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ABSTRACT

The bending frequencies of a large space vehicle, such as the
Saturn V/S-1C, can be detrimental to the stability of the system.
A scheme for filtering the bending frequencies from the control
information is to keep the same relative stable position between
the bending mode z-plane poles and corresponding compensation
Zeros.

The effects of varying the sampling period on a reduced order
Saturn V/S-1C is presented for several flight times. Included are
open and closed loop studies when sampling period is varied and a
typical compensation of the system. Conclusions regarding these

are also presented.
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DEFINITIONS OF SYMBOLS

Time of flight (seconds)

Aerodynamic restoring coefficient (1/Sec?)
Control engine restoring coefficient (1/Sec?)
Acceleration normal to vehicle per degree b
(Meters/Deg-Sec?)

Acceleration normal to vehicle per degree a
(Meters /Deg-Sec?)

Accelerdtion at control accelerometer due to rigid body

(M/Sec2 )
Deg/Sec?
Thrust of control engines (Kg)

angular accel.

First mass moment of control engines about gimbal point
(Kg—Secz)

Moment of inertia of control engines about the gimbal
point (Kg—ﬁeSecz)

Moment of inertia (Kg-M-Sec?)

Vehicle longitudinal acceleration (M/Sec?)

Total mass of vehicle (Kg-Sec?/Meter)

Natural elastic body bending frequency of 1th mode (cps)
Generalized mass of ith bending mode (Kg-Sec2/Meter)
Damping ratio of itP bending mode (Dimensionless)
Deflection at the gimbal station due to itP bending mode
(Meter/Meter)

Slope at the gimbal station due to the 1¢th bending mode

(1/Meter)




DEFINITIONS OF SYMBOLS (Continued)

YPP -~ (Y‘¢i) Slope at the stabilized platform station due to ith
bending mode (1/Meter)

YPRG -~ (Y'$i) Slope at ;Qe attitude rate sensor station due to ith
bending éo&e (1/Meter)

FS - (fsi) Slosh fre&uency of 1P mode (cps)

78 - (;Si)'. Slosh damping ratio of 1th mode (Dimensionless)

MS - (msi) Equivalent slosh»mass of ith mode (Kg-Sec?/Meter)

XBS - (isi) Distance from center of gravity of vehicle to center of

gravity of equivalent slosh mass - aft is positive (Meters)

W8S - Servo-system




INTRODUCTION

In recent years the design and analysis techniques applicable to
the complex systems resulting from space technology have undergone many
changes. However, many of the classical methods have proved basically
to be sound and useful, even though the systems have increased in
complexity, The digital computer has greatly aided the pragmatic
engineer in his quest for upgrading his analysis tools.

The size of the systems, especially the Saturn V, has led the ana-
lyst to consider techniques for the improvement of the system response
characteristics that were not thought feasible in the past. One of the
areas of concern in the Saturn V/S-1C has been that of suppressing the
bending frequencies. This report gives results pertinent to the study
of bending frequency filtering through adaptive sampling.

The system under study is a simplified version of the Saturn
V/S~1C. Two bending modes and one slosh mode have been included in
the system dynamics leading to a thirteenth order system. The open
loop transfer function of the system has been determined. A partial
fraction expansion led to a corresponding z-transform equivalent. The
movement of the poles of the open loop transfer function has been
determined as a function of vehicle flight time and sampling period. A
study of the effects of sampling period variation on the poles of the
closed loop system has been completed for sampling periods of 0 < T < 1.0.
In this study two techniques were used-—the modified root locus and the

frequency response methods. Finally, a typical compensation for the




system was designed. For the chosen compensator the sensitivity of the
system with respect to flight time and sampling period was checked.

In this report complete studies of the behavior of the system to
sampling period variation are given for O < T < 1.0. In completing these
studies several analysis techniques were developed. Furthermore, it was
necessary to redefine or define several terms. These are indicated in

the text of the material.




OPEN LOOP STUDIES

A simplified set of equations for the Saturn V/S-1C Stage was
furnished by NASA. A block diagram of these equations is shown in
Figure 1. In order to aid in the study of the performance of the
system as a function of sampling period, it is necessary to reduce
the block diagram. First, the portion in the dotted lines in
Figure 1 is attacked. Through the repeated use of the techniques of
block diagram algebra, the dotted portion in Figure 1 is reduced to
Figure 2. For avoiding the cumbersomeness of the expressions in the

blocks in Figure 2, the expressions are redefined by the following

sequence:
57.3Mg _
1 (xsl2 s2 + g)s
B. = | K.C - .
6 571 2 2
: sc + 26 m s + w
51 7% 51
2 2 -
sc + 26 w s + w
S 5 51 (1)
2 Ms1 3
+ KK )(s2 + 28, wg s + wg ) - —
(s 5 '7> s, S1 S1 M s
X,
m. (81 s?2 + K,) s2
S, '57.3 3
By, = Ky +Kg - (2)
: M(s? + 285 wg s + ug 2)
1 " 1
57.3mg Xg
_—I—-—-.l— (g, s? + g)(ﬁ s? 4+ Kj)
B8_A = > * (3)

(82 + 285 wg + wg 2)
51 7% 51




Using these equalities, Figure 2 becomes Figure 3, which is easily

reduced to Figure 4 when

G, (s) -C, + K, By

and

Big = Bg ¥ Bg By -G

To decrease the complexity of the preceding expressions many of the

common terms in (1), (2), and (3) are redefined as follows:

57.3M,
X = ——1L
I
A = xslsz+g
pid
B = Sl g2 4+ K,
57.3
E = s + K5 K7
D = s? + 268 wg 8 + wslz
m
s
vy = L
M

Using the expressions.in (6), (4) becomes

KL+C1D - K;_l_X.AS
ED - Ys3

Gl(s) = —CZ +

or

-C,ED + C,¥s% + K,C;D - K,XAs

Gl(s)

(ED - Ys?)

(4)

(5)

(6a)

(6b)

(6c)

(6d)

(6e)

(6£)

(7a)

(7b)




Similarly, (5) evolves as

XAB-C;D  KcCp (K7+K3)D2-KsCyYBDs?~ XA(K;+K4)Ds+XYABs3
+

D D(ED - Ys3)

or

3 2
XABE—CIED+C1YS +K5C1(K7+K3)D+K5C1YBS —XA(K7+K3)S

[

Bio
(ED - Ys3)

Eliminating the feedback loop in Figure (4) yields

~G$R(s) = sG,(s) Gz(s)
and
Gop(8) = G1(8) G(s)
where |
G = — B1op
8°B1op = Bion

in which the rational polynominal, By;, is defined as

BioN

B oD

10

The product, Gl(s) Gz(s), is denoted as

GT(s) = Gl(s) Gz(s)

Substituting for X, A, B, E, D, and Y from (6), the numerator, G

and the denominator, GTD s become

N

(8a)

(8b)

(9)

(10)

(11)

(12)

(13)




m 57.3m X
s s, °s
G = "'C(l----——-l--)-—K..______1___._1_s3
™ [: 2 M * T

2
+ | - C2(26slwsl + K5K7) + Kq_Cl S

_ 2 -
+ C2<ws1 + 26 w 1K5K7) + K C 26 wsl

57.3mg g
KL*_-——-I———-—]'——- s + - C2K5K7w812 + thl‘”slz (143.)
and
2 g
Mg Mg, Xg
= o—L 71 7l |45 -
GTD = 1 M - - S + 26310‘)81 + K5K7

Xs Zﬂ'ls K5K7 K5C1ms XS
1 1 + 1 °1

st + wslz + 2651w51K5K7

I M57.3 i
Xg g mg
- 57.3mg (—— - K,) + ¢ (1 - —-—) s3 +
1 1 57.3
57°3m31x31 -é—
K K - ——— (K + o) KKK, +
745, I ( 57.3)
KeCim K

Cl(2681w81 - KSKB) + T] s +

I

- 1 - ClK5K3UJ812 . (l4b)
I

57.3mg, K,
Cl(w512 - 285 wg KgKg) + ————— | s +

With the aid of (9), (10), and (13) and additional block diagram

reduction the total block diagram of the system, Figure 1, is reduced




to Figure 5 with

R'Y;p + (Ig Yi3 - Op Y{p) s? (15)
G = s
3 57.3M1B(s2 + 28, gw ps '+ wle)

R'YZB + (ZE YZB - eE YéB) g2 (16)
Gu = 57.3M.,(s? + 28 pt.p + WonZ) ’
2B 2B™ 2B 2B

Ky = (Y;¢)(57.3) s (17)

K9 = (Y2¢)(57.3) . (18)

K, = (YiéRG)(57°3) s (19)
and

Ky, = (Y;$RG)(57.3) . (20)

With no compensation network and with samplers and hold devices,
Ho’ inserted in the ¢T and éT paths, it is easily seen that if the
loop was broken at ¢p the diagram pictured in Figure 6 represents the
open loop transfer function. The relation between the sampled input

and output for this block diagram ig,

C¢(z) _ 2 MW (G + K6y + KyG,)] (21)
R¢(z) 1 -Z[H W, s(Gp + K G+ K G

Similarly, it can be shown that
Cé(z) ) f;{[HOWSSs(GT + K10G3 + KllGu)] ' (22)
R&(z) 1 -g=[H W, (Gp + K6, + KyG)]




From (21) and (22) the characteristic equation related to ¢ and ¢ is

<

1 - Z{H W, [(1+)Gp + (Ry + K, ;8)6, + (Kg + K 8)G, 1} =0 (23)

To facilitate in finding the z-transform of

HOWSS[(S + 1) Gp + (K8 + KlOS)GS + (K9 + Klls)GH]

the partial fraction expansion of it is needed. Because of the com-—
plexity of this expression, finding the partial fraction expansion
by hand calculations is very impractical. However, by employing the
digital computer program in Appendix A much of this task is absorbed.
This program yields the poles and ﬁartial fraction coefficients of
HOWSS[(S + 1) Gp + (K8 + KlOS)G3 + (K9 + Klls)GH] for several values

of flight times.

As - an indication to the way the continuous system is affected by
flight time, the loci of the poles of HOWSS{(S + 1)GT + (K8 + KIOS)G3 +
(K9 + Kils)Gk] of prime importance as a function of flight time are
shown in Figures 7 - 8.% From these figures it is seen that the imagi-~
nary parts of the poles of the first and second bending modes increase
in a linear fashion with respect to flight time; whereas, the real parts
remain almost constant for all flight times. This indicates that in the
z-plane the paths of the loci of these poles will be circular in nature.
The second sloshing mode loci have similar characteristics except that
the real part of the poles changes much more than those of the bending

mode poles. This is an indication of a spiraling type motion in the

*The poles of prime importance for the simplied version of the
Saturn V/S-1C are the poles of the first and second bending mode, the
second slosh mode, the drift and rigid body.




z-plane. As for the other poles, they'possess somewhat different motions.
For example, the rigid body poles move down the imaginary axis to the
right until a flight time of about 90 seconds is achieved. Then it
partially retraces the path in the other direction. This pole will have
a similar motion in the z-plane. The drift poles have a similar action
but in the opposite direction. They will also possess similar paths in
the z-plane.

