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INTRODUCTION

This progress report presents results of research carried
out under Grant NGL 34-002-047 during the period June 1 through
September 30, 1969,

During the report period a paper entitled, "H-Guide with

Artificial and Laminated Dielectric Slabs," was presented by

the Principal Investigator at the 1969 European Microwave Con-
ference, 8-12 September, in London, England. A report on the
conference was prepared and distributed as a special item during
the latter part of September. The discussions following the
presentation of the paper indicated considerable interest

in the topic since millimeter waves are considered the most
promising frequency region for an extension of the present com-
munications facilities taking into consideration the large
volume of information necessary to be carried in the near future.
Recent progress in the development of new solid state generators
(bulk-effect devices) for this frequency region and of low-loss
materials make the use of millimeter waves very practical.
H-guide and fence guide offer attractive solutions of milli-
meter wave circuit problems and transmission problems.

Prior to the conference, visits were made to the University
of Sheffield and at the University College in London. At both
universities extensive research and design studies are carried
out in the microwave and millimeter wave region. A brief account
of this research will be given as an Appendix to the Introduction.

The work on the effects of surface roughness on the attenuation
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of waveguides is of particular interest in connection with our
study. These effects were extensively investigated in Sheffield
primarily at 10 GHz and they are under investigation in our:
laboratory at 35 GHz and above. In this frequency region the
effects are more pronounced than in the former and any improve-
ments correspond to a considerable amount of savings in trans-
mitted power or number of repeater stations.

The structures under investigation in our laboratory are
(a) the fence guide, (b) the H-guide with laminated dielectric,
and (c¢) the beam guide., Of these structures, (a) is primarily
suited for the design of millimeter-wave circuitry and (b) and
(c¢) for low-loss transmission. The fence guide is investigated
experimentally and theoretically for the determination of its
characteristics, for the derivation of design parameters and
corresponding relationships, and with regard to incorporation
of components,

New transitions between rectangular waveguides on one hand
and fence guides and H-guides on the other, were designed and
manufactured since the original devices were found to introduce
excessively undesired wave modes. The characteristics of the
new transitions (field distribution in front of the horn-type
transitions) were measured and found in agreement with the pre-
dictions. Part 5 of this report presents the results of the
measurements. A section of the fence guide in combination with
the new transitions is now under experimental investigation.

The field distribution inside the guide and in its vicinity are
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measured by capacitive and inductive probes to verify and to
complement the results of the theoretical study underway.

The measurement of the field distribution turnes out to
be a rather delicate problem as distortions of the measured
fields by the probing devices have to be avoided. The probes
must have rather small sizes at 35 GHz to achieve this goal.
Measurements by the use of specially designed capacitive and
inductive probes are being made.

The study of a confocal circular reflector guide was
continued during the report period. This guide may be con-
sidered as an oversized, two-wall waveguide with characteris-
tics similar to those of the H-guide. The confinement of the
field in one cross-sectional direction is achieved by the
curved form of the conducting side walls. The section of this
report on this guide deals primarily with the contribution to
the attenuation by radiation from the upper and lower opening.
The power loss is determined by considering the openings of
the guide as radiating surfaces. Relationships are derived
which show the contributions to the attenuation by wall losses
and radiation in terms of the cross-sectional dimensions and
of the angle under which the waves are injected into the guide.
An experimental prototype of a short section of such a guide
including end plates to form a resonator has been manufactured
and will be investigated. Relationships for the computation of
the Q-value of the resonator under investigation are also shown

in the report.
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Part 4 of this report deals with the effects of surface
roughness on the loss-characteristics of waveguides. These
effects are particularly important in the case of H~guides and
beam waveguides since their surfaces are readily accessible to
surface treatment. Values of the attenuation up to 50% above
the theoretical values were observed at millimeter waves so
that prediction and improvement of the attenuation is an impor-
tant problem in the upper-frequency regions.

Methods for the correlation and for the non-destructive
measurement of the roughness will be developed. Simultaneously
procedures recommended for the improvement of the surface re-
sistance will be tested. The results of research carried out
at the University éf Sheffield indicate that considerable im-
provements of the loss characteristics can. be achieved by electro
and chemical polishing. The work by Russian scientists studying
the influence of the micro structure of the current-carrying
layers led to similar conclusions. Results of their work were
presented in abstract form at the European Microwave Conference.

Dr. Makato Itoh participated during the first part of the
summer in the research of the laboratory. He has recently
developed methods of the description of electromagnetic fields
by wave-analytic functions and has derived relationships which
can be applied for the solution of boundary value problems
related to guided waves. As a first part, algebraic relation-
ships for a commutative bicomplex number system were presented

in the preceding progress report. The study is continued in
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the present report with a comparison of the characteristics
of analytic and wave-analytic functions. In a third part to
be included in a later report, the application of bicomplex
wave analytic functions to relationships typical for uniform

electromagnetic-wave transmission will be discussed.




PAPER PRESENTED AT THE
EUROPEAN MICROWAVE CONFERENCE
SEPTEMBER 8 - 12, 1969
LONDON, ENGLAND
H-GUIDES WITH ARTIFICIAL AND LAMINATED DIELECTRIC SLABS
by F. J. Tischer
One of the more sophisticated non-conventional waveguides
with a considerable potential for application at millimeter
waves is the H-guide. In this hybrid waveguide, the fields
are concentrated in one transverse direction by surface-wave
propagation along a dielectric slab and are confined in the
other direction by parallel conducting planes. The cross
section has the form of an H with the conducting side walls
forming its vertical legs and the dielectric slab the hori-
zontal bar. The guide has low conduction losses similar to
those of the waveguide with circular cross section for TE10
waves. The major contribution to the attenuation results from
dielectric losses in the central dielectric bar. Using regu-
lar dielectrics, the attenuation constant becomes relatively
high. Measures to reduce the dielectric losses such as by
lamination of the dielectric were proposed already in early
publications.
A more recent approach is based on the use of artificial

dielectrics. Such dielectrics consist of highly conducting
metallic structures with dimensions small in comparison with

the wavelength which have the same effect as a solid dielectric.

Dr. Tischer is Professor at the North Carolina State University,
Raleigh, North Carolina, U.S.A. This work was supported by the
National Aeronautics and Space Administration.
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Examples are metallic strips, spheres, and cylinders embedded
in a low-loss, low-permittivity, foamed dielectric. By using
such a structure, the dielectric losses can be practically
eliminated. The total attenuation of the guide can then be
kept at a low level by optimization of the geometry. An example
of an H-guide with a strip structure as artificial dielectric
is shown in Fig. 1. The strips confine the fields to a region
near them as does the solid dielectric bar of the conventional
guide.

The fields decrease exponentially from the center toward
the upper and lower openings. Relationships for the field com-
ponents can be found by writing general expressions for the
fields within and above the strip structure and by matching
the amplitudes at the boundary between the two regions. The
different sets of expressions are required to be identical at
the boundary, x = a., Only the fundamental terms of the infi-
nite series contribute to the basic H-guide fields if the dis-
tances between the strips are much smaller than the wavelength.

The zero-order field above the strip structure is given by

E, = a cos(kyy) exp(-axx) exp(—jkzz) ’

E, = (jakz/ux) cos(kyy) exp(—axx) exp(—jkzz) '

E_ =0

y 1

H, = (—jkya/m;) s1n(kyy) exp(—uxx) exp(—jkzz) ’

H = ja(o 2 k 2)/(m1a ) cos(k.y) exp(~a_x) exp(-ik._z)




H, = (akzky)/(wuax) sin(kyy) exp(—axx) exp(—jkzz) ,

where the propagation constants are related by

2 2 2 2 _ _
a,” - ky - kZ + k% =0 ’ ky = /b ’
o = L0 - k%) tan(ka)1/k k2 = whie .

It is interesting to note that the component Ey vanishes,
whereas H, vanishes for the conventional H-guide. The attenua-
tion of the guide can then be computed from the power losses
and the power transmitted by using the field equations. The
attenuation can be separated into three components, o = o ato S+as ’

w n

where the components are respectively that due to losses in the
side walls above and within the region of the strip structures,
and on the étrips themselves. Numerical values of the total
attenuation evaluated at frequencies of 35 and 70 GHz are shown
graphically in Figs. 2a and 2b. It is noted that for a value of
p = ocx/kO = ,2 which corresponds to a 90% decrease of the field
at a distance of x = 2\, the attenuation is about 1/10 of that
of the standard rectangular waveguide.

Lamination is another approach by which the loss character-
istics can be improved. This was shown in studies of an H=-guide
with double dielectric slabs. Several authorsl’z’3 reported
results., In more recent studies, subdivision of the dielectric
slab into an arbitrary number of dielectric strips separated by
air layers was investigateda4 The slab structure may be con-
sidered as an artificial dielectric with the characteristics
described by an equivalent permittivity and loss tangent. An

example of such a guide is illustrated in Fig. 1lb.
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The computation of the field distribution in such a guide
can be considerably simplified by considering the fields as
those of superimposed plane surface waves reflected between
the side walls. The computation can then be carried out in
two parts, one dealing with propagation along an infinitely
wide laminated slab and the other dealing with the superposi-
tion of the plane surface waves.

The final results are sets of equations for the various

regions of the following general form:

Hz(n) = (ky/kg)[Unc(x)+jvns(x)]cos(kyy)exp(—jkzz) ,

i, = (3K, /K) [0 e (0 43V, s () Tsin (k) exp (-3k,2)

e (®) - (ky /08 e ) [0 c (%) 43V, s (x) Isin (k y) exp (-3k,2)
Ey(n) = (kg /we 8 K )) [V, ¢ (x) =30 s (x) Tcos (k y)exp (-ik,z)
g () _

2 (—jkxkz/weoerk%)[Vnc(x)-jUns(x)]sin(kyy)exp(—jkzz) .

