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Abstract 

The values of the radiance a t  points of an incoherently 

radiating object are considered as parameters of the statistical 

description of the f i e l d  a t  the aperture of an observing optical 

instrument. By means of the Cram&-Rao inequality a lower bound 

is set to the mean-square errors of unbiased estimates of the 

radiance values. 

the object is sampled at  points separated by less than a conven- 

The errors are  shown to  increase rapidly when 

tional resolution interval. 
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The ab i l i t y  of an 

be evaluated i n  various 

if the instrument takes 

aperture of diameter a, 

optical instrument to  resolve de ta i l s  of an object can 

ways. A l l  of them lead to  the general conclusion that  

i n  l igh t  of wavelength A from the object through an 

it w i l l  blur de ta i l s  having an angular subtense smaller 

than A/a--a conclusion tha t  might be drawn from the undular nature of l igh t  

simply by dimensional analysis. 

A common explanation of how the optical instrument obliterates fine 

detai ls  views it as a l inear  spat ia l  filter transforming the l igh t  f i e ld  a t  the 

object plane into the l igh t  f i e ld  at  the image plane. The aperture limits the 

spat ia l  bandpass of th i s  f i l ter ,  and the loss of high spat ia l  frequencies pre- 

vents the reconstruction of features of inversely proportional dimensions i n  the 

object. 

object and the resultant analyticity of its spat ia l  Fourier transform should 

permit reconstruction of the ent i re  object by mathematical operations on those 

This viewpoint has led t o  the proposal that  the f i n i t e  s i z e  of the 

spat ia l  frequencies that  do pass the aperture.' The inevitable presence of 

random background l igh t  and the unavoidable introduction of random noise in  

recording the image l igh t  subject any such procedure to  deleterious errors. 

The influence of noise on other l inear estimation schemes has been analyzed by 

Rushforth and Harris. 
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This approach to  resolution through linear f i l t e r ing  is most suitable for  

coherent object f ie lds .  

l ight .  

the sake of certain phase effects, the l i gh t  emanating from most objects possesses 

a very low degree of spa t ia l  coherence. 

radiating objects it is not the f i e ld  of the l ight  tha t  is of interest ,  for 

Ordinary objects , however radiate or  ref lect  incoherent 

Except i n  microscopy9 where coherent illumination may be ut i l ized for  

With such incoherently illuminated or  
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that  f i e ld  is best described as a random process having zero mean value and a 

most erratic spatio-temporal variation. 

the f ie ld ,  averaged over many cycles of the dominant temporal frequency Q, tha t  

characterizes the object i n  the most in fona t ive  way. Specifically, the mutual 

coherence function of the l ight  field ~ ~ ( u ,  - t )  immediately i n  front of the 

object has the form 

Rather it is the mean-square value of 

1 Z E  Q0b1’ t l1  #o*(y2’ t 2 3  = 

= C N U , )  “(“1 - :,I XCt ,  - tJ e x p r - i q  - t 2 > l ,  
where B(u) .%, is the radiance of the object a t  point u, - X(T) is the temporal auto- 

covariance of the f ie ld ,  C is a suitable constant, and E - denotes the statistical 

expectation. 

signifies tha t  the coherence length of the l ight is much smaller than the extent 

of any detai ls  of interest .  I t  is the radiance function B(u) .., that  describes the 

object for  us. 

The presence of the two-dimensional delta-function 6(ul .., - y2) 

As the l igh t  propagates toward the aperture of our optical instrument, its 

coherence function changes i n  a predictable f a ~ h i o n , ~  but i t s  f i e ld  remains a 

stochastic process, to  which is  usually added another random f ie ld ,  referred t o  

as the background. 

angle that  is generally much broader than that  of the object l ight .  

of the radiance B(2) a t  various points of the object, which are the quantities 

we really want t o  know, are related t o  the net f ie ld  a t  the aperture not i n  a 

deterministic fashion, but only i n  a statistical sense. 

the jo in t  probability density functions of the aperture f ie ld .  The function of 

the optical instrument is t o  estimate them by some operation on that  f i?ld,  and 

the estimates w i l l  be subject t o  error because of the stochastic nature of the 

l igh t  from the background and from the object itself. 

