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ABSTRACT

Many of the chemical/biochemical/biologlical
experiments proposed for the'unmanned Mars Voyager missions
requlire a genefal-duty, chromatographic separator for
fractionating complex chemical mixtures prior to chemical
analysis by a mass spectrometer or other device. Because
of the complexity of such a separatof, a sjstem analysis
based on the mathematical simulatlon of the chromatograph
is being undertaken. Models for an isothermal, packed
'éhromatograph column for use with a single component system
have been derived but failed ta completely describe the
entire output chromatogram, The effect of forcing functions
other then the impulse function, used to .derlve the various
models, on chromatogram resolution was investigated in
this report. The”analysis showed tﬁat sample injection
has a sizeable, but varying, effect on the output chromate
ograms., The sharper th% peak resolution obtained with the
theoretical impulse inpﬁt,.the quicker that.reéolﬁtion.was-
lost as a function of sample injection time. Correlations
relating the_injection time to 1oss'in resolution for
véfious coiumn parameiers in the second order, equilibrium
model have been prepared. Once the final advanced mathematical
model-having the required accuracy needed for system sfudies
has been developed, similar cofrelations can be prepared

using the techniques described in this work.

vi



PART I
INTRODUCTION

One important phase of thé}initial Voyager missions
to Mars is the search for organic matter and 1iving organ-
isms on the martian surface, The present céncept for-at-
taining this objective consists of subjecting samples of
the atmosphere and surface matter to bertain chemicél and
blologlically-related reactions and thereafter analyzing the
products produced. The most likely system for a general
- chemical analysis appears to be a combination gas chromato-
graph/mass spectrometer., This unit would be a major coﬁponent
in the biological and chemical laboratory of an unmanned,
remotely controlled roving lander for Mars, It is the
objective of the Chromatographic Systems Analysis program
to generate fundamental engineering design technigues and
system concepts for use in optimizing the design of such a
chromatograph separation system, Such a system should
provide maximum resolution with minimum retention times
and minimum carrier gas usage and should be'capable of
separating components evolvihg from many different kinds
of experiments.

Because of the varity of the mixtures to be sep-
aratéd and the complexity of the fractionating process, a
system analysis based on the mathematical simﬁlation of the
chromatograph is being undertaken. The.technique will
use mathematical models, which will iﬁcorporate fundamental
parameters evaluated from reported experiments, to explore

various concepts and to direct further experimental research.



"PART II
SUMMARY

A ﬁathematical model describling a single component
isothermal chromatograph was developed from the basic dif-
ferential equations which govern rates of mass transport
in packed columns, Neglegting second. order diffusional
effects, a solution was obtained which adequately predicted
retention times but failed significantly in predicting peak
spreading. Since a reasonably accurate model 1s requ;red
for systems evqluatioﬁ, new studies were undertaken td
investigate two probable causes of peak spreading: gaseous
diffusion effects neglected in the first order model, and
injection of the sample in finite periods of time. The
latter topic 1s the subject of this report.

The forecing function chosen for study was that of

a step pulse whiéh was convoluted with the solution of the
“first order modél developed for an impulse forcing function.
" Due to the complexity of the integral resulting from the
convolution, a computer program was developéd to evaluate
the integral as a fuﬁction of time by numerical methods,
. This technique was also applied to a spécial solution of
the diffusional éecond order model in which the ﬁumber of
transfer units was set equal to infinity (equilibfcium ad-
sorption).

\ The results of the above analysis showed that

sample injection has a sizeable, but varying, effect on the



output chromatcgram. Basically, increasing injection time
has two effects, First, since the injection function was
more diffuse than the theofetical impulse function, the
output functions were broader, and shorter, than those
associated with the impulse function., The loss in resolution
‘varied with column parameters; however, as a general rule
the sharper the theoretical impulse'peak, the quicker that
resolution was lost as a function of sample injection time,
The second effect of injection time was the movement of the
. theoretical peak appearence time to later values as the in--
jection time increased. -

Information concerning the effect of diffusion
on the mathematical model was also obtained when the equilib-
rium adsorption model of the second order sysfem was studied.
Even though diffusional effects in the system under study
were known to be small, inclusion of these effects greatly
influenced the shape o§ the resulting chromatograms. A
complete solution of the second order model should further
improve the predicting of output chromatograms, hopefully
to the position where the required'accuracy needed for system'
studies can be obtained.

The technique of convoluting a pulse injection
"function with a mathematical model obtained using an imﬁulse"
injection has proved feasible. Further studies using other

mathematical representations of the injected function can



be accomplished; however, it will be more important to

study the effect of injection upon the advanced mathematical
model now being developed. Correlations concerning the
~1oss in resolution as a function of sample injection time
and column parameters must be developed using the advanced

model if detalled system studies are to have value,



PART III
BACKGROUND

The 1lnitial work in the field of chromatographic
system analysis was done by Sliva (4) who derived a math-
ematical model for an isothermal, packed éhromatograph
column for use with a single component system. Baslically,
the system works as follows, A tuﬁe is packed with a |
granular solid, having dimensions greatly smaller than
:the tube diameter, upon which a high molecular welight,

. non-volatile liquid, which acts as an adsorbent, is coated,
_ Continuously flowing through the column is a carfier gas
which is not adsorbed by the liquid coafing. The materials
to'be separated are injected into the carrier gas stream
énd are adsorbed by the liquid as the injected pulse

flows down the column, -The adsorbed materials will then
desordb when the pure carrier gas, upstream of the injected
pulse, passes over them, Separation of the varioué materials
results since different materials adsorb and desorb at
different rates depending upon the thermodynamics of the
system. Therefore, when a composition detector is mounted
8t the end of the column, a peak for each component will
appear. |

The derivation of the dimensionless differential
equation governing the operation of a gas chromatograph
was accomplished by performing a material balance on a

differential element of the column using the following



assumptions:

1. The column is isothermal,

2, The carrlier gas velocity profile is flat.

5. The axlal diffusion coefficient, D, is a
composite factor which may or may not have
a turbulent component.

4, The gas composition is approximately constant
in the direction normal to flow, and the

- concentration gradlent occurs only in a thin
boundary layer near the adsorbent; i.e,, mass
. transfer coefficients could be used.

5. The adsorbent layer is so thin that there is
no diffusional resistance within the layer
in the direction normal to the surface.