The functions c(x) and s(x) stand for trigonometric functions
within the strips, hyperbolic functions in the air layers, and
exponential functions above the slab. The constants Un and Vn
are obtained from the field components at the lower boundary of
the region under consideration.

The evaluation of these equations and the resulting rela-
tionships are particularly interesting in the case of thin di-
electric and air layers. The following relationships are obtained

for the equivalent permittivity and loss tangent,

Ereq_‘ z E;r(l+P/€r)/(l+p) ;  tan (Seq ~ tan 6/(l+p€r) ,
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where €. and tan § are the constants for the material of the
strips and p = da/ds‘represents an air-to-dielectric thickness
ratio. Investigation of available materials shows that lami-
nation leads to very low values of the equivalent loss tangent.
Examples of approximate equivalent parameters for a few materials
are shown in Table 1. It is expected that use of laminated
slabs will result in considerable improvements over conventional

rectangular waveguides.

References
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Table 1. Laminated slab parameters

Single slab Equivalent
) medium constants nedium constants

Dielectric L tan § P E oq tan Geq
Styrofoam 1.03 {1.5 x 10”%
Rexolite 2.53 |7.0 x 1074 7.5 | 1.16 | 3.5 x 1072
Peryllium Oxide | 6.6 |4.4 x 1079 |3 2.4 |2.6 x 107>
(99.5%) .
Aluminum Oxide |9.9 [2.5 x 10™° |5 2.5 |s5.0 x 10”7
(99.9%)
Eccoceram 90 {1.0x10"% |10 |s.0 }|1.1x10°®
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VISITS AT THE UNIVERSITY OF SHEFFIELD AND
UNIVERSITY COLLEGE, LONDON

Visits at the above two universities and discussions
with participants at the conference revealed considerable
activities in the area of microwaves and millimeter waves
in industry, government laboratories, and at the universi-
ties. The Electrical Engineering Department of the Univer-
sity of Sheffield is a typical example where at present
about thirty research projects are underway. Examples of
some of the topics are phase-locking of Gunn oscillators,
effects of geometry variations on the characteristics of
waveguides, active antenna arrays, Gunn-effect devices in
fast computers, amplification mode of the Gunn effect, mi-
crowave holography, and effects of surface roughness on the
attenuation of waveguides.

Studies of a double-slab H-guide and of the surface
roughness were of particular interest from a viewpoint of
the work at our laboratory. It was found in Sheffield that
the attenuation of the H-guide can be reduced by about 40%
by subdividing the central slab of the H-guide into two
strips. This confirms the results of studies carried out by
the principal investigator in a previous study.

The conclusions drawn from the study of the surface
roughness seem to indicate that the primary origin of the
increase in attenuation of drawn waveguides at X-band and A-

band (35 GHz) frequencies is the surface roughness. This
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conclusion was drawn on the basis of studies of the surface

by using a scanning electron beam microscope. The pictures
obtained by this instrument, which has an extra-ordinary depth
of perception, indicate the presence of cavity-type holes
which considerably affect the current flow. Computer programs
for the determination of the attenuation taking into account
such cavity-type surface deformations indicated increases of
the attenuation by factors up to 1.8. It was concluded that
electro~-physical surface effects play a minor role.

The studies also showed that improvements of the attenu-
ation can be obtained by chemical polishing and electro polishing.
The ratios of measured and theoretical attenuations for surfaces
treated in this way were better than 1.02 in some cases. Whether
this reduction is the result of changes of the surface geometry
only is difficult to asses.

Another study deals with the effects of geometry changes
on the characteristics of waveguides and components. It is
very thoroughly carried out and a great variety of components
such as impedance transformers, directional couplers, hybrids,
terminations, etc., are under investigation.

The use of the Gunn effect in computers deserves particu-
lar attention since it opens the way for the generation of
ultra-short pulses and thus the development of ultra-fast com-
puters. Pulse generators, gates, and pulse re-generators are
under development and study. The generation of high-power
pulses by switching the cavity of a cavity-controlled Gunn oscilla-

tor is another novel idea under investigation well worth mentioning.
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The Department of Electronic and Electrical Engineering
of the University College, London, has an extensive research
program also. Millimeter-wave guides, transitions between
different types of guides, dielectric-rod waveguides, trans-
mission by over-moded rectangular waveguides, long-distance
transmission by circular waveguides, measurement setups for
the study of dielectrics at millimeter waves are among the
topics under investigation.

The objective of a study of transitions between different
types of waveguides is to achieve complete power transfer by
guasi-periodic mode coupling. Extremely wide-band performance
was obtained in preliminary studies. Another project deals
with the characteristics of tapered dielectric waveguides.

The computations are carried out by perturbation methods. The
possibility to transmit millimeter wave energy with low atten-
uation for wide frequency bands over long distances is being
studied. Emphasis is placed on the behavior of a dielectric-
coated circular waveguide which is considered to be superior
to the regular circular waveguide. A special confocal spheri-
cal resonator is being used at 10 GHz for the non-destructive
determination of the characteristics of dielectrics in the
form of thin slabs. The method eliminates the machining of
the material under investigation into specific shapes.

In general, it should be mentioned that students and
faculty are very enthusiastic about their work and their accom-
plishments, the instrumentation is very good with latest equip-

ment in use. The work is financed in part by scholarships, by
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the ministry of defense, the ministry of technology, and, to

a larger part than in the United States, by industry.
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Part 2

ON THE COMPUTATION OF THE ATTENUATION OF
H~GUIDES AND FENCE GUIDES
Abstract

This paper deals with a comparison of two methods for
the computation of the attenuation of surface-waveguides,
for which the H-guide and fence guide are examples. Evalua-
tion of transmitted and dissipated power for field distribu-
tions of the loss-less guide is the basis of one method, use
of the characteristic equation leads to the other. The con-
ditions under which both methods give equal results are con-
sidered and formulated. The problem becomes important in
the case of the fence guide and in the case of the H-guide
with incorporated circuit elements when losses and energy

sources are no longer negligible.
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ON THE COMPUTATION OF THE ATTENUATION OF
H-GUIDES AND FENCE GUIDES

Introduction
Two methods are commonly used for determination of the
attenuation in waveguides. One of these methods is based

on the familiar relationship
o, = PL/2PT

where o is the attenuation’constant and PL and P, are power
loss and power transported per unit length of the waveguide,
respectively. The power calculations are made on the basis
of field distributions obtained under the assumption of zero
losses which is acceptable for most practical waveguides.
Thus, given the field components and the geometry of the wave-
guide, thevattenuation can be easily determined by computing
the power transported and power lost. The second method con-
sists of solving one or several characteristic equations
associated with the waveguide to obtain the imaginary part of
the field distribution constant in the direction of propagation
which'represents the attenuation..

The question arises then whether or not the two methods
give agreeing results. It is usually assumed that they do.
A study of the attenuation in H-guides shows this not to be
true in general. In the following sections,; expressions for
the attenuation are derived by both methods and the necessary
conditions determined for their agreement. The losses in the
dielectric will be considered only which corresponds to condi-

tions of an infinite-width H-guide.
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Attenuation Computed by the Power Method

Here we shall consider quasi-TM waves. Since the width

is infinite, the field in the y-direction is constant, ky = 0,
The field components in the region outside the dielectric arel
_ —ax(x—d) -jk, 2
EZ = Eo e e ’ Ay K
> =
-jkz -ax(x—d) —jkzz ) AZI v
EX = Obx EO e e ’ . ] —i.élt‘s;;,-—ﬁ
az AL
-juwe -o_(x-d) -jk_z ﬂp fy/’
Hy = - @) EO e X e Z , ..,l ://:/ 24
X Lo v
[ #‘
and inside the dielectric, P
. )
—]kZZ
E =E, sin k_x e ’
z 1 X
-jk -jk_z Fi .
E = Z B cosk x e z , ig. 2.1 Guide Geometry
X k 1 X
X
-JWE —jkzz
H = =& E. cosk.x e .
y kX 1 X

The total transported power is the sum of the powers transported

in the dielectric and air regions; see Fig. 2.1l.

1 *
P, = 5 Re [EX X Hy ] da

The integrals for the two regions become

sin 2k d
_ 1 X
Pr=3 77 B (d + —5p——)

X

+

Nf -

Field matching at the boundary of dielectric and air yieldsl

Eo = El 51nkxd .
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The total transported power is then given by

we k_ E 2 sin 2k_d sin2 k. d
P = z 1 [ 1 (a + X )+ X ]
T 2 K 2 2k 3 ¢
X €_ o
X r °’x

Since the losses are due to the dielectric only, the power

loss per unit length becomes

p =§f o|E|? av

ol k
1 z 2 2 2 .. 2
== f [(E; ) E," cos kxx dx + E;” sin kxx dx] Ay Az ,
-d
and, since Ay = 1, Az =1 ,
E sin 2k_d
_ 1 1.2 2 2 2 _ 2 X
=39 (E; )7 lalk,” + k) + (K, ky ) 2k 1
where
c = we'" .

The attenuation can now be obtained from o = PL/ZPT as

E sin 2k_d4d
1,12 2 2 2 _ ., 2 X
5 we (E; ) [ 4 (kX + kZ ) + (kz kX ) —_—7E;—_ 1

ul= ) [] L]
Z sin 2k_ d sin® k_ d
1 2 1 X X
5 We kZ El [ -5 (4 + — )y + ——————T——l
k X €_ 0o
X r °x

Making use of normalized characteristic equations shown in the
following section and of trigonometric identities involving

sine and tangent, the above may be written in the form

- . ' 2 1] 2 1 _ 2 - 2_ ?