This background f i e ld  has a distribution i n  frequency and 

The values 

They are parameter 
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In a previous paper we pointed out how the resolvability of detai ls  i n  

the object plane might be treated as a problem i n  decision theorya5 The optical 

instrument is required to  decide whether two close objects of a specific kind 

are present, o r  only one. 

function of the separation of the t e s t  objects,measures the resolvability of 

detai ls  having the same s i z e  and form. 

The probability of i ts  deciding correctly, as a 

A subsequent paper introduced a modal expansion of the aperture f ie ld  

arising naturally i n  an analysis of the detectabil i ty of incoherently radiating 

objects.6 The strengths of the several modes are direct ly  related to the 

radiance of the object plane at points separated by a conventional resolution 

interval hR/a, R being the distance of the object. 

errors i n  unbiased estimates of these radiance values were derived from a quantum- 

s t a t i s t i c a l  description of the f ie ld .  

The minimum mean-square 

Here we shal l  develop the s t a t i s t i c a l  theory of resolvability further by 

viewing the function of an optical instrument as one of estimating the radiance 

of the object plane. 

the samples are regarded as parameters of the joint  pdf's of the aperture f ie ld .  

By means of the Cram6r-Rao inequality lower bounds are s e t  to  the mean-square 

The radiance B(u) is sampled i n  a suitable manner, and 

errors of unbiased estimates of those parameters. 

these m i n k  mean-square errors soar when the radiance is sampled at  points 

closer together than the conventional resolution interval AR/a. 

We shal l  demonstrate how 
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I. Sampling the Object Plane 

It is the radiance B(u) of the object plane that is to be estimated as a 

Since it is impossible to estimate B(u) at function of position u = (ux, uy). 

all points of the plane, the plane must be 

by which this can be done. 

The most definitive methods employ a 

sampled, and there are several ways 

set of functions Fm(u) that are - 
orthogonal over some part 0 of the object plane, or over the whole of it, 

Fm(u) Fn* (u) d2u = Cm 6m, i - -  - - - - ..,- 

where Cm is a suitable normalization constant. 

by a two-vector index m = (m 

The functions are distinguished - 
. In terms of them the object radiance is - x' my' 

written v 

and in general only a finite number of coefficients, or "samples", B will be m 
estimated. 

samples Bm have the dimensions of radiance. 

The sampling functions Fm(u) are taken dimensionless so that the -. - 
- 

The functions F (u) might conveniently be the indicator functions of m -  - 
contiguous rectangles Ax x A in the plane, 

Y 

Fm(u) = 0, u elsewhere. 

B is then the average radiance over the rectangle centered at (mx Ax, m A ). 5 Y Y  
Alternatively we might use the sampling hctions 
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Fm(u) = sinc(u A - l  - m ) sinc(u A - l  - my), (1 -4) - x x  X Y Y  

with sinc z = (sinTz)/Tz. 

lying entirely within a rectangle Ax-l x A 

the coefficients i n  Eq. (1.2) are saniples of B(u) a t  the lattice points, 

If the radiance B(u) - has a spat ia l  Fourier transform 

i n  the spatial-frequency plane, 
Y 

B = B(mx Ax, m A ), m Y Y  
7 by the two-dimensional version of the Whittaker-Shannon sampling theorem. 

Because the functions F (5) i n  Eqs. (1.3) and (1.4) are centered a t  points m 
of a l a t t i ce ,  we refer  t o  these forms of sampling as l a t t i c e  sampling. 

both, Cm = A A = An. 

practice only a f i n i t e  number of samples Bm w i l l  be estimated. 

and A 

For 

The region 0 is  the ent i re  object plane, although in  - X Y  

The smaller Ax 

the f iner  the de ta i l s  i n  the object plane tha t  can be described by Eq. 
- 

Y’ 
(1.2). 

