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ABSTRACT

In the foregoing, a relativistic kinetic theory description of
the interaction of a plane p-polarized electromagnetic wave obliquely
incident on a hot plasma half space and plasma slab is developed. The
Laplace transform technique together with the radiation condition and
the condition of specular reflection of the electrons at the interface
is used to obtain unique linearized solutions for the fields and the
particle distribution in a plasma half space. The above procedure is
modified to treat the case of the plasma slab. A proof of self-
consistency is presented in the treatment of both the slab and the
half-space problems. The elementary non-equilibrium thermodynamics
of the interaction is discussed in the case of the plasma half space.
Power reflection and transmission coefficients are obtained for both
problems.

The above theory is then applied to several problems in the

m_c

—_
KT

and the depths of penetration are computed for the half space. The

limit of large B = The critical angle of incidence is obtained
equivalent Fourier series representation is presented for the slab case
with no limitations placed on B. A cursory study of the geometrical

resonances in the large B limit is also presented.



I. INTRODUCTION

The kinetic theory description of the interaction of a plane
electromagnetic wave with semi-infinite and slab plasmas has been a
subject of considerable interest in recent years. 1In a pair of
important papers, Silin,l and Silin and Fetisov2 investigated the
reflection and transmission properties of a plasma half space for
both perpendicular and oblique incidence using a relativistic treatment
to describe the plasma. Both "s" and "p" polarizat:i’.onsic were
considered. While the penetration problem was examined in detail,
essentially no derivation was given for the field quantities in the
medium. Taylor,3 and 1éter, Comstock,4 using different mathematical
techniques, supplied some of the details on the derivation of electric
and magnetic fields within the plasma for the case of normal incidence.
Discrepancies between‘Taylor's and Comstock's results were later
resolved by Taylor.5 Shure6 and Felderhof7 also studied the half space
problem using a non-relativistic normal mode approach. Felderhof,
however, does indicate how to treat the relativistic case for the

normal incidence half space problem. Weston8 extended Felderhof's

non-relativistic analysis to the case of oblique incidence of a

%

A wave whose electric field vector is perpendicular to the
plane of incidence is said to be s—-polarized whereas a p-polarized
wave has its electric field vector parallel to the plane of incidence.
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p-polarized wave. Weibe19 computed the analomous skin depth** for thet
case of normal incidence on a non-relativistic plasma half space. The
definition of the skin depth which he uses is somewlrat different from
that used by Silin and the nonrelativistic limit of Silin's results are
not in exact agreement with those of Weibel.

Reflection and transmission of a plane electromagnetic wave at
the boundaries of a plasma slab has also received considerable attention.
While Taylor's relativistic treatment was concerned with normzl incidence

10,11 and Bowman and Weston12 considered

Kondratenko and Miroshnichenko,
the case of oblique incidence for the non-relativistic problem. The
former considered both s~ and p-polarizations using a Fourier series
expansion while the latter, using a normal mode analysis, considered
p~-polarization only. Hinton13 studied the collisionless absorption and
emission of an obliquely incident p-polarized wave incident on both
sides of a non—relativiétic plasma layer.

Ozizmir14 has recently investigated the oblique incidence of an
s~polarized wave on a plasma half space ‘and slab using relativistic
kinetic theory. The relativistic treatment is desirable for several
reasons. First, it eliminates non-physical results such as the Landau

damping of transverse waves. Such damping cannot occur since the phase

velocity of the transverse wave is greater than the speed of light and

%% '
The term "anomolous skin depth" is used to characterize

non-collisional absorption of electromagnetic waves incident on a
medium when the wave's depth of penetration is much smaller than the
average distance covered by an electron near the surface during one
period of field oscillation.
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no particles can be in resonance with this wave. Also, it gives a
correct basis for obtaining temperature corrections to cold plasma
theory.

Ozizmir's analysis, which is different from that of previous
authors, is based on‘the Laplace transform technique. Assuming specular
reflection of the particles at the interface and imposing the ''radiation
condition" on all field solutions, he determined uniquely the stationary
solution to the coupled Maxwell-Viasov equations. The solution for the
slab plasma was obtained by modifying the techniques used in the half
space problem.

The present analysis is an extension of Ozizmir's work to the
case where the incident electric field lies in the plane of incidence
(p-polarization) as shown in Figure 1. In contrast to the
s-polarization case, where only transverse waves are set up in the
plasma, both longitudinal and transverse waves are found in the medium.

Assuming that the particles are reflected specularly at the
interface(s), we obtain rigorous first order solutions for all field
quantities valid at arbitrary angles of incidence for both the plasma
half space and slab problems. In Section 2, we state the basic
equations adopted for the description of the half space problem and
obtain explicit expressions for EX(X) . EZ(X) , and By(x) . Making
use of these solutions, we determine uniquely the perturbed particle
distribution and give a proof of self consistency. Expressions for the
reflection and transmission coefficients are also obtained, and the

thermodynamics of the interaction is investigated. Section 3 is devoted
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to modifying the above approach to treat the slab case. Expressions
for EX(x) s Ez(x) , and By(x) are given. We obtain the perturbed
particle distribution, give a proof of self consistency, and calculate
the reflection and transmission coefficients. The approximate evalua-
tion of complicated integral expressions and the physical interpretation
of the results are left to Section 4. In the case of the plasma half
space, we obtain an expression for the critical angle of incidence and
calculate the complex depths of penetration. The concepts of weak and
strong spatial dispersion are discussed in some detail. We obtain the
equivalent Fourier series solutions for EX(X) s Ez(x) , and By(x)
in the slab geometry and investigate the geometrical resonances.
Finally, the Appendices contain all derivations and proofs too lengthy

to be included in the body of the text.



2. PLASMA HALF SPACE PROBLEM

2.1 Basic Equations

The interaction of a low intensity plane electromagnetic wave
obliquely incident on hot semi~-infinite and slab plasmas can be
described by the linearized relativistic Vlasov equation coupled to the
Maxwell equations. The use of linearized theory is based on the
assumption that the energy density of the incident wave is much smaller
than the internal energy density of the plasma. The incident wave
perturbs the quiescent plasma and sets up electric and magnetic fields
within the ionized medium. These field quantities, as well as the
reflected fields, can be obtained by using the concepts of self-
consistent field theory. 1In the description of such a boundary value
problem, we assume the wave-plasma system has attained a new
equilibrium—--a quasi-equilibrium since the incident wave heats the
plasma, a second order effect. All temporal transient fields are
assumed negligibly small. In effect, we are describing the asymptotic
time limit of the considerably more difficult "mixed initial value-
boundary value'" problem.

The ions are assumed to form a uniform neutralizing background.
Basically, this assumes that the frequency w of the incident wave is
much greater than the ion élasma frequency wpi . Ionic effects can
be included in a straightforward manner by writing a second relativistic

Vlasov equation describing ions and including ionic contributions in the
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charge and current densities. Finally, we assum the plasma to be in a
hot tenuous state, thereby permitting us to neglect collisional effects.
For most of the analysis, this is equivalent to assuming that w >> v ,
where Vv 1is the collision frequency. However, for the discussion of
anomalous absorption, a stronger condition is needed. This will be
discussed further in Section 4.

Letting f(x,z,a;t) be the perturbed electron distribution
function, the linearized set of equations describing the system can be

written as follows:

oF oF
of of s¢  TBolel o o
Yot T U ox T Y2 0z T m Y BB, T B e 0, M
BEX BEZ
5 Ty < 4mp(x,z,t) s (2a)
BEX BEZ 1 oB
2 " %x ot ’ (20)
oB oE
__.__Y. = .l.—-—_}{_ ﬂ,'
0z cot T Ix > (2¢)
and
0B oE
X - 1 _z, 4T,
ox c ot e iz > (2d)
where - |e| and m; are the charge and rest mass of an electron, n

is the electron number density in the unperturbed state, u = Yv where

v is the electron velocity, and

vy = 1 - / 1+ u2/c2
/y1- v2/c2

The perturbed charge and current densities are given by:
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r —
p = - |e] f(x,z,u,t)du3 . (2e)
J
and
i 3
j = - le] -% f(X,Z,u,t)du . (Zf)
J

In writing Equations (1) and (2), we made use of the symmetry of the
interaction; i.e., Ey(x) = BX(x) = Bz(x) = 0 everywhere. All
quantities are independent of y wvariations.

The equilibrium state Fo is assumed to be described by the

relativistic Maxwell-Boltzmann (Juttner) distribution; namely,

- . Be_SY
Fo = 3 ?
4re K2(B)
2 v
m c
where B = < and KZ(B) is the modified Bessel function of the

second kind and of order '"2".

It is convenient in the following to first analyze the plasma
half space x> 0 and.then modify the basic approach to treat the case
of the slab. In order to completely specify the half space problem, we

impose a specular reflection boundary condition on f(O,E) s 1.e.,
1) f(O,ux) = f(o,—ux)

and require that
2)‘ Ex(x) and Ez(x) be bounded as x + ®

and

3) Ex(x) and Ez(x) consist only of waves. traveling in

the +x direction.

The latter two conditions are usually called the '"radiation condition."
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We look for solutions of the form exp i(kzz - wt) , where w and kz
are real positive quantities. All temporal transient fields are assumed
negligibly small. In effect, we are describing the asymptotic time’
limit of the considerably more difficult "mixed initial value-boundary
value" problem. Taking the Laplace transform on the =x variable, the

transformed equations become:

(K X - : Ielnoy" > BFO ~  F
i( Uy + Y wy) = uxf(o) + o EX 8ux + Ez 53;- =0,
(3)
- e B o dw T
1szX -+ Ez(o) - 1kXEZ = 3 .By . (4)
- ik B = -i0F AT (5)
2y c x ¢ “x >
. R e
By(o) + 1kay —E, *t— 13, R (6)

where the Laplace transform variable is ikx with Im;ka< 0 .

Using Equation (4) to eliminate'*ﬁj(kx) and Equations (2f) and
y

~

(3) to eliminate the transformed current densities jX and jz , We

obtain:
oF oF
o) 3 3
w wpz Y2 3 du ~ w2 9 wwz u_du du -
kxkz + ) EX + =7 - kx + — |E_ =

c Wy - kew) c ¢ | wyk-w) | Z

iw 4ﬂ|e|w uxuzf(o)du3
= iksz(o) - Er—By(o) - 5 ——— ’ )

c Y(wy = keu)
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and
oF oF
, o 3 0 3
) wz wwz UXEE; du me u 5;—-du N
K, -5 - —5 — | E - | kk + P Z E, =
Z ¢ c (wy = keu) c (wy = k*u)
2 3
u “f(o)du
= ik E (o) + ‘”“"gel e , (8)
c (yw = keu)
4ﬂnolel2 _
where W E~—~———— and k*u=%ku +ku with k complex.
P o X X z z X

It is now possible to obtain algebraic expressions for EX(kX)
and EZ(kX) . However, it is wvery difficult to locate the zeros of the
denominators of these expressions and thereby obtain the pole contribu-
tions in the inverse Laplace transform integrations. To overcome this
difficulty, we adopt an approach outlined in Ozizmir's work and introduce
a new coordinate system.

The set of complex base vectors: &, , 62 , and 63 defined by

1

s :£=kxx+kzz

1 ~ k 4

k24 x 2
P z
62 = ¥
and
kZ -k %

e, = e, xé&, = X z

3 1 2
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defines a complex orthonormal basis. The transformation is a "complex
rotation" about the y axis. A 3-vector A can be described in this
new system and its components related to the original Cartesian system

as follows:

A = Axx + Ayy + Azz = Alel + A2e2 + A3e3 s
where
k A, -k A kA + kA
A = x 1 z 3 A = XX z z
p:4 k 1 k
A.y = A2 A2 = Ay
kA + kA kA -kA
A = z'1 x 3 A = X2 Z X
pA k 3 ‘ k
and
k = /i 4K’
X z
It may be readily shown that
€, ° €B = 6@6
and that
&, xe, = &,
€, x & = &
€3 x & = &, ’

where éaB is the Kronecker delta. As in the case of all rotational

transformations, lengths are preserved, i.e., A * B = A' -B'.
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Writing Equations (7) and (8) in this new coordinate system and

making use of

oF oF
. =2 u —2
1 3u3 3 Bul

valid for any isotropic velecity distribution, it can be shown that

3 ~
) 9 (kzul + kxu3)(8Fo/3ul)du E1
kzw + Ww ( — ko))
wy 1 ke

=1

3

9 2 2 9 (kzul + qu3)(3Fo/8u3)du
k (W™ - k"¢ + ww =
x P (wy - kul) kcz

: 9
C

. 3
= 1k E (o) - g (o) - 4mlelw J Uyt ()0
X Z - C y

Y(yw - k*u)

and

. 37 %
. 2 9 (kxu1 - kzu3)(aFO/3ul)du E1
w” + ww
b4 P (yo - kul)

=

3
o (k u. - k u,)(3F /3u,)du
kz(kzcz _.wz) + waZ J x 1 z 3 o 3 3

(yw - kul) kcz

4rlelw

2
c

s (10)

u 2'.f(o)du3
= - ik E (o) - X
z z

Y(yw - ku)

where the fact that the Jacobian of the transformation is +1 was also

used.
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The attractiveness of this approach rests on the fact that

=0 , (11)

.u3(3F0/8ul)du3 ) ul(3F0/8u3)du3
(yw - ku

(v - kup) D

which is proved in Appendix A.

When Equation (11) is used in Equations (9) and (10), we obtain

~ ~ 2 iw 4ﬂ|e|w u uif(o)du3-
koh B - k Ay = ke” | ik E_(0) - T7B, (0) - =3 =
L - E ¢y c Yy = keu)
and 12)
2. 3
N . u “f(o)du
k wh.E. +k AR =-ke? | ik E (o) + brlel | x ,
x L1 z T3 7 Z 2 - =
c y{wy = keu)
(13)

where AL(kx) and Af(kx) are the longitudinal and transverse

dispersion functions defined as:

- 3
5F /3u,)du
_ g | v (OF /3y
A (k) = w+ W, o = Tap) (14)
and
2 2.2 2 2 u3(8F0/3u3)du3
AT(kX) = (kX + kz Je© - w - wwp (ym = kul) .

(15)
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Solving Equations (12) and (13) for El and E3 and transform-

ing back to the original Cartesian coordinate system, we now obtain:

G (k) G.(k )
E 1 L x TV x
Bl LTy "N Ty (16)
*ox (kX2 + kzz) x Ay (k) z (k)
and
G, (k) G.(k.)
1 L x T 'x
E (k) = k K ‘ : 7)
* ke ?y | 2AK) S TxAK)
X Z
where
u (ku +k u)f(o)du
GL(kX) = - ikch'(o) + 4rle| X XX L. ,
y y(yw - k « u)
(18)
and
GT(kX) = - i(kxz + kzz)czEZ(o)

u(ku -kau )f(o)du3
+ w ikXcBy(o) + 4ﬂle| X x2 z X

Y(yw -k * )
(19)
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oF oF

0 o] 3
wPZ (kxux + kzuz)(kXaux + kzaui)du
Ak) = w+ : - — (20)
LV x (k 2 + K 2) (yw qux kzuz)
X z
and
BFO BFO 3
2 (ku -ku)k —=-%k 5 ) du
2 2. 9 2 wwp X z zZ X xBuz zdu_
AT(kX) - (kx +kz e =Wt - 2, 2 )
(kX +kz ) (yw - kxuX - kzuz)
(21)

2.2 Field Components Inside the Plasma Half Space
As functions of position x inside the plasma, the electric

field components may be written as:

1 - ikxx
E(x) = 5- | E (ke dk_ (22)
C
and
1 ikxx
Ez(x) = 37 Ez(kx)e dkX , (23)
C

where the contour "C" lies in the kx plane parallel to the real kx axis
and below all singularities of ﬁx(kx) and ﬁz(kx) as shown in

Figure 2. These expressions are deceptively simple "in appearance."
Since Ex(kx) and Ez(kx) are linearly related to GL(kx) and GT(kX)
and these quantities, related to By(o) . Ez(o) , and an integral over

f(o,u) , our answers remain couched in the form of integral equationms.
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Im [kx]

kX plane

Figure 2. Inverse Contour C in Complex kX Plane
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We overcome this difficulty by making use of the specular reflection
boundary condition on f(o,u) and imposing the "radiation condition"
on all field quantities. The application of these boundary conditions
imposes strict mathematical,conditibns on GL(kX) and GT(kX) and
enables us to obtain solutions without having to directly solve the set
of integral equations.

