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ABSTRACT

A three-dimensional model is developed for the
representation of circulation in the Venusian atmosphere
that includes the effects of both polar cooling and diurnal
temperature variation due to the apparent motion of the
Sun. The description of the dynamics of the circulation is
based on the Boussinesq approximation for a compressible
fluid and an analytic expression describing the flow pattern
is obtained. The results show that the mean atmospheric
motions are essentially meridional, except in a narrow
belt near the equator, at a latitude of about 10 0 , where
the direction changes abruptly to zonal. The flow pattern
is not symmetrical and rotates about the polar axis of

vVenus with the period of the Venusian day.
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GENERAL CIRCULATION IN THE ATMOSPHEI
OF VENUS DRIVEN BY POLAR AND DIURNA:

VARIATIONS OF SURFACE TEMPERATURE

I.	 INTRODUCTION

Many space explorations are directed toward planetary
studies, especially towards investigations of the two nearest
terrestrial planets, Mars and Venus. 	 As part of the effort to
improve our understanding of the Venusian environment, this
paper examines a three -dimensional model of the general circula-
tion in the atmosphere ;)f Venus.

Many elaborate numerical models have recently been
constructed for the description of the general circulation in-

!_, 2 s33	 Howe verEarth [	 0the atmosphere of	 for other planets
the available relevant empirical data are limited and often also
uncertain; therefore, use of the above mentioned models ., which
consume large amounts of computing time, cannot be justified.

A Even investigation' of simpler models of planetary circulation,
such as, I for example ., the model proposed by Leovy and Mintz[41
or the numerical dishpan experiments performed by Williams 151

require considerable computing time, rendering parametric
studies rather expensive.

We felt, therefore, a need for a simple but meaningful
model which would admit an analytic solution and thereby exhibit

i tly the dependence of the flow pattern on different para-explic.
meters of the problemb	 Such a solution would facilitate greatly
the study of the general characteristics of the atmospheric
circulation ., provide considerable physical insight into the
problem ,, and assist in planning future	 more exact calculations,
as well as in evaluating different alternatives for the d-irect
investigation of Venus' meteorology.

Except for a few isc) ,l	 -1jeases, the possibi^jty ofatec
obtaining an explicit solution to a f. ,aid dynamics problem,
valid in the large ., requires "I"linearity of the governing system

E61of different ial equations * Recent ly Ohring, Tang, and Mariano
have studied the circulation in the atmosphere of Venus with a
two-dimensional ., time - indep endent model in whichthe gas is
heated at the bottom by the surface of tln-e planet and the motion
is described by a linear, ve rsion of the Boussinesq approximation

a.	 Nei
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to the equations of fluid dynamics. 	 Their model describes
the circulation that is symmetric about the axis Joining the
subsolar and antisolar points and consists of identical
closed cells on vertical planes above each great circle
passing through these two points as shown in Figure la.

The model of Ref. [6) may also be applied in the

It case when the flow is symmetric about the polar axis and the
temperature on the surface varies with latitude only. 	 The
circulation pattern will then consist of cells in the vertical
planes above the meridians between the equator and the pole
as shown in Figure lb -

However, because of the slow rotation of Venus,
equator to pole and day to night temperature differences can
be expected to be comparable in magnitudes and therefore a
three-dimensional description is more appropriate. 	 Further-
more, the average wind velocity computed from the above model
is of the same order of magnitude as the velocity of the sub-
solar point along the surface due to the apparent motion of the
Sun, and therefore the time independent treatment does not
appear to be adequate.	 In addition, the linearization of the
model equations has to be justified.

E In view of the above considerations we wish to study
the circulation pattern determined by both the polar and the
diurnal temperature variations. 	 Consequently, we shall develop
a three-dimensional, time-dependent model containing these
effects.	 The temporal varia x--",O- n of temperature will be
described by a harmonic behavior with the period of the Venusian
day.

We believe that our formulation includes most of the
essential features of the dynamics of the atmospheric circula-
tion on Venus.	 It will be shown that the results obtained with
the present model differ considerably from those derived by two-
dimensional ,, time-independent treatments.

