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Abstract.

The values of the radiance at points of an incoherently

radiating object are considered as parameters of the statistical

description of the field at the aperture of an observing optical

instrument. By means of the Cramér-Rao inequality a lower bound

is set to the mean-square errors of unbiased estimates of the

radiance values. The errors are shown to increase rapidly when

the object is sampled at points separated by less than a conven-

tional resolution interval. .
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The ability of an optical instrument to resolve details of an object can
be evaluated in various ways. All of them lead to the gemeral conclusion that
if the instrument takes in light of wavelength ) from the object through an
aperture of diameter a, it will blur details having an angular subtense smaller
than A/a--a conclusion that might be drawn from the undular nature of light
simply by dimensional analysis.

A common explanation of how the optical instrument obliterates fine
details views it as a linear spatial filter transforming the light field at the
object plane into the light field at the image plane. The aperture limits the
spatial‘bandpass of this filter, and the loss of high spatial frequencies pre-
vents the reconstruction of features of inversely proportional dimensions in the
object. This viewpoint has led to the proposal that the finite size of the
object and the resultant analyticity of its spatial Fourier transform should
permit reconstruction of the entire object by mathematical operations on those
" spatial frequencies that do pass the aperture.1 The inevitable presence of
random background light and the unavoidable introduction of random noise in
recording the image light subject any such procedure to deleterious errors.2
The influence of noise on other linear estimation schemes has been analyzed by
Rushforth and Harris.3

This approach to resolution through linear filtering is most suitable for
coherent object fields. Ordinary objects, however, radiate or reflect incoherent
light. Except in microscopy, where coherent illumination may be utilized for
the sake of certain phase effects, the light emanating from most objects possesses
a very low degree of spatial coherence. With such incoherently illuminated or

radiating objects it is not the field of the light that is of interest, for



that field is best described as a random process having zero mean value and a
most erratic spatio-temporal variation. Rather it is the mean-square value of
the field, averaged over many cycles of the dominant temporal frequency @, that
characterizes the object in the most informative way. Specifically, the mutual
coherence function of the light field wng, t) immediately in front of the

object has the form

1 =
SEu (U, t) v *,, t,) =

= CB(u,) ¢(u -u) x(t, - t) exp[-ie(t, - t)],
where B(u) is the radiance of the object at point u, x(r) is the temporal auto-
covariance of the field, C is a suitable constant, and E denotes the statistical
expectation. The presence of the two-dimensional delta-function 6(91 - 92)
signifies that the coherence length of the light is much smaller than the extent
of any details of interest. It is the radiance function B(u) that describes the
object for us.

As the light propagates toward the aperture of our optical instrument, its
coherence function changes in a predictable fashion,4 but its field remains a
stochastic process, to which is usually added another random field, referred to
as' the background. This background field has a distribution in frequency and
angle that is generally much broader than that of the object light. The values
of the radiance B(u) at various points of the object, which are the quantities
we. really want to know, are related to the net field at the aperture not in a
deterministic fashion, but only in a statistical sense. They are parametefsépf
the joint probability density functions of the aperture field. The function bf
the optical instrument is to estimate them by some operation on that field, and
the estimates will be subject to error because of the stochastic nature of the

light from the background and from the objéct itself.



In a previous paper we pointed out how the resolvability of details in
the object plane might be treated as a problem in decision theory.5 The optical
instrument is required to decide whether two close objects of a specific kind
are present, or only one. The probability of its deciding correctly, as a
function of the separation of the test objects,measures the resolvability of
details having the same size and form.

A subsequent paper introduced a modal expansion of the aperture field
arising naturally in an analysis of the detectability of incoherently radiating
objects.6 The strengths of the several modes are directly related to the
radiance of the object plane at points separated by a conventional resolution
interval AR/a, R being the distance of the object. The minimum mean-square
errors in unbiased estimates of these radiance values were derived from a quantum-

statistical description of the field.

Here we shall develop the statistical theory of resolvability further by
viewing the function of an optical instrument as one of estimating the radiance
of the object plane. The radiance B(u) is sampled in a suitable manner, and
the samples are regarded as parameters of the joint pdf's of the aperture field.
By means of the Cramér-Rao inequality lower bounds are set to the mean-square
errors of unbiased estimates of those parameters. We shall demonstrate how
thesé minimum mean-square €rrors soar when the radiance is sampled at points

closer together than the conventional resolution interval AR/a.