With the information from the algorithm in Appendix A, it is easy
to obtain the z~transform of HOWSS[}s + l)GT + (K8 + KlOS)G3 +
(K9 + Klls)GA]' This is seen in the following sequence. “The partial
fraction expansion of HOWSS[(S + l)GT + (K8 + Klos)G3 + (K9 + Klls)Gu]
is of the form

Ky Ky Ks

= + + LAY o
GO(S) s + a) s +a, s+ ag + i (24)

the z-transform is thus

K2 K.z K,z
1 2 3
Gy(2) = - e“alT + —

+ ... (25)

+.
-a,T ~a,T
e 22 3

where the K's are the partial fraction coefficients and the a's are the
poles of the open loop transfer function. The next step is to determine
the movement of the poles of (25) as sampling period is varied. The
computer program in Appendix B is used for obtaining this information.
Plots of the movements of the poles of prime interest for several
flight times are seen in Figures 9 -~ 25,

From these plots one immediately sees that the first and second
bending mode poles move in very nearly circular paths. A first con-

clusion is that, since the first and second bending mode poles move in
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approximate circular paths in a nearly linear fashion as flight time

is varied, the opposite effect can be instigated by changing the sampling
period. That is the bending poles can be maintained at approximately
constant positions in the z-plane as flight time increases by changing
the sampling period in the proper manner.! Another conclusion

from these plots is that the bending mode poles are most affected by a
variation in sampling period. This is primarily due to the fact that

the imaginary part of the bending mode s-plane poles is much greater than
any of the other poles. Thus, a feasible idea is that all the poles can
be maintained in approximately a fixed position by varying the sampling
period. However, whether this idea’is workable will depend greatly on
the effects on the system of the movement of the drift and rigid body
poles with respect to flight time, since they move in such a way that
varying the sampling period willvnot duplicate their previous positions.
Another drawback to this idea is that if higher modes of bending and
sloshing were included, they might be affected most by a variation in
sampling. Their effect on the response of the system would depend
greatly on the magnitude of their damping ratio as compared to those of
the first and second bending modes and second slosh mode., If their damp-
ing ratio is large, compared to the damping ratios of the first and second
bending modes and second slosh mode, their loci in the z-plane will spiral
very quickly into a neighborhood near the origin while the other poles
will still be lingering near the unit circle. In terms of frequency
response of the system the movement of the higher modes in this manner
may be interpreted as having little effect on the magnitude response

but giving a significant contribution to the phase response.




CLOSED LOOP STUDIES

When a sampler and hold device srve placed in the loop of a con-
tinuous feedback control system, the responses of the system are not
the same as they were in the continucus system. In fact, these responses
can be modified to some extent by a variation in the sampling rate.

The insertion of the sampler does not alter the original s-plane poles
of the open loop system. However, the closed loop poles can be in many
cases affected greatly. This means that for a constant open loop gain
there exists a manifold of closed loop poles for each open loop pole.
Corresponding to each pole on the manifold there is a particular sam-
pling period or sampling periods. A manifold of a pole can contain both
stable and unstable members. In order for the closed loop system to be
stable each closed loop pole must simultaneously be a member of the stable
part of its manifold, If a pole's manifold does not possess a stable
portion then it is impossible for the system to be stable unless it is
modified. In some cases a system can be modified by changing the open
loop gain. 1In other cases an additional network must be placed in the
system. This network can either be a continuous network or a digital
network.

Although there can be a set of sampling peviods for which a system
is stable, this does not necessarily mean that the system is relative
stable.® Thus the set of sampling periods for which desirable character—
istics of a system can be achieved is constrained even more. In order to

determine if a system possesses desirable behavior patterns, investigation

*A system is relative stable if the desired stability margins have
been achieved.




of many sampling periods is necessary. Several techniques for studying

the behavior of a system to changes in sampling period have been con-
sidered. The two methods which were found to be the most useful are the
modified root locus method and the frequency response method. The modi-
fied root locus method is a synthesis method in that it permits the

study of the movement of the closed loop poles as sampling period is
varied. On the other hand, the frequency response method is more appli-
cable to design because it immediately presents the necessary information
for compensating and determining relative stability. Both of these
methods are incorporated into the study of stability as a function sampling
for the simplified version of the Saturn V/S-IC.

A study of the stability of the system as a function of sampling
period is instigated for sampling periods from 0 to 1.0 seconds (sampling
frequencies from « to 1.0 hz). This study is done in a two part pro-
cedure. First, the stability of the closed loop system for sampling
periods from 0.0 to 0.49 seconds is determined by using the '"modified
root locus technique", which is implemented by the algorithm in Appen-
dix D.®* The. results of this study for an open loop gain of 1.0 are shown
in Figures 26-39; whereas, the resulis for an open loop gain of ~-1.0 are
shown . in Figures 40-53. Agsin only the poles of prime importance are
shown.

An investigation of the plots will show that the loci actually do
not begin at T = 0 but start at slightly above this value. Because of
computational error it is practically impossible to obtain accurately

the loci when T is very near 0. However, this does not mean that it

*A modified root locus is a locus as a function of sampling
periods2
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is impossible to determine the proximity of the poles of the closed loop
system when T = 0. In fact, for an error sampled unity feedback control
system which has an s-plane open loop transfer function that has n poles
and n - 2 or less zeros, there are n z-plane poles of the closed loop
transfer function at z = 1 when T = 0. The proof of this is as follows:
Given an s-plane function of the form

A sh—2 +A2sn‘3 + ...+ A

G(s) = = =l (26)
s + Bos™ ! 4+ .. + Bpyy

The z-plane closed loop transfer function of an error-sampled-unity
feedback control system with the above s-plane open loop transfer function

is of the form

C(z) ZI[G6(s)]

= (27)
R(z) 1 +ZZ[c(s)]
The characteristic equation becomes
Ky K, Ky
1+ + + o0+ = 0 (28)
s+a1 s+a2 s+an

where (24) has been expanded by partial fraction expansion. Taking the

z—transform, (26) becomes

1+ + —+ . ———= | =0 (29)
2 .

Letting T ~ 0 and finding a least common denominator, (27) evolves as
(z=1)™ + [K, (z=1)" 'z + K, (z-D" 'z + ...+ K, (z-1)""'z] = 0 (30)

or

n
(z-1)%7! [(z-1) + 2z | K1 = 0 . (31)
i=1
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However, the sum of the partial fraction coefficients for a rational
polynomial is zero if the denominator order is two or more greater than

the numerator. Therefore (29) becomes

(z-1)* = 0 (32)

Thus when T = 0 , there are n roots of the characteristic equation at
z = 1,

Observing the figures of the system with an open loop gain of 1.0
(Figures 26-39), it is seen that the loci have similar shapes for all
flight times.®* One major difference of the loci is the rapidity of
movement of certain poles for different flight times. The reason for
this is the change in the poles as flight time changes. (These changes
can be seen in Figures 7~8 which are the loci of the poles as a function
of flight time.) These figures also demonstrate that a positive effect
of closing the loop is that the open loop unstable drift poles moved
into the unit circle, thus becoming stable. The negative effect of
closing the loop with a gain of 1.0 is that for every sampling period
in the set (0, 0.49) there is at least one pole of the first or second
bending modes which is beyond the unit circle. As for the slosh and
rigid body poles, they were affected only slightly by closing the loop.
The overall result is that for an open loop gain of 1.0 the system is
not stable for any flight times when Te(0, 0.49).

On the other hand, the figures of the modified root locus for an
open loop gain of -1 (Figures 40-53) indicate an opposite behavior in

the movement of the drift and second bending mode poles. Instead of

*When an open loop gain of 1.0 is used, the result is a negative
feedback system; whereas a -1.0 open loop gain gives a positive feedback
system.
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the drift poles moving into the unit circle, one moves farther away from
the unit circle while one stays in a vicinity of z = 1.0. The first and
second bending mode poles loci are confined to the interior of the unit
circle for most sampling periods. As in the case of the open loop gain
of 1.0, the second slosh mode and rigid body poles are affected very
little, and thus they remain very closed to their open loop loci for most
sampling periods. The conclusions drawn from these figures are that the
system is more unstable for a gain of -1.0 than for a gain of 1.0.
Furthermore, it is conceived that it would be more difficult to stabilize
the system for a gain of ~1.0.

The second part of the investigation is a study of sampling periods
from 0.5 to 1.0, A different approach for studying the stability as
sampling period is varied is used. The approach is the frequency response
method. Using this approach in conjunction with the Nyquist stability
criterion for a sampled-data system, stabilitywise, these studies produce
parallel results to those for sampling periods between 0 and 0.49; that

3 However, there is a

is for most flight times the system is unstable.
set of sampling periods in which the system exhibits the nearest stable
characteristics of any sampling periods that are studied. This neigh-
borhood of sampling periods is centered at approximate 0.74 seconds.

The most interesting property of this neighborhood is that the system

is stable for some flight times. A Nyquist plot for a sampling period
of 0.79 seconds and flight time of 40 seconds is shown in Figure 54,
Studying this diagram and giving consideration to the negative frequency
portion, which is not shown, a total of two counterclockwise encircle-

ments of the (0 dB, 180°) point is counted. Using the Nyquist stability

criterion for a sampled-data system it is deduced, since the open loop
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system has two poles outside the unit circle, that the system is stable.
However, this is not the case for all flight times. Because the open
loop rigid body pole moves near the origin in the manner indicated in
Figure 8 (along with the open loop zero movements with respect to
flight time), the low frequency characteristics of the system vary to
some extent. Some of this variation of response at low frequencies
causes the high frequency magnitude to be offset by a constant which
depends upon the flight time. This causes either or both of the 180°
crossing of the Nyquist path in the proximity of the point (0, 180°) to
cross at a crossing greater than d dB for some of the other flight
times. This results in system instability. In order to give a simpli-~
fied complete picture of the relative stability of the system for
sampling periods in the neighborhood of 0.74 seconds, plots of gain
margin and phase margin as a function sampling period are presented for
several flight times.

Before considéring the information conveyed by these plots, a
discussion of gain and phase margins of systems that are open loop
unstable is in order. The gain and phase margins of a system that is
open loop unstable are not as well defined as a system that is open
loop stable. For irdstance, using the Nyquist criterion an open loop
system is stable if there is no crossing of the 180° line with a gain
greater than O dB; but for an open loop unstable system this is not
necessarily true. In fact, there must be crossing of the 180° line
with gains greater than 0 dB., This is because if the system is to be
stable there must be encirclements of the point (0, 180°). Hence,
there can be multiple crossings of the O dB circle (which are used

for determining phase margins), and there can be multiple crossings of
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180° line (which are used for determining gain margins). The question
is which pair of crossings should be used for yielding the correct
stability margins. The answer to this question depends greatly on the
system under consideration. However, for most systems the following
general procedure can be used:
1. By studying the Nyquist diagram, find the critical parts of
the Nyquist path. This is determine what parts of the
Nyquist diagram that when least affected will either result
in instability or result in stability of the system.
2. From the critical parts of the Nyquist diagram the phase
and gain margins should be determined. If there are several
gain or phase margins, the ones which cause greatest or
nearest instability should be chosen.
Note: It is possible that this will give a gain margin
greater than 1.0 or a negative phase margin and the system
be stable.* When this is the case the reciprocal of the
gain margin should be used and the negative sign on the
phase margin should be disregarded; otherwise, they should
assume their normal form. An example of this occurrence
for phase margins can be deduced from Figure 54 for the part
of the path between w = 0.87 and w = 5.81. If the phase of
the system had been 30° more in the counterclockwise direction,
the phase margin of the system would have been negative, but
the system would have still been stable. Similarly, a gain
margin example can be deduced from Figure 54 if the 180°

crossing between w = 0.13 and w = 0.58 had been very close

*Some times positive gain margins are denoted as lag phase margins
and negative phase margins are denoted as lead phase margins.
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but still to the left of the 0 dB point; then, the gain margin woulé
be less than 1.0 but the system would still be stable.