Thepaper is organized as follows:	 the problem is
formulated in See. 11 where the assumptions and approximations
are stated.	 The analysis is described in Sec. III and the
results are presented in Sec.	 IV.	 Finally, in Sec. V, the
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11. FORMULATION OF THE PROBLL-M

A. The Basic AnDroximations

We shall assume that the vertical extent of the
atmosphere in which the circulation is to be determined is
much less than the smallest scale height D defined as follows:
if f represents any one of the state variables, temperature.,
pressure, or density, we express it in the form:

f(xoy.,Z^t) = fm + f 0 (75) + f(X,Y,Z,t)
	

(1)

where f M denotes the (constant) space and time average of f,
f 0 is the variation In the absence of any fluid motion, and V

is the variation resulting from convection. Any scale height
is then defined by:

df 0 _1D	 (2)fm dz

If d denotes the vertical extent o.,,P the region of interest in
the atmosphere, the previously stated assumption requires:

d	 (3)D

Clearly ., condition (3) depends on the--physical'
parameters as well as on the vertical extent d which mustt-be
determined from the solution. After the results are obtained,
we shall verify in See. V to what extent inequality (3) is
satisfied. At the present time, we merely state it as an
assumption.

D.,, The Coon dinate_System and the GoverninE Equations

Since the depth of the atmosphere, d ,, is much-.smaller
'than the radius of the planet ., R. it is convenient to employ a
Cartesian coordinate system wi +,,b the x-axis pointling east along
the equator, the y-axis pointing north along a meridian, and
the z-axis pointing upward in the vertical direction. The
origin of this coordinate system iss-placed at the sub8olar
point at some initial reference time; at this time the antisolar
point is at x = 7TR 3 y: = 0 and the pole Is at y = ffR/2.

Assuming inequality (3) to be satisfied, we may apply
to the Navier-Stokes equations including a gravitational force
the Bossinesq approximation for a compressible fluid ,, as

1 wo0i	 WOO



j

^'j,

I

BELLCOMM ► INC.	 P. 4 -

derived by Spiegel and Voronis, [73, This approximation is an
improvement of the original one introduced by Boussinesq in
which the fluid is incompressible and the density changg is
due to thermal expansion alone giving rise to a bouyancy force.
The improvement in Ref. [73 aonsisto of taking into account
the additional effect of the compressibility by including, in
the energy equation, the work done on the fluid and is there-
fore a more adequate description of a gas.

With the above stated approximations the system of
equations for the flow variables is

v  = 0

Dv

Dt	
P 1. alp--p 	 aaT+VV 2 v
m

D T	
T 
0	 2+ w (- +	 K V T	 (6)

Dt	 a z 	 c p

where the vector v = (u,v,w) denotes the velocity perturbation
about the state of rest, T is the temperature perturbation, p
is the pressure perturbation, P m is a representative mean density.,,
c is the specific heat capacity at constant pressure ., E is thep	 c p

adiabatic lapse rate ., g	 is the gravitational acceleration,
a is the coefficient of thermal expansion, v is the eddy coefficient
of kinematic viscosity ., K is the eddy coefficient of heat conduce

tivity ., and D denotes the sLibstantial derivativeDt

D = a + V
Dt	 9 t	 —
	

(7)

'Throughout the analysis ., the mgs system is used; the units of
the various quantities are therefore: P (gram/m3 ), p(gram/m-se 02),_
Ir( O K), y(m/sec), g(m/sec 2 ), c p (m 

2 /see 2 - O K), v and K(m 2 /see),
and a(l/OX).

Lin Eqs. (5) and (6) we have neglected the Coriolis
forcO in comparison to the viscous forces and assumed that -the
radiative heat transport is small in comparison with the con-
vective transport. The second assumption is a good approxima-
tion in the description of the lower atmosphere where convec-
tion is the most effective'process of energy transfer.

...... ...
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Eddy transport coefficients v and.. x are used because
),T the analysis is intended, to apply to large scale mean motions

In the atmosphere, where the scale of turbulence is much smaller
than. the scale of our interest. 	 The implicit assumption here

3 is similar to the Prandtl' s mixing length hypothesis,, where
the apparent coefficients for viscosity and heat cond uctivity
are adopted.	 Without further justification, empi pical constant
values for the coefficients v, K, a, and c 	 will be used.