A third representation of the radiance of the object plane can be obtained 

from a Fourier ser ies ,  with 

Fm(u) = exp[2ni(mxuxbx-1 + m u b -1)], - Y Y Y  

The region 0 is now a rectangle bx x b 

The greater the number of terms retained i n  Eq. (1.2), the finer the de ta i l  it 

with area A. = b b and Cm = Ao. 
Y x Y’ - 

can describe. We call t h i s  ‘‘Fourier samplingli. 
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11. The Aperture Field 

The object plane radiates incoherently, creating a t  the aperture of the 

optical system a f i e ld  Q s ( ~ ,  t)--assumed for  simplicity to  be a scalar--that is 

a circular-complex gaussian spatio-temporal random process. 

density functions of th i s  process are completely determined by the mutual 

coherence function of the object f ie ld ,  

The probability 

qssCr, 9 t l ;  r,, t 2 )  = ?+bSCFl 9 t l )  +s*(T2, t 2 ) l  (2 1) 

Also present is background l igh t  whose f i e ld  $n(r, t )  has the same s t a t i s t i c a l  

character, but is spat ia l ly  and temporally white with spectral density N. 

the basis of the to t a l  aperture f i e ld  

- 
O n  

observed during a f i n i t e  interval 

are to  be estimated. 

(0, T), the samples Bm of the object radiance 
... 

For convenience of 'discussion we assume that  the object l igh t  is quasi- 

monochromatic and spectrally pure, so that  i t s  mutual coherence function can be 

factored into spa t ia l  and temporal parts,  4 

cp,(rl, t,; 5, t 2 )  = VS(Kl, r2> xCt, - t 2 )  

x exJp[-iQ(t 1 - t ,)],  (2 3) 

where Q = 2nc/A is the central  angular frequency of the object l igh t  and h is 

its wavelength. 

The temporal autocovariance function X ( T )  is  normalized so that x(0) = 1. 

Its Fourier transform 

X(T) eiwr dT, I' X(w> = 

J- cn 
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which is positive and real ,  represents the spectral density of the object l i g  

with angular frequencies w referred t o  52 as origin. 

object l igh t  is conveniently defined by 

The b 

In c tics the product WT is normally much greater than 1; indeed, it may be 

1 0 5  or more. 

The spat ia l  autocovariance function qs (r, , F ~ )  is  so normalized that 

2Q2c pS(F, &) is the illuminance a t  point 7 of the aperture. 

Es received from the object during the observation interval ( 0 ,  T) is 

The to t a l  energy 

ES = 2Q2c T is(?, &) d2&, 

r 
where indicates an integration over the aperture. J, 

The object plane, we assume, is so f a r  away tha t  the l ight  rays from the 

par t  of it being estimated are  paraxial. 

can be expressed i n  terms of the radiance B(u) - through the Fresnel-Kirchhoff 

approximation, 

The spat ia l  autocovariance V ~ ( ( - T ~ ,  x2) 

9 

9s (fl ’ 5 3  = U )  9) d2U, 

where k = n/c = 2n/h and R is the distance between object and aperture planes. 

Eq. (1.2) the spa t ia l  autocovariance Eunction depends on the se t  B = 

(Bm> of radiance samples, 
I 
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In th i s  way the samples B ," = {BmI are parameters of the jo in t  probability density 

functions of values of the aperture f i e ld  $+(r9 - t )  a t  various points F and times 
- 

t. 

