903 904 905 906	ICON = FX = 2. CALL MC GO TO S TA FXOPT = ACTION GO TO 1 90 ICON = IF (IL IF (FX ILI.M =	5 0*FXP VE (3, 30 KE EX1 FX 5) = V 42 00 EXIT 0 MX) 90 - FXMA 0 999 ILIMX	T (17) 3,903, X) 903	902 3,905,	ION(5					

	934	ILIM = IL	IMX			1	1 `		• •		
1	935	GO TO 999		•	i	• • • •	•				
	936	ILIM = 0	1	!	i		t		·ļ		
	937	GO TO 999			1			- {			
Ĵ		· ·	:	r.	1	.;		τ.	:	•	t.
<u> </u>		980	EXIT			<u> </u>	: :		:		i
С		. `			•	• •	1 -	i	/ 1	•	1
<del></del> ,_		IF (ILIMX					•		;		
•		IF (FX -			4,98	2,982	-	1			1
		ACTION(1)						;	:		1
Ĭ	983	CALL MOVE	(4,	V{38	), A	CTION	(2))		•	-	ł
;		GO TO 930							i		
•		ACTION(1)			E		\$	5	- 1	-	
_	985	CALL MOVE	(3,	V(4)	1 AC	TION(	2]]				1
	-	GO TO 930							:		;
<u> </u>				, , , ,		_		;	•		
•	999	CALL MOVE	(9 ₁ ,	ACON	ST,	CONST	)	•	•		ŀ
, 		RETURN				•			:		1
С		· ·	•		1.	۰.		į .	•		,
		END	•	• -	ł	;	• •	•			:

-	1 <u>{</u> SUB	ROUTI	NESE	TR (K	1 X-1	Y , I	CON	STI	1			
<u>u</u>	2 DIM				-1		1251					
i	4 DIM								1			i , ,
	5 600				T(1)	$\left[ \begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]$		ST(17)	;	ACONS	T(21)	1.0
ļ	51 (					1 1 1 1		51(11)	1	-1		10
Ċ	<u> </u>				,		;	1		<u> </u>	!	·
	6 CAL	L MOV	E (25	, CON	IST,	ACONS'	F) -	ļ	1		1	
1	11 GO	10 (2	1,31)	, К		;			1			•
C	,			:		1	[				i	
C		K =	-			·		, 		• 1	1 T	
0		<u>SE1</u>	UP F	OR PL	JINT	HTIN	-X =	X AND	Q =, Y	<u> </u>	, <u>, , , , , , , , , , , , , , , , , , </u>	
ι	21 A(I		· 1 0			۰ ،	E	1	:	1	į	
	22 A(I			<u></u>		<u></u>						
1	23 A(I				:		į	í ī	i		ì	
	24 A(I				•	• ;	. :				1	
:	25 B(I				•		;		;	1	. !	•
•	26 GO	TO 99	9	,	:	-		i	1		:	
С				•	-	•	•		ŀ.	1	- :	
С	•	K =	2		•	4		•			:	
<u>C</u>				•	-		:	1		i *	:	
	31 A(1	-			• •.	· į	:		Ī	l	:	
	32 A(I 33 A(I			<u> </u>	· · · · · · · · · · · · · · · · · · ·	, 	-					
•	34 A(I					-		•	•		•	
	35 8(1							<u> </u>		•		
•	36 GO								•			
C									·····	:		
	999 CAL		E (25	, AC(	DNST,	CONS	T)		· · · · · · · · · · · · · · · · · · ·			
•	RET	URN -						:	:			
<u> </u>							<u> </u>		<u>·</u> ···	•	•	
	EN	U				-			:			
	·		· · · · · · · · · · · · · · · · · · ·			· · · · · ·		; -				
	l ,	•	: •		1			-		•		
							4		<u>.</u>		-	
	•	-	•	-	•			;	•		}	
			<b>_</b>	•				<u></u>	•	;	•	_

