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ABSTRACT 1 

A generalized method called Diagonal Discrimination for nbnlinear 
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I. Diagonal Discrimination for Nonlinear Equation Solving
 

The method of Diagonal Discrimination (DD) was first described by
 

Fariss and Law (1). A'brief description of the algoriThm will now be
 

.given.
 

DD belongs to a class of methods such that the computations always
 

0
begin from a point x in n-dimensional space and a move or increment, Ax,
 

° 
is computed such that x 
1
= x + aAx forms a.search vector along which a 

"better" point is sought. This logic is repeated until no further improvement 

is possible. The choice of the scalar a is made by a one-dimensibnal search 

procedure.
 

The success of the method depends on a property of the Ax vector-which
 

shall be called truncation convergence. An algorithm for minimization has this
 

property if, for sufficiently small a the objective function q(xO + cAx) takes
 

on a smaller value than q(xO). Vhat this means is that Ax must point in a
 

direction such that q decreases at least locally. Hence, a better point can
 

always be found by truncating a to some small positive value.
 

DD uses a unique combination of the method of weighted steepest descent
 

and the Gauss-Newton method to minimize a sum of squares function. A brief
 

review of these methods will now be given. 

I. 1. Formulation as a Minimization Problem. The specific problem to 

.which attention is now given is that of finding the value of an n-vector x 

such that the equations 
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f.(x) = 0; j = 1, 2, ... , n (i-I) 

are satisfied. The f functions, in general., are nonlinear. This problem 

may dasily be formulated as a minimization problem by forming the sum of 

squares of residual as an objective function. 

n 
q = 1/2 1 f. (1-2)j=l ]
 

Clearly, if q is minimized to its absolute minimum of zero, then a solution
 

to the original problem has been obtained.
 

I. 2. Ordinary Steepest Descent. Perhaps the oldest and still very
 

popular nethod for unconstrained minimization is the method of steepest
 

descent (SD). Strictly speaking, this method is a continuous one rather
 

than a discrete one in that the path of steepest descent is a continuous
 

curve. For practical use, however, the direction of steepest descent is
 

found at the base point, x0 , and this direction is used to form the
 

search vector.
 

The direction of-steepest-descent is given by
 

-yg(xo) 
Ax - (1-3)
 

where g 3q, i.e., the gradient of q
 

y = steepest descent distance factor
 



The search vector then becomes
 

X0
x = + a Ax (1-4) 

The value of a is usually selected by performing a one-dimensional search
 

for a minimum in q with respect to a. Perhaps the most popular one-dimen­

sional search is the Golden Section Search (2). A more sophisticated
 

method is described by Fariss and Law (1) and is the one implemented in 

the computer programs listed in this report. It is also possible to 

simply find a value of a for which q is smaller than at the base point
 

rather than finding the minimum. There is no generally "best" procedure
 

to use. Judicious selection of y can greatly enhance the performance of
 

(SD). It is efficient to select this value of y based on the optimal a
 

from the previous iteration. One means of accomplishing this is to use 

the following relationship:
 

i (i) =0 

(i+l) a a0 
- iWbM (1-5)> b 

Y (OU (i) 

-0 0 ­

rhere a (i) = optimal value of a from the ith iteration
 

(i) 
y W = y from iteration i
 

( i+l )y = y for iteration i+l
 

a = lower limit on corrction factor 

b = upper limit on correction factor
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This formula is purely arbitrary and merely attempts to update y
 

based on past experience while not allowing large changes in it from one
 

iteration to the next. The previous y is multiplied by a factor between
 
(i)_"- an t i)>b If Ci)=l 

a and b, with a corresponding to a 0 and b to a >b. If a l, y 

is not changed. Recommended values for a and b are 1/4 and 4, respectively. 

The Ax vector of Equation (1-3) is normal to the objective function 

contour at the base point and is guaranteed to have the truncation 

convergence property. This is obvious in that
 

dq = T d - TT = _ (1-6) 

ctIa I0-*00 

The most serious drawback of the method of steepest descent is the
 

zig-zag tendency espe6ially when near the solution. This property is
 

best explained in the two-dimensional case. Referring to Figure 1-1, it
 

is easily seen that successive directions of steepest descent will be
 

orthogonal (perpendictular in 2-dimensions).
 

Fg 1
 

.. Fig. 1-1. Stdepest descent for a quadr~atic function. 



In order to overcome this difficulty, several techniques have been
 

suggested [see, for example, Booth (3)]. One particular modificaton is the
 

Method of Parallel Tangents developed by ,Shah, Buehler and Kempthorne (4).-


Weighted steepest descent is-another modification and will be described in
 

the sequel.
 

I. 3. The Gauss-Newton Method (GN). This method uses Newton's method
 

as a basis. That is, the equation for determing Ax is given by
 

a2q Ax = 
-q (1-7) 
2 _x


useful and effective approximation is made for the Hessian, - , however. 

In terms of the sum of squares q function, Equation (1-2), 

n 3f.

@q - X 3 (1-8) 

i j=l 

and
 

D2 
 n Sf. Sf. a2f.
 
f (1-9)

jTlj= 1 i 
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Now, for equation solving the f. + 0 as the solution is approached. 

Therefore, the so-called Gauss-Newton approximation is to omit the second
 

2q T a 
 s
 
term in the expression for 3xiqxk That is,
 

2 
 r n f. f. ­@X7 -ik 
i 3 xk j=l i 

Thus, the relation for step size determination becomes
 

-G Ax = -g . (1-10) 

In the absence of singularity of the G matrix, the (GN) procedure is
 

very efficient at converging to the solution from a'near point (i.e., where
 

the sum of squares function becomes nearly quadratic and the f. are small).
 
a 

This behavior could be anticipated from the approximate quadratic representa­

tion of q by using the G matrix as an approximation to @2q/x 2 . Thus,
 

quadratic convergence is obtained in the neighborhood of the solution.
 

As a protection against very long search trials, it is customary to
 

limit the length of the sgeacb ector to some arbitrary value. While this
 

will usually force convergence, it has one distinct disadvantage. In order
 

to clearly understand why this is so, consider a problem where only one
 

variable causes the singularity. In such a case the moves predicted
 

for all other variables would be quite good. Thus, the truncation of the
 

entire search vector is ciearly inefficient in that only the move in the
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maverick variable need be truncated. This justifies the need for the
 

following two operations:
 

(i) Sorting those variables which cause the singularity in G. 

(2) Selectively truncating only the moves for these variables.
 

More will be said about this later.
 

The (GN) method is equivalent to the well known Newton-Raphson (5)
 

(NR) method for equation solving. The (NR) method uses as its basis the
 

linearization of each equation in the neighborhood of the base point. 
Thus,
 

n 3f.(x o) 
f.(x) fk.(xO) + !! ni Ax. .; j=l, 2, ... , n (1-11) 

The move is then determined so that each f. (x) would become zero if all
 

functions are linear. In vector-matrix form, these relations become
 

J Ax = -f (1-12) 

where
 

af. 
J = the Jacobian matrix with J. ­

i] Dx.

3
 

In equation (1-12) is premultiplied by JT (superscript T indicates
 

the matrix transpose), there results
 

(JTJ) Ax = _Jf (1-13) 



Which is identical to Equation (1-11). That is, 

G = jTj (1-14) 

q jTf (1-15) 

Equation (i-14) constitutes a proof that G is always at least positive
 

semi-ddfinite in that this property always holds for a product of a matrix
 

and its transpose.
 

I. 4. Weighted Steepest Descent (WSD). Weighted steepest descent is
 

a modification of the method of steepest descent. It arises from modifying
 

the elements of the search vector by non-equal positive multiplicative
 

factors chosen so as to produce amore effective vector. Specifically,
 

these factors may be selected so that, under favorable circumstances
 

(i.e., when G is strongly positive definite), the search vector will coin­

cide with the one produced by Newton's method, provided the method is
 

applied in a coordinate system where, in relation to the quantity being*
 

minimized, there is no local interaction of variables. The necessity of
 

using such a coordinate system will be made clear in the sequel.
 

The coordinate system required may be created by transforming the 

G matrix into diagonal form. Let T by a non-singular transformation 

matrix such that 

TGT = D (1-16) 



where D is diagonal. Methods for computing such transformation matrices 

are discussed by Wilde and Beightler (6). If this transformation is applied 

to Equation (1-10), there results 

- ITTTT Ax = -TTg (1-17) 

By defining the new variables (coordinates)
 

y = T- I Ax (1-18) 

Equation (1-17) for the search vector y in terms of transformed coordinates
 

may be written as 

Dy = -TTg (1-19) 

On the same basis, the steepest descent equation becomes
 

y = -TTg (1-20) 

In order for coincidence to exist between Newtonian and steepest descent
 

vectors, Equation (1-20) must be modified to
 

-1-T y = -kD lT g (1-21) 
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in which kD-1 supplies the necessary weighting. The scalar factor k is
 

indeterminate (but positive), since steepest descent is intended to define
 

only the direction of the search vector.
 

The general form of the-weighted steepest descent equations, on a
 

transformed coordinate basis, may then be written as
 

y = -WT 9(1-22)g 

in which W is a diagonal matrix of positive elements. Consequently,
 

coincidence between Newtonian and steepest descent vectors can be achieved
 

only if all diagonal elements dii, are non-zero positive, that is, if the G
 

is positive definite. Furthermore, experience has shown that, if reasonable
 

external scaling has been applied, weighting factors which are excessively
 

large to yield an effective search vector will result from Equation (1-21)
 

when one or more are orders of magnitude smaller than others. It may be
 

concluded from this that the favorable circumstances under which it is
 

feasible and reasonable to weight steepest descent so as to force coincidence
 

with the Newtonian search vector are confined to cases where all d.. are 

positive and of the same order of magnitude. 

An important feature of the weighted steepest descent method is that
 

it can be adapted to deviate from Newton's method when circumstances 

do not warrant their coincidence. This can be achieved by adapting the 

calculation of the weight factors. The suggested method for doing this 

will now be described.
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First, assume that the diagonal elements, d.. and the corresponding 

columns of the transformation matrix, T, are rearranged to achieve
 

descending algebraic order. That ,is, dl>d22>..22 .>dnn. If k in equation (3­11 

is chosen as d then 

w11
 

and ideal weighting (i.e., that which causes coincidence with Newton's
 

method) is given by
 

= 
 ; i = 2, 3, ... , nwit d..""" (1-23)
 

An adaptation of the ideal case which has been used successfully is,"for
 

i=l, 2, ..., n
 

/dl dl
 
.. if -1 < and di > 0 
d.. d ­

w.. (1-24) 

.6 .i . > 6 or d i < 0 
dii 

In Equation (1-24), $ is the maximum weight factor allowed. Thus, if 

dii<<d or if d. . <0 w.. deviates from the ideal one and is assigned the11l-- 11i 

value 8. It should be pointed out that Equation (1-24) is not the only 

choice which can be made for non-ideal weighting but is one which has been 

used successfully.
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An outline of the weighted steepest descent method follows:
 

°
 1) Select a distance factor y and a base point x .
 

2) Compute g and G at the base point.
 

3) Find the transformation matrix T and the corresponding
 

diagonal matrix D. Reorder D and columns of T so that the
 

resulting d.. are in descending algebraic order.
 

4) Compute a set of weighting factors from Equation (1-24).
 

5) 	 Compute the y vector as follows: 

a) First compute an interim y indicated here by y i as 

follows : 

i 
Yi = -wi Pi ; i = 1, 2, ... n 

where p TTTg
 

b) 	 Set Yi max- iYi (1-25) 

V= YY/imax	 (1-26) 

.c) Then, yi = -p w-i pi 	 (1-27) 

Note that the yi of largest magnitude has a magnitude
 

equal to y.
 

6) Perform a one-dimensional search along the vector
 

x = x0 + a Ax 	 (1-28) 



where Ax = Ty (1-29)
 

7) Update y based on the experience of the one-dimensional 

search [ see Equations (1-5)]. 

8) Go to"step (2) and repeat until convergence is achieved. 

