NASA CONTRACTOR |

NASA CR-1450

REPORT

MINIMUM FUEL ATTITUDE CONTROL

OF A NONLINEAR SATELLITE SYSTEM
WITH BOUNDED CONTROL BY A METHOD
BASED ON LINEAR PROGRAMMING

by Gary D. Wolske and I. Fliigge-Lotz

Prepared by
STANFORD UNIVERSITY

Stanford, Calif.
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION <« WASHINGTON, D. C.

|\

KN ‘94v) AYvyE HogL

LOAX COPY: RETURN TO
AFWL (WLOL)
KIRTLAND AFB, N MEX

o OCTOBER 1969



NASA CR-1450
TECH LIBRARY KAFB, NM

AR

00LOL35

MINIMUM FUEL ATTITUDE CONTROL OF A NONLINEAR SATELLITE
SYSTEM WITH BOUNDED CONTROL BY A METHOD

BASED ON LINEAR PROGRAMMING

By Gary D. Wolske and I. Fliigge-Lotz

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Issued by Originator as Report SUDAAR No. 374

Prepared under Grant No. NGR-05-020-007 by
STANFORD UNIVERSITY
Stanford, Calif.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — Price $3.00



]



ACKNOWLEDGMENT

We would like to express our appreclation to Professors A. E.
Bryson, Jr., Gene F. Franklin, and John V. Breakwell for the discussions
with them and for their helpful suggestions. Professor Bryson was
especially helpful during the illness of one of the authors.

The financial support pro&ided for by the National Aeronautics
and Space Administration under Research Grant NGR-05-020-007

is very much appreciated.

iii






Ll

ABSTRACT

The problem treated here is the computation of fuel optimal controls
for the large angle attitude motions of a satellite system in which the
control is obtained by three sets of gas jets with bounded thrusts, each
generating torques about one of -the principal'axes of inertia. Using
a result from optimal control theory, an algorithm is developed that
iteratively improves on an initial guess {nominal) for the control history
which does not meet terminal constraints and/or does not minimize the
fuel cost. In using the algorithm, which is based on linear programming,
it is necessary to express the variation of the fuel cost and variations
of the components of the terminal state constraint vector as linear func-
tions of variations in the control.

The algorithm is tested on two sets of satellite differential
equations. In one case, all dynamical effects are considered. 1In the
othei case, because control torque bounds are large enough, it is possible
to neglect gravity gradient torque effects and orbital motion effects.

A method to recursively approach minimum time control solutions by
using this minimum fuel algorithm is described and illustrated. Numerical
results are compared with the results of others who have worked identical

examples.
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I. INTRODUCTION

A, OUTLINE AND MOL+VATION FOR THE PROBLEM

This report gives a method by which a satellite or general system
may be controlled such that a minimum amount of fuel is consumed. The
nonlinear satellite equations of motion are used in this report. The
satellite is assumed to have an arbitrary initial orientation and tumble
rate. The solution consists of a scheme by which an active torque device
may be actuated to position the satellite to another given orientation
and tumble rate at a given time in the future. The active torque device
is three sets of cold gas jets located orthogonally on the spacecraft.
The magnitude of torque generated by these devices is directly propor-
tional to the time rate of fuel consumption. The "minimum fuel problem"
consists of accomplishing the orientation mission while expending a
minimum amount of fuel. The satellite to be considered is in elliptic
orbit about the earth, but this assumption does not critically influence
the solution of the problem. The specific orbit used only modifies the
dynamical equations of the system.

There are, however, some assumptions and restrictions to be imposed
on the problem. The first of these restrictions concerns the control
torque. The torque levels are bounded in magnitude. Since no device can
generate arbitrarily large torques, this assumption is reasonable. How-
ever, by bounding the torque, it is possible to request a mission which
is impossible to accomplish in the allowed time. If such is the case, one
must either equip the satellite with larger torgue generating gas Jjets
or accept the longer time necessary to accomplish the mission with the
smaller jets.

The next assumption is that the control torque enters the dynamics
equations linearly. What this means is more specifically defined in
Chapter ITI, but it is not a very severe restriction because for many
space vehicle systems one prefers to design controls which enter in the
dynamics equations linearly. We shall arbitrarily limit the total
rotation of the satellite in seeking a new orientation to less than 180

degrees. This execludes the possibility of orienting the satellite in a



position diametrically opposite from the original position. Howevqy, if
one did desire to turn the satellite 180 degrees, it could be accomplished
in two missions. The first mission would spin the satellite Bl degrees

(o < Bys < 180) and the second mission would spin the satellite 180—61
degrees. Another approach is to just let the satellite drift a little

and then start the control from there. The reason for limiting the

spin to 180 degrees has to do with ambiguities which arise in the

dynamics equations. This is discussed more fully in Chapter II in the
section on indifference regions.

In the event of an elliptical orbit, another control scheme must be
used for maintaining the position once the new orientation has been
reached.

Although the work on optimization problems is well Jjustified by
what is learned in studying them, there are important practical contri-
butions to be gained from optimization. Even if the optimal control
scheme is not used, it provides valuable insight into just how good
other more practical control schemes are. Since pioneering work in the
theory of optimal control and the advent of Breakwell's computational
technique using large digital computers for optimization calculations,
optimization has evolved to the point of becoming practical to implement
in the actual control of some systems. This report will point to the
possibility of applying the following algorithm of optimization in

actually controlling a satellite.

B. RESUME OF RELATED WORK

In this section will be discussed briefly some other reports which
are related in either the problem statement or method of solution to
the problem in this report. There are numerous articles Whlch deal only
with low order, linear systems and no mention of these artlcles will be
made.

The motivation for this report comes principally from work done in
1966 by K. A. Hales and I. Fliigge-Lotz in reference 1. Their project
was to compute minimum fuel controls for the same satellite acquisition

control system as in this report. The approach used was an iterative



procedure of "steepest descent™. A nominal control was improved each
iteration by minimizing the integral over the time interval [to,tf] of
a weighted sum of the squares of the variations of the control components.
This minimization was subject to the constraint of the dynamics of the
system. This constraint was imposed on the minimization by the Lagrange
Multiplier Pechnique. The cost is introduced as an additional state
variable and is then treated as just another terminal constraint. The
minimum fuel control which is arrived at by this technique does satisfy
the terminal constraints on the state and gives a cost which is consider-
ably lower than the cost associated with a good "classical feedback
design. The method has the advantage of being quite insensitive to the
initial arbitrary choice of control. It has the disadvantages of often
requiring many iterations to converge to a solution and of seldom con-
verging to a true minimum fuel control. The reason why the solution
seldom converges to a true minimum is connected with the idea of introduc-
ing the cost as another state. In doing this, Hales not only had to
choose the final state to which the solution must converge, but also the
final cost. Since one does not know the minimum cost apriori, chances
of randomly picking the true minimum cost as the cost to which the
solution should converge are quite remote. Hales did use a techique
of picking this cost, though, which normally gave a solution of control
resulting in a cost only 10 to 15 per cent above the true optimal cost.

In 1962, L. A. zZadeh and B. H. Whalen (reference 2) proposed a
method for solving linear discrete optimrl control problems using linear
programming. They proposed solutions for optimization with respect to
either time or fuel consumption. In both cases, the linearity of the
system is an important assumption, since this results in one of the sets
of linear programming constraint equations. For continuous time plants,
the time interval must be discretized. Discretizing usually necessitates
solving a linear programming problem of many variables, particularly if
the system is of high order.

Linear programming has also been applied to minimax problems. In
reference 3, G. Lack and M. Enns maximize the closest approach of a
trajectory to a "danger region" in state space. This is directly

applicable to the area of nuclear reactors. The minimax problem is
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converted to a linear programming problem by defining a dummy variable
which is less than the minimum of the distance from the trajectory to the
danger region in state space. The problem 1s to then maximize this
variable while obeying the dynamics edquations and terminal constraints.
In reference 4, H. C. Torng works the time optimal problem for a
discrete linear system. His approach varies from that used by Zadeh
and Whalen in the following way. Both reports are concerned with bounded
control magnitudes. Torng chooses a certain time interval and calculates
to see if there is a feasible control for this time interval such that
the control magnitude remains under a given upper bound. Initially
this is usually not the case for the chosen time interval. The time
interval is then increased and the procedure is repeated until a feasible
solution for the control is found for a new time interval, [to,t ].
This smallest time interval for which a feasible solution for the control
exists is then the minimum time and the feasible control is a minimum
time control for the problem. Zadeh's and Whalen's approach also involves
an iterative technique. However, they minimize the largest absolute
value which the control must take such that a control is feasible. If
at any instant in the time interval, the control magnitude must be
larger than the given upper bound on the control magnitude, then a longer
time interval must be chosen. Repeating the procedure for longer time
intervals should eventually lead to a control solution which remains
within specified magnitude bounds.
In reference 5, M. O'Hagen uses a gradient projection method to
compute optimal trajectories for both linear and nonlinear systems.
For nonlinear systems, a technique is used in which optimization for
the nonlinesr system is done by optimizing recursively for a linear,
time varying system. Although the method is quite general in the range
of problems it can solve, convergence difficulties were encountered for
some nonlinear problems. Furthermore, because the gradient of the cost
functional is required, no work was done for problems in which the cost
functional was the time intergral of the absolute value of the control.
The gradient projection method worked best for cost functionals which

are quadratic forms in the state and/or control.



T. E. Bullock and G. F. Franklin treat the computation of optimal
controls by a second-order feedback method in reference 6. As opposed
to ordinary gradient methods, they minimize the cost (augmented with
the state equations by the Lagrange Multiplier Technique) by minimizing
its expansion to second-order terms in the variation of the control. By
linearizing a given nonlinear system about a nominal trajectory, the
minimization process to find the variation of the control can be handled
by solving a linear quadratic loss problem, Many systems may be solved
using this technique and convergence to an optimal is usually rapid.
However, the method is not suitable for minimizing the fuel from cold gas
jets. In arder for the method to work, the first and second partial
derivatives of the integrand of the cost functional with respect to the
control and state must exist. 1In the principal problems considered in
this report, these derivatives do not exist.

In reference 7, Dyer and McReynolds develop an algorithm of com-
puting optimal controls by extending the successive sweep method. The
dynamic programming equation is expanded to second order and strong
variations in control are considered to Jjoin solutions of the return
function on either side of the discontinuity of the control. From
necessary conditions, one arrives at an algorithm for changing switching
times of the control. The method treats tegminal constraints on the
state with penalty functions. The control of the satellite system of
this and Hales' report is solved in their report. The method, however,
is very sensitive to the initial guess for the control history. In fact,
when this extended successive sweep method was performed by Dyer and
McReynolds using for their nominal the control which Hales and Fligge-
Lotz had found as optimal (with cost approximately 10 per cent above
true optimal), the solution did not converge. The report does include

sufficiency conditions for checking optimal controls.

C. :CONTRIBUTIONS

An iterative technique incorporating linear programming is developed
such thét high-order nonlinear systems with magnitude bounded controls

entering the state equations linearly and entering the performance index



linearly in the absolute value of the control can be optimized effectively.