Now that the method for determining gain and phase margins has
been presented, it is possible to analyze the stability margin plots
in Figures 55-60. From these graphs it is seen that for lower flight
times (20 - 60 seconds) the system is stable and as flight time
increases. the margins of stability decrease until the system is un-
stable at higher flight times (80 - 120 seconds). As has been
previously stated this is caused by the effects of the rigid body
pole and the open loop zeros on the high frequency response of the
system. Another interesting point about these curves is that the
point of maximum stability decreases as flight time increases.® 1In
fact, it decreases from a sampling period of 0.8l seconds at TF = 20
seconds to about 0.738 seconds at TF = 120 seconds. This indicates
the possibility of maintaining stability margins by changing sampling
period. The failure or success of such a scheme would depend greatly

on the compensator to be employed.

*Maximum stability is defined as the sampling period where the
system is nearest to being stable or has its greatest stability.



COMPENSATION OF SYSTEM

First, the possibility of using the root locus for compensating
will be investigated. Figure 6l is a regular root loci of the first
bending mode, second bending mode, second slosh mode, and the drift
poles of the simplified versicn of the Saturn V/5-1C for a flight time
of 20 seconds and sampling period of 0.37 seconds.* From this figure,
it is observed that breakaway angles of the first and second bending
modes are such that these poles move outside the unit circle as open
loop gain is increased. It is also seen that the open loop unstable
drift poles have moved into the interior of the unit cirecle. By con-
sidering the change in these poles as being linear in open loop gain
and extrapolating poiﬁts between the extremities of the curve, one
can deduce that the system can be stabilized at this flight time by
reducing open loop gain. However, this will not produce relative sta-
bility.** Another possible method of stabilizing the system without
reducing open loop gain is to place a compensator with poles and zeros
located so that the break-away angles of the first and second bending
mode poles break directly into the interior of the unit circle. At the
same time this compensator should not significantly adversely affect the
loci of the second slosh mode and drift poles. With the addition of the
open loop zeros to the given figure, a desirable compensator can be

achieved. Obtaining a compensator in this manner is unnecessarily

*A regular root loci is a root loci as s function of open loop gain.

**Relative Stability is stability with stability margins that are as
good as or better than the desirsble margins. Desired stability margins
in this report are greater than 35° phase margin and a gain margin of
2.0 or greater.
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laborious. An alternate and less cumbersome procedure is the frequency
domain approach.

The design of a compensator in many cases is made easier by apply-
ing the techniques of two frequency response methods, Nyquist and Bode.
First, the Nyquist criterion can be used to determine if the system is
stable, and what changes in the response must be made in order to sta-
bilize the system. Closed loop stability of a system which is open loop
unstable cannot be obtained from the Bode plots as easily as it can be
obtained from the Nyquist plots. However, in most cases the Bode plots
are very helpful in designing compensators. When using the Bode criterion
it is advantageous to make the plots as functions of the imaginary fre-
quency w, so that the usefulness of the straight line asymtotes will be
profitable.

Since it is necessary to compensate the system for stability purposes,
it was decided to compensate it at T = 0.37 seconds. The reason for this
choice is that at this sampling period the open loop z-plane poles of the
first and second bending modes are very near each other. Thus, it is
conjectured that the effects of both might be reduced with the same filter.
In order to determine what type of filter is needed ét this sampling
period, a thorough study of the Nyquist plot of the unstable system is
made (See Figure 62). By observing the given Nyquist plot and using the
Nyquist stability criterion given in Kuo3 it is seen that there are 0
encirclements of the (0, 180°) point. Since there are two open loop
poles beyond the unit circle, this indicates that two closed loop poles
are outside the unit circle. If stabilization of the system is to be
achieved, two clockwise encirclements of the (0, 180°) point are needed.

Several observations of the Nyquist plot reveal that this might be
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accomplished by a single pole compensator i1f it was placed so that the
180° crossing between w = 2.5 and w = 5.7 would occur at a point less
than 0 dB. System stabilization could be achieved with this simple
compensator; however, the stability margins could not be met. Additional
compensation is needed. For aiding in determining the complete compen-
sation function, the Bode plot as a function of the imaginary frequency
w, (See Figure 63) was made. From the Bode plot the following w-domain

compensator is chosen:

0.316 . 1t+1
G.(jw) = = - (33)
¢ jw jw
224 == +1
0.2 1 1

The w-domain frequency response of this compensator is plotted in

Figure 64. In the z~domain the compensator is

(2 0.079(1.12z2 + 0.2z - 0.9) (309
G.(z = 34
¢ (1.222 - 0.82)

After cascading the compensator with the open loop transfer function the
Nyquist plot information for the compensated system for TF = 40 seconds
and T = 0.37 seconds is obtained and plotted in Figure 65. For the chosen
flight time and sampling period the system is seen to exhibit desirable
stability margins.

However, this study is only applicable for one flight time and one
sampling period. Using the above compensator, a study of the sensitivity
of the stability margins as a function flight time and sampling period
is initiated. Plots of these studies are made in Figures 66-68. For the
three flight times it is observed that for the chosen set of sampling

periods the curves have similar general characteristics. A major
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difference that is observed is a magnification factor. The difference
in magnification factor results in relative instability (stabildity
margins were not met) for TF = 120 seconds. The conclusions drawn is
that for the particular compensator a different magnification factor
for each flight would be needed in order to obtain optimal relative
stability. The sampling period can remain constant at the value for
which the compensator was designed, T = 0.37 seconds. The result is
that a relatively simple compensator can reduce the effects of two

bending modes simultaneously.



CONCLUSION

In this report the control system of the Saturn V/S-1C has been
studied to determine the effects of varying the sampling period. In
accomplishing this task two analysis procedures were employed. These
two techniques are the modified root locus method and the frequency
response method. The modified root locus shows the exact location of -
the the closed loop poles as sampling period. From the modified root
locus plots the adverse conditions, caused by closing the loop, on the
poles of the system were observed directly. Although this method cer-
tainly produces a measure of relative stability, it does not easily
allow for the determination of the classical stability margins. For
this reason a more applicable method was sought and found among the
frequency response methods. The Nyquist plot was found to furnish suf-
ficient stability informatién, and by combining it with the Bode diagram,
designing procedures became less laborious.

The studies were conducted for sampling periods of 0 < T < 1.0.
They showed that the system is not stable for all flight times for any
sampling periods in this interval. The system was stable for lower
flight times when the sampling period was approximately 0.74 seconds.
At higher flight times the system became unstable because of the effect
at low frequency that rigid body pole and open loop zeros had on the
higher frequency response of the system. Phase margins and gain margins
were plotted as a function of sampling periods in the neighborhood of
0.74 seconds. These curves indicated that maximum stability decreased

as flight time increased. Thus the conclusion drawn was that 1if the
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system was compensated and operated here that similar characteristics
could be achieved by reducing the sampling period as flight time
increased.

Similar studies were instigated for sampling periods around 0.37
seconds. However, these indicated that the system's characteristics
changed very little with respect to flight time. An explanation for
this was deduced from the fact that the s-plane poles are mapped into
the z-plane through the transformation z = e—pt, where p is a typical
s-plane pole. Thus, it was seen that if T = T, and p was varied by Ap
that Az would result; if T = T, where T, > T; and p was varied by Ap
there would result a Az, which was larger than Az;. 1In other words,
for larger sampling periods the system became much more sensitive to a
change in the s-plane poles. Not only did the preceding explain the
sensitivity of characteristics to sampling period, it also justified
that the use of small sampling rates could be dangerous. When using a
small sampling rate, a slight variation in the sampling rate or a slight
variation in the system parameters could cause a great change in the
overall characteristics ofkthe system. This could very possibly result
in system instability. Thus, the possibility of such great changes
should be avoided by using larger sampling rates.

As was mentioned previously no sampling periods produced stability
for all flight times. Stability could only be achieved by compensation.
A typical compensator was designed for T = 0.37 seconds. The sensitivity
of the stability margins were studied as a function of sampling period
and flight time in order to determine the applicability of the compen-

sator. For lower flight times and a wide range of sampling periods the

compensator was found to meet stability requirements. However, for
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flight times beyond 120 seconds relative stability was not obtained
for any sampling periods. Again, the cause for this was the rigid body
pole and open loop zeros effect on higher frequency responses.

In this report it has been shown that under certain conditions the
system becomes very sensitive to variations in sampling period and to
s—-plane open loop pole variations. Since the open loop poles depend
upon many parameters of the continuous systems, it has been decided
that future studies should determine the sensitivity of the s-plane
poles to parameter variations. The justification of this is due to the
fact that the present modeling of the control system is probably incor-
rect. Thus, it should be known what could be expected if the parameters
were too much in error or varied in a certain direction. Furthermore,
it is conceived that disturbances in the system could be treated as
parameter variations. It would be almost impossible to handle them

otherwise.
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Movement of a Second Bending Mode Pole as the Sampling is
Varied for TF = 120 Sec.
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2nd Bending Mode

Figure 26.

Closed Loop z-plane Loci of the First and Second Bending
Modes and Slosh Mode Poles as a Function of Sampling
Period for TF = 20 Seconds and for an Open Loop Gain

of 1.0
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Figure 27. Closed Loop z-plane Loci of the Drift and Rigid Body Poles
as a Function of Sampling Period for TF = 20 Seconds and
for an Open Loop Gain of 1.0




Figure 28.