The foregoing description is  based on classical  physics and requires 

N = KT >> &Si, where K = Boltzmann's cons tan t ,y  is the effective absolute 

temperature of the background, and ?I = Planck's constant h/2r. When K T  << fin, 

the observations are said to  be quantun-limited, a condition requiring an easy 

modification of our results.  
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111. Errors in Estimates o f  Radiance Samples 

The samples B - = {B,} specifying the radiance distribution of the object - 
plane are to be estimated from observation of the field ++(r, t) at the aperture 

of an optical system. 

accurately as possible. 

by the mean-square errors 

The system is to be designed t o  make the estimates as 

How well it can be expected to perfom can be assessed 

in the estimates gm of the samples B,' - 

By restricting ourselves 
,. 

= Bm, - 
we can set a lower bound to 

where the matrix L = I lLml I = 

is 
- -  

t o  unbiased estimates, 

(3 2) 
10,ll by means of the Cram&-Rao inequality, 

H-lis - inverse t o  the matrix H, whose (mn) -element - ..,- 

Here p(9; B) - is the joint probability density function of samples $J .., = {++(I+ tq)) 

of the aperture field at points r E A and a t  times t E (0, T). After forming 

the expectation E, the right-hand side of Eq. (3.4) must be taken to the limit 

of an infinitely dense sampling of A and (0, T). 

P q 

The off-diagonal elements of the matrix & are related t o  the covariances 

of unbiased estimates Bm at different points. 
trary column vector of real elements and 5 is its transposed row vector, 

Specifically, if X - is an arbi- - 

N x - - -  v x Y L  - - -  x, (3.5) 

where the elements of the matrix V - = I IVmI 1 are the covariances -- 
lo 



h 

vmn = E(Bm - _  - 
Eq. (3.3) is a special 

The significance 

understood in terms of 

surface whose equation 

- Bm) (f3, - Bnl - - - 
case of Eq. (3.5). 

of the multidimensional Cram&-Rao inequality is best 

the concentration ellipsoid of the errors, a quadric 

is Y - -  V-IY - = m + 2 in an m-dimensional space with coor- 
12 dinates -. = (yl , y, , . . . , ym) , where m is the number of radiance samples, 

Equivalent to 

Y 

which asserts 

N 

- 

equation is 

Y 

Eq. (3.5) is the inequality 

V-IY - -  I ? - - -  H Y, (3 7 )  

that the concentration ellipsoid lies outside the ellipsoid whose 

H - 
When the errors 

proportional to 

Y = m + 2 .  - (3 8) 

are uncorrelated, the axes of the concentration ellipsoid are 

their r.m.s. values. 

At large signal-to-noise ratio, the maximum-likelihood estimates of the 

parameters Bm have approximately a joint gaussian distribution, and the level 

surfaces of this distribution are ellipsoids parallel to the concentration 

ellipsoid. 

equality. 

- 

The Cram&-Rao inequality in this limit becomes asymptotically an 
10 

When as here the density functions p($; - -  B) have the circular gaussian 

form, the elements of the matrix H - are given by 

, 
’. L where the ambiguity function H(B (”, 3 (2)  ) is 

s P 



(3.10) 

After the differentiations i n  Eq. (3.9), 

set B of radiance samples. 

and - B(2) are s e t  equal t o  the true 
13,14 - 

If we now substi tute from Eqs. (2.7) and (2.8) into Eq. (3.10) and differ-  

ent ia te  as i n  Eq. (3.9), we obtain 

= (Es/N)2 (WT)-l BT-2 J 
Him .v-  mn 

where P 

is  the to t a l  radiant power of the object plane and 

with 

g(.> = 

proportional t o  the 
..c 

exp(-ikr*u/R) - -  d2_r 

(3.11) 

(3.12) 

(3.13) 

Fourier transform of the indicator fwnction IA(:) of the 

aperture.” The matrix element Jm can also be written - _  

r where 

(3.14) 

(3.15) 

is the Fourier transform of the sampling function F (v). 
the minimum mean-square errors as i n  Eq. (3.3) it is necessary t o  invert the 

matrix J = I IJ,I I .  

