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A NEW METHOD OF RECURSIVE ESTIMATION 


IN DISCRETE LINEAR SYSTEMS 

. L. Kashyap 

ABSTRACT 

Let the measurement z(i) at instant i be of form z(i) = y(i) + 

where 'fl(i) is the noise and y(i) is the signal obeying a system of coupled 

linear difference equations of varying orders. We first derive a recursive 

equation for innovation or orthogonalized measurement. Using this equation, 

algorithms are derived for prediction, filtering and smoothing of the signal 

y(i). The use of these schemes results in considerable reduction of compu-

tation over existing schemes. If z(i) is a scalar; the relative conr-utational 

efficiency is N!2 where N is the dimension of state vector.
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L Introduction 

Recursive estimation in linear discrete dynamic systems has been 

treated in great detail in a number of papers. One assumes that the 

state vector x(i) of dimension N describing the stochastic signal at 

instant i obeys a known linear difference equation in state transition 

form. The measurement z(i) at instant i is the sum of a linear combina-

tion of x(i) and noise. One is interested in obtaining the linear least 

squares estimate of the state vector based on the relevant measurements. 

With the aid of projection methods and others, a number of recursive 

schemes have been developed for obtaining the prediction) filtering [Kalman 1, 2 

and smoothing estimates 1Bivson and Frasier3. Rauch. Streibel and Tun	 Rauch5. 

Meditch6 j. 	 ren though these schemes have notational elegence, they may run 
into serious computational problems for large N since they involve the recur-

sive solution of the N x N covariance matrix from a nonlinear difference 

equation. In obtaining smoothing estimates they may lead to serious 

storage problems. Further, in many problems (especially in smoothing 

problems) one needs only the estimates of a few components of the state 

vector. However, this fact does not seem to reduce the computational 

complexity of the problem. All these questions point to the need for 

alternate solutions to the estimation problem. 

It has been kno''n for a long time [Wold 7, Kolmogorov8 Doob9, Whittle10) 

that instead of working iiith the measurements z(i), i = 1,2,etc., it is 

very convenient to work with the new set of variables, (i) = z(i) - 

I = 1,2,etc. known as innovations, (i) being the predicted linear least 

squares estimate of z(i) based on all the past measurements. Thus the 

innovations are obtained by orthogonalizing the successive measurements 

z(i). Further all other estimates of x(i) can be expressed in terms of

V





the innovations [Keilath
11

]. A natural course of action for estimation 

is to obtain a recursive equation for the innovations without explicitly 

involving the state vector estimates. The estimates of the signal can 

be computed from the innovations. If the dimensionality of innovation 

equation is r (which is the dimension of measurement vector z) and that 

of state vector is N, then the use of these methods results in the 

reduction of the computation and storage by a factor of about N!2r over 

the schemes mentioned earlier. In the smoothing problems, the reduction 

in storage and computation is indeed impressive. 

II. Model of the Random Process 

The measurement '(i) - r-vector - is composed of the i--vector signal 

y(i) and noise T(i) 

z(i) = y(i) + fl(i)	 (2.1) 

E(1(i)) = o 

E(li(i)TT(j)) = R(i)8..	 (2.2) 

E(y(i)T (s))	 0 

The signal y(i) is assumed to obey the following difference equation 

y(t) +A(t)y(t-j)=c1.(t) (t-j)	 (2.3) 

where the m1-vector &(i) has the following statistical properties: 

E(7 (i)) = 0 

E((i)ET(j)) = Rr,()5..	 (2.4) 

E((i)llT(j)) = 0 

In equation (2.4), the r x r matrices A.(t), j = l,...,n and r x m1 matrices 

c.(t) j = 1, .. ., n are known for all relevant t.





For purposes of comparison we represent the random process of equations 

(2.1)_(2.4) in state transition form in equation (2.5) where the state vector 

x(i) is of dimension N(N > r). 

x(i+1) = /(i)x(i) h(i)(i)	
0	

(2.5) 

z(i) = H(i)x(i) + T(i) 

W.: note that in many problems, the equations (2.1) and (2.3) present a 

more natural starting point for the analysis of the system than the equations 

(2.5). In addition, the algebraic manipulations needed for the conversion 

of equations (2.1) and (2 . 3) into the form of equation (2.5) may be 

considerable.