The technique, which gives (locally) optimal open-loop controls and
meets terminal constraints "exactly", is shown to be relatively insensi-
tive to the nominal control history and is shown to converge rapidly
through tests performed on a satellite system described by Euler Parameters.
When compard with identical examples to those worked by Hales and
Fligge-Lotz, the costs obtained by this method are between 10 and 15 per
cent lower. While both methods take approximately 20 seconds per itera-
tion on a modern computer, Hales' method takes 20 or more iterations to
give a solution while the method of this report takes only about five
iterations. Although O'Hagen's gradient projection method can optimize
nonlinear dynamical systems with respect to several different performance
indices, it is not capable of solving the minimum fuel problem. The
second order method of Dyer and McReynolds is much more sensitive to the
choice of the initial control history than is the method of this report.
Because certain necessary partial derivatives do not exist, the second-
order method of Bullock and Franklin can not be used when fuel cost is
the performance index.

Computer sub-programs to do linear programming are quite standard
and readily avallable, making it easy to implement the algorithm of
this report.

An approach to solving time optimal problems is also described in

Chapter 6.



IT. DEVELOPMENT OF THE OPTIMAL CONTROL

In this chapter, the optimal control of a general non-linear, time-
varying system will be discussed. Although this report is concerned with
optimizing such a system with respect to the fuel consumed by a control
consisting of gas Jjets, initially the discussion will be more general.

Of the entire class of piecewise continuous functions of time which
constitute acceptable candidates for an optimal fuel control, all but
those satisfying a rather restrictive form as a function of time will be
eliminated. This is done by applying a criterion developed by L. S.
Pontryagin which imposes a necessary condition on the form which an
optimal solution may have. The chapter ends with a discussion of the
construction of the control and the possibilities of a "singular" control

and "indifference" regions in the state space.

A, PROBLEM FORMULATION AND THE REGULAR SOLUTION

The dynamical system satisfies a set of differential equations

denoted as:

= - 2(x,u,t) (2-1)
dt
where X is an n- dimensional vector referred to as the "state'. The

independent (scalar) variable is time, t. The p- dimensional vector,
u, is the control and is the variable for which a solution is to be

found. Each component of u is constrained in magnitude by inequality 2-2.
lu,(8) | = Uy U, >0, F1,2,...p (2-2)
The time, t, is constrained to satisfy

to < t< tf

where to and tf are given. The state at t=tO is given as
x(to)=xo (2-3)

The state at t=tf is constrained to satisfy the following given r-

7



dimensional vector relationship:
y [x(5,)] = 0 (2-1)

That i1s, there are r relationships between the n components of the
state at the final time. The problem is to find u(t) for all
t(to < t < tf) such that all of the above relationships are satisfied
while at the same time minimizing the scalar J, where J is defined as
tf
J=f £ (xu,t)dt (2-5)

t
o]

The technique of Lagrange can be used to minimize J. Minimizing

J subject to equation 2-1 is equilvalent to minimizing Jn’ where

t
f T .
5= e 42T k- 2] as (2-6)
t
o
This follows because the second term of equation 2-6 is identically
zero from equation 2-1. The first variation of Jrl with respect to small
variations in u must be zero is the control under consideration is to be
a candidate for minimizing Jn. Pontryagin has shown that this necessary
condition on the first variation is equivalent to maximizing a function

commonly referred to as the Hamiltonian and defined as

H= AT(t)E(E)E}tJ) - fo(_}_(JE;t)
n (2-7)
= z A (B)E, (x,m,0) - £ (x,0,t)
i=1

Maximization of H is with respect to u. The lT(t) introduced in
equations 2-6 and 2-7 is the transpose of an n- dimensional vector
whose components are referred to as adjoint variables, sensitivity
variables, or Lagrange Multipliers. Components of the adjoint vector

satisfy:



li-(t) =-0H, i=1,2,...n (2-8)
ox,
In this report, the control vector, u, will be assumed to enter the

state equations linearly as in equation 2-9.

P
fi(ﬁ,g,t) = gi(_}_C,‘b) + z cij(g,t)uj(t) i=1,2,...n (2-9)
J=1
It will be assumed from now on that the p- dimensional control vector
has 3 components. The performance index to be minimized is total fuel
used by the gas jets. The system (satellite) will have three sets of
gas Jjets---each set applying torque about one of the principal axes

of inertia. Therefore, the fuel consumption is given as:

te te 3
J =f fO(E,E,t)dt=f Z dj|ujldt (2-10)
t, t . 1

Substituting the specific form of the state equations and cost

functional, equations 2-9 and 2-10, into equation 2-7 gives

n 3 3
H=; OIENERD 42 Cy5(x,8)u(8)] Z a;hu (o)} (2-11)
i=1 J=1 =1
Expanding H in a form more apprépriate for applying the Pontryagin
Principle leads to
n 3 3
H= A (t C..(x,t)u,(t) - d.|u.| + terms not involv-
Y n®) o) ) agh ] ot
i=1 J=1 J=1 ing u
Maximizing H with respect to each control component gives
n
U optimal = arﬁ max l }j li(t)Cij(g,t) uj(t)
J i=l (continued)

9



- djluj(t)l ‘ j=1,2,3 ~ (2-13)

Because the uj(t) are bounded by inequality 2-2, the form of the

control which maximizes H is

n

PIENOLNERY n
uj(t) = Uj i=]r; = Ujsgn {Z }\i(t)cij(z,t)}
i=1
BYENGLIREROT
i=1
for lz }\i(t)cij(i,t), 2 d, (2_'14)
i=1
uj(t) =0 for | }‘i(t)cij(f’t)l <d, J=1,2,3
i=1

This function for the components of u is referred to as a ”coa§t function"
and gives the control as a series of pulses with intervals of zero control
between the pulses. (See Fig. 2-1). The intervals of zero control must
be non-zero in duration between pulses of opposite polarity. This is
clear from equation 2-1L4 and noting that the adjoint variables are
continuous functions in time.

From expression 2-14 it is seen that the optimal solution would
be trivial if the components of A(t) were known. Unfortunately, A(t)
must be found by the simultaneous solution of the n system differential
equations (eqn. 2-1) and the n adjoint differential equations (egn. 2-8).
This is difficult because the boundary conditions for the 2n differential

equations are given at two different times, to and t (More about this

two point boundary value is given in Chapter 2 of regerence 19.) There
have been some attempts to relate the terminal constraints (eqn. 2-4) to
the solution of the adjoint equations at t = to. This is essentially an
attempt to convert the two point boundary value problem to an initial

condition problem. Simple methods for determining the adjoint variables

10
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Figure 2-1

at t = to as a function of the state constraints at t = t, (ean. 2-k)
do not in general exist.
The important point derived from the Pontryagin Principle and to

be used in this report is the form of equation 2-14. That is, an optimal
control for the problem has each of its components in the form of a

"ecoast function", (figure 2-1). By limiting the search for optimal control
solutions to this narrow class of functions the problem becomes very
much easier, since it is reduced to a minimization over a finite dimen-

sional parameter space rather than over a function space.

B. SINGULAR CONTROL

Although it was stated in the last section that a necessary
condition in order foi1 a given control to be a fu:l optimal control was
that it be in the form of a "coast" function, there are exceptions to
this. These exceptions are classified as singular controls. Mathemati-

cally, this means that under certain circumstances, the Hamiltonian has

11



a maximized value which is independent of the control for certain values
of the control over a certain time. In particular, for the problem
being considered here, it is seen from equation 2-13 (and remembering

that dJ. >0, j= 1,2,3) that if

I
) n()e, ) =4y G=1,2, 00

i=1 -

Il
o

then H is maximized for all U where (o < uj(t) < Uj’ j=1,2, or 3.

Likewise, if

n

Z )\i(t)Cij(x,t) = -dj g=1,2, or 3

i=1 _'

then the H is maximized for all uj(t) where —Uj < uJ_(t) < 0,
J=1,2, or 3.

Johnson and Gibson (reference T7) have investigated these problems.
As their work rather pessimistically concludes, singular problems are
best treated very specifically, since few generalizations arc available
even for the simple linear, time-invariant plants. This study will not
treat singular controls since, for the vehicles being considered, the
control devices (such as gas jets) are either completely on or completely

off and, hence, have no provisions to generate intermediate control levels.

C. CONSTRUCTION OF THE CONTROL

The most desirable solution of the problem is to be able to give it

in feedback form. That is, to find functions of the state variables,
* .
uj(_}f)t); J=1,2,3

such that

*
uj(t) = uj(z,t) J 1,2,3

optimal

12



would mean that the instantaneous control to apply would be known from
the instantaneous state. This is presently impossible except in very
elementary problems. Thecre are some techniques which attempt to give a
feedback form of solution to the optimal control problem by choosing a
form of the feedback function, uj(z,t), with several free parameters.
These free parameters are chosen in a manner to optimize the system. In
classical frequency domain analysis, this would essential.y mean picking
a filter of certain order and then adjusting the "poles and zeros" to
optimize the system. The method is really just another sub-optimal
scheme, since it depends on a somewhat arbitrary choice of the filter
dynamics.

Here we shall give only the "open-loop” control program, i.e.
for a given set of initial and terminal conditions on the state, a
given initial and terminal time, and a given set of control bounds, a
time function for each control variable will be found which meets all
constraints and minimizes the cost in a "local" sense. This optimal
set of time functions for the control will be arrived at by an iterative
procedure in which an initial guess (nominal) for the control, which
neither meets the terminal state constraints nor minimizes the cost
functional, evolves to the optimal solution. As mentioned above the
solution will minimize the cost ™locally"™, as opposed to "globally".
This is because the algorithm improves upon the arbitrary nominal and
will converge to a local minimum. The whole space of possible solutions
is not searched. One can be reasonably certain to obtain the global
optimal solution by repeating the problem for several radically differ-
ent "nominal controls and observing that they do converge to the same

optimal, but no claim of global results is made.

D. REGIONS OF INDIFFERENCE 1IN STATE SPACE

In certain problems, such as a spinning satellite, a desired
physical terminal constraint may have several mathematical equivalents.
When the terminal constraint to be met is that all motion be stopped and
a certain orientation be met at + = tf, it may make no physical differ-

ence whether one adds 2xm, m=+ 1, + 2,... to the state variables

13



specifying the orientation. Mathematically, however, whether one

T
constraint may make considerable difference in the solution to the

considers z(tf) = X, as the constraint or E(tf) = x_ + 2qrm as the

control problem. There 1s no investigation of this situation in this
report. In order to eliminate the possibility of this difficulty,
initial conditions will be chosen small enough. The initial conditions

will, however, be much too large to allow one to get meaningful answers

by linearizing the dynamical equations.
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ITI. SENSITIVITY RELATIONS FOR THE TERMINAL CONSTRAINTS

In chapter II, it was noted that there are a set of terminal con-
straints (eqn. 2-4) which must be satisfied by the state variables at
t = tf. In this chapter, relations will be derived which show how
variations in the control affect those terminal constraints.

As was previously derived, the control will be in the form of
positive and negative effort pulses with periods of zero control between
them. Because the control is structured as pulses, it can be determined
for each instant of time, t, by just declaring the value of a finite
number of "switching times™, i.e. values which give the time at which
the control changes from "on" to "off" or vice versa. There will be
N (an even number) switching times, which means there are N/2 pulses
of control effort. The switching times have values +t = Ti’ i=1,2,...N,

with Ti < T'+l' This is illustrated in Figure 3-1.
i

u(t)

N-1 N ¢ t—

Figure 3-1. ©Notation For Switching Times

For this chapter, we shall treat the control vector as having only
one component. This is done to make matters simpler to express and
simpler to understand.

