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ABSTRACT

The effects of mass injection on the` 'Viscous hypersonic shock

layer in the forebody region (downstream as well as thejstagnation_poini)

of a blunt body are theo retically analyzed for a non-reacting gas in the

w incipient -merged layer reg mb.	 Both the normal and the streamwise
Fs

components of the Navie r -Stokes equations, along with the energy equa-

tion, are considered under the thin shock-layer assumption.	 After a

suitable coordinate transformation, nonsimilar solutions are obtained by

application of an integral method for blowing rates ranging from zero to

as large as the free-stream mass flux 	 .t'a,^	 Significant influences

t=i of blowing; on the character of the viscous shock layer are observed,
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1. INTRODUCTION

The purpose of the present analysis is to investigate theoret-

ically the effects of inass injection on the viscous hypersonic flow in the

forebody region (downstream as well as the stagnation point) of a blunt

body in the incipient-merged layer regime.	 The rates 
of 

mass injection.

("blowing") considered in the present paper range from zero, 1, e.	 solid

wall, to in some cases as large as the free-stream mass flux

A;;bri_ef description of the physical characteristics of the hyper-

60111c low-Reynolds number flow as well as a short review of previous

analyses will be given in this section, while the method of solution

adopted in the present analysis and the discussion of results will be

included in Secs. 2 and 3, respectively.

The viscous hypersonic flow at low Reynolds numbers has been

--q stab 	 - of -intertst'	 in r	 boundary-layer_pqexit years- because the thin boundaryls
Ll

approximation can no longer be used in analyzing the flow around a blunt
1-4	 1-3 7-18body at high altitudes. 	 Many analyses-	 - of the low Reynolds

number flow are available for restricted geometries. 	 While most of them

treat the stagnation region of a blunt bC 'ay, others are concerned with the

sharp leading edge of a flat plate. 	 No',analyses are currently available

for describing this low-density flow about a practical entry body,	 The

problem is, however, important ,n'that for the case of an Apollo body

under typical reentry conditions, the - thin boundary-layer-assumption

breaks down at altitudes greater than about 250, 000 feet. 	 At higher

altitudes the influence of the trans"Port properties is spread across the

shock layer and even the shock wave-itself may not be thin compared to

b
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the shock; standoff distance, Thus, a different type 
of 

flow will exist at

these rarefied conditions, Delineation of the various flow regimes has

been proposed"' in terms of the degrem of the -rarefaction of the flow.

2
Cheng introduces a "rarefaction parameter", 	 in describing these

flow regimes,ikon 12It Ixas been found from the analysis of the stagnation reg

that the parameter 4C. may be used as a meaningful parameter even,

for the case of mass injection.

As the degree of rarefaction increases, intermolecular collisions

become less frequent and molecules arriving at the body surface are

unable to come into equilibriurn with the surface. As a result, ^, velocity

and temperature discontinuities ("slip may develop at the b6dy surface.

15
The effects of these wall-ship pheripmena have been analyzed by Liu and

have been found to cause only a small change in the heat-transfer rate to

the body and the shock standoff distance.

One aspect of the rarefaction of thq,, viscous flows, i. e. , low values

of k:2	 is that the shock wavr;; is no longer thin or discontinuous. As

a result, the usual Rankine-Hugoniot relatil,onship 'should be modified in

order to account for the transport effects immediately behind the now-

V-Aickened shock wave, This has been analyzed and, the modified Rankine-

Flugofiiot relationships have been obtained by Cheng.

The effects of mass injection in the sta gnation region of a 'blunt

10 11
body have been considered by Goldberg,	 by Chen, Aroesty and

12
Mobley,	 and by Kang and Dunn. 

13 
Their results demonstrate increas-

ing shock standoff distance and decreasing heat transfer with increasing

injection rates. However, these changes are not as great at higher alti-

71
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f tudes,	 'Thus, for the rarefied-flow case, larger mass- injection rates
s

are necessary to reduce the heat transfer coefficient by the same per-
^;

^t	 ,

centage as that for the thin-boundary-layer case.