III. Recursive Equations for Innovation 

Let z(t/t-l) be the linear least squares predictor of z(t) based on the 

measurements z(t-l), z(t-2)..... 

(t/t-1) = Arg (min EIz(t)_ft(z(t_l),z(t_2),...)U2) 

ft 

where	 is a linear function of the arguments. Let 7(t) 	 z(t)-(t/t-l) = 

innovation at time t. It is easy to demonstrate the orthogonality of the 

successive innovations. Our intention is to find a difference equation for 

' (i). In order to do this we need to represent z(t) as an autoregressive 

process. This will be done presently. 

(A) Recursive equation for the measurement z(i) 

Substituting (2.1) in (2.3) we have the following equation for z(i) 

z(t) +A(t)(ti) = (t) +A(t)(t-i) +C1.(t)(t-j) (3.1)





DO 

Let us denote the right hand side of (3.1) by w 1 (t) We want to replace 

w1(t) by another process w2 (t) which has the form given in equation (3.2) 

and has the same first and second order properties and the same dimension 

as w1(t).

w2(t) = E (t) +	 B 1 (t) E (t-j)	 (3.2) 

j=l 

The r-vector stochastic process E (t) is zero mean and uncorrelated 

E (E (i)) = 0
(3.3) 

E (E M. ET (i))	 R (i)8 E	 ii 

The r x r coefficient matrices B.(t), j = 1, .. ., n and the variance RE(t) 

are determined from the relation (3.4) 

(t+-T)) = E[1(t)i(t-+-r)] 	 t and T	 (3.I.) E(w2(t)w  

Replacing w1 (t) by t i2 (t) in ( 3 . 1) gives us the required difference equation 

for z(t).

z(t) +A.(t)z(t-j) = V72 (t)A E (t) +B
1 .(t) E (t-j) 

To determine the coefficients B.(t) from (3.1) note that 

E [w1(t)4(t+T)J t w1 (t,t+t) A 0 for k! > n 

E [i2(t)11(t+'r)] A W2 (t) t+t) A 0	 for !T > n 

Further
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[W2(t.t-n) 

W2(t,t-n4-1) 

w2(t,t) 

Bi(tn)Re(tn)	 B(t) 

Bfl ( t_nFl )RE ( t_n )	 Bl(t_nF1)RE(t_nF1)	 B(t) 
ni-

Bfl l( t_nf2 )RE( t_n ) Bfl(t_n42)RE(t_nf1) 	 B(t) 

Bl(t_1)BE(t_l)	
BT(t) 

Bi (t)Re(t_n)	 B2(t)RE(t_nfl)	 B(t)Rf.(t-1)	 Bl(t)RE(t)	 B^1(t) 

(3.5) 

where B 1 (t) = 1 V t. We can solve (3 . ) for B1 (), .. .B(t) and RE(t) 

in terms of	 t = O,...,n and B1(T), RE(T), T < t 
B(t)	 RE1(t_n) h11 (t,t-ni)	 fl 

B(t) = R(t-nfl) [W1(t,t-n1) - Bfl(t_l)RE(t_n)B (t)] 

B(t) = R- 
1 
[t-n+i-11 1W1 (tt-ni-i-1) -	 (3.6) 

Bni+j+l n (tfi1)RE 

j l	

(t_nfil)B(t)1 

R
E
 (t) =	 )R(t-nj-1)B (t) + w1(t,t)



The formula formula for L T1 (t, t 4 .r) can be written down as in equation (3.5) 

W1(tt-n) = A (t-n)R (t-n) AT(t) 0	 ii 

W1 (t,t-ni-l) = c(t_nfl) Rr(tfl) c(t) + 

• k=l
•i	 (3.7) 

w1 (t, ti - l) =	 Cni+ l+k ( t_ni_1 ) Rr(t_k_l ) C ( t ) + I 

k=1 

I

A 
L i-k" 

k=l

i=2,...,n4-1 

where A(t) = 1 t 

Thus at every instant, we have to evaluate recursively the 

1(n4-1)r2 -11 elements of the matrices B.(t), j=l,...,n and RE(t). This 

step roughly corresponds to the recursive evaluation of the N(Nf1)2 

elements of the covariance matrix in the Kalman filtering. We can 

summarize the result in the form of propositions. 