Equations like (1-22) and (1-23) could also be applied to define a 

weighted'steepest descent algorithm for the original, untransposed coordinate 

system. The best analogy to Equation (1-24) would involve using the diagonal 

elements of the G in place of the d... This approach requires substantially 

less computation to determine a search vector, since only the diagonal of the 

G is required, and the diagonalization calculation is not used. However, if 

interaction is at all significant, there will be no coincidence at all with 

the Newtonian vector, and this approach will be subject to most of the 

inefficient convergence problems usually experienced with ordinary steepest 

descent. One significant reason for this is that it is impossible, in 

general, to weight the Ax.
1 
to make the SD search vector coincide with the NM
 

search vector. To see this more clearly, consider a quadratic function with
 

contours as shown in Figure 1-2.
 

FSxh
 

Fig. 1-2. SD and Exact Search Vectors. 
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The SD direction produces positive values for both Ax and Ax2 whereas
 

the exact search vector requires Ax to be negative and Ax2 to be positive.
 

Thus,'no positive weighting factors exist. It is not proper to use negative
 

weight factors since the property of truncation convergence would be destroyed.
 

To see this, consider a diagonal matrix of weights, V. Then a weighted SD
 

direction would be
 

Ax = -Vg (1-30)
 

Then Equation (1-6) becomes
 

dq '0=gT dx T+
 
d--q T I -gTvg (1-31) 

Thus dA 0 will be always negative only if V is positive definite. Hence,

da os-C 

each scale factor must be positive. 

Therefore, scaling the y vector is another means of'accelerating the 

convergence of steepest descent. As long as the dii are positive, the idea 

weighting factors given by Equation (1-23) can be quite effective toward this 

end. However, if there is a large difference in the magnitudes of the dii or 

if any d.. are negative or zero, the ideal weighting is either dangerous 

or not possible. In these situations-it has been found that the concept of 

weighting the y vector is still useful but must be suitably modified. One 

practical means of accomplishing this is that given by Equation (1-24). 



I. 5. Diagonal Discrimination (DD). It was discovered that (WSD) had
 

one significant shortcoming. That is, no consideration is given to the relation
 

between the d.. and the corresponding elements of the transformed gradient, p.
 

Thus, even if d.. is such that ideal weighting is allowed, the yi produced by
 

(WSD) might be excessively large because of a large pi" The quadratic
 

° 
approximation of q at x upon which Newton's method is based is likely to
 

be-poor at points far removed from the base'point. Therefore, only in the
 

very fortunate but, unlikely (at least in practical applications) case that q
 

is almost exactly quadratically dependent upon a particular yi would a long
 

move in that variable be warranted. In order to account for this situation
 

the weighted steepest descent method was modified into another method called
 

diagonal discrimination (DD).
 

(DD) is a method which involves choosing a superior search vector based
 

upon the following two principles:
 

1) Transformation of the coordinate axes in order to remove local
 

interaction between variables.
 

2) Qomputing the elements of the search vector discriminantly depending
 

upon the relationships between the diagonal elements of the trans­

formed Hessian and the length of a move as predicted by Newton's
 

method in the transformed coordinate system.
 

The development of the method is conveniently begun by considering
 

Equation (1-19). Assume again that the columns of T have been rearranged so
 

that the d.. appear in descending algebraic order.
 

The logic of-DD presupposes that reasonable external scaling of the
 



variables has been accomplished so that the following assumptions are likely 

to be valid:
 

1) The acceptability of a move (from a base point) calculated by 

Newton's method can be -judged from its length--long moves are 

suspect. 

2) In regard to the diagonalized G, positive d.. which are several 

orders of magnitude smaller than the largest one are indicative 

of a linear dependence of q on the associated y coordinate. 

Negative d..ii are associated with those y coordinates for which the 

objective function tends to exhibit a local maximum rather than a 

minimum. 

Diagonal Discrimination then attempts to combine the best features of
 

the (G-N) method and (WSD) by computing the y vector components discriminantly,
 

That is, if the (G-N) move for a particular yi is not too long and if the
 

associated d. . is positive and not greatly different from d ll then the (G-N)
 

calculation is used. Otherwise, yi is found by (WSD) logic. A step-wise 

presentation of the logic for DD follows: 

1) Select a base point; "x, a steepest descent distance factor, y, 

and a steepest desbhnt threshold factor, 6. 

2) Compute g and G at the base point. 

3) Find the T and D. Order D and T so that the d.. are in descendingii 

algebraic order.
 

4) Starting with y' -the elements of y are computed by (G-N) logic,
 

that is
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Yi 	= -Pi / d (1-32) 

until'either 

a) i = n 

b) d.-<ed 

c) Yi > 6 

5) 	 When the (G-N) sequence is termfinhted for reason (b) or (c) above,
 

at the kth y variable, then a switch is made to weighted steepest
 

descent logic treating yK as the first (WSD) variable. That is,
 

YK is assigned a weighting factor of 1 and YK, YK+I' "'.. yn are
 

computed by the (WSD) method as described above.
 

6) If any d..< s d set y. = 0 (these are called null-effect
 

parameters and are discussed in the next subsection).
 

7) The resulting y vector is converted back into a Ax vector by
 

Ax = Ty 	 (1-33)
 

and 	a one-dimensional search is performed along the x vector as
 

given by Equation (1-28).
 

8) The distance factor, y, is updated using Equation (1-5).
 

9)' Go to step (2) and repeat until convergence is achieved.
 

It can be shown in that the DD search vector has the property of
 

truncation convergence. A discussion of parameter selection (8, y, , e)
 

is given below.
 



Selection of 8:
 

The choice of $, the maximum allowable weight factor in Equation (1-24) 

is not'critical. That is, the sensitivity of WSD to 8 is relatively slight. 

A value of about 104 has been used satisfactorily in almost all applications 

of DD.
 

Selection of y:
 

If the variables have been scaled (see next section) in any reasonable way
 

their expected value should be about unity, at least within a few orders of
 

magnitude. A change of 20-50% would, therefore, be considered relatively
 

large. Therefore, if y is chosen to be 0.2, the length of the SD search vector
 

will limit each individual variable increment to be less than 20% of unity.
 

The actual initial choice of y is not too critical since it is updated at
 

each iteration.
 

Selection of 6:
 

The steepest descent threshold factor, 6, should be chosen with the
 

philosophy that if some yi as calculated by Newton's method is greater than
 

6, then a switch should be made to WSD logic. Again, if reasonable external
 

scaling has been applied, a value of about 0.2 for 6 has been found to be
 

satisfactory.
 

Selection of e:
 

The parameter e is used to distinguish between small dii and those which
 

should be treated as zero. The choice of s depends upon the number of significant
 

digits carried in the arithmetic. For digital computer which carry d digits,
 

it is.recommended that E be chosen as follows:
 



= 1 0 -d (1-34) 

I. 6. Singularity of G and Null Effect Variables. The singularity of
 

the G matrix is usually caused by a phenomenon which shall be called null
 

effect. Those variables which cause this condition will be called null
 

effect variables. Null effect occurs when perturbation of a parameter
 

or of some linear combination of parameters has no significant effect on any
 

of the residals in the sum of squares function. In a well posed problem,
 

null effect should not, of course, be present at the solution point.- For
 

systems of nonlinear equations, however, null effect is common at points
 

removed from the solution. This is caused by local redundancies or
 

inconsistencies in the linearized versions of the equations. In either case,
 

two or more linear equations become parallel to each other and hence no
 

solution exists. As an example, consider the problem illustrated in Fig. 1-3.
 

XI 

Figure 1-3. Illustration of Null Effect 
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1. 7. External Scaling. External scaling of variables is desirable
 

(and highly recommended), primarily because of the problem of heterogeneous
 

.physical dimensions. Variables which have different physical dimensions will
 

naturally have different ranges of variation and different impact on the objec
 

function. In any numerical procedure it is desirable that the variables have
 

similar ranges-of variation because of round-off considerations. Vastly
 

different effects on the objective function lead to very elongated contours
 

of the objective function. The latter problem results in large differences
 

in the diagonal elements of the transformed Gauss-Newton matrix, G.
 

The most natural way to scale variables is by way of dimensional
 

analysis. That is, some variables may be made dimensionless by choosing a
 

natural scale factor. An example of this for temperature as the variables
 

would be to set
 

t - tL 
t = t tL(1-35) 

where t* = dimensionless temperature
 

tU' tL = upper and lowier bounds on the range of temperature to be
 

considered
 

In addition to having no physical units, the dimensionless temperature would
 

also, conveniently, vary between zero and one.
 

However, it is not always possible or practical to scale the problem
 

as suggested on the basis of dimensional analysis. Another way of arriving 

at scaled variables which has proven to be effective and satisfactory is to
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choose -an increment for numerical differentiation which will cause a change
 

in the objective function in the last three or four digits (as available on 

the computer to be used). Then choose an external scale factor which will
 

cause the scaled increment for differentiation to be the same for all
 

variables. That is,
 

6
y.
e. 
(1-36)
 

where cd = increment for.differentiation of scaled variables
 

e. = external scale factor for x.
I I ­

6yi = chosen increment for numerical differentiation of unscaled
 

variables
 

This technique can usually be carried out easily if the problem solver has
 

some basic knowledge of the problem and if sound engineering judgement is
 

applied. Variable scaling is automatically provided in the computer programs
 

described herein.
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II. 	 User's Manual for Implementing Computer Programs.
 

II. 	 1. Basic Characteristics. The basic characteristics of the system
 

are 	as follows: 

1) 	 The user sets up arrays containing starting values or simply a
 

range for the parameters being sought, and then starts DD action
 

by the appropriate subroutine cails.
 

2) 	 Thereafter, until the iterative procedure is terminated by
 

the subroutines, the values contained .in the parameter array are
 

under control of the subroutines. 'The user must provide programming 

,to calculate residuals for the equations for any set of values in 

the 	parameter array, on demand by the DD algorithm.
 

3) When control is released, the parameter array will contain "best" 

values, i.e., those which cause the sum of squares of residuals
 

to be a minimum. 

4) 	 All required partial derivatives are obtained numerically.
 

5) 	 There are no internal limits on the size of problems due to dimensions,
 

etc. It is possible to solve problems as large as about 200
 

parameters and 200 equations.
 

6) 	 No special NASA system features are required.
 

II. 2. Skeletal Illustration. A skeletal illustration of a main program
 

which meets the basic requirements for using the subroutines which implement
 

diagonal discrimination is shown in the following:
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DIMENSION X(''), SCALE ("), S(-"), SX(.-), G(-'), XX(''), MODE(') 

RHS(-.), DXBAR(W*), DXX(-.) DQ(..), DQX(-.), YBASE(..),
 

Y(--), D2Q(--), XMiIN(..), XMAX(..) 

.COMMON / DDCOM / COM(9), KCOM(13)
 

EQUIVALENCE (KCOM(l), NCASE), (KCOM(2), NVAR), (KCOM(3), IPRNT)
 

NCASE = (specify a nunber .of equations)
 

NVAR = (specify number of unknown parameters)
 

IPRNT = (specify output option)
 

XMIN( )= 
X( ) = (make initial guesses) or (specify range on each variable) 

XMIAX() 

KODE =0 KODE =1 

10 CALL CONST
 

CALL DDSET (KODE, NVAR, X, XMIN, XMAX, SCALE)
 

20 CALL DDRG (S, SX, G, XX, MODE, RHS, DXBAR, DXX, DQ, DQX, Y, YBASE,
 

T Y, X, SCALE, D2Q, SCALR)
 

IF (KCOM(5) LE. 0) GO TO 100
 

CALL NENSCL (X, SCALE)'
 

Y( ) = (calculate residuals for all equations)
 

GO TO 20
 

100 IF (KCOM(8) .EQ. 0) GO TO 200
 

GO TO 10
 

200 ... (problem completed)
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The dimension statements establish memory requirements for all arrays.
 

Minimum 	 space requirements for these are outlined below: 

Minimum, 
Array Name Dimension 

X,SCALE,XX,M0DE,RHS,DXBAR,DXX,DQ,DQXD2Q,SCALR, NVAR
 

XMINXMAX
 

YYBASE NCASE
 

(NAR)2
 S,SX,G 


DY (NVAR)X(NCASE)
 

where 	NVAR = Number of parameters to be determined 

NCASE = Number of equations 

The COMMON statement creates linkage of the listed variables between
 

the main program and the D.D. subroutines. 