2nd Bending Mode

53

ist Bending Mode z-plane

a2V

T = 0.09

Closed Loop z-plane Loci of the First and Second Bending
Modes and Slosh Mode Poles as a Function of Sampling
Period for TF = 40 Seconds and for an Open Loop Gain

of 1.0




54

z-plane

MA\

1.0

Drift Pole
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as a Function of Sampling Period for TF = 40 Seconds and
for an Open Loop Gain of 1.0
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2nd Bending Mode

Figure 30. Closed Loop z-plane Loci of the First and Second Bending
Modes and Slosh Mode Poles as a Function of Sampling
Period for TF = 60 Seconds and for an Open Loop Gain
of 1.0
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Figure 31. Closed Loop z-plane Loci of the Drift and Rigid Body Poles
as a Function of Sampling Period for TF = 60 Seconds and
for an Open Loop Gain of 1.0
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1st Bending Mode z-plane
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Figure 32. Closed Loop z-plane Loci of the First and Second Bending
Modes and Slosh Mode Poles as a Function of Sampling
period for TF = 80.11 Seconds and for an Open Loop Gain
of 1.0
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Figure 33. Closed Loop z-plane Loci of the Drift and Rigid Body Poles
as a Function of Sampling Period for TF = 80.11 Seconds and
for an Open Loop Gain of 1.0
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Figure 34. Closed Loop z-plane Loci of the First and Second Bending
Modes and Slosh Mode Poles as a Function of Sampling
period for TF = 100 Seconds and for an Open Loop Gain
of 1.0
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Figure 35.
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Closed Loop z-plane Loci of the Drift and Rigid Body Poles
as a Function of Sampling Period for TF = 100 Seconds and
for an Open Loop Gain of 1.0

2%



1st Bending Mode

T = 0.26

z-plane

T = 0.20

61

2nd Bending Mode

T = 0.09

Figure 36. Closed Loop z-plane Loci of the First and Second Bending
Modes and Slosh Mode Poles as a Function of Sampling
period for TF = 120 Seconds and for an Open Loop Gain

of 1.0
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Figure 37.
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Closed Loop z-plane Loci of the Drift and Rigid Body Poles
as a Function of Sampling Period for TF = 120 Seconds and

for an Open Loop Gain of 1.0
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1st Bending Mode z-plane

T = 0.20
2nd Slosh Mode

T = 0.40

T = 0.27

2nd Bending Mode

Figure 38. Closed Loop z-plane Loci of the First and Second Bending
Modes and Slosh Mode Poles as a Function of Sampling
period for TF = 140 Seconds and for an Open Loop Gain
of 1.0
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Figure 39. Closed Loop z-plane Loci of the Drift and Rigid Body Poles
as a Function of Sampling Period for TF = 140 Seconds and
for an Open Loop Gain of 1.0
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Figure 40. Plot of First Bending Mode, Second Bending Mode, and Second
Slosh Mode Poles as a Function of Sampling Period When TF = 20
Seconds and Open Loop Gain = =1.0
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Figure 41. Plot of Drift and Rigid Body Poles as a Function of Sampling
Period When TF = 20 Seconds and Open Loop Gain = -1.0
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Figure 42. Plot of First Bending Mode, Second Bending Mode, and Second
Slosh Mode Poles as a Function of Sampling Period When
TF = 40 Seconds and Open Loop Gain = -1.0
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Figure 43. Plot of Drift and Rigid Body Poles as a Function of Sampling
Period When TF = 40 Seconds and Open Loop Gain = -1.0
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Figure 44. Plot of First Bending Mode, Second Bending Mode, and Second
Slosh Mode Poles as a Function of Sampling Period When TF =
60 Seconds and Open Loop Gain = -1.0
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Figure 45. Plot of Drift and Rigid Body Poles as a Function of Sampling
Period When TF = 60 Seconds and Open Loop Gain = -1.0
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Figure 46. Plot of First Bending Mode, Second Bending Mode, and Second
Slosh Mode Poles as a Function of Sampling Period When TF =
80.1 Seconds and Open Loop Gain = =1.0
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Figure 47. Plot of Drift and Rigid Body Poles as a Function of Sampling
Period When TF = 80.1 Seconds and Open Loop Gain = -1.0
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Figure 48. Plot of First Bending Mode, Second Bending Mode, and Second
Slosh Mode Poles as a Function of Sampling Period When TF =
100 Seconds and Open Loop Gain = -1.0
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Figure 49. Plot of Drift and Rigid Body Poles as a Function of Sampling
Period When TF = 100 Seconds and Open Loop Gain = -1.0
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Figure 50. Plot of First Bending Mode, Second Bending Mode, and Second
Slosh Mode Poles as a Function of Sampling Period When TF =
120 Seconds and Open Loop Gain = -1.0
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Figure 51. Plot of Drift and Rigid Body Poles as a Function of Sampling
Period When TF = 120 Seconds and Open Loop Gain = -1.0
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Figure 52. Plot of First Bending Mode, Second Bending Mode, and Second
Slosh Mode Poles as a Function of Sampling Period When TF =
140 Seconds and Open Loop Gain = -1.0
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Figure 53. Plot of Drift and Rigid Body Poles as a Function of Sampling
Period When TF = 140 Seconds and Open Loop Gain = -1.0
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A TYPICAL LOCUS
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Figure 69. A Pictorial Representation of the Two Surfaces
F, and F,, with indicated gradients and cross
product.
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APPENDIX A

S-PLANE BLOCK DIAGRAM REDUCTION AND PARTIAL

FRACTION EXPANSION PROGRAM

The following computer program with the associated sub-programs is
an aid in finding the necessary s~plane information to facilitate the
sampled~data studies, It possesses the following properties:

1. For a particular flight time, it reduces the block

diagram beginning with Figure 2,

2. For a particular flight time it finds the roots of the

s-plane open loop transfer functions.

3. It finds the partial fraction expansion of the s-plane

open loop transfer function.

In obtaining the s-plane transfer function the utilization of
polynomial multiplication and addition is used throughout the program.
Also, polynomial division is used at one point to factor out common
factors which were known to exist in both the numerator and denomi-
nator of a certain rational polynomial. After the s-plane open loop
transfer function is obtained, the program finds the roots. and the
partial fraction expansion coefficients.

Many of the symbols of input data used in the program are defined
in the List of Symbols. Several of the rational polynomial and con-
stants are defined in Figure 6. The program uses two vectors in defin-
ing a rational polynomial--one for its numerator coefficients and one

for its denominator coefficients. The order of the coefficients is
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normal with respect to the powers of x.* The variables used for the
numerator and denominator vectors of a rational polynomial in normal
order are exactly the same except for the final digit. The last digit
differentiates the vectors of numerators from the vectors of the
denominators. An N indicates the vector is a numerator vector; whereas,
a D indicates a denominator vector. An R on the end of a vector con-
notes the vector is in reverse order from normal order. The variables
which are not defined in the symbol list or in Figure 6 are simply
working variables (variables for internal use only, not for input or

output) of the program. All output data is defined in the print outs.

C SATURN-V TRANSFER FUNCTION AND ROOT PROGRAM

DIMENSION DIVPOL(50)
DIMENSION G3N(30),G3D(30),G4N(30),G4D(30),B8N(30),B8D(30),B7N(30),
1 B7D(30) ,B6N(30) ,B6D(30) ,BIN(30) ,BID(30) ,BLOAN(30) ,BLOBN(30),
2 BLON(30), B10D(10), GIN(10), G1D(10), G2N(10), G2D(10)
DIMENSION G1DR(25),G2DR(25),G3DR(25),G4DR(25) ,ROOTR(25) ,RO0TI (25),
1 COF(25)
DIMENSION RTRG1(10), RTRG2(10), RTIG2(10), RTRG3(10),
1 RTIG3(10),RTRG4(10), RTIG4(10), WSSN(5), WSSD(10),
2 AK(25), GTAAN(15), GTAN(15), GIBAN(15), GIBN(15), GTCAN(15),
3 GTCN(15), GIN(15), GTD(15), GWD(20), ROOTC(20)
DIMENSION RTRWSS(10), RTIWSS(10), WSSDR(10), GTAD(15)
REAL K4, MI, MASS, K3, K7, MS1, K5
DOUBLE PRECISION B8N, B8D, B7N, B7D, B6N, B6D, BON, B9D, BLOAN,
1 BIOBN, B1ON, B10D, GIN, G1D, G2N, G2D, DIVPOL, G3N,
2 G3D, G4N, G4D
DOUBLE PRECISION WSSN, WSSD, GTAAN, GTAN, GTBAN, GTBN, GTCAN, GTCN,
1 GTD, GTAD, GWD, GTN
COMPLEX*16 ROOTC, AK1(25), AK2(25)
READ(1,1) DS1, ZBl, ZB2, SIG, THE
1 FORMAT (5F14.5)
WRITE(3,2)
2 FORMAT('1',9X,'DSI',12X,'ZB1',11X,'ZB2',11X,'SIG',12X, 'THE')
WRITE(3,3) DS1, ZB1,ZB2,SIG,THE
3 FORMAT(3X,5F14.5)
DO 50 IX=1,10

*

Normal order means the coefficient corresponding the higher power
of s is first, the coefficient corresponding to the next highest power
of s is second, etc.



READ(1,1) TIME
WRITE(3,4) TIME
o & FORMAT('0',30%X,'TIME = ',F6.2)
READ(1,5) MI, MASS, RP, ZMl, ZM2, MS1
5 FORMAT (6F12.2)
WRITE(3,6)
6 FORMAT('Q',
1 5X%,"MI',9X,'MASS',9%,'RP',10X,'ZM1"',9X,"2ZM2",9%, 'MS1")
WRITE(3,18)MI, MASS, RP, ZM1l, ZM2, MS1l
18 FORMAT (2X,6F12.2)

READ(1,7) GBAR,C1, K3, K5, K7, FB1, FB2
7 FORMAT (7F10.6)
WRITE(3,8)
8 FORMAT('0',3X,"GBAR',7X,'Cl',8X,'K3',8X, 'K5"',8%,'K7',8X, 'FB1',
1 7X,'FB2')
WRITE(3,17)GBAR, Cl, K3, K5, K7, FBl, FB2
17 FORMAT (2X,7F10.6)

READ(1,7) YPB1l, YPB2, YBl, YB2, YP1P1l, YP1P2

WRITE(3.9)
9 FORMAT('0',3%, 'YPB1',6X,'YPB2',7X,'YB1',7X,'YB2',6X,'YP1P1',
1 5X,YPlpP2") ' -

WRITE(3,17) YPBl, YPB2, YB1l, YB2, YP1Pl, YP1P2

ao

READ(1,7) YPRGl, YPRG2, FS1l, XS1, K4, C2
WRITE(3,100)
100 FORMAT('0',3X,'YPRG1',5X,'YPRG2',6X,'FS1',7X,"'XS1',8X,'K4",8X,
1 'ca2Y)
WRITE(3,17)YPRG1l, YPRG2, FS1l, XS1, K&, C2
WSl= 2.0 * FS1#%3.1416
WBl= 2.0 * FB1%3.,1416
WB2= 2.0 * FB2%3.1416

COEFFICIENTS OF B6

[eNeNe!

