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ABSTRACT

To ensure physical realizability in the synthesis of
a system, it is frequently necessary to represent certain of
the system's attributes for approximations other than algebraic
polynomials. Such is the case, for example, in the determination
of optimum and suboptimum demodulators for FM signals in the
Apollo USB communication system where it is convenient to approxi-
mate emperical or analytical spectra of random processes by
readily .factorized rational functions. This memorandum ;?escribes
a computer method for the determination of rational functions
using sums of exponential approximations.

This method depends upon taking 2n equidistant samples
of the input data, where n is the number of poles of the approxi-
mated rational function. These samples are used to compute an
(n+l)st order determinant and thereby the coefficients and the
roots of an nth order polynomial. The roots of this nth order
polynomial are further processed to oLtain the poles of the
rational function. Once the location of the poles has been
obtained, a very simple routine determines the residues of these
poles and thereby the zeros and the gain constant. An advantage
of this technique is that it determines the poles independently

	

of the zeros reducing the number of independent equations by a 	 MP

factor of two, thus eliminating many numerical difficulties and
simplifying calculations. Another advantage is that this method
minimizes the complexity of the rational function for a given
approximation error by allowing the poles and the zeros to be
complex as well as real.

The method outlined in this memorandum has been
programmed for IBM 7040, IBM 360-65 and UNIVAC 1108 computers.
A large number of runs have been made which yielded very good
approximations to the input data under various error criteria.

4

"	 `	 Q00
= 4 14 (AWLSWON NU E 	 0	 ITH ,UI
e	

I	 _

O
L

a

	

(PAGE !	 ICO E!J	 a
SEE REVERSE SIDE F(

	

(NASA CR OR Tf.'X OR AD NUMB RI 	 (CATEGORY



k

•

X
BELLCOMM, INC.
955 L'ENFANT PLAZA NORTH, S.W. 	 WASHINGTON, D. C. 20024

SUBJECT: A Computer Method for the 	 DATE: September 10, 1969
Determination of Rational Functions -
Case	 FROM: S. Y. Lee

TM-69-1033-4

TECHNICAL MEMORANDUM

I. INTRODUCTION

To ensure physical realizability in the synthesis of
a system, it i-- frequently necessary to represent certain of the
system's attributes by approximations other than algebraic
polynomials. Such is the case, for instance, in the determina-
tion of optimum and suboptimum demodulators for FM signals in
the Apollo USB communication system where it is convenient to
approximate emperical or analytical spectra of random processes

by readily factorized rational functions. 1 The utility of
exponential functions is well known in the design of linear
networks for a prescribed impulse response. Similarly, sums
of exponentials often afford the most suitable approximations
to cross-correlation measurements, to radioactive decay and gas
absorption data, to mass spectrographs, and to analysis of
various curves.

The present method of obtaining rational and exponential
function representations depends upon taking 2n equidistant
samples of the given data, where n is the number of poles of the
rational function. These samples are used to compute an (n+l)st
order determinant and therby the coefficients and the roots of
an nth order polynomial. The roots of this nth order polynomial
are further processed to obtain the poles of the rational func-
tion. Once the location of the poles has been obtained, a very
simple routine determines the residues of these poles and thereby
the zeros and the gain constants. An advantage of this technique
is that it determines the poles independently of the zeros
reducing the number of independent equations by a factor of two,
thus eliminating many numerical difficulties and simplifying
calculations. Other advantages are that this method can be
applied to experiments in which tide number of samples is limited,
and minimizes the complexity of the rational function for a given
approximation error by allowing the poles and zeros to the complex
as well as real.

t
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II. OUTLINE OF ANALYSIS

Any function f (t) which can be a^,proximated by y (t)
which is in terms of the sum of exponentials can be written
in the form of

n
t

y (t) =	 Riepl = f (t)	 (1)
i=1

or equivalently, of the form

n

y(t) _	 Rigi	 (2)

i=1

where q i = e Pi andwhere R  and p i are in general complex.

Suppose that a linear change variable has been
introduced in advance in such a way that the values of y(t)
are specified at N equally spaced points at t=0, 1, 2, 	 N-1.
Therefore, if (2) were to hold for these values of t, the
equations

R1	+ R2

Rlq l	+ R2g2

2	 2Rlq l	+ R2g2

+ ... + R 
	 y0

+ ... + Rngn 	 yl

+ ... + Rng 2
n	 y2

(3)

N-1	 N-1R lq l	+ R2g2
N-1+ ... + Rngn	 yN-1
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must be satisfied. Hence, if the constants .q l , ... , q  were

knov n, the equations in (3) would comprise .N linear equations
in the unknowns Rl ,	 R  and could be solved exactly, if

N=n or approximately, by the least-squares method if N>n.