In determining how small variations in control affect the terminal

constraints, the solution to an equivalent problem will suffice: how

i5



small variations in the switching times affect terminal state conditions.
The approach used here is to find how a small variation in a single
arbitrary switching time affects the terminal state. Because variations
in switching times are to be small, the "Principle of Superposition",
applies approximately. Hence, the net variation in terminal states due to
vgriations in all the switching times is approximately the sume of the
individual variations in the states caused by the variations in each switch-
ing time.

To find the approximate variations in the state at t = t due to a

i

small change in an arbitrary switching time, Ti’ consider the two state

trajectories shown in Figure 3-2.

Figure 3-2. Variation in State Due to Strong
Variation in Control

Curve A is generated by the system as the result of a control with
switching time at t = Ti' Curve B is identical to Curve A with the
exception that the switching time originally at t = Ti now occurs at
t = Ti + STi. By fitting linear approximations to the trajectories

A and B, it is seen that

Bx(Ty +8T,) = x5 - X, m £(x,u(T]), 1,087, - £(x,u(T]),T,)8r,  (3-1)

E(E,QKTE),Ti) and E(E,QKT:),Ti) are the right side of equation 2-1

evaluated immediately before and after the switech at t = Ti’ respectively.
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Xp and .EB is a notation for the state along trajectories A and B
respectively. Since for small 6Ti the left side of equation 3-1

can be written approximately as Sx(Ti) one obtains

8x(T,) m (£7(T,) - £7(z,))8T, (5-2)

Notation for i(E’EKT?)’Ti) has been reduced to fi(Ti).
The variation in the state at the final time, bz(tf), is related

to the variation in the state at t = Ti,SE(Ti), by equation 3-3.
= B -
Sf(tf) o (t,,T,) x(T,) (3-3)
@(tf,Ti) is called the "transition matrix" or the "fundamental matrix".

It is an n x n matrix which satisfies the following vector differential

equation and boundary equation.

é(tf,t) —¢(tf,t)F(t)

(3-1)

¢(tf,tf) I

F(t) is a matrix of the various partial derivatives of f£(x,u,t) with
respect to x. I 1s the identity matrix. More about equation 3-4
will be found in Chapter 5, where it will be needed as part of the
solution to the satellite problem. More material on transition matrices
is available in reference [11].
Substitution of equation 3-2 into equation 3-3 gives:
ox(t,) = ¢(t,,T,) {£7(T,) - £7(T)} BT, (3-5)
When there is mecre than one switching time which has a change
associated with it, the change in the final state is the composite
effect of the changes in all of the switching times. That is, if each
switching time, Ti’ i=1,2,...N undergoes a variation, 6Ti, i=1,2,...0

then Sﬁ(tf) is formed as

N
ox(tg) =) 8(6,T)

i=1

1

£7(z,) - £+(Ti)] | BT, (3-6)
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This is merely a summation of terms appearing in equatipn 3-5.

For the trajectories given in Figure 3-2, it is not necessarily
true that i[z(tf)] (ean. 2-4) is equal zero. For each of the trajector-
ies, we will subscript i[z(tf)] to indicate on which trajectory it is

evaluated at t = tf. Then, by definition,

oylx(t,)] = wlx(e,) 1y - wlx(eo) ], (3-7)
To a first order approximation,
Ylx(ta) g - wlx(.)]) = ¥, [x(6.) 1ox(t,) (3-8)

where wx[x(tf)] is an r x n matrix of partial derivatives. In parti-

cular, the element in the i-E}—1 row and jEll column of wx is awi

ox .

(evaluated along trajectory A). From equation 3-6, J
3-7, and 3-8 we determine by appropriate substitution that the variation

in ¥ at t=tg, 5§[§(tf)], is given as in equation 3-9.

N
oulx(5)] = ¥, [x(s)1| ) ole,m))

£7(T,) - £+(Ti)} or. | (3-9)
i=1

If the specific form of the state equations, equation 2-9, is
substituted in equation 3-9, the expression for Si[§(tf)] is modified

to

N
oulx(t,)] = ¥ lx(e )1 | )

—

i=1

- E+(Ti)> ] STi

2(e,,m,) | Clem)(n (T

(3-10)

C(x,t) is the n x p dimension matrix whose components are the
Cij(i’t) of equation 2-9.

Expression 3-10 is rather long and contains notation which, though
necessary, could induce the reader to miss an important point. Therefore,
equation 3-10 will be rewritten using coefficients aji’ where aji

is the jEE element in the vector which is formed as the product of the
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matrices and vectors in equation 3-10, Specifically,

aji = the jEE element of the vector

‘ﬂrx[z(tf)w(tf,Ti) c(x(T,),T,) [ u (T,) - u+(Ti)” (3-11)

Equation 3-10 can be'expanded to scalar form to obtain

N
sij[x(tf)] =7} a4y 8T,  J = 1,2,...r (3-12)
i=1

In summary, one sees from equation 3-12 that the variation in the
h
jE— component of the terminal constraint, Si[i(tf)]: due to small
variations in all of the switching times in Figure 3-1 is just a linear

combination of the variations in the switching times.
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IV. AN ITERATIVE TECHNIQUE OF IMPROVING THE
CONTROL SOLUTION BASED ON LINEAR PROGRAMMING

In chapter II, it was mentioned that the optimal solution for the
control would evolve from a nominal (guess) for the control which neither
satisfied the terminal state requirement nor minimized the cost functional.
In this chapter, the details for this iterative technique will be developed.
The results of Chapter III will be used as an integral part of the follow-
ing discussion.

In Figure 4-1, a typical control history for all three components of
the control vector is shown. As in Chapter ITII, there are still N
(even number) switching times, leading to N/2 pulses divided arbitrarily
between the three control components, with Nl/2 (Ne-Nl)/E, and
and (N-NE)/E pulses associated with ul(t), uy(t) and u,(t) respectively.
The initial pulse assoclatea with each control component may be either
positive or negative. The basic configuration of Figure 4-1 will be used

for the control throughout the remainder of this report.

U
1
T T
U']_(t) : T3 Tl{_ t s s e s s s e s . Nl-l Nll
T T : |
t, 1 2 ) ty —
Uy
T
ug(t) ' Nl+5 |
. T T T T £
ty TN+l TN 42 . N,-1 N, f t—a
Us
TN +l N ) ) ) ﬂ
)
u3(t) : | I e
s U Ty +3 Ty-1 Ty tp t—
Ty 42

Figure 4-1. Configuration For 3- Component
Control
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A. THE FUEL COST

In this section the cost, J, and the variation of the cost,
8J, will be written in a form appropriate to be used with linear
programming.

From the second chapter, one recalls that the fuel consumption was

given as
tf
1= [ (@l |+ aghyl + aghehas (4-1)
t
&)

This cost in fuel, J, can be expressed as a summation over the switch-

ing times as in equation L-2.
2 2
N,/ v/

I= }: 4,0p (Tpy = Tps ) +j{: AU (Tpy -~ Tpy_y)

i=1 i=Nl/2+l

N/2 (k-2)
+ EZ AgU5(Tp; = Tpy )

i=N2/2+l

Equation L4-2 follows from expression L-1 easily if one refers to
Figure 4-1 and observes that the integrand is constant between switching
times.

The next point to consider is the variation, ©®J, in the fuel cost.
FProm equation 4-2, the variation in fuel, &J, can be seen to be a sum

of the variations in switching times STi, i=1,2,...8

2 2
n/ N,/
dJ = }: )0, (8T, - 8T,y 4) + }: AU, (8T, - BTy; ;)
i=1 i=Nl/2+l
(4-3)
+ 8T05-1)




Geometrically, this ié represented in Figure 4-2, where the area

(proportional to fuel) under the original pulse is Uj(TEi_T2i l) and
is represented by vertical lines. The area under the new pulse (after
. £ . . , \ _
varying the switching times) is Uj (T2i+5T2i) (TEi-l+6TEi-1)
and is represented by horizontal lines.
U (t
5(®)
U,
|
Toji1 Toi-1%Tpi Toy Tog*Oloy  p—yp
Figure 4-2. Variation in Fuel Due to Variations in
Switching Times
Hence the change in area (fuel), SAarea’ is the difference between the
areas and is given as
= ol -9 bl
6Aarea Uj( TQi T2i-l) ( )

Equation 4-3 is made of the terms of equation L-L, but weighted with
dl’ d2 or d3'

Equation 4-3 is the main result of this section, It gives the
variation in the fuel consumption as a linear combination in the switch-
ing times.

The approach to finding the optimal control is to lower the cost

J, (ean. 4-2) in a step by step fashion. This can be done by minimizing
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the variation, ©®J, of equation 4.3, However, one does not want to
indiscriminately minimize ®J. Minimization of &J without constraints
on the independent variables would often be meaningless because solutions
for the STi, i=1,2,...N and ©®J would be unbounded. Therefore,

several constraints will now be imposed.

B. FINAL VALUE CONSTRAINTS

The first constraint has to do with the variations in the states at
t=tf which were developed in the last chapter. Equation 3-12 is
rewritten here (in expanded form) as equation 4-5 so that it can be put

in proper context with the solution to the optimal control problem.

Sq;l allSTl + a126T2 + ...alNZSTN

. (4-5)

oy

r

I

arlBTl + arESTE + ...arNBTN

If Bwl,...ﬁwr are specified, then variations of STi, i=l...N are

limited so that equation 4-5 is satisfied.

C. LINEARITY CONSTRAINT

The next constraint in the problem solution is called the linearity
constraint. The validity of equation L4-5 depends on the variations of the
switching times, ®T,, i=1,2,...N being 'small. For equation L4-5 to be
strictly true, the BTi should be infintesimally small. This follows
beeause the coefficients of BTi, il.e. aji’ contain terms from the trans-
ition matrix which involved a linearization in equation 3-4. Egquation
3-2 and its inherent linearization is another reason which invalidates
equation 4-5 for large 8Ti.

In this report, the STi, i=l...N are limited to remain small by the

simple magnitude inequality on STi as given in inequality L-6.

|8Ti| <@, @ >0 i=l...N (4-6)

Mathematically, inequality 4-7 is equvalent to k-6, but simplifies
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matters computationally.

o7, < o,
11 @ >0, i=l...N - (k-7)

o7, 2 -,
i i
The 2N ‘inequalities of 4-T7 constitute what is referred to at the

beginning of this section as the linearity constraint.

D. SWITCHING SEQUENCE CONSTRAINT

If, in the course of varying the switching times of the controcl in

Figure 4-1, one were to move T such that Tl > T,, the result would

s »
be ambiguous. In this section in switching time seqﬁences, the mathemati-
cal constraints which prevent such situations from occuring will be
developed.

By referring to Figure 4-1 and applying the idea of the last para-

graph, inequality 4-8 follows.