The longitudinal and transverse dispersion functions are
analyzed in Appendix B. We show that AT(kX) always has two roots,
KT and —KT , whereas AL(kX) may have two or no roots. Longitudinal
roots, when they exist, are designated by KL and =Ky - In both

cases, the roots are either real or pure imaginary. Real roots are

always on the open interval (-ao,ao) , where

~ W
o = — cos 8§
o c

and © 1is the angle of incidence. Longitudinal roots exist only when

2 L [ 2K, (B)
—5 < == | K. (B) + B
‘“pz K, (B) 1

which is seen to be independent of the angle of incidence.

When Kip is real, Ky is necessarily also real. When K, is

pure imaginary, Ko is necessarily also pure imaginary. When Ko is

imaginary, Ky may be real or pure imaginary depending on 6 , B ,
and wz/wp2 . The exact conditions are given in Appendix B. Finally,
we note that AL(kX) and AT(kX) are analytic everywhere except for a

cut which lies along the part of the real kX axis given by lkxl > uo.

(See Figure 2)
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We satisfy part of the radiation condition by requiring that

GL(—KL) 0 (24)

and

|
o

GT(-KT) (25)

A second part of the radiation condition is satisfied by imposing the

condition that:

+ == ——
EX (—kl) = Ex ( kl) (26)
and
+ _ -
Ez (-kl) = Ez (-kl) s (27)
where kl = Re{kx} > o and
+
B (k) = lim E (k + ie) (28)
>0

The functions Ez+(-k1) and EZ_(—kl) are similarly defined.

Equation (24) states that:

- 3
ux(—KLuX + kzuz)r(o)du

0 = - | ikcB (o) + 47 |e| { . (29

yyw + KLbx kzuz)
Changing u -> —u and using the condition of specular reflection, we

obtain:

3
u (k.u_+ _u)f(o)du
0 = - 1| ik ¢B (o) = 4ﬂ|e| x L x zZ 2 . (30)
z 'y y(yw - Ky, = kzuz)
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Therefore,

GL(+KL) = - Zikzc%§(o) (31)
Similarly, Equation (25) implies that

GT(+KT) = ZichTB§(o) (32)

The "cut conditions" given by Equations (26) and (27) require

that
+ -
GL (—kl) GL (—kl)
= (33)
AL (_kl) AL (_kl)
and
+ -
G (=ky) Gy (k)
= (34)
AT (_kl) A'I‘ (_kl)
GL , GT
The last two equations state that the functions T and T
L T

are continuous across that portion of the cuts of AL(kx) and AT(kX)
corresponding to --kl < —0, > where kl >0 . This places stringent
restrictions on the functions GL(kX) and GT(kX) . To illustrate
these restrictions, we consider the implications of Equation (33). By

definition,

. 3
k.,u_ 4+ k u )f(o)du
+ - . . . ux( 1x PANA
G (k) = 1kchy(o) 4t |e| iig Yo - (& + 10 Ko T

(35)



- 20 -

Letting u, > -u and using the condition of specular reflection, we

obtain:

- 3
. u (k,u + k u)f(o)du
- ichB;(o) + 4ﬂ|e| 1im x 1x z 2z
y

+
G (-k — 3 - .
L €0 yiyw - (k1 1e)uX kzuz]

1
(36)

Eliminating the integral term in Equation (36) by using the definition

of GL'(+1<1) , we readily find that
e.T (k) + 6 (k) = - 2ik cB_(o) (37)
L VX1 . ¥1 1K CEyt0

Similarly, we obtain:

+ - _ . N
GL (kl) + GL (kl) = - 21kchy(o) (38)
Using the relations
AT®R) = A7(k) (39)
L 1 L 1
and
ATk) = Atex) (40)
L 1 L 1

which are shown in Appendix B and Equations (37) and (38), it can now

be shown. that
+ —
GL (kl) ) GL (kl)

+ T
AT AT ()

1 1
= =2ik cB (o) - } .
z Y + -
. AL (kl) AL(kl)

(41)

where
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In a completely analogous fashion, Equation (34) implies that

+ —
G, (k,) G, (k)

T 1 T 1 o 24k cwB (o) r 2
RN 1%
T T (kl) T 1 T

(42)

We may now obtain Ex(x) and ‘Ez(x) by deforming the original
contour "C" as shown in Figure 3. The electric field components
EX(X) and Ez(x) are each composed of a longitudinal and a transverse
“electric field.

To obtain the "longitudinal" electric field contribution to
Ex(x) and Ez(x) » we deform "C" as shown in Figure 3. We obtain the
corresponding "'transverse" electric field contributions to Ex(x) and
Ez(x) by deforming "C" as shown in Figure 3 and substituting K, for

T

KL . For illustrative purposes, the longitudinal root was shown as pure

imaginary.
In the limit as R =+ ® , we obtain from Equation (22):

iKLx 1KTx
KLe (L)KTe
Ex(x) = 2kzc§y(o) 5 = + 5
1.
+ kz )AL (KL) (KT

NS
+ kZ)AT (KT)

2ik_cB{0) k ik.x
+ z Y 1 1 _ 1 e 1 dk

2 T -
+ k)| AR AT

1
1

8

21kzchy(o) kl 1 1 iklx
+ o w2 D | ity e ~dk
1 z T 1 T

(43)
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v kX plane

oy

Figure 3. Deformation of the Contour C After Application
of the Radiation Condition and the Boundary
~Condition
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where Equations (31), (32), (41), and (42) were used and

' dAL
Ay ) =
b4
k-
b4
and
' dA
_ T
Ap ) = g
X
k
X
As shown in Figure 3, Ky = iIKLf

" In obtaining Equation (43),

1lim (kX + 1kz) Ex(kx)

This result, which is also mentioned by Silin and Fetisov,2

(44)

(45)

we made use of the fact that

= 0

can easily

be shown by making use of Equations (B-22) and (B-23) and in no way

depends on the assumed boundary condition on f(o,u)

The =z

completely analogous fashion.

k ‘e
z

ik_x
2 K

component of the electric field can be obtained in a

The results are:

I » ZelKTX T
T

Ez(x) = ZCBy(o)

(KL

8

2 2 !
+ kZ )AL (KL)

(k

-~ (k)

2 2 !
+-kz )AT - T

- T (46)
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where we made use of the fact that the residues of ﬁz(kx) at

k =+ ik are also zero.
x — 2z

In order to obtain Equations (43) and (46), we tacitly assumed
that GL(kX) and GT(kx) are analytic everywhere except for cuts on
the real axis defined by |kX| > O, - These assumptions are justified
a posteriori.

It is convenient in what follows to express our solutions for

Ex(x) and Ez(x) in a more compact form. Equations (43) and (46) can

be rewritten as:

ikxx
2k cB (o) k e dk
E (x) = P A X %
X 2mi (k 2+k 2) (k)
x Ty Mgk
CL ik x
2k anB (o) ke *dk
z .y x X 47
2T & 2 2N (k)
c X Z T 'x
T
and
2 ikxx
2k “cB:_ (o) e dk
E,(x) = —S5% RN
z Ti
(kX +kz )AL(kX)
C
L , ik x
2chy(o) kX e ¥ dkX
omL YN (48)
C X z T %

where CL is the sum of the contours shown in Figure 4. The CT

contour is similar to that shewn in Figure 4 with k., replacing K

T L’
By imposing the radiation condition and making use of specular
reflection, we have completely eliminated the difficulty of having

our results expressed in terms of integral equations.
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kx plane 69 KL
- —
L. >
o
0

Figure 4. The CL Contour — A Sum of a Pole and a Cut

Contribution
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For illustrative purposes, Ky was assumed to exist and shown

as pure imaginary. Since

, SE
—zi”- B (x) = ikE (x) - -a—;z— (%) , (49)
we obtain:
9 ikxx
2¢c By(o) kXe
B () = T A< ) dk, (50)
Cr

As expected, the magnetic field in the plasma'does not deﬁend on any

longitudinal effects.
To check the consistency of our results, we take kz >0

(normal incidence) and obtain:

EX(X) + 0 (51)

and
2wcB (o) lkXX
A e dk
27i AT(kx) < 4

Cr

E(x) > - (52)
where AT(kX) is now independent of kz and the cut integral is on the
interval (w/c,®) . In this special case, there exists no mechanism for
exciting longitudinal escillations. Only transverse fields exist in the
plasma medium. We note that Equation (52) corresponds to Equation (24)

of Ozizmir for normal incidence if the variable changes Z > §% , X~ 2,

and ¥ -+ £ are introduced. -
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2.3 Determination of the Perturbed Particle Distribution

The perturbed particle distribution satisfies the equation:

. leln_ v OF oF
iy +u-+ikuf = —— | E——+ E —— . (53)
X0X z Z m Xaux zBuz

We can obtain a formal solution to the above by looking for a solution

of the form:

ik_x ikXx
» _ NL(kX)e de NT(kX)e
£(x,uk ,0) = | 2 2 + 7 2 i
) (k “+k A (k) (k "4k 7)) A(k)
L T

(54)

Inserting our solutions for EX(x) and Ez(x) into Equation (53) and
using this assumed form for f£(x,u) , we readily obtain NL(kX) and
NT(kX) . The perturbed distribution function may be written as:

BFO BFO ikXX
— (kau + szu e dkx
21cBy(o)|e‘noY b:d .

f(x,E;kz,w)

27im z 2 2 o =
o e ” + k2 (wy - ToDA (k)
C
L
BFO BFO ikxx
kx(kzau - kx du e dkx
+ w 5 X 5 L (55)
) G2+ kD) wy - TG
T

The function f(x,ﬁ}kz,w) , as expressed in Equation (55), is a solution
to Equation (53) with Ex(x) and Ez(x) given by Equations (47) and
(48), 1In Appendix C, we prove that it satisfies the condition of

specular reflection.
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2.4 Uniqueness of the Solution
In order to determine whether or not our solution £(x G;kzw)
3
is unique, we investigate the homogeneous solution h(x,G;kz,w) to

Equation (53); i.e.,

) oh _
-i(wy - kzuz)h + uas = 0 , (56)

whose solution may be added to Equation (55). The solution to

Equation (56) is:

_ _i(wy-k_u_ )x/u
h(x,u,kz,w) = A(u)e zz X s (57)

where A(u) is that set of ‘U functions which makes h(x,u) satisfy
the condition of specular reflection. The first condition on A(E)

therefore is:

A(uxguyyuz) = A(—ux’uy’uz) ’ (58)
i.e., A(ﬁ) must be an even function of u_ - Since

(wy - kzuz) = wy(1l —(vz/c)sine) >0 ’ (59)

we see that Equation (57) corresponds to a wave traveling from infinity
to the interface when u < 0 . Imposing the radiation conditions on

the homogeneous solution requires that
A(ux,uy,uz) = 0 3 u <0 . (60)
From Equations (58) and (60), we obtain:

h(X:E’kzsw) = 0



- 29 -

2.5 Determination of GL(kX) and GT(kX) and Proof of

Self-Consistency

In order to -obtain expressions for EX(X) and EZ(X) R
Equations (47) and (48), we assumed that GL(kx) and GT(kX) were
analytic everywhere except for cuts along the real kX axis defined
by lkxl >0 . The radiation conditions then imposed the restrictions
expressed in Equations (24), (25), (26) and (27) which in turn implied
Equations (31), (32), (33), (34), (41), and (42). We now show that
GL(kx) and GT(kX) evaluated from £(o,u) do indeed satisfy all of
these requirements.

We begin by evaluating GL(kX) . Inserting £f(o,u) ,
Equation (55), into the integral definition of GL(kX) , Equation (18),
and using the fact that

1
-— ' o — -—
(yw kx u kzuz)(Yw quX kzuz)

- 1 1 1
= T - 1 — - - -_
(kx kx)uX (yw \kx u kzuz) (yw quX kzuz)

(61)
where kx' # kX , We obtain:
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Gl(kx) = = ikchy(o)
2 , '
w "B (o)k ¢ dk
_ Py X X .
ki 1 2 2 . 1
(kx + kz )AL(kx )
CL

2 2,
k' + k DA (") -~ w}
’ = 2 . - ' —‘{kx'AXX(kx')+szXZ(k;)}
w (k"' =-%k)
P X X

W 2Bf(o)k c dk
P Yy Z X

* i 2 2

1 1
! (kX + kz )AL(kx )
L

2 2
. J:(kx +k, ){AL(gX) - w}

a1, + kA (k) + kA (k) }]
P X X

wszy(o)wc kx'dkx' » )
+ {k A (k") -k 'A (k")
T (k 12 +k 2)A (k") Z XX X X XZB X
C X z T ' x
T

wszy(o)wc kx'dkx'
- it (k 02 K 2)A k") {kxAXZ(kx) + szzz(kx)} ?
C X p:4 TV x
T

(62)

where we made use of the definitions of AL(kX) and AT(kX) s

Equations (20) and (21), and that of Aij(kx) » Equation (A-4).
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Expressing AL(kx) and AT(kX) in terms of the Aij(kx) functions
and using Equation (A-3), where R(kx) = 0 , we can simultaneously

solve for A s A , and A . We obtain:
XX XZ 27

2 2 2 2, 2 2
kx u{AL(kX) - w] - kz [AT(kX) - (kx + kz )£+ W]

A (k) = ,(63)
XX X e Z(k 2 +k 2)
P X z
. kxkz[é{ALckx) -+ A ~(k 2+ kzz)cz + w2}
AXz(kx) - 2 2 2 (64)
ww Tk T+ kD)
P X z
and
K 2olh 0 - o} - k200 - G+ 1 Pe? + o’
A (k) = 5 2 X X . (65)

ww T (k 2 + k 2)
P X z
Using Equations (63) -~ (65) and the definition of By(o), Equation (50),

in Equation (62), we obtain:

. 1 2 1 1
kzcgy(o) (kX kx + kz )[AL(kX) - AL(kX )]dkX
ki

G. (k) =
L' x 12 2 ' 1

. (kx + kz )AL(kX )(kx - kX)
L

. A T
kzquy(o)AL(kX) kX dkX
m

12 2 1
(kX + kz )AT(kX )

Cy

1 1
kchy(o) k 'k
- T 2 2 (66)
k '"“+k%)
X Z

Cr
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The function GT(kx) is obtained in an analogous manner. We

find:

1 1 2 vy !
chyﬁ?) k 'k "k + kD) [AL G ) AT(kX)]de

G.(k) =
TV x ™ |2 2 ] ]
TRV WOSD YIRS

a

) kzzcgy(o)AT(kx) k'
m

12 2 1
! (kX + kz )AL(kX )
L

wk ch'(o) dk "'
z Y x
- T 2 2 (67)
k' +%k5
% z

€

It is straightforward to show that GL(kX) and GT(kX) given

by Equations (65) and (67) satisfy all requirements imposed upon them.