No previous analyses are known to exist which treat: tha , cases of

blowing at locations away from the stag nation region of a blunt body,	 In

the present paper this problem is formulated and analyzed by application

of an .ntegral • m.ethod approac h. 	 In an earlier paper, 13 this method= was
f

I	 ' applied to a specialized case of the mass injection in the stagnation

region,and good agreement with previous analyses	 was noted.	 The
 e

present paper constitutes an extension of the integral-method approach to

th,-e cases of mass injection in the downstream region of a blunt body at

low Reynolds number,
R 
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f 2. rORMULATION OF ANALYSIS
V

l	 Genera l Discussion and Assurn2tions-

An axisymmetric (or two -dimensional) flow over a blunt body with

large blowing at the body surface is considered. 	 The flow will be in the
7n

incipient merged-layer regime in which the Nauier-Stores equations may

be used, 1 ' '' and the normal-momentum and the streamwise -momentum r

.	 ;
^

equations are simplified by assuming a very than shock laye r compared
I

with the body radius.	 In addition, the body is taken to be spherical so

' that the radius 'of curvature 	 CL	 is a constant.	 The streamwise velocity t

component at the body surface	 U.6	 is assumed to be zero, implying

ino-slip condition which	 s reasonable for a cold-wall 	 case, i.e.,

, quantity withoutQ	 However, it can be included as a nonzero quaff ,.; ^?
i

difficulty.

,

The, equations thus sixriplified are si:rnilar' in form to the conven= P_____.

k	 —

tional bounds r 
y- 

lay e r e quations with the important exc ept ions that the
4

I^

entire flow field is now viscous, 'instead of only a very thin layer near the k
f	

Y

` wall,, and that the normal pressure gradient may not be assumed-negli-

= gihle.	 The latter c ondition is ass ociated with a non-negligible momentum

'k change in the direction normal to the body surface.t

In analyzing the present problem, the integral-method approach

has been used in order to obtain approximate solutions becau- e of the:.

advantages of the method over the more complex exact rzethod (which
r

f
,`f -	 u	 ^^	 prob-requires in most cases solution of 

the	
two-point	 boundary-value (

lem, or the use of an expansion scheme). 	 'These advantages are the ease
-	 -r

e	 i jj

1

rl
li\-	 ^r

)ll
I

t



of application and relatively small computation time, , In addition,
0

application of the integral method to the stagnation region with and-with.-

out blowing 13 and to the flow past a sharp flat plate with zero mass

injection )8 yielded reasonable results, further establishing the usefulness

of the method, In the present analysis, results are obtained in the down-

stream as well as in the stagnation region of a blunt body for various

values of the blowing rate	 and of the "rarefaction parameter''

Significant effects of mass injection on the viscous flow field

are observed.

In order to simplify the analysis while retaining the essential

features of the physical flow, the following specific assumptions are
3 introduced: 1) a thin shock layer, Z) hypersonic f low, -3) non-reacting

gas, 4) constant Piandtl number, 5) linear viscosity temperature law,'

and 6) axisymmetric or two-dimensional flow.





The above differential equations are now transformed from the

physical coordinate system to the 	 --" coordinate system by defining

Y	 zN

. a. .p	 a,	
o

In addition, we introduce the stream function ^ such that

X	 (I -tj (7T f U" and a /a y . (I+d6) ( 7 r)a ,f U,	 which

,.	 automatically satisfies the continuity Eq. (1). A dimensionless stream
s 	

c

r	 function	 ,'^ is now obtained by putting	 j *^^ ^^ r ^7T ^'
1

whichie'lds the relationship^ .p a	 7T G,..	 where -G.= U,
4

t x A	 and	 I"/  ^''	 -d f3Cheng noted that 	 can be taken
,f	 C.0-4 Y

as either the shock surface or the body surface under the present thin

shock-layer approximation. Therefore, so long as this assumption is
AD

valid, the error introduced is small, especially for flows around a blunt

body. It should be noted that the validity of this approximation should

be verified for analyses treating mass injection, since blowing tends to

	

Y	 ,
.4

thi^.ken the shock layer and change the shock shape around a body, 	 t
v.

Introduction of th^^ new, variables yields

,.	 CO 
,

and, from	 -^'/^`F	 C, *e have	 ;



z 3
Transformation of Eqs (2) ) (3), (4) yields, assuming'

J X̂ (7/T^t).

Streamwise Momentum:

z2	 Jz ^-!^
C-r	

F	 I^Z: 
ZF	 VFz+	

US

z	
19 -F3

Normal Momentum:

2-	 2.

fco-ITL - 	 (PF	 (10)

Eneray.,
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Z•^A(g)jg

For the special. case, ^€ ^ (^ i. e. , the stagnation point, Z --->

Eq. (13) gives ;

(13)

O,
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jj, [0-VZ"*

4
GMj (25)

4

c

2 4	 Ay]21ication of Integral Method

The streamwise -momentum Eq.,. ('9), the normal -momentum Eq.