T, ST, 172,5,4,...N

i-1 1
Tj—l < Tj J=N:_L+2’ Nl+5- . .N2 (Ll-—8)
Tk-l < Tk 1<:==1\T2 + 2, N, + 3.0

Furthermore, one does not want any switching time to be shifted outside of
the time interval of the problem, [to,tf]. This is formalized by
inequality 4-9.

T >t
+1
Nl l¢]

T (4-9)

Ngﬂ.zto

T <
N tp

2L




A1l of the remaining switching times are. implicitly constrained to be
in the interval of time, [to,tf]. This can be reasoned by applying
inequality L4-8 in conjunction with 4-9.

The next step is to coﬁvert relations 4-8 and }-9 into relations
among the variations of the switching times, STi. ?To accomplish this,
additional notation is introduced. Imagine that the switching times,

Ti’ i=l...N are assigned values Ti , 1=1,2,...N and that the system
old
equations, 2-1, are then solved for the state, E(t)’ using the control

resulting from these switching times. After this computation, the

switching times may later be shifted to new values, called Ti 5
new

i=1l...N. The amount that each switching time is varied is 6Ti, i=1...N.
Equation L4-10 then relates the old switching times to the new switching

times.

T, =T + 8T, i=1,2,...N (4-10)

Tt will be assumed that inequalities 4-8 and L4-9 hold for the old switch-

ing times, Ti , iI=1...N. Presently, requirements on the variations
old
of the switching times such that relations 4-8 and 4-9 hold for the new

switching times, T, , 1=1,2,...N will be found.
Thew
Because the sequencing constraint of this section requires that

relations 4-8 and 4-9 are valid for T, , i=1,2,...N inequalities

L-11 and 4-12 follow. new
Ti-l < Ti K 1=2...Nl
new new
< ; = eee
Tj-l Tj HE Nl+l Nl+3, N2 (4-11)
new new
Tk-l < Tk 3 k=N2+2, N2+5,...N
new new
Ty =%, (k-12)
new
TN +1 = to ;
new (continued)
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+1
new

new

new

TN
new

Relations 4-10 is

expressions 4-13 and L-

T,
=114

(1-12)

A

now substituted into 4-11 and 4-12 to obtain
1L,

< T,
to1d

T,
Jo1a

+ BT i=2...0

i1 + 3T, ;

1

+ BT _;

3 ‘j=N1+2’ N1+3.’.“ .l\I‘2

(4-13)

+ 8T, ;

W kE=N.+2,...N

0ld 2

(4-11)
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Relations 4-13 and L-14 can now be rearranged so that the independent
variables, STi, appear on the left side. TIf this is done, inequalities
4-15 and 4-16 result.

3T, . - 8T, < T, - T, 5 i=2,3,...N
1 1

i-1 old old 1

- B - 3 j= 2,00 .
BT, ) - BT, < Tjold T, 3 =N A2, .. T, (k-15)

ST . - 8T < T - T 5 k=N_42,...N
k-1 kT Tk 014 2

BT, < T -t
old

~87

‘old

N+l T TN+ -t (k-16)
old

Inequality 4-15 and L4-16, similar to equation L4-5 and inequality
4-7, constitute the last of the necessary constraints to make the solu-

tion to the control problem meaningful.

E. TRANSLATION OF VARTABLES

In the linear programming algorithm discussed in Appendix B, all
of the variables for which a solution is being sought are constrained
tb be non-negative. In the control problem, it is necessary to consider
both positive and negative values of the independent variables,
STi, i=l...N. To fit the control problem into. the context of the Simplex

linear programming algorithm, it is necessary to define new variables
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i

related to the 5Ti, i=l...N such that these new variables are non-
negative. A simple and successful approach is to Jjust add constants to

each STi. Define 5Qi, i=l...N by equation 4-1T7.
SQi = 5Ti + Ai; Ai >0 i=1...N (L-17)

By choosing each Ai such that Ai 2 MEXISTi|,8Qi is constrained to
be non-negative.

In this section the results of the previous sections are converted
into equivalent statements about the new variables SQi, i=1...N.

The variational cost, 8J 1in equation L4-3 can be represented as

in equation 4-18 if equation L-17 is substituted in equation L4-3,
2
n, /
= a.u o} - A - [® -
o E: 1V (180 - Ay ] - 180y, ) - Ay 1 D)

i=1

2
n,/

* U (1805 = Apyd = 180y ) = Ay 4 1) (4-18)
i=(Nl/2)+l
N/2
'*22 AU ([8Qy; - Ayl - 89y, o - AEi-l])
i=(Né/2)+l

The SQi, i=1,2,...N which minimize BJ in equation 4-18 also
minimize ®J 7 in equation 4-19 because the 8J and &J° differ only by

an additive constant which is not a function of the BQi.

N, /2 N, /2
83° =’§z 4,0, (BQ,; - 88,;-,) *‘}Z AU, (B8R, - 8@y, )
i=1 i=(Nl/2)+l
(+-19)
N/2
+ aU5(0Q,; - 8Qy; ;)
i=(N2/2)+l
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Hence, the procedure of solution now involves minimization of &J~

with respect to the SQi, i=1,2...N. The constraints (expressions L-5,
L7, 4-15, and L4-16) to which this minimization is subject will now be
converted into equivalent statements involving SQi rather than STi.
Only the results will be given. Details may be easily verified by the
reader by substitution of equation 4-17 into expressions 4-5, L4-T7, k-15,
and 4-16.

Equation 4-5 becomes equation 4-20.

N
B cee =
allSQl + a4 Q, + alNSQN X a.liA:.L + 811;1
i=1
. L4_20
. - ( )
e Q. =
arlBQl * ar28Q2 * Sry QN’ }j a'riAi * 611"r
i=1
Inequality L4-7 becomes L4-21.
<
SQi ai + Ai
i=1,2,...N (L-21)

-, + A
5Q; = - + A,

And inequalities L4-15 and 4-16 become inegquality L-22.

3Q, , - 9Q, = (T, - T, Yy + A, - A ; i=2,3...N

i-1 1 1o1d l"lold -1l 1 (b-22)
85q, . - dQ, < (T, - T, ) +A, -A; j=N+2, N, ...N

J_l J JOld J_lold J_l J 1 1 2

- 8 - - H — ceee
8Qy_; - 99 = (T Te . ) T A - A N2, N N
old old

-8Q, < Tlold- t, - Al
-5 < T -t - A

QNl+l Nl+1old o) Nl+l
=B < T . -t -

QN + l\T2 14 o AN2+l

(]

(continued)
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TN
1 1.4 1
5. <t - T + A
N £y N L_oo
2 21q 2 (k-22)
8. < t_ - T + A
A S A

The control problem has now been reduced to finding the minimization
of 8J7 (equation 4-19) subject to the constraints of expressions L4-20,
4-21, and 4-22, This is the precise form of the linear programming
problem which is outlined in Appendix B. In the next section, a general
discussion will give the overall pictures of how this computational algorithm

is implemented in the solution to the control problem.

¥. COMPUTATTIONAL CONSIDERATIONS

This section describes how the ideas developed so far in this
report may be used to compute minimum fuel controls for satellites.

One first chooses a control which is structured as in Figure L4-1.
The switching times, Ti’ i=l...N, are chosen arbitrarily. but, as will
be elaborated in the next chapter when the actual satellite problem is
solved, discriminate choice normally guarantees a faster solution. Next
the system equations, 2-1, are integrated from ¢t = to to t = tf.
During this integration, there must be provisions for storing the time
history of the state vector. Next, the transition matrix, @(tf,Ti) is
evaluated at each switching time. This is accomplished by integrating

equations 3-4 backward from t = t to t = to. With these integrations

performed, the aij’ i=1,2...N, j=§,2,...r in equation 4-20 can be
evaluated.

The next step is the selection of the SEJ, J=1,2,e..r 1in equation
4-20., Since the desired terminal state in the control problem is that
i[§(tf)] = 0 and because we normally will not satisfy i[ﬁ(tf)] =0
with an arbitrarily picked control, one chooses Smj, J=1,2,.cer such
that the constraint is more nearly satisfied on the next iteration. In

particular, one usually sets Sq_;j such that SEJ- = -llf_j[zc_(tf)], J=1,2,00.re
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Values must now be chosen for 'aa and Ai’ i=1,2,...N. When
choosing these parameters, one simplifies the problem considerably by
choosing Ai such that

= i=],2,e00
Ai L 1=1,2, N

From the second part of expression 4-21, it becomes clear why the Ai
are chosen equal to the Q< The second part of equation 4-21 can then

be written as

8Q, = 0; 1=1,2,...N

This constraint is now eliminated from the linear programming problem
because it is a restriction which is implicitly incorporated in the
linear programming algorithm, i.e., all independent variables are non-
negative. The linear programming problem statement is thus shortened by
N equations and N slack variables. (Slack variable are discussed
briefly in Appendix B.)

With all coefficients evaluated, 8J" of equation 4-19 is minimized
subject to expressions 4-20, 4-21, and 4-22 by using a standard linear
programming technique. The solution is given as non-negative values for
the 8Qi i=1,2,...N. The STi are found as

BT. = 8Q. - A., 1=1,2,...
Tyo=08Q; -4, 1=1,2,...0

The switching times are updated as

T, =T, +#08T; i=1,2,...N (4-23)
Thew old +
The whole process is repeated using the new switching times for the

control. Normally, JneW will be less than JO Ideally, the termin-

1a°
al constraints on the state, I[E(tf)] should be satisfied. Because of
the inaccuracies introduced by linearizing the sensitivity equations,

0O would be exceptional on the first iteration of the

obtaining I[E(tf)]
total solution.
Normally after a few iterations the control converges to a solution

which minimizes the fuel cost (locally) and satisfies the state constraints
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at t = tf. When the cost can no longer be improved significantly, the
procedure is terminated.

Although one is not here confronted with the common problem of tak-
ing the inverse of matrices which tend toward singularity as the time
t approaches tf, a certain amount of care must be taken against the

"infeasible solutions™. Infeasibility means that no

possibility of
solution for the BQi may exist which satisfies the constraints of
expressions 4-20, 4-21, and 4-22, What this usually implies is that the
Ai, i=1,2,...N have been chosen so small that equation L-20 can not be
satisfied for the given §£j, J=1,2,s..re This is only a minor problem
and was only rarely observed in simulation. It can be corrected by
proper compensation in the choice of the Ai’ i=1,2Z,...N and also
BYJ’ J=1,2,...r.

In the next chapter this material will be applied to the general

satellite system.
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V. HIGH TORQUE ACQUISITION PROBLEM

In this chapter, the procedure discussed in the last chapter will
be applied to a system of differential equations describing the atti-
tude motion of a satellite in orbit about a fixed body such as the earth.
Because of the high control torque levels, the effects of the gravity
gradient and orbital motion are neglected from the dynamics equations.
The purpose is to construct an on-off time history for the gas jet
attitude controllers such that the satellite acquires a desired orienta-
tion and spin rate at a given time, tf, in the future. Several examples
are illustrated along with comparisons to similar results of other people.

A. HIGH TORQUE DYNAMICS AND SENSITIVITY EQUATIONS

The dynamics equations to be used for the examples of this chapter

are given by expression 5-1.