2.6 Reflection and Transmission Coefficients

The incident wave's electric ang magnetic fields are given by:

ox oz
and
2 - ?(Ei " sinG.— Ei A cose)eiw/c(X‘cose + z sinb - ct) ,
oxX oz
(69)

where, from Gauss' law,

Ei " cosf + Ei  sin® = 0 . (70)
ox oz
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The reflected wave's electric and magnetic fields are given by:

iw/c{~x cos® + z sinb - ct)

= r;\_z_,r/\

E (onx'+'Ebzz)e (71)

and
- $ (B einb + EF cose)elu)/c(—x cosf + z 31g9 - ct) ,

ox 0z
(72)
where -Ef =~ cos® + EX sin®@ = O (73)
0% oz

Applying the boundary conditions on Maxwell's equations and

using the condition of specular reflection, we obtain:

A r _
on + on - Ex(o) ’ (74)
i r =
Eoz + Eoz = EZ(O) (75)
and
. i r o _ i 'y _ n.
sinb(E, + E ) cosO(E_, E ) By(o) (76)

Equations (74), (75), and (76) may be solved for Egzt and

By(0) by making use of Equations (70) and (73) to eliminate E;x and

EZX: and using the fact that
EX(O) = By(o) sinb , a7
which results from evaluating:
ik B - - iw am
—1kZBy(x) = o E,(x) + 731 () (78)

at x =0 . We find
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i - - Ei . (cosb + H)

oz oz (cosf - H) (79)
and

-ZEté

B'y(O) Teosb = ) > (80)

where we defined
_ Ez(o)
H = B}(o) . (81)

The integral representation of this new parameter can easily be
obtained from Equation (48).

The reflection and transmission coefficients are defined as:

A pny of
R = ‘ Re & fﬁi> (82)
Re ¥ * <8™>
and
A =t
e < >
_— | Re X Ei ’ (83)
Re & = <8
where S is the time averaged Poynting vector defined by:
S = SExE 84
= gr EX (84)
Using Equations (68) through (73), we find:
; c lE;Z;lZ
Sy (0> = Frooes (83)
and )
e oSBT
G (07 % " oo (86)
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Consequently,
. 2 2
_ oz _ cosf + H
R = Ei ”. cosb - H ' (87)
oz

The fraction of the total energy which travels across the interface is

given by:
(o) 4 cosf iReH; (88)
|cosd - H|
Since ReH < 0 , we may easily show that
R(0) + T(0) = 1 (89)

as expected.

The fraction of energy which travels deep into the plasma medium

is given by:

T(®) = 1lim T(x) .
K>
where
_ |Re 5, G B (0]
T(x) = cos ® —— (90)
lEl ‘2
0z

It is clear from Equations (48), (50) and (90) that T(«) is non zero
only when Ky = ]KTI . There exists two possible cases to consider

depending on whether a longitudinal root also exists. When Ki = IKTl

and Ky = lKLl » we obtain:
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. t -
lim <SX (x)> =

K00
_ 4w§213y(°)|2KT(§%) w sin 0 ei(KL ) KT?X’ _ C‘KTZ 1
ML) el + f; sin?O)AT (k) (" + f—i— sinze)A,i‘(KT)J
(91)
and therefore,
lim T(x) =
x>0
160K c? cos 6 w sin 6 ces(k, - K, )x K 2c
- T ‘ R T
A4k [eos 6 - B|® | etk ® + 9:-2— sin’OM (k) (kia+ f;sinzﬁ)A,;:(KT)
(92)

The first term represents the interaction of the longitudinal and
transverse waves--a second order effect. The electrons, whose density
varies harmonically in x in this asymptotic limit, interact with the
transverse electric field, thus giving rise to an =x dependent energy
density. Such a situation arises only when both AL(kx) and AT(kX)
have roots on the real kx axis; i.e., when AT+(0) <0 and
AL+(a°) <0 . Evaluating Equations (B-42) and (B-47) in the limit,

g > 100 , Wevfind as conditions that

2
w

R 1
1 wz a1+ 28) <0
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and

1-3/28_1 (o
cosze k- w 2
p
Combining these two inequalities, the existence condition for real

longitudinal and transverse roots becomes:

. (L1 - 3/28)

24
cos (1 + 3/28)

We conclude that real longitudinal and transverse roots exist only for
near normal incidence. Since T(«) obtained above still contains a
term harmonically varying in x , we conclude that a transmission
coefficient cannot be properly defined in this case.

When the longitudinal mode does not exist, we obtain:

l6w(|<Tc) 3cose
T(®) > (93)
]AT'(KT)|2|cose - HIZ(KTZ + w?/c?sin’0)

We note that H(®) dis finite as 0O - m/2 and consequently, as expected,

lim T(»,8) > 0

8 > m7/2

Comparing Equation (88) to Equations (92) and {(93), it is clear
that some of the incident energy is absorbed by plasma. It is inter-
esting that the energy absorbed bY the particles is removed to infinity
in the form of a heat flow. This is expected since otherwise strictly
stationary solutions (w real) could not have existed. A model describing

an energy exchange mechanism is presented in Section 4.
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2.7 Second Order Effects - Heating
To investigate the elementary non-equilibrium thermodynamics of
this problem, we follow a procedure outlined by Ozizmir and define two

new quantities:

_ 2 3
U = Re J (me Y)(noFo + fl + fz)du
u

= Uo + Ul + UZ (94)

and
6- = Re —Ei— (mczy)(n F + £, + ¢ )du3
Y oo 1 2
= +te, (95)

where U is the internal emergy, Q the 'total energy" current density

1 and f2 are the first and second order

perturbed distribution functions for electrons.

(heat and rest mass), and f

The internal energy of the equilibrium state is given by:

m'dc2nO KZ(B)
U, = “fzfgy K3(B) - (96)

Multiplying Equation (1) by m;olc2 and taking the real part of an
integration over u space, we find:

Bﬂl
36 Ty =0 . (97)
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Since Ul and 6i vary harmonically, it is clear that their time
average values vanish.
To obtain an expression describing the heating of the plasma,

we investigate the second order Vlasov equation:

of
_—2 o L] kv - e T L] V2 ES L] v
Y 3¢ + u Vrfz = i—iﬁ ReE1 ReVuf1 + nOE2 VuFo
le] -
+ m_c Re(u x Bl) VuRef1 (98)

Multiplying Equation (98) by m5c2 and integrating over all u space,

we obtain:

ou

2, = _ 2 -—“__. 3
stV Q= le|c J Y (ReE, ReVufl)du

(99)

Taking the time average of Equation (99) and using the fact that:

— —_— *
_ _ Re(E, = V £f. )
<ReE, * ReV f,> = L _ul , (100)
1 u'l 9

we find:

oU 2
L2 T . Ie]c = .5 * 3
ST/t V. <Qy> Re | Y(E, * V £, )du

(101)
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The time averaged Joule heating term may be expressed as a divergence of
*
the Poynting vector by eliminating jl - through Maxwell's equations.

Equation (101) may then be rewritten as:

(52 +7, - (0 + res
5T + Vr J [<Q2> + Re<S>] = 0 (102)

Following Ozizmir, we note that fz(x u) , as defined in Equation (98),
b

contains 0, 2w , and =-2w frequency components from which we conclude
that the bulk heating term in Equation (102) must be zero; i.e.,

<3U2

==y = 0 . (103)
Making use of Equation (103) in Equation (102) and noting from the

symmetry of the interaction that <8 z> and <sz> must be independent

2

of z , we find:

3 ‘ _

2 [qs+ Re<SX%} -0 (104)
Therefore,

'Re<SX(o)> = <QX(X)> + Re<SX(X)> (105)

and consequently:
<qQ (#)> = Re[<S _(0)> - <§_(=)>] (106)

The fact that the '"total energy flow' attains an asymptotic value
indicates that the conversion of energy from electromagnetic to a total

energy density flow is a surface phenomenon (the skin effect).
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Dividing both sides of Equation (106) by Re<SX1(o)> , We

obtain an expression for the absorption coefficient A , defined as:

<q (=)>
A = ——— = T(0) - T(®) (107)
Re<SX (o0)>

Equation (107) is a statement of the emergy conservation.
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3. THE SLAB PLASMA

3.1 Modification of Half Space Analysis for Plasma Slab

We now consider a slab plasma whose faces are perpendicular to
the & axis and situated at x =0 and x = a . To avoid repetition,
we begin here by indicating the modification necessary for adapting some
of the results of the previous analysis to the present case. The
functions Ex(x) s Ez(x) and By(x) are defined to be identical to
the functions Ex(X) s EZ(X) and By(x) within the plasma layer and
vanish identically elsewhere. It is then clear that the Laplace trans-
form of Ex(x) and EZ(X) are again given by the expressions in
Equations (16) and (17) provided we replace all quantities evaluated at
x=0, ilii’a f(o) , EX(D) . Ez(o) and By(o) by £(o) - e_lkxaf(a)’
Ex(o) -e % EX(aj , etc. Making such a substitution, Equations (16)

and (17) become:

~ %k G 5 (k
ES(k) = W [kx —%4—2—1-5— -k, _}CE%‘—::;_ (108)
and
G °(k G °(k
EZS(kX) = m {kz ——II-;-;:—k—XX—;— +k ——At;z(-kz—z R (109)
where
6 °k) = 6 (k) - e-ianGLa(kX) (110)
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and

o -tk a
6 k) e *e k) (111)

s
Gop (kx)

and the superscripts "s", "o", and "a", respectively, denote a slab

quantity, a quantity evaluated at x = 0 , and a quantity evaluated at
x = a . The functions GLo(kX)’ and GTO(kX) are defined as in
Equations (18) and (19). The new functions GLa(kX) and GTa(kX) are
defined as:

3
ux(kxux + kzuz)f(a)du

a
G."(k) = - ik ¢B (a) + 4ﬂ|e| ———
L b4 z 'y YW - K o o)
(112)
and
a = _ 4 2 2, 2
GT (kx) = 1§kx + kz )c Ez(a)
uw (ku - ku)f(a)du’
+w | ik _cB (a) + 4mle| ep— >
4 y(yw -k )
(113)
where kK *u = ku +ku .
X X zZ Z

Since EX(X) and Ez(x) are bounded functions of =x , it
follows that ¥ (k) and ¥ (k) are entire functions of k_ . To
X" X Z X X

make this point clear, we consider:

a
s —ikxx
< (kx) EX(X)e dx

(¢}

(274
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Given that |Ex(x)] <M, and 0<x<a<®, it is clear that
Exs(kx) and all of its derivatives e#ist for ]kxl <oy i.e., it is
an entire function. The above conclusion depends on Ex(x)‘ being
bounded and a < © . In the case of the half space, the second
condition does not hold. The function and its derivatives go to
infinity for all kx values with ImkX >0 .

Since Exs(kx) and Exs(kx) are entire functions, we must

conclude that:

]
o

S
6, % () (114)

and

Gy () = 0 , (115)

s : s . .
and that Ex (kx) and Ez (kX) are continuous across the entire real

axis. The latter conditions imply that:

+s -8
G, (ky) G. (k)
Ay Gy A ey
and
+s -8
G. (k) G, (k)
_TI_.__]-._. = __'].:._—.._1:_. (117)
AT (kl) AT (kl)

are valid for all k, = Re k .
1 X
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3.2 Inverse Transforms
As in the case of the half space, the electric field components

inside the plasma slab are given by the inverse Laplace transforms:

1 s ikxx
EX(X) = 5 EX (kx)e dkx (118)
C
and
1 xx
Ez(x) = 57 (k Je dkx s (119)
C

where C 1is an open contour parallel to the real kx axis. Since
they do not as yet contain the information of specular reflection,
Equations (118) and (119) are not in themselves the two components of
the physically meaningful electric field in the plasma.

Before evaluating the electric field components within the
plasma, we wish to shoﬁ that Equations (118) and (119) imply that
EX(X) and Ez(x) are identically zero outside the slab. With this
goal in mind, we consider Ex(x) for x values in the two intervals:
x <0 and x >a . When x <0 , we deform the original line contour
as shown in Figure 5 and find as R - o :
ikXx

1 ~ S
EX(X) + o Ex,(kx)e dkX = 0 (120)

]

P o a o a
From the definitions of GL (kx) R GL (kx) , GT (kx) and GT (kx)

it is clear that the Pl contribution goes to zero. Thus, we have:

EX(X) = 0 ;3 x<0 . (121)
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kx plane Fl

Figure 5. Deformation of Contour C When x < 0
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When x > a , we deform (¢ as shown in Figure 6 and obtain as R - ® :
1 s ikxx

Ex(x) +-§E EX (kx)e dkX

T

o o a o a
From the dgflnltlons of GL (kx) , GL (kx) , GT (kx) and GT (kX) s

it
(o]

(122)

it is again clear that the T contribution goes to zero and, thus,‘we

2
obtain:
Ex(g) = 0 3 x>a (123)
Similarly, we can show that:
Ez(x) = 0 ;3 x<20 (124)
and
Ez(x) = 0 3 x> a (125)

The fact that By(x) is zero when x < 0 and when x > a follows

immediately from Equations (121) through (125).

3.3 Electric Fields Within the Slab
When 0 < x < a , the x component of the electric field may be

written as:

o o .
E (%) = %F 5 1 = | k, oL (lik’)‘) -k, -——————iT (Iik’)‘) elkxxdk
(kX + kz ) AL X T V'x x
C A
a a .
ST O SR IV A T YA M S ol
2m (k 2 + 2) X (X ) z (kX) x °
p:4 Z LY'x T (126)

«
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k plane r

(@]

Figure 6. Deformation of Contour C When x > 4



- 49 -

Since (x - a) < 0 , we may close the second contour as shown in

Figure 7 and obtain:

(o] 0 .
f ) - L 1 I A A T e
= - s
X 2m 2 + kZZ) X AL(kX) z AT(kX) X

(127)

where (¢ is an open contour parallél to the real kx axis and below
all singularities of the integrand; i.e., the zeros of the AL(kX) and
AT(kX) functions. Choosing C to lie below all the singularities of
this integrand permitted us to close the second contour in Equation (126)
and obtain no coatribution.

Similarly, when 0 < x < a , Equation (119) may be written as:
1 6, % (k) Gpo(k )7 ik x

k +k | e dk .
(kXZ + kZZ) z AL(kx) X AT(kX) X

c

: = 1
Ez(x) Too2w

(128)

It is clear that the integrands of the integrals appearing in
Equations (127) and (128) are no longer entire functions. These last
two equations can be solved by imposing the conditions expressed in
Equations (114) through (117) and using the condition of specular
reflection at the two interfaces. Since the algebraic manipulations
are basically identical to those given for the half space problem, we
will simply outline the derivation.

The two relations given in Equation (114) imply:

—iKLa o iKLa o .
e GL (—KL) + e GL (KL) = = 21kchy(a) (129)
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Applying specular reflection to GLO(-KL) and using the definition of

G, °(+k) , we find:

GLO(KL) + GLO(-KL) = - Zikchy(o) (130)

We obtain from the last two equations:

o —iKLa
GL (KL) sin K.a = kzc[By(o)e

L - By(a)] (131)

and

o iKLa
GL (—KL) sinkK.a = =~ kzc[By(o)e

. -B,@] , (3

where we notice that Equation (132) can be obtained from Equation (131)

by letting Kp - Ko

The conditions on the cut may be obtained in a similar fashion.
Applying the condition of specular reflection at x =0 , we readily

obtain:

GL°+(k1) + G0 (k) - 21k, B (0) (133)

and

+o0 =0
G (—kl) + GL (k

L - Zikchy(o) . (134)

1)

Making use of Equation (116) and applying the condition of

|
specular reflection at x = a , we find:
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+o ~0 =i . +o -0 b .
G (kl)_ G, (kl) J elkla _ G, (-kl) _ G, (—kl) j e-lkla i
+ - + -
Ay (k) Ap (k) A Gp) Ay Fy)
1 1
= 2ik cB (a) [ - ] (135)
z'y - +
Ay G Ay |

where we also used Equations (39) and (40).  The cut conditions on the
function GLO(kX) are obtained from Equations (133), (134) and (135).