The regression calculations are initiated by calling subroutine DDRG,
 

statement 20 above. However, prior to this, four things must have been done: 

-1) Specify NVAR and NCASE.
 

2) Set the print control, IPRNT.
 

3) Put starting values (initial guesses) for the parameter in the
 

X array or specify lower and upper bounds on each parameter 

(XMIN and XMAX). 

4) Set regression controls by calling subroutines CONST and DDSET.
 



The action required after the return from subroutine DDRG depends 

on the value of KCOM(5) as set by that subroutine:
 

When KCOM(5)=0, the subroutines have probably completed
 

*their operation. If a normal finish was obtained, KCOM(8) 

will be returned as a zero. At this point the X array will
 

contain the parameter values corresonding to'the problem
 

solution, and the final sum of squares, SIGMA, will be <10 - 9 . 

Ef KCOM(8)$-O, a false solution was found and a restart (from a
 

lifferent initial guess) should be initiated by returning to
 

the call of CONST. When KCOM(5)>0, the main program must calculate 

the values of the "residuals" and olace these values in the
 

Y array. If the equations are written so that all terms appear
 

on only one side of the equal sign (e.g., x1
2 + 2x22 = ), then 

the Y array contains -the current value of that side of the 

equation [e.g., Y(l) = X(!)*e2+2.0*X(2)* '42J. 

If it is desired to start the solution of another set of equations, NVAR, 

NCASE, IPRNT and MASCT should be reset and subroutines CONST and DDSET should 

be called again before the next initial call of DDRG. 

II. 3. Internal Print Control and Output Description. The D.D. subroutines 

brought into action by the call of DDRG furnish considerable information
 

during the p~ogress of the calculation if the contained print statements are 

not suppressed. Suppression can be accomplished by setting IPRNT=O.
 

Information for only the last iteration is obtained if IPRRNT=l. However,
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when new problems are run, it is strongly recommended that the complete 

internal print facility be used by setting IPRNT=2.
 

Output items appear in the following sequence:
 

1) Heading line
 

2) Table of starting values and scale factors for parameters
 

3) Table of regression controls
 

4) Iteration line
 

5) Parameter, Internal variable table
 

6) Search table
 

7)" Termination explanation
 

Items 4 through 6 are repeated for each iteration when IPRNT=2.
 

Items described in the Iteration Line are as follows:
 

ITER NO Iteration number, beginning with one
 

INACTIVE Number of "null effect" parameters for this iteration
 

(see Section 1.6.)
 

DIST This is the distance of the desired first try along
 

the search vector, in the scaled parameter space.
 

FSD This is the current value of the steepest descent
 

distance factor.
 

SIGMA Current value of the sum of squares
 

Under PARAMETERS are three columns giving respectively the parameter
 

number, the current value and the parameter increment corresponding to the
 

desired first try along the .search vector.
 

Under INTERNAL VARIABLES are four columns, all referring to the
 

transformed coordinates. They are respectively the diagonalized Gauss-Newton
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matrix, elements, dii, first partial derivatives of the sum of squares, 

coordinate increment for first try along the search vector and the 

MODE of incrementing the transformed coordinates. These MODES are as 

follows: 

0 - Causs-Newton 

1 - Steepest Descent 

-2 - Null Effect 

The one-dimensional search table under SRCHS contains two columns which 

contain 

FX - The factor multiplied by the' search vector increment to 

obtain a trial point. The last one printed is the 

optimum one. 

ACTION Hollerith information which describes the progress 

of the search 

SIGMA - The value of the sum of squares for the corresponding 

value of FX 

The termination explanation is self-explanatory. 

II. 4. Storage Requirements. The large bulk of the required storage for
 

the D.D. program is taken up by the arrays contained, in the DIMENSION 

statement. If there are N equations and N unknowns, this requirement calls
 

for 15N + SN2 words of storage. For a 200 variable problem, this would
 

require about 43,000 words. Thus, this size problem should be well within
 

the storage limits-of the Univac 1108 computer.
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II. 5. Special Features. There are two special features of the D.D. 

program which deserve mention. These are an automatic restart procedure 

and the ability to treat sets of underdetermined or overdetermined nonlinear 

equations. 

The automatic restart procedure operates as follows: 

When KCOM(5)=O, the problem has been solved satisfactorily 

only if KCOM(8)=O. If this is not the case, then a return to the 

call of CONST and DDSET causes a new (random) starting point to be 

generated within the feasible space (i.e., YMAX(I) > X(i) > X14IN(I), 

I=l, 2, ... , NVAR). Note, therefore, that XMIN and XMAX must be 

specified even if the K0DE=O option were used on the initial start 

of the problem. This restart procedure will be generated a maximum 

of five times. The restart procedure can be suppressed by deleting 

the test of KCOM(8). That is, at statement 100, the problem is 

complete.
 

In order to solve sets of underdetermined equations (i.e., more
 

variables than equations) or overdeteTnnined equations (i.e., fewer variables
 

than equations), it is necessary only to provide the proper values for 

NVAR and NCASE. In the case-of -overdetermined sets, a compromise solution 

(i.e., a minimum sum of squares solution) is all that can be expected. 

Therefore, the automatic restart procedure should be suppressed as described 

above. 
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SAMPLE PROBLEM 

A sample problem is included to illustrate -further the programming 

'requirements and usage. In particular, the system of linear algebraic
 

equations
 

2x - x = 1
 

x1 x2
+ 1 

are solved from the initial guess x1 = 1/2, x 2 = 1/2. The answers are 

x= 2/3, x2 = 1/3. The solution was not reached in one iteration because 

the required step size exceeded the limits normally provided and WSD 

was used. 

A listing of the main program and printed output are given below.
 



DIMENSION X(2),SCALE(2),S(4),SX(4),G4),.XX.12)4AODE(2),'
 
S-1 RHS(2),.DXBAR(2)7DXX(2),.DQ2),DQX(22YBASEJ2 L Y2___
2IKa __ 

2 SCALR(2)DY(4)XMIN(2),XMAX(2) , 	 i 
_ COPMON /TDCOM/ 

I SSCAL,.FIT,FDSCD,FDERVDSTMNFSDSIGMA,DXMAX,DSCALNCASE 
2 NVAR,IPRNTMAXCTIC0DEINEWICASEKLUE...TER ,NKIGKJREJ_____ 
3 LVARNEWSTR - -

NCASE = 2 	 _ . i 
-i
NVAR=:2 	 I i 

IPRNT = 2
 
DO 2 I=I,NVAR ­

_ .XMIN(H) = 0.0 i
 

2 	 XMAX(I 1.0
 
X(I) ='0.5 ______
 

X(2) 0.5 
 4 

- KODE= 0
 
10 'CALL CONST-


CALL BOSET(KODE-NVARXXMINXMAXSCALEINEWSTR)
 
I CALL ODRG (SSX,GXXtMOOE,RHSDXBAR,0DX,.DQ,bQX,.--y"IEYYBASEOYX,
 
" - SCALE,D2Q,SCALR)
 
IF(ICODE .LE. 0)'GO TO 100
 

"____CALL NEWSCL(X,SCALE) i _
 

C 

8 Y(1). 2.*X(.) . X(2) - 1.0 
Y(2) =X(1) t X(2) - 1.0 
GO TO I 

C ­

100 I-F(KLUE .EQ. 0) GO TO 200
 
GO TO 10
 

200 CALL EXIT
 
END
 



NONLINEAR EQUATIONS VIA 

STARTING 
VALUE 

0.0. 

SCALE 

.E 

-

" 

.. 
T 

' 

, , . I 

5 0 0S__0.500000E 00 
0.500000E 00 

-0.5000E0.50005 O0 
0.5000E00 

III' i00 _ 

- I 
0i. F 

I 

I ± I 

PARAMETER VALUES 
FIT -. .1000080" 
MAXCNT 20 
OXMAX = 0.1000E C2 
DSCALE = 0.20005 at 

. ... SSCALE_ 0.2000E..' 
FS0 = O.2000 Co 
NVAR __ 2 

NCASE = 2 
FDERIV 0.1000E-z02_ 
DSTKIN 0.5000E-Cl 
FDSCRD 0.0000E:38 

_ 

_" 

_ _ _ 

"10OOE 
:.. 

__ 

! 

, 

" 

" 

" 

I 

" 

, 

--

i 

-'-

, 

" 

I 
_ _ 

_ 

"S,: 

_ 

_ _ _ 

_ 

_ _ _ _ 

I[ER 
1 

NO -INACTIVE-
0 

DIST 
0.25476 

_FSO 
0.200g) 

-__SIGMA............. 

0.250000E 00 

. PARAPE-fERS . iNTERNAL VARIABLES 

i 
2 

O.500000E 
0.500000E 

00 
00 

0.842193E-01 
-0.789034E-01 . .. 