B6N(1l)= (-57.3 * MS1 * XS1)/MI
B6N(2)= K5 * Cl
B6N(3)= K5 * Cl1 % 2.0 * DS1 * WS1 -(57.3 * MS1 * GBAR) / MI
B6N(4)= K5 * Cl % WS1#%%2
B6D(1)= 1.0 - MS1/ MASS
B6D(2)= K5 * K7 + 2.0 * DS1 * WSl
B6D(3)= WSL %% 2 4+ 2.0 * DS1 * WS1 * K5 * K7
B6D(4)= K5 % K7 * WS1%%2
B6D1=B6D (1)
DO 89 IK=1,4
B6N(IK)= B6N(IK)/ B6D1
89 B6D(IK)= B6D(IK)/ B6D1
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900

800

700
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WRITE(3,900)
FORMAT('0',28X, ' COEFFICIENTS OF B6')
WRITE(3,300)

WRITE(3,400) (B6N(I), I=1,4)
WRITE(3,500)

WRITE(3,400) (B6D(I), I=1,4)

COEFFICIENTS OF B7

BIN(1)= - ( MS1 * XS1 ) / (57.3 * MASS)
B7N(2)= 0.0

B7N(3)= K7 +K3 ~ (MS1 * K3) / MASS
B7N(4)= 2.0 *DS1 * WSl * (K7 + K3)
BIN(5)= (WS1 #%2) * ( K7 + K3)
B7D(1)= 1.0

B7D(2)= 2.0*DS1 *WS1l

B7D(3)= WS1#*2

WRITE (3, 800)

FORMAT ('0' ,28X, ' COEFFICIENTS OF B7')
WRITE(3,300)

WRITE(3,400) (B7N(I), I=1,5)

WRITE (3,500)

WRITE(3,400) (B7D(I), I=1,3)

COEFFICIENTS OF B8

B8N(1)= (MS1 * XS1%%2)/ MI

B8N(2)= 0.0

BSN(3)=(57.3 * MS1 * XS1 * (K3 + GBAR/57.3))/ ML - Cl
B8N(4)= -2.0 * C1 * DS1 * WSl

B8N(5)= ((57.3 * MS1 * K3 % GBAR)/ MI ) - Cl * WS1¥%2
B8D(1)=1.0

B8D(2)= 2.0%DS1 *WS1

B8D(3)= WS1##2

WRITE (3,700)

FORMAT('0',28X,' COEFFICIENTS OF B8')

WRITE(3,300)

WRITE(3,400) (B8N(1), I=1,5)

WRITE(3,500)

WRITE(3,400) (B8D(I), I=1,3)

CALCULATION OF B9 COEFFICIENTS

WRITE(3,11)

FORMAT('0',28X, ' COEFFICIENTS OF THE B9')
N=3

N=2

CALL POLMUL(B6D,B7D,N,M,B9D)

KL=N+M+1

N=3

M=4

CALL POLMUL(B6N,B7N,N,M,BIN)

LeN+M+1
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B9D1= BID(1)

DO 85 I=1,KL

85 BID(I)=BID(I)/ BIDL
DO 86 I=1,L

86 BON(I)= BIN(I)/ B9D1
WRITE(3,300)

WRITE(3,10) (BIN(I), I=1,L)
10 FORMAT (2X,6D12.5)

WRITE (3,500)

WRITE(3,10) (BID(I), I=1,KL)

CALCULATIONS OF THE COEFFICIENTS FOR B10O

N=4

M=5

CALL POLMUL (B8N ,B9D,N,M,B10OAN)

N=7

M=2 A

CALL POLMUL(B9N,B8D,N,M,B10BN)

WRITE(3,169) ~
169 FORMAT ('0',24X,'COEFFICIENTS OF B1OAN AND B10BN')

WRITE(3,16) (B1OAN(I), I=1,10)

WRITE(3,16) (B1OBN(I), I=1,10)

DO 12 K¥=1,10
12 B1ON(KX)= B10OAN(KX) + B1OBN(KX)

M=5

N=2

CALL POLMUL(B8D,B9D,N,M,B10D)

FACTOR LIKE TERMS OUT OF B1ON AND B1OD

N=2
M=9
CALL POLDIV(B7D,B10N,N,M,DIVPOL)
N=2
M=7
CALL POLDIV(B7D,DIVPOL,N,M,B10N)
WRITE(3,101) (DIVPOL(I),I=1,N)
N=2
M=7
CALL POLDIV(B7D,B10D,N,M,DIVPOL)
N=2
M=5
CALL POLDIV(B7D,DIVPOL,N,M,B10D)
WRITE(3,101) (DIVPOL(I),I=1,N)
101 FORMAT('0',4D12.3)
WRITE(3,175)
175 FORMAT('0',28X,'COEFFICIENTS OF B10')
WRITE (3, 300) ;
WRITE(3,10) (B1ON(I),I=1,6)
WRITE(3,500) ;
WRITE(3,10) (B1OD(I),I=1,4)
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c COEFFICILENTS OF Gl

DO 13 Ky=1,4
GIN(KY)= -C2 * B6D(KY) + K& * B6N(KY)
13 G1D(KY)= B6D(KY)
WRITE(3,14)
14 FORMAT('0',27X,'COEFFICIENTS OF G1')
WRITE(3,15)
15 FORMAT('0',31X,'NUMERATOR')
WRITE(3,16) (GIN(I), I=1,4)
16 FORMAT('0',4D18.5)
WRITE(3,24)
WRITE(3,16) (G1D(I), I=1,4)

C COEFFICIENTS OF G2

DO 20 IZ=1,6

20 G2N(IZ)= B10OD(IZ)
DO 21 1Z=5,6

21 B10OD(IZ)=0.0
DO 22 IZ=1,6

22 G2D(IZ)= B1OD(IZ) - B1ON(IZ)
WRITE(3,23)

23 FORMAT('0',27X,'COEFFICIENTS OF G2')
WRITE(3,15)
WRITE(3,16) (G2N(I), I=1,4)
WRITE(3,24)

24 FORMAT('0', 30X, 'DENOMINATOR')
WRITE(3,16) (G2D(I), I=1,6)

CALCULATION OF COEFFICIENT FOR DENOMINATOR AND NUMERATOR FOR G3
AND G4

OO0

G3K=1.0
G3N(1)=G3K * (SIG * YBl — THE * YPB1)
G3N(2) = 0.0
G3N(3) = G3K * RP * VBl
G3D(1) = 1.0
G3D(2)= 2.0 * ZBl *WBl
G3D(3) = WBl#**2
WRITE(3,200)

200 FORMAT('0',28X,'COEFFICIENTS OF G3')
WRITE(3,300)

300 FORMAT('0',31X,'NUMERATOR')
WRITE(3,400) (G3N(I), I=1,3)

400 FORMAT(2X,4D18.8)
WRITE(3,500)

500 FORMAT('0',30X,'DENOMINATOR')
WRITE(3,400) (G3D(I), I=1,3)

G4K=1.0
G4N(1l)= G4K * (SIG * YB2 = THE * YPB2)
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600

255

256

257

278

258

71

102

G4N(2)
G4N(3)
G4D(1)
G4D(2) = 2,0 * ZB2 * WB2

G4D(3) = WB2 *%2

WRITE(3,600)

FORMAT ('0',28X,' COEFFICIENTS OF G4')
WRITE(3,300)

WRITE(3,400) (G4N(I), I=1,3)
WRITE(3,500)

WRITE(3,400) (G4D(I), I=1,3)

0.0
G4K * RP * YB2
1.0

munononon

COEFFICIENTS OF WSS

WSSN(1)=1000000.0/ 0.1189
WSSD(1L)= 1.0

WSSD(2)= (0.1544D-04) * WSSN(1)
WSSD(3)= (0.1338D-02) * WSSN(1)
WSSD(4)= (0.0393) * WSSN(1)
WSSD(5)= WSSN(1)

WRITE(3,255)
FORMAT('0',28X, ' COEFFICIENTS OF WSS')
WRITE(3,300)

WRITE(3,400) WSSN(1)
WRITE(3,500)

WRITE(3,400) (WSSD(I), I=1,5)

POLES OF SERVO

DO 256 I=1,5

1L=6-1

WSSDR(I)= WSSD(L)

M=4

CALL POLRT (WSSDR,COF,M,RTRWSS ,RTIWSS , IER)
IF(IER) 278,278,257

WRITE(3,73) IER

GO TO 50

CONTINUE

WRITE(3,258)

FORMAT ('0', 30X,'ROOTS OF WSSD')
WRITE(3,76) (RTRWSS(I), RTIWSS(I), I=1,4)

DETERMINING ROOTS OF G1D, G2D, G3D, AND G4D.

FOR G1D

DO 71 J=1,4
KA=5-J

G1DR(J)= G1D(KA)
M=3

CALL POLRT(G1DR,COF,M,ROOTR,ROO0TI,IER)
IF(IER) 74,74 ,72
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73

74
75

76

251

ann

90

77

.78

79
80

252

91

81

82

83
84

253

92

97

103

WRITE(3,73) IER

FORMAT (20X, 'IER = ',I2)

GO TO 90

WRITE(3,75)

FORMAT('0', . 30X,'ROOTS OF G1D')

WRITE(3,76) (ROOTR(K),ROOTI(K),K=1,3)
FORMAT('0',15X,2D15.5)

DO 251 J=1,3
RTRG1(J)= ROOTR(J)

RTIG1(J)= ROOTI(J)

FOR G2D

CONTINUE

DO 77 J=1,6

KB= 7-J

G2DR(J)=G2D(KB)

M=5

CALL POLRT(G2DR,COF,M,ROOTR,ROOTI,IER)
IF(IER)79,79,78

WRITE(3,73) IER

GO TO 91

WRITE(3,80)

FORMAT ('O’ » 30X, 'ROOTS OF G2D')
WRITE(3,76) (ROOTR(K) ,ROO0TI(K),K=1,5)
DO 252 J=1,5

RTRG2(J)= ROOTR(J)

RTIG2(J)= ROOTI(J)

FOR G3D

CONTINUE

DO 81 J=1,3

KI=4-J

G3DR(J)=G3D(KJ)

M=2

CALL POLRT(G3DR,COF,M,ROOTR,ROOTI ,IER)
IF(IER)83,83,82

WRITE(3,73) IER

GO TO 92

WRITE(3,84)

FORMAT('0' ,30X, '"ROOTS OF G3D')
WRITE(3,76) (ROOTR(K),ROOTI (K),K=1,2)
DO 253 J=1,2

RTRG3(J)= ROOTR(J)

RTIG3(J)= ROOTI(J)
FOR G4D

CONTINUE

DO 97 J=1,3
JX=4~J
G4DR(J)=G4D(JX)
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M=2
CALL POLRT (G4DR, COF,M,ROOTR,ROOTI ,IER)
IF(TER)95,95,94

94 WRITE(3,73) IER
GO TO 25

95 WRITE(3,96)

96 FORMAT('O' ,30X,"ROOTS OF G4D')
WRITE(3,76) (ROOTR(K),ROOTI(K),K=1,2)
DO 254 J=1,2

RTRG4(J)= ROOTR(J)
254 RTIG4(J)= ROOTI(J)

PARTTAL FRACTION EXPANSION OF WSS*G5/S

GT= Gl*G2= GIN / G2D

o eNeNoNeNe

DO 556 JR=1,3
G3N(JR)=(¥YP1P1l /ZM1)*G3N(JR)
556 G4N(JR)=(YP1P2 /ZM2)*G4N(JR)
N=5
557 CONTINUE
WSSD(6)= 0.0
RTRWSS(5)= 0.0
RTIWSS(5)= 0.0
CALL POLMUL(G3D,G4D,2,2,GTAAN)
CALL POLMUL (GIN,GTAAN, 3,4 ,GTAN)
CALL POLMUL(G2D,G4D,5,2,GTBAN)
CALL POLMUL(GTBAN,G3N,7,2,GTBN)
CALL POLMUL(G2D,G3D,5,2,GTCAN)
CALL POLMUL(GTCAN,G4N,7,2,GTCN)