X, =u - KX
X

1 1 XS

2
X, = u, - KyXlXS

2 2

X5 = Uz - KZXlX2

X, = (X5X3 - XX, + x7xl)/2
. (5-1)
X. = (X2X7 - XX + xlx6)/2

Xg = (thg - XX, + x7x3)/2

(-xx, - XX, - XcXg)/2

_34.

Equation 5-1 follows from equations A-25 in Appendix A if the gravity

gradient terms and terms involving the rotation of the orbital reference
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frame are dropped and if the Wi are defined as X 1,...k.

i=
i+3’
Because the control torque levels are high relative to the terms involv-
ing gravity gradient and because the rotation of tue orbital reference

frame is negligible in the time interval of control, = these

£ to’
omissions are reasonable. Since the orbital parameters do not enter in
these abbreviated high torque equations, the last two differential
equations in equation A-26 are unnecessary.

Although there are seven differential equations in equation 5-1,
there are only six independent states. X7 can be expressed in terms

of the other components of the state by equation 5-2.

2 2 2,1/2
X7=()+-XL|,-X5 —X6)

From edquation S—M, one of the steps in applying the algorithm of

(5-2)

Chapter 4 involves the integration of a matrix differential equation.

The expanded version of this equation, in component form, is:

6
@lj(tf,t) = -j{j @ik(tf,t)ij(E(t),t) i=1,2,...6 (5-3)
k=l 3=1,2,...6
The boundary conditions for equation 5-3 are

_ 1, when i=j
05 5(tpoty) = 0, when i#j.

The coefficients of equation 5-3 are given as
F.(X(8),t) = 9 £ (X(t),u,t)
k,'.l = 2 'Wj k\= )20

where fk(X(t),E,t) is the k2 component of equation 2-1. Applying
this to the specific dynamics of equation 5-1, the ij(g(t),t),
k=1,2,...6 Jj=1,2,...6 are given by matrix equation 5-L.

F&(®),0) =

(continued)
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1 o) -KXX3 -K:xx2 0 i 0 0
2 -K:yx3 0 -nyl 0 0 0
3 -KZX2 | -szl 0 0 0] o)
5 X -X _
6 X7 L -X5 ngh ng5 Xl—X2X6
-X X - -X. - -
6 5 X, 7 x2 XBXLL xl x3x5 X5X6

(5-1)

The examples worked in the following sections of this chapter use
satellite parameters based on a preliminary model of the OGO spacecraft

described in (reference 12). The moments of inertia of

2
I, = 800 slug-ft

T 581 slug—ft2

y

I 300 slug-ft2

Z

are equivalent to the inertis parameters

K = --351

K = .860
y

K = -.730

B. NUMERICAL, EXAMPLES

In this section, optimal fuel controls for the satellite system

described by equation 5-1 will be determined by the algorithm described
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in Chapter 4 for different sets o1 initial conditions on the state
(xo); time intervals (tf-to), and control angular acceleration levels,
(Ui). Compariscons will frequently be made between these results and the
corresponding results of examples worked by Hales and Flligge-Lotz in
(reference 1).

The examples in this chapter have final value constraints on all six

of the states* With the exception of the last example, the final value
constraints are §(tf) = 0. This means that in equation 2-4, the

r-dimensional y[x(tf)] becomes the 6 dimensional vector, z(tf).
Likewise, ¥ _="I and B¥ of equation 4-5 becomes §§(tf).

Table 5-1 gives three sets of iuitial conditions used in the examples
along with other pertinent information. B(to) gives the "eguivalent
rotation" defined by the Euler Parameters (Appendix A).

In the first example, the initial conditions R-1 in Table 5-1 are

used. The final time, is taken as 60 seconds and the control accel-

t 2
eration levels are set atf.hlE degrees/sec.2 for each component of the
control. In Figure 5-la and 5-1b, the state trajectories are illustrated
for the nominal control with four pulses for each control variable.

Figures 5-2a and 5-2b depict another nominal control history with six

pulses for each control variable along with the corresponding state
trajectories. 1In both cases, the linear programming procedure described

in Chapter b yields the optimal control and trajectories of Pigures

5-3a and 5-3b after five iterations of computation. Only two pulses

for each control variable are needed for the optimal control history in
FPigure 5-3a; the other pulses tended to zero width and hence, give no
contribution to the cost. The cost of the fuel in this example is .131 sec—l
as compared tu a cost of .162 sec.-l computed by Hales and Fligge-Lotz for
the identical situation. In (reference ), Dyer and McReynolds work this
example and get a solution identical to the one of this report. Their

method also gives sufficiency conditions to guarantee local optimality,

*Strictly speaking, there are only six states because X7 is
an "integral of motion" by equation 5-2.
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Cmmmmeer | m1 | r2 | B3 R-l
X, (6 ), deg./sec. 14 | .5 e 0 B 1
Xe(to), degy/sec. 1 o f5 ) | 0 1
XS(to)’ deg./sec, ||- 1 .5 0 1
%, (£.) 4 o .5 - 0 oh
x5(to) I f8 ) _, .5 | _3 o .8
%t S I R
X‘Y(to) 1.6 1.8 2.0 1.6
(6 i=te o6 B T B 0-3
X7(tf) 2 2 2 1.93
B(to) degrees 73.8 51.8 0 73.8
t 0 o) 0 0
@]

tp = 45 seconds Fig, o-5
tp = 60 seconds Fig. 5-1 Fig. 5-7 Fig. 5-8 Fig. 5-10

5-2 Fig. 5-9

5-3

5= ,
tf = 120 seconds Fig. 5-6

Table 5-1 Summary of Boundary Conditions

for High Tordue Examples

but unfortunately, its computational success is very sensitive to the
nominal control chosen initially.

In the second example the initial conditions of run R-1 in Table 5-1
are again used, but the control level of each jet is halved to .206

2
degrees/sec . Four pulse nominal controls similar to Figure 5-1b are
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used for most of the remaining examples, including this example. After
four iterations, the controls and state trajectories have evolved to

those pietured in Figures 5-ba and 5-Lb. As one might expect, since

the maximum thrust has been lowered from the previous example (with

all other parameters remaining the same), the duration of the pulses is
longer than in the previous example. The cost has now risen to .142 sec._l
as composed with a value of .159 sec.—l found by Hales.

The two examples illustrated in Figures 5-5a, 5-5b, 5-6a, and
5-6b are identical with the second example except that final times are
45 seconds and 120 seconds, respectively. In the third example, after
L iterations, a cost in fuel of .154 sec. ™t was obtained as compard with
an approxiamtely 20% higher cost of .1969 sec.—l obtained by Hales. In
the example of Figure 5-6, where the final time is 120 seconds, an optimal
solution yielding a cost of .092L sec.—l was obtained in five iterations.
This was only 10% below the .102k sec. T cost obtained by Hales.

For the fifth example the optimal solution is .llustrated in Figure
5-7a and 5-7b., Here the initial conditions on the state were given by
R-2 in Table 5-1. The cost of the optimal solution is .08 sec. T,

If E(to) = 0, it can easily be shown that the optimal fuel control
is given as ul(t) = ug(t) = u3(t) =0 fort = t= tf. This above
example, for which the analytical answer is known, will be solved presently
to see whether or not the algorithm gives the correct solution for the
control. The nominal control, similar to other nominal controls, and
assocliated state trajectories are illustrated in Figures 5-8a and 5-8b.
After three iterations, the control and trajectories are given by
Figure 5-9a and 5-9b. Only the non-zero pulses are shown. The cost of
this almost zero control effort is .00041 sec.-l or less than 1/2 of one
per cent of the cost of previous examples.

In the final example of this chapter, the terminal state constraint
function, E[§(tf)] of equation 2-4, which heretofore has been identical
to §(tf) is changed to §(tf)—3 where c¢ is a constant. In the
example of Figures 5-10a and 5-10b, the initial conditions of R-4 are
used to generate the control for an example in which the final vélue of

Eﬁtf) is selected to be .3 deg/sec for the angular velocity components
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and .3 for the first three Euler Parameters. The cost of the fuel for
example was .1145nsec._l.
It can be shown (Appendix A) that the positioning of a body from
any attitude to a new attitude can be accomplished by a single rotation
about some fixed axis. This axis of rotation is related closely to the
Euler Parameters. For the example of Figure 5-3, calculations on the
optimal control history and trajectory revealed that the first pulses
in the control: (1), aligned the angular velocity vector, w,
approximately parallel to this axis of rotation, and (2) set the
approximate mean magnitude of the angular velocity to the proper value
to cause the satellite to rotate the.proper angle for a single rotation
of B degrees in the time interval (tfato). The pulses of control at
the end of the time interval stop the rotation of the satellite. There
is reason to believe that for a certain class of problems, the optimal
fuel control in general has the characteristics described above. Gener-
alizations are difficult (even for the examples of this chapter in which
gravity gradient and orbital effects do not enter) because the angular

velocity for a body is not in general constant for torque free motion.

C. COMPUTATIONAL CONSIDERATIONS

Simulation of the system dynamics was done by numerical integration
on a digital computer. The time inteyval, to to tf, was divided
into approximately 100 increments and the state was stored for each
time increment. The intervals of storage are not necessarily all equal,
since it is occasionally necessary to change the step size in integration
(wvhen a switch in the control is imminent) to be sure that the state
is stored at times exactly equal to the switching times. It is also
important to integrate the system equations exactly up to the time at
which the control switches. 1If a switch is to occur within a given
integration step, the step must be reduced appropriately.

There are several ways in which the control may be programmed into
the differential equations. The method used in this report was to declare
the magnitude and sign of the first pulse of each component of the

control along with nominal switching times. The program included logic
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which determined between which switching times Ti, the indgpendent
variable t was during each step in the integration of the septum
equations. It then assigned the control, ui(t), ina U, O, ¥U,,
0, iUi,...fashion. The updating of the control after each iteration
was done by changing the switching times.

The linear programming was done by an algorithm commonly called the
"Simplex Method" described briefly in Appendix B. The oy equation 4-7
were set equal to one second initially, but feasible solutions for varia-
tions in the switching times often did not exist for such small ai's
before a nearly optimal solution was obtained. The ai were then set
equal to seven seconds for all examples in this chapter. The components
of ®Y in equation 4-5 were assigned the value of -kx(tf) for the regul-
ator problem with O < k< 1. k=l was found to give the best results in
the later interations of a problem:

Because the convergence of numerical methods of computing optimal
controls depends to a certain extent on the choice of & nominal control,
the following rule from (reference 1) was usually employed to assign the

polarity of the first pulse of each component of the nominal control.

Sgn(first pulse of ug) = —Sgn[Xi(to)] if Xi(to) 40

-Sgn[Xi+5(to)] otherwise; i=1,2,3
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VI, MINIMUM TIME ACQUISITION PROBLEM

An indirect approach using the method of Chapter L4 can be used to
solve the minimum time attitude control problem.

In this problem, the objective is to determine the control to reach
a given terminal state, _E(tf) from a given initial state, E(to), in
minimum time. 3In the context of Chapter 2, the integrand of the func-

tional defined in equation 2-10 becomes

£ (x(t),u(t),t) = 1 (6-4)

for the minimum time problem. All other aspects are identical to the
minimum fuel problem as presented in Chapter 2. If eqQuation 6-1, is

substituted into equation 2-7, the Hamiltonian, H, 1is given as

= }; A, (t) }; (x t)a (t) + terms not involving u (6-2)
i=1

Maximization of H with respect to the control, bearing in mind that

the control magnitude is bounded, gives

ay6) = U e ) A (800 (x(8),0) 31,2, (6-3)
i=1

A control of this nature is referred to as "bang-bang” and is always
"on™ at its maximum value with the polarity being either positive or
negative.