(10), and the energy Eq. (11) are now integrated from F	 0 to

F= I	 By use of Eqs. (1'2), (15), (16), and after a series of rear-

rangements, the integration yields, in addition to Eq, (18) for the

pressure distribution,

cis
	

(24)

and

where

fb

b

' By substitution of the profiles of the strea°mwise velocity

and the total-enthalpy	 -py	 Q	 (see Appendix for details of derivation) in i	 'r
Y

the definitions of	 M	 and	 A4 2 , we obtain expressions for these

quantities in terms of two unknown parameters 	 G and B	 Othe r

a terms such as	 ,	 Z	 ,	 t -	 etc. , "are specified as known f

quantities and are functions of the streamwise distance	 r .	 The

. r ' quantity	 is' obtained from Eq. (16) as a`function of	 and

Thus, the problem is to determine from Eqs. (24) and (25) the 1P

_.

_	 i
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two unknown parameters 	 - and	 which characterize the flow. 	 The
}

term,	 describes a measure of the shock-layer thickness in the

transformed plane and the term,	 denotes the local. heat-transfer

parameter.	 Details of the determination of these quantities for various

valqes of the °:mass' 	 - injection	 and the rarefaction parameferf

j ►^,2	 and the discussion of the results obtained will be presented, in the

F following sec tion.

3. SOLUTIONS AND DISCUSSION OF RESULTS

3. 1	 Integration Procedure

For given 'values of the rarefaction parameter+ the mass -injection }	 A
,s a

AI rate distribution, and the-surface -enthalpYr ratio, the Eqs• (24) and (25)
rs

`
F

were numerically i^.,tegrated along the strea;mwise distance to yield solu-

ticns in terms of the unknown parameters G-- and	 'The se paaram-
i

f

^ titers are used to describe other characteristic quantities o.f 'ntearest -n-_ _	 t

the viscous hypersonic flow, such as the skin-friction coefficient, the

heat-transfer coefficient, the pressure distribution, the velocity and the y

th	 in thetotal-enthalpy profiles,s, and	 viscous shockpy p,	 a s treamline patterns

f
layer.

The numerical integration scheme adopted was the Adams-Molton

predictor-corrector method and thc: ,,computation time for integration along

i
=°-	 for a single''typical case, i, e, , given values ofu	 to	 0. 9p ^

Z	 -tb	and N	 was about 0. 7 minutes on the IBM 360 computer. lh

t -_	 0.	 1	 .Solutions were obtained fc^xb , = 0.05 (cold wall),	 betweenK

Aei and 10, 0, and	 N	 varying fr.o'm zero to as high as 1, 0..	 It is doted-that

the examples inclu*x.ed' in the presentt paper are for uniform mass-injection
,o -

tw

v	 r

* 	 r%

_	 K 



cases along the body surface in order to emphasize the applicability of

the present approach to the norsimilar flow cases. However, the present

approach is also applicable to -14"bitraTy mass - injection distributions

along the streamwise distance. All of these results display similar

behaviors in response to mass injection, and only the results of a typical

case	 1, 0) are presented 
in 

detail. However, the discussion

encompasses the entire range of results obtai ned in the present analysis.,

in the incipient -merged layer regime.

3. 2	 Heat Transfer and Stan Friction

Figures 2 and 3 show, respectively, the distributions of heat

transfer and skin-friction coefficients for uniform mass injection along

the body surface for	 K^ 0, 1	 1.0, and Kz — 10-0. It is

seen from-the figures that mass- injection- reduces _ both the- heat trans-ryti

fer and the skin frictionp a physically reasonable result which holds truefa

19-25
also for thin boundary-layer flows.	 It is interesting to note that at

a lower Reynolds number	 0. 1) the effect of blowing on the heat

transfer, expressed in terms of the Stanton number and on the

skin friction 4^	 is small compared with the effect of blowing at a

higher Reynolds nu rab e r 	 K	 10	 Thus, larger blowing rates

aj,-e required at	 K z 0. 1 to reduce the heat - transfer coefficient by

the same percentage as that f or K2 10 This result may stem from

the relative ineffectiveness of the low - density fluid existing' at higher altl- 	 Ni

tudes to respond to mass injection at the body - surface. This is more

clearly seen by. taking the f re,-e- molecular limit, i.e., K

13
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4a_

Since there are no intermolecular collisions in this regimes the effect of

mass injection on heat transfer from a, cold wall is zero for a unit thermal
I

accommodation coefficient. This trend has been found to hold in the

stagnation region from previous analyses, 12 0 13 and the present analysis

shows that it also holds true in the downstream region.