We have:

+o0 -0
[GL (kl) GL (kl) R
T - - sin kla =
!\.L (kq) AL (kl) -

i -ik.,a - T
= - ke [B (a) - B_(o)e = [ e e 1
y y ATk AT (k)

(136)

where kl >0 . To obtain the cut condition when kl <0 , we let
kl - = kl in the above expression.

Up to this point, we have satisfied all requirements on GLS(kX)
imposed by the "entire" nature of the transformed functions Exs(kx)

and Ezs(kx) .. Imposing these requirements on G s(kx) involves the

T
same tedious procedure outlined above. To avoid repetition; all details
will be omitted. Equations (115), (117) and the condition of specular

reflection at x =0 and x = a imply:
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—iKTa
GTO(KT) sin ikga = - wkpe[B (0)e - B (a)] , (137)
ik.a
GTO(—KT) sin ka = -wkgelB (o)e - By(a)] (138)
and
I _
G (k) 6 70(ky) ~
T - - sin kla =
AR AT ()
-ik.a
_ 1 1 _ 1 , (139)
= klcw[By(a) - By(o)e ][ ]

+ —
AT (kl) AT (kl)

where kl >0 . To obtain the cut condition when kl <0 , we let
kl > - kl in the above.

There now arises a certain ambiguity in obtaining the quantities

+0 -0 +0 -0
G 6L - G Cq
v and | —3— - ——
A A A A

-

L L T T

since this involves dividing both sides of Equations (136) and (139) by
sin kla , which is not permissible when lkll = ]gg— > do = %-cose 5

n = integer. To overcome this difficulty, ﬁe follow Landau and consider
w as a complex number with a small positive imaginary part which is let
go to zerb after the solution is obtained completely. The stationary
solutions thus obtained are interpreted as being the asyﬁptotic time
limits (solutions) of the mixed initial value-boundary value problem.

It is interesting to note that the above ambiguity also arises when

Laplace transform techniques are applied to the fluid model description
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of the same problem. The significance of this procedure (w > complex)
in the present analysis is thlt it completely removes the above
mentioned ambiguity. When w has a small positive imaginary part,

the singularities of [AL(kx)]—l and the "cuts" of the CL contour are

shifted as shown in Figure 7. The singularities of [AT(kx)]—l and

the cuts of the C.' contour are shifted as shown in Figure 7 with «

T T

replacing K Expressed in terms of the sum of contours, CL' and

L -
CT' , Equations (127) and (128) become:
-ikxa ikxx
k c k [B (o)e - B (a)l]e
E(x) = 5= 5! y(z) 5 A dk
' (k. “ + k “)sin k ap (k) ¥
ot X z X LU X
L
-ik a ik x
X X

kzcw kX[By(o)e - By(a)]e
+ dk
27 2

2. . b3 (140)
L, (kX + kz )sin kxaAT(kx)
T
and
9 ~-ik a ik x
k “c [By(o)e x - By(a)]e %
2007 o & % + k %)sin k ah (k) s
c ' X z o Xx L X
L

dkx R (141)
+ k )31n k al\ (k )

1

-ik a ik x
. we [B (o)e - B (a)le x
_.Eu
C

where sin k a # 0 on CL' and Cp' . 1In obtaining Equation (140)
from Equation (127) and Equation (141) from Equation (128), we took

account of the fact that respective integrands have zero residues at

the poles, kX = + 1kz .
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kX plane

B KL@

Figure 7. C£ Contour — Path of Integration When (3 Has a

Slight Positive Imaginary Part
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Using the above equations, we find:

ik x
X

-ik a
X

2 | k1B (0de - By(a)]e

B.(x) = y
y 27 sin anAT(kX)

|
CT

de , (142)

where, as expected, By(x) is independent of all longitudinal effects.

3.4 Determination of the Perturbed Particle Distribution
Inserting Equations (140) and (141) into the linearized Vlasov

equation and proceeding as in the case of the half space, we find:

f(x,G;kz,w) =

BFO BFO —ian ikxx
(3255; + kz EG;){By(O)e .= By(a)}e

m 27 dk.

i ilefn y [kzc}
O

2 2, . - =
(EX + kz )sin kxaAL(kX)(wY -k *u)
C

L

BFO BFO —ikxa ikxx
ile|n y kX kx du kz ou By(o)e By(a) €
o' .wc zZ X
— &= dk_,
m 2 2 b4
o ¢ (k
CT b:4

+k_Dsin k ahy(k )y - K o)
(143)

where k * u = quX + kzuz . In a straightforward but tedious fashion,

we can show that:

f(o,ug) f(o,—uX) (144)

and

f(a,uX) f(a,—ux) (145)

The proof follows the same lines as' that given for the half space

problem.
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3.5 Uniqueness
The solution to the homogeneous linearized Vlasov equation,

Equation (56), in the case of the slab plasma is given by:

i(wy - kzuz)x/ux

h° (x,E,kz,w) = A(we (146)

where w = w, +iv 3 v >0 . Imposing the condition of specular
reflection on this solution at x = a , we find:
i(wy - kzuz)a/uX -i(wy - kzuz)a/uX
A(ux, cea)e = A(-ux, cea)e

(147)
For Equation (140) to hold for all u values, it is seen that:
A(ux, ..{) = A(—ux, vee) = 0, (148)

and, therefore,

hs(x;E,kz,w) =0 . (149)

3.6 Determination of GLO(kX) . GLa(kx) , GTO(kx) and GTa(kx) and
Proof of Self-Consistency
The self-consistency prooef for the plasma slab problem follows the
same lines as that given for the case of the plasma half space. Defining
-ik_'a

B (o0)e . By(a)

1 foed Y
H(kx ) = sin kx'a ’

we can show, after some lengthy algebraic manipulations, that:



o —
GT (kx) _

a
N (kX)

0
GL (kx)

and
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’ v 1 2 1 - 1 1
kX (kX kX + kz )[./\T(kX ) AT(kx)]H(kx )de

iwe
2T 2 2 ' v
(kx + kz )./\.T(kX )(kX kx)
1
CT
iwk Zc | H(k ')dk " ik Zeh (k) | H(k ")dk '
_ 4 X X _ zZ T x X X
2T 12 2 2T W2, 2 "
Ci(kx + kz ) CL'(kx +kz )AL(kx )

(150)

iwe

' ' 2 N o I'kX'a ' '
[_kx (k "k ke ) [A(k ") = A(k )]e ™ H(k ")dk

12 2 ' 1
CT' (kx + kz )A'I‘(kx )(kx - kx)

27

9 1kx a
i(.ukz c | e H(k_ ")
- X dk_'

27 12 2
CL'(kx + kz )

. 2 ik 'a 1 '
1kz cATgkX) J e X H(kX )clkX
™
or ¢
L

> {151)

2 .2 2 .
RO SV NI

ik_c J (e "k o+ D) IA () = A (k "HCk dk
C

27 2
N

2 ' '
L + kz ).A.L(kx )(kx - kx)

ik ¢ [ k "H(k "H)dk !
_' Z X X X
27

C 1

(kX'z + kzz)
T

_ ikzchL(kX) J kX'H(kX')de'

(152)
2T 12 2 '
C,i‘(kx + kX ).I\T(kx )
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ik 'a_
ik e | (k "k +k DA () - Ak Nle * Bk,

G a(k ) = Z X X b4 L X i x - dk !
L X 2'”’ 12 2 1 | X
CL' (kx + kz )AL(kx )(kx kx)

ikX'a

° 1 1 1
) 1kzc kX e ;1H(kx )dkx

2 (k 12 + K 2)

C

1k ch (k ) k ‘e x H(k ')dk !

- %) : (153)
(k +k, )A (k )

X

We used the quantities Ez(o) R Ez(a) . By(o) and By(a)
evaluated from Equations (141) and (142) in deriving Equations (150)
to (153). It is clear that Equations (114) through (117) follow from

Equations (150) through (153).

3.7 Reflection and Transmission Coefficients--Slab Plasma

As in the case of the half space, the incident and reflected
waves' electric and magnetic field vectors are given by Equations (68),
(69), (71) and (72). The transmitted wave's electric and magnetic field

vectors are given by:

LW .
IE(X cosO + z sinB - ct)

ox + Eoz'z)e (154)

i

]
~
e

and

N ¢ i%(x cosf + z sinB - ct)
B~ = f’y\(EOX sinb - E_, cosf)e . (155)
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Applying the boundary conditions on Maxwell's equations and the
condition of specular reflection at x =0 and x = a , we obtain:

Equations (74), (75) and (76) and

. wa

R cosO
Ex(a) = on e ’ (156)

£ i%i cosb
Ez(a) = EOz e (157)

and
,wa
£ - 1—Ecose

By(a) = (EOX sinb - Eoz cosB)e (158)

In order to obtain the reflection and transmission coefficients,
it is useful to first express Ex(o) s EX(a) , Ez(o) , and Ez(a) in
terms of By(o) . By(a) and the plasma characteristics wpz/w2 and B.

Evaluating Equation (78) at x =0 and x = a , we find:

EX(o) By(o) sinf (159)

and

it

Ex(a)' B (a) sinf (160)

Similarly, evaluating Equation (141) at x =0 and x = a , we obtain:

EX(o) u By(o) + vV By(a) (161)

and

E_(a) ~v B (o) ~ u By(a>‘ . (162)
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The integral definitions of yu and Vv ‘are easily obtained from
Equation (141). Making use of Equations (159) through (162) and of
Gauss's law to eliminate Ei T EF , and EC , Wwe may

ox ox ox
simultaneously solve Equations (74) through (76) and Equations (156)

through (158). We obtain, after some algebraic manipulations:

2 2 2 i
(v U+ cos"O)E_

T
Eoz 5 5 5 ? (163)
(V" - u” + 2p cosf - cos Q)
2(cosb - u)Eiz
B_(o) = 2 5 2 , (164)
y (v = u” + 24 cosB - cos"B)
- 192 cosp
. - 2V cos0 e ¢ Egz'
B = ~73 3 2 (165)
(V" =y + 2 cosB - cos8)
and
2v Ei_
By(a) = 3 5 £ 5 (166)
(V7 = u” 4+ 2y cosb - cos 6)

We are now in a position to calculate the power reflection and

transmission coefficients. These coefficients are given by:

Egzq ? vz - uz + c0526 ?
R(o) = rot B 5 5 (167)
EOZ VT o=y 4+ 2u cosb - cos O
and
Eséi 2 . 4|v|2 cosze
T(a) = 1 = 5 5 75 (168)
E [v: = u + 2u cos® - cos 0]

0z
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The above expressions for R(o) and T(a) correspond to those

given by Ozizmir in the limit as 0 -~ 0 (normal incidence).
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4. Applications

Up to this point, we have dealt with the most general aspects of
the theory describing the interaction of an obliquely incident
p-polarized plane electromagnetic wave with a semi-infinite and a slab
plasma. Our results are given as complicated mathematical expressions
which often tend to obscure the underlying physical phenomena. 1In
this section, we make use of the large B 1limit of AT(kX) and AL(kX)
given in Appendix E to examine three problems in greater detail. By

2

%%—-2_100 . Physically, this corresponds to a

temperature range of 0 < T < 5.9 % 107°K . The upper limit is roughly

large B , we mean B

the core temperature of a white dwarf star. We also note that terms of
order B-l are expected to be of importance in controlled thermonuclear
devices which should operate at approximately 3.5 X 108°K.

The first problem is the determination of a critical angle of
incidence ec , such that for 0 < ec , transmission will not occur.
This problem is discussed in Section 4.1. In Sections 4.2 through 4.5,
we investigate the penetration of a wave with a frequency w < wp into
the plasma. For such frequencies, the electromagnetic fields penetrate
into the medium, but there is no transmission. In Section 4.2, general
expressions are obtained for quantities which characterize the
transverse and longitudinal depths of penetration. These expressions
contain two parts, viz., the pole'congribution associated with the

roots of AT(kX) and AL(kX) , and, secondly, a cut contribution.



- 63 -

Ihe roots are obtained in Section 4.3. Explicit expressions for the
depths of penetration are found in Sections 4.4 and 4.5 for two limiting
cases. In Section 4.6, we present a model for non-collisional
absorption.

Section 4.7 is devoted to a further development of the
penetration through a plasma slab. The fields in the plasma are
obtained in a Fourier series representation and the effect of

geometrical resonances is discussed.

4.1 Critical Angle of Incidence - Zero Transmission

In discussing the interaction of an obliquely incident plane
electromagnetic wave with a plasma medium, the question of a critical
angle of incidence Gc naturally arises. We may obtain an analytic
expression for ec by studying the condition that gives rise to zero
transmission. It is clear from Equations (48), (50), and (90) that

T(®) = 0 when K, is an imaginary root. Making use of Equation (B-47)

T
and (E-2), we readily find that Kep is pure imaginary when
2 3
w (1 - &=
2 D 28
cos” 6 < 5 5
® W
@+ -5
Bw 9

w
The above condition is satisfied for all © when —%— (1 - %—B) > 1 3
W

i.e., wp >w . We can also obtain zero tranmission when wp <w if
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" 2
sinf > 1- b a- 3/28)
- 2

w a+ wpz/éwz)

The critical angle is given by the equality.

We should indicate that zero transmission does not imply total
reflection. The reflection is never total (except at T = 0 ) due to
the surface absorption. Finally, we note that the above conditions also
apply to the interaction of an obliquely incident s-polarized wave with
a plasma half space as can be shown by approximating the integral in

Ozizmir's Equation (A.19).

4.2 Depth of Penetration

In dealing with the interaction of an electromagnetic wave with
a conducting medium, it is convenient to define a macroscopic length
whose magnitude is a measure of the ability to penetrate the medium.
The classical skin depth of a metal is a good example of such a length.
In the case of normal incidence of a plane electromagnetic wave on a
hot tenuous plasma half space, Silinl defines a complex depth of

penetration A  as:

%
1 < Ez(o)
AP = B (o) fo(X) dx = —m (169)
y z
0

The above definition has intuitive appeal when By(x) ié an exponenti-
ally decaying function of x . The integral is undefined when By(x)

is a harmonically varying function of =x .
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A difficulty with Silin's definition is that it is complex and
we would prefer to characterize the depth of penetration by a real
quantity. One possibility would be to take the real part of Silin's
expression. A different approach was used by Weibel. For the case of
normal incidence, he defines

§ = - 2 (170)

]:g—x ln(EE*)_J o

which is equivalent to writing:

_%[

+ Re[%—] (171)
p -

O p=
]
fd | b

dE + 1 dE* - - Re 1 dE
dx E*® dx E dx
x X

Equation (171) states that Weibel's depth of penetration and

that given by Silin for normal incidence are related by:

2 2
(Re)\p) + (IIMP)
Rex
P

s = 4 (172)

Finally, we should mention that other definitions of a penetration depth
are possible. We could, for example, define an energy depth of
penetration as:

xT(x)dx
<x>

3w, 173
p @173)

T(x)dx
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where T(x) is the normalized transmitted energy density whose limit
as x - «© 1is the transmission coefficient. The number of possible
definitions for the penetration depth is indeed unlimited.