I. Sampling the Object Plane

It is the radiance B(u) of the object plane that is to be estimated as a
function of position u = (ux, uy). Since it is impossible to estimate B(u) at
all points of the plane, the plane must be sampled, and there are several ways
by which this can be done.

The most definitive methods employ a set of functions Em(g) that are
orthogonal over some part O of the object plane, or over the @hole of it,

F (u) F *(u) d%u = m 6mn’ (1.1)
0~

where Cy is a suitable normalization constant. The functions are distinguished

~

by a two-vector index m = (mx, my). In terms of them the object radiance is
written
B(u) = B F (u), (1.2)

and in general only a finite number of coefficients, or '"samples'", Bm will be

estimated. The sampling functions Fm(u) are taken dimensionless so that the

samples B have the dimensions of radiance.
The functions Fm(g) might conveniently be the indicator functions of

contiguous rectangles A x Ay in the plane,

i 1
ng EDAX < Uy < Gﬂx * EDAX’

F@(lg)=1,
@, - PO <u < (@, + 3 (1.3)
y vy 7y y 2y
Fm(g) = 0, u elsewhere.
Bm is then the average radiance over the rectangle centered at ng A m.y A).

Alternatively we might use the sampling functions



= 1 "1- 1 "1_
Fm(g) smc(uXAX mx) smc(uyAy my), (1.4)

with sinc z = (sinmz)/nz. If the radiance B(u) has a spatial Fourier transform
lying entirely within a rectangle Ax"l x Ay‘l in the spatial-frequency plane,
- the coefficients in Eq. (1.2) are samples of B(u) at the lattice points,

Em = BG@X s my Ay), (1.5)

by the two-dimensional version of the Whittaker-Shannon sampling theorem.7
Because the functions Em(g) in Egqs. (1.3) and (1.4) are centered at points
of a lattice, we refer to these forms of sampling as lattice sampling. For

both, Cp =8 A, = A,. The region O is the entire object plane, although in

Y
practice only a finite number of samples Bm will be estimated. The smaller AX

and Ay’ the finer the details in the objec% plane that can be described by Eq.”
(1.2).

A third representation of the radiance of the object plane can be obtained
from a Fourier series, with

= : -1 -1
E@(g) = exp[Zﬂlonxuxbx + myuyby )1,

1 1 1 1

-z-bx <U-X< ‘2“bx: 'Eby <uy< Ebya (106)

The region O is now a rectangle bx X by with area Ao = bX b, and CIll = AO.

y,
The greater the number of terms retained in Eq. (1.2), the finer the detail it

can describe. We call this "Fourier sampling''.



II. The Aperture Field

The object plane radiates incqherently, creating at the aperture of the
optical system a field ws(g, t)--assumed for simplicity to be a scalar--that is
a circular-complex gaussian spatio-temporal random process.8 The probability
density functions of this process are completely determined by the mutual

coherence function of the object field,

05Ty t5 T,s ) = Ely (r, t) p*(r,, t,)]. 2.1)
Also present is background light whose field wn(y, t) has the same statistical

character, but is spatially and temporally white with spectral density N. On

the basis of the total aperture field

b (T, t) =y (r, t) + 9 (x, ) (2.2)

observed during a finite interval (0, T), the samples Bm of the object radiance
are to be estimated. )

For convenience of discussion we assume that the object light is quasi-
monochromatic and spectrally pure, so that its mutual coherence function can be

factored into spatial and temporal parts,4

o5 (Tys T35 T,5 ) = ¢ (1), 1) x(t, - t)

x exp[—isz(t1 - tz)]’ (2.3)
where @ = 2nc/A is the central angular frequency of the object light and A is
its wavelength.

The temporal autocovariance function x(t) is normalized so that x(0) = 1.

Its Fourier transform ©

X@) = | x() ¢ dx, (2.4)

-0



which is positive and real, represents the spectral density of the object light,
with angular frequencies w referred to @ as origin. The bandwidth W of the

object light is conveniently defined by

® 2 ©
/X(m) dw/ 27 /[ [X(w)]? dw/2n
lx(O)lz/[ [x(x) % dr. (2.5)

In ¢ tics the product WI is normally much greater than 1; indeed, it may be

=
]

L}

105 or more.