C	SUBROUTINE CALXR (NN, CONST)	-	
	CIMENSION CONST(25), ACONST(25)		
	B DIMENSION W(4,4), WW(4,4), X(4), BB(4)	;	
	-DIMENSION A(4,4), B(4), C(4)	÷ .	
- 1 5	5 EQUIVALENCE (ACONST(1), A), (ACONST(17), B), (AC	CONST(2)	[]
	51 (ACONST(25), KR)	i i	
	5 CALL MOVE (25, CONST, ACONST)	<u>i I</u>	
C			
	KR = 0		
•	7 N = NN		
	L CALL MATMPY (N, 1, N, -4, 1; 1, A, B, X)	i 	
	2 CALL MATMPY (N, N, N, -4, 4, 4, A, A, W)	: :	
	B CALL DIAG(N,4,W,WW,BB,1'.E-08)		
	4 CALL MATMPY (N, 1, N, -4, 1, 1, WW, X, BB)		
	5 DO 16 I = 1,N	·	
	6 BB(1) = BB(1)/W(1,1)	i :	
	7 CALL MATMPY (N, 1, N, 4, 1, 1, WW, BB, C)	<u>ا</u>	
	8 IF (N - 3) 19,19,201	•	
	9 C(4) = 0.		
	0 G0 T0 999		
<u> </u>			
_	1 IF (KR) 202,202,999		
	2 IF (C(4)) 211,999,999		
C			
	1 CO 222 I = 1,4		
	2 IF (A(1,1)) 221,213,221	;	
	$3 A(1,3) = -2.0 \times A(1,4)$		
	$4^{(1,4)} = 3.0 \times A(1,4) \times 2$	ι.	
	5 GO TO 222 ;	· · · · ·	
C			
	1 A(1,4) = A(1,2) * A(1,3)		
	2 CONTINUE		
	3 KR = 1 4 GO TO 11		
	4 GO TO 11	:	
<u> </u>	9 CALL MOVE (25, ACONST, CONST)		<u>.</u>
	RETURN	1	. <u> </u>
_c		:	
•	END	!	
		•	
•			

· · ·	· .	
1 SUBROUTINE OPTR (FXOPT, DELOPT, CONST)		. 1
2 DIMENSION CONST(25), ACONST(25)	i i	· · ·
3 DOUBLE PRECISION RR	-	
4 DIMENSION A(4,4), B(4), C(4)		
5 EQUIVALENCE (ACONST(1), A), (ACONST(17), B),	LACONST(21)	
51 (ACONST(25),KR)	, 1	3071
6 CALL MOVE (25, CONST, ACONST)	1	
C	; . T	
10 IF (KR) 11,11,41	ę   •	
11 D3 = C(2) - C(1) * C(4)	1 1	1
⁴ 12 IF (D3) 21,13,13	,	
13  FXOPT = -1.0		
$\underline{14 \text{ DELOPT}} = 0.$		
15 GO TO 999		1
C 21 CONTINUE	<u> </u>	
22 IF (C(3)) 23,23,25		Î.
23 FXOPT = 1.0E20		
2023 DELOPT = $-1.0E30$		1
24 GO TO 999	· · · · · · · · · · · · · · · · · · ·	······
25 CONTINUE		•
26 GO TO 101		
Č · · · · · · · · · · · · · · · · · · ·		
31 FXOPT = AMAX1 (R1, R2)		······
32 IF (FXOPT - 1.0E20) 33,2023,2023		·
33 CELOPT = (D3 + C(3)*FXOPT) * FXOPT / (1.0	+ C(4)*FXOP	PT)
34 GO TO 999		
C	;	•
41 IF (C(4)) 23, 11, 42	· · · · · ·	
42 IF (C(2)) 44,43,43	•	•
43 IF (C(3)) 51,13,13		
44 IF (C(3)) 51,45,51	:	
$\frac{45 \text{ FXOPT} = \text{SQRT}(-C(2)/3.0/C(4))}{46 \text{ GO TO } 62}$	· ·	1
C 40 60 10 62	· · ·	
51  CA = C(2)/C(3)		-
52	-	• ;
53 IF (DA - D3) 54,54,13		;
54 RR = DSQRT (1.0D0 - DBLE(DA/D3))	:	:
55 R1 = D3 * SNGL (-1.0D0 + RR)		· · · · · · · · · · · · · · · · · · ·
56  R2 = D3 * SNGL (-1.000 - RR)		
C		
61  FXOPT = AMAX1(R1,R2)	• 1	
62 IF (FXOPT - 1.0E20) 63,2023,2023	· · · · · · · · · · · · · · · · · · ·	······
63 DELOPT = FXOPT * (C(2) + FXOPT * (C(3) + 1	FXOPT*C(4)))	+ C(1)
64 IF (DELOPT) 999,999,13		· · ·
<u>C</u>	• I	;
101 IF (C(4)). 111,102,111	·	
$102 \text{ R1} = -D3/2 \cdot O/C(3)$		1
103  R2 = R1		
104 GO TO 31	i <u>i</u>	
111 RR = DSQRT (1.0D0 - DBLE(D3*C(4)/C(3)))	!	· · ·