1 &p /er e.'p gd (l+tan“gd ) P (er 2p“=2) tangd
0JZ= ‘5 7] ko 2 ' 2 ' 2 2 [] 1
p- + 1 p'gd (l+tan“qgd ) + (p +E§TE7atanqd ) tangd

(1)
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Attenuation Derived from the
Characteristic Equations.

There are three characteristic equations associated with
the H-guide. Two of them result from evaluation of the wave
equations in the dielectric and air regions, and the third is
a consequence of field matching at the boundary.l The equa-

tions are

kx tan kxd = sr ax .

For the case of an infinite-width guide, the fields are con-
stant in the y-direction (ky = 0). Substituting this value

in the above equations and normalizing gives

2

2 _
q” + (k k)T =y (2

2 2 _
-p- + (kz/ko) = 1 ' ( 3

]
g tan g & = ¢e.p ' (4
and, after combining ( 2) and ( 3) ,

p? + g+ 1=c¢ , (5

r

where

a=ky/k, » Pp=alk

)

)

)
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In formulating the field equations the H-guide was assumed
to have no losses. Hence, the field and medium constants kx ’
ky ’ kZ y €, wWere real numbers. In the presence of dielectric
losses, however, these constants become complex. We write

Since the dielectric losses are low (er" << er'), the resultant
attenuation is assumed to be small also. This can be expressed
by the following condition for the normalized values of the
attenuation and phase constants,

kz"/ko << kz'/kO .
Using the above two conditions in the complex characteristic
equations and considering a practical range of operation, further

approximations can be introduced,

Substituting the complex constants in Eg. (5) and using the

approximations, we obtain




22

aqg =~ % e."+pp ) . (6)

Expanding Eq. (2) yields

] —_— 1 —
kz /ko = € d ’

_ 1 - 1
k' 'k = 3 =5 7K % '

] 1
Replacing q g from Eq. (7) and kz'/kO from Eq. (3) gives

k' /K, = - —BB ) (7))

V 1 +p 2

LI ]
In order to find p in terms of the other constants, the re-

maining characteristic Eq. (4) must be used, where

(e ' - je ') (p + dp ) = (@ +3a ) tan(g +3a ) a .

LI § 1)
Expanding this equation and using the approximation g d << 1

enables us to write

Y

L ] 1
cosh g d 1 '

g 4d .

i

[ } ]
sinh g 4

L | )
Since (er"/ r')(p /p )<< 1, we obtain

1 ] LN} 1 ] t
") sing d +jq d cosg d
1 L] L] L] L Y

' [ ] 1
e 'p [1+ilp /p - €.''/e )] = (q +iq
cosq d -jg d sing 4

( 8)
This can be rationalized and separated into real and imaginary

parts,
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, T ldv 12 dl 1 2 !dt
- + t
e 'p' - g tan g q ( an” g d ) (9 )

1 ¥ 1] 2
1l + (g d tan g d)

"t | I | 11 t 1 2 | I |
. g tangd + g g d (l+tan"g d )

Ty L T 1 2
1+ (g 4 tan g 4d)

er'p'(p"/p'- et /e")

( 10 )

Combining the two equations yields

1 1 L ¥
g tangd + g gd (1 + tan2 q d
L) [ 1 |2 1 2 1 1
d (1 + tan“g 4 )

p /p - e /et =

]
g tangd - g
The denominator of the right-hand side may be simplified if

the following approximation is introduced,

] t 1 ||2| 2|| .
g tang d >> ¢ a (1L + tan® g 4 ) . ( 11 )
We find then
e B v 1+ tan’q d
p /p -—e. /e =% +q d I ——1 . (12)

At the end of this section it is shown that Eg. (11) forms part

of the condition for the agreement of the power and the charac-

teristics method. After substituting g from Eq. (6) into

Eq. (12) and solving for p p , Eq. (7) yields for k, ''/k

11 LI} 1 '2 1 ' ! 2 ! ' '2 1 '2

k 1 €r /er p e.'q d (l+tan"gq d )-p (er -2p
- -2- l2 |2 1 ] 2 1 ¥ ] ¥
1 +p p g d (l+tan"g d ) + (er—l) tan q d

1 L]
-2)tang d

(13)
Comparison of Egs. (13) and (1) shows that the two results are
identical except for the second term in the denominator. In

order for these two terms to be equal, the complex characteristic
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t
equation ep =4q tan g d requires that

t 1
er'p =g tan g d (14 )

and

r

v 2 2 1 '
e ' =-1l=0p + ———9—7——7 tan g d ’
1
e.' p/q
which is eqguivalent to the second term in the denominator of
Eq. (l1). However, in order for Eq. (14) to be correct, the

second terms of the numerator and denominator of Eg. (9) must

be negligible compared to the first terms, réspectively, i.e.

] 1 1 ||2 L] 2 1 1
g tang d >> g d (1 + tan™ g d )

and
Tt ¥ 1 |} 2
1> (g 4 tan g d )
These two conditions can be simplified and combined to give
the following basic condition under which the two methods of
computing the attenuation lead to practically identical results,

[ ] ] 1] ¥ l
g d << tan g d << =5 . ( 15 )

g d
An Alternate Method of Using the
Characteristic Equations

In practice, er' , er" , and d are known and the other
quantities of the characteristic equation must be found in
order to determine the attenuation. The two complex Egs. (4)
and (5) represent four equations and contain seven unknowns.
Hence, known values of the above three constants should enable
one to find a unique solution for the other four quantities.

This approach requires solving a complex transcendental equa-

tion, a rather difficult task. The only way to avoid solving
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a transcendental equation is to assume that the known factors

1 11 .
are g , g , and d. Obviously from the practical point of

] [ ]
view g and g are not known at first. However, once we have

obtained the solution by choosing values for g, the results can

be arranged such that the independent variables are er' '\Er
€ ) 14

and d.
Consider first the equation

t ¥ 1 )
_ ) v \ . - .
e.p =4 tan q d : (er j€r' Y{p + jp ) A + 3A

Since g , g , and d are known, the right-hand side of the
[ |

equation is a known. complex number. Since er"p /er'p' is

small compared to 1, it can be neglected.. Equating real and

imaginary parts, we obtain

p = A , ( 16 )

or

t L] Ty 1
— it ] =
p /P €, /er A /A . (17 )
Combining Egs. (16) and (6) gives the cubic equation

|3 l2 1 L
p + (g +1)p -A =0 , ( 18 )

which may be solved using the computer. For a lossy dielectric,
]
real positive values of p are the only acceptable solutions.

By substitution of er" from Eq. (6) into Eg. (17), a relation
| N I |
for the quantity p p is found
[ ] [ I |
_— A /A-2qg4q /e
PP = )
1/p

(19 )

L]
+ 2/€r
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which in turn is substituted into Eg. (7) to find the attenua-

L] 11 .
tion in terms of €' , er" y 9 , and g .

Figure 2.2 shows the normalized attenuation versus nor-

malized values d/Ao with er‘ as parameter.

Conclusions

In order for the attenuation derived from power relation-
ships to agree with that derived from the characteristic equa-
tions, certain restrictions apply. These restrictions may be
expressed by

LI B | | B ] 11 T

q d << tangd << 1l/g d .

These conditions have to be satisfied in addition to those
which assure acceptable approximations for both computation

methods individually, namely,

e 1 e 1
sr" << sr‘ ' kz" << kz PR << p , and g << g .

Comparison of this inequality with Eg. (22) of Appendix I
shows that it is the more stringent condition.

It is also assumed that derivation of the attenuation
from the characteristic equations constitutes a more rigorous
approach and hence gives a more accurate result. This should
be expected since the computation of transmitted power and
power loss are made from field equations valid for a lossless
structure. While in solving for attenuation from the charac-

teristic equations no assumption of zero-losses is made.
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Appendix I

] 1 )
Consideration of a varying g d shows that;er' or p take

] ]
negative values when q d approaches nn/2 for n =1, 2, 3
Such a condition would be unrealizable for a lossy structure.

t ]
To find the limitation imposed on the value of g 4 as

T
2

where Ap << m/2 1 and substitute these quantities in Eq. (8).

1 t
a result of the realizability condition, we write g d = nx + A¢,
The number n may be an odd or even integer.

1 1
For odd n, we introduce q 4 = nn/2 - A¢ . We find

e.'p L+ 30 /p =€ tte ] = @ T390

. T L e T
s1n(n§ - A¢) + 3g d cos(ni - A9)
L] ®
cos(ng - A¢d) - jgq d‘sin(ng - A¢)

Since A¢ << w/2 , sin A = A¢ , and cos A = 1, expanding the

preceding equation and using these approximations. gives

' ] Il2|
copladbiza d (19 )
Ap® + (g d)

[ L I B R |
_ g9 Ad+gg d
2 . IIT2

Ad® + (g 4 )

L ] 1
- (] 1
p /P e /e,

)
From Eq. (19) we conclude, i.e. since er'p must be positive,
112 ' 112

1 ] L]
that g Ad - g d >0 or A¢ > g d /q .
L] L i
Since tan g 4 = tan (n% - Ap) = cot Adp = 1/A¢ , we find

that
1

1
11 ]

a d

must be satisfied.
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1 )
For even n we write g d = n7n/2 + A¢ . Substituting it

in Eg. (8) and expanding in a similar manner as above, we ob-

tain
||2l
1 = 9 A¢ . q d
erp'— T 3
A¢ + (q a )
LI ] 1
P /p -k /e, "= g A¢ + q q d
A¢ + (q d )
t L I |
Realizability requires A¢ > g d /q , and, since tan g d =
tan(n% + A¢p) = tan Ap = Ad , we find the requirement that
. 112 '
tan g 4 > g——r—g— . ( 21 )
q

L] LI ] 1
Since g /g > l and g /g < 1 , the inequalities, Eq. (20)

and Eq. (21) may be combined to give

R "o 1
q d < tan g d < =~ . ( 22 )

g 4d

as a condition for realizable fields.
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Appendix II

the attenuation obtained from the

result of the power method (Eg. 1 ) is presented in Fig. 2.3.