3. 3	 Surface Pressure Distributions

The surface pressure distributions along the body at various

values of ie are shown in Fig. 4 for uniform blowing rates. The New-

tonian pressure distribution is also shown in the figure for comparison,

since in the present analysis the pressure distribution at the outer edge

of the shock layer is assumed to be Newtonian, in keeping with the thin

shock-layer concept. 3 The surface pressure is less than the pressure

behind the shock given by the Newtonian theory, because of centrifugal

effects,. even.-fox-ze-ro- mass - i 'ectioA. Ot,Another interesting result is the

influence of mass injection on the pressure at the body stirface. Physically,;,,,

the mass is injected normal to the body surface, further enhancing the

centrifugal effects of the flow. Thus, the surface pressure decreases with

increasing mass injection, as shown in Fig. 4,

3.4	 Streamline Patterns

The present analysis also yields the streamline patterns Within

the ,viscous shock layer for various mass-injection rates, Examples are

shown'InFigs. 5-7 for the	 1.0 case. These results are both

-interesting and useful, since they afford a means of assessing the

meaningfulness' of the physical flow, and since the reasonableness of the$4
o confirm,   ;ii least qvalitaiively, thestreamline behavior should tend t

14



appropriateness of the present approach. Figure 5 gives the streamline

distribution for the zero-blowing case, that is, solid wall. In this case,

the mass flowing in the viscous shock layer consists entirely of the free-

stream. mass entering through the shock wave thus the stagnation

streamline becomes the dividing streamline along the body and coincides

with the body surface. When mass is now injected uniformly along the

1 ,,.-dy at the surface, the layer 'in the immediate vicinity of the body surface

consists of the injected mass and the dividing streamline is now pushed

outward from the body. The blowing case of 10 percent of the free-stream

mass flux is shown in Fig, 6 and the case of 60 percent injection (/V 0. 5)

is illustrated in Fig. 7, It is seen that the stagnation streamline is located

on the axis of ,symmetwy (stagnation line) and the follows the dividing

streamline in the downstream direction, 	 ,;vith the injected mass on one

side' and the freestream mass on the ocher.	 The thickening of the shock

Layer and the noticeably changed streamline patterns_ as a result of very

large blowing are obse ri ved in Fig, 7i	 Since the present analysis is based

on a thin shock-layer assumption, it should be kept i n mind that the j us -

tification of this assumption comes into question when, the viscous shock
10

2

layer becomes very thick (due to blowing) compared with the characteristic

length of the body, which in this- case is the body nose radius. 	 In the
Ft

absence of a clear-cut criterion which validates or invalidates the thin

shock-layer approximation-i the typical result is included in Fig. 7 to
4

illustrate qualitatively, if not quite quantitatively, the changes, in fhe vis -

cous flow field due to very	 °g	 long-taerates.of mass injection along-, 	 e body

surface.

15
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3, 5	 Velocity atnd Total-Enthalpy Profiles

Based on the values of the parameters 	 G and	 obtained r

b' from solution of the Eqs, (24) and (25), the profiles for the streamwi—p -c`

velocity and the total enthalpy have been constructed using the expressions

given in the "Appendix.	 These profiles are shown in Figs, 8 through 11

for 	 0 and^'^	 .= 0. 1	 cases.	 Despite the polynomial approxima-

Lion fl-it has been us ed, zt is seen that reasonable profile descriptions
r

r' ^ ^,"	 the dotal.are obtained , or both the streamwise velocity -0-	 and for r

+
enthalpy	 As the shock-layer' thickness incre as es in the downstream

r,

di^.ection,i. e. ,	 increasing	 the edge values of	 and	 F,	 show
p G

slight reduction,	 signifying the increased'`va,scous and conduction effect's
i

in the shock-transition zone which modify the Rankine -Hug on ,ot conditions, 3 r }	 '

^r 3. 6' Co m, arison with Other Results
a

In an earlier paper l "i treating the effects of blowing in the stag-; F- -

nation region b	 essentially the same integral a	 comparison wasy	 _	 Y	 ..	 g	 app roach, corn ari

made with the more exact analyses (analytical or finite-difference method)

t for heat transfer and shock standoff 'distance in the stagnation region of a

2	 12 't
Theseass injection.	 .Chese comparis onssolid body surface	 and also with massY

r
k	 .

are included here Fi s. 12 and 13 t 	 completeness	A(	 g	 ) for the
,
 sake ;

^

further comparison of he,^t transfer `is given in, 	 14 whict^^ "shows thep
IA I	 -	 r.

effects of blowing for ' `	 'g	
^r '

rious values of	 k^	 It may be seen from then?