However, if the q's are also to be determined, at
least 2n equations are needed, and the difficulty consists
of the fact that the equations are nonlinear in the q's. This
difficulty can be minimized by the following analysis.

Putting (3) in matrix notation and letting N=2n,
we have

[Y] _ IQ] [R)
	

(4)

where

YO	
R1	 1	 1	 ... 1

y l	 R2	 ql	 q2	 ... q 

[Y] _	 ,	 [ R ] _	 IQ] =	 ( S)

2n-1 	 2n-1	 2n-1
y2n-11	 Rn	 ql	 q2	 ... qn

The first n rows of the (2n x n) [Q) matrix form a Vandermonde
matrix. The various qk 's can be considered as the roots of the

nth degree polynomial,	 I

P (q) _ (q-q l ) (q-q 2 ) ... (q-qn ) = 0	 (6)
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Expanding,

+...+	
2	

+	 +...♦P (q) = 
qn + (-1) (q1

+ q l	 qn) qn- + (-1) 
^. (g1g2 g lg 3	 gnqn-1)q 

n-2
qn-2

(7)

+ ... + (-1) ng lg 2 ...qn = 0

Now let u's be the well known svmmetric functons

ui = ( -1) (ql+q2+...+qn)

u2 = (-1)2(glg2+glg3+...+g2g3+gnqn-1)

(8)

u  = (-1) n (q, g2...gn)

then (7) becomes

P (q) = qn + ulg11-1. + u2gn-2 + ... + un = 0	 (9)

Furthermore, let us define an n x 2n matrix [U] such that

I

u n
	 un-1 ••• u2
	

U 
	 1	 0	 0	 ... 0

y	 0	 u 
	 u3	 u2	

U 
	 1	 0	 ... 0

[U] _	 (10)

LO	 0	 ... 0	 u 	 un-1	
u
n-2	 un-3... 1
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0

Premultiplying (4) by [U] , yields

[U] [Y] _ [U] [Q] [R]	 (11)

Each element of the matrix [U] [Q] is of the form:

qk-1 [un+un-lqk+un-2qk
+...+qk]	 (12)

But, looking back at (9), it is apparent that (12) is equal to
P(q) with q replaced by qk 's and since qk 's are roots of the

polynomial P(q), expression (12) must be equal to zero. Thus,
all the elements of [U][Q] are zero. Hence, (11) becomes

[U][Y] = 0	 (13)

Looking at the individual elements of this products matrix, we
have

uny0

unyl

u
nyn-1

+ tin_ lyl + ... + ulyr-1 + Y 	
_ 

0

+ un-ly2 + ... + ulyn	 + yn+l = 0

+ un-lyn + ... + u ly2n-2 + y2n-1 = 0

(14)

Thus, the parameters in equation (1) are completely determined
by equations (3), (9) and (14). It should be noted that an
alternative method for obtaining the q k 's to be used in the

array ( 3) , involves the inclusion of (9)  as the ( n+l) th row of
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(14) .	 Thus,

uny 0 +	
un-ly l	 +

...	 +	 u lyn-1 +	 yii	 =	 0

uny l +	
un-ly 2	 + ...	 +	 u lyn +	 yn+l	

=	 0

1.1nyn-1 +	 un-lyn	 +
...	 +	

uly2n-2
+	

y2n-1
	 =	 0

u 
+	 un-lq	+ ...	 +	 u1g

n-1 +	 q 	 =	 0

(15)

Equation (15) is an array of (n+l) equations and only n unknowns.
Therefore:

y 0	 yl	
... yn

y l	 y2	 "' yn+l

D =

yn-1	 yn	 " ' y2n-1

1	 q	 ...	 q 

By expanding this determinant in t
polynomial P(q) of degree n in q v

II

0	 (i6)

terms of the last row yields a
hose roots are q l , q.'" .. qn'

P(q) _ A 0 + A lq + A 2g 2 + ... + A ngn = 0
	

(17)

where the A's are the co-factors corresponding to the last row
of the determinant in (16). If all 4t= 0, a lower order approxi-
mation can be obtained.
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0

Once the q i have been obtained it is a simple matter

to find the time constants of (1), which involves taking the
natural logarithm.