The above definition for Ap , Equation (169), is adequate only
when pure transverse waves exist in the plasma medium. We seek a new
definition for the case where both longitudinal and transverse waves
exist in the plasma. Our choice is not arbitrary, but is a natural
consequence based on the plasma impedance. In the discussion on the
reflection and transmission coefficients, we introduced a dimensionless
quantity H defined as H = Ez(o)/By(o) . The surface impedance is

given by:

Z = =-—H (174)

Evaluating Equation (48) at x = 0 , we note that H is a function of

wpz/w2 s, B, and © , the angle of incidence. The function H may be

rewritten in a more instructive form. Evaluating Equation (2-b) at
x = 0 and eliminating EX(O) through the use of Equation (77), we find:
E (0)
ic 'z ©

B (o) = — (175)
y w cosze

Using this result, we write:

. E (o)
H = - %Q-COSZG 2

(176)

E,' (o)

We are now in a position to define a complex depth of penetration as:
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E (o)
A = - cos“f =2

b E;'—(-o—)_ = _i_w-H . (177)

This definition is identical to that given by Silin and Fetisov2 in
their investigation of the p-polarized interaction. It also reduces
to the definition of Equation (169) for the case of normal incidence.
Following Silin and Fetisov, we note that Ap is made up in
additive fashion of XT and XL , the transverse and longitudinal

depths of penetration. From Equation (48), we may write:

CZ kX2 de

Ap F o 3 3 (178)

. (kX + kz )AT(kX)

T

and
kzzcz ke
A = - (179)
L W ) 2 2
c (kx + kz )AL(kx)

L

This separation of the depth of penetration into its transverse and
longitudinal parts is instructive but can lead to some interpretational
difficulties. These will be pointed out in the following discussion.
In Sections (4.4) and (4.5), we obtain the large B 1limit of
Equations (178) and (179). We will restrict our attention to the case
where W 5~wp since the concept of a penetration depth loses its

intuitive significance otherwise.
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4.3 Imaginary Transverse and Longitudinal Roots and the Concepts
of Weak and Strong Spatial Dispersion

The transverse and longitudinal depths of penetration given by

" n

Equations (178) and (179) are each composed of a 'pole" and a "cut
contribution. The pole contributions arise from the roots Kp and Kp -
These roots are functions of 8 , wpzlwz and 6 . In this section,

we obtain the large £ limit of Kp and Ky, valid in two significantly
2

different ranges of wpz/w .

4.3.1 Ko and Ky Under Weak Spatial Dispersion.

Imaginary transverse and longitudinal roots can be obtained from
the approximate expressions for AT(ikZ) and AL(ikz) . We first
22

consider the limiting case k2 ¢ <L wz(B - cosze) . It is shown in

Appendix E that for this limit, AT(ikz) and AL(ikz) may be written

as:
, 2 K (B
AT(lkz) = - §7 + E;%Ej-] Kl(B) - ;§~ 3 l (180)
and
2
. . wg KO(B) 62
AT(1k2) 2 - wKz(B) } Kl(B) + —5 { 2 -3 ;5} R (181)

where & = V/ k22c2 + wzcosze . The quantities KT and Ky ~may now

be derived from Equations (180) and (181). Using the asymptotic form

of the Kn(B) functions and keeping terms up to B—l , we find:
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2 2
w w
gl = %/—1;—- [1--%] [1+—B§}' - cos’6 (182)
W Bw
and
IKLl 2 %./(% el +-%§ - mzlmpz) - cos’8 . (183)

To understand the meaning of the strong inequality that forms

the basis of this approximation, we impose the requirement

wZ(B - cosze) >> k22c2
on the roots IKT] and ]KLI and find:
1 1L, 1 T
el el T
T L

The quantity %'V/%i— is the average distance covered by an electron
during one period of field oscillation. Since IKl—l characterizes
an exponential damping length, we see that the approximation requires
the penetration depth to be much larger than the average distance
covered by an electron during one period. The electrons experience
only a weak gradient in electric fields in one period. Thus, the
effect of the electric field on the particle is nearly lecal. This
situation is referred to as weak spatial dispersion. The transverse
root gives rise to weak spatia% dispersion when g >> wpzlwzr; the

W

longitudinal when £ >> 5 P 55 .
2w (pr /w” + 1)
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Finally, we note that the transverse root has a weak temperature
dependence whereas the longitudinal foot is strongly temperature
dependent. This behavior can be qualitatively explained as follows.
There exist two types of waves in the plasma medium. The longitudinal
wave describes the organized motion of the electrons whose random
internal energy density is proportional to the temperature (large R
limit). These waves are strongly temperature dependent. The second
type of wave existing in the medium is the transverse electromagnetic
wave which does not give rise to charge separation. It is only weakly

coupled to the électrons. Its temperature dependence is therefore weak.

4.3.2 Ko and Ky, Under Strong Spatial Dispersion

2 2

When k2 ¢ >> wz(B - cosze) , we show in Appendix E that

AT(lkZ) and AL(lkz) may be written as:

5
" . ) iE Y v
T 1k2) = - 8§ + > —%%—— (184)
and
,
i W w
A (k) = w ! 1 - /-g@ 1;3 ‘[ , (185)

where we have made use of the asymptotic form of the Kn(B) functions
and kept only the largest $ contribution. $Solving Equations (184)

and (185) for IKT‘ and ]KL[ » we obtain:
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He
0=
3
w
e
N
€
{ SRR
N
~
(¥%]
1
e
¢
o}
(/3]
<>

= e

7! !

0 |

forcy 1/3
l_ Lg—B-— wpzw] (186)

The condition kzzcz >> wz(B - cosze) leads to the requirement that:

A
N
e
Blﬁ

In this case, surface electrons experience large spatial gradients of
the electric fields during one period of field oscillation. The entire
history of the particle near the surface is important. This case is
referred to as strong spatial dispersion. Strong spatial dispersion
2,2 7 . -
can occur only when wp /o >> ;-? . Since we assumed that w >> wpl
and ® >> v , the collision frequency, it is clear that we can expect

strong spatial dispersion only for relativistic plasmas; i.e., B > 100 .

4.4 Depths of Penetration — Weak Spatial Dispersion
We begin our evaluation of the depths of penetration with the
physically more common case of weak spatial dispersion. For convenience,

we rewrite Equations (178) and (179) as:



- 72 -

2iK 2c2
A = T
T 2 20 n1
(KT + kz )AT(KT)

=

) - 1
immpzc Y Ozcosze +1e -8 0 + lLl + } do

+ B Ygét]
Ky (B) o + 1) [(RefD” + (Imth)?]
0 (187)
and
-2ik 2c2
Ay = ; 2
L 1
Wl ™+ kN (<))
.23 2% 2
N ik, cwy { o380 +lf62(0 +1) + 28/0%+1 + 2] do (188)
3 X
w BKZ(B)

2 @212 foPeos®or1 [(rerh)? + (zmiH?]

4.4.,1 Pole Contribution to A

The pole contribution to AT under the condition of weak spatial

dispersion is given by:

2,2
wp Jw™ (1 - 3/26)

2/ 2
(1 + w “fBw)
] = £ P / . (189)
T pole w 2,2
[w, /0" (@ - 5/28) - 1]

- cosze

Under the same conditions, Silin obtains:

ic 9 W, /w (1 + l/B)
==l cos“0B - 5
(l + w /Bw ).

w
a - w, /w )

fie

[AT(Silin)]pole

(190)
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In order to compare our results with those given by 8§ilin, we expand

Equation (189) for the case where wpz/w2 >> 1 and obtain:

(Al
1 pole

-

' 2 2, 2
+
2 wp (3/2 W Jw

W 2 5w 2 V/w 2/w2 - cosze
—%— - cos § - L 2
w

+
2 2, 2,2
2Bw /wpz/wz -~ coslp  2BuT (u Jw - 1)

€lo

2, 2
(w,"/e™ = 1) (191)

Performing a similar expansion on Equation (190), we find that we
disagree with Silin's 1/B factor. 1In his case, the 1/B factor is
given by:

" 2
P 1

2
20 /wpz/w2 - cosze

.
w

4.4.2 Cut Contribution to AT .

The cut contributien to XT may. be found from Equation (187).

Since we are interested in the first B contribution, we make use of

Equation (E-27). and'appreximate~Equation'(187) as:
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8

., 2 2
;wp ¢ 03 4 Ozcosze + 1 emB o+l do
3 .
WK, (B) » 2
2 ;e mLow 2 4 2
) %1) {I_l _ P f% o3Rez(f-§— o):] L 2.6 e 2B/07+1 }

2
w ot 41<22 8)

(192)

Since B 1is large, most of the contribution to the integral occurs for

2 .
0~ << 1 , we may write:

2 o)
4iw e 2
n] & —2—f2 1 we ™ ap
T 3 m ,3/2
cut W B 2 4
20 3 2 w 6 -2 2
- ——B—~u ReZ (u) + lé6w —2——~u e <H
0 2 2 4
Bw B w
2 602 (193)
where we made the change of wvariables U = - Noting that
wpz/Bw2 << 1 , we may approximate Equation (193) as:
4iw “c < 2
Dyl 2 5= /T W a
cut w B
0
w
s 2ic /2 p 1
w ™ 2 - ,.3/2 (194)

This is in exact agreement with Silin's result.
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4.4.3 Pole Contribution to AL .

The pole contribution to AL under the condition of weak spatial

dispersion is given by:

é

] s cw sinze
L'pole w 2 —— > '
Yo Seisa - wz/wpz) + - coszéﬁs/zs-clﬂu3wp2)]
2 o (195)
w “fw
where B >> =P

2(2wp2/w2 + 1)

Silin gives as a result:

J/ L .2
o . e anr sin”0
[AL(Sllln)]Pole = = s (196)

w ),
e (w) /’e(w) - aﬁr sin26

where
e = (1 - wéz/wz)
and
2
uz _ 3w
nr sz

Equation (196) may be rewritten as:

icsinze 1

2,2
w(d - wp fw?) Végsze + B/B(wz/wp2 - 1) -1

[XL(Silin)]Pole

(197)

which he claims is valid when !(1 - wpz/wz)l << 1 . Our results do
not depend on such a restriction. In the vicinity of the plasma

frequency, our results differ significantly from those given by Silin.
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4.4.4 Cut Contribution to AL .

The cut contribution to XL is quite difficult to obtain. We
begin by noting that most of the contribution to the integral occurs

for 02 <<'1 when B > 100 . The integral in Equation (188) may be

approximated as:

2 T 3 —u2
. . w . 2 2 U e du
(A ] 241 = ——_Jsm 0/ —— , (198)
L cut W, 2 e [wz/w 2, G(u)]2 + 4ﬂu6e 21
P 0 P
where
_ 2
G(u) = 2u[1 + uRezZ(W)]

and where we made the variable change uz = E%E-. The general behavior
of the integrand R(u,wz/wpz) is shown in Figure 8. Since this
integral cannot be suitably approximated, it was numerically integrated.
Defining the integral as Q(wz/wpz) , we obtain the following list of

typical values:

2 2 2 2
w™/w Qw™ /w_")
1..00 0.41934
0.80 0.33064
0.50 0.31234
0.30 0.33921
0.10 0.41205
0.07 0.43950
0.05 0.48059
0.02 0.55550

0.01 0.66289
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Rewriting Equation (198) as:

2
. . C (W 2, [2 2, 2
[kL]Cut = 43 m (;—EJ sin™ @ /ﬂB Q(w /wP ) s (199)
P
we may compare our results with those given by Silin. When w=w_,

he gives:

ic 20 /2
1.7 wp sin 6 6 (200)

[)\L(Silin)]cut

We obtain Equation (200) with 1.7 replaced by about 1.67. Silin also
claims that the integral can be approximated when w < wp and gives

the formula:

2

ic L2 [ W1 Yy 1
[)\L(Sllln)]Cut = 3 i -EE-——E['E In(1 + 5 ) - 5 7 ]
) w 1+ w /wP

fls
I
0]
=]
D

(201)

Our computer results (see previous page), valid when w < wp , differ

significantly from values obtained by using Silin's approximate formula.

4.5 Depths of Penetration - Strong Spatial Dispersion

We now seek to obtain the characteristic depths of penetration
for the case where the electrons experience large spatial gradients of
the electric fields during one period of field oscillation. These large
spatial gradients give rise to the anomalous skin effect. We begin by

considering the transverse case.

4.5.1 Pole Contribution to AT .

The pole contribution to AT under strong spatial dispersion is

expressed by:?
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) 3
2/3
1//'{ Eﬁ'w zw - w2c0s26
2 p

3
{ B 9 2/3 9
V= w “w -w
2 p

J

[A

T]pole

e

(202)

2c
3(¢£§w zw}l”
2 7p

Silin obtains the same expression. Weibel, who considered only the case

of normal incidence, gives:

8 (/3

5 = c (203)
9 { = 9 }1/3

His definition of the skin depth is somewhat different, however.

4.5.2 Cut Contribution to AT .

The cut contribution to AT under strong spatial dispersion may

be obtained by first rewriting Equation (193) as:

[o e}

o 2/3
IA.] . 41‘”2 c 2 o3 I gy
T cut 3go2/3 ¥ T8 :
3w~ Bo 4 [1 - xRez{(x/a)l/B}}z + 4ﬂx2e_2(X/a) (204)

where we defined o = 2wp2/8w2 and made the change of variable x = au3°
In the case of strong spatial dispersion, o >> 1 from which we

conclude that the exponentials play a small role in Equation (204). We

may write:
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4iw_2e T .13
Crlewe * o3 /18 | Thpt (205
cu 3w”Bo 1+ 4mx
0
FEvaluating the integral, we obtain: .%t%£§]273, Therefore,
Dplege = 51 YERNTE —73 | (206)
Sl 3972 2 ( 8 2}
W W
2 p
s s . . . = . 2/3 4/3 |
Silin also obtains Equation (204) with V3 replacing 3 2 in

the denominator.

4.5.3 Pole Contribution to A_ .

L
The pole contribution to AL under strong spatial dispersion is
given by:
: 2csin26
A ] = = > (207)
L pole B 2 11/3
3[ — w w]
2 p

a negative quantity. This curious result is a direct consequence of
our separating the wave's depth of penetration into its transverse and

longitudinal parts. The wave's effective damping length is given by

(A, + A

Re[Ap + A, ] rt Aloote

. Making use of Equation (202), we

obtain:

2c(l - sinze)

] =
L 1/3
3{¢(§E wpzw)

Re[AT + A (208)

This is a case where we must not ascribe physical significance to AT

and XL individually.



- 81 -

4.5.4 Cut Contribution to AL .
The cut contribution to AL under the condition of strong
spatial dispersion is again given by the general expression of

Equation (198). Typical values of this integral can be obtained by

performing another numerical integration.

4.6 Model for Non—-Collisional Absorption Under Strong Spatial

Dispersion - Anomalous Skin Effect

It is useful at this point to digress somewhat from the formal
development of the theory to discuss an elementary model on non-
collisional energy absorption. To simplify our calculations, we assume
that the electronic state is described by the non-relativistic Maxwell-
Boltzmann distribution function. We also restrict our attention to the
case of strong spatial dispersion; i.e., the distance d covered by an
average surface electron during one period of field oscillation is much
larger than the wave's depth of penetration § . As a final simplifi-
cation, we characterize the electric field within the plasma by a step

function medel; i.e.,

E E R+4EZ2 3 0<x<38§
X Z -

=]
"

0 ;6<x<00 o
A surface electron traveling toward the interface with an

x-component of velocity Ve enters and leaves the skin depth region

in a time to = 125 . If to <<
v

s Lx1 . .
stationary electric field. Here, we have the mechanism for an energy

€ =

_T
= 5 such an electron sees a

exchange. The energy of the electron before entering the skin depth
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m 2 2 2
i i = — + + . erall ch in is

region is El 2(le vy V.9 ) The ov change in v_ 1
zero since the electron accelerates (decelerates) in the x direction
upon entering the §-region and decelerates (accelerates) in the x
direction upon leaving. The change in the v, component of velocity
is given by:

|le]E
]

m

26

s (209)
vXl

(VZZ - vz) = X

The electron suffers an acceleration or deceleration in the z direction,
depending on whether its initial v, velocity was in the direction of
Ez or not. The corresponding change in the electron's energy is given

by:

E 2, ]e|E
2z l 28 l + 2v Z

Z m

.