**

-

•

	· · ·		¦ -	ł
<u>112 R1 = SNG</u>	$L_{(-1,0D0,+)}$	RR)/C(4	)	1
113 R2 = SNG				ĩ
<u>114 GO TO 31</u>		: ,	i	Į.
C : ,		:	1	
999 CALL MOV	E (25, ACONS	ST, CONS	٢}	;
-,RETURN	1	1 , <u>1</u>	ĩ	÷
C I	•		÷. -	:
! END ;	; ,		!	÷
	1 · · ·			

d FUNCTION DEF	RR (FX; CONS	ST) :	; `` ;	1   . 		
2 DIMENSION CO	(4,4), B(4)	C(4)	2 4 •	1		
5 EQUIVALENCE 51 (ACONST(25	(ACONST(1)	A), (ACCN	IST(17)	,B),(	ACONST	(21),
. 6 CALL MOVE (2	25, CONST, A	(CONST)	Ŧ 1			
$\frac{10 \text{ IF (KR) 11,1}}{11 \text{ CERR} = (C(2))}$	)C(1)*C(4	+) + 2.0≭C	<u>(3)≭FX</u>	; _+_C(	3)≭C(4)	' )
111 (1.0 + C(4	¥)∻FX)∻*2		ł	t	ł .	
$\begin{array}{c} 111 & (1.0 + C(4) \\ 12 & \text{GO} & \text{TO} & 999 \\ \hline 13 & \text{DERR} &= C(2) \\ \hline 14 & \text{GO} & \text{TO} & 999 \end{array}$		(3) + 3.0	; )*C(4)*	FX)	-	, T t t
12 GO TO 999 13 CERR = C(2) 14 GO TO 999 C 999 CALL MOVE (2	+ FX*(2.0*(	••	; )*C(4)*	FX)	•	- - -
12 GO TO 999 13 CERR = C(2) 14 GO TO 999 C 999 CALL MOVE (2 RETURN C	+ FX*(2.0*(	••	; )*C(4)*	FX)	•	2 3 3 4 3 4 3 4 5
12 GO TO 999 13 CERR = C(2) 14 GO TO 999 C 999 CALL MOVE (2	+ FX*(2.0*(	••	; )*C ( 4 ) * ; ;	FX)		· · · · · · · · · · · · · · · · · · ·