* 
-

0.1250E 
,.4500E 

01 
00 

-0.5000650 
0.150 00 

0.20000 
-0.1i781__ 

1 
1 

SRC H S 
FX 

... . ....... ... . 
ACTION 

--

.. . ... .. 
SIGMA 

~~~2.5000E0.1 --

| 
_ 

- __­

-. a000E00... 
2.0000. 00 

[RY 
TA.EE 

RE 6.38643E-02 
I . 412.97 E-,04 

__ JER NO 

2 

-INACTIVE-

0 

DI0ST.----____ 

0.02589 

50 

0.2782[6 

________ ___ ____ SI 14 
.0.141297E-03 

PARAMETERS INTERNAL VARIABLzS 

1 
2 

.6684395-00 
0.3421 93- 00 

-0.177206E-02 
- 885993E-02 

0.2234E 01 
0.21085 00 

-0.19976-07 
0.5457E-02 

0.00000 
-0.02589 

0 
0 

SRCHS 
FX 

.0005 
2.0000E 

00 
00 

ACTION 

TA -OE 
TAKE PREV" 

-
,' 

SIGA I":­
t.41297E-04' 
3.136385E-4 
1.41297E-04 _ -- " _ 

_ LTER 
3 

NO -INACTIVE-
0 

DIST 
0.00000 

FSO fs 
0;2782. 

._. 

I -

1- " ... SI..... 
0..313638E-13 

pARAMETERS ". INTERNAL VARIABLES 

. 
2 

0.66666--00 
0.333333E 00 

0.769900E-07 
-0.993354E-08 

.- 0.2222E 01 
0.2000E 00 

-0.2633E-06 
0.59605-08 

0.00000 
-0.00000 

0 
0 

DD FINISH NORMAL fiffil ~ r ~ I- _ _ _ _ __-__ 



LISTING OF FORTRAN IV COMPUTER PROGRAMS
 



1 1 'SUBROUTINE NEWFSD (FXt DQDZB, FSD) 

'"1 IF -(FX) 12,,12,21
 
I 12 FACT 0.25 !.
 

13 u TO31.
 

S2.1 Z O.882-55*ATAN(O.56654*ALOG(FX)) 
22 FACT = EXP(Z) ,,M
 

C-a 

31 FSD FSD * FACT " 

32 RETURN 

END
 



SUBROUTINE CONST I 

O I THIS SUBROUTINE SETS THE NORMAL REGRESSI-ON CONTROLS _" 

C I t II I 
-- 7I I __ __ __ __ _ 

i 'COMMON /STLD L UCO ,FERV OSj N E; 

SSC_AL .F.ITtDSrD TFDEN ,STNPFSDSI.GMAi DXMAXDSCAL-C-SEr 

- 2 NVAR,IPRNTMAXCTfICODEtINEW,-ICASEKLUE,,I TERiNKICKv.NRET 
3 IVAR,NEWSTR I 

SSCAL =2.0 .1 i 
FIT 0 .1 ,


=
FDSCO 1.0
 

FDERV= 0.001 - -.
 

DSTMN = 0.05 I
 
FS) =~0.2 ,


* DXMAX = 10.0 

DSCAL = 2.0 
IKLUE =-1 


NKICK 1 _
 

MAXCT = O2b
 
- FIT = 1.E-09
 
FDSCD = 0.0o1
 

NEWSTR = C0
 
C
 

RETURN
 
END
 



______ 

1.'SUBROUTINE TDVEC (N, NRES, SIGMA, DQ, ND2Q', 'D2Q, FSD, 
FSCAL',

11'
, FDSOR ,. DX, MODE2 INACT. NSD, NOEXY 

o 
 THIS SUBROUTINE PERFORMS ROTATIONAL DISCRIMINATI.ONLOGICTO_
 
0 DETERMINE A .SEARCH INCREMENT VECTOR
 

o INPUT= 
 i , I 

c NO._OFVARIABLES (SPACE DIMENSION)
 
C NRES - NO. OF RESIDUALS
 
C SIGMA - SUM OF SQUARED RESIDUALS_ _ "
 
C DQ - ARRAY OF PARTIAL DERIVATIVES OF SIGMA
 
C ND2Q - REPEAT CYCLE FOR 02Q
 
c b2Q - MATRIX OF SECOND PARTIAL DERIVATIVES OF SIGMA
 
C FSD - LIMITING DISTANCE FOR VARIABLE.MOVE-

C FSCAL - LOG(1O) OF UPPER BOUNd FOR INTERNAL SCALING FACTORS
 
C FDSCRD.,UPPER BOUND FOR ACCEPTABLE STANDARD DEVIATION IN
 
C 
 VARIABLE ESTIMATION -- SET i-ERO I.F STATISTICAL
 
C 
 TEST IS TO BE IGNORED 
C 

-

C GUTPUT= I 
C D..SA INCREMENT VECTOR
 
C MODE -ARRAY _INDICATING CAL.CULATION'MECHANISM FOR ELEMENTS
 
C INDX=
 
C 0 - GAUSS-NEWTON . !
 
C 1 - STEEPEST-DESCENT
 
C 2 - SD TRUNCATED BY FSD LI.MIT
 
o -1 *- DEACTIVATED DUE -TO STANDARD DEVIATION FOR
 
C 
 MOVE, AS CALC BY GA'USS-NEWTON, BEING
 
G ESTIMATE BEING ABOVE UPPER BOUNDS AND
 
C -
 LESS THAN ST DEV OF ESTIMATE
 
C -2 -DEACTIVATED DUE TO SECOND DERIV BEING
 

.LE. 10o9 X LARGESTSECONDDERIV
 
C INACT - NO. OF DEACTIVATED VARIABLES
 
C NSD - NO. OF VARIABLES IN SD (MODES I OR 2)

C NOEX - NO. OF VARIABLES NOT DEACTIVATED BUT WITH EXCESSIVE
 

-C ST 0EV OF ESTIMATE 
C
 

C NOTE=
 
C THIS PROGRAM USES ONLY -THE DIAGONAL ELEMENTS OF DQ. IF
 
C THESE HAVE-ALREADY'BEEN CONDENSED,. I.E.,_ PUT_IN 
 A ONE-
C DIMENSIONAL 
ARRAY bF DIAGONAL ELEMENTS ONLY, USE THIS ARRAY. 
c 
 AS DQ AND SET ND2Q = 0.
 

2 DIMENSION DQ(1)1.DX~i), MODEM1), D2Q(1) , _ _ 

11 NSD = 0 _ I "-

* 12 INACT =0
 
, NOEX O _ _ _ ­1 ISD .0 
 ' -i" F 

13 IF (N) 999,.999,14 
 ! I
 
14 ND20P ND2Q + I 
 , 
15 DCHK = 1.OE-9 * ABS(D2Q(1)) " I - ­

-16 'VARIA -=-SIGMA/SQRT(FLOAT(NRESY)) 
 ,
 
17 IF (FDSCR ) 21,21,18 
 -




188,VCHK = VARIA /FOSCR**2* 

21 'II 1 " I " -= 

22 CO 92 1 ;'1,-N " 
KEX 0 

23 IF (FDSCR ) 313124
 
24 IF (D2Q(11), - VCHK) 25,31 13
 

25T (D(I**1 - VARIA *020(11)) 26,30,30
 
. 26 PODEH) = 1
 

27 0I(1t
=NACT+
 

29 GO TO 91
 

30 KEX= 1 -"
 

31 IF (D2Q(11) - DCHK) 32,32,34
 
32 PO--E(I) = -2
 
33 GO TO 27 - __
 

34 NOEX= NOEX + KEX i
 
C 

41-I--F--(NS0) -42,42,61 

42 IF (ABS-(DO(L))- FSO02Q(II)) 43,43,51

)0=-Q 


44 PODE(I) 0
 

430 (XI (-)/020(II-)­

45 -GOTO 9C' 
.51 IS0 = I 

52 IISD = II
 
53"-ALL-RESCALUN-IS+I, N020, D2S(IISD), FSCAL,. DXII-)
 
54 CX(1) = -SIGN(FSDDQ(T))
 
55 WODE(I) =' ................
 
56 NSD = NSD 1
I 

57GO TO-91
 

C
 
61-IF-- ( 0Q( I.)Y-7j,62,71 

62 CX(I) = 0.

-63"00E(I) =O0
 

64 GO TO 91
 
C
 

71 IF (ABS(OQ(I)) - ABS(OQ(-ISO))/OX(I)**2) 72,72,81 
-DQ() 


73 GO TO 55
 
(I) 'D7 *FSD-DXIV-**27--ABS(Q(ISO))
 

81 DX-) = -SIGN(FSD, DQ(1))
821'00E(1)-- -2
 

83 GO TO 56
 
C­

9111 =11 2 ND2QP 
 I 

I2-C0 NT'I NUEC 
f-F-(-IS o -. EQ-07)-- G--TO- 9 9 

0.0
'YBIG = 


:'TEST = ABS(DX(L)) - YBIG
 
-FTEST--GT:'0.M--YBIG= ABS(X{I)} -.
 

93 CONTINUE
 



_ DO 94 I=I'SDNL 
9z" DX('I) =(DX(I I YBIG) FSD 

IIC * I999 RETURN -__ 

.1! END I 1
 
I ­



1 SUBROUTINE CONRE (N, "FDSCR , FIT, -SIGMA, NCASEt. INACT9: NOEX, NSD, 
11 LTER, MODEOOE2DE2 IEX I T)I 

I - tC ' i I 
2 DIMENSION MODE(I)W DX(l)b DER2(1) ...
 

C
 
O SUBROUTINEDETERMINES WHETHER REMALNINGSTEPSE1FOR­_THIS 


C VARIABLES ARE SMALL ENOUGH TO SATISFY CONVERGENCE
 
o CRITERLONo.
 

.11 IEXIT"= 0 : _ _
 

. 12 IF (N) 998,,998,21 * I
 

21 IF (FDSCR ). 22,22,31 ' 

22 IF (SIGMA - FIT) 998,998,999
 
0-"
 

31 IF (NQEX) 32s32,999
 
32 IF (NSD - (N-INACT)/4) 33,33,999
 
33 IF (ITER) 34.34,35
 
34 IF (INACT) 35,35,999
 

*- 35.NDF NCASE-- N + INACT
 

37 IF (NDF) 999,999,38
 
..38 EPSSQRT(SIGMA)/FLOAT(___NOF_)
 

4 1 I 1 .......
 
42 DO 45 I = 1,N
 
43 IF (MODE(1)) 45,44,44-. . ...
 
44-IF (SQRT(ABS(DER2(II,)))ABS(DX(I)) - FIT*EPS), 45,.45.999
 
45 II II t NDER2 + 1
 
46 GO TO 998
 

C
 
998 IEXIT = 1 

999 RETURN
 

'END ,
 



I ;SUBROUTINE MATMPY MI, MJ, MK, MA9 MB, MC,. At: B, C)

-1[
a _ "__ I 

2 DIMENSION A(I), B(I), C(I) I I
 
C•I
 
C ,ATRI.X MULTIPLICATION C z A X B I
 
C _ C(MIMJ) MJA MK BK.M) t
 

C-,
 
-C REPEAT CYCLES=_ ABS_VALUES_.OF_MA, MB,MC _____ 

OR C, MAKE MAMB, OR MC NEGATIVE
C TO USE INVERSE OF AB, 


C
 
0 IF A OR B IS DIAGONAL, SET MI CR MJ = 0
 

C (TRUE DIMENSIONS MI=MJ=MK)
 

C TO USE CONDENSED DIAGONAL FORM (XCOND(I) = &UAI,
 
C SET MAMB, OR'MC = 0
 

-THIS VERSION HAS NO DOUBLE PRECISION OPTIONC .-

C '_
 

10 KREV =0 

11 IF (MI) 12.41,.12 -_ _
 

12 IF (MJ) 13,.51,.13

13 JREM = M'_-


JREMO = JREM I,
 

KRESE = MK -


IREM MI
 
C
 

21 IF (MA) 23,.22,22 

22 IKOIN = I
 
IKI.NC MA
 
GO TO 24
 

23-IKOIN ='IABS(MA)
 

IK NC = I
 
24 IF (MB) 26,.25",25
 
25 KJOIN = MB
 

KJINC = 1 I 

."
GO TO 27 

-26 KJOIN 1 

RJI.NC IABS(MB) 
2Y KJXIN = 0 

-MC =MC ­

--- G -TO 717
 
C
 

41 IF (MJ) 42,,61,.42 - I
 

42 JREM = MJ­
-JREMO JREM
 
IREM =JREM
 
KRESE = 1
 
IKOIN = IABSCMA)
 

. . . MB M B - -.. '
 

'mC-=MC -;
 