. (210)
vxl

e

All electrons with an x component of velocity directed toward the
interface and satisfying the inequality |VX| >> 28w participate in

this energy exchange. The change in the plasma's internal energy may

be written as:

<AU> = n J ] l (ABE)TF dv3
o o

Since FO is isotropic in velocity, we obtain:
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[¢] 00 fee]
m eizEzz 2 Fo 3
<AU> = n_ ('2'-) — (28) —5 dv
m v

x1

2. 2.2 T 2 oxr

nowp Ez § —~ e Wy B

= 27 J TmRr 2 e (211)
’ X
vxl .

Similarly, we may obtain an expression for the change in the
x component of the energy current density 5% . Following the same

reasoning as given above, we write:

0 00 00

Q= v (AE)F_dv

4 —3
<lom
&
Y

w 2

nowszzzéz — e—mvx /KT

- 2m J 2kt | v_ vy (212)
v

X

1

We note that although the accelerations imparting energy to the electrons
act in the z direction, there results a component of AE' in the
x direction. This interaction gives rise to a total energy current

density propagating to infinity.
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4.7 Fourier Series Representation - Slab Problem

The interaction of a p-polarized electromagnetic wave with a
plasma slab was investigated in Section 3 and expressions for the
electric and magnetic fields set up within the medium were obtained.
These general results are given in Equatioms (142) through (144). They
still remain in a form which makes a physical interpretation difficult.
In this section, we alleviate this difficulty by finding the equivalent
Fourier series representations for these field solutions. The resulting
expressions then lend themselves to some physical interpretations. We
begin our discussion with Equation (142). The quantity EX(x) is given
in terms of the Ci and C% contours. We recall that the C, and Cp
contours were shifted so as to avoid the zeros of sinkxa which lie
along the real kX axis. The equivalent Fourier series representation
for EX(x) can be obtained by simply deforming (individually) the Ci
and C% contours such that the resulting closed contours (individually)
enclose the entire cut kX plane and, thus, all the singularities of
[sinkxa]_l . The quantity EX(X) is, therefore, given by:

Ex(x) = -2mi ) residues evaluated at kX = EE .

The minus sign is due to the counterclockwise contour deformation. The

residues F(EI) are found by evaluating:

~-ik a ]
k ke ik x [By(o)e - By(a)] w }
).

F(kx)

[

1
e . +
2m (kX2 + kzz) Ay ) Ap iy

(213)

at kX =5 We note that, in the vicinity of a zero,

sink a = sinnm + acos k a (k. ~ Eﬂ)
% X nmTyx a
k:———'
X a



where

and

and
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= a(—l)n(kx - nn/a) .

We follow a procedure given by Ozizmir and write:

~-inw

o ko | _ [B_(o)e 7 - B_(a)]
EX(x) = - (271i) Z ‘ﬁgg-elnﬂX/a CEE)'”!Y'n“.'nw72' Y'zﬂ &

n=-o (-1 a[ﬁ;@ + kz ]

1 w :
* [ o . * nm } ? (214)
ALQE— - 15n€) AT§;~ - 16n€)

S = 1 D, s =2 cosh
n a (6] Cc
8 = -1 ; o< - o
n a o]
§ = 03 =-a <o o o
n o a o]

The quantity Gn is a bookkeeping symbol to remind us that AT(kX) and

AL(kX) are discontinuous along the real kX axis when ]kxl > %— cosf .

find:

Letting € = 0 and making use of Equations (B-5) and (B-6), we
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% ¢ _ [B_(0) - (-1)"B_(a)]
Ex(x) B : Z ad, Eg:Sin(ngx) ynﬂ 2 2 . [~nlnﬂ * wnﬂ }
0<n< ——— [(;—_) +k 1 -J\.L(-;—) AT(—;)

2k ¢ © amx  [B (o) - (-1)"B (a)
+ 2 Z EE-sin( ) J b ] l 4
a saaba a e 2, o 2] AL;(EED A_(EEO
n'ff— a ) 4 a T a

(215)

The quantity Ez(x) is found in a similar way. We obtain:

n T 2 o, 2
E(x) = - 2ic o (nﬂx) [By(o) - (-1) By(a)] kz i w(379 }
z QRS (@524 2y LG A
™ 2 ”

n 2 nm, 2 -7
_ 2ic z cos (AT, [By(O) - (-1) Fy(a)] kz‘ _ w(g—' J
a o_a a nw, 2 2 - AT - 7 )
n>%F_ [(5—9 + kz 1 AL(E—D AT(EHD
(216)
Finally, we find:
2 [B_(0) - (-1)"B_(a)]
_ 2c” nfr, . 07X y y
By(x) T a ,zaa (a ) sin( a ) A (an/a)
n<—43 T
I
2 [B_(o) - (-1)"B_(a)]
+3§—Za ALy gin (B1X)—Y bi . (217)
a a a - nm
e A

il
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We are now in a position to study the transverse and longitudinal
geometrical resonances that can be supported by a hot plasma slab of

thickness a .

4.7.1 Geometrical Resonances.

In oxrder to make further progress on the slab problem, we note
that E_(x) and E (x) become infinitely large as A (EEQ and AT(EEQ

X z L a a
go to zero. Similarly, By(x) becomes large without bound as AT(EEQ
goes to zero. In order to understand the physical significance of these
resonances, we obtain the large B approximation to the roots of

nm nm .

ATCZ—) and AL(;—D . A complete analysis of these resonances would
require a rather detailed study. The following investigation is
incomplete in that it only treats the most general aspects of the

problem.

: nmn
4.7.2 Zeros of AT(a )
The approximate zeros of AT(§E0 may be found by taking the

large B 1limit of Equatien (E-3). We find:

222 2 2.2 2
0 = ~E¥E§E— - w2c0526 + w 2 [}l - 3/&6) - COE 8 + 2 g ; :I .
a P Ba"w

(218)
It is convenient first to express Equation (218) in terms of the
incident waves' wavelength. We define a modified wavelength 4 as

L= )\2w

c/w and obtain from Equation (218):

2 Ahz + Bn B Ah
- 22 2 © (219)
2n W

Ba2
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where
222 2
A Enﬂc+w2{l_(3/2+cose)}
n a P B
and
4n2ﬂ202w 2cosze
B = P
n Ba2
auo - awcosB

and where 0 < n <
T e

This expression is considerably simplified by noting that

An>>v Bn 3 1.e.,

n21T2c2 o 2{1 _(3/2 + coszﬁ) } >>
2P : B a

2nTcw_cosH

a

Basically, this means that

2 2nTew cosH
w >> __._._.L_____
P /g a

Since

_ 2
Ao e

where uiEV%%E and KD is the Debye length, the above inequality

then reduces to:

A
1 > 2’!Tncos9~z2

where

(n) . WacosH

max [
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This inequality under its worst condition requires that:

A > A cos?9 (220)

which is in essence the condition of a ''sharp boundary" that we assumed
existed throughout the development of this work. Since the inequality

in Equation (220) is always assumed valid, we approximate Equation (219)

as:

A 2 - c2c0326

n nzﬁzc2 2

5 + w {1 -
a p

2 , (221)
(3/2 + cos“0)

g }

A transverse geometrical resonance occurs when the plasma's electrons

reradiate in phase with the incident electromagnetic wave.

. afn
4.7.3 LZeros of AL(a )

The approximate zeros of AL(EED may be found by taking the

large B 1limit of Equation (E-6) and setting the results to zero.

These roots are given by:

2 an + Dn B Cn
A = ’ (222)
n 6n2ﬂ2
Ba2
where
2
(1/2 - 3cos™0)
c 8 [1 + z ]
and
- 12ﬂ2c2n2
D =
n 2 2
Ba"w
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Equation (222) can be simplified under certain limiting cases. We will

2

consider one of these. When Cn >> Dn ; 1.e., §-"9-5>> 12ﬂ2c0326 ’

W
Equation (221) may be written as: P
9 c2 (/2 - 3c0526 + 6ﬁ2c2n2/a2w 2)
X< = = |1- 2 (223)
n 2 B
W
p b

As expected, the zero temperature resonance occurs when ® = wp .
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5. Conclusions

In the foregoing, a relativistic kinetic theory description of
the interaction of a plane p-polarized electromagnetic wave obliquely
incident on a hot plasma half space and a plasma slab was developed.
The analysis was based on the use of the linearized relativistic
collisionless Boltzmann equation. The collisionless approximation for

a hot tenuous plasma requires that w >> vei where

v . = 3.62 x 10 %(n/Te>?

ei )1nhA

with 1nA = 10 , Te in degrees Kelvin and n in electrens/mB“ The
implication of this expression becomes clear from Table 1 where the

3
collision frequency is given for n = 1018/m and several temperatures.

Table 1. Values of Vei versus Te with n = 1018/m3,

Te (°K) B v, (sec’h)
108 5.9 x 10 36.2

10° 5.9 x 10° 3.62 x 10
10* 5.9 x 107 3.62 x 107

The corresponding plasma frequency is wp = 5.65 x lOlO/sec@ Recalling
that the strong spatial dispersion analysis requires that wpz/w2 > B,
we find that this part of the analysis should be valid so long as

9 2

2 w
'\)ei < W << BB

For Te > 104 and n = 1018/m3 , such a frequency range always exists.
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A second condition which must be satisfied in order to use the
collisionless theory for skin depth calculations is that the mean free
path for collisions £ be large compared to the skin depth. For

= lOls/m3 and Te = 1O4OK , £ 2= 2 cm. This is approximately the
same size as the anomalous skin depth.

Measurements of the anomalous skin effect have recently been
reported by Kofoid.j 16 However, these experiments violate the condi-
tion w > Vei and our thecry cannot be used without modification. To
the author's knowledge, no experiments have yet been performed when
w>v.

In the present investigation, the specular reflection boundary
condition was used. This condition played a significant role in
simplifying the mathematical development of the theoretical model.

Such a condition is conventionally used to describe the reflection"gf
an electron from a plasma sheath as found, for instance, at the walls
of a discharge. A different boundary condition that is appropriate for
particle generation near the wall is the diffuse boundary conditionm.
Here, particles coming from the body of the plasma are absorbed at the
boundary and new particles with a different velocity distribution are

emitted. The sharp boundary requires that the incoming wave experience

a sharp change in propagation media. This requires that

13
dn
dx

A S>>

x=0
where n 1is the electron density. For a sheath boundary, this would be

approximately satisfied by A >> AD , the Debye length.
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Finally, we should mention that the theory makes no provision
for the creation and destruction of particles which would occur in
thermonuclear reactions, nor does it provide a means of treating the
Bremsstrahlung radiation fields expected to be important in high
temperature devices.

Several extensions of this work are suggested. Silin and Fetisov2
investigated the penetration of an obliquely incident s and
p-polarized electromagnetic wave on a hot plasma half space for both
specular and diffuse boundary conditions, but gave no derivation for
their field solutions within the medium. Such a derivation has yet
to be given for the case of diffuse reflection of electrons whose
equilibrium state is described by the relativistic Maxwell-Boltzmann
distribution. Silinl claims that the absorption coefficient under weak
spatial dispersion is greater by a factor of B for diffuse reflection
in the large B limit: Stepanov'l7 determined the depth of penetration
of a circularly polarized electromagnetic wave normally incident on a
plasma half space for the case where the external magnetic field is
perpendicular to the plasma boundary. He used the non-relatitivistic
kinetic equations to describe ion and electron behavior and used the
specular reflection boundary condition for both ions and electrons.
Again, no deviation was presented. Considering Silin's claim that the
diffuse absorption coefficient can be as large as £ times that for
the specular case, it would be of interest to apply the diffuse boundary

condition to Stepanov's problem. Finally, we should mention that our



- 94 -

formulation lends itself to the kinetic theory description of the
surface wave-body wave problemi18 However, the analysis of AT(kX) and

AL(kX) is complicated by the fact that (wy - kzuz) can be negative.



- 05 -

- APPENDIX A

In obtaining Equations (12) and (13), we used:

oF, oF

o , 3 o0 .3
ul 3u3 du u3 aul du
S(kx) = ————-————(Yw - kul) = ————————'—(Yw - kul) = 0 . (A-1)

''it is not evident that

Since uy and uy are "complex velocities,'
Equation (A-1) holds. The proof follows. Rewriting Equation (A-1) in

the original Cartesian system, we obtain:

R(kx)
Sk ) = —5——s= (4-2)
(k "+ kD
b4 Z
where
BFO 8F 3
(kxux + kzuz)(kx Buz - kz Bux) du
Rk ) = - -
X (yw = ku -ku)
= ®?2-xHA +kk (A -A) (A-3)
X b4 X2 Xz 22 XX
and 3F
0 3
u, = du
i Buj
A,, = —— — , (A-4)
ij (yvw kxux kzuz)

The properties of Aij are studied in Appendix B. TUsing Equation (B~17)

it is found that
RI(k.,) = R (k) = 0 A-5
1 Y - v (A-5)

which holds for all kl = Re(kx) .
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Rewriting
oF F 4
YOy Ta, " K T
R(kx) s (yw - quX - kzuz) ? (4-6)
it is clear that
R(kx) dkx = y R(kx) dkx = 0 R (A-7)
¢ Cy

where Cl and C2 are the closed contours shown in Figure 9. Taking
the limit as p + o and letting the horizontal line integrals coalesce
onto the real kX axis, we conclude from Morera's theorem that R(kX)

is everywhere analytic. Since R(kx) is everywhere bounded, we

conclude from Liouville's theorem that

R(kx) = constant = 0
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kx_plane

Y

Figure 9, C(losed Contours Cl and C2 in kX Plane
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APPENDIX B

B.1 Cut Analysis of AL(kX) and AT(kX)

It is clear from the definitions of AL(kX) and AT(kX),
Equations (20) and (21), that these functions become discontinuous
somewhere along the real kX axis. In order to locate the extent of
the corresponding cut(s) in the kX plane, we focus our attention on
a typical integral entering in the definitions of these functions.
given in Equation (A~4) and

Making use of the definition of Ai

50

the Maxwell-Boltzmann-(Juttner) distribution to describe the equilibrium

state, we find:

B2 uiu.e—BYdu3
Ayl = - —% - ; (3-1)
4me™R, (B) | v(yw - ku - k u )
where u, and wu. are either u_ or u_ . Calling k., the real part
i 3j b4 z 1

of kX , we define

the following useful functions:

+ - , .
Aij thl) = lim AijQikl +ie) R (B-2)
€0
where kl >0 and € > 0 . Making use of the isotropic nature of Fo ,

we readily obtain:

AXX (kl) = Axx (_kl)
+ -—
sz (kl) - AXZ (_kl) ’
A Yy = A T(=x
2z 1 - ZZ (- 1) (B-3)
J
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- _ + )
Axx (kl) - Axx (_kl)
-— - + _
AXz (kl) - sz ('kl) [
- +
A, ) = A TR (3-4)

Writing the dispersion functions in terms of the Aij(kx)

functions and using Equations (B-3) and (B-4), we find:

+ -—
AL (kl) = AL (-kl)
LAYk = A& (B-5)
L 1 L 1 4
and
)
+ = - -
A = AT (R))
L
AFCR) = ATk (B-6)
T KO s | J

Since kX is the only complex number entering into the

definitions of AL(kX) and AT(kX) , it is clear that:

+ _ -
(A7 Ge)I* = A TG

(A -k D1* = AT (k) (8-7)

and

+ -
[y GedT* = A7)

(AL (kDI* = AL (k) | (B-8)
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We conclude from Equations (B-7) and (B-8) that AL(kx) and
AT(kX) are discontinuous across the real kx axis Wheneﬁer these
functions take on complex values for kX real. To insure single-
valuedness, a cut is said to exist along that part of the real kx

axis on which AL(kX) and AT(kx) are complex.