The coefficients Rk 's can be obtained by considering

the n equations of (3). In matrix notation

[Y 1 ] _ [VI [R]
	

(18)

or

[R] _ [V1- 1 [Y1]
	

(19)

where

1	 1	 ...	 1

	

2	 2	 2

	

4 1	 q2	 qn

	

4	 4	 4

	

3 1	 q2	 ...	 q 

2n-2	 2n-2	 2n-2

	

q 1	 q2	 ...	 q 	 -

YO

Y2

[Y 1 ] _
	

Y4	 ,	 [V] = I

.y2n-2

R1

R2

[R]
	

R3

R

(20)

The matrix [V] is well known Vandermonde matrix whose
inverse is easy to compute. It should be noted that one of the
advantages of this technique is that it determines the poles
independent of the zeros reducing the number of independent
equations by a factor of two, thus eliminating many numerical
difficulties anu simplifying calculations.
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III. THE ASSUMPTIONS

The preceding theory was derived under the assumption
that the approximation is of the form

•

n
pit

y (t} _ ^ R 
i 

e

i=1

(21)

where each R  and p i inay be either real or complex, but y(t)

must be a reams function; hence, the complex R 
i
.'s and the complex

p
i
's must occur in conjugate pairs. Equation (21) implies that

the approximation consists only of real exponential, cosine and
sine terms.

Taking the Laplace transform, of y (t) , Y (s) can be
written as a rational function,

	

Y (s) _ 
W 

(s) 	 K ( s - z I ) (s-z 2 ) ... (s_ zm)	
(22)

	

D (s)	 (s-pl) (s-p 2 ) ... (s-pn)

The following assumptions are made regarding N(s) and D(s):

a. The degree m of the numerator polynomial N(s) is
considered to be at least one degree less than the
degree n of the denominator polynomial D(s).

b. The denominator polynomial D(s) does not possess a
zero root. This is not a serious restriction, as
the zero root in the denominator implies a constant
steady value of the output which is easily subtracted.

C. The denominator polynomial D(s) has only simple roots.
This restriction can be removed when the analysis is
extended to include repeated roots.*

*Note that for the analysis of repeated roots the expression
(20) is more complicated.
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IV. ILLUSTRATIVE EXAMPLES

The purpose of this section is to construct examples
to illustrate the application of the method developed in
previous sections. These examples were done on a computer
using Fortran IV Language.

(A) Example 1:

Consider that the data given in able I is the impulse

response of a system f(t) = 2e -0.5t sin t or the corresponding

frequency response F(s) = 	 2 2	 over the time interval
(s+0.5) +1

t=0 to 27. W e will assume that only these data are given and
required to determine the rational function.

Using n=2, the computer program chooses samples
numbered 0, 30, 60 and 90 given in Table I and obtains for the
pc. lynomial of equation (17) :

0.1683 + 0.0098lq + 0.8205q = 0 	 (23)

Thus, we can determine the roots q i as:

q
l,? - 0.00598 + j0.4529 	 (24)

The resulting poles are:

P
1,2 = -0.504 + jl.0084	 (25)

Taking samples 0 and 30 for element y i , and substituting qi

and q 2 into (19), the R's are obtained as

R 1 ^ 2 = ± J	 (26)

w

Finally, the computed impulse response f(t) is

0.504t
f(t) = 2e - 	sin 1.0084 t (27)

l
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and its corresponding rational _unction F(s) is

F (s) _
2.016

(s+0.504) 2+(1.0084) 2

t

(28)

Notice these functions are identical to those given, except
for small round errors.

(B) Example II

Consider that the data given in Table II is the

impulse response of a system f(t) = 2e-0.5t sin(t) - 1.5e -t sin(2t)

or the corresponding frequency response F(s) _ 	 -s2+s+6.25

[(s+0.5)  2 +1 ] [ (s+1) 2 +4 J
over the time interval t=0 to 27. We will again assume that only
these data are given and required to determine the rational
funcLion.	 i

Using n=4, the computer program chooses the samples
numbered 0, 15, 30, 45, 60, 75, 90 and 105 given in Table II and
obtains for the polynomial of equation (17):

2.505x10 -5.084x10 -3q + 1.744x10 -2q `-2.517x10 -2q 3 + 2.696g 4 = 0	 (29)

Thus, solving for the roots q; we have
i

q1,2 - -0.00598 + j 0.4529

(30)

q
3,4 - 0.4727 - j 0.479

The resulting poles are:

P1,2 _ -0.504	 +  1.0084
(3i)

P 2,3 = -1.0084 + j 2.0168
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Taking samples 0, 15, 30 and 45 for element y i , and substituting

q l and q 2 , q 3 and q 4 into (19), the R's are obtained as

R1,2 = + J
(32;

R3,4	 + J 0.75

Finally, the computed impulse response f(t) is

i-(t) = 2e -0.504tsin(1.0084t) - 1.5e-1.0084tsin(2.00168t)
	

3.3 )

and its corresponding rational function is F(s) is

•

F(s) 	 -1.0084s2 + 1.0181s + 6.41

[(s+0.504)2+1.00842][(s+1.0084)2+(2.00168)2)
(34)

Not-ce these functions are identical to those given, except for
the small round off errors.