We are interested in the response of the fluid to , the
temperature variations on the surface of the planet. 	 We shall
consider only those surface temperature changes which are small

} ^.n comparison to the mean surface temperature Tm 	the experi
mental evidence indicates that this may be adequate to descr be

IJ
conditions on Venus.	 We can therefore define a small parameter c
as the ratio of the maximum amplitude of the surface temperature

' variation to TMO and expand all the dependent variables in powers
s of e; for e = 0 the velocity is zero by hypothesis. 	 In this

formal expansion procedure, v- vv and V- VT terms in Eqs .	 (5) and
(6) are of second order in e and may be neglected in the first
approximation	 The first order equations are then as follows

v•v	 (8)

av
- P 

vp - FaT +v v^v	 (	 )

r

2

fat 2-YW = k v T 	 (10)

where	 1

3 Y	 >	 p	 (1	 )
r
W

cp o

and Yo is th y': actual lapse rate in the absence of motion.	 {

0.	 The Boundary Oonditions

To complete the formulation of the problem Eqs. (8)
(9) and (10) must be supplemented with suitable boundary condi-
tions.	 At the surface of the planet, z=0, the temperature should
be determined 	 the heat flux balance.	 However, this i s a`'

ll ' *All the dependent variables should contain subscripts 1 to
indicate first order quantities in e; however, with no intention

M	 - to calculate the second order corrections '.n this -re o rt , thepsubscripts are omitted.

IT
r
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; difficult task requiring a solu tion of the radiative transfer
equatJ.on, in pr actice, as an alternative, the surface temperaa,.
ture may be measured. 	 re ently, even such information i
very limited ao we de not know the entire surface temperature
distribution on Venus; at bent we can only estimate from available
information values at some isolated points, like subsolar and

- antisolar points and the pole.	 Our approach therefore, is to
assume the temperature distribution as known and to expand it
in a Fouri er Series.	 From this series we retain only the funda-
mental modes along equatorial and polar directions; the former
also displays a harmonic time variation.	 Accordingly, the
surface temperature variation is taken to be the following:

T(x, y ,o t) = Tp Cos	
R + 

Tn cos	 (R - wet)	 ^,os	 ^^.

.t t,,*here w o is the frequency associated with the solar day on
Venus; Tp and TM denote the amplitudes of the polar and diurn al

temperature variations.	 These modes exhibit the required
i monotone variation between the subsolar and the antisolar points,

- and between the equator and the pole, as well as the periodic time
variation; there fore, they should determi ne the genera l features

is of the circulation pattern.	 In our linear dnelysi-,4 the effects 
of higher modes can always be superposed when more detailed

' a inPormation be c omes available.

The	 nplitudes,	 '	 and	 '	 that satisfy the absolute
temperature, Ts,s at the sub olar point, Tas 

at the antisolar

}t point, and Tpl at the pole are

 i Tn 2	 (Tss Tas)

,. ^Tp a.,
_(Ts	 + r

fas ) r,Cpl

and the mean temperature TM
 is

TM (Tss + Tas) 2 
Tpi

T	 T
n

i

The larger of the ratios ox
M	 TM

is the perturbation parameter
r e introduced in Section ll	 .

1

t
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At z=O, the velocity satisfies the usual condition for
viscous flows;

u = v = w = 0	 (13)

At large distances away from the surface It is
required that all perturbations remain bounded, i.e., as

0:

<	 00

U	 <	 00	 (14)
<	 00

w	 <	 00

III.	 THE SOLUTION

Since Eqs.	 (8) 'to '10)	 are linear with constant
coefficients it is natural to try the following form of

ry w solution:
rr

Te' xe 6y e f3ze-iwt

U	 U
^,q

IV	 -V

W	 W

p	 P

here the amplitudes, T, U, V, W ) P and the phases a. 	 6.,
axe to be determined.

Because the boundary condition (12) Is in the form
of a-sum of polar and night coolings ., the solution will con-
sist of two separate contributions due to these two effects;Jp

by linearity, of t'he problem ., the final results will be super-
posed.