S43 IF (MMB) 45,44,44
 
44 KJOIN 1MMB _
 

KJXIN =-I,­
0 TO 46 I -'
 

http:42,,61,.42
http:13,.51,.13
http:12.41,.12


45 KJOIN 1_ _I-
KJXIN -IABS(MMB) 

-1 46 GO TO 71 * a 

51 JRE V r Ml _ 
JREMO =JREM 

a IREA= JREM 

' 

I 

a 

I 

I 

I 

I 

:I --

I 

I 
a 

IKOIN = I + 
Fmc = -M4Ca 

IABS.(MB) I 

a 
a 

KaEV = 
GO O 43 

I , M 

S IJO = i 

61 IF 6M 62.I,62 . 

_-J R EJO62IJ X IJOI + IaDELa 
KRESEou- I iI r-a 

JRii = IJ1 

66-1JK--I TAB;M 

72 IK IN " - I 

31JIN = +1 

.. . IJ 
IJO IJ 

...5- IR -IN = M C 

IKJOIN = i 

- B 

IABSaB a 

JR M 
66 IKIN 

.. .. IJOI[,N 

= 1__ 
=I 

-=1 IABSMC ) 

_ __ _ __ _ 

a 

-- GO 7IO. . 

102GO TO 101 

72IOIJI = MGO TO 74K 

03NKREM=.KRa 

KJa =aKJ 

3 SUM= 1. 4__IK 

GO TO 1 

74GO TO 101 -

*_ 

.. 



115 IF A(KJ)) 116,121,116
 
1116 IF (BIK)) 117,121,117
 

117 SUM A['KJ)*B(IK)U 


121 KREM = KREM - l_1 

IF (KREM) 123,.123,122
 

__12_2_. K__= IK K I:NC+__. 
KJ = KJ + KJINC
 

GO TO 111 
C ­

123 C(IJ) = SUM 
IJ =, IJ + I.JINC 

____ JRE14 R.E-_ -JREM Iy_._J3 1,F 1 3 2 4IF (JREN) '
1 ,1 

1._24 KJLO Q= - _ _ _ _ _ _ _ _ _. 0 -O KJOIN _ _ _ _ _ _ _ _ 

KJ -KJO 
K =IKO
 

GO TO 103
C 

131 IRE = IREM - I
 
IF (IREM) 999,.999,132
 

132 IJO = IJO + IJOIN
 
IJ - JO
 
JREM- = JREMO
 
IKO =-IKO I+KO IN
 

-- - IK =- IKO-

Ki - KJX + KJXIN
 
TO 102
 

C 

999 RETURN
 
C 

END
 



C 

1 :SUBROUTINE RESCAL (N, NDIAG, DIAG, F1O,-SCAT)
 

o ;INPUT= K i. 
" _ _ N - NO. OF _.ITE4S _TO BE RESCALED _ ' 

C NDIAG - LEFT DIMENSION OF CONTROLLING MATRIX DIAG 
C r I IF_IDAG_I S_ONE.D-I1ME4US.:ONAL oS.L_lNDIA.G.Pi__ 
O DIAG - CONTROLLING MATRIX ­

o IF TWO-DIMENSIONAL.CON.TR 0 LLI.N GEL,.EM-KENTSIM USt -.. 
C BE ON DIAGONAL 

.F1O - MAXIMUM CYCLES OF 10 ALLO WED IN SCALr
 
O OUTPUT=
 
o SCAL - ARRAY OF N RESCALE FACTORS _
 

C
 

2, DIMENSION DIAG(1), SCAL(1) . _ 

C..
 
__11 IF (N - 1)_999,13,12 

12 IF (F1O) 13,.13,21 -..
 
13 O 1' N
14 1,N-.., 

1i4 SCAL) = Y1.0 * 


-15 GO TO 999
 
-C ­

21 _DMAX - DIAGC{ ) _ -
S22 II = i 

23 00 25 I = 2,N ..
 
241 = 11 + NDIAG + 1­
25 OMAX = AMAXI(DMAX,OIAG_(II)) _
 

26 IF (DMAX) 13,13,31
 

31 II = I 

* _32 .FACT -.ALOG(1O.O)*FIO
 
33 O 39 I I,N 
34 IF (DIAG(II)/DMAX) 35,35,37
 

35 SCAL(I.) EXP(FACT)
 
36 GO TO 38. .. . . .
 
37SCAL(I)- EXP(FACT*'I.O -EXP(O.5ALOG(DIAG.(LI)/DMAX)/FACT)))
 
3811 = II +NDIAG_+ i
 
39 CONTINUE
 

D
999 RETURN i 
E N D. .. ... . . .. .. . .. . -.. ...- -- " < " " - . . . . . . . . 

http:TWO-DIMENSIONAL.CON.TR
http:oS.L_lNDIA.G.Pi


1 SUBROUTINE IDENT (N,.s, NS) . :
 
d, TilLS IS SUBROUTINE IDENT 
 -


C' CALLIDENT (Nt StNS)_ CAUSES AN IDENTITY MATRIX (NXN) 
C BE PLACED IN S, WITH LEFT DIMENSION OF S = NS. 

IF NS = 0, ACTION IS SKIEPPED .
 
C
 
* -2 DIMENSION S(1) .
 -

S 11i IF'NT 999,999,12 1 ,
12 IF (NS) 999,999,13 _ -13 IX 1×-i:
 

. 14 CO 19 I I,N "'[ 
 _ 
15 IJ IX
 
16 0O 18 J :1N 

17 S(I.J) =0. 

_
 

18 IJ = IJ + i "1
 
19 IJX = IJX + NS ­

*21 IJ =1 , 
22.INC_ NS + I . ­
23 DO 25 I -- 1
IN
 
24.S- i10.J- .0 o
 
25 IJ = fJ + INC
 

C
 
999 RErTURN 

C 
END
 



1 'SUBROUTINE MOVE -(N, A, B). 

C THIS IS SUBROUTINE MOVE 

2 DIME NSION AI), 8(L). 

I 11 IF (N) 999,.999,12 
12 CO 13 1 liN 
13 B(-) = AM) 

C 
* 999 RETURN
 

E 
__ _ END __ _ __ _ 



- -

I :SUBROUTINE ORDS (N, NSEP," MDIAG, DIAG, MS,. N9, S)
 
0 THIS IS SUBROUTINE ORDS , 

2 'DIMENSION DI-AG(1),S I0 

C. ;THIS SUBROUTINE INTERCHANGES THE DIAGONALL_ELEt O3FS_0_ 
C PATRIX DIAG SO THAT THE NSEP SMALLEST VALUES OCCUPY THE
 

C LAST NSEP DLAGONALPOSITI-ONSIN DESCENDING ORDER. IT
 

* C ALSO MAKES THE CORRESPONDING-CHANGES IN MATRI.X S BY
 
-
o INTERCHANGING COLUMNS 


C
 
C INPUT=
 
C N - ABS(N) = NO. OF ROWS AND COLUMNS IN DIAG AND S 

C SGN(N) = +, ORDERING IS TO BE BASED ON MAGNITUDE 
ORDERING IS TO BE ALGEBRALCC SGN(N) =-, 

DIAGONAL ELEMENTS TBE ORDERED AT BOTTOMC ' NSEP = NO. OF..

C MOIAG = LEFT DIMENSION OF DIAG (IF fLAG IS A CONDENSED,
 

G E.E., ONE-DIMENSIONAL AR'RAYv. SET-MDIAG = O) 

C FlAG = MATRIX WHOSE DIAGONAL ELEMENTS ARE TO BE 

REORDEREDC 

C MS LEFT DIMENSION-OF MATRIX S 

C NS= NO. OF ELEMENTS PER _COLUMN INS__ 
O S MATRIX- WHOSE COLUMNS ARE TO BE REORDERED 
C


-OUTPUT=
C --

C 

11 NN ABS(N) 

12 IF CNIN) 999,999, 13 

C 
13 NSTOP MAXO(, NN-NSEP) 

21 NREP = NN-"­
22IF (-NREP -NSTOP) 999,999,23 

-_ 23 IMI.N = 1 ....... 
24 IF (N-) 25255,27­
25 XMIN = O 1AG{I) 
26 GO TO 31 

.. 27 XMIN_.T - =_z ABS(DIAGII))___S AG { _________________ ___I _} 

C 1-'_31.~ l 
-

II-.... ___ __ 

2031 
32 

IIMIN 
CO 45 

1 
I_=. 2,NREP_ - ' .... 

33 II = IIMDIAG + 1 

34
35 

'IF
X = 

(N) 3535,3
DIAG(II) 

36 GO TO 41 

37 X = ABSCDIAG(LL)) -" 

"--­-41 IF (X -XMIN) 42,42,45 
42 XMIN = X ­

--43-MLN=1I -' 

44 I'MIN =I I 
45 CONTINUE 



C 

51 !IF ([IN - NREP) 52S-71,52 
S52- X = DIAGI iN) 
53 CIAG(IIMIN) = DIAG(II) 
54 UI.AG(II ) = X 
55 IF (NS) 71,7161
 

* 	61 IJMIN'= I + MS*(IMIN - 1). 
* 	62 IJ = I + MS-NREP - 1)
 

63 CO 68 I = INS
 
64.X = S(IJMIN) 

* 	65 S(LJMIN), = S(I.J)
 
66 s(1,J) = X 
67 IJMIN = IJAtN + 'I 
687D - IJ f. I 

* 71 N-PEP = NREP - I
 
72 GO TO 22
 

999 RETURN-­

- END 



- -

__ __ 

* SUBROUTINE DDRG (S,.SX,G,,XX,14OOE,RHS,.DXBARDXXF.DQtDQX,Y,YBASEDY-
I XSCALE,D2Q,.SCALR) _ I iO - '!;I 

_ 

C . THIS IS THE UNIVAC 1108 VERSION OF DDRO 

C 
NASA UNDER CONTRACT NAS8-21484 t


C . PREPARED FOR 
 APRINCIPLE INVESTIGATOR
C BY V.. LAW 
=-------C MAY BE FOUNDC ..- DOCUME-NTATLON FOR USING THIS SUBROUTINE 

C IN THE FINAL CONTRACT REPORT _.
 

C
 

DIMENSION SX(I),SCALR(1),XXCI),X(1),.DQX(IDY(L.)-,YC1_),YBASEC1),
 
t i C 
 ( .. G(I .fD2Q() DQ( )S'DXBAR i D_x )RHS ;S 


DIMENSION MODE(1)
 
IThIMENSLON"ACTION7"),CONST(34) * 

C _ -A 

... .. COMMON-TC M 
_ _ 

-.1 SSCAL,FIT,FDSCDFDERVDSTIMN,.FSDSIG4A,DXMAXDSCAL.,NCASE7 

2 NVARIPRNTMAXCTICODE,.INEWICASEKLUEt1TERKICKF-NREt
 
3 I.VARNEWSTR


C
 
IFt(KLUE). 9, 10,10 I
 

-.9 KLUE = 0 

NRET = 1
 
10GPTO(20,150,6Oi1O2) NRET
 

o LLYST. SARTING- VLUE 
__ _ ....C 

.. 20--F (I PRNT) 31,31,22 
=
 

22 WRITE(6,1022) (IX(),SCALE I),I ,NVAR)
 
D.D..5X//12X,
-- 1022-FORAT(IHI,4X,29HNONLINEAR EQUATIONS VIA 


10221 BHSTARTING/13X,5HVALUE,12X,5HSCALE/IH /(16,E18.61E
15.4 ))
 

. ..
WRITE(6,1023)
 

1 FIT,MAXCT,DXMAX,'DSCAL,.SSCAL,FSDtNVAR,NCASEFDERV,DST1ttFDSCD
 
VALOES/lX,.
--TOU-3--FORAT1HO,4X,ISHPARAMETER 


10231 8HFIT =,E11.4/7X,8HMAXCNT =,16/7X,
 

,i0232 8HOXMAX z-,EIl.4/7X,8HDSCALE =,E11.4/7X,8HSSCALE =,EI.4/7X,
 
=,16/7X,
10233 8HFSD =,El1.4/7X,8HNVAR =,16/7X,8HNCASE 


10234 8HFERIV =;EL1.4/7XSHDSTMIN = E 4/ix SHFDSCRD -EIt.4)
 

- INI TIAL-I ZE 

31 ITER = I
 
= 
 : ""
 ICODE I 


INEW 
 I
 

IQUIT 1
 
NhN NOASE *NVAR 

KICK 0 . 

NSQU = NVA NVAR 
CALL[-IDENT(NVAR;SX;NVAR)

ILINM 

-FXMAX-- .E+-O8
 
-C 



C "'NOTE-- SX IS S FROM PREVIOUS ITERATION:'_" 
DO 32 t=1,.NVAR , " . . 

.32 SCALR{I) 1.0 1 , ! 

C CALC AT BASE POINT _ _ 

41 --CALL MOVE(1NBx2l