.6, The diffusivity in the adsorbent layer is ‘so
small that there is no diffusion in the
direction parallel to the surface (in the
axial direction).

7. The net rate of adsorntion for the carrier
gas is negligible,

8. Only one component is adsorbed and its
gaseous phase composition is very small,

9, The carrier gas behaves as an 1ldeal gas.

Three.equaﬁions'are required to express the behavior of the
adsorbing component: a mass balance for the gas phase, &
mass balance for the adsorbent (liquid) phase, and a
fherquynamic function relating the gas-phase and adsorbed-
phase concentrations., The respective equations in terms

3
of dimensionless variables are

19%y 9y _ % _ 9 (111-1)
Te 0.2 52 Tog = 77) = 57

e T (111-2)

y* = mXp, (111-3)

Gaseous diffusion of the adsorbing compound in

*see Part VII for nomenclature.



the direction of carrier gas flow is represented by the
second derivative appearing in Eq. (III-1). For an initial
solution of the above three equations, the gaseous diffusion
- effects were considered to be second order effects., There-
fore, the coefficient of the second derivati&e in Eq. (III-1)
was set equal to zero. The solutionwin the Laplace transe
form domain to.the above set of equations for the case of

no axial diffusion is as follows:

N Z
tog )] (IIT-4

y(z,s8) = A(s) exp [-Nﬁogz -5z + (S/mRoNtog + 1

Por an impulse sample injection, Eq. (III-4) inverts to the

following:
‘y(z,8) =0 0<z
— B{v/L
~-Lﬁé—l exp [“Ntogz] exp {'(e"z)mRoNto%] . ’
(1115

[2 _Ng_hogszo 115(::) % é(e-zJ 8>z

The argument x is defined as:

X = 2\/N%og z (0=2) mR,

The above equation has been designated as the first order
mathématicél model of the gas chromatograph. |

Eq. (III-5) was éompared to actual chromatographic
data (4), and was able to predict the retention time of the
sample but it falled significantly in predicting peak
spreading, Since a reasonably accurate model is required

for systems evaluation, new studies were undertaken to



investigate tvo probable causes of peak spreading: gaseous
diffusion effects neglected in the first order model, and
injection of the sample in finite periods of time, The

~ latter topic ls the subjecf of this report.

A%t the time this report was completed, a complete
solution of Eqs.(III-1), (I11-2), and (III-3) including the
gaseous diffusion term had not been accomplished, However,
a speclal case in which Nipg was 1nfinite had been solved
and is knowm as the equilibrium adsorption model (6). The

~solution ls:

0 0%z
- Nv/n) 1-+/[BRe Pe _Pe ® _ Pe B
= —izﬁéu—l 5 77’93 exp [2 ] exp[ mm]exp[ Té« .

_ -
vhere B =1 + TRy

y(z,0)

I

This equation was also derived considering the sample to be’
injected in the form of an impulse,

This study is concerned with the effects of finlte

sample injéctioh time upon the mathematical models represented

by Eq.(III-5) end Eq.(III-6).



PART IV
THEORY

In oxrder to determine the effect of forcing
functions other than an impulse upon output resélution,
we decided to use the first order model, Eq., (III-5), as
our first point of analysis. The cholce of this model was
made for two reasons. Tirst, the first order model is the
least complicated mathematical expression we have which
~attempts to describe an output chromatogram. By use of -
this model, we hoped to obtain qualitative correlations
between column parameters (Ntogv mR,) and sample injection
time, Secondly, at the time this project was started, a
compléte solution to the second order model was not availlable.
bnce the techniques of analyzing the effect of sample in-
jection on output resolution are developed for the simplier
first order model, they can then be applied to more come
.plicated mathematlcal expressions such as the equilibrium
adsorption second order model, BEq. (III-6)..
_The forcing function chosen for study is that
of a step pulse, The reason for this chpice 1s that the
"~ step pulse will most probably be a good representation of
the forcing function associated with 2 mechanlical injection
unit, which will be necessary on a roving lander, h
The Laplace transform form of a step pulse input

is (4);
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- X )
A(z,s) = uéfl%l % (1 = exp [— aré]) (Iv-1)

QT, the dimensionless injection time, is defined
as:

much the same way as the dimensionless time 8 is defined.

T represents the time for sample injection. |
It should be noted that the limit of Eq. (IV-1)

as 6, approaches zero isAthat of an impulse function where

- the sample size, as a dimensionless quantity, is defined

by N(v/L)/v. |

- ihe problem is now to determine how this pulse

fﬁnction affects the first order model described by Eq. (III-5).

Multiplication of the transform of the first order model

Eq. (III-4) by the transform of the pulse imput Bq. (IV-1)

gives:

g(z,s) = y(z,s) A(z,s)

or

- s s

glz,s) = Néi/%) [v(z,s) - y(z,s)eXp(-ers)] (IV=-2)

. It will be noticed that the above equation for
g(z;é) consists of the difference between two terms. The
terms are exactly the same except that the second term is
delayed by an amount equal tb the sample injection time,
Therefore, the ability to invert y(z,s)/s as a function of
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© will permit solution of Eq., (IV~2) in the time domain,
The solution of y(z,s)/s will be done by the

method of convolution (1):

-1 e
I [E.S.g.a.?.).] = J'y(z,'a’) F(z,0=7) ar
i () .
vhere P(z,6-%) =1-1[JS.J = 1

Therefore, we have to evaiuate the following integral:

o
J = JY(Z,B’) as
[}

Substitution of Eq. (III-5) gives as the integral:

e
J = Jexp [”Ntogz - (b’-z)mRoNacog]

. 2 I,(x)
ong R e~ & d(-2) | a¥ (1v-3)

The'in‘begral is composed of two terms, one associated with
the Bessel function and one assoclated with the delta-
function., The contribution by the delta-function term

may be shown to be:

exp V[“Ntogz]' exp [Ntog'szo]

'By substituting the definition of the deltaufunc.tion into

’ the integral and performing the iﬁtegrafion. It will be
ﬁote& that this part of the integral is not time dependent.
Referring back to Eq. (IV-2), 1t will be seen that the above
expression wlll appear in both terms and, since it is not

dependent on time, will cancel itself out. Therefore, wlth
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specific reference to solving Eq. (IV-2), the integral

can be reduced to:

e
. I.(x .
J = .IGXP [‘Ntogz '-(x?Z)mRoNto%} [?Niogszo' 1LY):] ar  (IV-4)
(o)

To meke the integral more manageable, the following change

of variable was made:

Substitution of the above variable change into Eq, (IV—&)

‘yields:
2\/ﬁgogz(e~z)m30

o .
o 2 N.togz

Note that when the lower limit was changed, the new lower
1imit was a negative number, However, negative times have
no effect on the integral since the sample is injected at
time equal to zero, Hence, the lower 1limit can be set to
Zero.