Substitution of (15)	 into Eqs.	 (8)	 to (10)	 results in
the following linear,, homogenous system of algebraic- equations
for T,	 U 3 V, W,	 and P:

'U +	 6V	 RW	 0

2	 2	 2
Eiw-F%) 	 +6	 )JU	 P	 0

P m

71
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EiW+V(a2+62+02 jV	 p	 0
PM

[i(O+V (a 2 +6 2 +^ 2 )IWP + Sad' 0	 (16)
PM

	

2+6 2+ 2 )3T	 yW = 0iw+K (a	 ..

The above equations possess a nontrivial solution if44,	 and only if the determinant of the coefficients vanishes; this
condition leads to the following relation:

22 +^^	 +6 +$	 +6 +^	 +62	 222	 222	 22+6 Eiw+v(a	 )]Eiw+K(a	 )]+(a	 )yga	 0

Since a ,, 6 and w may be determined from the compatibility require-
ment for the solution and the boundary conditions, (17) should
be considered an equation for a.

With (17) satisfied, the amplitudes are determined
from Eqs. (16) as ,-

2
U	 [iW+K(a +6 22 )IT

Y ((X2

2 2Un-' V	 FiW+K(a 2 +6 +0 )IT

{a 2 + 2 ) (18)
4-11

W CiW+K(a 2 +6 22 )IT
Y

P
2	 2	 2	 2+6 2	 2PM	

W-[iW+K(a	 +6	 )Ili	 - V(a	 +5	 )IT'
Y (a 2+8 2 )

For the planet Venus the following values of the physical
parameters in the above equations are taken a-s representa-

tive	 [6].

a -32 x 10	 per degree

9 8.8 m/ sec 2-

-2,x 10 3o c/ m (19)
2

K	
3 in /sec

R 6 x 10 3 km

w 27/117 days

NOW m"009"	 NO-"
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It is shown in the Appendix that the solution of
Eqs. (8), (9), and (10) subject to the boundary conditions
(12) .1 (13), and (14) is:

T
n cos 

X	
Rcoso Y f 

It 
(Z) + 

Tp
	
Rcos	 9 Ir (Z)

K	
T	

3	 X	 Y
u = -y  R 2n b sin 

T^ 
Cos i^ fu(z)

V = 7K R
*f Tn	 R

0 cos X sin	
v
f (Z) + T

p 
C 3 sin 

R 9
 (Z) (20)

v

W = E
Y	 Tn 	 R	 Rb 

2 
Cos 2^	 Ycos	

fw	 p	 R(Z) + T c2 cos 
Y2 

9w (Z1 
P v K 2	 5 X
m	 R	 [b T cos	 c os i	 1 5	 2Yf (Z) +	 C T cos, 7 9 (Z)l

p = -2 -	 n	 R	 R p	 p	 P	 J

where	 b
^z Jiz2

f (Z)	 e	 e	 + c o s 	 bz 4 . 	sin	 bz
T	 2	

Y'-3-	
2

_bz

	

f
u 
(z)

	

	 f
v	

3
2(z)	 e	 e	 cos -- bz	 sin !a bz

v 37	 2

b b z
z F2! 2

v-3
ef	 le	 cos —2 bz +	 sin 

3
3 bz

w	 -2iAl 	L V-3

(Z)

b,	 b-Z	 z

 2 e
(21)r

2
3 bz	 sin 33 bze	 + cosf (Z) 2	 2p

vr3-

	

2
cz - -fcz	 l	 _

9 (z) 	e	 e	 Ln	 c
2	 1 S:+ Cos	 cz +	 2 

Zi

2
Z --fe Z

vf 3-

	

9 ( 7
)
	 —' 2 e	 cz

,	 e	 Cos —
	

' s in  f C f'113s. 3 2
/-3

--c z2 	 rzcz
V -3

9w

	

(Z)	 2 e	
e	 c os  —2 C z 

+	 sin,, 2-cz
-

ME-
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- cz ^2 cz

9P
 (z)	 e	 e	 + eos	 cz -	 sin	 cz

33

and
l

b 2y a

R2vk	 (22)1
C 4Yga

R,2 v ►c

In (20) we have introduced a coordinate system moving
with the surface velocity of the subsolar point:

X - X - uo t, uo	 WoR

Y	 ,v (23)
z=z

t	 t

In this coordinate system, the solution appears to be stationary.