The applicability of these are subject to the condition

L . | 1) ) T ot
g d << tan g 4 << 1l/g d .

Thus, if the above condition holds for any range of values of

H-guide operation, the curves in Fig. 2.3 may be used. They

were checked by comparison of several points with values ob-

tained by the characteristic equations. The checked points

are indicated by arrows.
Furthermore, with a
given by p| ; the graphs
approximate value of the
attenuation is minimum.
Figs. 2.2a and 2.2b, the

found.

specified value for the field decrease,
in 2.3 may be used to determine the
dielectric constant for which the
Using subsequently the curves in

thickness of the center slab can be
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Part 3

CONFOCAL REFLECTOR GUIDE FOR MILLIMETER WAVES

Abstract

A beam waveguide is an attractive structure for the
transmission of millimeter-wave signals in communications.

The present report continues the study of a parallel-
reflector guide, where the millimeter wave energy is reflected
between two cylindrical concave reflectors. The reflectors
are spaced by their common radius of curvature. For the
analysis of the beam reflector guide, a parallel-wall
approach using Gaussian-Hermite functions is applied. The
attenuation and loss characteristics of the guide, in particu-
lar the contribution by radiation, and the Q-value of a

shorted section are considered.
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CONFOCAL REFLECTOR GUIDE FOR MILLIMETER WAVES

Introduction

The paper deals primarily with the loss characteristics:
of confocal reflector guides and resonators, and it is an ex-
tension of a preceding report on this guide. A major part is
concerned with the contribution to the attenuation by radiation
with the computation based on considering the upper and lower
openings as radiating surfaces. Since the loss characteristics
of such a guide will be investigated experimentally later by
the use of a shorted section of the guide as a resonator, the
characteristics of such a resonator have been considered also
to permit comparison of theoretical and experimental data.

As a first step the field distribution and the Q-value of
a resonator composed of confocal circular-cylindrical reflector
surfaces are computed. As a check of the correctness of the
computed data, the results are compared with those obtained
for a rectangular cavity. It is herewith assumed that for in-
finite radius of curvature, the confocal reflector resonator
becomes a rectangular cavity.

The third part deals with the radiation losses of the open
confocal reflector guide. The Kirchhoff-Huygens' principle is
used for the determination of the fields resulting from radia-
tion. From these fields, in turn, the Poyntings vector and
the power losses per unit of length are computed. The final

result is the attenuation due to radiation.




35

Confocal Resonator
The field distribution and the Q-value are computed for

TE modes. Assume that the distribution function along the X-=

axis is given by a Gaussian-Hermite function.
X X
E, exp(-—-i)Hem(g) .
2a
The field in the resonator is then
E_=E exp(——z—) He (%) sink y sink_z .
X o 2a2 m'a Yy z

Maxwell's equations in rectangular coordinates  are

BEZ oF SHZ dH
T35y T 5z T T IWHy o '5"57"'5%=+j“’€Ex !
BEX 3EZ BHX 8HZ
5z T Tax - T IWHy o 5z ~ Tox C JusEy o
oF oF oH 9H
D ANSD . S — — =
X oy JWH, X oy Jwek, .
Since
_ _ 2 _ 2 2 2 2 _, 2 _, 2
Ey = Ez =0 , ko = kX + ky + kz ' ky = kO kz
we find
oE k 2
-1 x___z1 X Xy a3
Hy = “3ar 5z 3 ~ E exp ( 2a2) Hem(a)SLnkyy coskzz '
H = 1 BEX = ky E _ex (——5—)He (ﬁ)cosk sink _z
z ju 3y © Jkn To P 0gs M'a ol z !
where
a = ol no=alk k_ = wATE' and k. n = w
k ' e ! o ’ o' :




36

The field components are

_ _ X X\ o .
E, = Eoexp( ;;5>Hem(a)51nkyy sink 2z ,
k. Eo X X
Hy =TT W exp(———E)Hem(g) SLnkyy coskzz '
e} 2a
H = —EX— E_exp(-—=)He () cosk sink _z
z jkon o=*P 2a2 m'‘a yy Z *

The lowest-order-mode in the x-direction (m = 0) will be con-

sidered. The energy stored in a confocal resonator is given by

A/2

1

e (B ¢ 2
Pp = (Ugimax = = JOJ JO |E | dz ax ay

-A/2

B (A/2(C <2 ) 2
f ZJ J E exp(——i)sin kyy sin kzzdzdxdy .

(o}
(o} o o a

I
Njo

We introduce the error function

2
I = [A/Z exp(—zf) ax ,
a
O
set
2
£2 = 57 , dx = a dt ,
a
and for
A A A A
V=g ==V, 7 VY T 3g oF -

The integral I becomes

X
*
I = a f ° exp(—tz) dt

o

* Tables of higher functions (Jahnke-Emde). pp. 31
2

. . _ 2 |x -t
Die Fehlerfunktion @(xo) = o= [ = dt
o
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and we write using the error function @(xo) ’

or

I=-§-/‘n"¢<xo) .

Substituting I into PT , we obtain

= el2 VT o(x)]) o E 2sink y sin’k_z dydz
= el VT o 0. vy z? %Y )

P
T o o
The result is
eEoz
Pp = 5 aBCVmd (xo) .

The next term to be considered represents the current losses in

the walls PL . The conducting walls have a surface resistance
Rs . The losses become
P, =P + P +P ,
L Ll L2 L3
R (A/2 rc B A/2
= .S 2 2
P, = — {2 ‘ f ]Hz|y=0dzdx + 2 J f |ny|z=0 dxdy
-A/2 0 o -A/2
B (C
2 2
+. 2 H + |H dz d .
[ ] sl imlh ez ey )
o o} 2

We substitute HZ and Hy into P. and find

L
Rs A/2 C kz2 EO2 x2 2
PL = —-2— 2 J 2 f | -3 'ﬁ-z—-— exp(——-2—)31n kZZdZdX +
o k a
o
R B (A/2 k° Eoz 2
+ = 2 2 f J — —— exp(~-=5)sin“k y dx dy +

2 o} o k 2 n2 a2 y

o
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RS B C k Eo A2 2 2
+ — 2 S A=A exp (-——=)cos"k y sin“k_z dzdy +
2 k 2 n2 4a2 Y 2
o o o
2 2
R B (C k E 2
S Z o) A .2 2
+-2—-2J J' FﬁTeXP(—F)Sln kyy cos kZZ dzdy .
a
o oo
Evaluation of the integrals gives
K 2 |
p. =r —Y - 22T 4y
Ll S 2 2 o) 2 (e}
n
o)
x_2 ~
_ z 2 aBvTm
P, =R =33 By T3 2(x))
2 k. ™n
o
2
E "B C 2
0 A 2 2
P. = R, ——— {exp(-—5)} (k. “ + k ) .
Ly s 4k02n2 4a2 y z

If the path of the plane waves makes an angle & with the normal

to side wall, one can write

ky = kocos€ ' kZ = k031n£ '

We introduce £ in PL ’ PL ’ PL ,

1 2 3
_a kocos€
2 B !
R_E k _cosg ,
_ s "0 BT A 0 2
P, =22 € 1/‘1;"55;2 * (3 \1—'——3 ) cos”E .
n o

Similarly P and P become

=
0

i
NS
wkf1

2 3

R_E 2 k _cosg

s "0 Bn A le) .2
P = e = B -W’—__——— o (= V-————-—) sin“t ,
L2 2 n2 kocosg 2 B

R _E 2 k Azcosg
P. = — -2 B C eXp (=)
L3 4 n2 4B !




since
2 k Azcosg
exp(-——id = exp (- __—Z___ Y
4a
2 02 2, 2, . . 2. _ . 2
ky + kZ = ko (cos“E + sin“Eg) = ko .

Similarly we express PT in terms of the angle § ,

2
b o Eo B C BT @(é kocos€ :
T 8 kocosg 2 B

The Q-value of a confocal resonator is defined by

The contributions by the various walls are

w_P wpP w P

= = T =0T
Q = PL v Qp = PL and Qs = PL .

1 2 3

Substituting the expressions found previously, we find

2
woPT W ENT g
Ql ) PL ) 4R coszi ’
1 s
2
wCPT wosn C
Q2 } PL ) 4R sinzg '
2 s

and

k cosE
0. = BT V
3 k COSE k A cosg
exp (- —Q—ZE__— )

The total Q of the confocal resonator is

39
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Substitution of the above results gives

k AzcosE
1 4Rscoszg 4Rssin2£ ZRSeXP(' 5 )
— T -+ + .
Q wosnz B wognz c N n2 B o2 kocosE=)
o kocosi 2 2

Rectangular Cavity Resonator
For comparison, the Q-value is determined of a rectangular

cavity resonator for TE modes. The fields are given by

Ex = EO 51nkyy 51nkzz P
kz Eo

Hy = —EE; - 51nkyy coskzz ’
k Eo

Hz = jko o coskyy s1nkzz .

The energy stored in the resonator with dimension A, B, and C

becomes
e B A C 2
Pp = (Ug) o = 5 f f j |E,|“ dzaxday ,
o) o} o)
_ € 2
=3 A BC Eo .