An attempt to solve Eq. (IV=5) analyticélly by
expanding the Bessel function, I{{1), in a series expansion
and integrating term by term falled, The resulting series
was too bulky and converged oo slowly té be useful., There-
fore; a éoﬁputer program was written (see appendix) to
numerically evaluate the above integral asia function of
©. The output listed the time domaln solution of y(z,s)/s
as a function of ©. Therefore, a resulting point on the

output chromatograﬁ generated by a step pulse forcing
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function could.be found by the following formula:
g(z,0) = ML) [F(e) - F(e-e.,.)] (IV-6)
7 .

Where F(e) 1s the computer program output of the solution
of Bq. (IV-5) evaluated at o, |
A completely analogous derivation can be performed
on the equilibrium adsorption model, For this model,
escribed by Eq. (III-6), the integral became:

o fEE L]

This integral was also solved by a computer program using
the technique developed for the first order model, The
output from this program is, as before, a listing of the
time domain solution of y(z,s)/s as a fﬁnction of 6. Hence,
Eq..(IV-6) can be used to generate the reqﬁired output

chfomatograms.
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PART V
RESULIS AND DISCUSSION

In studying the first order model, we are primarily
interested in determining, in a qualitative'manner, the
effect sample injection time has on the output chromatogram.
We hope to be able to develop techniques of analysis and
some basié correlations relating injection time and_column
parameters to the chromatogram whicﬁ can then be applied to
.more complicated models.' Before evaluating the results of
a stey pulse forecing function, 1t would be useful to review,
the effect various column parameters have on output res-
olution for an inmpulse injectlion functiﬁn. A ﬁore complete
description of these effects appeared in the earlier
studies (4).

The two major column parameters which describe
output resolution’are.ﬁhe number of transfer units Nygg,

a (imensionless quantity related to the efficlency of the
adsorption process, and mRy,, 2 thermodynamic function related
to0 component volatilitles. The magnitude of Ntog is affected
ﬁy carrier gas velocliy, particle dlameter and column length.
Decreasing the first two and»increasing the latter will
increase the value of Ngoge. ILarge values of Ngggo éause

the chromstogrem peak to become sharp, leading to good
resolution., ILow values cause short, broad peaks which may
tend to overlap; thus decreasing resolution.

‘The time of peak appearance, with no axlial diffusion,
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is a direct function of mR,. This is shown by %aking the
equation for the first order model in the transform domain
and determining the limiting case by setting Nyog equal to
infinity. Thus Eq. (III~-4) becomes in the limit as Nyog
approaches infinity: ~ ‘

—-— - nwlo—; -
y(1,s) = A(S} exp [ s( 1 * FR )] (V1)
The above equation shows that for Niog equal to infinity,
the forcing function, A(s), will appear exactly as injected
at a later time ( 1 4+ 1/mRy, ). Hence, the theoretical time
of peak appeafence, €ps for the ldealized system can be

defined as:

— 1 -
em..1+.ﬁ; (v-2)

If axial diffusion is present, O, -wlll also have a dependence
on the Peclet number, Pe, & measure of the amount of
diffusion (2,6). |

‘mR, can therefore be consldered a measure of relative
component volatilities since highly volatile substances will
appear first., Each component however, does not have a
ﬁnique mR,. Temperature, pressure, and the type of adsorbing
'substrate_used are all factors in the determination of mR,
for a specific chromafograph. Table I shows approiimately
how mR, varles for different compouﬁds ﬁhen usiné avédluﬁn
composed of a 1liquid substrate of 20% by welght silicone
grease on a 60/80 mesh chromosqrb packing at one atm. pressure

and 50°C.(3). It can readily be seen in the alkane series



TABLE I

- mRy; as a Function of Various Compounds

3

Compound

Methane 1
Ethane
Propane
Butane
" Pentene
Hexane
Heptane
Octane

5 e @

= WO AN OV

* & & o @

.

Ethylene
Propylene
Isobutylene
1=Butene
trans-2-Butene
cls=2-Butene
f{-Pentene
trans-2-Pentene
cis=2-Pentene
{-Hexene
trans~2-Hexene
cis-2~Hexene

L]
QO=NNONNIEUVIONRUT OO0V O
OO O~ I NI ~

0000000000~ 00000~ uW
S0

L L ] L] L (3 °® L] o *

Conditions: Silicone grease, 20% by welght on 60/80
mesh chromosorb
1 atm., pressure
50°¢C,
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that as component volatility increases, nR, increases
causing earlieé theoretical peak times.

For a constant Ntog’ some output resolution is
_ lost as nR, decreases, Théoretical impulse peaks for pentane
(mRo = 0.23)-are sharper than peaks for hexane (mR, = 0.092),
when all other variables are kept constant (4).

To begin the analysis of sample injection, consider
the case of the ideal column described by Eq. (V-1). In
this column there is no diffusion and an infinite number of
transfer units, Therefore, the forcing function will appear
unchanged at 8;. Flgure 1 shows the output of various input
functions for a sample size Akt) of 0.05 and an mR, of50.2'
(6 = 6). Two items should be noted from this figure, Pirst,
the area under each of the peaks is the same in all cases
and is equal to the sample size. Sepondly; peaks for the
fstep pulses are not centered arouﬁd the theoretical peak

time, ©

ns but start at ©,. The reason for this is that the,

leading edge of the pu}se input cannot reach the end of the
column any faster than the lmpulse function. Since the
front edge of the pulse input starts at 6 = O and ends at
8 = 8,, the front edge nust appear.at 8 = 8, and end at
© =0 + é . If this analysis is carried over to real‘systems,
we would expect theoretical peak appearance time to move
as sample injection time increases,