For easier visualization the functions f , g , f , g ,
T	 p	 p

 4E

£u,	 fv, gv , fw and gw are plotted i	 F193.	 2 and 3.

TV.	 DISCUSSION OF RESULTS

Even though it is explicit, the solution (20) obtained
in the last section is not very revealing by itself.	 We wish
to analyze it in the present section with the intention of ob-

. taining a graphical representation that is easy to visualize and
' to interpret.

We begin by examining the behavior of the solution
in the vertical plane which pas.,ses through the subsolar _point,
an.tisolar point and the pole.	 In a coordinate system fixed at
the subsolar point, , this plane may be represented by the plane
X=O, with the Y-axis extended beyond the pole to the antisolar
point at Y ffR.	 It is clear that in the absence of night cooling.,
the circulation pattern would consist of two cells symmetric
about the pole as shown in Fig. lb.	 In the general case, however,
we should allow the pole to be cooler than both the subsolar and_
antisolar points, but not by the same amount, and therefore twou

-$ asymmetric circulation cells are to be expected.	 The boundary be-
' 	 ' k y	 approximately from thetween these two cells may be determined

vanishing of the y component of the velocity ., because they are
s separated by a dividing streamline along- whic:'z the flow is pre-

t dominantly in the wverti.cal direction.

_	 r	 ,

_	 _
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In the plane X = 0, since c 3 = V'2-b 3 , we have

1
	

v= - A Tnb sin	 fv (Z) I + 2/-2 0 cos R f (ZY	 (24)y 2	 R	 v
Ii
	 3	 ^L	 Y gv(Z)

TPwhere	 T is a measure of the relative importance of polar

and night coolings. From Fig. 3 we observe that
ij

V(Z)
fv(ZT

and therefore the condition v 0 leads to

I + 2 /2	 cos Y 0.	 (25)R

For a typical value of	 e,	 say	 1.5, we find

1050R

i.e.,	 the point in question is located on thz night side 150
off the pole.	 We shall refer to it as the "circulation pole
(CP) in analogy to the magnetic pole.	 Thus, the circulation
is not symmetrical about the pole because the thermal driving
force is larger on the day side than on the night side.

nL
The occurrence of two asymmetrical circulation cells in

the plane of symmetry of the flow pattern is the first consequence
U, of the three-dimensionality of the analysis. 	 The structure of

the flowfield over the remainder of the globe will be examined
in the next paragraph.	 Here we only observe that, as the polar
coolin g T	 tends to zero ., our solution reduces to the two

p
dimensional symmetric circulation between the subsolar and anti-
solar points investigated previously in Ref. 	 [61; as the night

;s' cooling Tn tends to zero the circulation reduces to the corres-
ponding pattern symmetric about the polar axis.	 A graph of the
position of the circulation pole as function of 8 is shown in
Figure 4.

We will now turn our attention to the examination of
flow behavior in horizontal planes z = const.	 From Fig. 3 we
see that the horizontal velocity components u and v reverse
directions at an altitude of about 20 kra. 	 The direction fields

arc tg v , constructed at two altitudes, z = 10 km and- z= 30 km.,
u

are shown on the Mercator projection,of the globe in Fig.'5. 	 The

Pv^

"14 4
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result demonstrates that the directions are, to within only a few
degrees, almost exactly reversed for all x and y. This indicates
that the traj ectories of fluid parcels very nearly lie on surfaces,
not necessarily planes, that extend vertically upward from the
surface of the planet. These surfaces, together with the informa-
tion about the circulation pole, are shown schematically in Fig. 6
that may conveniently be thought of as the invers e of the Mercator
projection. We see that , depending on the altitude level, the gas
motion is mainly along the meridians, away from or towards the
pole, to within 50 or 10 0 latitude where it turns abruptly into
the equatorial direction. We wish to note here that the curves
in Fig. 6 are not the trajectories of individual fluid parcels but ,
in the Fuler's formulation, the projections of the local ^relocity
onto the surface of the planet.