The energy loss in the side walls is

RS A (C 2
P, = 5 2 f j lely=O dzdx ,
o o

k 2 E 2

(s 2= )
2
k n

N M
o
0

2
o
2

|

I )

w

ll?-’.l

(o}
N AN

FW
N

AC .
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It follows

o°T
1

If we substitute

ky = kocos€ '
0 _ woe Bn2
1 4R 2
s cos g

The energy loss due to front and back walls is

Rs A (B 2
PL2 = - 2 f, J |Hy[Z=0 dxdy ,
o o
or
RsE02 2
PL = 5 A B sin“g .
2 2n
Hence, -
W en2 C
Q = .
2 4r_sin’t

The losses due to the top and floor are as follows:

RS B (C 2 2
PL3 = = 2 f f [IHZI + lHyl ] dzdy
o o
RS B (C k 2 Eo2 2 2
= = 2 f f (415 —>5 cos k.y sin“k_z +
k n Y z
o o o)
k22 E02 2 2
t =5 == sin“k_y cos“k_z) dzdy
k n Y 2
2 ©
E B C,Rs
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and

_wOP _woeA
Q3 = 5 - 4

2
D"‘- °
RS

1 1 1 1
P R R T ) ’
Q Q, Q5 Qq
4R coszi 4R s1n2£ 4R
s
= 5 + + '
w_€BN w,ECn W, EAN
_ 4Rs coszg sin2€ 1
= 7 s tTctE) -
A
WuEN

Confocal Reflector Guide
The field distribution is determined for the TE
mode. We assume that E, is defined by
—jkzz

= 2 Xysi
E, = Eoexp( X 2)Hem(a)51nkyy e .

It is possible to solve for Hy and HZ in terms of EX ’

BEX BEZ
5z T Tox o Jwly -

Since EZ = 0 , we find

k 2 -jk_z
zZ X X . z
H = — E_ exp(-——) Hep(T) sink vy e ’
Y kon o 2a2 a vy
where
w = kon .

Similarly, H, can be found from

oE oE
D A S —
X y JwH,
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Since Ey = 0 and substituting E  we obtain

X X ~3k,2
=kyEOexp(—;;7 ) H%n(a) coskyy e = -JwH,
or
k 2 -ik_z
= ot . Z 2
H, 3 Eoexp( 2a2) Hen\(a) coskyy e .

We calculate next the energy flowing into the confocal reflector

m =0 : A/2 (B N .
Pn = j f 5 (Ex Hy ) dydx
-A/2 o
k p/2 2
_ 2 2B X
= ffgﬁ E)S 5 [ f exp(;i) dx] .
-A/2

Previously the error function was introduced,

I = exp(—zf) ax .

a

IA/Z 2
o

The above equation can be expressed by the error function,.
k 2

= e
Pp = 7%_n E " B [1] .

To obtain the power loss in the side walls, we introduce the

surface resistance RS and find for the losses

Ry A/2 (C 5
PLl = = 2 f IHZ]y=0 dzdx ,
-A/2 o
2
R.Ck
= _8S ¥ g2
2 2 Eo 2 (1] *
o N

Similarly, the power loss on the top and bottom surfaces is




The
sidered n

from side

where C =

losses in

If we set

T =

45

RS B (C 2 2 ’
=-2—sz [lHZl + |5 ]“] a dzdy
Ko
o o 2
2 2 2
R E k + k 2
= = g (- > Z) exo (-—ég '
2n ko 4a
RSE02 2
= 2 exp (——-'5 .
2n a

attenuation loss of a confocal reflector guide is con-
ext. The contribution to the attenuation arising

wall losses is

P
1

2PT

R Ck 2

Syt E° 2171

k_“n °© 2Rk
(o] S
" . KX T B ’

Z o 2
Z'Z-TC—;-"HEO B [I]

unit length. The part of the attenuation due to

the top and bottom surfaces becomes

P
3
2PT
2
R E 2 2
s o A A
=2 — exp (——=5 ) R, k_ exp(-—sz)
2n2 4a2 _ s o 4a2 - B
, kz . 2 - 2kZ n [I] B ky
2k n (o}
o
A2
a - » , then exp(~——§) -~ 1., The integral [I] becomes,
4a
A/2 2
lim [ exp(—~§7) dx = % .
a~w 2a
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Substituting these values into o, , we obtain the corresponding

T
part of the attenuation of the rectangular waveguide,
R_k
o = S0
T kzn A '

The total attenuation of the confocal ref%ector guide is
A
2 R ko exp ( ——5)

2Rs k 4a
o = 0 + o, = + ’

s T kO anB 2 RZ n LIIE

2

A

R 2k 2 k, exp(-——

= S[ y+ 4a ]I

anB ko 2[1]

and the total attenuation for a»~ (rectangular guide) becomes

2

2Rs ky RskO
o= a_ + O = + '
s T kdkzn B kZ n A
R, 2ky2 L
= [ + k=1 .
anB ko o A

This result agrees with the equation obtained directly for
the rectangular waveguidel and may be used as a check of the
correctness of the above equation for the confocal guide closed
on top and bottom by conducting walls.
Calculation of the Poynting Vectors
Due to the Second and Third Order Field Distributions.
In the Top and Bottom Surfaces of the
- Confocal Reflector Guide -
It was shown that the field distributions in the confocal
waveguide are given by
2 —jkzZ

= — X i
E = Ej exp ( 2az) Hem(a) 51nkyy e '
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Z ( X2 (X X —3k,z
= —2 F -2y He (%) si
Hy koﬂ o EXP 2a2) e, (3) sin yy e ’
k 2 x -3k, 2
H, = Eiﬁﬁ E, exp ( 2a2) Hem(g) coskyy e .

The x-component of the Poynting vector is defined by

* *
Sy = B, H, - B H,

Since the above approximate equations have no components Ey
and Ez’ first-order perturbation terms are computed from
Maxwell's equations. We start with Ex' ’ Hy' , and HZ' to

obtain S_ ' . Assuming that H ' = 0 , the Ey' is obtained

from Maxwell's equations as

N
y  jwe 09X '
k « 2 -ik 2
= — E (-=) exp (-—) cosk y e .
wskon o a2 2a2 y
—jkzz
We obtain for Ey' = (real term) e . Similarly, we compute
EZ' and find
1 oH
E':—D-_—__—L ’
z Jjwe ox
k 2 -3k 2
=t (-2 exp(-—ﬁ—) sink v e z .
3wskon o a2 2a2 y :
—jkzz
and write Ez' =- (imaginary term)e . Since the original

equations for Hy and H, can be written in similar form as

—jkzz
(real term) e '

s
it

—jkzz
(imaginary term) e ’

i
il
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one obtains SX' = Ey' (real) . H, (imaginary) - Ez' (imaginary) .
Hy (real). This shows that Sx' is imaginary and indicates a
reactive power flow through the top and bottom surfaces. In a
second attempt a second-order Poynting's vector is derived

given by

S"=E"H"*-E"H"*.
x v z z v

We find the second-order field guantities as

oE_' oE_'
H'' = ~qo— [ =2 ~ —d— ]
X Ju oy X ’
—jkzz
= _15__—— (-——) exp(————) cosk vy e -
pw k on a 2a y
2 —jkzz
—5~%— E (———) exp(————) cos k y e '
wue a 2a Y
—jkzz
which can be written as HX" = (real term) e . Similarly,
oH_'' oH
B2 1 [ X _ Z
y JWE 0z X !
2 2 -k 2
= —3_2———— E (———)exp(————)cosk y e +
w p ek o a 2a y
2 .
kZ k < x2 —jkzz
+ _z—i_% Eo(——f)x exp(———i) cosk y e +
wue a 2a y
< 2 —jkzz
+ (-—=) E exp(———-) cosk y e '
wzue a2 ° 2a Y
hence
=jkzz
Ey" = (real term). e .
Similarly one finds corresponding expressions for HZ" ’ EZ" '

and Hy" : which yield
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. . , —jkzz
H, = (imaginary) e ’
L . ‘ —jkzz
E_ = (imaginary) e '
and
—jkzz
Hy" = (real) e .

The second-order contribution Sx" becomes then

S i|=E L] H ll*_E LI ] H.ll*
X y z z y !
* . \ . *
= Ey"(real)° HZ" (imaginary) - EZ"(lmaglnary)Hy" (real) ,
S_.'' = imaginary = reactive .

X
This result indicates that under the assumed approximations
radiation cannot be considered by determining the Poynting's
vector in the upper and lower openings. Other methods have
to be used to find the radiation losses.

Radiation Losses of the

Confocal Reflector Guide

In this section Kirchhoff-Huygen's principle will be

applied for the computation of radiation from the open surfaces
of the reflector guide. The equations for the approximate
field distributions in the guide are the same as at the be-
ginning of the preceding section. The components of the field

over the aperture of the reflector guide are

N 1 oH
E = e -—Z- ’
b4 Jwe 99X
k ‘2, -jk z'
S N _3;..) _XL ! z
= T [kon Eo(exp( 2a2)( a2) coskyy e ] .




50

The component of the field at a source point is hence

vk, . 2 . -3k 2’
E_= E ( ) exp(-—s)cosk y e ’
z jkoz o) a2 2a2 vy
1
H = ——= E_exp(-—sx) cosk vy e .
Y koﬂ o 2a2 y

The retarded Hertz vector can be written as

" _k
I = 1 (n x H) e IxT ds'
e dmjwe ' ri !
s
N ]
-jk r
_ 1 (n x E) IXs !
Hm—4,n_juuf'—;-r—e ds .
s
]
Substitution of-Hy in He and for x = % yields
1

1)
¢ —Jk_2z —jkor

z
k 2 cosk y e e

= 1 .z _A y '

Hez = 4TTjUJ€ f . kon EO GXP( 8a2) rl ds ’
s
(k_z +k_r )
o y —Jjkk_z +k r
_ Eokz A2 B/2 cosk. vy e 2 °© ' '
= exp (-—) N4
A4k 2 8a2 ¥ dy dz .
%6 -B/2 - r

Since

r =.Vb'2 + (z - Z')2 '

we write
E k 2
o Z A '
1 S o exp(—_.._....) [T ] ’
ez gpik 2 8a’
o
where

1 ¥
—j(kzz + kor )
. B/2 ¢~ cosk y'e .
Y
I = dy dz .