			~ ~ .					1
i	SUBROUTINE DIAG(N, NDIM, A, T, SCR	,TFA	CT }	i :				
<u>C</u>	- T P			i 	1		1	:
С	THIS SUBROUTINE DIAGONALIZES A	SQU	ARE,	SYMM	IET.	RIC ₁ .F	POSITI	IVE
C	SEMI-DEFINITE MATRIX, A, ACC	DRDI	<u>NG T</u>	<u>0 T</u> F	<u>IE</u>	TRANS	<u>SFORM</u>	<u>at I On</u>
Ċ				1	(		1	1
C			:	-	ł			
ř	(T)T A T = DIAGONAL MATRIX			1	i		ļ.	
	INPUT=			7				
<u>~</u>		AND	۸			<b>.</b>		•
							1	t.
c	A = MATRIX TO BE DIAGO					50.1		
C	: TFACT ' TOLERANCE FACTOR (1.				:ND	ED).		
с С	$N = SIZE OF A (I \cdot E \cdot A)$	<u>IS</u> N	<u>X N</u>	)				··
C	· · · ·		•		2 1		i ,	
C	OUTPUT=				• _ [‡]		•	; 
с С	TTHETRANSFORMATION	MAT	RIX				•	:
	, A $\doteq$ THE DIAGONALIZED V			FΔ			•	٠
C C C C			<u></u>				1	· · · · ·
C C	NOTE CODIE A CODIELI ADDAV			,		i r	1	
<u></u>	NOTE= SCR IS A SCRATCH ARRAY							<i>_</i>
			•				:	
	DIMENSION A(1), T(1), SCR(1)				<u> </u>	<u> </u>		
2	· · ·				1		1	•
	LOC(IX,JX) = (JX - 1) * NDIM +	IX				<u> </u>	1	<u>.</u>
	Z = 1./SQRT(2.)		•	ł			ł	
	ABIG = 0.0			t	:			
	DO, 200 I=1,N	· · ·		•				
•	DD 200 J=1,N			:			1	
					<u> </u>	<u> </u>		
	IJ = LOC(I,J)		DCL		• • •	•		
	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG	= #	BSIA	<u>([]</u>	))	• • • • • • • • • • • • • • • • • • • •		
·	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG 200 CONTINUE	= /	BSIA	IJ	))	, 		
. <u>.</u>	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG	= /	<u>BS</u> (4	<u>(</u> []	))		• •	
	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG 200 CONTINUE	= !	<u>BS</u> (4	<u>([]</u>	))		•	
	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG 200 CONTINUE TF = ABIG * TFACT	= !	<u>.</u>	<u>([]</u>	<u>))</u>		• •	
	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG 200 CONTINUE TF = ABIG * TFACT L = 1	= #	<u>BS</u> (A	<u>([]</u>	))	• • •	1	
 C	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG 200 CONTINUE TF = ABIG * TFACT	= /	<u>BS(</u> 4 - -	. <u>(</u> []	))		1	
c c	$IJ = LOC(I,J)$ $IF(ABS(A(IJ)) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$	!	AB <u>S</u> (A - - ;	<u>([]</u>	))		· · ·	
c	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG 200 CONTINUE TF = ABIG * TFACT L = 1	. = /	<u>ABS</u> (A	<u>([]</u>	))	- - - -	1	
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ )) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$	/	<u>ABS</u> (A	<u>([]</u>	))	- - - -	1	· · · · · · · · · · · · · · · · · · ·
c c c	$IJ = LOC(I,J)$ $IF(ABS(A(IJ)) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$	. = !	<u>ABS</u> (A	<u>(1</u> ]	))	- - - -	1	· · · · · · · · · · · · · · · · · · ·
c c	$IJ = LOC(I,J)$ $IF(ABS(A(IJ)) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$ $11 NSW = 0$		<u>ABS</u> (A - - : :	<u>(1</u> ]	))	- - - -	1	· · · · · · · · · · · · · · · · · · ·
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ)) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$		<u>ABS</u> (A	<u>(1</u> ]		- - - - -	· · · · ·	· · · · · · · · · · · · · · · · · · ·
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ)) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$ $11 NSW = 0$ $LLX = LOC(L,L)$	•	· ·	<u>(</u> ] J				
	<pre>IJ = LOC(I,J) IF(ABS(A(IJ)) .GT. ABIG) ABIG 200 CONTINUE TF = ABIG * TFACT L = 1 NN = N - 1 CALL IDENT(N,T,NDIM) I I = L + 1 INSW = 0 LLX= LOC(L,L) ' IF(ABS(A(LLX)) .LE. TF ) GO</pre>		· · ·	· · · · · ·	-			
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ)) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$ $11 NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF) GO$ $NON-ZERO DIAGONAL FOUN$	то_; ID		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -		
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ)) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $I = L + 1$ $II = L + 1$ $II NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF) GO$ $NON-ZERO DIAGONAL FOUN$ $USED TO ZERO OFF-D$	то_; ID		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -		
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ )) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$ $11 NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF) GO$ $NON-ZERO DIAGONAL FOUN$ $USED TO ZERO OFF - D$ $DO 3 J = I, N$	то_; ID		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -		