The most effective way of discussing any direction
field is to examine its singulard,ties. In our case the two-
dimensional direction field in a plane z = const is given by

(26)-arctg

where

v tg R	 gu sin Ru= ----R + 2^ e f	 R
tg R	 u	 sin 'R

(27)

The--singularities of this field, i.e., points where
^R v and u vanish simultaneously, are at the subs p lar and anti-
,_; solar points and at the circulation pole. 	 Fronl the examination

of the limiting behavior of the quotient	 at these poa.nts we
determines that at altitudes between 0 and about 20 -1<m (see Fig. 	 3) ,

k
.the subsolar point and the circulation pole are a sink and a

source respectively; the roles become reversed above 20 km.	 The
x antisolar point is a saddle point for all altitudes.	 The behavior

of the field at the singular points and in between is shown
schematically in Fig. 7.	 An immediate consequence of this behavior
is the _ fact that, unli ke in the two- dimensional case, the circula-
tion ce ?.ls are not closed at the antisolar point.	 Rather, they
bend tlh' ere abruptly into the equatorial direction and extena all
the way to the subsolar point

, Combining the information contained in Figs . 4 through
4`

7 we	 i s a
eFattte8n.circulation The 	 strip srPpresentkschematicall

T
p atte rn.	 y-

g
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individual circulation cells. It is seen that the gas rises at
the subsolar point and then flows away from it horizontally in
all directions. Those elements which are nearly in a meridian
plane will approach the circulation polewithout much change in
direction, those which are nearly in the equatorial plane will
continue in it for some distance and then make sharp turns into
meridional directions. The closer the cell approaches the anti-
solar point the sharper the turn. Above the altitude of about
20 km the flow directions are reversed to complete the pattern.
This flow pattern may be best visualized by folding Fig.-8 along
the diameter connecting the subsolar and antisolar points so
that the equatorial and meridional planes are perpendicular.
We emphasize here again that the lines in Fig. 8 are not the
trajectories of fluid parcels but rather indicate the results
of simultaneous measurements of the horizontal flow directions
at any given time

For an observer fixed on the surface of the planet,
the flow pattern depicted in Fig. 8 rotates about the pole with
the Sun at the frequency ,w

0

For the values of parameters listed in (19) ,, and
Tn	15°K, T

P = 22.5°K, mT	 6000K, our solution yields the

following typical magnitudes for the velocity components:

u = 15 km/hr.

V 35 km/hr.

w	 .15 km/hr.

These magnitudes agree quite well with previous computations
[6,8] from two-dimensional treatments, even though the flow
patterns are completely different.

V.	 CONCLUDING REMARKS

Having an explicit expression for the solution and
a visualization of its global behavior we are now in a position
to examine critically the various approximations involved.

The-:Boussinesq approximation is probably the weakest
assumption in the analysis.	 It is strictly valid only for
motions with vertical extents which` are smaller than any
appropriately defined scale height of the fluid.	 When the
scale height is defined by Eq. (2) 	 on the basis of temperature
we obtain, for the lapse rate of 8 0 /km and a mean temperature
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of 600 0 1^ D = 75 kin. Since, from Fisure 3, d is about 50 km
the assumption expressed by inequality (3) is only margInally
satisfied, However ) the lapse rate of 8 0 /km and the atmosphere
depth of 50 kin are both conservative values and therefore the
actual situation may be more favorable. The scale height
based on pressure or density Prom a hydrostatic calculation is
only about 15 km and our solution is, strictly speaking, not
valid beyond this range. Nevertheless, as argued by Goody and

Robinson [91 , the Boussinesq approximation may still be valid
if appropriate local mean values for pressure and density are
employed. In spite of the above uncertainty, our approach
yields a solution which reflects many qualitative features of
the problem.

Now, we wish to examine the question of the nonlinear
transport terms in more detail. Within the framework of our
expansion procedure, the ratio of the neglected momentum
convective terms to the retained viscous terms is proportional

V 0 Vv
to F, 

VV 2 v	
From the explicit expressions for the solution

v a VIV

(20). we see that	 is bounde6 , for all x. y, and z.