Proposition 1: The process z(t) defined in equations (2.1)_(2.4) 

obeys the following difference equation (3.8) in a wide sense {Doob9] 

z(t) +A.(t)z(t-j) = E(t) +B 1 .(t) E(t-j)	 (3.8) 

E() is a zero mean uncorrelated stochastic process with variance RE(t). 

The coefficient matrices B 1 (t), i=l,...,n and RE(t), are computed recur-

sively by equations (3.6) and (3.7).



Later we shall need to compute the correlation matrix between i(t) 

and E(j). These results are expressed in Proposition 2. 

Proposition 2: Let D(i,k) = E {fl(i) ET(i)]. Then


	

D(i,k)=0	 k < i 

D(i, i) = R,(i) 

k-i 

D(i,k) + 7 D(i,k-j) B 1 .(k) = R(i) A.(k) 

j=l
i <k <i 

D(i,k) +D(ik-j) B 1 .(k) = 0 , k > 

	

L	 n4-

(3.9)a 

( . 9 )b 

(3.9)c 

(3.9)d 

Equation (3.9)a follows directly from causality. Equations (3.9)b, 

c, and d can be derived by multiplying (3.8) with T(i) taking expectations 

on either side and using equations (2.1), (2.2) and (3.9)a. 

(B) Recursive Relation for Innovation 

Let us rewrite the equation for z(t) 

z(t) = -A.(t)z(t-j) +B.(t)E(t-j)+E(t)	 (3.10) 

By definition, (t/t-l) equals the sum of the terms in equation 

(3.10) projected onto the space of measurements z(t-1) z(t-2), etc. 

Of these 2 E(t) is clearly orthogonal to the subspace spanned by z(t-l), 

z(t-2), etc. (Tio zero mean random vectors, x and y, are said to be 

orthogonal if E(xyT) = o.) Hence 

n	 n 

(t/t-i) = -	 A (t)z(t-j) +	 B 1 (t) E(t-j)	 (3.11) 
Li 
j=l	 j=l 

We can evaluate E(t) by subtracting equation (3.11) from (3.10) 

(t)	 z(t) - (t/t-1) = E(t)	 (3.12)





E [(i) z ( i = R (1)8. 
E	 13 (3.15) 

Substituting (3.12) in (3.11) gives us the required recursive equation for 

(3 .13) for z(t/t-l) which is expressed as Proposition 3 . This proposition 

is the foundation for the result of our results. 

Proposition 3: Consider the process z(t) obeying equation (3.8). 

The one step optimal predictor (t,/t-1) obeys the following equation (3.13). 

(t/t-i) = -A(t)z(t-i) +B 1 . (t-j)	 (3.13) 

where ' (i) . z(i) - (i/i-l). Alternately, the equation ( 3 .13) can be rewritten 

completely in terms of z and '. 

z(t) +	 A.(t)z(t-) = (t) +B 1 .(t) (t-j)	 (3.14) 

The error covariance matrix is given in equation (3.15) 

IV. Prediction and Filtering Estimates of the Signal ;r(i) 

Let (t!T ) = Linear least squares estimate of y(t) based on the 

measurements z(T), z(T-l) etc. 

Arg {min Ely(t)-f(z(T), z(t-1) 

where f( S ) is a linear function. 

The starting point in our investi gations is the recursive equation (3.13) for 

the innovations. 

(A) Prediction 

Here we are interested in computing ( t / T ), t > T. 

(t+m/t) = (t+m/t) , m > 0 V t

	

	 (t!.1) 
a 

We have already evaluated (t+i/t). To evaluate z(t+m/t) with m > 1, we
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start with the equation for z(t) 

z(t+m) +	 A.(t+rn)z(t+m-j) +B1(t+m)E(t+rn-)	
(142) 

(t+m/t) is obtained by projecting the right hand side of (14.2) onto the 

space spanned by z(t), z(t-l), etc. We note immediately that 

(i/j) = Projection of E(i) on the space spanned by z(j),z(j-l),... 

=0 if j < i 

= ' (i) if i ? i	
(14.3) 


The above mentioned manipulations lead us to the predictor equation (Lii.). 

Proposition 14: Consider the signal process y(i) and the related 

observed process z(i) described in equations (2.1)_(2.4). Then their 

rn-step optimal predictors are identical. 

(t+m/t)	 (t+m/t) , M 1,2,...	 (Li)


(t+i/t) is given by the innovation equation (3.15) . Then (t+m/t), in> 1 

can be computed recursively using (t+l/t)...,t+m'i./t) and by measurements 

from the equation (4.14). 