In order to  evaluate m 



Under quantum-limited conditions, N = KT << ?in, the factor (Es/N)2 ( ~ ) - 1  

i n  Eq. (3.11) must be replaced by NsMl (D) , with14 

(3.16) 

where X(w) is given by Eq. (2.4) 

number of photons received fsm the Q@&et during the interval (0, T ) ,  M is the 

number of spat ia l  degrees of fr 

~~/~~~~ Ns = Es/fi2 is  the average to ta l  

l igh t  a t  the aperture, and 

The number hi i s  given by 

(3.18) 

and is  roughly equal t o  AAo/A2R2, where A is the area of the aperture and A. i s  

the area of the par t  of the object plana whose radiance is being estimated. 

When 27  >> 1, an extreme quantum-finiited c~nditi~n, E, (a)) t 1 and the factor 

(Es/N)2 (WTjlin Eq.  (3.11) is replaced by N a f .  

In deriving the ambiguity function i n  Eq. (3 ,10) ,  the threshold approxi- 

mation was made.' 

E S / W  under a background limitation and of the order of hs/14'~T under a quantum 

limitation,14 provided M >> 1. 

The error thus introduced can be shown to be of the order of 

Under ordinary conditions WT .'> 1. 
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Under l a t t i c e  sampling 

the central function F, (u) - , 

I V ,  Lattice Sampling 

the functions Fm(u) - are - 

F,(v) = Fo(ux + m A u + ni A ) .  - X X Y Y  Y Y  

obtained by translation of 

(4.1) 

The matrices H and J then have the Toeplitz form; that is, their  elements depend 

only  on the differences of their  indices, Jm = J  m-n, where 
- - 

- -  - -  

l K o ( r l  - r 2 ) / 2  exp[-ika * ( r  - r )/K] d2r_,,d2z2, -p - 1  -2 - 

In practice the matrix J - = I i JnIdn/ I w i l l  be f i n i t e ,  and there w i l l  be no 

Under certairi conditions, however, an 
- -  

simple analytical form for i ts  inverse. 

approximate formula f o r  the elements of the inverse maerix G - = J-I - can be ob- 

tained by assuming that J - is inf ini te  iii extent e 

extension of J by J". 

ments of Gm - are solutions of the array of simultaneous equations 

We denote this inf in i te  

Its inverse Gm - also has the Toeplitz form, and the ele- 

m 00 

G .J = S  . p - q q - m  p i  - -  - -  -- Y 
(4.3) 

These equacions can be solvcJ by a Fourier transformation, provided the 

inverse of Jm exists.  

tions t o  the diagonal elements of G - vhen C - has iriariy cleiiients, chat is ,  when che 

dianeter of the part  0 of the object plane being estimated is many times greater 

The diagonal elenients Gw m of Cm w i l l  be good approxima- - - 
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than the sampling intervals A and A When A and A are too small, as we shal l  

see, the approximation breaks down because - Jm-l no longer exists. 
X Y’ X Y 

We define the discrete Fourier transforms 

- 
which have periods 2~r  i n  wX and w . 

Y 
(4.3) is equivalent to  

Then, as i n  the convolution theorem, Eq. 

and the diagonal elements of Gm are 

G i  = 

The lower bound on 

Bm is then approximately - 

- 

[ j (w) ] d2u/ (2,) 2 .  (4.7) 

the mean-square error E of an unbiased estimate of 
5 

WT BT2 G;. (4 8) 

The factor Gw i n  the right-hand side of th i s  inequality is actually larger than 
0 

the factor Gm = (J-l)m tha t  should appear there, and Eq. (4.8) therefore does 

not constitute a true lower bound. 
-- -- 

Substituting the second par t  of Eq. (4.2) into Eq. (4.5), we obtain 

P P  

1 5  



where m, and m are integers, 

the aperture A to be rectangular with sides a, and a 

over it 

= [In,, my), and r = (xj, yj) ,  j = 1, 2 .  Taking 

we find after integrating 
Y j 

Y’ 

a term of the sum being SW equal ZWQ whezxiwe~ either of its square-bracketed 

factors is negative 

The inverse [ j  [.]I cease3 $Q exiot when 

YX = hR/Ax 2‘Ex 

Or 

y = hR/A 2a 

that is, when Ax < h K / 2 a x  = 

over a finite area of the rectal@e - R  Q (wxL w 3 
Y 

no longer has an inverse, and the diagonal elements of G cannot be approximated 

by Eq. (4.7). 