Heat transport terms ^ir_e estimated similarly. For the particular
vAlues of the parameters that characterize the atmosphere of Venus.,
(19) , and T n = 150K, Tp = 22-5 0 K ., Tm = 600 0 K, the num,erical values

of E (v - Vv), amount to about 10% of the viscous terms, and
C (v 1, 

7,r) 
to about 15% of the heat conduction term. Thus the

resdits are consistent with the approximations of the analysis.

We may also gain better understanding of the circu-
lation phenomena described in this analysis from the following
two considerations. First, the gradient operator and the
velocity vector of a fluid circulating along closed, convex
streamlines in a plane are nearly p,erpendicular and therefore

- their scalar product is small (it would vanish identically in
the case of circular symmetry). As mentioned in Sec. IV ., and
as seen from the results presented in Figs. 6 and 8 the flow
described by our solution takes place predominantly in vertical
planes and therefore the above argument applies approximately'. 

[81This reasoning has been described in more detail by Bohachevsky

Second ., the present problem differs,essentially from
the classical Benard problem in which ther^mal convection results
-from,the instability caused by an excessive vertical temperature

A,
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lapse and the nonlinear terms are required to checX the growth
of the instabilities. In our problem the motion is generated
and sustained by the horizontal temperature rradient along the
bottom surface perpendicular to the force of gravity. This is
contained in the assumption that the unperturbed solution is
the state of rest. The linear description therefore appears
adequate provided the surface temperature variations are small
compared to the mean temperature.

In the present paper we have assumed, that the atmosphere
is heated by a pres m ribed temperature distribution over the
surface of the planet ,, and we have described the resulting
circulation pav', tern in a Cartesian coordinate system. We have
also developed a model simulating some optical properties of the
atmosphere, in which the thermal driving force is applied not
only at the bottom but also at an arbitrary altitude level in the
interior of the atmosphere. This model, which has been used in
connection with a two-dimensional circulation pattern, is described

VJ	 181in a separate Bellcomm document

1. 0. Bohachevsky,x.

IOB1014-	 1mc	 T. T.	
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APPENDIX

In the following subsections we present the details
of the computations of polar and night cooling contributions.

A. Polar CoolinG

For the fundamental mode compatible with the first
term in the boundary condition, (12)s which represents the
polar cooling ,, we have the following values for a, S. and w:

0

2 J.6	 +	 (Al)

W	 0

	The expression for 0 from 	 (17) is now

	

2 2	 32	 +6 )Yga	 3	 2 2 (A2)

With the values of the parameters specified by (19)

and (Al) the ratio of the seconC to the first term on the right
2 2band side of (A2) is about 10

_ 5
. Therefore +6	 on the

right hand side of (A2) may be neglected to yield:

^N 0

116
O(l)	 (A3)

where:

4. y g a)"U-	 (A4)2R V K

The six values of R are. -therefore given by:

ink/3
$k 	 c e	 19 k	 1 $ 2p * o * 6	 (A5)

With the same approximation as in (A3) -6 <<
the solution is now given by:

j

A.!

111CY ^77"_-
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2 "1 r
6

: 1	 64Y OkLI
e 0T 	 e

J=l k=l

MIF	 U	 0

V	
K	 03	

6 4,4V O k z
y L-0 6	 k ko	 e	

(A6)j k

W	 0 2T 6
", y 

e 
OkzE 'k ke

k

OMVK	 5	 6-t y Oki

k 
T k e IJ e

j k

The boundary condition at z 4w requires that Tk 0
when Re a k >O. Therefore TI -r T5	 T 6 = 0. The boundary con-
ditions at the surface z = 0 and Eq. (0) then lead to the

Ofollowing algebraic equations for the remaining T k 
IS

T +	 + T
3	 .4 11	 2	 TP

U 22	 2 = 0a T +	 T 4	T	 (A7)
3	 4	 2 2

T +T + 0 T	 0
4	 23 3 	 4	 2

The solution of (A7) is:

T Fp

_T	 T(l+-—! i)Tp	(AB)

M.