The dynamics equations used to work the example of this chapter are

the time invariant high torque equations of Chapter 5.

A. INDIRECT ALGORITHM FOR TIME OPTIMAL PROBLEMS

Before giving the indirect algorithm used here to solve the minimum
time problem we consider two ideas which will clarify the reasoning for

this "indirect" algorithm.
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The first idea is best presented by referring to the control histor-
ies presented in Figures 5-5b and 5-6b. These examples were identical
with the exception that tf = 45 seconds for one case and tf = 120
seconds for the other. In both examples, us(t) is the control component
which is "on" for the longest time. The time during which us(t) is
"off" is much shorter for the case in which tf = 45 seconds than it is
for the case in which tf = 120 seconds. The reasons for this are two-
fold. - In the first place, the cost of the optimal fuel solution for
tf = 120 seconds can be no higher than the optimal fuel solution for the
case in which tf = U5 seconds, hence trivially, the time in which the
control is off is larger for the case in which the final time 1s larger.
The second reason is that, in general, as the parameter tf is lowered
while leaving everything else fixed, the cost usually increases--and
increases rapidly as tf approaches the minimum value for which a
feasible solution exists (this gains credence if one considers the well
known analytical fuel optimal solution for the classical "lﬁfz problem).

The second idea is presented as a proposition. This proposition
concerns the fuel optimal problem as presented in Chapter 2.

Proposition: If the optimal fuel control for a given arbitrary set of
initial conditions, has the property that all of the components are "on"
for all time +t, then that control is also the time optimal control.

(The final value constraints on the state must be an equilibrium point).

Proof of Proposition: Assume the fuel optimal solution is not time

optimal. Then there exists a tl such that tl < tf for which a feasible

solution to the problem may be found. Because the final value constraint
on the state is an equilibrium point, it follows that this solution is a

feasible solution for the problem in which the final time is tf rather

than tl. But since the assumed optimal fuel control has its control

completely "on"™ for a time t_ with t_> t its fuel cost is larger
P £ £

l’
than the fuel cost associated with the other feasible solutions ending

tl and it is therefore not a fuel optimal solution.

This proposition guarantees that if a fuel problem is solved and has
the property that all of the components of the control are "on" for all

of the time, then a minimum time solution has also been found. In working
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examples, we will assume that if we find a minimum fuel problem for
which the control is "on" most of the time, then the final time for this
problem is a good approximation to the minimum time problem.

Using the two ideas presented above, the following scheme to compute
_time optimal controls is proposed. Solve the minimum fuel problem for a
value of final time which is larger than the minimum time since the
minimum time is not known, it.may be necessary to increase the value of
the final time and repeat the computation. After a minimum fuel solution
is found for some value of tf, a smaller value of tf is taken and a
new minimum fuel solution is computed for the new (smaller) value of

t This is repeated until a solution is found for which the control is

£
"on" for the entire period from t, to tg. Then, by the proposition,
it is known that this control is time optimal. Since converging to the
exact time optimal would be difficult and coincidental, one would normally

only continue lowering t and repeating the computational scheme until

the control was on for aliost all of the time. The question of how much
to lower tf each time a new minimum fuel solution is computed has not
been mentioned. It must be remembered from the first idea above that the
period during which the controllers are off may be drastically shortened
by lowering the final time by just a small value-especially when the final
time 1s near its minimum possible value. 1In general, one might lower

the final time, tf,

ent of the control with the least "off" period.

by about one-sixth of the "off" period of the compon-

B. NUMERICAL EXAMPLE OF MINIMUM TIME PROBLEM

In Chapter 5, Figures 5-6, 5-4, and 5-5 give the fuel optimal

solutions for the same example for values of t of 120 seconds, 60

seconds, and 45 seconds respectively. A solutiin which is relatively
close to the minimum time solution will be computed for that example in
this section. Lowering the final time to 39 seconds yields the solution
of Figures 6-la and 6-1b. Although there is a fairly large period (about
10 seconds) during which the third control component us(t), is "off",

even in lowering t by only two seconds one can see by Figures 6-2a

f
and 6-2b that the control cost has increased and that u3(t) is on for
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almost the entire time interval [to,tf]. The procedure was attempted
for & case in which tf = 35 seconds, but as could be expected from what
has been stated in the last section, a feasible solution could not even
be found. Hence, b, = 37 seconds (Figures 6-2a and 6-2b) is taken as
the approximate time optimal solution.

The necessary condition on the time optimal control in equation 6-3
stated that each component of the control is "on" with either a positive
or negative polarity for the entire time interval, [to’tf]' Yet in the
time optimal solution of Figure 6-2a, large gaps of zero control are
indicated for ul(t) and ug(t). One expects from the result in eqn. 6-3
that the proper bang-bang control (with no intervals of coasting) for

ul(t) and ue(t) would be able to lower t_. below the 37 seconds of

the above example. As mentioned earlier, thgugh, the approach used in
this chapter to solve the minimum time problem is not exact.

There do exist cases, however, in which time optimal control histor-
ies for the class of problems considered here may have intervals of

coasting. The following sixth order system is such an example.

X) = % % (0) =2

>.<2 = xi(O) = 0; 1=2,3,...6
x3 = xbr

—_

X5 = X6

X6 = u3

The constraints at t = t, are that E(tf) =0 and lujl < 1, j=1,2,3.

It follows that the minimum time solution is tf = 2 with one of many
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possible optimal controls given as:

ul(t) = -Sgn(l-t)
uy(t) = 0 0<t=2
us(t) =0

Hence it is seen that in the family of time optimal controls, one of the
many possible solutions is that two of the components of the control are
zero for the entire interval [to,tfl. Other time optimal solutions can
easily be obtained for this linear example in which some of the control
components have non-zero periods of pulse control with periods of zero
control between the pulses.

The results of the example of this chapter along with those Figures
5-4, 5-5, and 5-6 are tabulated in Table 6-1. The fuel cost is plotted

against the terminal time, t in Figure 6-3. The initial time, to’

2
was zero in all cases. The cgsts obtained by Hales for these same
examples are also shown. In general, Hale's costs were higher than those
obtained in this report. In examplcs worked by both methods, it 1s appar-
ent from this graph how the fuel cost rises as the terminal time parameter
is lowered.

In addition to Euler Paraméfers,\another way of describing the three
dimensional orientation of a body with respect to a reference frame is
the three-axis Euler Angles description. Definitions and illustrations
of three-axis Euler Angles are given in (reference 13). FPigure 6-k
gives the Buler Angle description of examples 6-1 and 6-2. E-1, E-2,
and E-3 (expressed on a scale from -100 degrees to +100 degrees),
correspond to Xy, s X5’ and X6’ respectively.

Although the minimum time problem is solved in this chapter only
approximately, the method has a certain practical merit in view of the
fact that one should be able to make a judicious choice for the "nominall
control each time (after the initial fuel optimal computation) that

tf is lowered, and hence, save computation time.
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Final Time, tf

120 Sec.

€0 Sec.

L5 gSec.
39 Sec.
37 Sec.

__Steepest Descent

Cost By
Hales Extended
Method Of

.102k Sec.”T

<1595
L1969

Data For Figure 6-3

Table 6-1
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VII, LOW TORQUE ACQUISITION PROBLEM

In this chapter, fuel optimal controls are computed for the same
satellite system considered in Chapter 5. In this case, however, the
torque levels of the control jets are low enough to preclude the possibil-
ity of omitting the effects in the dynamics equations of the gravity

gradient torque and the orbital motion of the satellite about the earth.

A, LOW TORQUE DYNAMICS AND SENSITIVITY EQUATIONS

The complete equations of motion of the satellite used for this
chapter are given by equation A-25 (Appendix A). These equations will
subsequently be time and magnitude scaled for convenience.

The following definitions are given in equation 7-1 for =, X5 Xp,

Xz5 Xh’ X5, X6, X7’ Xg x9, Uy oo Ungs and Uz«

1
GM \ 2
e (%)
1
a
GM .
=X =12
x5 = X/ ( a3> (7-1)
X5 = W2
X6 = W3

(continued)
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a
Xg = r/a

Ys T ul/(gfg) (7-1)
Yog T ue/(QEB)

Uzg = us/cgfé)

The notation for differentiation with respect to time, t, and

scaled time, 1, are given in equation T-2.

(-) = _%E ( ) N ( ) = Tg; (7—2)

Using equation 7-1 and 7-2, the equations of motion (A-25) are

given as follows:

3
LI ~— k - g" ! -
X1y b e Kanag - 0785 1 07(ag5% - aygxs)
()
. 1 1
kx(x2 + 0 aES)(XB + 6 a35)
x '=u, +—_ ka a, -@"%, + 6'(a, %X, - 8,.X,)
o} 2s 3 Ty 1131 23 133 3371
(xg)
9
| | (7-3)
-k (xg + 0'a5,) (x) +6'a)5)
x'=u, +-_ka a _ -0, + o' (a, %, - a. . x.)
3 3s (X )5 "z 11 21 33 231 132
9
_ ' 1
kz(xl + 0 alS)(XQ + 6 a23)
LR -
X' = 1/2(xlx7 X Xp + x3X5)
(continued)
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xs' = 1/2(xlx6 + x2X7 - szu)

x6' = 1/2(-xlx5 + XX+ 3x7)

X' = 1/2(-x,%), - xXs - xX,) (7-5)
2

xg' = (1- € )/x93 - l/x92

x9' = Xg

The F, , i=1,2,...6; j=1,2,...6 to be used in the backward integra-

tion of eQuatlon 5-3 are given for the low torque dynamics by equation T-M,

Fj; =0
— t - 1
Fi,= 8 B kx(x5 + 6 a33)
- 1 - 1
F13 = 8'a,, kx(x2 + 8 a23)
e"
— - - - 1
Fp), = -5 By 0'x Xh(l k ) X0 'E (1 + k )/2

1 1 - 1 .
- k 8'(6'Eja,, - 20'a X))/~

+ 8k, (ay By + a5 E.)/2 (7-%)

Fis = :5_ E), - 8'x.X (1 -k ) - x0'F (1 + k )/2

- 1 t -—
ko'(e Esars 20'a,. 5)/2

+ k(a5 Ec - aElEu)/Z

Fig= :g:'E6 - x0'E (1 +k )/2 -k (e )2E9 33/2
+ Skx(a21E8 + g 7)/2

Fy = -e'a35 - ky(x5 + e'ass)

Fop = O

(continued)
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— t - t
Fpg = 8'a;5 - K (x; +0'ay)

i 1 -
Py, = 5 By + %0'E, (1--k )/2 +6'x Xu(l + ky)

- kye'(e'E2a53 - 20'a X )/2 + 8k P10 5/2
Foo = -e'E5/2 + x,0'F) (1 - ky)/z + 0 xlx5(1 + ky)

- kye'(e'Eua35 - 20'a 5)/2 - Sk (allELL + 2a.,X 5)/2

Fop = -e"E9/2 + XSG'E6(1 - ky)/2 -k (e )2E6 33

+ 5ky(allE8 - 2a.,X/)/2
Fgy = 0855 = k(5 + 02,7
Fgp = -e'a, 5 - kZ(xl + e'als) _—
?35 =0
Fy), = e"xl‘L + xle’El(l - kZ)/2 - xge’EE(l + kZ)/E

- ko' (e'Ela15 + e'Egags)/E + 8k a, E./2
Fao = e"x5 + Xle'ES(l - kZ)/E -xge'Eu(l + kZ)/E

- kze'(e'E5a13 + e'Eua23)/2 + Skz(aliE6 - 2a,) 5)/2

1-%k)

Foo = xle'E9 — - xge'E6(l + kZ)/2 - kze'(e'E9al 'E6a23)/2

+ 8k (8 B - 2a,X,) /2

The Fij i=h,5,6; 3=1,2,...6 are the same as in Chapter 5.