The spatial autocovariance function ¢g(§ gz) is so normalized that

1’
20%¢c ¢.(r, T) is the illuminance at point r of the aperture. The total energy
ES received from the object during the observation interval (0, T) is

»

E, = 202c T o (r, 1) d°r, (2.6)
A
where indicates an integration over the aperture.

A
The object plane, we assume, is so far away that the light rays from the

part of it being estimated are paraxial. The spatial autocovariance qg(gl, r,)

can be expressed in terms of the radiance B(u) through the Fresnel-Kirchhoff

.9
approxmatlon N i
ps(x s 1) = (%R%%)‘JB@ Elr,, v £*(x,, uv) d%y,
0
ik
£, w = exp(Felr - ul?), @.7)

where k = Q/c = 2n/)x and R is the distance between object and aperture planes.
Through Eq. (1.2) the spatial autocovariance function depends on the set B =

{Bm} of radiance samples,

~
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o (x5 5 B) (8wR292c)‘IZ By f F (W &(r,, w g*(r,, u) d2u.
n 0" (2.8)

In this way the samples B “'{Bm} are parameters of the joint probability density
functions of values of the ape;ture field v (r, t) at various points r and times
t.

The foregoing description is based on classical physics and requires
N = KT >> HQ, where K = Boltzmann's constant, 7 is the effective absolute
temperature of the background, and f = Planck's constant h/2n., When KT << 4Q,
the observations are said to be quantum-limited, a condition requiring an easy

modification of our results.



ITI. Errors in Estimates of Radiance Samples

The samples B = {Bm} specifying the radiance distribution of the object
plane are to be estimateé from observation of the field y_(r, t) at the aperture
of an optical system. The system is to be designed to make the estimates as
accurately as possible. How well it can be expected to perform can be assessed

by the mean-square errors €n in the estimates Bm of the samples Bm’

en = 1§(1§Ill - BHJ)Z,. (3.1)

By restricting ourselves to unbiased estimates,

E(BIP) = BII" (3.2)
we can set a lower bound to e_ by means of the Cramér-Rao inequality,‘lo’11
= B(B - 2
ey =BGy, - B2z L, (3.3)
where the matrix L = [|L_ || = H™'is inverse to the matrix H, whose (mn)-element
is
Ho = E[BB N o ply; B)} (5.4)

q
of the aperture field at points gp e A and at times tq e (0, T). After forming

Here p(y; B) is the joint probability density function of samples y = {w+(;b, t )}

the expectation E, the right-hand side of Eq. (3.4) must be taken to the limit
of an infinitely dense sampling of A and (0, T).

The off-diagonal elements of the matrix L are related to the covariances
of unbiased estimates Em at different points. Specifically, if X is an arbi-

trary column vector of real elements and X is its transposed row vector,

1 p<d

VX2

thq)

L X, (3.5)

where the elements of the matrix V= [[V_[| are the covariances

10



Vo= g(BI~n - B{n) (Bp - B). (3.6)

Eq. (3.3) is a special case of Eq. (3.5).
The significance of the multidimensional Cramfr-Rao inequality is best
understood in terms of the concentration ellipsoid of the errors, a quadric

surface whose equation is Y V-'Y =m + 2 in an m-dimensional space with coor-

dinates ? = (Yys Voo voes ym), where m is the number of radiance samples.12
Equivalent to Eq. (3.5) is the inequality
Yviy<Yuy, (3.7)

which asserts that the concentration ellipsoid lies outside the ellipsoid whose

equation is

<Y

HY =m+ 2. (3.8)
When the errors are uncorrelated, the axes of the concentration ellipsoid are
proportional to their r.m.s. values.

At large signal-to-noise ratio, the maximum-likelihood estimates of the
parameters Bm have approximately a joint gaussian distribution, and the level
surfaces of ;his distribution are ellipsoids parallel to the concentration
ellipsoid. The Cramer-Rao inmequality in this limit becomes asymptotically an
equality.l0

When as here the density functions p(y; B) have the circular gaussian

form, the elements of the matrix H are given by

g =0 9

mn JdB() 0B

~ m n
- - NONEN O

HEB®, B®)

(3.9)

where the ambiguity function H(B (1), 1}(2) ) is
1 2)y = 2 -1 . pQ . @M a2¢ g2
H(B M), B(2) (E,/N)2(WT) o.(x,, 1,3 BM) o (xr,, 1,5 B2 a r,d’r,
A