4

T	 i)T2

Al
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The primary flow variables are now given by:

T	 T cos ?Y- g

	

p	 R

x	 u

V 	 T- R c sinqgv(z)2

, W Y 
Tc2 Cos	 g

	

p	 w( )
r

where

-2cz -2cz

g (Z^	 c z+ 1 s	 7.a e	 >	 -	 2
czT	 2	 e	 +cod	 ^,

3

-1 - cz 2 CZ	 /-3_ 1	 3̂ z	 AlO

	

(z?	 2 e	 ^ e	 -cos	 cz	 sin	 c	 (	 ?9 2	 3_3 	2z
x

_7 cz	 -2 cz	 1	 ^3.k	 1	 ,.	 e z^	 ^	 3. n

	

®	 c^ +	 s

	

gw (^)	
e	 e	 -cos 2 c2

u

4W.r	 T

1	 2oZ	
-^c2w

2 +cos	 cz-wl sin c 
2

k The plots of the functions g T , gp , gv,, and g
w 

are

4 shown in Figs. 2 end 3_.

„
B e Night Coolin g

For the fundamental mode compatible with the second
resents the effectterm in the boundary condition (l2) , which re p

of the night cooing we obtain the following values of a,
and w

. yr

.3

1•
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10	 4 2,4	 R

The value of	 may now be determined from (17) which
2

is a cubic equation for 	 In- order to simplify the algebra
2	 —2 it

)et us compare the terms w and K$	 If we take w=W
0 117 days,

K from Eq.	 (19). and R calculated in the previous section. for
W=O ,, we find that

W	 6 x 10-2
K5f

Therefore, as a first approximation, 	 to our linear model ., w
may be neglected in calculating R. 	 Physically, this means
that the change in the perturbed atmosphere by conduction
follows the change at the surface without' - appreciable time

1 2	 1delay, since (K$	 is the characteristic conduction time.
The resu,-, ting s is

b(l) 
1/6	 (Al2)

2ySab	 (A13)2R VK

The six possible values of	 therefore are

ixrk/3
S	 b e	 2	

(A14)
k	 k	 1P

Thus ., following the sameprocedure as in -the polar-,
cooling ., we find that in the present case of night cooling
the solution Is given by:

r	 Tn cos	 R	 W 0 t) cos R f W

Tn	
3u	 R	 b	 sin(	

0	 Rt)	 cos Y- fu (z)
R Y

y.

rr

W alm"0100 io	 01000	 W10i 164
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I	 T	
3V	 R	 b cos	 W

0
	
R

t) cos	 fv (Z)	 (A15)
R  

w	
K
T b 2 cos ( x 	Wt) cos y f (Z)

	

n	 R	 0	 R w

- 2fM^K R'b 5T cos ( 2 - W 0	 cost) os Y" f
p 
(Z)

	

'Y	 n	 R 

where

b
-"f z

b-fz

f	 (Z) e e	 + cos 
V7 

bz +	 1 sin	 3 bz2 —2
37

_bz 	b z

f	 (Z)U (Z) e	 e	 -cos V7 b z --I sin ^:3 bz2	 2

^iz _ollz
2

w 
(z)

2
e 2 3	 ^Ie	 -cos 2^^bz +	 1 sin V2	 2b z

b
z 2

f (z)	 e	 e	 + cos --^bz +	 s in ^-tb z2p

The above expressions may be simplified somewhat by
yY

the introduction of a coordinate system (23) which is moving
with the surface velocity of the subsolar point. In this
-representation the pattern appears to be stationary:

off	 T	 Tn	 R	 Rcos	 cos	 f'
V (Z)

	

K	 T n 3U R	 b cos R	 Rsin Y f

	

2	 U(Z)

Tn 3V	 ^Tj _ b cos Rsin I f (Z)	 (A16)

	

2 	 R V, -

	

R	 YW	 T n b
2 

cos cos	 f (Z)

K
m	 2

	

2-
P 	

R.-b 5T cos cos f Wn

	

	 -R R P

'X4:
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For easier visualization the functions f T , fp,

fv , and fw are plotted in Figs. 2 and 3.

° Making use of the superposition principle the
final sol.utlon, consisting of the sum of the contributions
due to polar, and night coolings, is given by (20) in Sec. 111.

°' M
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