In order to be able to compare the chromatograms
resnlting from the first order model with those from an actual
system,.it was .decided to use the same column parameters used

in the previous evaluation of the model (4) and summarized in



H

1.1 |-Tmpulse 22|

1.0

0.9

0.7

Mole ,
Fraction 'k
0.6

0.4

0.3

0.1

0.0

Figure 1: Idealized model - mR_ = 0.2, A(t) = 0.05, v/L = 0,25
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Table II. The results of a step pulse injection of varlous
times are shown in Figure 2. The curve labeled "actual"
was obtained by injecting a liquid pentane samplé, by means
of a syringe, into the column described in Table II.
As predicted, when sample injection time increases,
‘the +time of the maximum polnt moves to a larger value. The
impulse peak is centered around © = 6 as described by Eq. (V-2).
However, the one second pulse péak is centered around € = 6,125
whlch is the exact time the one second'pulse peak of Figure 1
is centered around. As expécted, resolution is lost as
samplé injection time increases, Peak height is lowered with
the resulting broadening of the peak base since the area
under each curve must remain constant.
Another point of interest is that the basic symmetry

0f the impulse peak is not lost. The one second pulse peak
is Just as éymmetrical as the impulse peak, Secondly, the
peaks all start to appear about the same time, ZIEven though
the base of the one second. pulse peak is much wlder than
the impulse peak, the initial parfs do not overlap. This
further supports the statement that the ieading edges of all
“input functions do reach the end of the column at the same
time if axial diffusion is not present.

| To show the influence of column parameters upon
sample injection effects, it will be necessary to develop
a correlation between ©, and the loss in resolution; The’
amount 6f resolution, as compared to a peak obtained using

a theoretical impulse injectlon, can be measured dy two



TABLE 1T

summary of Column Parameters used
in Testing First Order Model

Lerigth, cm,

Diameter, cm.
Particle diameter, cm.
Void fraction

Surface area, cm2/cm?
Pemperature, °C
Pressure, aim.

Carrier gas flow rate
cu. cm./sec,

Carrier gas veloclty
cm./sec,

HQV{L}

W

Ntog

61.0
0.46
0.0214
0.4
168

50.0
1.0

1.0

15.23

0.05

14,300

20
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methods., Either the ratio of peak heights (pulse/impulse)
or the amovnt of base broadening can be.used. At first
glance, it would be assumed that the amount of base broadening
should be used since overlap of the peak bases is the direct
cause of resolution problems. However, since the curves

are symmetrical and the aréa under each curve 1s a constant,
-the'loss in peak height can be directly related to the baée
broadening., Also, the measurement of peak height can be
made very accurately, while the exact starting.and ending
;points on the base of the curve may be difficuit to measure,
depending upon the amount of accuracy desired. Therefore
the decision to use the ratio of peak heights as a measure
of the lose in resolution was made. Since the appearance
time for the impulse pesk is charagteristic of the systen,

& correlation concerning resolution should reflect this fact.
Therefore, instead of plotting the ratio of peak helghts
agalnst O, alone, a ratio of 6,/0; = €,/ (1 + 1/aR,) is
used. Figures 3 and 4 are two plots using the above cor=
relation showing the effect sample Injectlon time has on
output resolution as column parameters are varied,

Pigure 3 shows the above correlation as Nype is
held consﬁant end mR, is varied. It can be seen that the
loss of resolutlon as samp19 injectlion time increaées is
" fairly constant as'mRé is éhanged; The loss 18 not as -
noticeable for low values of mR,; however, the inlitiel
resolution of the impulse peak for a low value of mRy is

not as sharp as that for a higher value of mR,. This
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correlation is useful in the following manner. Suppose
a set of Operaéing ponditions i1s specified for the lander
chromatograph., Consider also that fhe thermodynamic
properties, mR,, of a set of compounds to be detected
are-known; e.g. two compounds having values‘of mRO of 0.25
and 0,20 respectively. With the quality of the deteétion
system available, suppose a rétio of pulse pezk helight to
impulse peak height of 0.85 might be tolerated in deteéting
thg two compounds. If the peak height ratio is less than
- 0.85, enough resolution is lost so that detection is uncertain,
Refexring to Flgure 3, 1t can be seen that for a 0.85 ratio i
©,/6, is 0.02. This means that if the theoretical time of
tpeak occurance of one of the compounds is 20 seconds, then
the sample injection time must be less than 0.4 seconds in
order to achieve a 0.85 peak height ratio.

Figure 4 shows the effect of 6, on resolution
as a function of N{og. Thls plot points out one major fact'
concerning the effect of sample injection time. It will:
be noticed that'for a low value of Ntog sample injection
has very little effect on output resolution. However, at
low Ntog the impulse pesk has extremely'boor resolution as
shown in the previous studies}(A). The impulse peak fqr
an Ntog'of 1000 is a very short broad curve which is equive
alenf to almost no resolution. The impulse'peak for an
Nfog of 50,000, on the other hanﬁ, is extremely tall and
narrow. In fact, it is almost a spike peak. This is the

type of peak we desire for maximum resolution., However,
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the resolution for a curve with an Ntog of 50,000 is very
quickly lost to sample injection time. In, fact, if 6, cor-
.responds to a theorétical peak timerof 20 seconds, with an
Ntog 0f 50,000, a step pulse input of only 0.5 second causes
the output peak to be one-half the height of the theoretical
impulse peak, This emphasizes the general effect, which
was also noted in Figure 3: the sharper the theoretical
impulse peak, the quicker the resolution is lost as a function
of sample injection time. |

| Since it is known that the first order model fails
significently in predicting the chromatogram even with the
addition of sample injection time (Figure 2), it was decided
to expand the analysis to a speclial case of the second order
modél.which had been solved, By doing this we hoped to
.accomplish'three objectives. First, by means of a special
second order model, we hoped to generate chromatograms which -
-would more accurately describe the actual system. Secondly,
the special second order system would allow correlations
on the Peclet number Pe, a measure of the aiial diffusion.
Finally, we wanted to show that the technlique used to analyze
the first order model could be applied to other mathematical
models so that when the final model is developed, a pro-
cedure for analysing the effects of sample injection would
be available, |
| The special case of the second order model is that
of equilibrium adsorption (infinite Nyqp). it is hoped that

this assumption of an infinite number of transfer units 1s



not far from reality since the value of Ngog used in the
test system was equal to 14,300, This large value of Nygg
‘1n the first order model gave theoretical impulse peaks
which were tall and narrow, approachihg the spiké peak
obtained for infinite Yioge