Y Y Y’ 
1 1 2 6y’ for then j (U’J vanishes 

5 

The infinite form of 3 
4 AW2aY Y 6x QF A 

T. 
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Sinc-function Sampling 

The analysis is simplest for sinc-function sampling as in Eq. (1.4). From 

Eq. (3.15), 

--y 1 < x < - y  1 (4.11) 2 x 7 2 y  = A  A 

I$, (z) = 0 elsewhere. 

Putting this into Eq. (4.10) we find 

(4.12) 

the square-bracketed expressions again vanishing when their contents are nega- 

tive. Substituting this into Eq. (4 .7) ,  we obtain 

(4.13) 

The relative mean-square error in an unbiased estimate of the radiance Bm at 
I 

point = (mx Ax, rn A ) is now, by Eq. (4.8), Y Y  

with 
bx 6 

@k Y 
GAm = 4(AA/A6) Rn(1 - -) ln (1  - &-) (4.15) 

In Eq. (4.14) E, is the total energy that would be received from the area Aa = 

of the object if it radiated uniformly. The bound is approximately valid 
1 1 

an, 
only when 4~ > 6x and A > - 6 where Y 2 Y' 

(4.16) 

1 7  



are the conventional resolution elements in the x- and y-directions on the 

object plane. 

When the sampling intervals A and A are much greater than the resolution 
X Y 

elements 6x and 6 

becomes approximately 

respectively, the relative mean-square error in Eq. (4.14) Y9 

Em/Bm2 (N/EsI2 ( M I  MA (4.17) 

where MA is the number of sampling rectangles into which the object is divided, 
- -  

= MA E, is the total energy received from the object, and 
ES 

M = Ao/As = MA AA/As (4.18) 

is the number of spatial degrees of freedom in the object field. 

total radiant power BT is proportional t o  the sum 

Since the 

Bm7 m -  - 
which contains Ma terms, we conclude that the relative mean-square error in an 

estimate of BT is bounded by 

- BT)2/BT2 >, @!/E S ) 2  MWT, 
17 in agreement with a previous result, 

(4.19) 

With sinc-function sampling the matrix elements J themselves can be eval- 
P ... 

uated in closed form from Eqs. (4.2) and (4.11). They are 

= A  A J ’  JP 6 A P  
I 

with 

(4.20) 

(4.21) 

and 
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One-Dimensional Object 

The accuracy of our approximation to G" can be most easily assessed numer- 

ically for estimates of the radiance of a one-dimensional object. We consider 

the matrix JI = { I Jk-nl I whose elements are the one-dimensional versions of 
those in Eqs. (4.21), (4.22), which were derived for sinc-function sampling. 

Here, after subscripts x and y are dropped, 

J ' = ( 2 n 2 ) - l  (6/A) [l - (-1)']/p2 P 
(4.23) 

(4.24) 

1 ' = (1 - 6/4A), A > 9, Jo 
1 J ' = ( A / & )  sinc2(pA/6), A < 9. 