CALL POLMUL(G2D,G3D,5,2,GTAD)
CALL POLMUL(GTAD,G4D,7,2,GID)

DO 263 I=1,8
K= 11 - 1
J= 9 - 1
263 GTAN(K)= GTAN(J)
GTAN(1)= 0.0
GTAN(2)= 0.0
DO 264 I=1,10
GTN(I)= GTAN(I) + GTBN(I) + GTCN(I)
264 GIN(I)= GIN(I) * WSSN(1)
267 CALL POLMUL(WSSD,GID,N,9,GWD)
DO 265 I=1,2
ROOTR(I)= RTRG3(I)
265 ROOTI(I)= RTIG3(I)
DO 266 I=3,4
L=I-2
ROOTR{I)= RTRG4(L)
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266 ROOTI(I)= RTIG4(L)

DO 401 I=5,9

M= T -4

ROOTR(I)= RTRG2(M)
401 ROOTI(I)= RTIG2(M)

K= 9 + N

DO 268 I=10,K

M= I -9

ROOTR(I)= RTRWSS (M)
268 ROOTI(I)= RTIWSS(M)

L=N + 9

IF(N.EQ.5)GO TO 1000

CALL HEAVY (GTN,GWD,9,L,ROOTR,ROOTI ,RO0TC,AK2)

GO TO 1005
1000 CALL HEAVY(GTN,GWD,9,L,ROOTR,RO0TI,RO0TC,AK1)

GO TO 1010
1005 CONTINUE

WRITE(3,269)

269 EORgém('o',13x,‘R00Ts',29x,'wss*css/s CONSTANTS',23X, 'WSS*G5 CONSTA

INTS*') _

AK2(14)= 0.0

WRITE(3,270) (ROOTC(I),AK1(I),AK2(I),I=1,14)

270 FORMAT(' ',2E16.8,8%X,2D16.8,8%,2D16.8)

WRITE(2,1030) TIME
1030 FORMAT('FLIGHT TIME = ',F6.4)

DO 1009 I=1,14

WRITE(2,1007) ROOTC(I),. AK1(I)

WRITE(2,1008) AK2(I)
1007 FORMAT(2D16.8,2D24,16)
1008 FORMAT (2D24.16)
1009 CONTINUE

GO TO 273
1010 CONTINUE
C
c PARTTAL FRACTION EXPANSION OF WSS * G5
C
=N-1

DO 558 JR=1,3
G3N(JR)= (YPRG1l/YP1P1)*G3N(JR)
558 G4N(JR)= (YPRG2/YP1P2)*G4N(JR)
GO TO 557
273 CONTINUE
25 CONTINUE
50 CONTINUE
STOP
END

SUBROUTINE POLMUL (CON,COM,N,M,XCOF)
DIMENSION CON(1l), COM(1), XCOF(l), CONA(50), COMRA(SO)
DOUBLE PRECISION CON, COM, XCOF, CONA, COMRA

c THE VECTOR CON IS A VECTOR OF THE COEFFICIENT OF A POLYNOMIAL
OF ORDER N.
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THE VECTOR COM IS A VECTOR OF THE COEFFICIENTS OF A POLYNOMIAL OF
ORDER M.

THE VECTOR XCOF IS A VECTOR OF THE COEFFICIENTS OF THE PRODUCT OF
A POLYNOMIAL OF ORDER N AND A POLYNOMIAL OF ORDER M. THE
POLYNOMIAL OF WHICH THE COEFFICIENTS ARE THE VECTOR XCOF HAS AN
ORDER OF M + N.

OO0

D01 I=1,M
1 CONA(I)=0.0
NX=N+1
DO 2 I=1,NX
LX=M1
2 CONA(LX)=CON(I)
MX=M+1
DO 3 I=1,MX
MY=M+2~1
3 COMRA(I)=COM(MY)
DO 4 1I=1,N
NX=Mt+1+T
4 COMRA(NX)=0.0
KY=MN+1
KX=KY
DO 7 k=1,KY
XCOF(K)=0.0
DO 5 L=1,KX _
5 XCOF(K)= CONA(L) * COMRA(L)+XCOF(K)
KX=KX-1
DO 6 J=1,KX
CONA (J)=CONA(J+1)
CONTINUE
RETURN
END

~ O

SUBROUTINE POLDIV(BX,AX,N,M,RPC)

DIMENSION AX(1), BX(1l), RPC(l), DX(50)

DOUBLE PRECISION AX, BX, RPC, DX
POLYNOMIAL DIVISION

MTH ORDER POLYNOMIAL WHOSE VECTOR OF.COEFFICIENTS IS AX IS DIVIDED
BY AN NTH ORDER POLYNOMIAL WHOSE VECTOR OF COEFFICIENTS IS BX.

ASSUMPTION-M IS GREATER THAN N.

[eHeNeNoNoRoReoNe]

BXA= BX(1)
NX= N+ L
M= M+ 1
DO 1 I=1,NX
1 BX(1)=BX(I)/BXA
DO 2 I=1,MX
2 AX(1)=AX(I)/BXA

C AUGMENT BX
LM=N + 2
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DO 3 I=LM,MX
3 BX(I)= 0.0
C
c
JX=M-N + 1
DO 5 I=1,JX
RPC(I)=AX(1)
DO 4 J=1,MX
4 DX(J)= AX(J) - BX(J) * RPC(I)
MX= MX-1
DO 5 L=1,MX
1K= L+1
5 AX(L)= DX(LK)
RETURN
END
SUBROUTINE HEAVY (NUM,DEN,M,N,ROOTR,ROOTI ,ROOTC,CONST)
REAL NUMR*8(50), NUM*8(1)
DIMENSIQON DEN(1), ROOTR(1l), ROOTI(l), CONST(L), ROOTC(L), DENR(50)
1 ,CONN(50), COND(50)
DOUBLE PRECISION DENR, DEN,AE
COMPLEX*16 CONST, ROOTC, CMPLX*8, CONN, COND
COMPLEX STAND, BYE
c
C FOR EXPANDING A RATIONAL POLYNOMIAL BY PARTIAL FRACTION EXPANSION
o
C LIMITATIONS
c 1. ROOTS OF THE DENOMINATOR OF THE POLYNOMIAL MUST BE KNOWN.
C 2. IF ALL ROOTS ARE NOT DISTINCT, THEN A SMALL NUMBER IS ADDED
c TO THE ROOTS NOT DISTINCT TO MAKE THEM DISTINCT.
c
c DESCRIPTION OF VARIABLES
C
c 1. NUM- VECTOR OF COEFFICIENTS OF NUMERATOR OF POLY.
c 2. DEN- VECTOR OF DENOMINATOR COEFFICIENTS OF POLY.
o 3. ROOTR AND ROOTI -VECTORS OF REAL AND IMAGINARY PARTS OF ROOTS
c OF THE DEN.
C 4, CONST- PARTIAL FRACTION EXPANSION CONSTANTS
c 5. M~ ORDER OF NUM
C 6. N- ORDER OF DEN
c
MA=M+1
DO 10 I=1,MA
=M+2-1
10 NUMR(I)=NUM(MB)
NA=N+1
DO 20 I=1,NA
NB=N+2-I
20 DENR(I)=DEN(NB)
C

DO 1 I=1,N
1 ROOTC(I)=CMPLX(ROOTR(I),RO0TI(I))
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K=M+1
L=N+1
DO 6 I=1,N
CONN(I)=0.0
COND(I)=0.0
12 CONTINUE
BYE= ROOTC(I)
IF(REAL(BYE) .EQ.0.0)GO TO 8
GO TO 9
8 IF(AIMAG(BYE).NE.0.0)GO TO 9
CONN (I)=NUMR(1)
COND(I)=DENR(2)
GO TO 11
9 CONTINUE
DO 2 J=1,K
2 CONN(I)= CONN(I) + NUMR(J) * ROOTC(I)**(J-1)
DO 3 J-2,L
AB= J-1°
3 COND(I)= COND(I)+ DENR(J) * AE * ROOTC(I) **(J-2)
11 STAND= COND(I)
IF(REAL (STAND) .EQ.0.0)GO TO 7
GO TO 4
7 IF(AIMAG(STAND).NE.0.0)GO TO &
ROOTC(I)= ROOTC(I) + 0.10E-05
GO TO 12
4 CONST(I)= CONN(I)/ COND(I)
GO TO 6
5 IER= 8
6 CONTINUE
RETURN
END




APPENDIX B

OPEN LOOP POLE MOVEMENT PROGRAM

The following algorithm is used in order to determine the movement
of the first and second bending modes, the second slosh mode, the
drift, and the rigid body poles in the z-plane when the sampling period

is varied. This program uses the root information from the s-plane

-sT

program in Appendix A. Using the expression z=e the s-plane poles

can be mapped directly into the z-plane for a particular sampling period.
(It should be understood that this cannot be done for s-plane zeros.)

This simple program performs this task for the given poles.

DIMENSION TM(10)
COMPLEX SPOLE(2),ZPOLE(20), SPOLEX(20)
KX=13
T™(1)= 40.0
TM(2)= 80.11
TM(3)= 120.0
DO 12 M=1,3
IF(M.GT.1)KX=9
READ (1,1) (SPOLE(I) ,I=1,KX)

1 FORMAT(6F10.6)
WRITE(3,20) TM(M)

20 FORMAT('1',20X,'FLIGHT TIME = ',F5.2)
WRITE (3,4)
T=0.0
IF(M.GT.1)GO TO 21
DO 5K=1,100
CALL ZTRAN(SPOLE,T,&,ZPOLE)
WRITE(3,3) T,(ZPOLE(J),J=1,4)

3 FORMAT(1X,F5.2,8F10.5)

4 FORMAT('O',34X,'SERVO Z-PLANE POLES')
T=T+0.01

5 CONTINUE

21 CONTINUE
T=0.0
WRITE(3.6)

6 FORMAT('0',48X,'SLOSHING Z-PLANE POLES')
DO 9 K=1,1000
L=0
IF(M.EQ.1)L=4
DO 7 J=1,5
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11

12

SPOLEX(J)= SPOLE (J+L)

CALL ZTRAN(SPOLEX,T,5,ZPOLE)
WRITE(3,8) T,(ZPOLE(I),I=1,5)
FORMAT (1X,F5.2.10E11.4)

T=T+0.01

CONTINUE

T=0.0

WRITE(3.11)

DO 12 J=1,1000

L2=5

IF(M.EQ.1)L2=9

DO 10 I=1,4

SPOLEX(I)= SPOLE(I+L2)

CALL ZTRAN(SPOLEX,T,4,ZPOLEY
WRITE(3,3) T, (ZPOLE(I),I=1,4)
FORMAT ('0', 33X, 'BENDING Z-PLANE POLES')
T=T+0.01

CONTINUE

STOP

END

SUBROUTINE ZTRAN(SPOLEX,T,N,ZPOLE)
COMPLEX ZPOLE (20),CEXP, SPOLEX(20)
DO 1 I=1,N

ZPOLE(I)= CEXP(SPOLEX(I) * T)
RETURN

END

i1o




APPENDIX C

OPEN LOOP Z-PLANE TRANSFER FUNCTION PROGRAM

The following computer program with the aid of the subroutines finds

the z~plane open loop transfer function from information containing the
roots and partial fractions expansion coefficients of the open loop
s-plane transfer function. This algorithm takes into account a zero
order hold when the 1/s term of the hold device has been incorporated
in the partial fraction expansion information (that is, the partial
fraction of G(s)/s was found, rather than of G(s), where G(s) is the
s-plane open loop transfer function). With the root and partial frac-
tion information for a particular flight time, a z-plane open loop
transfer function for any sampling period can be obtained when this
program is employed.
Definitions of input and output variables of this routine are:
A. 1. REXD - Vector of the real parts of the s-plane poles.
2. AEXD - Vector of corresponding imaginary parts of s-plane
poles.
3. RECON1 and AICON1 - The real and imaginary parts respec-—
tively of the partial fraction expansion coefficients.
These must be in the order as their corresponding poles.
4., TF ~ Flight time*
B. Output Variables

1. ANUMR - A vector of the numerator coefficients of the z-plane

open loop transfer function.