(t+m/t) =
	

1A(t+m) (t+m-j/t) jrnAj(t4m t+m-j) + - 7 i

(t+m-j), m <n
	

(b. 4)


j=m  

=	

A(t+m) 

j=l	

(t+m-j/t), m> n 

The covariance matrices of the estimates are given below 

Coy [y(t+m)_y(t+flh/t)/Z(t),T < ti = RE(t+1)_R.fl(t+1),if in = 1 

•	 :	 •• ,;•• •,
	 rn-i	 (14.5) 

= RE(t+m)_R(1m) + B 	 (t+m)RE(t+m_j )B
1 (t+m), if m > 1 

j=1
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Equation (4.5) can be derived by subtracting equation (. )i-) from (1.2), 

squaring up either side and taking expectation. 

(B) Filtering Estimate 

We will compute (t/t) starting from (t/t-l). On account of the 

orthogonality of the innovation, we can represent (t/t) as 

(t/t) = z(t) - KF(t) ' (t)	 (4.6) 

or

Y(t) - ;(t/t) = - (t) + 5(t)z (t)	 (.7) 

To evaluate the gain 5(t), recall that fy(t) - (t/t)1 j'(t). Thus 

multiplying (1.7) on either side by ''T (t) and taking expectations, we get 

E [ll(t)ET(t)] = K (t) E [E(t)ET(t)] 	 (b.8) 
F 

with the aid of (.8) and (3 . 9) we get 

5(t) = R.(t)R(t) 

We can similarly derive a formula for covariance from equations ( 1! .7) and 

(1.9). The results are expressed in proposition 5. 

Proposition 5: The filtered estimate y (t/t) obeys equation (4.9) 

y(t/t) = z(t) - R
1
 (t) R- M ' ( t)	 (4.9) 

Let	 E {(y(t) - (t/t))(y(t) - (t/t)T1z(T),T <t]A F(t/t) 

F(t/t) = R1) (t) - R1.(t)(t)R11(t)	 (t.iO) 

V. Smoothing Estimates 

In computing the smoothing estimate (t/ ,r), r > twe use two different 

recursive schemes depending on whether t is fixed or t is fixed. 

Fixed point smoothing: compute (t/T) with t fixed and 'r varying. 

Fixed interval smoothing: compute (t/T) with t varying and t fixed. 

In certain situations, we need fixed lag smoothing; i.e., computing y (t/t+)
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for different t and fixed A > 0. In this paper we shall obtain the fixed 

lag smoothing estimates from the fixed interval smoothing schemes. 

(A) Fixed Point Smoothing 

We would like to express (t/T) in terms of y(t/t-l). By definition 

Y(t) - (t/T-i)	 z(i)	 i < r-1	 (5.1) 

Hence we can write

=(t/'r-i) + K15 (T) ('r)	 (.2) 

where K15 (T) is an undetermined gain. Rewrite (;.2) as 

Y(t) - (t/T) = y(t) - ( t/T-1) - I(i(T) (T)	 (.3) 

To evaluate the gain K15 (T), use the fact 

Y(t) - y(t/r) _L''er	 (5.4) 
Equations ( . 3) and (5.L!) imply

IT 
= E {(y(t)-(t/T-1)) 'T(T)] E(T)(T)fl 1 	 () 

But	 E [(y(t) - (t/r-i)) 	 'r)J 

= E {(z(t) - 
A 
y(t/T-1)) z ('r) - r1( t ) z (Tfl 

= - D(t,r)	 (5.6) 

Thus K (t)= - D(t,t) R-(t) 
is 

Similarly we can obtain an equation for the covariance of the estimate 

using equations ( . 3). (5.6) and (5.7) . The results are summarized in 

proposition 6. 

Proposition 6: The smoothing estimate (t/T) is recursively computed 

from (.8) here the gains D(t,T) are obtained from equation (3.9) 

y(t/t) = y(t/T-l) - D(t,T)RE1(T).(T)	 >1+ t	 (5.8) 

Let	 Coy [(t/t)/z(i), I 	 F(t/t) 

F(t/T) = F(t/T-l) - D(t,T)RE1(T)DT(t,T)
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(B) Fixed Interval smoothing 

On many occasions, one wishes to compute the estimates Y(-r/-r), 

Then the formula given in (5.8) is not very 

convenient if (T-t) > n. In that case, we manipulate the formula (5.8) to 

obtain the following proposition. 