An estlimate of the Peclet number for the test
column was obtained (Pe :VBOOO) and used to generate the-
results s@own in Pigure 5, This flgure is the equilibrium
adsorption counterpart of Figure 2, Both figures have the
same ordinates for comparison purposes, Oﬁe item should
be kept in mind when comparing Figures 2 snd 5, High vaiues
of Pe mean low diffusion, and the upper limiting value of
Pe at high fléw rates is about 3000 (2). Thefefore, Figure
5 is a graph of an output chromatogranm from a column in
which diffusional effects are relatively small, The first
order model was derived considering the effect of diffusion
was negliglible., However, Figure 5, when compared to Flgure
2, shows that even thouvgh diffusional effects may be small,
they are extremely influentlal on the shape of the output
chromatogram and must be consldered 1f an accurate mathe-
matical model 1s to be derived,
| ‘The theoretical time of peak occurancé em>is no
longér a éimple function of mR, as is showm in Eq. (V-2),
but is a function of both mR; and Pe. However, the peak
occurance tiﬁe of the 0.2 seéond pulse and the one second
pulse In PFlgure 5 1s exactly the same as the peak occurance

time of these pulses in Plgures {1 and 2, This is further

27
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proof that diffusional effects are small for this particular
case, It shouid also be noted that the starting point of
these péaks is the same as that of the actual chromatogram
‘and the peaks are no longer symmetrical, although they are
not as skewed as the actual cufve. In summaiy, the equilib=
~rium adsorption case of the second order model more accuratly-
-predicts an actual chromatographlic system than does a simple
first order model. The addifion of Ny,., i.e. a complete
second order model solution, should lower peak heights even
further and hopefully be an acceptably accurate mathematical
" model for use in system studies.

The effect of changing Pe is shown in Figure 6.
The value of Pe in this figure is 60, meaning a large amount
of diffusion is present. Note that the scales of Figure 6
are‘entirely different from those of Figure 5. If Flgure 6'
was to be graphed on Figure 5, 1%t would appear almost like
~a straight line running along the bottom of the plot. This '
figure is included for-three reasons, First, it shows the
skeymess associated with the alffusional second order model,
Secondly, the theoretical peak time is quite‘different than
the corresponding peak tiﬁes in Figures i, 2 and 5 shbwing
a dépendence of em on Pe., Most importantly, however, is
the fact that the only effect sample injectipn time_has on
a peék whicﬁ initially is extremely broad is to move the
theoretical peak time to‘a slighfly'later value, Both
curves in Figure 6 are almpst exactly the same except for

the time displacement. This plot further supports the
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statement that.theoretical peaks which initially are broad
will not lose ;esolution as sample injectlon time increases.
A set of correlations similar to those of Figure 4
are presented in Figures 7, 8, and 9'showing how resolution
is affected at different values of Pe for three values of
- mR, (0.5, 0.2, 0.038). Again the effect of initial resolution
in shown. At a Peclet number of 60, there is almost no
initial resolufion and the peak shape is unaffected by
sample injection tiﬁe. As Pe increases, the chromatogram
" becomes less broad and sample injection time becomes more
important.
| The effect of varying mR, at constent Pe can also
-be seen in Figures 7, 8, and 9., Thls effect is also shown
separately in Figure 10 using a slightiy different correlation.
‘Thié correlation can conviently be uéed with the example
.giﬁen previously in this section, If you know from previous
étudies that 2 ratio of pulse peak helght to impulse peak
height of 0.9 can be t%lerated, then the maximum sllowable
sample injection time at the specific mR, in question can
be obtained from Figure 10. One point should be noted.
As mR, increases, e,./em decreases, However as mR; increases,
6, also decreases caﬁsing_erito decrease even more rapidly |
than would appear from the plot. |
A complete solution of the second order model will
tend to shift the correlations of Figure 10 to the right,

thus reducing the effect of sample injection time. However,
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1%t has been shown by use of the above techniques that
sample injection time is a definite factor which must
be taken into consideration 1f a complete description

of output resolution is desired.

36
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PART VI
CONCLUSIONS AND RECOMMENDATIONS

The major conclusion which must be dravn from
the preceding analysis 1s that sample injectlon does have
a slzeable, but varying, effect on the ountput chromatogram
and must be included in any detalled system study in
order to obtain accurate results.

Baslecally, increasing injection time has two
-effects on the chromatogram. First, because the 1njec%ion
function is more diffuse, the output funcﬁion will be
broader, and shorter since the area under each curve must
be. the same, the result belng a loss in resolution. This
loss in resolution, as compared to a peak obtained by a
theoretical lmpulse injectlon, depénds upon the column
barameters Pe, Nyog, and mRy. Speciflcally, the effect
of sample injection time is more noticeabdle as_ﬁhe values
“of the above parameters increase., ¥No set formula has been
obtained, as of now, as to how sample injection time affects
a combination of the above parameters, However, as a
general rule, the sharper the.theoreticaliimpulse peak
(taller and narrgwgr); the quicker that resolution is lost
as a function of SAmﬁle injection time, The second notice-
able effect of Injection time is the movement of theoretical
peak times, em, to later values as the in)ectlion time in-
creases. The cause of this phenomenon is due to the finite

amount of time needed to complete the total injectlon of



the sample, Since the total sample is not inside the
column until a time ©, greater than zero, the maximum point
of the output must be delayed from the theoretical peak
time obtalned when the total sample is injected In zero
time (impulse).

Inforﬁation concerning the effect of diffusion
6n the mathematical model was obtained when the equilibrium
adsorption modei of the second ordef system was inVestigéted.
Even though diffusional effects in the system under sﬁudy
are known to be small (Pe = 3000), inclusion of these |
effects greatly ihfluences the shape of the resulting
chromatograms over a model which neglected them., A complete
solution of the second order model should further improve
the'predicting of output chromatograms, hopéfully to the
pqéition where the required accuracy needed for system
studies can be obtained,