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ )) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$ $11 NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF) GO$ $NON-ZERO DIAGONAL FOUN$ $USED TO ZERO OFF-C$ $DD 3 J=I,N$ $LJ = LOC(L,J)$	то_; ID		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -		
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ )) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$ $11 NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF) GO$ $NON-ZERO DIAGONAL FOUN$ $USED TO ZERO OFF - D$ $DO 3 J = I, N$	то_; ID		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -		
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ )) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$ $11 NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF) GO$ $NON-ZERO DIAGONAL FOUN$ $USED TO ZERO OFF-C$ $DD 3 J=I,N$ $LJ = LOC(L,J)$	то_; ID		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -		
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ)) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $I = L + 1$ $11 NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF) GO$ $NON-ZERO DIAGONAL FOUN$ $USED TO ZERO OFF-C$ $DD 3 J=I,N$ $LJ = LOC(L,J) / A(LLX)$	то_; ID		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -	R E	· · · · · · · · · · · · · · · · · · ·
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ)) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $I = L + 1$ $II NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF) GO$ $NON-ZERO DIAGONAL FOUN$ $USED TO ZERO OFF-D$ $DO 3 J=I,N$ $LJ = LOC(L,J)$ $FACT = -A(LJ) / A(LLX)$ $A(LJ) = 0.0$ $DO 14 LL = 1,N$	то_; ID		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -	R E	· · · · · · · · · · · · · · · · · · ·
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ )) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $I = L + 1$ $I = L + 1$ $I NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF ) GO$ $NON-ZERO DIAGONAL FOUN$ $USED TO ZERO OFF-D$ $DD 3 J=I,N$ $LJ = LOC(L,J)$ $FACT = -A(LJ ) / A(LLX)$ $A(LJ ) = 0.0$ $DD 14 LL = 1,N$ $LJ = LOC(LL,J)$	то_; ID		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -	R E	· · · · · · · · · · · · · · · · · · ·
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ )) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$ $11 NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF) GO$ $NON-ZERO DIAGONAL FOUN$ $USED TO ZERO OFF-D$ $DD 3 J=I,N$ $LJ = LOC(L,J)$ $FACT = -A(LJ) / A(LLX)$ $A(LJ) = 0.0$ $DO 14 LL = 1,N$ $LLJ = LOC(LL,J)$ $ILL = LOC(LL,L)$	TQ 1D 01 A GI		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -	R E	· · · · · · · · · · · · · · · · · · ·
	$IJ = LOC(I,J)$ $IF(ABS(A(IJ )) \cdot GT \cdot ABIG) ABIG$ $200 CONTINUE$ $TF = ABIG * TFACT$ $L = 1$ $NN = N - 1$ $CALL IDENT(N,T,NDIM)$ $1 I = L + 1$ $11 NSW = 0$ $LLX = LOC(L,L)$ $IF(ABS(A(LLX)) \cdot LE \cdot TF) GO$ $NON-ZERO DIAGONAL FOUN$ $USED TO ZERO OFF-C$ $DD 3 J=I,N$ $LJ = LOC(L,J)$ $FACT = -A(LJ) / A(LLX)$ $A(LJ) = 0.0$ $DO 14 LL = 1,N$ $LLJ = LOC(LL,L)$ $ILL = LOC(LL,L)$ $ILL = LOC(LL,L)$ $ILL = LOC(LL,L)$	TQ 1D 01 A GI		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -	R E	
	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG 200 CONTINUE TF = ABIG * TFACT L = 1 NN = N - 1 CALL IDENT(N,T,NDIM) I I = L + 1 11 NSW = 0 LLX= LOC(L,L) IF(ABS(A(LLX)) .LE. TF ) GO NON-ZERO DIAGONAL FOUN USED TO ZERO GFF-C DO 3 J=I,N LJ = LOC(L,J) FACT = -A(LJ ) / A(LLX) A(LJ ) = 0.0 DO 14 LL = 1,N LLJ = LOC(LL,L) ILL = LOC(LL,L) ILL = LOC(LL,L) ILL = LOC(LL,L)	TQ 1D 01 A GI		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -	R E	
	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG 200 CONTINUE TF = ABIG * TFACT L = 1 NN = N - 1 CALL IDENT(N,T,NDIM) I I = L + 1 11 NSW = 0 LLX= LOC(L,L) IF(ABS(A(LLX)) .LE. TF ) GO NON-ZERO DIAGONAL FOUN USED TO ZERO CFF-C DO 3 J=I,N LJ = LOC(L,J) FACT = -A(LJ ) / A(LLX) A(LJ ) = 0.0 DO 14 LL = 1,N LLJ = LOC(LL,J) ILL = LOC(LL,J)	TQ 1D 01 A GI		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -	R E	
	IJ = LOC(I,J) IF(ABS(A(IJ )) .GT. ABIG) ABIG 200 CONTINUE TF = ABIG * TFACT L = 1 NN = N - 1 CALL IDENT(N,T,NDIM) I I = L + 1 11 NSW = 0 LLX= LOC(L,L) IF(ABS(A(LLX)) .LE. TF ) GO NON-ZERO DIAGONAL FOUN USED TO ZERO GFF-C DO 3 J=I,N LJ = LOC(L,J) FACT = -A(LJ ) / A(LLX) A(LJ ) = 0.0 DO 14 LL = 1,N LLJ = LOC(LL,L) ILL = LOC(LL,L) ILL = LOC(LL,L) ILL = LOC(LL,L)	TQ 1D ) I A GI )		1ÅL	PRO	- - - - - - - - - - - - - - - - - - -	R E	