Proposition 7: If t < r < t + n 

(T-t) 

y(t/) = (t,/t) -

	

D(t,t+l) RE1(i) (i) 	 (5.10) 

If T > t+n

= y(t/t) -

	

D(t,t+1) X(t)	 (5.11) 

where x1(t),...,x(t) obey the backward difference equation (5.12) 

X1
 (t) = R- (t+l) (t+i) - B(t+nf1) Xn(t+1) 

x 2 (t) = x
1 (t+1) - B(t+n+1)	 (t+ 1)

(5- 12)a 
x.(t) =	 1(t+i) - B(t+n1-l) x(t+i) 

= x 1 (t+i) - B(t++i) x(t+i) 

with the final conditions 

x 1 ( r-n) = R(T-nFi) Z(T-fll-j) , 1=1, .,n 

The proposition is proved by induction in appendix 1. 

It is possible to rewrite the backward difference equation (5.12)a 

as follows:

X (t) + BT(t+nfl) x(t+l) + BT1(t+n12) x(t+2)

(5.12)b 

.+ B(t+2n) X(t+n) = R- (t+n) (t+n)
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Equation (5.12)b can be regarded as the adjoint of the fundamental equation 

for innovation. 

Proposition 7 is used in 2 different ways. In the first instance, 

T is fixed and we want to compute y(t-l/T), y(t_2/T) ... recursively. This 

can be done as demonstrated diagrammatically. 

y(t-2/T) y(t-l/'r)y(t/r)

-t 

x(t-2)	 x(t-1)	 x(t)	 X(T-n) 

(given) 

In the second case r = t + A where A is fixed. In this case we have to 

compute y(l/l + A), y(2/2 + A),-, separately using proposition 7 . The 

computations used in obtaining (t/t + A) will not be explicitly useful in 

computing (t + l/t + 1 + A), in contrast to the earlier case. 

VI. Comparison of Computational Aspects 

As mentioned in the introduction, the recursive estimation schemes 

of this paper are useful in problems in which one is interested only in the 

estimates of the signal y(i) and not that of the entire state vector x(i) 

of dimension N. Indeed, in smoothing problems, it is hard to justify the 

computation of those components of the state vector other than 

The comparison depends on N, r (the dimension of measurement vector) and 

n (the maximal order of the difference equation. Note that nr > N. If 

r = I, N = n. It is needless to say that the larger the ratio N/r, the 

larger will be the utility of our scheme over the existing ones. 

In the linear estimation schemes of the literature, the basic 

equations are the Kalman filtering equations [1,2]. Using the state 

transition model of equation (2.5), the recursive equation for the
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filtered estimate (i/i) (N-vector) and the N x N conditional covariance 

matrix P(i) are given below: 

+ 1/i + 1) = ,4. (i)(i/i) + P(i+l)HT (i+1)R(i+l) [z(i+l) -

(6.1) 
H(i+l)Ax(i/i)I 

P(i+l) = M(i+1) - M ( i+1)HT (i 4 l) [H(i+l)M(i+l)HT(i+l) +
(6.2)a 

R(i+l)i H(i+l) M(i+l) 

	

M(i+l) = • L.(i)P(i) $(i) 
+ $ (±)Rr(1)	 T (i)	 (6.2)b 

The recursive computation of the covariance matrix P(i) in Kalman 

filter corresponds to the recursive evaluation of the X (n-l)r2_l} quantities 

represented by B1 (t) . . . ,B(t) and RE(t) in our scheme. The amount of 

computation per iteration of the covariance equation (6.2) and the gains is 

=	 + . 
N 

2 
r + . + 3Nr2 

+ 
Nr 

The amount of computation per iteration of the B equation (3.6) and the gains 

(n(n4-l) 
+ 2n'r2 

+ n(nI-l) r = (7 2^	 n+ 2)r3+ 	
2	 1	 2 

Thus the use of our estimation scheme results i n a reduction in the 

auxiliary computation by a factor which roughly equals 
N3
2 • Let us 

7n r 
consider the filtering problem. 

The ratio of the amount of computation per iteration of the Kalman 


filter (6.1) to our filter of equations (3.14) and (1.9) is ((N2 + Nr)/2nr2). 