The technique of convoluting a pulse injection
_function with a mathematical model obtained using an impulse
injection has proved.feasible on syéfems othér than the
original first order modél. Further studies using other
mathematical representations of the injected funcition can
be accomplished;'however, I do not belleve they will
produce any'more useful information than has already been
obtained, It is more important to study thé effect of

injection upon the advanced model now being developed, so

38

.that correlations can be developed for domplete system studies,
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PART VII
NOMENCLATURE
mathematical representation of sample injection
into chromatographic column
diffusion coefficient, sq £t/sec
computational ald
mole fraction of component in gas for pulse input

modifled Bessel function of the first kind of
order n

computational ald

length of packed bed, £t

‘adsorption equilibrium constant, y* = mXy,

sample sigze, lb-moles

anumber of transfer units avallable for adsorption,
dimensionless

Peclet number, (vL/D), dimensionless

ratio of moles of gas in bed to moles of 1liquid
in bed

Iaplace transform variable, dimensionless
time, sec

true gas velocity, fi/sec

molar flow rate of gas, lb-moles/sec
position or dis%ance in packed bed, ft
mole fraction of component in liquid
mole fraction of cémponent in gas

mole fraction of component in gas which is in
equilibrium with liquid phase

dimensionless length, x/I

variable of integration

39
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i

Dirac delta function (unit imgplse)
dimensionless time, t/(L/v)

diﬁensionless time corresponding to maximum poiﬁt
on output peak

dimensionless sample injection time, 7/(L/v)

variable of integration

sample injection time, sec

40
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PART IX
APPENDIX: COMPUTER PRQGRAMS

In order %o be able to convolute a rectangular
pulse .forcing function with the-first order mathématical
model, Eq. (IV-5) must be integrated. Since analytical
techniques proved too bulky %o manlpulate, the decision was
made to numerically integrate BEq. (IV-5) by means of a
computer program. The technique used is that of Simpson's
rule with the Bessel functlon expanded in an asymptotic
series, The output from this program, for a specifilc Nfog
and mRy, 1s the cumulative area under the output chromatogram
as © varies from zero to its final value., The technique
developed in Part IV as Eq. (IV-6) can thén be applied to
.fhis output, thus generating the required chromatograms for
varlous sample injection times,

PROGRAM A and the assoclated BESI subroutine are
: specifically designed %o solve Eq. (1v=-5). 1The main program
is a modification of an IBM supplied integration subroutine
(5) which'uses interval halving over the range of the iﬁtefval
(A,B) until a required aécuracj is obtained. Once having
-computed the value of the integral.(SII) for the ith time
the interval is halved, the interval is halved for the (i+1)°2
time and the integral is recalculated (S); If IS - SII] <
DEL ~'SI, where DEL is the required accuracy, then S is the
final value of the integrai. If the above inéqualify is not

met, the interval is halved again until the inequality is
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solved or a maximum (IMAX) number of interval halvings has
taken place, The modification to the Simpson's rule pro=-
gram is that the total area under the chromatogram (SS) is
calculated in increments of 46 = 0,01 in the following

ei Cicon O, 02 ei
SS = + + Jﬁ e e e e e +Jﬂ (IX~1)
(o) ez- [<]

i+ .0 ei *1T22L.01)

where’ei is the iﬁitial value of theta (THETAI), and Bp 1s

manners:

the final value of theta (THETAF), both of which are read
in as data. Fach integral in the formulaAfor SS 1s calculated
separately according to the above procedure. After each
integral is calculated, the following is written as output:
upper 1limit of the integral (THETA), total value of SS,
value of the integral in question (S), and the total number
"of increments into which the integral was divided (N).

The BESI subroutine used with PROGRAM A is also
a modification of an IBM supplied subroutine (5) which will
compute 11(A) of Bg. (IV=5), The modifications are as fol-
lows., The IBM program computes I,(A) in a series APProXe
dimation if A <12<n, and in an asymptotlc approximation if
A>12>n. The series approximation has been dropped from the
BESI subroutine of EROGRAM A @ue to underflows which developed;
however, thls has no effect on ﬁhe accuracy of the coumputations.
The only place 1ln which the serles approximation is used 1s
near the lower limit in the first integral of Eq. (IX=1).
Since the value which is computed for In(k) is extremely



- small in this r?gion'(less than 10"75), no accuracy is lost
if zero is retu}ned to the main program as the value of In(ﬂ).

The resulting approximation for I (A) is:

- ~m1m[m2n 2] )
I,(A) = = (82) mg (2K=1) = 4n (1x-2)

The second modification is the fact that 11(AJ is not the

complete lntegrand., We deslire %o integrate the function:

‘. Nyo gz} I,(\) (1X-3)

exp H..__A..._.,

Therefore, in the subroutine the exponential term of Eq.(IX§2)
' is combined with the exponential of Eq. (IX=3), as XYZ, and
tﬁé whole value of Eq. (IX=3) is returned, as BI, to the
ﬁain program. If XYZ is less than =150, EXP(XYZ) is approx~
imately 10"70, therefore the value of Bi is'returﬁed as zZero,
Ir XfZ 1s greater than 174, BEXP(XYZ) is larger than 1075 and
an érror indicator is set causing the maln program to print
out this fact.

PROGRAM B calculates directly the output chromatogram
for an impulse injection (of sample size equal to 1.0) at
a specific Ntog and mRo.. The program operates exactly in
the same manner as the BESI subfoutine and is subject to the
same modificatiouns, The output of this program is a list
of e's,.from the initial to the final value, with the cor-
responding moie fraction value (Y) of the impulse chromatogram,
where Y is defined by Eq. (III-5) with the sample size term

_set equal to 1.0,



PROGRAM C 1s the counterpart of PROGRAM A for
the equilibrium adsorption case Eq. (111-6). The main
program, with a few minor changes 15 exactly the same as
the main program of PROGRAM A, The subroutine (RCK) is a
straightforward calculation of the functlion to be lntegrated
with a similar check on the bounds of the exponentisl term
(A) as is found in the BESI subroutine. Output of PROGRAM C
1s exactly the same as that of PROGRAM A.
_ None of the above programs are in thelr most
.efficient form. They are written specifically to solve a
certain set of equations and are included only as a guide
to the results of Part V, and a reference to be used wvhen

the complete mathematical model is developed,
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DATA CARD FORMATS

All three programs are designed to operate on

any number of data sets. Xach data card (after the first)

contains all of the information necessary %o cause a come

plete run of the program, ZEach program will cycle over

the total number of data cards designated by the flrst

card read,

. Input for PROGRAM A and PROGRAM B

GCard 1
col 1-5
Card 2;3500.
col 1=-10 N
11-20
21=30
3{=d0
4450

" Input for PROGRAM C

Card 1
col 1-5
Card 2,30
col 1=10
11=20 m
21=30
31-40

total number of data cards following (I5)