Eleven- and fifteen-rowed matrices I IJk-nl I were inverted by a digital 
P 

computer. 

in Fig. 1 as a function of the ratio 6/A; these are the curves marked "11" and 

"15". The curve marked 'w' displays the diagonal elements G;I" of the infinite 

matrix J f m ;  they are given by the one-dimensional form of Eq. (4.15), 

The central--and largest--element of the inverse matrix G' is plotted 

G i m  = 2(A/6) I h ( 1  - 6/28) 1 ,  &/A < 2. (4.25) 

The graph illustrates the extremely rapid increase in the mean-square 

error when an attempt is made to estimate the radiance at points closer than 
1 9 = AR/2a, where a is the width of the aperture. The central element of 5 I - l  

soon reaches astronomical values, rising the faster, the larger the number of 

points at which the radiance samples are unknown. 

the minimum mean-square error of the estimate is insensitive to the number of 

points involved and is close to the value calculated by assuming the number to 

be infinite. 

1 For A < 9, on the other hand, 

The diagonal elements of 2 I - l  decrease from the center to the corners of 

the matrix. The reason for this is that the assumption of a finite number of 
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sample points requires the radiance to be known precisely a t  points outside the 

sampled area. The estimates of Bm fo r  points near the edge are influenced by a 

smaller number of unknown radiance values and can therefore be made more 

accurately. 

A t  large signal-to-noise ra t io  the elements G '  of the inverse matrix ,J!-' 
are nearly proportional t o  the covariances of the errors i n  the estimates 2m and 
A 1 . Bn 
where from Eq. (4.4) 

mn 

For A >=f these are approximately equal t o  the elements GAWn of GIW = I ,J1O0-1, 

G1m P = S j I  (u11-1 expci-ipw) b / 2 n .  (4.26) 

In Table 1 we have l i s ted  the asymptotic correlation coefficients G'"/GhW for . 

several values of 6 / A .  

imately uncorrelated. 

more adjacent elements. 

P 
When A is much larger than 6 ,  the estimates are approx- 

As  A increases, the correlation spreads over more and 

Table 1 

Correlation Coefficient of Radiance Estimates 

6 /  A 

0 

0.5 

1 . 0  

1 .5  

1 . 9  

Nurnber of Intervals, p 

0 1 2 3 4 5 6 7 

1 .0  0.0 0.0 0.0 0.0 0 .0  0.0 0 .0  

1 .0  -0,0582 0.00417 -0.00676 0.00107 -0.00245 0.00048 -0.00126 

1 .0  -0.139 0.0237 -0.0194 0.00658 -0.00720 0.00301 -0.00373 

1 . 0  -0,269 0.0882 -0.0576 0.0307 -0.0242 0.0152 -0.0131 

1 .0  -0.505 0.304 -0.230 0.174 -0.142 0.115 -0.0983 
------------ 
3.0 1 .0  -0.936 0.764 -0.538 0.321 -0.155 0.0556 -0.00117 



The l a s t  l ine  of Table 1 lists the correlation coefficients Gio/Gho obtained 

from the central row of the inverse G' = J' -1 of the 15 x 15 matrix J' - , whose 

elements were calculated from Eq. (4.24) for  & / A  = 3. Adjacent estimates are 

mch more strongly correlated than for &/A < 2. 

ref lects  the fact  that  the two sample points 7 units on each side of center l i e  

a t  the edge of the observed area, where the estimates are influenced by somewhat 

fewer unknown radiance values than for points near the center, 

The small value for  p = 7 
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Indicator-Function Sampling 

When the indicator functions of Eq. (1.3) are used for sampling in one or 

two dimensions, the matrix elements J '  are integrals that cannot be expressed in 

closed form. The Fourier transform of the central indicator function is 
P - 

KO ($1 = A, sinc(x/Yx) sine (Y/Y 1 3 (4.27) 
Y 

with yx = AR/Ax, yy = AR/A 

of the central diagonal elements of J '- l  ," are 

For a one-dimensional object the approximate values 
Y '  

00 

corresponding to Eq. (4.25). This has been plotted as a dashed curve in Fig. 1; 

numerical integration was required. 
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V. Fourier Sampling 

The minimum mean-square error of an unbiased estimate of any of the coeffi- 

cients Bm in the expansion of the object radiance, Eq. (l.Z),is given by Eqs. 