*This is both an input and an output variable.
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2. DENOM - A vector of the denominator coefficients of the

z—-plane open loop transfer functions.**

DIMENSION REXD(20), AIXD(20), RECONL(20), RECON2(20), A(20),
2 B(20), C€(20), D(20), ANC(20,20), ADC(20,20), TCN(20,20)
3 , XDB(20), CHART(20), ANUMR(20), DENOM(20), AICONL(20),
4 ATCON2(20)
DOUBLE PRECISION REXD, AIXD, RECON1, RECON2, A, B, C, D, ANC, ADC,
2 TCN, XDB, CHART, AICONL, AICON2
GAIN= 1.0
DO 10 J0=1,8
T=0.0
READ(1,5) TF
5 FORMAT(13X,F10.5)
WRITE(3,20) TF
WRITE(2,500) TF
20 FORMAT('1l', 10X,'FLIGHT TIME = ',F10.5,'SECONDS')
500 FORMAT('FLIGHT TIME = ',F10.5,' SECONDS')
DO 2 I=1,14
READ(1,1) REXD(I), AIXD(I), RECON1(I), ATCONL(I)
READ(1,3) RECON2(I), AICON2(I)
FORMAT (2D16.8,2D24.16)
FORMAT (2D24.16)
CONTINUE
DO 4 I=1,14
A(I)= RECONL(I) .+ RECON2(I)
4 B(I)= AICON1(I) + AICON2(I)
WRITE(3,401) (REXD(I),AIXD(I),A(I),B(I),I=1,14)
WRITE(2,502) (REXD(I),AIXD(I),A(I),B(I),I=1,14)
501 FORMAT('0',2D16.8,2D24.16)
502 FORMAT(2D16.8,2D24.16)
DO 10 J=1,100
WRITE(3,503) T
WRITE(2,504) T
503 FORMAT('0',20X,'SAMPLING PERIOD = ',F6.4)
504 FORMAT('SAMPLING PERIOD = ',F6.4)
DO 120 I=1,14
C(I)= -DEXP (REXD(I)*T) * DCOS(AIXD(I)*T)
120 D(I)= -DEXP (REXD(I)*T) * DSIN(AIXD(I)*T)
IQ= 14
I=1
JR=0
150 CONTINUE
JR= JR + 1
IF(ATXD(I))155,160,155
155 ANC(JR,1)= 2.0 % A(I)

N W

#k
ANUMR and DENOM are ordered normally as defined on page 97.
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180

99

101
100

10

20

13

15

16

ANC(JR,2)= 2.0 * (A(I) * C(I) + B(I) * D(I))
ADC(JR,1)= 1.0
ADC(JR,2)= 2.0
ADC(JR,3)= C(I) * C(I) + D(I) * D(I)
I= T + 2
1F(I-1Q)150,150,180
ANC(JR,1)= A(I)
ANC(JR,2)= 0.0
ADC(JR,1)= 1.0
ADC(JR,2)= C(I)
ADC(JR,3)= 0.0
I= 1+ 1
1F(I-1Q)150,150,180
CONTINUE
CALL HELP (ADC,ANC,JR,TCN,XDB,K)
DO 6 IZ=1,14
CHART (1Z)= 0.0
DO 6 KZ=1,JR :
CHART(IZ)= CHART(IZ) + TCN(KZ,IZ) * GAIN
DO 99 I=1,14
DENOM(I)= XDB(I)
ANUMR(I)= CHART(I)
WRITE(3,101) (ANUMR(I),I=1,14)
WRITE (3,101) (DENOM(I),I=1,14)
WRITE(2,100) (ANUMR(I),I=1,14);,
WRITE(2,1000) (DENOM(I),I=1,14)
FORMAT ('0',5E16.8)
FORMAT (5E16. 8)
T= T + 0.01
CONTINUE
STOP
END

SUBROUTINE HELP (XD,XN,LA,TCN,XDB,K)
DIMENSION XDB(20), XDA(20), XD(20,20), COM(20), XN(20,20)
1 CON(20), TCN(20,20), XCOF(20)
DOUBLE PRECISION XDB, XDA, XD, COM, XN, CON, TCN, XCOF
XDB(1)= XD(2,1)

XDB(2)= XD(2,2)

XDB(3)= XD(2,3)

XDA(1)= XD(1,1)

XDA(2)= XD(1,2)

XDA(3)= XD(1,3)

DO 23 M=1,LA

K=1

N=1

DO 20 I=1,2

COM(I)= XN(M,I)

DO 21 J=1,LA

DO 13 I=1,3

CON(I)=XD(J,I)

IF(J-M)15,21,15

N=1

IF(CON(3))16,17,16

N=2
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17 CALL POLMC(CON,COM,N,K,XCOF)
K=K+N
KZ=K+1
DO 30 I=1,KZ
30 COM(I)= XCOF(I)
21 CONTINUE
DO 22 I=1,KZ
TCN(M,I)= COM(I)
22 CONTINUE
23 CONTINUE
L=1
IF(XDB(3))40,41,40
40 L=2
41 1F(LA)43,26,43
43 LM=LA-2
DO 25 I=1,LM
N=1
IF(XDA(3))44,45,44
44 N=2
45 CALL POLMC(XDA,XDB,N,L,XCOF)
L=L+N
JX=L+1
DO 31 NL=1,JX
31 XDB(NL)= XCOF(NL)
IF(I-LM) 33,25,25
33 KX=1 + 2
DO 24 NX=1,3
24 XDA(NX)= XD(KX,NX)
25 CONTINUE
26 RETURN
END

SUBROUTINE POLMC(CON,COM,N,M.XCOF)
DIMENSION CON(1), COM(1), XCOF(l), CONA(50), COMRA(50)
DOUBLE PRECISION CON, COM, XCOF, CONA, COMRA

THE VECTOR CON IS A VECTOR OF THE COEFFICIENT OF A POLYNOMIAL

OF ORDER N.

THE VECTOR COM IS A VECTOR OF THE COEFFICIENTS OF A POLYNOMIAL OF
ORDER M.

THE VECTOR XCOF IS A VECTOR OF THE COEFFICIENTS OF THE PRODUCT OF
A POLYNOMIAL OF ORDER N AND A POLYNOMIAL OF ORDER M. THE
POLYNOMIAL OF WHICH THE COEFFICIENTS ARE THE VECTOR XCOF HAS AN
ORDER OF M + N

DO 1 I=1,M

1 CONA(I)=0.0
NX=N+1
DO 2 I=1,NX
LX=M+I

2 CONA(LX)=CON(I)
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MX=M+1
DO 3 I=1,MX
MY=M+2-1
3 COMRA(I)=COM(MY)
DO 4 I=1,N
NX=M+14T
4 COMRA(NX)=0.0
KY=MHN+1
KX=KY
DO 7 K=1,KY
XCOF(K)=0.0
DO 5 L=1,KX
5 XCOF(K)=CONA(L) * COMRA(L)+XCOF(K)
KX=KX-1
DO 6 J=1,KX
6 CONA(J)=CONA(J+1)
7 CONTINUE
RETURN
END




APPENDIX D

MODIFIED ROOT LOCUS PROGRAM AND THEORY

The following computer program, which is comprised of a main
program and two subroutines, is the program used for obtaining the
roots for the modified root locus method. The purpose of the main
program is simply input, output, and control., The input and output
variables are interpreted as follows:

1. TF - Flight time

2. YD - The complex s—plane roots

3. CONST - The complex partial fraction coefficients of the

open loop s-plane transfer function

4, T - Sampling period

5. GAIN - Open loop gain of the system

6. ANUMR - Vector of open loop, numerator, z-plane coefficients

in normal order,

7. DENOM - Vector of open loop, denominator z-plane coefficients

in normal order.

8. STARTP - Vector of predicted starting points for finding roots

9. ROOT - Vectors of roots of closed loop transfer function

10. ASRT - The absolute value of a root for determining if it
is outside the unit circle.
After the roots of the closed loop, z-plane, characteristic equation have
been found this program detects if any are outside the unit circlej; if
none are outside the unit circle, it indicates that the system is stable.
If some are outside the unit circle, it denotes the system as being

unstable.
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The subroutine PRDZ is sub~-program for predicting another root of
a modified root locus from knowledge of a previous root on the locus.
The theoretical background for this program is presented in the
following discussion.

The characteristic equation of a typical feedback control system
is of the form

1+ G(s,T) = 0 (A-1)

where G(s,T) is the open loop transfer function and T is the parameter
for which a locus is dgsired. The necessary and sufficient conditions

i

for a point, s to be .a point on the locus are

o,

els,,T)| = 1 (A-2)
and [G(5g,T) = (A-3)
where n = 1,3,5 ... for negative feedback
n = 0,2,4, ... for positive feedback.
The open loop transfer function can be written as
G(x,y,T) = GR(x,y,T) + jGI(X,y,T) (A-4)

in which GR(x,y,T) and GI(x,y,T) are the real and imaginary parts of
G(x,y,T) respectively, and x and y are the real and imaginary parts of

the complex variable s. The magnitude and angle relations of (A-4) are

T6g(x,y, D12 + [6;(x,y, D12 = [G(x,y,T)| (a-5)

and

Gt (x,y,T)

GR(X3Y’T)

= tan 6 . (A-6)
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Letting Fl(x,y,T) = tan 9, (A-6) is rewritten as

,T
Fl(stST) M (A"'7)
GR(X’y ’T>
With Fz(x,y,T) = |G(x,y,T)|2 then
F2 (X9Y>T) = [GR(X’y3T)]2 + [GI (X3YaT)]2 . (A-8)

Equations (A-7) and (A-8) represent two hypersurfaces which are functions
of the three variables x, y, and T. The manifold of these hypersurfaces
is composed of several lines, namely the three dimensional lines of the
root loci. A point on a locus, is a point common to both surfaces. It
is desired to find a line which is tangent to the line of intersection
of these two surfaces. This is done by first finding the gradients of

the two surfaces. These are

VF = —i+—j+ —k (A-9)
9x 9y aT
and
oF, - oF, -+ oF, —
2 2 2
VF, = —i —j+—k (A-10)
X oy oT

> > >
where i, j, and k are unit vectors.