11



x | f ¢ (r, T; B) d2r|2 (3.10)
A

After the differentiations in Eq. (3.9), B(D and ]j(z) are set equal to the true
set B of radiance sa:nples.13’14
If we now substitute from Egs. (2.7) and (2.8) into Eq. (3.10) and differ-

entiate as in Eq. (3.9), we obtain

mn

~ o~

By = fB(g) d?u
0

is the total radiant power of the object plane and

H = (ES/N)2 (wr) -1 BT“2 Jmn (3.11)

~

where

Jo = ijm(gl) F,@,) 1§ @, - u)? d?u d*u, (3.12)
s oo
with
J) = AL f I,(r) exp(-ikr-u/R) d’r (3.13)
A

proportional to the Fourier transform of the indicator function I A(g) of . the

atperture.15 The matrix element Jmn can also be written

= A-2. - - 2+ 42
an} A [ﬁmﬁfl 152) Kg‘k(lg1 gz) d 1:1d T, (3.14)
AYA '
where
K, (x) = —[Fm(le) exp (ilu-r/R) d*u (3.15)
~ 0 ~

is the Fourier transform of the sampling function Fm(g) . In order to evaluate
the minimum mean-square errors as in Eq. (3.3) it is necessary to invert the
matrix J = HJmn{ |.

~

12



Under quantum-limited conditiqns, N = K7 << fin, the factor (ES/N)z (WT) =1

in Eq. (3.11) must be replaced by Nstl(LD), with14

£ (20) = .@W[ [X(w)]? [1 + OWX(w)]"} dw/2m, (3.16)

w
where X(w) is given by Eq. (2.4), @s= NS/QLMWT, NS = ES/ﬁQ is the average total
number of photons received from the object during the interval (0, T), M is the

number of spatial degrees of freedom in the object light at the aperture, and
Jt = [exp(ho/KT) - 1]=1, (3.17)

The number M is given by

2
M = f«ps(lj, r; B) dr
A |
. -1
x //l(ps(ljl, r, 5 B)|? d*r d%r, (3.18)
AYA

and is roﬁghly equal to AAO/AZRZ, where A is the area of the aperture and A, is
the area of the part of the object plane whose radiance is being estimated.
When 2 >> 1, an extreme quantum-limited condition, fl(QD) = 1 and the factor
(ES/N)Z(WT?in Eq. (3.11) is replaced by NM.

In deriving the ambiguity function in Eq. (3.10), the threshold approxi-
mation was made.> The error thus introduced can be shown to be of the order of
ES/NMWT under a background limitation and of the order of NS/MWT under a quantum

limitation,14 provided M >> 1. Under ordinary conditions WI' >> 1.

13



IV. Lattice Sampling

Under lattice sampling the functions Fm(g) are obtained by translation of

the central function F ),

F@Cg) = Fo(uX *moA, uy +m (4.1)

A_).
Y Y)
The matrices H and J then have the Toeplitz form; that is, their elements depend

only on the differences of their indices, Jmn = Jm-n’ where

J

1]

Folv)) Fo*u,) | gy, - v, - 0 )|? ¢y a2y,

(e

00
/‘.
= A2 /[Ko(fl - 1,)|% exp[-iks - (r - 1 )/R] d¥r dPr,
AYA )

AL a_, A ).
by = Py 840 Py 8)

(4.2)

In practice the matrix J = IiJm_nll will be finite, and there will be no
simple analytical form for its inver;e: Under certain conditions, however, an
approximate formula for the elements of the inverse matrix G = g'l can be ob-
tained by assuming that J is infinite in extent. We denote this infinite

extension of J by J~. Its inverse gw also has the Toeplitz form, and the ele-

ments of gm are solutions of the arfay of simultaneous equations

“-‘ﬂﬂ o0 foe)

Z C” J% =5 . (4.3)
p-q “q-m pm

ot - e

These equations can be solved by a Fourier transformation, provided the
. © R . - w . 400 . .
inverse of J exists. The diagonal elements Gm of G will be good approxima-
tions to the diagonal eclements of G when G has many elements, that is, when the

diameter of the part O of the object plane being estimated is many times greater

14



than the sampling intervals A and Ay. When A and Ay are too small, as we shall
see, the approximation breaks down because Qm‘l no longer exists.

We define the discrete Fourler transforms

gl) =Z G, exp(ip-w), (4.4)
= ;

j () =Z J; exp(ip-w), (4.5)
, 7 D ?

which have periods 2n in . and wy. Then, as in the convolution theorem, Eq.