(C) Example III:

In the Appendix IV of Reference 1, a method of obtaining
optimum filters for the telemetry signal is derived. However, in
order to determine these filters, a rational approximation of the
signal spectrum must be first obtained. It also pointed out in
Reference 1 that if the function

1 - tT

v (t) _

0

0 s t s T

all other t (35)
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is approximated by the finite sum of exponentials a rational

W T 2
approximation is found for the signal spectrum S^ (w) = T' [ (sin 2 ) 21 ] .
To illustrate the usefulness of the present method, we will first
in this example obtain an approximation, v(t), of v(t) then f:L nd
the rational aproximation, S^ (W), of S^ (w) , where
S (w) = F [v(I ty)) .

The data given in 'fable III is generated from (35).
In order to avoid the difficulties of factorization as it was
pointed out in Appendix IV of Reference 1, we shall restrict
the approximation to be of third degree. For n=3, the computer
program chooses samples numbered, 0, 20, 40, 60, 80 and 100 from
those in Table III and obtains for the polynomial of equation (17):

2.219x10 -3 - 7.150x10 -3q + 1.096x10 -2 q 2 - 1.339x10 -2 q 3 = 0	 (36)

Thus, solving for the roots q i we have

q l = 0.4500
(37)

q
2,3 - 0.1841 + j 0.5782

The..pcles are

pl = -2.795

(38)

P2,3 = -1.749 + j 4.419

Taking samples 0, 20 and 40 for Elements y  and substituting

q l , q2 and q 3 into (19), the R's are obtained

R 1 = 1.301
(39)

R2,3 = -0.151 ± j 0.156
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Hence,

V(s) =	 1.301	 _ (0.302) (s+1.749) - (0.312) (4.419)	 (40)
s+2.79 5

	(s+1,749)	 + (4.419)2

or rewriting

V(s) =	
s2 + 4.561s + 31.765 	

(41)
s 3 + 6.293s + 32.364s + 63._.31

Thus, the corresponding time function v(t) can be easily
determined from (40)

	

-2.795t	 -1.749tv(t) = 1. 30le	 - e	 [0. 302cos (I . 419t) -0. 312sin (4.419t)] 	 (42)

The plots of v(t) and v(t) are shown it Figure 1; it can be seen
that v(t) is very closely appr_oximatPa by v(t). The standard
deviation of the two functions is calculated by the computer
program to be 0.016.

Now to obtain S^(c) from V(s), we are only required to

perform the following transformation, since

F [v (t) ] = [V (s) ] s=jw	 (43)

where F denotes the courier transform, then

F[v(Itl) ]	 [V(s) ] s=jW + [V(s) ] s _ -jw	 (44)

t



6

I
n

J
Q

z
?	 W

z
O

r a
X
W
W
W
cc

H
LL

r	 0

W
i	 =

F-

r	 =
' r ~

i+

r	 LL
O
z
O

Q

i	 X
O

r	 cc
CL
CL

i	 Q

W
i	 cc

_U
LL

U
z

O
U
J
J
W
m

y

I 1

0	 0)	 00	 n	 co	 uj	 a	 m	 N	 o

(11^ a0 (1) A



0

w	 LO
O O p O

( e)) Os 110 (M,)Os

V
Z

O
UJ
J
W
co

v	 vi	 W
c N	 O 

v
O O O

i

v
ca

0
cD

LO

N
in

O

v

a

Vc,	 ^'9

0z
^	 Q
M	 -

3
N
"' 3 W

LL
O

O	 y
N	 F-

OJ
v	 n-
ti	 w

o
1j	 N

W

p	 O
C7

LL

v

i

00



I

BELLCOMM, INC.	 - 19 -

Hence, S¢ (w) = F[v( tl)] is obtained from (41) and (44) as

S^ (w ) _
?.464w4 - 230.832w 2 + 4010.712

w 6 - 25.126w + 252.861w + 3985.523

Figure 2 shows S^ (w) ir- a good approximation of S^ (w) .

V. REMARKS

The method outlined in this memorandum has been
programmed for IBM 7040, IBM 360-65 and UNIVAC 1108 computers.
A large number of runs have been made which yielded very good
approximations to the input data under various error criteria
such as bounds on the root mean square error or on the maximum
difference between the function and the approximation.
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