{ figuress that t he	 resent results agreereeg	 p	 g	 well vc ith the more exact results

in. the stagnation region. r

i r ^•

+ n°

r

'	 t

t

i

" r,

l

r

a
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O
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Since no other downstream analyses (either, exact numerical or

experimental) have been found which treat the problem of viscous

hypersonic flow over a, blunt body with large and small 'blowing,	 was

not possible to make comparisons in the downstream region.	 However,

Chow
18
 has analyzed the rarefied flow past the sharp leading edge of a

flat plate using the integral method.	 He compares his theoretical results

with experimental data and finds good agreement. 	 Although the -validity
r.

of the integral -method rests on the soundness of the assumptions and the

agreement with experiment or exact solutions, the lack of eperimental

data for rarefied, viscous flow downstream of the stagnation point makes

extensive comparison with experiment impossible at this time. 	 Never-

thel,,ess, the 'purpose of the present analysis has been insight rather than

tj precise numerical calculations". 	 Thus, based	 the comparison mentioned

-previously and -On the - results - obtain-OTI, in the pre sent analysis as shown

in Figs. 2 through 14, it appeaJrs that the integral-method approach
xi _)^

presented in this paper -provides a, sim p le and useful method in analyzing
11

the rarefied, hypersonic, viscous flow over a blunt body with large and
1

small  rates of mass in'jection.
6

N

17

Oil	 woloo	 W	 0MMM	
-0

1`010 
oi F 
ow	

"0



r

y

,w

' A

q

4, 'C ONCLUSIONS

E In summary, an analysis of the hype re, onic,_1ow Reynolds-number

flow over a blunt body with blowing has been presented for a non-reacting

as in the inc ipient - me rged layer regime b	 application of an integral
g	 ^	 g	 y	 g^	 Y'	 Pp ,	 g f

method.	 Both the normal and the strearntw'ise components of the Navie-r-

Stoke s -equation and the energy equation have been cons idered unde r the
t 	 r

e

E thin shock-layer assumption.	 Solutions were obtained for various blowing x	 r
3i

f
;	 t

rates and de . rees of rarefaction in the -downstream region as well as in
g	 g

j the stagnation region.	 These results indicate significant effects of blowing

and rarefaction on the heat-transfer rates, the skin friction	 the st ream-

line patterns, and the pressure distributions within the viscous shock

layer in the forebod	 region of a blunt body.	 One major result iY	 '^	 6^	 y	 J	 s that,
„k as the degree of rarefaction increases, larger blowing rates are required

,r
-

dto produce s^ nificant effects on
-the

-flow.  P_	 _	 _fig
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APPENDIX

Streamwise Velocity Profile

For the transformed streamwise velocity profile "[J' F assume

a third- degree polynomial for::

	a 	 a Z	 Q F3
	

(A1)

{
where the c oefficients	 ad	 z a. are to be determined from

the boundary conditions, The boundary conditions used are the conserves
{

tion of mass flux, Eq. (16), the strea, wise-momentum equation, Eq. (9),
i 	 f

specialized to the body surface (F 0), and the modified Rankine-

Hugoniot condition, Eq. (15). They are:

So

2.

tDIT

a	 .

1	
s

f...., Q (49̂F.,^	 a ,,2	 e	 1
where	 K-	 ... Zz Z 	 Substitution of Eq.(Al) with the 	 i F

first two conditions in Eq. (AZ) yields, . *or the streamwise velocity pro-

f ile: 	 i7

L.	 3	 `' ^ ^ -^- 1^ 8 -^'z --^ N	 3	 (M)
iAil

where Ng = ICG1JlZ ,and ^^ 2 f -. kG J/3) Combination ^.

of E, . M with the last_	 q (_ )	 condition in Eq. (A2)_ gives	 ; ..
F.

a	 f a	 ^ 2 	- Q2 -­C^-^_ 	 1 )
(A4)5tZNs + Qz(I-t- M813)

_

z3
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IW;	 Total.-Enthalj2v Profile
Ar

For the profile of the total, - enthalpy, we put
f

(A5)

i
where	 ,	 are to be determined froim, the boundary condi -

tions, These boundary conditions are obtained from  matching Eq. (11)
E

at the shock interface with the results obtained for the shock - transition
3

zone, from specializing Eq. (11) to the body surface, and from the modi-

fied Rankine -Hug oniot conditions. Thus we have
.s

2
d

	

A	 Q	 r i

a e

	

.	 Q

V..d	 lwy r,1^w^

	

.	 b	 a	 b	 i

wberl

	

1pi 	 1>R

	

FBI	

^^ 	 ".

	

,j	 H{

Combination of l qs. (A5) and (A6) yields, for the total-enthalpy profile	 ^ 6

O =	 (N2 N3 -	(A7)
r
4(N -^ Q M^ )F -tN6 t Q O F

,	
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