-B/2 ‘V p'2 + (z - Z')2
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)
As a first step, we integrate with respect to z . We intro-

duce a new variable,

L} L]
z - 2z = p sinht ,

and

1 L T ] ]
0 2 4 (z - z )2 = p 2 +p 2sinhzt = p 2coshzt .

L}
After substitution into I , the integral becomes
1 B/2 L} 1
I = coskyy dy [IO] ’
-B/2

where

hd 1 ]
I = f expl-jp {kocosht + kZz + kzp sinht}] dt '
ik, z e .
= e [ expl-jo (kocosht + kzsinht)] dt .
J

- 00

We assume next that ko2 —vkz2 = kr2 . The integral [IO] be-

comes then a Hankel function of zero order. The result is
—jkzz

I, = —ijo(z)(krp ) e R

The asymptotic expansion of the Hankel function for large argu-
ment can be used for the computation of the radiation losses,
¥
. . m
—szz 2 _J(krp - Z)
I = -jme ——— e .

°© m™ kr

¥
We can make the approximation p = p + y cos¢ , p = p and find

)
—jkzz 5 —j(krp + kry cos¢ - %)
e [

Io = =jTme TPk
r




]
-j(k_ .y cos¢d) -jk_z
e (2) Ity z
Io = ijo (krp) e e .

Hence, Hez becomes

-E_k 2 -jk_z (B/2
Moz = ——2—55 exp(——éi) Ho(z)(krp) e *
4ko 8a ZB/2
. — r
5 e dy .

The integral is

B/2 j(ky - krcos¢)y —j(ky - erOS¢)y '

%. [e + e ] ay =
-B/2
= 1 [(k. + k coscb)sin{E (k, - k_cos¢)} +
2 2 2. Yy r 2 Yy r
k - k_"cos™9
vy r
. B
* (k, - k cos¢)sin { 5 (k, + k cos¢)}1 .
Transformation of the result gives
5 Bk krB
= [k.sin (—<) cos (~—=— cos¢) -
K 2 _ X ZCOSZ¢ y 2 2
y r
Bk krB
- krcos(—iz) sin(—— cos¢) ] .
The field component
-jk_z
= X 4
Ex = Eoexp( 2 2)coskyy e ’
a
satisfies the boundary conditions
B .
y =% : cosk y =0 and sink_ vy = 1 .
2 y B y B
y = 35 Yy =3
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Taking account of these conditions, the integral becomes

finally
. k B
B/2 ] —jkry cosd 2 cos (—5— cos¢)
cosk. .y e dy = 5 .
¥ k
~B/2 k. (1 - _Ef cosz¢)
4 k
Y

Substituting this result into Hez , we find
k_B

. r
_ Eokz A2 (2) —]kzz cos(—i— cos¢)
Iz =~ —3— eXP(_-i) H, (krp)e — 2 '
2ko k 8a kr 5
Yy 1 - —5 Ccos ¢
k
Y
since
k22?2 -x?2-g?
r o X y
and

= (n - =

where n is odd. The final result is

. 1
_ Eokz A2 (2) ik, 2 cos[(n-i)ﬂcos¢]
Hez = - — exp(——-——z-)HO (k_ple > .
2k _“k 8a Y sin“¢
IS4
Similarly we compute Hm from the equation
n ]
-jk r
_ 1 (n x E) %0 '
Hm = ImSar f , T e ds ’
r
S '
' —jkzz —jkor
nmy ] 4ﬂ%m1 f szg(— Az)exp( Az) coskyy e ' e ds' '
v o
s jko 2a 8a r
jE k 2 -jk_z _L
noo= - 032 ( Az)exp(— AZ)HO(Z)(k o)e z” cos[(n-3) ncos¢l
o 4k _>n 2a 8a y 2 ‘
o sin™ ¢
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We determine next the far-fields from the vector potentials

according to

_ 2 _ dllm¢ 1l 1 3llmp
EZ—VV.Hez+ko Hez Juu [ 50 +Hm¢p 5 T30 ]
and
E 3 1llmp lkz BHez
¢ 3z P 3p !
since
> oll oIl + 9l oll > 3(pll,)
= 1_z__¢ L __2 ¢
VxI= ap[p 5 3Z] + a¢[ s Bp] + aZ[p 55
-1 EEB.] .
p 09
Since the radiation amplitude decreases with p_l/2 , we may
neglect the last term of EZ and E¢ . We use the identity
2 oo 2 2 _ 2
VVQHeZ + k0 Hez = kz + ko ) Hez = ky Hez ’
and the relationships
Hmp = Hmycos(ﬂ—¢) = - Hmycos¢ ; Hm¢ = Hmy sin¢ .
Substituting these terms into E, and E¢ , we obtain
2 BHmY
EZ = ky Hez - juu 50 sin¢ ’
and
BHm
E¢ = - —53X cos ¢ .
After inserting Hmy and Hez we obtain finally
—jkzz
E k e 2
oz A (2)
E = = exp (-——) [k H (k. p) +
z ok 2 8a2 y o N4
o
dH (2)(k 0) cos[(n—L)ﬂcos¢]
1 A 0 v . 2
+ - ( 2) 5 sing] 5 .
y 2a 0 sin“¢
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Similarly,
(-3)E k 2
B, = (-3k,) —32=2 (Bpexo (-5 1 P (x 0)
2k "k n 2a 8a y
o ¥y
—jkzz COS[(n—%)ﬂCOS¢]
e > cos ¢ .
sin“ ¢
These equations can be written as
E k 2 -jk_z
0 Z A 2
E_= - exp(-—s) e F_(¢) ’
z 2k 2 8a2 z
o
Eokz2 A a2 Ik,
E¢ = - 3 (—5) exp (-——=) e F¢(¢) '
2k k. n 2a 8a
°o Yy
where
(2)
oH (k. p)
_ (2) 1 , A o v .
F_(¢) = [ky H (kyp) + 5 n( =) 55 sing]
y' 2a
1
cos[(n—f)wcos¢]
2 14
sin®¢
1l
cos[(n—g)ﬂcos¢]
F¢(¢) = cosé .

sin%¢
For the calculation of the radiation loss from the waveguide,
we enclose the guide in a semi-circular cylinder of radius p

and calculate the power flowing out the cylinder,

2 (7 2 m 2
P, = K, f |F,(¢)[“pds + K, f [Fy () [Tpde
(o] o
where
Bk, 2
K, = exp (-—=) ’
1 2k02 8a
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2
E k 2
K, = —222— (B5) exp (-5
2k "k.n 2a 8a
oy
and
(2)
oH (k..p)
- (2) 1 A o v .
FZ(¢) [ky H (kyp) + kyn (2a2) 55 singl
1
cos[(n—i)ﬂcos¢]
sin2¢ '
cos[(n—%)ﬂcos¢]
F¢(¢) = 5 cos¢
sin“¢
The integrals of FZ(¢) and F¢(¢) will be

fﬂ ( 2 Q6 ﬂ . (2) K o) 5 COSZ[(n—%)ﬂCOS¢] 5
‘FZ $) [“p ¢"f [ y Hy ( yp ] Sin4¢ pdd +

&) o

A
n2a

(2)
My T ko)
2 9p

+ 2 [Ho(z)(kyp)

i COSZ[(H—%)WCOS¢]
X f sin¢pd¢ +

o sin4¢

(2)

y 2a2 ap

m
}2 X [ sinZ¢ x
o

COSZ[(n—%)ﬂCOS¢]
X

pd¢ ’
sin4¢

T cos2[(n—%)ﬂcos¢]

U 2
f |F¢(¢)| pd¢ = f 0dd

. 4
o o sin ¢

The average power transported along the guide is




57

A/2 (B 1 %
Pp = f 5 (Ex Hy ) dydx ’
=-A/2 o
2
_ kZEO B[I]
- s P — 14
2kon
where
A/2 x2
[TI] = I exp(——ﬁ) dx .
a
o

If we neglect the field resulting from Ez, since it is much

smaller than that caused by Hy' we write as an approximation

i 5 _ LI (2) 5 COSZ[(H—%)HCOS¢]
f |F, () [“pd¢ = f k,“1H, 2 (kp) ] O pd¢ .

o 0
The asymptotic expansion of Ho(z)(kyp) for a large argument is
. K
5 J(kyp 7

(2) N
HO (kyp) - ,n.kyp e .

Substitution into FZ(¢) gives

COSZ[(n—%)ﬂCOS¢]

i 9 T 5
f |7, (0) | “pdd = f k" s O pdd
o) 0
2y
= [J] ’
where
™ cosz[(n—%)ncos¢]
[J]=[ 7 dé .
sin" ¢

0

Hence,

™
b= 2 [ I 0 %08

(o]
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EO kz k A2
P, = ————jr—i; exp(———i) [J] .
2ko m 4a

Since the radiated power is

2
1 IF e

' T et e R,
PL -2 n !

the attenuation due to radiation from the upper and lower openings

become 2 9
EO kz k A2
"___TT—JZ exp (-——5) [J]
PL' 4ko nmw 4a
(x = —
R 2p 2 ’
T kZEo B[I]
2k N
or
k. .k [J] A2
o, = exp (-———=
R 21k B(I] 2 ’
where
A/2 x2
[I] = f exp(—-i) dx p
o a
and

T cosz[(n—%)ﬂcos¢]
[0] = f d¢ .

o sin4¢

Graphical evaluation of these results is shown in the following

diagrams of Figs. 3.5 to 3.7.
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Part 4

STUDY OF THE EFFECTS OF SURFACE ROUGHNESS

Abstract
An outline of a study of the effects of surface roughness
on the loss characteristics of waveguides, particularly the
H-guide and the beam waveguide, is presented. The problem is
very important at millimeter waves since the measured values
of the attenuation are usually twenty to fifty per cent above

the values predicted theoretically at present.
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STUDY OF THE EFFECTS OF SURFACE ROUGHNESS

Introduction

Q-value measurements on resonant shorted sections of wave-
guides are used in this laboratory to determine the attenuation
of non-conventional waveguides at millimeter waves. It is
known that, in this frequency range, measured Q-values usually
are between 60% and 80% of the theoretical values. At this
time the sources of this discrepancy are not well understood.
The wall losses are primarily a function of the surface resis- .
tance and this, in turn, of the conductor properties. At wave-
lengths longer than a few centimeters, surface resistance is
determined by the bulk properties of the metal, but at wave-
lengths of the order of one centimeter and below the roughness
of the surface and perhaps other surface phenomena affect the
magnitude of the surface resistance.1 At millimeter wavelengths
the effect of surface roughness becomes very pronounced.