(4.3) is equivalent to

glo) jlw) =1, (4.6)

and the diagonal elements of G~ are

G§=ff [(w)17! d2w/(2m)2. (4.7)

The lower bound on the mean-square error e of an wunbiased estimate of

~

Eﬁ is then approximately

e, = (WE)?2 WI B2 G‘;. (4.8)

The factor Gz in the right-hand side of this inequality is actually larger than

the factor Qmm = (J that should appear there, and Eq. (4.8) therefore does

7" m

not constitute a true lower bound.

Substituting the second part of Eq. (4.2) into Eq. (4.5), we obtain

o [ [ S -
AA T

80y - Xy * v lmy - e /2m) Sy -y, v (my - w/2m) dxgdy,dx,dy,,

jw)

YX = }\R/AX’ YY = AR/AY’ A,Y = YX' y: (4'9)

15



. i rs, m= (mn,m), . = . . j = . i
where m, and m, are integers, m = (m, y) and I (Xj’ yj), j =1, 2. Taking
the aperture A to be rectangular with sides a  and ay, we find after integrating

. over it
2.
. = -2 - -
jlag, wy) A‘( A™¢ - [ax Yxlmx wx/2n|]
x [ay - Yylﬂly " /2] 1KQ(¥Xme - /21), Yy(my - wy/ZTr))|;2 (4.10)
a term of the sum being set equal to zerg whenever either of its square-bracketed

factors is negative.

The inverse [j(Lfg)]ﬂi'l ceases to exist when

Yy = AR/Ax > Zax
or
= AR/A_ » 2a

that is, when 4, < AR/Zax = %—5X or Ay < AR/Zay = %-Gy, for then j(w) vanishes

over a finite area of the rectangle -w < (mx, my) < m. The infinite form of J
no longer has an inverse, and the diagonal elements of G cannot be approximated

by Eq. (4.7).

16



Sinc-function Sampling

The analysis is simplest for sinc-function sampling as in Eq. (1.4). From
Eq. (3.15),

A =AM A,
A X Y

'%—Y <x<%v ‘%Y <y<%—Y (4.11)

@ X

it

K0 (r) = 0 elsewhere.

Putting this into Eq. (4.10) we find

J) = Ag Ay[1 - 8 ful/2n0 ] [1 -8 fu ] /2m, ],

A, =8

5 = Oy Sy (4.12)

the square-bracketed expressions again vanishing when their contents are nega-’

tive. Substituting this into Eq. (4.7), we obtain
) -8
Gy = 4Ag2 (1 - X9 a2 - 2,
X Y
1 1
A, > > Sy, Ay > > 5y. (4.13)

The relative mean-square error in an unbiased estimate of the radiance Bm at

point A = (mX B s my Ay) is now, by Eq. (4.8),

e /B 2 > (N/E )2 WT(A 2/A2) £n(1 - E)L) fn(l - oy
Fom - A A 6 ZAX

28,
= NW/E)2 W (A/A) 67, (4.14)
with
- 8, &
GI" = 4@ /A ol - ’Z‘A;) fn(l - 71,;;) (4.15)

In Eq. (4.14) E is the total energy that would be received from the area A, =
A Ay of the object if it radiated uniformly. The bound is approximately valid

only when A > %— 8 and A > Y Gy’ where

y 2
6x = AR/aX, 6}7 = xR/ay (4.16)

17



are the conventiqnal resolutiqn elements in the x- and y—directiqns on the
object plane.

When the sampling intervals Ax and Ay are much greater than the resolution
elements GX and 6y, respectively, the relative mean-square error in Eq. (4.14)
becomes approximately

ely_/BIg2 > (N/ES)2 (MWT) M, (4.17)

where MA is the number of sampling rectangles into which the object is divided,
E, = M, E, is the total energy received from the object, and

M= AD/AG =M, A /A (4.18)
is the number of spatial degrees of freedom in the object field. Since the
total radiant power BT is proportional to the sum

2n,
m

m ~
which contains M, temms, we conclude that the relative mean-square error in an
estimate of B is bounded by

g(ﬁT - BT)Z/BT2 > (N/BS)2 MWT, (4.19)
in agreement with a previous result.’’