Values for S, El’ EE’ ES’ El#’ E5, E6’ E7’ E8’ and E9 are defined as follows:
3
s =3/(x
/(xg)
E = X, 2/
1 XY T X7 (continued)
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E2=x6+xux5/x7
Es"—'XS'FXng6/X7
E, = - +x2/x "'
y = Xt A5 /%y

E5 = X - X)_LXS/X,?
Eg =X, + x5x6/x7
B = Xy X /X
By = % - X /%

E =X_-XX
o = X5 - KXe/¥y

It must be remembered from equation 5-2 and A-12a that X7 is depend-
ent on Xh’ X5’ and X6 and that the dij(i,j=l,2,5) are dependent on
Xh’ XS’ X6 and X7. Because of this, one must often make single or double

application of the "chain rule" of differentiation in evaluating the F. ..
1d

For example, Flh is given as follows:

3 3

. afl . z ‘ afl (ijk +adjk BXZ) ‘+afl ax7

1h E’Eu . A ijk axu 6}(7 ‘a‘xlL 3 §‘x7 X,
1 k=1

(7-5)

B. LOW TORQUE NUMERICAI, EXAMPLE

Orbital parameters for this example are given as follows: eccen-
tricity of the elliptical orbit, .0521l; apogee of orbit, 4651 miles;
perigee of orbit, 4190 miles; orbital period, 99 minutes. Using 3960
miles and 4.11 x lO25 slugs as the radius and mass of the earth, the
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scaling factor used in equation T7-1 is easily computed as:

GM

3
a

%

In this report will be computed the fuel optimal control for an

= 1.1046 x 10'6sec.'2

example identical to one done by Hales and Fliigge-Lotz in (reference 1).
The moments of inertia of the satellite are the same as those used in
Chapter 5 of this report. The initial and final time (to and tf) are
given as O and 1196 seconds, respectively. The initial values of the
state, E(to), are given as 3.8 x 1072 degrees/sec., - 7.27 x J_O-2
degrees/sec., 3.4k x 1078 degrees/sec., .218, .638, .10k, and 1.88,
respectively. Values for xg and xg are -5.1 x 1077 ani .986. .
Thrust acceleration bounds are lowered to only 1.905 x 10”7 degrees/sec.-
Scaled values (see equation 7-1) of to and tf are O and 1.255.
The first three (angular velocity) components of the initial state have
scaled values of .65, -1.21, and .57. And the thrust acceleration scales
to the value of 3.03 for each component.

By using the method described in Chapter 4 for this example, the
optimal control and trajectory of Figures T-1 and T-2 are obtained in
five iterations., The fuel cost is 1.52 x lO_Ssec.-l as opposed to
1.70 x lO_5sec._l obtained by Hales with his "extended method
steepest descent.” The cost of 1.52 x J.O_Ssec.—l agrees to within less
than one percent of the true optimal cost of this trajectory which was
initially generated by backward integration of the adjoint and state

differential equations. The second pulse for u (shown in Figure 7-1)

drifted between the position shown and a positioi at the terminal time
for each new iveration without affecting the cost. Apparently the posi-
tioning of this pulse is not critical to the cost or terminal state
constraints.

In the simulation of this example, it is necessary to evaluate
8' and 6" (from scaled versions of equations A-22 and A-24) for
substitution into the right hand sides of equation T7-3.

Although the time varying dynamics of equation T-3 do not conceptually

alter this method of solving for fuel optimal controls, approximately 25%

more computing time is required per iteration because of the bulky right
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hand sides of equations 7-3 and 7-4. One would probably only be

interested in using such small thrust levels as those in this chapter
if the satellite were to be engaged in long term experimentation

with the necessity of using the acquisition system many times.
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VIII, CONCLUSION

By utilizing the fact that the optimal fuel control history for
the nonlinear control problems described in this report must necessarily
be of a "bang-coast-bang" nature, an algorithm utilizing linear programming
has been developed which iteratively improves on a nominal control history.
The algorithm is based on expressing the variation of the fuel cost and
the variations of the components of the terminal state constraints as
linear functions of variations of the "switching times" of the control.

In using the algorithm, the nominal control is expressed as a series of
alternately positive and negative pulses of control with intervals of
zero control between each pulse. The magnitude of the pulses is equal to
the bound on the magnitude of the control.

The algorithm was tested on a nonlinear system of differential
equations describing (by Euler Parameters) the complete attitude motion
of a satellite in elliptical orbit about the earth. In the case where
the control level was high relative to other terms in the dynamical
equations, simplifications were made, but the basic nonlinearities were
retained. The algorithm gave solutions which compared well with solutions
to identical examples obtained by other methods.

This algorithm has the advantage that 1t is quite insensitive to
choices in the nominal control compared to other methods. In the event
the optimal control has several pulses for each control component, the
ai of equation 4-7 must be reduced toward zero (as the terminal constraints
are being met) to guarantee convergence. If this is not done, the control
will oscillate around the optimal solution without being exactly optimal.
In situations such as this, it may be advantageous to switch to & second-
order method (which usually depend on being initially at a nearly
optimal solution) such as described in (reference T7) to complete the
convergence to an optimal solution. As in many other optimization
techniques, there is no known way to verify that the solution obtained by
this linear programming algorithm is globally optimal.

This technique of solving for open-loop fuel optimal controls could

be actually applied to a satellite system as follows: Measure the
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present state of the satellite and extrapolate to what the state will
be (by integrating the dynamics equations) at some suitably distant time
in the future if no control is being applied. The optimal control could
then be calculated in the interim time before the calculated state is
reached. and applied to the satellite when the predicted state is reached.
In doing this, however, it is to be noted that there is a possibility
(remote) of noise disturbing the extrapolated state.

For future investigations, effort might be directed toward develop-
ing similar algorithms for other cost criteria (such as minimum time)
and toward developing & minimum fuel feedback control law. Although this
report suggests an experimental approach to the minimum time problem it
does not treat this problem completely. It is also to be noted that the
optimal feedback control problem where the control is known to have a
bang-coast-bang character is still essentially unsolved for dynamical

systems with three or more state variables.
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APPENDIX A. EQUATIONS OF MOTION

The equations of motion of a satellite in orbit are derived in this
appendix by us .g Euler Parameters. Hales and Fligge-Lotz have given a
rather complete derivation of the attitude dynamical equations of a rota-
ting body in (reference 1), but have only stated the form of the orbital
equations. In view of their work, the attitude equations will be
discussed only by pointing out the more salient features in the derivation.
The orbital equations, however, are derived in a more detailed manner.

In deriving the orbital and attitude equations of a satellite in
orbit about a fixed mass, three reference frames will be used. TFigure A-1
indicates two of the three coordinate systems to be used in deriving the
equations of motion. The earth (or other fixed attracting body), about
which the orbit exists, is designated by P and is assumed to be an
inertially fixed point mass. The center of mass of the satellite, P¥,
moves in an elliptical orbit about P. The origin of the (xe,ye,ze)
axes is inertially fixed at P, with 2z, perpendicular to the orbital
plane and Xe and Ve of arbitrary orientation. The orbital reference
frame, denovted by (xr,yr,zr) is centered at P* with zZ, parallel to
Ze' Xr is either directed along the line from P to P¥ or remains parallel
to X, A third reference frame, a body fixed reference denoted by
(xb,yb,zb), is centered at P¥ and Tixed parallel to the satellite's
principal moments of inertia.

Unit vectors parallel to each of the above axes will be denoted by
the vector n with appropriate subscripts. ¥or example, n. denotes

r
the unit vector parallel to the xr axis.

1. ATTITULE DYNAMICAL EQUATIONS

Fuler's dynamical equations are given A-1.

vaB-(I-I)waB=N
X X y 2y 2z x
TP (1 -1)wwBoy (A-1)
vy z x' z x v
B B B
1,9, - (Ix - Iy>wx(uy =N,

8l
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IXJ Iy and IZ are the centroidal moments of inertia about the principal

axes of the body and Nx’ Ny’ and NZ are components of the total active

torque exerted on the body and resolved along the respective body fixed

axes. wa wyB, and sz are defined in equation A-2, where SB is

J
the total angular velocity of the satellite in the inertial reference
frame.
B B B

= W i w w -2

od x Zxb + v Eyb + z Z2b (A )
The angular velocity of the orbital reference frame with respect to

the inertial reference frame is given by equation A-3.

&B = én (A-3)

—Zr

The angutar velocity of the satellite in the orbital reference

frame is defined by EB/R and given in equation A-k.
PR P R (A-k)

The components of QF/R are defined by X., X and XS; hence

l’ 2)

equation A-5 follows.

B/R
[} = -
d B T KXoy, T Xgly, (a-5)

The unit vectors no» 8o, n of the orbital reference frame

are related to the unit vectors n of the body fixed refer-

n n
=xb’ —=yb’ —zb
ence frame by a direction cosine transformation matrix, D, defined in

equation A-6.

£1-xb dll d12 dlS Exr Exr
Do (=) %1 Yo 9o a4 =Drn. (A-6)
By, dzp  dsp  dag Lo 2or

The dynamical equations of A-1 can now be expressed in terms of the
relative angular velocities of equation A-5 and the direction cosines of

equation A-6. Combining equations A-2 through A-6 appropriately gives the



expressions for the total angular velocity components as:

wx = Xl + edl5
B_x +oa

@y T2 23 (A-7)
B 3

wZ = X3 + ed33

The time derivatives of (A-7) give

B . .e -
w o= Xl + edl5 + ed15
o B % +ed. +6d ' (A-8)
b 2 23 23
;B o % + éé + éd
“z T 73 33 33
Normalized inertia parameters kx’ ky, kz are defined by equation A-O.
IZ - Iy I, - 1Z Iy - IX
= . = . = < = A-
I S T 5 K - (a-9)
X y z

The Euler dynamical edquations of A-1 can now be reduced by use of

equations A-7, A-8, and A-9 as follows:

. N .. . . .
= X _ - - X
X, = T 6d, , - 8d » kX(X2 + edgs)(x5 + edss)
. N - . . .
X, = T;f - 6d,, - Od,, - ky(Xl + edls)(x3 + ed53) (A-10)
. N, .. . . .
X; = T;_ - 6d;, - 6d . - kZ(xl + edls)(x2 + edgs)

The differential equations of A-10 are not yet complete. Expressions for

the directional cosine components and time derivatives of these components
which appear in equation A-10 will be discussed in the following section.