The term "roughness" will be used to describe a surface
which has irregularities from a smooth, flat plane. Methods to
measure this roughness exist, direct and optical.z’3 This in-
vestigation of the relationship of surface roughness and resis-
tance will use the non-destructive technique of optically mea-
suring the variations. The purpose of this research is to pro-
vide a model to correlate surface roughness to surface resistance
for the predictions of the power losses at millimeter wavelengths

and to find methods of their reduction.
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Literature Survey

Abnormally low values of Q were reported by several inves-
tigators in the 1940's and 1950's. Morgan4 reported that at
frequencies above 10,000 MHz the calculated Q's were much higher
than measured experimentally. Horner et a15 observed the same
at measurements on cavity resonators at frequencies near 3,000
MHz. However, Gevers reported Q-value measurenments at 3,000 MHz
which were 98% of the theoretical value when using a precision
lathe and diamond tools to give surface variations of only about.
10"~ microns. Dr. F. AelBensonl investigated surface roughness
effects on waveguide attenuation. As a reéult of their work at
centimeter wavelengths, Dr. Benson modified the attenuation con-
stant expression, derived by S. Kuhn,6 to account for the surface
variation.,

To determine the surface variation two techniques have been
used. A stylus-type instrument records the up and down vertical
motion of a sharp needle as it travels along the surface. As a
second method, the surface can be cut cross-sectionally and the
edge viewed under a powerful microscope. But the most recent
technique of studying surface roughness is based on light reflec-
tance from the rough surface. Dr. H. E. Bennett and Dr. J. O.
Porteus published a number of papers on relationships of surface
roughness and specular reflection at near normal incidence in the
early 1960's. Their work was based on earlier publication of
H. Davies, "The Reflection of Electromagnetic Waves from a Rough
Surface." Davies' expression for specular reflection was based

on the assumption of a perfectly conducting surface and that the
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root mean square deviation of the surface from the mean surface
level is small compared with the wavelength. Bennett and Porteus
modified Davies' expression by multiplying the reflectance from
rough, perfectly conducting surfaces by the reflectance of a
smooth surface of the actual material.

Dr. K. E. Torrance and Dr. E. M. Sparrow in recent years have
studied reflections from rough surfaces when the root mean square
deviation of the surface from the mean surface level is of the
order of or greater than a wavelength. Their theory is based on
geometrical optics.

The literature search continues at this time.

Investigation

As an initial step in the investigation, it was important
to determine the feasibility of measuring surface roughness.
Several rectangular blocks of copper were cut for the test speci-
mens. Roughness was created by grinding which leaves the pre-
pared surface with parallel grooves with random depth. Each
copper specimen was ground on a different grade of abrasive paper
which results in a difference in maximum surface deviations. Each
specimen was cut cross-sectionally, revealing an edge view of the
surface. To facilitate the observation, the cut specimens are
molded into a cylinder of bakelit and the exposed surface polished.
The polishing removes the foreign material and fragmented metal
caused by the cutting operation. The amount of material removed
was between 0.4 and 0.5 mm. Then the surfaces were viewed through

a microscope, Bausch and Lomb, Serial Number SE 176, Metallograph.
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The microscope has magnification powers ranging from 70 to 2,150
times the actual size. An eyepiece with a movable cross-hair
was calibrated with a precision incremented strip. A comparison
between surfaces was made by measuring displacement between the
highest and lowest points of the surfaces for each of three
grades of surface roughness. The smoothest surface variation
was 1.9 ﬂ, the next was 3.9 ﬂj and the roughest was 13.8 y. These
measurements covered a section of surface approximately 500 y in
length., A record of the roughest surface was made by photographing
through the microscope the image onto metallographic plates. The
image of the surface was then enlarged and printed on photographic
paper. The process provided an approximate surface magnification
of 250, From the photographic print, the surface deviations were
taken and were 14.2 u compared to 13.8 u by direct observation.
Attempts to improve the observations of the surface structure
by nickel plating gave very little discernible improvement.
Figures 4.1 and 4.2 show specimens of blocks of copper embedded
in plastic and bakelit and a copy of the photograph of the roughest
surface structure, One part of the scale on Fig. %.2 represents

25.4 p .

Plan of Work
The investigation will have several parts. One will deal
with the determination of roughness of metallic surfaces by mea-
suring the distribution of light reflectance and the technique
will be verified by microscopic observations. Measurements of

Q-values of test cavities at millimeter wavelengths will give
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the surface resistance of the evaluated surfaces which then
will be related to the measured surface roughness. The wall
roughness of the various cavities will be created by using
different grit sizes of abrasive material. A model will then
be developed of the electromagnetic surface effects and re-
lationships will be found between surface resistance and
roughness. The derived relationships and procedures will then
be used for the comparison of cavities with surfaces treated
in various ways to reduce the surface resistance. The results
will be used for the preparation of the walls of waveguides

with reduced attenuation.
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Fig.

4.1

Specimens of copper walls embedded in
plastic and bakelite. Polished cross
sections for three grades of surface

roughness are shown.

Microphotograph of cross-

sectional views for maximum
roughness. One part of the
scale on top equals 25.4 um.
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Part 5

FIELD DISTRIBUTIONS IN FRONT OF
H-GUIDE HORN TRANSITIONS
Abstract
A newly designed horn-type transition between rectangular
waveguides and fence guides and coupling plates are described.
The field distributions measured in. front of the horn and the

coupling elements are shown in diagram form.
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FIELD DISTRIBUTIONS IN FRONT OF
H-GUIDE HORN TRANSITIONS

At the experimental study of H-guides and fence guides,
several types of coupling elements are used at present be-
tween these guides and rectangular waveguides. These coupling
elements represent shorts if short sections of the above guides
are used as resonators and may serve as mode transformers be-
tween the rectangular guides and the other guides. A special
horn-type transition was designed to be used for the mode
conversion with minimum discontinuities and high efficiency.
It consists of a horn-type structure with the upper and lower
surfaces of the rectangular waveguide flaring up to form the
horn. 1In the center, a dielectric slab concentrates the field
in its vicinity and generates at the horn amperture a field
distribution corresponding to that of the H-guide or fence
guide., Figure 5.1 shows a photograph of the structure. If the
fence-guide section is used as a resonator, a one-dimensional,
multi-hole coupler, shown on the right-hand side of the figure,
is inserted between the horn and the guide.

The field distribution in front of the horn was measured
under various conditions to assure proper operation if used
for the indicated purposes. The following figures show sketches
of the conditions under which the measurements were made.
Figure 5.2 shows a single-hole coupler directly attached to a
rectangular waveguide to be used for resonators consisting of
sections of fence guide and H-guide. The field distribution in

front of the single-horn coupler at various distances is shown
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in diagram form in Fig. 5.6. Such a coupler generates an ex-
cessive number of undesired modes. Figure 5.3 illustrates the
multi-hole coupler which, if used in a resonator, generates a
field distribution of the fundamental mode and suppresses un-
desired modes. The field distribution in front of the struc-
ture is shown in Fig. 5.7. Figure 5.8 presents the field
distribution in front of the horn without coupling plates which
is uniform as predicted. 1In the presence of a dielectric slab
the field distribution is characterized by a predominantly ex-
ponential decrease of the fields from the center of the horn
typical of the H-guide mode. Measured diagrams are shown in
Fig. 5.9. The geometrical configuration of the horn is illus-
trated in Fig. 5.4. A double-slab structure is shown in Fig.
5.5 and its field distribution shows a field decrease from the
center toward the upper and lower walls similar to that of the
single-slab horn. The probe used for the field measurements
will be described in a later report. Measurements for the
determination of the discontinuities introduced by the transi-

tion are underway at present.
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Fig. 5.1 Wave-mode transformer and coupling plates.
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Part 6

THE CHARACTERISTICS OF
BICOMPLEX WAVE-ANALYTIC FUNCTIONS
Abstract

The present part completes the description of the commu-
tative bicomplex number system. It continues with a considera-
tion of bicomplex analytic and wave—analytic functions. The
latter are derived from expanded Cauchy-Riemann equations.
It is shown that these functions satisfy under certain condi-

tions the wave equation (Helmholtz' equation).




80

5. Reflexion and Adjoint Operator

With respect to a given b.c. operator

C:

t11

gy + 3 g, ®

21

%12

( 5.1 )
22

we consider the following b.c. operator:

This

of T.

&9

llw]

it
.
Il

-z 0 -1

( 5.2 )

operator z* will be called the "reflexion operator"

Accordingly,

¥ =

]

1

-
22
o SN
13
0
12
—lC”‘
53
0
1

X+jC2X

(5, + 38, 3=

In particular, we have

0
‘11
. (5.3)
Cz%u
G7Hoggd) + 3G 5,9
( 5.4 )
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Obviously, we have

Next we define the "adjoint operator" of 7 as follows:

z z
eD K 22 °12 Cse
C—Cl 32_ .
“too 11

This represents the adjoint matrix of Z.