	1 4	1	ų i	•		<u>`</u>
3 CONTINUE		1	1 !		1 1 .	1
D0 4 J=I,N				1	1	<u>.</u>
JL = LOC(J,L)			1 1	i		
4 A(JL) = 0.0	i i , i				1	{
IF(L .GE. NN). GO TO 8	- 1		1 . 1	:		•
				•••	<u> </u>	-
L = L + 1				i i	1	
GO TO 1					1 1	
10  M = 1 + NSW			1	i	1 • 1	•
IF(M .GT. N) GO TO 20	) .			í 1		•
MM = LOC(M, M)	1 12,12	12	<u> </u>			•
IF (ABS (A ( MM ).) - TF	1 12912	110		t		
12  NSW = NSW + 1			<u></u>		- 1	• nev
GO TO IO ZERO DIAGONAL	COUND 1100				има рамуз	TREAM
ZERO DIAGUNAL	FUUND UPS	TO GET NON-			STREAM	
· .	JW-COLOMN	IU GET NON	ZUNU DIA		0	
13 DO 5 K=L+N		· · · · · ·		<u> </u>	· · ·	
KL = LOC(K,L)			. 1	1	1 -	
KM = LOC(K, M)	i			. <u></u>		
SCR(K) = A(KL)	• •				1	
A(KL)=A(KM)				<u> </u>		
5 A(KM )=SCR(K)				3		
DO 49 K = $1 \cdot N$	:				<u>.</u>	·
KL = LOC(K,L)			•	- 1	÷ .	
KM = LOC(K,M)		·		1		
SCR(K) = T(KL)		)		•		
T(KL) = T(KM)						
49 T(KM) = SCR(K)		:	1	•	• ,	
DO 6 K=L, N	•	· · · · · · · · · · · · · · · · · · ·	н н	<u> </u>		
LK = LOC(L,K)			• 1		•	
MK = LOC(M,K)		•	!	<u> </u>	·	
SCR(K) = A(LK)			5		•	
A(LK) = A(MK)		. :	۴ ،			
6 A(MK) = SCR(K)	e	· ·	· · · · ·	•	•	
GO TO 11	• •	· .	i _i	·		~
20  II = 1 - 1		·	:	-		
-25 II $=$ II $+$ 1					· ·	
IF ( II .LE. N ) GO TO	26		•			
TO THE REPORT OF	S DIAGONAL	STARE ZERO				
116 0216	DEE DIAGO	ΝΔΙ ΕΓΕΜΕΝΤ	S OF ROW	L ARE Z	ERO	
C ALSO ALL	RUT 7 FRA	ON DIAGONA	L AND GO	TO NEXT	ROW	•
	L FOR NON-	ZERO OFF-DI	AGONAL E	LEMENT		
				-		
$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$	· ·	•				
I = L + 1	0		: •			
IF (I GT. N) GO TO	υ.	. i	, = i	:		<u></u>
GO TO 20						
26 LII = LOC(L,LI)	TC 1 CO T	n 25	1	• :		
IF( ABS(A(LLI )) .LT.	17 1 60 1	رے <u>ں</u>				
C ALL REMAININ		C ADE 7500	BUT OFF		FOUND TO	) BE
C ALL REMAININ	6 DIAGUNAL	S AKE LEKU				
•	KUIAII	ON PERFORM				
$CO \ 42 \ K = L, N$	•	· · ·	·			<u>.                                    </u>
KII = LOC(K, II)	* <u>*</u>					
$KL = LOC(K_{+}L)$		·····	·····	· · · · · · · · · · · · · · · · · · ·	•	
		•				