B.2 Roots of the Dispersion Functions

Given that K is a root of the equation AT(kX) = 0 and using

* *

the isotropic nature of Fo , it follows that , and ~Kp

_KT H KT
are also roots. Similarly, we find that if Ky, is a root of

% %
AL(kX) = (0 , then “Kp s Kpoos and -k are also roots.

The location of these roots in the complex kx« plane is
determined by mapping AL(kX) and AT(kx) and applying the argument

principle to the results.

B.3 Evaluation of A..+(k )
: ij 1

In order to analyze the functions AL(kx) and AT(kX) on the

real kx axis, it is useful to reduce the volume integral definitions

of these functions to single integral definitions. By definition,

2 { u,u,e_BYdu3
* SN B lim 1]

4ﬂc5£é(6) £+>0 Ylve - (kl + ie)uX

(23]

m— ],(B—9)
z z

In this analysis, it is convenient to express the denominator of
the above integrand as an integral over a damped plane wave. With this

goal in mind, we consider:
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k

1 _ 1 _ 1
Y - (kl+1e)ux - kzuz (kl + ig) n(wy - kzuz) - kju - ié
0
) ikl e_éte—l[n(wY - kzuz) - klux]tdt
: (kl + 1i€) ’
0
(B-10)
where
2
n = kl >0
- 2 2 ’
kl + €
5 - ekl(wy - kzuz) >0 ,
- 2 2
kl + €
€, kl >0

and where we used

v
wy (1 "EE sinf) > 0 .

(wy - kzuz)

Equation (B-9) may then be rewritten as:

8

+ 2 3 +
A, (kg) = - —F— .. (k,,t)dt R (B~11)
1] b 4ﬂc5K2(B) 1] 1
0
where
Caw gy —iNwy - k u ) - kou ]t

E + ikl uiuJ BYe 61:e zz 1x 3
(k ,t) = 1im A au

1] 1 =0 (k1+1€) Y

u

uiu.e_BYe—i(wY - keu)t 3

= i 1 7 du , (B-12)

=
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with keu defined as lim (kl-i-ie)uX + kZuZ . Rewriting Equation (B-12)
€0
as:

_i 3
2 ok,ok,
t i j

§1j+(k1’t) (B-13)

and going to a polar coordinate system with k (real) along the ﬁz

axis, we obtain:

co
2 . -0 v l+x2
41e x sin xy e dx
L = X . (B~14)
t 2
1+ x
0
where y = ket
o = B+ iwt
- f. 2 2
k = kl + kz

From Vol. 1, p. 75, of the Bateman Manuscript, we find:

41Tc3Kl(z)
L(kl,w,t) S — R (B-15)
where
z = V{kzcztz + (B + iwt)2

Inserting this result into Equation (B-13) and performing the

differentiations, we obtain:

(B-16)

K2(z) 9 9 K,(z) ]
3

+ _ .5 [

Equation (B-11), therefore, becomes:
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This derivation follows that given by Ozizmir.

B.4 Proof that AT(i}kz) + wAL(i;kz);= 0
Writing AL(kx) and AT(kX) in terms of the Aij(kx) functions

and using Equation (B-17), we obtain:

foe] [+

iw 282 | [ K. (z)at £2x (z)at
A +(k Y = w- go 2 _ k2c2 _ 3
L 1 KZ(B) Z2 Z3
0 0
) 262 K3(z)
= g+ —=L— | t(B + igt) dat (B-18)
K, (B) 3
A
0
and
.22
+ _ 22 g dwe B | Ky(z)
AT (kl) k -w + KZ(ST + zz dt . (B-19)
0 " KZ(Z)
Calling Q(kx) the analytic continuation of J-—*f—— dt dinto

z

the upper kX plane and T(kx) s the continuation ofO
o0

£%K, (2)
—3 dt into the upper kX plane, we readily find:
z .
0 2.2
' iw "B .
AL(lkz) = - _EETET Q(1kz) (8-20)

and

-t

2.2
iw BT .
1 == . -~ _L___ s -
AT(lkz) w [(» KZ(B) Q(lkz{J (8-21)
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Therefore,
AT(ikz) + wAL(ikz) = 0 . (B-22)
Similarly, we can show that:

AT(—ikZ) + wAL(—ikz) = 0 . (B-23)

B.5 Analysis of AT+(kl)
In order to locate the cuts of AT+(kl) along the real kx
axis, it is useful to express AT+(kl) in terms of its real and

imaginary parts. With this goal in mind, we define a new function TI(k)

as:
K, (2)
I(k) = 5 dt (B-24)
0 2
2 2 2 . . . .
When (kc¢” - w”) > 0 , we introduce a new variable of integration:
ip 2
Y o= W (t+ iBo - ) (B-25)
Bo
and rewrite Equation (B~24) as:
o+i0
2 2
. KZ(B Vo + o+ 1 dY
I(k) = e 5 5 R (B-26)
W + o+ 1)
io
where
g = 0. . (B-27)
22 2



- 105 -

Deforming the original line integral as shown in Figure 10, we obtain as

R =+ oo
[o 0]
¢ /<2 +d?+ 1)
x"+0" +1)
0
(e}
k@l +1-y%
io 2
- 5 R 5 dy (B-28)
(" +1-v7)
2 2 2 . .
When (k"c¢” - w) <0 , we introduce a new variable of
integration:
. . a2
n oz i - 1B,
Bo
and rewrite Equation (B-24) as:
O+ic
) = | K@/t +1-8Y
1w 5 —— dn , (B-29)
" +1-569
g
where
§F = = (B~30)
2 2 2
w = Kk'c

Deforming this line integral as shown in Figure 11 and letting R » o

we obtain:

o

P KZ(B V(xz + 1 - 52
I(k) = T (XZ e 52) dx (B-31)
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io . R + io

Y plane

Figure 10. Contour Deformation in Complex 1 Plane

When (k2c2 - wz) >0
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n_plane

g

g + R

(o
Q

Figure 11. Contour Deformation in Complex 70 Plane

When (k%c? - w?) < 0
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To summarize, the analysis of AT+(kl) can be divided into two

parts. When (kzc2 - wz) < 0 , we have:

< )
.2 (k1=
9 Bown 2 d

2, 2 f Xa
+ kz Ye© - w + KZ(ST (x2 +1 - 52)

2
1

o
(B-32)

When G§2c2 - wz) >0, AT+(kl) may be written as:

(e}
Bprz J K, (B v cxz + 1 - yz)

+ _ 2 2,2 2 dy.
Ay Cep) Gy + ke —w + K, (8) %+ 1 -1y
0
iBow_Dz K, (8 VACIR RN
Ky (B) x> + o> + 1)
0
where Im[AT+(k1)] may be integrated. We obtain:
2 B/ 02 + 1
+ 'lTO'U)p e 1
Im[AT (kl)] = 1+ - . (B-34)
2K, (B) g/ o +1

B.6 Analysis of Aﬁ+(kl)

The analysis of AL+(kl) proceeds along the very same lines as
that outlined for Af+(kl) . To avoid repetition, we simply state the
results. When (kzc2 - u?) <0, A1+(k1) may be written as:

. \

+ BGBwpz x KZ(B v xz + 1)

(k.) w - -
L 1 wKZ(B) (XZ + 82)3/2
]

A

dx (B-35)
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When (kzc2 - w2)> 0 , we obtain:

2 2
2 K, (R
+ - B g 2 2
%&ﬂ—uw%w”m)(m+n

B

g
(y2 + 02 + 1) K3(B JSo +1-=-9v7)
d

-° (<52+l-}’2)3/2 7
0
13%n0203 (2 +1 - x%) R, (8 S x5+ o+ 1)
WK, () Lol dx .
° (B-36)

+ .
Integrating the expression for Im[AL (kl)] ,» we obtain:

mw 2ooe B o’ + 1 |
- —£ 72 82(02 + 1)+28 ¥ -62+];+2' .

208K, (8) (0° + 1)°

+
InlA, " (k)]

(B-37)

It is therefore clear from Equatiohs (B-7), (B-8), (B-33) and
(B-36) that AL(kX) and AT(kX) are discontinuous across that part of

the real axis defined by ]kxl > %-cos B = o, « The corresponding cuts

are shown in Figure 2.

B.7 Mapping of AT(kX) ~— Location of the Roots
The number and location of the zeros of the dispersion functions
can be found by the argument principle. We first turn our attention to

the analysis of the somewhat simpler transverse dispersion function.



- 110 -

As kX completes one tour along C1 (Figure 12), AT(kX) twice

traverses the contour C (Figure 13). Since

2
+ o2 Bﬁwpz K,(B/x"+1-3
() = 1im | =~ —= + dx
(< Goo | F# 2B P 1o
(e}

K. (B)

- 21 -

- Y K ’ (8-38)

we find that there are always two roots of AT(kX) = 0 1in the entire
cut kX plane. In mapping AT(kX) , we made use of the cut properties
of this function given in Equations (B-6) and (B-8). Since Im[AT+(kl)]
does not change sign as kl varies from O, > @, the exact behavior of
Re[AT+(kl)] is not critical to this analysis. Only the general
behavior Re[AT+(kl)] was shown in Figure 12. We found that
Kp s =Ko KT* and —KT* are all roots of AT(kx) =0 . The fact
that only two roots exist implies that these roots are either real or
pure imaginary. When real, they lie in the open interval (—ao,uo) .
The location of these two roots can be determined by performing
one additional mapping as shown in Figures 14 and 15 where, for
illustrative purposes, AT+(0) (point 1 in Figure 15) was shown lying
to the right of the origin in the AT(kx) plane.
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In this second mapping, we made use of the fact that

+ + + ) _
Ay @) 2 AT‘('kl) < ApG@) s 0 < ki <A (8-39)
where
. 2 ea‘wz K(B/y +1)y
w op
% 2 (y +1) /y
and
~ 1 -
Oo ~ cos 9 (B-41)
As k_  makes one tour of the contour C, , AT(k ) traces one circuit
x 3 p:4

of contour C4 » thus indicating the existence of one pure imaginary
root of AT(kX) = 0 din the upper kx plane. A similar analysis shows

the presence of a pure imaginary root in lower kX plane.

B.8 Summary on Roots of AT(kx) =0
1) AT(kX) = 0 always has two zeros in the entire'cut"
kX plane.
IT) These roots are pure imaginary when AT+(0) >0 .

III) They are real and in the open interval (—ao,ao) otherwise.

B.9 Mapping of AL(kX)‘ ~~ Location of the Roots

Finding the number and location of the roots of AL(kX) follows
the same procedure as that given for AT(kX) . As kx completes one
tour along Cl (Figure 12), AL(kX) describes the contour \CS shown
in Figure 16. In mapping AL(kX) ;. we used the cut properties of this
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2,3,4

AL(kX) plane

Figure 16. The CS Contour



- 115 -

function given in Equations (B-5) and (B-7) and assumed that AL(uo) < 0,

where
© u—
LI w02883 x K, (8 /x2 1)
o = lim | - dx
ARG Som WK, (B) PPENTE
0
w” R (8) "
w - _L'"wKz &y | K8 + 23 (B-42)

Equation (B-37) was also used.

Since one complete circuit of kX on contour C, corresponds to

1
two encirclements of the origin in the AL(kX) plane, we conclude that
there exists two zeros of Aiﬁkx) in the entire cut kX plane when
AL(ao) < 0 and none otherwise. From our previous discussion on the
zeros of AL(kX) ,» these roots must be real or pure imaginary. When
real, they lie in the open interwval (—ao,ao)

One additional mapping is necessary to determine when these roots
are real and when they are imaginary. As kx makes one tour of the
contour C3 (Figure 1z), AL(kX) traces one circuit of contour C

6
(Figure 17), where we used the fact that

+ + +
AG) A T(k) <A T() 5 0 <k < a

and, for illustrative purposes, assumed AL+(0) < 0 . There exists
one pure imaginary root to AL(kX) = 0 in the upper kx plane (and
its complex conjugate in the lower kX plane) when AL+(0) <0,

where
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3,4,5

AL(kx) plasma

Figure 17. The C6 Contour
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w %8P 7 | x k8 /5" + 1) |
W - ‘{;z & 1 : dx (B~43)
290 0 G2y 5H32
0
1
cos®

Summary on Roots of AL(kX) =0

AL(kX) = 0 has two zeros in the entire cut kX plane

+
<
when AL (ao) 0.

Pure imaginary roots exist when AL+(O) <0 .

The roots are real when AL+(0) >0 .

Interrelation Between Existence of Longitudinal and Transverse

Given that longitudinal roots exist, we may ask whether the

plasma medium can support all four combinations of longitudinal and

transverse discrete modes.

functions:

AG8,5 )

and

B(8,5,)

and note that since 50 =

To answer this question, we define two new

BG 3 sz(B v x2 + 1)dx

(o]
(B-44)

K, (B) -

2 &+ 1) /i + 002

0

BG 3 xK, (B v x2 + 1)dx

o 2 (B-45)
KZ(B) 9 9 3/2

(x" + 50 )

0

1
cosf ?
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ABB) > B(B,E) (B-46)

Expressed in terms of these nmew functions, Equations (B-40) and

(B-43) may be rewritten as:.

+ o’ w?
AL (0) = —95 - P+ A (B-47)
o W
o - p
and 2 T
+ Yo w?
AL (0) = | 73 B (B-48)
N U)p

Using Equations (B-46), (B-47) and (B-48) and the existence
conditions for real or pure imaginary roots of AL(kX) and AT(kX)
given in the Summaries, we conclude that:

(1) Kp is necessarily real if Kep is real.

is pure

T

(II) k.. 1is necessarily pure imaginary if K

imaginary.

(I11) k. may be real when K

L is pure imaginary.

T

(IV) The case where KL is pure imaginary and Kp s real, is
impossible.