With sinc-function sampling the matrix elements Jp themselves can be eval-

uated in closed form from'Eqs. (4.2) and (4.11). They are

Jp = AG AA Jp' (4.20)
with
- c 2 )
J ! LAA/AG) sinc (pX AX/GX) sinc (py Ay/sy),
1 1
B 238 y < 76},, (4.21)
and
1 2y-2 Px pY 2 4 2
Tph T G ) B (DT I (D Ve By
R o X S A0 N il 1
Jgr (1 4Ax> (1 My) > I Ax> 58, Ay > Tsy. (4.22)

18



One-Dimensional Object

The accuracy of our apprqximation to gw can be most easily assessed numer-
ically for estimates of the radiance of a one-dimensional object. We consider
the matrix J! = l]Jﬁ_n]] whose elements are the one-dimensional versions of
those in Eqs. (4.21), (4.22), which were derived for sinc-function sampling.

Here, after subscripts x and y are dropped,

3,0 = @)™t (8/8) 11 - (-DP1/p
I = (- s/48), > %, (4.23)
3! = (/8) sinc?(pa/s), 4 < %a. (4.24)

Eleven- and fifteen-rowed matrices IIJ&_n][ were inverted by a digital
computer. The central--and largest--element of the inverse matrix G' is plotted
in Fig. 1 as a function of the ratio &/A; these are the curves marked "11' and
"15". The curve marked "=' displays the diagonal elements Gém of the infinite
matrix g'w; they are given by the one-dimensional form of Eq. (4.15),

GY” = 2(a/8)|en@ - s/28)|, /b < 2. (4.25)

The graph illustrates the extremely rapid increase in the mean-square
error when an attempt is made to estimate the radiance at points closer than
%6 = AR/2a, where a is the width of the aperture. The central element of J'"!
soon reaches astronomical values, rising the faster, the larger the number of
points at which the radiance samples are unknown. For A < %6, on the other hand,
the minimum mean-square error of the estimate is insensitive to the number of
points involved and is close to the value calculated by assuming the mumber to
be infinite.

The diagonal elements of J'-! decrease from the center to the corners of

the matrix. The reason for this is that the assumption of a finite number of

19



sample points requires the radiance to be knqwn precisely at points Qutside the
sampled area. The estimates of B for points near the.gdge are influenced by a
smaller number of unknown radiance values and can therefqre be made more
accurately.

At large signal-to-noise ratio the elements Gﬁn of the inverse matrix g"l
are nearly proportional to the covariances of the errors in the estimates ﬁm and

@n. For A >%5 these are approximately equal to the elements Gﬁfn of G'* = J'*-1,

where from Eq. (4.4)

™

G2 = | 57 @17 explipn) du/2r. (4.26)

-
In Table 1 we have listed the asymptotic correlation coefficients G';/G:” for -
several values of 6§/A. When A is much larger than §, the estimates are approx-
imately uncorrelated. As A increases, the correlation spreads over more and

more adjacent elements.

Table 1

Correlation Coefficient of Radiance Estimates

Number of Intervals, p

§/ A 0 1 2 3 4 5 6 7

0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 1.0  -0.0582 0.00417 -0.00676 0.00107 -0.00245 0.00048 -0.00126
1.0 1.0 -0.139  0.0237 -0.0194 0.00658 -0.00720 0.00301 -0.00373
1.5 1.0 -0.269 0.0882 -0.0576 0,0307 -0.0242 0.0152 -0.0131
1.9 1.0  -0.505 0.304 -0.230  0.174 -0.142  0.115 -0.0983

3.0 1.0 -0.936 0.764 -0.538 0.321 -0.155 0.0556 -0.00117

20



The last line of Table 1 lists thg cqrrelatiqn coeffici¢nts Gﬁo/Géo thained
from the central row of the inverse G' = Jri of the 15x 15 matrix J', whose
elements were calculatéd from Eq. (4.24) for &/A = 3. Adjacent estimates are
much more strongly cqrrelated than fqr 8§/ < 2. The small value for p = 7
reflects the fact that the two sample points 7 units on each side of center lie
at the edge of the observed area, where the estimates are influenced by somewhat

fewer unknown radiance values than for points near the center.
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Indicator-Function Sampling

When the indicator functions of Eq. (1.3) are used for sampling in one or
two dimensions, the matrix elements Jﬁ are integrals that camnot be expressed in
closed form. The Fourier transform of the central indicator function is