In this section 3 of this appendix, expressions for the active torque

components of equation A-10 will be expanded, and in section L the orbital
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considerations will give expressions for © and 6.

2. KINEMATICAL EQUATIONS

In (reference 14), the relative merits of various schemes of
computing and describing spacial rotations of a rigid body are described.
fhis reference concludes that Euler Parameters provide the most useful
characteristics for analysis and simulation of problems dealing with
large angle maneuvers of unsymmetrical bodies. Although the Euler Angle
description of rotation lends itself to easier geometric interpretation,
there are singularities in the equations at rotations of 90 degrees.

The Euler Parameter déescription does not encounter a singularity in the
equations until the rotation is 180°.

The purpose of this section is to briefly describe Euler Parameters
and to state first-order differential equations for the Euler Parameters
in terms of the components of the relative angular velocity (Xl’ X, XB)
and in terms of the Euler Parameters. Then, the relations which express
the components of the matrix D (in eguation A-6) in terms of the Euler
Parameters are given.

From kinematical considerations, it can be shown two sets of ortho-

) with the same vertex

gonal axes n_,n and n

(Exr’ yr’ —zr’ ~xb’ Eyb’ LN
can be made coincidental (except in special cases involving a singularity)
by a single rotation about some fixed unit vector, k. The components of
this vector are invariant to expression in either of the two reference
frames. If the compcnents of k are given as ex, ey, and e, the

Euler Parameters will be defined as in Equation A-11.

Wl = 2 gin B/E eX
W, = 2 sin p/2 ey
(A-11)
W3 = 2 sin 6/2 eZ
w, = 2 cos B/2

B 1is the magnitude of the rotation. Physically, one would expect only

three independent Euler Parameters. From trigonometric considerations of
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equation A-11 it can be seen that the expected redundancy is given by

equation A-12.

Z W,2 = U4 (A~12)
1

i=1 s

In (reference 15), the direction cosines of equation A-6 are given

in terms of the Euler Parameters as:

1 2 2 2 2
ay = (7 Wy - ¥, - W)
A, == (WW. + WW)
127 2 Y172 3L
1
a5= 73 (W) - W)
1
4oy =3 (WJ_WE - Vs W)
1 2 2 2 ... 2
dpp = 7 (" +W," - W) " - ¥W,T) (A-12a)
a =3(ww + W W)
23 2 V'2'3 1k
a .—_i(ww + W.W, )
32 13 2L
1
dzp = 5 (szrs - wlwu)
1 2 2 2 2
Az = (" +W" - W~ - W)
And differential eguations for the Ruler Parameters are given as
x:r =l(wx - W X, + WX.)
1 2 M2%3 ) 471
. 1 (A-13)
W, =3 (-Wlx5 + WX, +wux2)
(continued)
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We =3 (wlx2 - WX+ wuxs) _
_ (A-13)

iy 1

V=3 ('Wlxl - WKy - WeXy)

Differentiating A-12a with respect to time and using A-13 gives the

expressions of A-1L which will later be used in equation A-10.

13 = Xzdog - Xdgg

dpz = Xydzz - X5y 5 (A-14)

It
>
fof
1
>
Q

33 213 123

3. ACTIVE TORQUES

The active torque applied to the satellite consists of an external
torque due to gravity gradient from the earth and a control torque generated
by the gas jets on the satellite. The three sets of control are assumed
to be mounted such that the torque from each contributes torque about
only one principal axis of inertia. Therefore, the active torque terms
in equation A-10 may be expressed as in equation A-15. Note that the
control torque terms are written as products in the respective moments of

inertia so that the equations may later be normalized to angular accelera-

tion.
N =Iu +N
X X1 Xg
N =Tu, + XN A-1
y ve yg (8-15)
N =TITu, +N
Z z 3 zg
The ng, Nyg’ Nzg are gravity gradient terms and are given in (reference 18)
as
3GM
= - -16
Xg r3 (Iz Iy)dSldQl (A-16)
(continued)
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3GM

(T, - T,)8),85

yg o
(A-16)
_ 3GM
Nzg - r5 (Iy Ix)dlldQl

where G is the universal gravity constant, M 1is the mass of point
P (earth), and r is the distance from P to P* (satellite). Combin-
ing the above two sets of expressions and normalizing with respect to

the moments of inertia yields A-17 for the active angular acceleratidns.

N
X 3GM

T =% T3 Kindy

X T

N

A SGM_ -

T - Yt T3 kydlldsl (A-17)
¥y r

N
z 3GM

I, "' + 3 k411907

4y, ORBITAL EQUATIONS

The orbital characteristics of the satellite (see ref. 16) will be
considered in this section. If the mass of the satellite is denoted by
M, the force exerted on it by gravity may be used to determine two differ-
ential equations.

-GMm .

“E Lt E-ma (a-18)

T

Es is the acceleration of the mass center of the satellite. From Figure
A-1 and kinematical considerations, the velocity, Vs of the satellite
is given as follows: '

v = rn + rén
=5 —Xr =

It follows by time differentiation of ¥ that Es is given by equation

A-19.
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a, = (& - v + (o + 208)n (4-19)

Substitution of (A-19) into (A-18) and equating coefficients of respective

unit vectors yields differential equations (A-20).

Pt - - &
r

r6 + 216 = O : (A-20)

The second differential eguation can be solved easily to yield
% & = constant (A-21)

From "Keplers's Law', the constant in equation (A-2) can be evaluated as

1/2
2
2 (1-€9)

2 T

where a and € describe the geometry of the ellipse (see Figure (A-1))

and T is the orbital time period. In (reference 17), T is given as

In view of equation (A-21) and the above constants, (A-21) can be written

as follows:

1/2
1/2(GM -15) / (A-22)

e

8]
8 = al/g(l-eg)
Substitution of (A-22) into the first equation of (A-20) yields:
1/2

¥ - all-e?) M = - = (A-23)

© can be evaluated by differentiating equation (A-22) to yield:

92



,1/2 1/2
6 = -2a2(1-6) / (om Lz 7) / (A-2h)

5. COMPLETE SATELLITE EQUATIONS OF MOTION

The results of the previous sections will be combined presently to
give a complete set of dynamical state equations. Complete equations for
Xl, XE’ X3 are obtained by substitution of equations A-1L and A-17 into
A-10. The differential equations of the Buler Parameters (equation A-13)
are repeated below. Equation A-23 may be written as two first order
differential equations by defining v as v=r. The results are given in
equation A-25.

3GM

v = SGM g g -0 - -
X¥yp=u + 3 x 21%3 ~ %4z 8 (x,a o3 = ¥plxz)

K (X, + 6dyg) (Xg + 0d;<)

. 36M - .
- M 9 a4 - - - %.ad
X, =uy * 3 ,3185) " O - 0% dzg - Xy 13)

- ky(Xl + edls)(x3 + edSS)

. 3GM =
X5 = ug * 3 kG119 7 Odgz - e(x2 15~ ¥193)
- kZ(Xl + edls)(XE + edgs)

. 1 (A-25)
W, = E(WEXS - WX, + wuxl)
W, = i( WX+ WX+ W) X )

2 2V 103 2
Wg = '(Wl p = WXy +WX)
ﬁ' = i(-'w X -WX_ -WX)

LT 2V 1™ 2%2 7373

(continued)
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2
a(l -e ) -GM--lg- oM =

2
r r

<
1

é and © are evaluated algebraically in the above state equations by

equations A-22 and A-2k, é and 5 are repeated as equation A-26 for

convenience.

1/2 1/2
. 2 1
6= a2 (1-62) " (am L)
T
(A-26)
. 1/2 1/2
: 2
o = —Eal/ (1-e2) (oM % v)
r
Equation A-25 may now be solved (numericutly) for Xl’ X2, XS’ Wl, WE’

WS’ wu, v and r if initial conditions and values for the control.
varia?les (ul; U, u5) are given and if A-26 is used to evalute 8
and €6 algebraically for substitution into A-25. The differential
equations of A-25 may either be integrated as they stand or they may be
integrated after deleting one of fthe differential equations for the
Euler Parameters and using the algebraic equation A-12 for solving for

the deleted Fuler Parameter. The former method is used in the report.
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APPENDIX B: LINEAR PROGRAMMING

This is intended to be only a brief discussion to mention a few
important ideas in linear programming. The reader is referred to (refer—
ences 19 and/or 20) for further discussion either.on linear programming
in general or on the powerful Simplex Method of solving linear programming
problems.

The linear programming problem suitable for solution by the Simplex

Method can be stated as:

Minimize c 2z, + ¢ 2,...C 2 (B-1)

subject to: Z<j =0 J=1,2,...n

and allzl + al2z2'°°a122n = Dl

(B-2)

a Z

m21 + am2z2 + ...am z =D

nn m

The a b., cs (i=1,2,...m; j=1,2,...n) are given.

s O,

Séée o; the constraint edquations of B-2 may be given as constraint
inequalities, but the inequalities can easily be reduced to equalities by
the appropriate introduction of non-negative dummy variables. Hence, no
generality is lost by considering only equality constraints in expression
B-2.

The following definitions lead to valuable considerations.
Definition:
A set, S 1is said to be convex if, given any two points Z, and

Z

2y both elements of S, then every point 2, satisfying

z, = kga + (1 - X)Eb O<sxsx 1

is also an element of S.
Definitions

A point, Z.> which is an element of a convex set, S, is said
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o

to be an extreme point of S 1if it can not be expressed as

it

z Az + (1 - l)gb 0O i< 1

Cc —a

b
It can be proved that the solution (if it exists) for z

for any z  and z (excluding Ec) in 8.

(E = 2z Zos ZS""Zn) which minimizes the functional defined in expres-

3
sion B%l occurs at an extreme point of the convex set defined by expression
B-2. '

The next step is to relate the extreme points of the convex set
of feasible solutions of expression B-2 to the aij of expression B-2.
Before doing this, Aj is defined as the column vector whose components

are B 1is similarly defined as the column vector

8. .y 8.5 8o.500:8 ..
1 23 33 mJ
with components bl’ b2""bmf Expression B-2 can thus be written as

2 Ayt e hy 4z A =B (B-3)

The theorem which relates the extreme points of the convex set of feasi-

ble solutions to the Aj of expression B-3 can be stated as:
z = (Zl’ Zp 25,...Zn)

is an extreme point of the convex set of feasible solutions of expression
B-2 if and only if the positive Zj are coefficients of linearly independ-
ent vectors, Aj in expression B-3.

From all of this, it is seen that in solving a linear programming
program, only feasible solutions generated by m linearly independent
vectors need be investigated. This would still be an enormous task for
linear programming problems of the dimension encountered in this report
were 1t not for the Simplex Method. The Simplex Method finds an extreme
point and determine whether or not it minimizes expression B-1. If not,
it continues to find new neighboring extreme points by a process using
the previously stated theorem which give values for the functional of
expression B-1 not greater than the value associated with the preceeding
extreme point. In a finite number of steps (usually less than 2m) a
minimum sclution is found. The method also is éble to identify problems

with no finite minimum solutions and problems with no feasible solutions.
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