, -I 

-

--
. .j F-

NRET=2 I 

C -

GO TO 998 _ 
. , -:i I ­

50 CALL MOVE_ (NCASE,Y,.YBASE) ' . 

. CALL MATMPY(1,.iNCASE,-NCASE4,NCASE, 1,YBASEYBASESIGMA)
 
C 
C ACCUMULATE G MATRIX AND RHS VECTQR

C 

- DO5 I.I,.NVAR 
DQX{) = SCALR(I) t FDERV 

51 RHS(i) = 0.,0 : 
- DO 52__JI,.NSQU 

52 G(J) = 0.0 
IVAR = 1 __: 

55--0--b 56 I1I,.NVAR
 
" ' ISX = L + NVAR * (IVAR- I)
 
56 XCI) = XX(I) + DQX{IVAR) * SCALE(I)* SX(ISX)
 

___ NRET 3 __ 	 ____ ______ 

GO TO 998
 

60 DO 61 ICASE = 1, NCASE 
IJ = ICASE + NCASE-CIVAR - 1) 

61 DY(IJ) - "'Y{ICASE) - YBASE(ICASE))/OQX(IV'AR) 

S iFTIVAR 72,80,80-NVAR) 


72 IVAR = IVAR + 1 
GO TO 55
 

C 
80 	 CALL MATMPYCNVAR,NVAR,NCASE,-NCASENCASE,NV.ARDYDYG)
 

CALL MATMPY(NVARI,,NCASE,-NCASE,NCASE,.NVAR,ODY,.YBASE,RHS)

C
 

C APPLY DO LOGIC FOR SEARCH VECTOR
 

• CALL DIAG(NVAR.,NVAR,.G,S,.X,!1.E-08) * 

CALL ORDS -NVAR,NVAR,NVARG,NVARNVAR,S) 
III = 1 _____ 	 __ 

DO 83 II,NVAR 
_ _ D2Q(1) = G(II) , __i 

83 Ifi = II + NVAR + i 
CALL MATMPY{NVAR,NVAR,NVAR,NVARI.NVAR,NVAR,.SX,S,)_ 
CALL'VATMPY(I,NVAR,NVAR,.I,NVAR,I,RHS,S,UQ) 
CALL TDVEC(NVAR,NCASE,SIGMA,DQ,O,D2Q,FSO,SSCAL.FDSCDDXBAR,
 

1 MODE,INACT,NSD,NOEX) - , 

CALL MATMPY(NVAR,1,NVAR,NVAR,I,1,G,DXBAR,,DXX) 
CALL MATMPY(I,.ItNVARI,,DQDXBARDQD ) 

C. CCK STEP .IZE
 
C
 



_ _ _ _ _ 

:CALL MATMPY(ltNVARL,1r1.,DXBARDXBAR,DIST)
 

_ ' DO 84 I1,,NVAR _________
 
84 DXX(I)= SCALE(1) :' DXXCI) I '
 

- IF(I.PRNT - 1) 87,87,85
 
:1084 IF(IPRNT - 1)88,85,88 

- 85 WRITE (6,1085)........ 

.1I 

__ _ , • . 
1 ITER,INACT4 DIST,FSD,,SIGMA 

1085 FORMAT(1HO,-3X,7HITER NO,4X,IOd-INACTIV.E-,5X,.4HDIST,8X,3.HFSD, 
i 61X,5 HSIG A/t 8, iOX,1"5X,2 F12. 5I 54XEI5.6) 
WRITE(6,2085)

2085 FORMAT CIHO,i17X, 1OHPARAMETERS,34X,18HINTENL VARIABLES/1H)
 

DO 86 1=1,NVAR_ __.
*W RIT E ( 6,10 8 6) ---- __ _ _ _ _ _ _ _ _ 

1 I,.XX(1)tDXX(I),D2Q(I),DQ(I),DXBAR(I.),MODE{( )

86 CONT IN U- .... 

'1086 FORMAT(16,.2EI6;6,8X,IH*,EIS.4,EI4.4,F11.5,1,5)
 
8. -Go Tc (87,1200,1202,42o4) ITUIO _ _ 

I 
_C___ 


C 
87 CALL CONREINVAR-FDSC IF.IT,SIGMA,NCASE,INACTINOEXNSD,
 

1 ITER,MDE,DXBAROD2Q,IEXIT)
 
S-IF(I EX.I.T) 9b,90,200
 

90 IF(ITER.-
 MAXCT) 91,202,202
 
91 IF(KICK -NKICK) 1091,204,204
 

1091 IF(LKICK) 4091,4091,2091
 
2091 IF(IPRNT - 1)4091,4091,3091

3091 WRITE(6,5091) 
KICK
 
5091 FORMAT(1HO,.4X,39HABNORMAL[Y' SMALL-STEP EXIT 
SUPPRESSED--3)-

LKICK = 0 
__4091 --IF_(DIST ---DXMAX) 92,,92,93 

92FX = 1.0GO TO 94 

-

93 FX DXMAX / DIST
 
94 CONTINUE
 

C SETP-ONEZOIMENSIONAL SEARCH
 
C
 

I NFXMINFOEV -/"0'IST
= 
QO0 = SIflK __ _ __ __ __ 

QO 
_ 
_ _


Q Q 
QS = 0.0 

-

ICON = 0
 
IF(IPRNT - 1)317,317,316 " _
 

316 PRINT 1316.. 
 . .
 
1316 FORMAT(1HO,.4X,5HSRCHS/7X,2HFX,10X,6HACTION, 14XF5HSIGMA)


7--CALL "SRCHS ICON, QS, DQOL, FX, NVAa, FXMIN, FXMAX.IYfMACTI OWtdNSTji 
C 

1FTI CO '2)206'20 7322 . •
 
322 IF(IPRNT - 1)326,326,323 
 ._ 

"-323" IF(ACTION(1))324,324,325 
324 PRINT 1324,ACTIONC2),(ACTION(I),I=5,7),Q 

­

-1324 -FORMAT(2XI'PE13'4";4X,3A4IPE75r) 
GO TO 326 % 



325 PRINT 1325d(ACTION(I__I=27 __
 

1325 FORMATC5X,6A41PE19.5) . 1
 
i326 L.FCICON)122y.122,331 : _ _ " _ ___
0. 	 . I I I 

33h 	 DO 332 I=IVA 
332 	 X~l) = XX(1) + FX*DXX(1) II 

-I RET = 4, 	 - ­
i GO TO 998 	 i i[
 

C E" .	 - I 

102 CALL MATMPY(1,,NCASE-NCASENCASEI,Y,'Y,Q)
 
"QS goQ-QO ..
 

GO TO 317 ­

122 IF(NSD) 124,124,123 .,
 

123 CALL NEWFSD(FX,0QFSD) ­

124 D0 125 1=INVAR
 
125 X(I) = XX(I)_+ FX_* DXX(I)
 

CALL MOVE (NSQU,G,SX)
 
S
CALL.R.ESCAL(NVARO,D2-,..DSCALtSCALR)
 
XVAR =NVAR
 
"XSO NSD 1 

IF(FX* DIST FOERV SQRT{XVAR) XSD 126,126,127
 
126 KI.CK = KICK I
 

LKICK i
 
. 127 __CO.,ITINUE ..... "-


IEER = ITER + I
 
GO TO 41
 

C
 

C TERMINATION (SET ICODE = 0)
 
C KLUE = 0 O.K.
 
C I MAX NO ITERATIONS __ ___ ___ ___
 

C 3 L STEP ABNORMALLY SMALL
 
C -1 SEARCH NO GO 


200 KLUE = 0
 

IQUIT= 2
 
GO TO 1084
 

1200 IF(IPRNT)999,.999,201._
 
201 WRITE(6,.1201)
 
1201--FORtMAT(IHO,.4XiI8HD.D. FINISH NOR-MAL) ___________
 

GGO TO 999 . ­

202- KLUE = 1 .. ..... .. .
 I.. 


IQUIT = 3 ___
 

GO TO 1084
 
1202 IF(IPRNT)999,.999,203 


203--WRITE(6,1203) 
_
 

1203 FORMAT(IHO,.4X,41HD.D. HAS REACHED MAX NUMBER OF ITERATIONS)
 
GO TO 999
 

204 	 KLUE=33
 
IQUIT = 4 "" _ _-


GO TO 1084,­
,1204 IF(IPRNT)999,.999,205 . 
.1205 WRITE(6.1205)AL 
.1205 FORMATC1HO,AX,55HD.P. TERMINATED DUE TO LAST .5TEP BEING ABN.LAALL 



SMALL) H 

! GO TOl 999 I i
 

IY -	 ;' 

0 , "" 
.206KLUJ -1 L 	 I ' 

~*WRITE(6,,1206)
 
NOT POSSIBLE, ONE-D SEARCH TRUNCATED B
1206 FORMATIH6-4X,59HSOLUTION 

1EYOND FXMIN/5X,52HERROR PROBABLY DUE TO INCORRECT FUNCTION CALCULA 

2TION), I * : 

999 	 ICODE =0
 
IF(KLUE .NE. 0) NEWSTR NEWSTR + I
 

I1. 5) NEWSTR 0
FNEWSTR .GT. 

998 INEW = NRET - 2
 

RETURN
 
-iC 


END
 



- SUBROUTINE NEWSCL[X,.SCALE) 
DIENSION X(1),SCALE(1)
 
COMMON /TDCO/'COM(9),KCOm(13)
 

* ;INEW =KCOM(6)
 
AR--- KCOM(2) 

IF.{IEEW)8,3,8 _ ,3 
 D 7 > lNVAR 

IF(ABSCX(I)) - I.E-08)6,.6,5 

5 SCALE(I. ABS(X(I).)

GO TO 7
 

6. SCALECI) 1.E-081 

7 CONTINUE _- _ 

8 RETURN 
--END
 



DI.MENSION X(I),XMIN(I)XMAX(I),SCALE(1):-

Z NEWSTR I
 
CALL FPRNOM(Z)
 

i -Y"kODE_ -. EQ.-0) GOTO 3; 
, CALL.FPRNDM(Z) i 

DO 2 I=lqNVAR I 
2 X(I) = CXMIN(I). + XMAX(I)) * -Z 

3 0 4-I= , NVAR'- ' 
-!SCALE(I) =-ABS(X(I)) !-" 
IE(SCALE(I) .LT. I.E-08) SCALECI) = I.E-08 

4 CONTINUE;KOEO 0 

RETURN
 
END -­



SRCHS (ICON, Q, D~i- FX, NVAR,: FXMIN, FXMAX, ILIM,. 
11 ACTION, CONST) _ _ _ _ _ 

-~1TSUBROUTINE 


__ 
Vt(4-') " I . I j 

3 DIMENSION ACTION(7)• "V(41) I -


2 VbI'MENSION- CONST(34) 'ACONST(9)
 
5 EQUIVALENCE (ACONST(),ICONX),(ACONST.(2_,QO),.(ACO-NST(3)h.DQO)I
 
51 (ACONST(4),FXOPT), (ACONST(5),FXP), (ACONST(6),QP),
 

52 (ACONST(7).,FXPP),(ACONST.(8.), QPP)(.CONSjV(9),ILIMX .
 
DATA V/4HDQ N,.4HO.K,4H. ,3*4H ,4HTRY ,4HOPTI,4HM,4HNG', ,
T ---­

61 4HSTOP,4HCUT ,LHSTOP,4HPED ,4HOPTI,.4HM OK,4HTAKE,4H BES,4HT , 
- 62 42-HQUI T,,4H' ON" ,'4PREV,4HTAKE,-4H PRE,-HV - 4HTRY -4HMORE,4HQUIT, 

,4HNO ,,4HTRY ,.4HMOREr,
63 4H ON ,4HLOW ,4HREVE,4HRSE t4HNO G,4HO 

64 4-- v4H LI,4HMItE,4HD -


Ct
 
8 CALL MOVE (3, V(4), ACTION(5))
 

9 CALL MOVE (9, CONST, ACONST) ,
 
--- 10 -XNV "=-FLOAT-(NVAR+3-)
 

11 IF (ICON) 12,12,.51
 
12-ICONX = ICON
 
13 ILIMX = ILIM ___
 

-IL'1-4M -. 
 .0-


CD =QQ
 
16 GQ0 -- DO . ­

-" 15SC 


2016 IF (ICONX) 31,17,17
 
.T--IF-(DQ) 31121,.21
 

C
 
-C DO--N-G.--EX-IT WIT:H-ICON =. -2, FX = 0 

21 FX 0. 

22 ICON = -2
 

24 CALL MOVE (3, V(1), ACTION(2))
 

-
25GO "TO-'999
 

31 CONTI NUE ", ; _ 

C 

42 GO TO 980 _ _ -" 

cPUf FX ItN-AC'TION, 

C 

...-- f5 CT-I N ( -0.
 
52 ACTIONi2) = FX
 
-54 GOTO- 6 i 8 I 5 i--211,21,271,501,5 ICON
1 1-8 1I,12, 3
 

c -CHOOSE BETWEEN CUT AND GROW :
 
--C­

61 IF (Q - Q) 201,2061,2061. _ _! 

9'06.-IF- (FX--__'FXMIN) 83,83"62 . , - .-- " - ..- '" ­

..C 


http:31121,.21
http:12,12,.51