Let us consider the smoothing problems. In these problems, the storage 

aspects become important. Suppose we are concerned with a smoothing problem 

involving t  time steps. In the smoothing schemes in the literature one 

(t) and has to store the measurement vectors z(t), the filtered estimates 
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the covariance matrices p(t) for all t  steps whereas here we have to store 

the measurements z(t), innovations (t) and the coefficients B(t). Thus 

the reduction in storage occurs by a factor of f
(N 2 

+ r n _)
	

For comparing 
(nFl) r +2r 

the relative amounts of computations, we have to treat fixed point smoothing 

and fixed interval smoothing separately. For fixed point smoothing the 

equations of Bryson and Frasier 	 are given below. 

= (t/T-l) +

(6.3) 

p(t/) = P(t/i-l) {Ip(T)HT(t)Rl(T)H(T)JT 

where p(t/t) = 

The ratio of multiplications per iteration of equation (6.3) over that of 

I	 + 2Nr2 +N2 + 2Nr + r2 
(5.8) is

nr3+ 2r2  

Similarly, for fixed interval smoothing, the equations of RaucJ 1 are 

= (t/t) + p() ,r ()M (+1)[x(t+l/t) - (t^i/t)J (6.4) 

Comparing (6.4) with our scheme of equations (.ii) and (5.12), we see that 

(6.4) is highly inconvenient since it has to invert a N x N matrix at every 

instant in addition to doing other comparable jobs. 

VII. Conclusions 

We have developed estimation schemes for prediction, filtering and 

smoothing for linear discrete systems. The foundation of the entire paper 

rests on the recursive equation for the innovation or orthogonalized 

measurement. The greater the ratio N/r; i.e., the ratio of the number of 

state variables to the number of measurements, the smaller will be the 

relative amount of computation and storage of our schemes over the traditional 

ones. Moreover, in the schemes of this paper there is no need to express the 

dynamics of the signal in the state variable form.



it seems seems possible that these schemes could be modified to allow for the 

uncertainties regarding the noise covariances 121 These aspects will be 

discussed in a later paper.
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APPENDIX 1 

Proof of the Proposition 7 

There is no need to prove (5.10) since it follows directly from  

we shall prove (.ii) by induction. 

-	
- (i) 
1. -i 

Let	 z(i) A RE	 ,z(i) 

From (5.8)

(t/T) = (t/t) - Y D(t,i) (i)	 (A-i) 

i=t+1 

Let	 h(t) =	 D(t,i)h(i)	 (A-2) 

i=t+l 

Express D(t,T) in (A-2) in terms of D(t,t-l), D(t,'r-2) etc. using (3.9). 

h(T) =D(t,t+i)z(t+i)	 (t)]	 (A-3) 

Recall that

X(w_n) = (t-n4-i)	 ,	 i=1,....,n 

If we substitute (A- ti-) and (5.12) in (A-3), we get 

h(T) =D(t, t+i)(t+i) 

To establish induction, we assume the validity of (A-5) and demonstrate the 

validity of (A-6). 

h(T) =T:r D(t,t+i)z(t+i)	 D(tT-n-a-)X(t-n-a)	 (A-5)


j=1  
S
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T-n-(a1-1)	 n 

h(T) =	 D(t,t+i)z(t+i) +	 D(tr_n_j_a4-1)X(T-fl-aF1) 	 (A-6) 

1=1	 j=1 

To prove this, consider (A-5) 

D(t,ti) (t+i)	 D(t,T-n-j) X.(t-n-a) 

j 1  

n-i 

	

=	
D(t,t+i) (t+i) +D(t1 T-n-al-j) X.(T-n-a) 

j=1 

D(t,T-n-i) BT(Ta) X(T-n-a) 

T-n-(a+-i)	 n 

	

=	 D(t,t+i) (t+i) +	 D(t,T-n-'971+j) 1?,j(-r-n-a) 

i=1	 j=2 

- B(T_a)X('r-n_a)} + D(t)T-n-a+l+1) {Z(T-n-a)-B(T_a)X('r_n_a)} 

n 

	

=	 D(t,t+i) (t+i) + I D(t,T-n-(&1)+j) X .(t-n-T) 
i=i	 j=1 

which is the desired result. 

Repeated use of the induction directly yields us the required 

expression (5.11).

S
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