(10, 5)
nio8 (¥10.5)
star‘tinp' value of © (¥10,5)
final value of € (F10.5)
g-dimensionless distance (F10.5)

‘total number of data cards following (I5)

Pe (F10.5)

(F10.5)
startlng value of & (F10.5)
final value of © (F10.5)
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VARIABLE TLISTING FOR ALL COMPUTER PROGRAMS

AMRO
ANHLF
ANTOG

BA
BESI
BI
DEL
FINC
FX
PN
FRSTX

IER

IMAX
INZZ

ITHETA

n

i) i i U i

i

i i

H

lovwer 1limit of the integral when used in malin programs
value of exponential term when used in subroutine RCK

integrand value found at the lower limit of the integral
mR, - measure of component volatility

floating point value of NHALR

Ntog‘“ total number of column transfer units

upper 1limit of the integral

difference between integral limits

subroutine name used in the first order progranm

value of integrand returned to the maln program
tolerance factor used in Simpspn‘s rule integral

size of each interval increment

factor used Iin the asymptotic Bessel function series

set value determined by the order of the Bessel functidp
point at which integrand value 1s to be determined
dimensionlesé time of theoretical peak occurance

DZ loop counter

error 1ndicatqr in BESI: no error

order of Bessel function-:
is less than zero

Bessel function argument.
less than zero

XY¥Z has a value less than
-150 '

= XYZ has a value greater
then 174

- O
Hou

> U D
il

maxinum number of interval halvings allowable for
each integral

D¥ loop counter running over the total number of
data cards read

D¢ loop counter
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1Z2 = total number of © increments inner DZ loop operates
over

K = DF loop counter

KIAST = last increment point at which integrand value is
to be determined

N = total number of increments the integral is diviged

into
NHALF = number of +times the integral interval is halved

NZZ = total number of data cards to be read

P3 = Peclet number

“PI =17
.RGK = subroutine name used in the equilibrium adsorption

program.

S = value of the integral found in the present approximation
SII = value of the integral found in the previous approximation
S8 = summational variable - contains total value of all

' integrals

‘SUMK = value of integral at various points
- PERM = one term of the asymptotlic Bessel functlon serles.

THETA = 6, dimensionless time

THETAF = final value of 6 at which the program stops

THETAI = initial value of © at which the program starts
T0L = tolerance used 1n various determinations
X = midpoint of integral limits whén used in the main
programs
= value upon which subroutines act when used in sube
- routines _
= 2Ntog\/ﬁRoz(9~z) when used in PROGRAM B
XX = coﬁnter running over all increments of the integral
XX = multiplying factor in asymptotic Bessel function serles
XYZ = argument of the exponential term |
Y = final value in mole fraction (for 2 sample size of 1)

of the impulse pecak at the © in question

Z — dimensionless distance dovn the column
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PROGRAM A

READ(1,1)N%Z%

FORMAT(I5)

DO 29 INZZ=1,N27

READ(1, 2)AJTOG AMRO, THETAI, THETAF,Z

FORMAT{5F10.5) \

WRITE(3,3)ANTOG,AMRO,%

FORLAL(/////,?OX,'FTOG = ',F10.1,5X,'MRO = ',F10.5,5%,

1'72 = ,F1O 5,//)

FORJAT(1OX 'THETA', 10X, 'SUMMATION',ezx,'INT SGRAL',10X,'N',//)
IZZW((THELAF»THVTAI)inO Y+0.01
558=0.0
DO 28 ITHETA=1,I27
THETA= ( THETAL- o. 01)+(ITHETA*O,01)
B=2, ¥ANTOG#SQRT (AMRO%*Z#* ( THETA=Z) )
IF(XTHETAu1)6,5,6'

5 A=0.0 .

6
7

11
12

15

GO TO 7

A=2, #ANTOG*SQRT( AMRO#Z# ( THETA=Z~0.01) )
DEL=0, 001

TMAX=10

SI11=0.0

S5=0.,0

N=0

BA=BA

IF(BA)8,8,10

WRITE(3.9) :
PORMAT(20%, A=B, OR A IS GREATER THAN B  PROGRAM TERMINATED')
CALT EXIT
X=BA/2 ., +A

NHALP=1

CALL BESI(X,1,BI,IER,ANTOG,Z)
IF(IER}21,11,21
SUME=3T%24%2, /3,

CALL BESI(4A,1,BI,IER,ANTOG,Z)
IF(IER)21,12,21

AA=BI

CALL BESI(B,1,BI,IZR,ANTOG,Z)
IF(IER)21, 13,¢1

S= SUHR+(AA+BI)*BA/6

D0 17 I=2,IMAX

SII=S

S=(S-sUMK/2.)/2.
NHALF=NHALF#2

ANHLF=NHALF

FRSTX=A+( BA/ANHLE) /2.

CALL BESI(FRSTX,1,BI,IER,ANTOG z)
IF(IJR)21 14 21



14

15
16
17

18
19

20
21
23
24

25
26
27

28
29

WU BN -
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SUMK=RT

XX=FRSTX

KLAS T=NHAL F-1
FINC=BA/ANHLP

DO 15 X=1,KLAST

XK= XK+ PING

CALL BESI(XX,1,BI,IER,ANTOG z)
IF(IER)21,15.21
SUMK=SUMK+BI
SUMK=SUME*2, #BA/( 3. ANHLF)
S=S+SUMK

IF(ABS(S- SII)uABS(DELWS))19 19,17

CONTINUR

WRITE(3,18)

FORJAL(QOK 'REQUIRED ACCURACY NOT MET IN IMAX STEPS )
N=2#NHALR

5=8S8+S

S8=9

WRITE(3, 20)1H“TA 55,5, N

POPWAL(1OX P5.2,E20, 5 20X,E20.5, 110)

GO TO 28

GO TO (22,22,24,26),IER

WRITE(3,23)

FORMAT(20X, 'ERROR IN BESI SUBROUTINE.- PROGRAM TERMINATED!)
CALIL, BXIT

55=0.0

WRITE(3,25) THETA , SS

FORMAT(?OX F5.2,520.5)