C. _ CUT CHOSEN : i
 

C OPTIMIZE USING--INITIAL SLDPE AND 2 POINTS
 
C IF OPT MORE THAN 1/,_ACCEPT TENAIIELtAV.N--2)1
I I I i . 

62 IF (ICONX) 401,2062,2062 , I
 
!2062 ASSIGN 71 TO NCAL3 .
 

63_CALL SETR T,r-jO,.___ON.Sf(lO))
 

v 64 CALL SETR (I,.FX, Q, 2, CONST(10)) 
65 CALL SETR (2, QO, DQO,.3, CONST(10fl ) ) { 
-6 CALL CALXR (3,. CONST(10) 1"­

67 GO TO NCAL3, (71,204)

C I 

_ 71
73 

CAL 
FXP 

OPI.oTR_(FXOPT_,__DELO PT,
FX 

_ 
,. 

L .i 
";. 

IOS 

74 CP =Q _ _a 

75 IF CFXOPT - 0.25*FX) 121,121,76 
76 CALL MOVE (3,._Y(7),. ACTION[5)) 
77 ICON = 2 
78 FX = FXOPT 

79 GO TO 930 r 

C 

C ICON = 2 
C._ 
C 

EXAMIN.ETENTATIyE POINT 
IF O.K., KEEP 

C IF N.O.K. AND FX NOT TOO SMALL, CUT AND IGNORE DQ
 
C IF N.O.K. AND FX TOO SMALL,, QUIT
 
C
 

81 IF (Q - QO) 141,.82,82 
82 IF (FX FXMIN) 83,83.2O82 

Z682 ICONX = -1 
3082 GO TO 401 

83 CALL MOVE (2, V(lO)l ACTION(S))
 
84 FXOPT = 0..._ .
 
85 CONTINUE
 

92 FXx ' O.­
93 GO TO 900
 

C* ­

111 ASSIGN 71 TONCAL4 - , 

112 CALL SETR (I,_0, QOI<,_CONST(IO))_ _"_ _ 
113 CALL SETR (I, FX, Q0. 2, CONST(IO)) 
114 CALL SETR (1, _FXP, QP, 3, CONST(1O)) _ _­

115 CALL SETR (2, Q, DQO, 4, CONST(iO)) 
-' 116 CALL CALXR (4,. CPNSI(10))- . 

117 GO TO NCAL4, (71,161,196,213,544) ; 

C IF CUT CHOSEN AND OPT L.T.E.1/4, USE 1/4 UNLESS TOO SMALL
 

C f
__I__IF TOO SMALL,. QUIT)
 
C : 

121 IF.(O.25*FX - FXMIN) 122,131,131 
. 122 "CALL MOVE" (3, V112), ACTION(5) 

123 IF ( 
124.FXOPT 

-'QO) 
-'FX 

124,,84,84 
* . 

- . I 
' 

., -

125 GO TO 85 _" __' 



131 ACTION(5). = V(12) I I I
 
y32FX =O.25*FX _
 

133 ICON =3 I I 
134 GO TO 930 _ _ _ _ __ _
 

C OPTIM O.K., QUIT I "
 

Cr
 

141 CALL MOVE (2, V(15), ACTION(5)) : _ _ 

42- GO-TO- 900 - I. 
C __ _ _ _ U I . 

c ICON =. 3 : .2 

c EXAMINE CUT POINTt IF7NOK, CUT AGAuI--F-"POSSIBLEF 

C 'IF OK,. OPTIMIZE
 
-C _-_$OPTL.Z.T. 1/4--X- -UT AGAI.N .IE POSSIBLE
 
C IF OPTIM G.T. 1/4, FX, TRY OPTIM (.I.CON 4)
 
C
 

'151 IF IQ - QO) 152,62,62
 

15'2-IF-{ICONX) -155,153,153
 
153 ASSIGN 161 TO NCAL4
 
154 GO TO 11.2-- -­
155 ASSIGN 161 TO NCAL3P ­

156 GO TO 411
 
C2
 

-6-C-ALL-OPTR -(FYOPT,-- DELCPT, CONST(10))
 
162 IF (-Q/XNV + (DELOPT - Q)) 163,163,601 .'
 
163- FXP =- FX
 
164 CP .= Q _
 

165 IF (FXOPT - 0.25*FX) 166,166,167
 
166 IF (ICONX) 131,121,121
 

....167IF'-(FXOPT -FXP) 171,171,168­
168 CALL MOVE (3, V(17),- ACTION(5))
 

-2168IF (Q - QP) 3168,5168,5168
 
3168 FXOPT = FX
 
4168 GO TO 169
 
5168 FXOPT = FXP
 

-- 6"168 FX -FXOPT
 
169 GO TO 142
 

171 CALL MOVE (3, V(7), ACTION(5))
 
1-'72-FX = FXOPT.
 
173 ICON' = 4 .. . -,"2
 

-174-G0 'T0--930
 

-- ICON =4
 

C EXAMINE TRIAL OPTIM AND CHOOSE, QUIT
 

181 IF (Q - QP) 141,141,182
 
-182-CALL MOVE" (3"f-V(23),.'-ACTION-5)) 
 I 

.183 FXOPT = FXP __" _ 
--18#CO NT INU'E
 

C
 
C"- I C 0 ' 34 1 - - I191 ASIICONx-9492-9219 TO I:: 
•192 ASSIGN 196 TO NCAL4 : !..
 



1 	193 i'o TO 112 I I ­
194 ASSIGN 196 TO NCAL3P I 
195 GO TO 411 I 

• 'I 	 I

1l96 QOP-.I 	 __ ____ 

197 FX FYOPT ____,
 
198 GO TO 900 - i
 

C 	 I
 

Ci GROWTH CHOSEN i ] 
C -TRY 2*FX - i 
C 	 i
 

201_ F.ICONX) 26,202,202 ! _ 


202 ASSIGN 204 TO NCAL3 i
 

*203 GO TO 63
 
204 CALL OPTR (FXOPTT DELOPT,CONST(1o))
 
205 IF (-Q/XNV + (OELOPT- Q)) .2205,22P5,,601
 

2205 IF (FXOPT - FX) 3205,206,206
 
3205 FXP = FX
 
4205 CP =0Q
 

5205 CALL MOVE (3, V(7), ACTION(5))
 
6205FX = FXOPT I
 

7205 ICON = 10 ­

8205 GO TO 930
 
C 

206 ICON = 5 
207 FXP = FX 
208 OP = Q 
209 CALL MOVE (2, V(26., 5ACTION5) 


2209 FX = 2.O*FX
 
3209 GO0._-TO_ 930 	 _
 

c
 
C ICON = 5
 
C iEST FOR FUHER--GROWTH
 
C
 

211 IF I-CONX 212,2212211 ­

2211 ASSIGN 213 TO NCAL4
 
.3211GO TO 112
 
212 ASSIGN 213 TO NCAL3P
 

2212 GO TO 411 ­

213 CALL OPTR (FXOPT, DELOPT, CONST(1O))­
214 IF "(FXOPT 2: FX)-221215,215
 
215 IF (Q - QP) 216,241,241. ...........
 
216 IF (-Q/XNV + (DELOPT - Q)) 2216,.2216,601
 

2216 ICON = 7
 
217FXPP =-FXP
 

* 218 QPP = QP .
 
7Y Ftbd fo-2bf6
 

C RESTRAIN. GROWTH
 
C
 

221 IF (Q -- QP) 226,.222,222 I *
 

222 IF (-QP/XNV + (OELOPT - QP)f 231,231,224
 
224 CALL MOVE (31 V(23)t ACTION5),) . . ..
 

225 GO TO 242
 
226-'IF Q/XNV (DE OPT Q)) 227,227,601
 
227 FXP = FX
 



228 CP = Q 

231 CALL MOVE (3, V(7), ACTION(5)) , _. 

_232 YCON=66 
-- 233-FX FXOPT 

-

I I234 GO >o , . 
ic, 

241 CALL MOVE (3, V20)t ACTION(5))
 
242 FXOPT = FXP I
243--CONTINUE -- .. 

C
 
. 251 .FX = FXP 

252 Q =QP . 1
253 GOTO0900 -'
 

C ~ICON- 6 

C RETURN FROM ATTEMPT AT OPTIM ON GROWTH
C
 

261 IF (Q - QP) i41t.14l.-262
 
262-CALL OVE(3, V(28),.-ACTION(5))
 
263 GO TO 242


C
 

C ICON 7
-C RET URN FROMMFURT HER- GROWT H 

-271-CALL-SEYR -(1-FX,---CONST(10))
 
272 CALL SETR (1, FXP, QPi 2,. CONST(10))
 

--273 CALL SETR (1,. FXPP, QPP, 3, CONST(lOf)­
274 CALL CALXR (3,. CONST(1O))
 
275 CALL OPTR (FXOPT, DELOPT,-CONSTiO)
 
276 GO TO 214
 

C INITIAL CUT WITH NO DQO
 
C . .TESTSIZE OF FXFOR POSSIBLE REVERSING
 
C.
 

402 CP = Q
 
Z03 "IF'-(O:25*FX' -FXMIN) 44,404,131
 
404 CALL -MOVE (2, V(31), ACTION(5))
 

: 405- FX-''-AMNI(F,FXMIN)-­
406 ICON 8
 
407-G0 TO 930
 

C 
C ~3PT-FIT--USING- 00 

C. 

S411-CALL SET-R-(1, 07 QO, 1, CONST(10)) 
412 CALL SETR (1, FX, Q, 2, CONST(10))
 
43CALCSETR (1,FXP-QP1-37-CONSTtOV)
 
414 CALL CALXR (3,. CONST(1O)) 
 I 

415'GO TO'-NCAL3P,-(161,196,213Y503)-- -,
 

CtC TCO = 8 , 
- ''RETURN FROM REVERSAL "- . ,
 

* 501 ASSIGN 503 TO NCAL3P * * I 



_ _ _ _ _ ______I502 GO TO 411 _ _ _ _ _ _ 

503 IF (DERR(0,.CONST-(IOf) 511,521,521
 

511 CALL OPTR (FXOPT, DELOPT,- CONST(10))
 
512 CALL MOVE (3, V(7), ACTION(5))


O II 9lI I 

514 FX = FXOPT i "
 
1515 GO TO 930. I , I
 
521 FX = 0.
 
522 FXOPT =0. 
 __________________I
 

- 523 ICON = -1 
524 C.- Q I " -' _
 

525-CALL MOVE (2, V(33)- ACTION(5))
 
526 GO TO 930 .!. __ _
 

C 

C ICON 9 
C RETURN AFTER REVERSAL AND OPTIMIZATION 

531 IF (Q - QO-) 141.521,521 
ct 

C - ICON = 10 
C RETURN AFTER ATTEMPTED IMMEDIATE OPTIMIZATION 
C
 

541 IF._(Q- QP) 141,1419542 
-542 ASSIGN 544 TO NCAL4
 
543 GO-TO 112
 
544-CALL OPTR'(FXOPT,"DELOPT, CONST(1O)) 
545 IF (FXOPT - FXP) 224,224,546
 

546 IF.. (-QP/XNV + (DELCPT - QP)) 551;551,224
 
C 

551 ICON = 5 

552 FX 2.0*FXP
 
553 CALL MOVE (3,. V(35),. ACTION(5))
 
554 GO TO 930
 

C­

601 FXOPT = FX
 
602"-ACTION(S) = V(J17) 

603 GO TO 142
 
C "
 

C 900 EXIT
 

900 ICON = 0 . ­

901-IF (ILIMX) 903,903,902 -: 

902 IF (FX - FXMAX) 903,.905,.905 

904 GO TO 999
905-OILL.M = ILIMX ­

906 GO TO 999 . " 

930 IF (ILIMX) 936,936,931
 
931 IF (FX -O.999'FXMAX) 936,936,932 -,­



933 IF (ILIM) 934,.934,900 

934 ILIM = ILIMX 

tC 

935 GO TO 999 
936 ILI'4 - 0 
937 GO TO 999 

. 

' 

Ii 
-

I-

T 
" 

. - I 

I 

C 980 EXIT 

980 IF (ILIMX) 984,984,981 
981 IF (FX- FXMAX) 9 8 4 -9 S 2 ,SS 2 

982 ACTION(Il) = 1.0 
983 CALL MOVE (4, V(38), ACTION(2)) 

GO TO 930 
984 ACTION(1) = 1.0 