ALKI	$\frac{K}{I} = A[K]I$	 [] ) + /		1 *
42 ALKL	) = (-SCR)	(K) + A	(KL )):	×Z
4. لاناند ر	$6 K = L_{1}N'$	f	·	
<u> </u>	<u>= LOC(II, H</u>	()		
	$= LDC(L_{1}K)$		1	
SCR (	K) = A(IIK)	)		•
ALLA	K ) = [A[I]	(K) + 1	(LK)	) ¥ Z
46 ALLK	) = (-SCR)	(K) + A(	LK ))*	×Z 🗄
. DO 4	4 K = 1.N		······································	
<u> </u>	<u>= LOC(K,II</u>	}	· ·	۲ •
	= LOC(K,L)	•		
SCR1	K) = T(KIL)	)	•	1
	I ) -= -{ T-{K-I	I-] + T	TKL 7)	*Z
<u>44 I(KL</u>	) = (-SCR)	<u>K) + T(</u>	KL ))⇒	۶Z
GO T	011			

8 RETURN END

_ · ·	
C RHF FPRNDM 0778H	
SUBROUTINE FPRNDM (Z)	
IF (Z)2,1,2	
1  NS = 7777777	
$NG = 2 \times 17 + 3$	
B = 1./345359738367.	
2 NS = NG * NS	
Z = NS	
Z = Z * B	
<u>; · RETURN</u>	
END ; .	