The longitudinal and transverse roots are both pure imaginary

when

u)2
— < B < A
2 —_—
W
p
The longitudinal root is real and the transverse -root, pure

imaginary when
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APPENDIX C

To complete our proof of self consistency for the case of the
plasma half space, we must show that f(o,ux) = f(o,—ux) . With this
end in mind, we consider our solution for the perturbed particle

distribution evaluated at x = 0 :

BFO BF
- CBY(O)IeanV (kx du +k z du )dk
f(o,u) = k X 2 )
™o z ( 24 k, )(wy - keu AL(
C
oF LBFO
kx(kzau - k Buz)dkx
+ w 5 — . (c-1)

! (kx + kz )(wY -k U)AT(kx)

T

Since (yw - kxuX - kzuz) # 0 for -0, < kX <o, , we may write that:

oF_ oF
(k 3u + k 5—;)dk
2+ kD wy - B (k) ° (2
X z Lx
C:7
and
BF BF
kx(kz 55— - kx Bu )dk
@2+ 1 D) (wy - oA () ° ’ (3
p:4 z T 'x
Cg

where C7 is the closed contour shown in Figure 18. The C8 contour is
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contour

Figure 18. The C7 Contour
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identical to that given in Figure 18 with k., replacing

T

illustrative purposes, the longitudinal root was shewn as pure

imaginary. Equations (C-2) and (C-3) may be rewritten as:

8Fo 8Fo
(k. =+ k —)dk
X Ju Zz du X
X 4
2 2
(kx + kz ) (yw - kxuX - kzuz)AL(kX)

‘L

OF OF

x u_ Nz 3u ) M
X Z

2

k

‘ 2
(kx + kz ) (wy + quX - kzuz)AL(kX)

oF aFo
ETR T
(wy - ikzux - kzuz)AL(ikz)

(i

+ T

For

(C-4)
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and

BF oF

0
ke, 3~ b3 By
X Z

2 2 ‘
(kx +k, ) (wy - ku - kzuZ)AT(kx)
Cop

o BF
k (=~ k e X Bu ) dk
+ k )(wy + k u, - kzuZ)AT(kx)
C

3Fo BFO
1ﬂkzc5a—~+ 155
Py z

+ T
(wy + ikzuX - kZuZ)AT(— 1kz)

BF oF

o
1ﬂk ( -1 Bu

(wY - ikzux - kzuz)AT(ikz)

0 . (C-5)

where we made use of Equations (B-5) and (B-6). 1Inserting these results

in Equation (C-1) and using Equations (B-22) and (B-23), we find:

f(o,ux) - f(o,-ux) = 0 . (C-6)



- 123 ~

APPENDIX D

AT(kX) and AL(kx) on the Imaginary kx Axis

In order to complete our analysis of AT(kX) and AL(kX)
is necessary to evaluate these functions on the imaginary kX axis.
The resulting expressions will then be used to obtain approximate values
for pure imaginary longitudinal and transverse roots. TFollowing the
format of Appendix B, we focus our attention on a typical integral
entering in the definitions of AT(kX) and AL(kX) on the imaginary

axis. We define

uiu:.e—BYdu3
J j ] ’ (D"l)
ylvw -k u - :tkquJ

1l

N, .
1]

where kx was written as kx = ikz. and k2 >0 . The subscripts i
and j may be either x or =z .
Rewriting the denominator as an integral over a damped plane

wave, we may write:

I W(t> )
Nex = 2 52, (D-2)
0
and
o

N o= -1 1 %) de (D-3)

Xz 2 3k, .ok

t 27z
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and
(o)
1 %)
N = 4 | = ————t dt ’ (D~4)
ZZ 2 2
t ok
0 z
where W(t) is defined as:
kut
' e_Y(B + wt)e 22 cos kzuxt 3
Wit) = e du (D-5)
Y
u
Considering the u integration first, we define:
0
Q = 2 e_Y(B-'-wt) cos kzuxt
” duX s (D-6)
0
where
Y = l‘/c2+u2+u2+u2
c X vy z
The value of this last integral is given in the Bateman
Manuscript, p. 17. We may therefore write:
Q = 2cK [é /,cz + u Z +u 2‘] , (o-7)
olc vy z
where
¢ = /B + wt)? + k. ettt

2 .

Inserting this result into the definition of W , we obtain:
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o

. kut
2¢ ||K [é'v/cz + u 2 + u 2 ]e Z Z 4u du (D-8)
ole v z vy oz

=
i

w00

The uy integral above is given in the Table of Integrals,
Series, and Products, p. 705. Equation (D-8) may therefore be written

as:
- 2mc” c z B
W p e e duz , (D~-9)
where we made use of the half integer properties of Kv(z) .

The integral in Equation (D-9) may be cast in a more amenable

form by making a change of variables. We let u, =c sinh& and obtain:

3
W o= __z__g_c_% , (D-10)
where
I = e—¢ cosh £ + n sinh £ dE (D-11)
and
n = kzct

Equation (D-11) may readily be integrated if we make the final change

of variables:
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_¢cosh£+nsinh§=—Acosh(g"b) >

where

and

tanh ™1 (n/)

o
]

We obtain:

I = 2 J e~ A cosh x d
X
0
= 2K (4). (D-12)
Consequently,
3% ;[' o - ”2]

W = 4nc . (D-13)

2 2

¢" - n

Inserting this result into Equations (D-2), (D-3), and (D-4), we
readily find N s N , and N . These results are then inserted
XX Xz zZz
into the definitions of AT(ikz) and AL(ikz) and yield:
0

2 2

8 uw K, (z)
+ kzz)c2 -w o+ D 2

B,®) | 72
0

AT(ikZ) = (-k dt (D-14)
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and
K (z) K,(z)
_ 2, 2, 2 273
AL(ikz) = K (B) lJ dt+(-k2 +kZ Je {t —————-—23 dt
0 0
(D-15)
where
S+’ + @, -k D
z
Equation (D~15) may also be rewritten as:
2 2 o
B w K, (z)
. - L2, 23 2
AL(lkZ) W= O) 1+ 2(k2 k de 5 5 dt .
2 , aés z
0
(D-16)

where we have rewritten 2z as:

/62 + gt + 62t

and defined

//wzcosze + k22c2

We shall make use of Equation (D-16) in evaluating the approximate

expressions for Ky on the imaginary axis.
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APPENDIX E

Appendices B and D were primarily devoted to the evaluation of
AT(kX) and AL(kx) on the real and imaginary kx axes. The results
of these calculations are given in Equations (B-32), (B-33), (B-35), and
(B-36) and in (D-14) and (D-16). They remain in the form of integrals.
In this Appendix, we obtain the large R 1limit of these functions. The
results are used in Section 4 to obtain approximate values for the
transverse and longitudinal roots and in the evaluation of the critical
angle of incidence. These approximate calculations also play a role in
the evaluation of the "cut" contributions to the transverse and
longitudinal depths of penetration and in the study of the geometrical

resonances that arise in the slab problem. By large 8 , we mean

2
B = Eﬁf- > 100 . Physically, this corresponds to a temperature range of
0<T<5.9x 1079k .
+ + 2 2 2 2
E.1l AT (kl) and AL (kl) When (kl ¢ - wcosTB) <0

Real transverse and longitudinal roots may be found from the

approximate evaluations of Af+(kl) and AL+(kl) when

(klzc2 - wzcosze) < 0 . The integral appearing in Equation (B-32) may

be rewritten as:

XKZ(B %XZ + 1) dx

W= (E-1)

0 (xz + 1) kz + 52

where

<
cosf —

Q j-
A
8
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Integrating Equation (E-1) by parts, we obtain:

©

K. () K (B) K (B / %% + 1)d=z
1 0 3 /o)
wo= "33 T3 5 22.572 > (E-2)
Bo B o 8 "+ 07
° K_(8)
where the last term of Equation (E-2) is of the order 3 .

Inserting this result into Equation (B-32), we find:

2
2 W K _(B)
Aty = -8 4 —‘E——[Kl(s)— °~2]+wp2 0{ ;4]
B o

(E-3)

We note that Equation (E-3) is in agreement with Equation (B-38) as
k1 > o (G » ®) . This approximate expression for AT+(kl) is used in
calculating the critical angle of incidence.

We apply a similar procedure to obtain an algebraic expression

for Aﬁ+(kl) The integral in Equation (B-35) is defined as:
oo}
2
[ XKZ(B vV xT 4+ 1)
T = dx (E-4)
! (XZ + 52)3/2

Two integrations by parts yield:

KR (B  , KB

85> g% 8

(XZ + 62)7/2

{ x(452 - x2 - S)KZ(B V‘xz + 1)dx

(E-5)
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Inserting this result into Equation (B-35), we find:

2
+ w [ Ko(B> ~2 k] w 1
ATk) = w--E— 1| R () + (26~ 3) +—P—o[———~] .
L Y1 Wk, (B) | "1 652 w - (g25h
(E-6)

As a check, we note that Equation (E-6) agrees with Equation (B-42) as
kl > Oy - We also see from Equation (B-6) that real longitudinal roots
can exist only if AL+(ao) <0 .

The real transverse and longitudinal roots may now be derived

from Equations (E-3) and (E-6).

E.2 AT(ikZ) and AL(ikz) —- Weak Spatial Dispersion

Imaginary transverse and longitudinal roots may be obtained from
the approximate evaluations of AT(ikz) and AL(ikz) , Equations (D-14)
and (D-16). The integral appearing in Equation (D-14) may be rewritten
as:

RN X% + 1)dx

G = B8S . ’ (E-7)
6 (X2 + 1) xz + w2/52

where ¢ = V/wzcosze + kzzc2 and wcos® < § < @ . We need to approxi-

mate Equation (E-7) under two significantly different conditions; i.e.,
when ik2 is near the real kx axis and when ikz is far removed from

the real kX axis. The corresponding physical situations are discussed

in Section 4.
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When w2/62 is much larger than xo2 = 1/B , the x wvalue for
which sz(B v x2 + 1) attains its maximum, it is clear that
(x2 + w2/62)_1/2 plays a small role in the evaluation of Equation (E-7).

Integrating by parts, we obtain:

2 K (B) 4 K _(B)
L 6 o }+0(6 2 J (E-8)

G = '—E[Kl(ﬁ)——z— B

wB w

Inserting this result into Equations (D-14) and (D-16), we find:

2
2 K _(B)
. . 2 . % 8% % )
A(ik) # -8 tE® [Kl(B) 58 :] (E-9)

and

B 2

. . sz KO(B) : 62
AL(1k2) = W - wKz(B) [ﬁKl(B) + { 2 - 3;;—}’] . (E-10)

As a check on the intermal consistency of these approximations,
we note that Equations (E-3) and (E-9) go to the same limit as
kl’ k2 + 0 . We also note that Equations (E-6) and (E-10) go to the
same limit as kl,k2 - 0. AT(ikz) and AL(ikz) given by Equations (E-9)
and (E-10) also satisfy Equations (B-22) and (B-23).

The roots to Equations (E-9) and (E~10) lie near the real kx

axis and give rise to weak spatial dispersion.



- 132 -

E.3 AT(ikZ) and AL(ikz) -- Strong Spatial Dispersion
Finally, we seek approximate evaluations for AT(ikz) and

AL(ikZ) which are valid when ik, is far removed from the real kx

2

axis. When w2/52 << 1/B , we may approximate Equation (E-7) as:

o]
2
1 KZ(B x" + 1)
G = Bs é_ dx (E-11)
="+ 1)

0

which may be integrated to give:
-B
288

Inserting this result into Equations (D-14) and (D-16), we obtain:

2
W W

. e _ 22 m B -

A(iky)) 2 -8 +/2 R (E-13)

and

i 0)2(.0

AGk) = ol|1-/ 2| | (E-14)
) 2 3

The roots to Equations (E~13) and (E-14) are far removed from the

real axis and give rise to strong spatial dispersion.

E.4 ReAﬁ+(kl) When (klzc2 - wzcosze) >0
In order to evaluate the "cut" contribution to the longitudinal

depth of penetration, it is necessary to obtain an approximate expression

22 2

for REAi+(kl) when (k,“¢” - w cosze) >0 . With this goal in mind,

1
we note that the integral appearing in the definition of ReAL+(kl) s

Equation (B-36), may be rewritten as:
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1
_. (021 + €% + 1Ry 8 /o? @ - £ + Dag
L(o) = ©

. (o* 1 - &%) + 117/

0 2 8 /P -H +1
2 ST | ta+ed) + e p
28 2 2 7/4 >
o®@ - €% + 1]

0 (E-15)

where we made use of the asymptotic form of K3(z) . It is now
convenient to divide our analysis into two parts, depending on the size

2 . . s e . A
of 07 . In the first region, 02 satisfies the two inequalities:

0 5_02 << 1 and O f.BGZ < 10 . Expanding V/éz(l - Ez) + 1 about
02 = 0 and keeping only the first two terms, we are left with:
| S i -933 (1-g%
L(oc) = 5 Oe e dg (E-16)
0

Inserting this expression into Equation (B=36) and using the

asymptotic expression for KZ(B) , We may write:

+ ‘”pz 201 2 [ - E%i(l'gz)
REAL (kl) = W+ T B"c E -0 e dE
5 -

(E-17)

i
€
+
N
-
XY
'-—l
+
=
=
o)
N
~~
T
L



- 134 -

1
where ReZ(u) is the real part of the plasma dispersion functionz‘

defined as:

ReZ (1)

1]
I
[3~]
=
(1]

and

Equation (E-17) plays an important role in the calculation of
the longitudinal depth of penetration.

+
We now proceed to obtain the large B limit of ReAL (kl) when

2

2 wzcosze) >0 and 02 is large; i.e., B0~ > 10 . In this

2
(k1 c

case, we write:

L) = B0lU@) + V(] (E-18)
where
a 2 2
[c"(1 + &%) + l]K3(z)
U(g) = 3 d& (E-19)
zZ
0
and
Loy 2
fc"@1 +&7) + 1]K3(z)
V(o) = 3 dg (E-20)
a z
and where
_ 1
a =

/ Bo?
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and

: = /%@ - €% +1

Integrating the expression for V(o) several times by parts, we find:

o

K, (B) 2
1 2 1 (207 + 3)
v(c) = (207 + 1)K, (B) + + K (R)
B402 [ 2 BG2 8204 o) :i

/ o2 1 -
+o[1<n(e o +1-B)] (E~21)

Noting that

U(o)

O[KH(B Jo? w1 - -é— )] , (B-22)

we may approximate Equation (E-18) as:

K, (B) 2
LE) & 5= ]‘(zo2 + DR (8) + o L28 X3 ¢ (B)] :
- Bo B o

(E~-23)
where we dropped higher order terms. Making use of this result in

Equation (B-36), we obtain:

(202 + 3)

- =y [K B) + - =——24 K (B)J
wKz(B) 1 BO2 o

|
g

Re [AL+(kl) ]

(E-24)

]

e

I

iUE
| Ramm—

[._l

+

IH

+

'w
PRI
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which goes to Equation (B-42) in the limit as ¢ > o . As a check on

. R + s
the internal consistency of our two expansions for ReAL (kl) , We note
that asymptotically, Equation (B-17) becomes:

2

Reh Tk) 2 - R (143,
el (k) = w-—2 Boz)

which is in close agreement with Equation (E-24).
To complete our analysis of ReAL+(kl) , we obtain the zeros of

this function. Equation (E-17) may be rewritten as:

+ 2 fﬁéi 2, 2
ReAL (kl) = 2u ® L g(w /wp' —;¢(g{] s (E-25)
where we have defined
2, 2y -
g(an /UJP) = 2

and

o) = - [1 + prRez(w)]

In Figure 19, we plot g(u,wz/@pz)»versus U for various choices of the
parameter QEE- and superim%bse on the same graph ¢(u) versus u .
wp .
The intersection of these curves corresponds to a zero of ReAL (kl)
We conclude upon examining Figure 19 that the zeros of ReAL+(kl) fall

2

near ¢ = 1 when wz/wp < 1/2 . Under these conditions, it is easy

to show that the root is approximately given by:
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0.50

0.46

0.42

0.38

0.34

0.30

0.26

0.22

0.18

0.14

0.10

0.06

0.02

Figure 19. ¢(u) Versus 1y and g(u,wz/wpz) Versus W

7 2
With o /uup2 as a Parameter.
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%

2
- [2 + Re2(1) + o7 ]
UO = + E s (E-26)
ReZ(1)

where

Rez(1) = - 1.07616 .

E.5 ReAT+(kl) When (k1202 - w2c0s26) >0
In order to evaluate the "cut" contribution to the transverse

depth of penetration, we must find an approximate expression for

2 2 2

ReAT+(k when (kl ¢ - w cosze) > 0 . 8Since the development follows

1)
the same lines as that given for ReAi+(kl) , we will simply give the

results,

2 . . - 2
When o~ satisfies the two inequalities 0 < 0" << 1 and

0 §_602 < 10 , we find:

2
w

Rell' (k) = w2 —g—i——g——uReZ(u)] ) (E-27)
2u w

When 602 > 10 , we may write

5 (E-28)

2 K(B)-]
Bo -

Rl\.+(k) = LUE+_ujL_rK(B)+_9__
i Y9 G2 KB |1

which goes to Equation (B-38) as o -+ «» . Since ReAT+(kl) >0 for

2 , , .
0 < 0" <® , we have no need for a more detailed study of this function.
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