985 CALL MOVE (31 V(4), ACTION(2))

GO T10930 

C 
* 999 CALL MOVE 

RETURN 
(9,- ACONST CONST) 

C E
END . 

. -
: *." I 



I SUBROUTINE-SETR (K, K, Y,' I, CONST)
 

!2 DIMENSION CONST(-25). ACONST(25)' 
 I 
4 DIMENSION A(4,4), B(4), C(4-),_ 1 
5 EQUIVALENCE (ACONST(I)lA), (ACONST( 17) ,).,(ACONST(21),C)i 
51 CACONST(25)iKR) _ _ "i 

. 6 'CALL HOVE (25, CONST, ACONST) 
11 GO TO (21,3l),, K " " 

C K = I 
C SET UP FOR POINT WITH FX = X AND Q= Y 
C " -

21 A(I.,I) = 1.0 . K 
2 2 )A(I2)TX­
23 A(I,3)
24 A(I.,-4) 

= 
= 

X--2 
X*Y -

-25 B(L) = Y -
26 GO TO 999 - : 

C
C
C 

K 
-:__ 

= 2 
_ _ _ _ _ 

: 
_ _ _ _ _ _ _ 

, 31 A(I.,.1J = 0. ' 

32 A(I.,.2J 1.0 "­

34 A(l.,.4) -X
 
35 8(I -= Y 
36 GO TO 999
 

999 CALL MOVE (25,. ACONST, CONST)
 
RETURN
 

END
 



I -SUBROUTINE CALXR ANNt -CONST)
 

2 CIMENSION CONST(25),. ACONST(25) I
 
3 DIMENSION W(4,.4), WW(4,4), X(4),. BB(4)
 
4-0 -ENSION A(4,4) B-(4), C(4)
 

5 EQUIVALENCE (ACONST(1)A), (ACONST(17),B)(ACONST(21)hCb)i
 
51 (ACONST(25),KR)
 
6 CALL MOVE (25,. CONST, ACONST)
 

KR-= 0- I
 
7N =NN
 

11 CALL MATMPY (N, 1, N, -4, 14 1, A, B,. X :

12 CALL MATMPY- N-A;N,'Y--4,., 4, "A, A, W) : 

13 CALL DIAG(N,,4,WWWBBtl'.E-08) 1
 
4--CALL MATMPY" (N, 1, N, 1, 1,WW, X B-4,,
BB)
 
15 DO 16 I = 1,N

1t--BBYI) =-BB(I)/W(iI) ­

17 CALL MATMPY (N, 1, N, 4, 1, -1, WW, BB, C)
 
18 IF (N - 3) 19,.19,201
 
19 C(4) 0. "
 
20-G00 *roq 

C " ­

202 IF (C(4)) 211,.999,999

C 

211 CO 222 I = 1,4
 

212- IF--(A ( I -1) )." 22 1,2-137221
 
213 A(I.,3) = -2.0"A(I,41'
 
214-A(I t4) 3.0*A(It4) 1'2
 

_GO TO 222
215 

C
 

221 A(I,4) = A(I,2)*A(I,3)
 
222 :CONT INUE-...
 
223 KR = I
 

224 GO TO I1
 
C 

-- 9-9 C--ALC OVE--( 2 5 v-ACONST, CONSTI) 
RETURN
 

END
 



____ 

S 1 SUBROUTINE OPTR (FXOPT, DELOPT, CONST) I . 

i 2 DIMENSION CONST(Z5)-,. ACONST(25) I 
1 3 COUBLE PRECISION RR I I I 

4 DIMENSION A(4,4), B(4), C(4) i 
-5 EQUIVALENCE (ACONST(l),A), (ACONST(7),.B)b(ACONST(21)C), 
51 (ACONST(25),KR)
6 CALL MOVE (25,. CONST, ACONST)
 

ci
 

I I I 

10 IF "(KR) IlI I,.414 , ,__
 I 

11b3---(2) - C1*(412 IF (03) 21,13,13 -. 
 _ 

14 DELOPT = . "_" ___
 

1T - O-T0 9
 
TWtFO"99- I I
 

21 CON-NTIhUE ­

22 IF (C(3)) 23,23,25 ­

23 FXOPT'= i.OE20 -6 

2023 DELOPT -I.OE30 

_

­

24G0"TO 999:
25 CONTINUE _____ 

C
 
31 FXOPT = AMAXi (RI1,R2)
 
32 IF (FXOPT - 1.OEZO) 33,2023,2023
 
--- 33-CELOPT = (03" C(3) FXOPT) *FXOPT / (1.0 + C(4*FXOPT)
 
34 GO TO 999
 

41 IF (C(4)) 23,tI,42
 
42 IF (C(2)) 44,43,43
 
43 IF (C(3)) 51,13,13
 
44 IF (C(3)) 51,45,51
 
45 FXOPT -= SQRT(-C(2)/3.0/C(4))
 
46 GO T062 ......
 

C 

5i CA-= C(21/C(3f) ­
52 D3 = C(3)13.0/C[4) _ 

---- 53-1F (A -b3) 54,54,13 
54 RR = DSQRT (1.000 - DBLEDA/D3)) 
55RI D *03 SNGL(-1.ODO +'RR)
 
56 R2 = 03 * SNGL (-I.ODO - RR)


C
 

61 FXOPT = AMAXI(RI,R2) : '
 
62"-'IF (FXOPT -" l'o0E206)-632023,2023
 
63 DELOPT = FXOPT * (C(2) + FXOPT * (C(3) + FXOPT*C(4))) + C(1)
64 IF (DELOPV).999999,.13
 

1O~FC4vr;12II - ­

102 RI = -03/2.0/C(3) ­
--- oY3-R2--=--RI 


104 GO TO 31 
 I 

111 RR "DSQRT (1.ODO BLE(03C'(4)/C(3)
 

http:DELOPV).999999,.13


Si . I , 

- I I i 

112 Ri 
1113 R2 

- SNGL 
SNGL 

(-1.ODO + _RR)IC (_4) 
(-1.ODO - RR)/C(4) 

11Go 10 31 
C 

999 CALL MOVE 125,. ACONST, CONST) 
-RETURN 

ENDI I 



1 FUNCTION DERR (FXI CONST)" 	 i 

2 DIMENSION CONST(25),. ACONST(25) 	 ­
, 4 DIMENSIO._N A(4,4), B(4),. C(4) 	 I 
I75 EQUIVALENCE (ACONST(l)kA), (ACCNST(17),B),(ACONST(21C).?, 
1 51 (ACONST(25).,IKR)_-- . 

6 CALL MOVE (25,. CONST, ACONST) 

10 IF (KR) 11,11,.3
 
11 CERR = (C(2) - (11*0(4) +- 2.0*C(3)*FX + C(3)*C(4)*FX**2)
111i (1.0 t C(4)*FX)*2 	 .I 

12 GO TO 999
 
13ERR = C(2) + FX*(2.0*C(3) + 3.0*C(4)*FX)
 
14 GO TO 999 -- ,
 

C
 
999 	CALL MOVE (25,. ACONST, CONST) I
 

RETURN
 
C
 

END 	 ",
 



SUBROUTINE DIAGLNNDIM,AT,.SCR,.TFACT) I - I. 

C THIS SUBROUTINE DIAGONALIZES A SQUARE,.SYMMETRIC,.POSITIVE
 
C SEMI-DEFINLTE MATRIX, A, ACCORDING TO THE TRANSFORMATION
 

C - T)T A T DIAGONAL MATRIX 	 l 
C II.NPUT= A
 
C NDIM DIMENSION OF T,TT,AND A
 
C A =MATRIX TO BE DIAGQNALIZED -


C TFACT TOLERANCE FACTOR CI.E$08 RECOMMENDED).
 
C N = SIZE OF A ,A IS N X N)
fI.E. 


C "OUTPUT= 
 -_ 

--c -T -.- _To.-fHE.RANSFORNA0ION MATRIX 
C , A THE DIAGONALIZED VERSION OF A 

C 'NOTE= SCR IS_ASCRATCH.ARRAY "
 
C
 
o ~ INOT=SC IAf SCRATCH *ARRAY -


C
 
T LOCIIX,.JX)= (JX-- 12 * DIM + IX 

2 1./SQRTi2.)
 
ABIG = 0.0
 

DO 200 J=1,N
 

J = LOC(I,J)
 
IF(ABS(A(IJ ) .GT. ABIG) ABIG ABS(A(IJ )
 

200 CONTINUE
 
TF = ABIG * TFACT
 

C
 

NN =N-I 

CALL IOENT(N,T,NOIM)
 

C1_N SW 0 

LLX=LOC(LL) , 
_ IF(ABSLA(LLX)) .LE. TF ) GO TO._ .10...
 

C NON-LERO DIAGONAL FOUND---NORMAL PROCEDURE
 
C USED TO ZERO OFF-fDIAGONAL ELEMENTS
 

D0 3 J=I,N 
S 	LJ = LOC(L,J). ... _ " 

FACT = -A(LJ ) I ACLLX)
 
A(LJ 3= 0.0
 
00 14 LL = IN -, I 
LLJ LOCCLL,J) _-_ 

LLL"LOCLL,.L). 
14 1(LLJ ) T(LLJ 3 + FACT*T(LLL )
 

D2 K=I,N
 
KJ = LOC(1 ,.J) .
 

. . K = LOC(KvL) " . .. 	 . " 

* 2 A(KJ W=A(KJ + FACT A(KL
 

http:LOCIIX,.JX


3 CONTINUE.
 ,F
:DO 4J=I,N I I"
 

, I
.JL" =.LOCJ ) 	 I 
,
4 A(JL ) z.0.O 	 " j 

IFL .GE. NN).'GO TO 8
 
Lr = + 11
 
GO TO I, ­

10 M 11+ NSW ___"_
 

..... M .GT. N) GO TO 20 " I F " -

MM = LOC(M,M) _ " ±,-

I [FABSA(WM . - TF 12,12,13 V 
12 	 NSW = NSW + I FF 

GO To o'
 
ZERO DIAGONAL FOUND UPSTREAM--N)N-ZERO DIAGONALFOUND 

DOWNSTREAM
 
4N- -	 - 3
S-WAP-OF" ROW-COLUM TO GETNN-Z RO DIAGONAL UPSTREAM
 

13 	 DO 5 K=LiN
 
KL = LOC(KL) F "
 

-KM = LOC(K,M) ! F 

SCR(K) =" A(KL ) -K 

A(KL )=A(KM ) i 
-5 A{ M -) S K)i
 

K 	 IDO 49K = ,-N 
KL.= LOC(K,L) "
 

KM = LOCf K,M)
 

"SCRIK) = T(KL )

1(KL ) = T(KM ) 

4Y-'T(KM )'L--'SCR(K)
 
DO 6 K=L,N
 

LK = LOC,K)
 

SCR(K) = A(LK )
 
A(LK ) = A(MK I
 

6---A( K Y =SCRK)F
 
GO TO - _....
 

20 11 I - 1 
25-'I - II-'"i 

IF C It .LE. N ) GO TO 26 

C -LREF AINING;OI-A-GONAtS-ARE -ZERO 

C 	 ALSO ALl_ OFF DIAGONAL ELEMENTS OF ROW L ARE ZERO
 
.TONEXT ROW
 

C- THERE-FORE-PUT-ZERO ON DIAGONAL-AND GO 


C TO SEARCH FOR NON-ZERO OFF-DI-AGONAL ELEMENT
 

I =L + I
 
_ _ _ F _ _ _ __ _I= _ GT..-N-- GO--TOGO-0___ 8 __ 

-'r- 1F-{I + -. ' ___) 

GO TO 20
 
F F F26--LI"- - LOC CC-CI 


IF( ABSCA(LLI, )) .LT. TF ) GO TO 25
 

C-C 	 ALL REMAINING DIAGONALS ARE ZERO BUT OFF DIAGONAL FOUND TO BE_
 

C NON-ZERO----0ROTAT EON PERFORMViED
 

DO 42 K L,N "" - I
 

KL I L-C-.( K-L ) - " '
 
'KL 	--.LOC(K,.L) ;" - -I 



______ 
,SCr-:(K)=ACKII3 

_ 

ACKi 3) (A KII )+ AKL Z 
*42(K -SCR(K) +A(KLU fl* 
tO -46 AK= N 

- 1.K*= LOCCIII,KI 
LK =LCLK 

I___CBM) A I.(I1K 
M(ilK ) 14(K 3+ AiLK )3*2.


4.6_ ALK)c 1-.SCRK+ AfK)* 

KL =LOC{K,L)
 

SCR(K) =T(KIL)­

-- -lw* -TA--I-3-(iKI -_+TtKL) 13*2 
44_T.(KLL= (-SCR(KLt'T(KL )U* 

8 -RETURN 
-END
 



*O RHE FPRNOM 0778H I 

.SUBROUTINE FPRNDM (Z) 
JF ()2,,1,2 I 

NG *2*17 + 3
 
:" l./345359738367. 

2 NS NG*NS 
__Z = NS 

Z = Z'B 
'RETURN
 
,END,
 