From the above definition we obtain

* b4

X

X . . . .

X

_ X . X

and since Clx and Cz are both diagonal matrices, they are cum-

mutative; i.e.,

X _ X

so that the second term of Eg. (5.7) vanishes and we get

* X X
ce = ClCl + §2 Qz

11 %22 0 €12 %21 O
= +
0 ¢22 f11 0 S21 t12
(611 T * Lyy Ean 0
B 0 S11 %22t fa1 %12
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*
Therefore, the product ¢ represents the determinant of ¢

which we denote for convenience

22 D ; _ + X X

From this relation we know the inverse operator c_l of ¢ is
given by

—_ * o
z L t / cz ( 5.10 )
provided 22 =-det z # 0 .

*
It can easily be seen that the adjoint operator ¢ has

also the following properties:

T+ = cll + C22 = trace of ¢ . ( 5.11 )

and if ¢ and n are two b.c. operators, then

* * %
(zn) =n ¢ ( 5,13 )
For
tn= (& + 3Ly, (ny + 3 ny,)
_ _ X , X
- (Z;l 'ﬂl Cz nz) + ] (Cz nl + Cl nz) ( Sol4 )
Therefore

® - X X _ . . X

(2,5 ny™ = gn,™ = 3Ly ng + 5y ny) (5.15)
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On the other hand

* % bid

_ X _ = o =
ng o= (ny ing ) (g4 ig,)
_ _ X s X
- (nl Cl n2 C2) ](nlgz + nzcl ) ( 5616 )

Comparing Eq. (5.15) and Eg. (5.16), we get Eg. (5.13) .




84

6. B. C., Analytic (Holomorphic) Function

Let wl(Zl ’ ZZ) and wz(Z1 ’ Zz) be two complex functions
of two complex variables Z] and Z2 . If both Wq and w, are
analytic with respect to Zl and Z, in the complex domains

Dl(Zl) and DZ(ZZ) ; respectively, and satisfy the complex

Cauchy-Riemann equations:
7

ow ow

1 2
- =0 ( 6.1 )

BZl 3Z2

ﬁ ow oW
azl + az2 =0 ( 6.2 )

2 1

~

then the bicomplex function w = wy t jw2 will be called a bi-
complex analytic or holomorphic function of the single b.c.

variable Z = 2y *+ jZ2 in the b.c., domain D = D, x D2 .

Making use of the notations:

o

9 D 2
1 5?]? and 32 - ——3Z2 ( 6.3 )

the above (6.1) and (6.2) are written as

Bl Wy 32 w, = 0 { 6.1 )
¥
3y Wy + 3y Wy, =0 ( 6.2 )

These two equations are unified in the following complex vectorial

equation:

=0 ( 6.4 )
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This can be written simply as »
Vw = 0 ( 6.5 )
where
3, - 9 3, 0 o -1|ls, ©
1 2 1 2
v D = +
32 81 0 Bl 1 0({o0 82
= 5y + 39, ( 6.6 )
and by (1.14)
5 Wy Wy 0 -1 W,
w = = +
W, 0 1 o{tlo
:Wl+ sz ( 6.7 )

The above Eq. (6.5) is the unified form of the complex Cauchy-
Riemann Egs. (6.1) and (6.2).

If we change the sign of w, in Egs. (6.1) and (6.2), we

2
get the conjugate Cauchy-Riemann equations:

7

al wl + 82 wz = (
(6.8)
<
Laz Wy - 81 W, = 0
These can be unified into
* *
vV w =0
where
rv* Dy - 5
=V =9; -39,
<
*_D’\'_ _ _
wo=w = w, -jw,




86

The above Eq. (6.9) may be obtained directly from Eq. (6.5)
by simply changing the sign of j.

Since

V'V = (3, - §9.) (3, + 39.) = 3.2 + 3.2 D A (Laplacian)
1 7 J97 19 T Jey) = 9y T 0y p

= 312 + 322 Da (two-dimensional Laplacian)
*
= VvV ( 6.11 )
*
we obtain from Egs. (6.5) and (6.9) by operating V and V,

respectively, from the left,

*
Aw = Aw = 0 ( 6.12 )

which shows that both w and w* are b.c. harmonic functions. The
converse is not true, i.e., a b.c. harmonic function u(z) does
not necesarily satisfy Egs. (6.5) or (6.9). However, we have
the following

Decomposition Theorem. Any b.c. harmonic function u(z)

can be decomposed into a sum of a b.c. analytic function w(2z)
and its conjugate function %(z),

Proof. Suppose a b.c. function u(z) = ul(z) + juz(z)
satisfy in a b.c. domain D = Dl X D2 the two dimensional

Laplace equation:

Aa = 0 ( 6.13 )

Since Au = Aul + jAu2 0 , each of the component complex
functions ul(z) and uz(z) should satisfy the two-dimensional

Laplace eqguation, i.e.,

Au, = 0 and Au, = 0 ( 6.14 )
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But these are precisely the integrability conditions, i.e.,
the necessary and sufficient conditions for the existence of
the two other complex functions vl(z) and vz(z) such that in
the b.c. domain D = D, x D, of Z = Zl + sz , the Cauchy-

Riemann equations hold:

31 ul - 32 vl = 0
< ( 6515)1
32 ul _ 32 vl = 0
N
and
31 u, + 32 vy = 0

Therefore, the b.c. functions

Wy o= Uy + jvl and W, =V, + ju2 ( 6.16)

are b.c. analytic in the domain D = Dy x Dy i.e., they satisfy

le = 0 and Vw2 = 0 ( 6.17)

The b.c. j-conjugate functions of Wy and w, are given by

n . " .
Wy, = uy - Vg and Wy =V, - Ju, ( 6.18)

From Egs. (5.16) and (5.18) we have

_ 1 v
u; = 3 (wl + wl)
( 6.19)
—1( - W,)
u, = 5y (W, w,

Hence,
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N =

"
u=3; +juy; =5 (W +w) +%(W2'W2)

1 1

=g (W +wp) + 5 lwy = wy)

"
=W + W

where
D1
wE 5 (w1 + w2)
({ 6.20 )

’\J_Dl’\a ny
w5 (wl + wz)

Thus, we have proved that any b.c. harmonic function u can be
decomposed into the sum of a b.c. analytic function w and its

. . n
conjugate function w.
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7. B. C. Wave-Analytic Function
Suppose two complex functions wl(Zl ' ZZ) and wz(zl ’ Z2)
of two complex variables Zl and 22 satisfy instead of Egs. (6.1)

and (6.2) the following set of partial differential equations:

25 %11 %1 7 %12 W) (7.1

+ 9, w ( 7.2 )

2 Y1 1 Wy T By Wy Ty W,

These two equations can be put together in a single equation:

~ ar " ’—- -~ -
91 = 330 |wy S11 7 S12{|™1
= ( 7.3 )
3 ] " z z w
2 1 2 21 22 2
L JLYd L 1L 4]
If we write as before
-~
b 9 = 9,
vV = ’ = al + 382 ( 7.4 )
k 3 P
"2 ‘1
T
o 511 ~ %12
¢ = = L, + it, (7.5 )
4 C
21 22
N
R
where
5 gll - 0 5 CZl 0
Cl = and CZ = ( 7.6 )
0 C22 0 Clz
and
D wl
w = = w; + jw, ( 7.7 )
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The above Eg. (7.3) is written simply as

Vw = Lw ( 7.8)

(V - ) we=0 (7.8 )"

A b.c. function w which satisfied Egs. (7.8) or (7.8)' at
every point ZeD will be called "b.c. wave-analytic" in the b.c.
domain D = D; x D, . In particular, when z= 0, the Eg. (7.8)
reduces to the b.c. Cauchy-Riemann Eg. (6.5).

In the following we shall assume  # 0 and to be constant
in the domain D.

* *
If we operate the adjoint operator (V - ¢ ) of (V - z)

1
on Eq. (7.8) , we obtain

* *
(V. =z ) (V

g) w=20 ( 7.9 )

Now

* * * * * *
(V. -z )(Vv ) =V V- (zV+Veo +cC¢ ( 7.10 )

From Egs. (6.11) and (5.8), we have

* *
ARY VW = A

]

= %1 81t Ty T Ly %oyt Ty fyy
L 02
= det z 2 ¢ ( 7.11 )

and
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* * ' .

(V+Veg) = (ch = 38y) (9 + 33, 4+ (3y = 33,) (g + Ji,)
= (g™ 8y - Gz, 3y + ¥ 39, = 3L, 39,)

(912~ 38,8y + 8338, - 38,3T,) (7.12)

Since Cl and Cz are assumed to be constant, we have

aicj = gjai (i , =1, 2) .

Also by Egq. (5.3)

0,03 =98, =1, 2) . ( 7.13 )

By making use of these relations, we get

X

]

X
(7.12) = (g;" + ;) 3y + (5" + z,) 3,

R

(B39 + Typ) 35 + (Tyg + T75) 3, (7.14 )

Therefore, Eq. (7.9) becomes

- °2
bw = {(2g) + 255) 3y + (T +295) 3, w+ 5 w=0 (7.15)
This may be written as
+ + °2 _ !
Aw - 2(?;l Bl + 22 82) w4+ Z"w=0 ( 7.15 )
where
-
+ D 1
t1 T3 (Bgy * Ty))
< ( 7.16 )
+ D1
S =3 By + Lg5)

Thus we see all wave-analytic functions for which §l+ and §2+
are the same, satisfy the same second-order partial differential

)
equation (7.15) .
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In particular if

“22 = Ttu1
< i.e., [ = ( 7.17 )
21 = “t12 ["f12 T f11

L]
then §l+ = C2+ = 0 and (7.15) becomes the reduced wave-equation

(or Hemholtz' equation)

A + 22 w = 0 ( 7.18 )