(3.3) and (3 .9) ,  
- 

where Gm is a diagonal element of the matrix G 

turn given by Eq. (3.10). The matrix inversion 

gonal matrix, and it is natural to look for the 

The matrix J - will be diagonal if the orthogonal 
of the integral equation 

-..4 

(5 1) 

= J - l .  The elements of J are in 

would be simple if J - were a dia- 
kind of sampling for which it is. 

functions Frn(g) are eigenfunctions - 

whose kernel I $(u - ?)I2 is defined by Eq. (3.11). 

The object whose radiance is to be estimated is assumed to occupy a finite 

region 0 of the object plane. 

the width of the kernel I 
area of the aperture. 

for a rectangular object, sinusoids as in Eq. (1.6); and the eigenvalues Am, 

which will be the diagonal elements of J, - are the values of the Fourier trans- 

form of the kernel I $(q) I 
tions by 2+/bx and Z.rr/b respectively, where b and b are the length and 

breadth of the object. 

Its diameter will in general be much larger than 

(y) 1 2 ,  which is of the order of , A being the 
A s  discussed previously," the eigenfunctions are then, 

- 

evaluated at points separated in the x- and y-direc- 

Y' X Y 
Thus we are led to Fourier sampling. 

The Fourier transform 

the self-convolution of the 

of the kernel I $ (v) I 
indicator function IA(r) of the aperture. 

is, by the convolution theorem, 

For a 
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rectangular aperture a x x  a th i s  is 
Y' 

J -00 J -00 

I A ( ~ )  IA(k-l liw - r )  d2r  - = 

(XFVA)~ [ax - 1k-l bXl I [ay - 1k-l R U ~ ~  I ,  

luxl < kax/R, I < ka Y /R, (5.3) 

x (kay/R). Hence the eigen- and ~ ( g )  = 0 f o r  w outside the rectangle (kax/R) 

values of Eq. (5.2) are approximately 

Y 

x = (XR)2 [l - Imx] ",/bx] [l - hyl 6y/by]/A, m 
(5 4) 

with [XI = 0 fo r  x < 0.  

The minimum relative mean-square error of an unbiased estimate of the 

coefficient f 

is 

B = (b b ) -  B(x, y) exp 2~ i ( rn ,  xbX-l + m yb - l )  dxdy (5.5) m - X Y  Y Y  

where M = AA /(XR)2 = A /A is the number of spat ia l  degrees of freedom i n  the 
0 0 6  

object 0. (Ao = b b = the area of the object.) We have referred the mean- 
X Y  

square errors t o  the value of the central coefficient Bo = E$,/Ao. For g = ,O 

Eq. (5.6) agrees with Eq. (4.19). 

As I mxI and I myl increase, so does the mininaun relative mean-square error  

E /B . 
exact eigenvalues A m  do not go t o  zero at  that point, although they become 

I t  appears t o  become inf in i te  for  1 mx] = bx/6x or  I in I = b 6 but 
m O  Y r /  Y' 

- 

the 
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extremely small for  lmxl > bx/6x, Im I > b / 6  

function F,(LI) i n  Eq. (1.6) w i l l  bear a significantly large coefficient Bm when 

the object contains many de ta i l s  whose widths in  the x- and y-directions are of 

The complex exponential sampling 
Y Y Y’ 

- - 

the order of bx/mx and b /m 

to a very large error when the detai ls  have widths smaller than 6x = W a x  and 

6 = ?,way. 

respectively. This coefficient w i l l  be subject 
Y Y’ 

Y 
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Figure Caption 

Fig. 1. 

of the sample value of the radiance function of the object plane. Solid curves: 

sinc-function sampling; dashed curve: indicator-function sampling. Curves are 

labeled with the number of sample points. 

a = width of aperture, A = wavelength, R = distance to object plane. 

Factor G; in lower bound to mean-square error of an unbiased estimate 

6 = AR/a, A = sampling interval, 
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