Ko(g) = AA 51nc(x/yx) 51nc(y/yy), 4.27)

with Ty =_AR/AX, Y =_AR/Ay. For a one-dimensional object the approximate values

Y
of the central diagonal elements of J'"! are
Va o
G'E = (n2/6) cscz(wu)'{jg::(u -m)~2 [1 - |q - ml §/01}71 du,
ny m=-c

A < 28, (4.28)
corresponding to Eq. (4.25). This has been plotted as a dashed curve in Fig. 1;

numerical integration was required.
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V. Fourier Sampling

The minimum mean-square error of an unbiased estimate of any of the coeffi-
cients Bm in the expansion of the object radiance, Eq. (1.2), is given by Egs.
(3.3) and (3.9),

ey 2 (WE)? WI B2 G, (5.1)

where G is a diagonal element of the matrix G = J-l. The elements of J are in
turn gi;;n by Eq. (3.10). The matrix inversion would be simple if J were a dia-
gonal matrix, and it is natural to look for the kind of sampling for which it is.
The matrix J will be diagonal if the orthogonal functions Fm(g) are eigenfunctions

of the integral equation

Mg @) =fl Jw - |2 F ) &, (5.2)
m . 2

whose kernel | J(u - v)? is defined by Eq. (3.11).

The object whose radiance is to be estimated is assumed to 6ccupy a finite
region O of the object plane. Its diameter will in general be much larger than
the width of the kernel |  (u)|2, which is of the order of ARA™%, A béing the
area of the aperture. As discussed previously,18 the eigenfunctions are then,
for a rectangular object, sinusoids as in Eq. [1.6)§ and the eigenvalues Ap?
which will be the diagonal elements of J, are the values of the Fourier tr;ns—
form of the kernel | § (u)|2 evaluated at points separated in the x- and y-direc-
tions by 21r/bx and Zw/by, respectively, where bX and by are the length and
breadth of the object. Thus we are led to Fourier sampling.

The Fourier transform of the kernel | (u)|2 is, by the convolution theorem,

the self-convolution of the indicator function IA(g) of the aperture. For a
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Tectangular aperture a x & - this is

2 () fflgcu)lz exp(iw-u) d?u =

(AR/A)ZfIA(;*) I,k Ry - 1) d?r =
A

OR/A? [a, - [k Re]] [a - [k o],

lu, | < ka /R, Iwyl < ka /R, (5.3)
and ¢(w) = 0 for w outside the rectangle (kaX/R) x (ka y/R) . Hence the eigen-

values of Eq. (5.2) are approximately

- 2 - -
A= ORZ [ - Im | 8 /b ] [1 - Im [ 6 /b 1/A,
8, = )\R/ax << bx’ Gy = >xR/aLy <\< by’ (5.4)

with [x] = 0 for x < 0.
The minimum relative mean-square error of an unbiased estimate of the

coefficient

= -1 : -1 -1

(bX by) f B(x, y) exp 21T:L(mX xbX + my yby ) dxdy (5.5)
. 0

is

£ /B 2 > (N/E )2 MWT[1 - Im | 6 /b 17t - ]myl cSy/by] -1 (5.6)

where M = AAO/ (AR)? = AO/A£S is the number of spatial degrees of freedom in the
object O. (AO = bx by = the area of the object.) We have referred the mean-
square errors to the value of the central coefficient B0 = BT/AO. For gx= Q
Eq. (5.6) agrees with Eq. (4.19).

As lmxl and ]myl increase, so does the minimum relative mean-square error
e:m/Bo2 . It appears to become infinite for ]mxl =b /s or ]my] = b y/cSy, but the

exact eigenvalues Am do not go to zero at that point, although they become

~
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extremely small for ]mxl >b. /8, lmyl > by/ (Sy' The complex exponential sampling
function Fm(g) in Eq. (1.6) will bear a significantly large coefficient Bm when
the object contains many details whose widths in the x- and y-directions are of
the order of bx/mx and by/my’ respectively. This coefficient will be subject

to a very large error when the details have widths smaller than 6, = AR/ a, and

.= A .
y = W3y
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Figure Caption

Fig. 1. Factor Gé in lower bpund to mean-square error of an unbiased estimate
of the sample value of the radiance function of the object plane. Solid curves:
sinc-function sampling; dashed curve: indicator-function sampling. Curves are
labeled with the number of sample points. & = AR/a, A = sampling interval,

a = width of aperture, A = wavelength, R = distance to object plane.