GO TO 28

WRITE(3,27) THETA

FORMAT(10X,F5,2,9%, "GREATER THAN 10##75%)
CONTINUE

CONTINUE

CALL EXIT

END

SUBROUTINE BESI(X N,BI,IER, ANTOG Z)
IER=O

5}2;1
IF(X)16,4,4
IR(X)16,3,4
RETURN
T0L=1.0E=3
IF(X~12 6,6,
IP(X-FLOAT(N)
BI=0.0

GO TO 17

5
)6,6,7



FN=LEN#N
X¥X=1,/(8.%X)
PERM=1.0

° BI:1 00

11

12
13

14
15

16
17

D0 9 K=1,30
IF(ABS(TLRA)MABS(TOL‘BI))10 10,8
FR=(2%K=1 )%
TERMuTERMer*(FKmFI)/FLOAT(K)
BI=BI+TERM
PI=3, 14159?653
XYZ=¥%-(X/(2,* SQRT(ANTOG*Z)))¢~2»ANTOG*Z
IP( 150,42 vz)11 12,12
BI=0.0
GO TO 17
IR (XYZ= 174 Y14,14,13
IER=4
GO TO 17
BI=BI*EXP(XYZ)/SQRT(2.%*PI*X)
GO TO 17
BR=1
GO TO 17
IER=2
RETURN
END
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PROGRAM B

READ(1,1)NZ2Z
1 FORMAT(IS)
DD 16 INZZ=1,N77
READ(1, Q)ANTOJ,AHRO THETAI , THETAF,Z
2 FORJAT(SWTO 5)
WRITE(3,3)ANTOG ,AMRO,Z
3 PO?MAT(/////,1OK 'NTO“ = ',F10.1,5X, '"MRO =
1'2 = ',710.5,//)
T0L=1.0E=3
URITT‘(B 4)
Ay@mmmuox'mmmm'14x'yu//)
172Z=( (THETAP-THAETAL )*100, )+0
D0 15 ITHETA=1,1Z%Z
THETA=( THETAL=0,01 )+ (ITHETA%*0,01)
X=2#ANTOG# SQRT(AhRO”Z*(LH TA=Z))
BI=1.0
FN=4,0
xx:1./(8.%x)
PERM=1,0
D0 6 K=1,30
IF(ABS(TLRA)mAbS(TOL FBIY )7,7 45
5 FE=(2% K~1)é}2
TERM=TERM#XK* (BunFN)/FLOAT(K)
6 BI=BI+TERM
7 PI=3%.141592653%
, XYZ=¥w (ANTOG#Z )= ( ( THETA=Z ) #ANTOG#/ MRO)
IF(150.+X¥2)8,9,9
GO TO 13
9 IF(XYZ-174.)12,12,10
0 WRITE(3,11)
1 FORMAT(lOX 'XYZ T0 LARGE')
GO TO 15
2 BI=BI*Z XP("YZ)/SQRT(Q #PI%*X)
13 Y=2,ANTOG*ANTOG ZﬂANRO*BI/X
WRITE(3, 14)THETA,Y
14 FORMAL(TOX F5.2,E20.5)
15 CONTINUE
.16 CONTINU®
CALL EXIT
"END

' ¥10.5,5%,
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PROGRAM C

READ(1,1)NZ2Z

FORMAT(IS)

DO 20 IN7ZZ-=1,N7Z

READ(1,2)PE,AMRO, THETAT , THETAP

FORMAT(4110,5)

WRITE(3,%)PE,AMRO ~
€ORMA?(/{{//,1OX,'PECLET NUMBER = ',¥10,1,5%, '"MRO = ',¥10.5,//)
WRITE(3,4

PORMAT(10X, ' THETA', 10X, 'SUMMATION ' ,22X, "INTEGRAL' , 10X, 'N*,//)
I12%Z=(( THETAF-THETAT )#100, )+0.01

G=1.,0+(1,0/AMRO) ’ '

85=0.0

D0 19 ITHETA=1,I1ZZ

THETA=( THETAT=0,01 )+ (ITHETA%0,01)

B=THETA :

IP(ITHETA~1)6,5,6

A=0.0

‘GO TO 7

A=THETA-0,.01
DET=0,001
IMAX=10
S511=0.0

"5=0.0

N=0
BA=B=A
IF(RAL)8,8
WRITE(3.95 -
FORMAT(20X, 'A=B, OR A IS GREATER THAN B  PROGRAM TERMINATED')
CALL EXIT ,
X=BA/2,+A
NHATP=1
CALIL RCK(X,BI,PE,G)
SUMK=BI*BA%*2, /3,
IF(AY12,11,12
BI=0.0 .
GO TO 13
CALL RCX(A,BI,PE,G)
AA=BI |
CALL RCK(B,BI,PE,G)
~SUMK+(AA4BI J#BA/6,
DO 15 I=2,IMAX
SII=S
S=(S-SUMK /2.)/2.
NHALF=NBALF#2
ANHLF=NHALF
FRSTY=A+(BA/ANHIF) /2.
CALL RCK(FRSTX,BI,PE,G)
SUMK=BI .
XK=FRSTX

10



14

15

16
17

18

19
. 20

1

2
3

KLAS P=NEATL Fw1
FINC=BA/ANHLF

DO 14 K=t ,KIAST

XK=XKAPINC

CALL RCK(XX,BI,PE,G)

SUMK=SUEK+BI
SUMK=SUMK*2,%BA/( 3. *ANHLF)
'S=S4+SUMK

IF(ABS(S= SII)~ABS(DEL‘S))17 17515
CONTINUE

WRITE(3,16)

FORMAT(20X, 'REQUIRED ACCURACY NOT MET IN IMAX STEPS D]
N=2#HHAL P

S:SS+S

S$8=5

WRITE(3,18)THETA,SS,S,N
FORAAT(102 75,2, £20. 5,20%X,E20.5,110)
CONTINUE

CONTINUE

CALL EXIT

END

SUBROUTIWE RCT(Y BI,PE,G
A=(PB/2, )= ( (PESY) /(4. %G)
I#(150. +A)1 2,2

BI=0.0

GO TO 6

IF(A“174 )55593
WRITE(3,4)

)
)= ((PE%G)/(L4.%X))

A POQLAi(///,)OY Pttt /, 10X, ' EXPONENTIAL IN SUB

1ROUTINE 1S GREATER THAN 10##75', /. 30X, L itititintsint )
CALL EXIT

5 BI=SQRT((G*PE)/(3. 14159*(Yf*3)))~EXP(A)*O 5
6 RETURN

END

54