Taking the cross product of the two gradients results in

VF,xVF, = - i
9y 9T 9y oT
3F_ oF 3F. JF, |~ oF. OF 9F. J3F, |~
2 1 1 2 1 2 1 2
+ - j+ - k . (A-11)
ax T ax oT Ix oy dy 9x

Equation (A-11) is a vector which lies in the tangent plane of the mani-

fold. From (A-1l) a straight line tangent to the intersection of the

surfaces can be obtained at any point on the manifold. A geometrical




interpretation of the preceding derivation can be gathered from

Figure 69.
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Now, further information regarding the partial derivatives will be

obtained. First, consideration will be given to the three partials of

F,(x,y,T). The partial of F,(x,y,T) with respect to x is

aGI (%,y,T) BGR(X »Y»T)
3F1 (x,y,T) GR(X:y,T) T - GI(X>Y9T) T
X [GR(x,y,T)]2

(A-12)

If this is evaluated at a point on the locus (Xl’ Y1i» Tl)’ it reduces to

BFI(X,Y,T)

9xX

Similarly, the partials with respect to

the locus are

5F,

3 =

¥ X=X,
=Y,
T=T1

and

BFI

oT X=X,
y=y1
T=T1

where it should be understood that GR’ Gy and F; are functions of

X, v, and T. By a similar analysis

aGI (x sy ’T> '

9%

GR(X sy aT)

1

3y

GR X=X,
Y=Y
T=T1

SGI

oT

GR X=X,
Y=Yy
T=T1

X=X
y=y
T=T

1
1
1

(A-13)

y and T evaluated at a point on

(A-14)

(A-15)

the partials of F, are derived as




9F,

X

3F,
oy

and

oF
oT

T
=
—

]

X=X
Yiyl
..Tl
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(A-16)

(A-17)

(A-18)

Again, it should be understood that F, and Gp are functions of x, y, and

T. Furthermore, from here on it should be understood that the partials

and functions are evaluated at a point on the locus.
venience, the evaluatidn notation will be dropped.
Although the criterion for determining a straight line in the

direction of the intersection of the surfaces was derived using the

Therefore, for con-

gradients of the surfaces, it is not really necessary to have the grad-

ients. All that is necessary is to have vectors in the direction of the

gradients. For this reason the factor l/GR can be dropped from the par-

tials of F,, and the factor 2GR can be dropped from the partials of F,.

Since the result is no longer the true gradients but scaled versions, a

prime will be used in the gradient notation.

are
VF 1 ! =

and

0%

Thus, the scaled gradients

(A-19)
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9G, +»  8Gy > 9G,
R R
VF,' = R i+ j+ k. (A-20)
, X oy at

From (A-19) and (A-20) one can observe that the problem reduces to
considering the intersection of the two surfaces formed by the real and
imaginary parts of G(s,T). In fact, from the beginning one would
intuitively think that this would be the result, However, in order to
maintain as much mathematical rigor as possible the magnitude and angle
approach was chosen as the initial point of attack.

Under certain circumstances, it is necessary to still think of the
gradients as being those of the magnitude and angle relation. For exam-
ple, in a regular root locus the angle relation is completely independent
of the open loop gain. Thus the partial of the angle function with
respect to open loop gain is zero. This result is not obvious from
(A-19) and (A-20), but is easily deduced from the magnitude and angle
functions (A-7) and (A-8).

Returning to (A-19) and (A-20) it is now possible to obtain a
straight line which is tangent to a locus. This is easily done, and the

result is .
Ax Ay AT
- = ‘ = (A-21)
3Gy 3Gy - 3GRp oGy 0GR 9Gy 3Gt 9GR 0GT aGg 9GT 9GR

dy oT dy 9T ax oT ox oT 9x 9y oy  9x

where Ax, Ay, and AT are (x - x;), (y - yv1), and (T - T;) respectively
and x;, y;, and T; are points on a locus.

From (A-21) it is possible to predict a point (x + jy) on a locus
for some increment, AT, of the parameter for which the locus is being

made. For small values of AT the predicted point will be very accurate.!
The preceding method for predicting points on a locus is only

applicable if the partial derivatives can be found. For a sampled-data
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system this is an easy task if the open loop transfer function is in the
partial fraction expansion form. If this is the case, then the open

loop transfer function is of the form

[ Clz CZZ }
G(z) = K + + ... (A-22)
T T s
4 Py z - eP2

where the C's are the partial fraction coefficients, the p's are the
poles of the s-plane open loop transfer function, and K is the open loop
gain.* Letting G (z) be the nth term inside the parentheses of (A-22)

and letting the complex variable z = x + jy

c, (x + jy)

Gn(z) = (A-23)

onT

0,T
(x + iy) - (€™ cos wyT + je sin w,T)

where 0 and w, are the real and imaginary parts respectively of the p,
in (A-22). After rationalizing (A-23), it can be separated into its

real and imaginary parts. This allows for the real and imaginary parts
of (A-22) to be written respectively as the sum of the real and imaginary

parts of the individual terms of (A-22). Thus,

(A-24)

I
=

I~z
P

GR(Z)

and

(A-25)

1]

=
i~

3

GI(Z)

in which GR ;is the real part of the ith term of (A-22), GL; is the
imaginary part of the ith terms of (A-22), and M is the number of terms
in (A-22). Since a partial of a sum is equal to the sum of the partials,

it is obvious how the necessary partials derivatives can be obtained

from (A-24) and (A-25).

e

*If a zero order hold has been included, then the z in the numerator
must be changed to a z + 1.
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The subroutine POLSER is an algorithm for finding the roots of a
polynomial. The steps it uses in computation are as follows:
1. Set a starting point
2. Using the steepest-accent method, find a good approximation
to a root

3. Taking the approximation, use the Newton~Raphson technique to
refine the approximation until it is within some preassigned
e of the exact value.

4, If the root is complex, set the next root equal to the com-

plex conjugate of this root.

5. Find a reduced polynomial by factoring out the term involving

the root or roots.

6. With the reduced polynomial return to step 1 and continue the

process until all roots have been found.

As was mentioned in the procedure of computation, the steepest-
accent method is used for finding approximations to the roots. This
method is well known for finding maxima and minima of a function, but
it has had little application for finding roots of an equation. Applying
this method to root extraction for a polynomial of a complex variable is
very simple, First, find the absolute value squared of the polynomial.
This new function will be a real function that is a function of two real
variables, x and y, which are the real and imaginary parts respectively
of the independent variable of the original polynomial., If the original
polynomial was of order n, this function will have n absolute minima
which will occur at the x and y corresponding to the roots of the

polynomial. These minima can easily be found using the steepest-accent
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method if they are the only minima of the functien, and, in fact, they
are the only minima. A proof of this is statéd and proved. in the
following theorem.

THEOREM - The absolute value squared of an nth order polynomial
has n.absnlute winima, and they are located at the real and imaginary
parts of the roots of the polynomial. All other extremals are saddle
points.

PROOF - Let s = s + jy where'x and y are real variables. Suppose

that F is an nth order polynomial in s such that

F(s) = s%™+ ap; sl 4+ a,, ™24+ ...+ a, (A-26)

Separating F into its real and imaginary parts (A-26) becomes
F(x,y) = R(x,y) + ] I(x,y). (A-27)

where R is the real part of F and I is the imaginary part of F. Since

a polynomial is an analytic function, the Cauchy-Rieman equations state

that
R _ B
X Jy
and
ol _ 3R , (A-28a,b)
ox dy

where for brevity the function notation has been dropped and for con-
venience will be dropped in all remaining equations of this section. The

absolute value squared of (A-27) is

£ = RZ2+ 12 ., (A-29)
The necessary conditions for an extremal of (A-29) to occur is for %ﬁ =0

and-%§ = 0., Taking these partials and setting them equal to zero, the

results are



125

oR _ _ 7 3I
R 9x I 3x
and
oR a1
R 3y = -1 3; . (A-30a,b)

An obvioﬁs sélntion to these equations is the x and y so that R = 0 and
I=0. ihé'i;and y for which this occurs is simply the real and
imaginary parts of the roots of the original polynomial. Using the
Cauchy-Riemgn‘équation; the other solutions of (A-30a,b) would occur

for the x ggd y so that

3R _ 9L _
5y - ox 0
or .
3T 3R
——— = — - 0 . -
5 w (A-31a,b)

Equations (A;Sla,B) could occur when R = 0 aﬁd I =0. In fact, this is
one cage;.fﬂawgver, (A-31a,b) can also occur when R # 0 and I # 0. The
type of théée-extremals (maximum, minimum, or saddle point) must be
determinéé.» Inférdér to find 1if these extremals are maxima, minima, or
saddle points all the second partials of f must be obtained so that
sign of fxy? *‘fxx,fyy can be investigated. The symbols fxy’ fxx» and

f are'reS§e¢tively

yy
32f  32f 32f
T ___‘2’,_ and ——2_ .
X%y  9x oy
These second partials evaluated at %§'= 0 and %5 = 0 are

2 2 2
9cf _ R R, 1 9°1

oxZ ox2 ox2

2 2 2

22f _ p 2R, [ 3% |

ay? 3y dy?
and ) ) )

82fF _ a2R | o 221

(A-32a,b,c)
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Therefore,
£,,2 & fgp £, = RZ o2y + 2RI 2R DL
Xy S OCXX Yy dxdy 9xdy  0xdy
Loa2 2 2 2 2
2 2 821 _ pp2 3121 32R . pr 7R alz*
X3y 19X ay? 9x2 oy
321 32R s 921 321 '
Using the Cauchy-Rieman equations and letting
2
A = O°R
IxX 3y
and
g o 2 - ; 1
T dxdy (A-34a,b)
(A-33) becomes:
R2A2 + I2B2 + R2B2 + I2A2 = (R2 + 12)(A? + B2) (A-35
or
(R? + 12)(A2 +B2) > 0 ‘ (A-36)

if A or B is non-zero. For this case all the extremals are saddle
points. By considering the higher derivatives and the geometry of the
problem the same result can be extended to include the case where

A=Bi=:o,.

DIMENSION CHEQ(20), ANUMR(20), DENOM(20)
COMPLEX XD(20,20), CONST#*16(20,20), YD*16(20,20), STARTP(ZO),
1 ROOT(20), ZNEW, ZOLD, CMPLX, CABS, CONJG
COMPLEX ZSTART(20)
CALL -INTERD
DO 100 JO=1,8
READ(1,1) TF
WRITE(3,5) TF
1 FORMAT(14X,F10. 5)
5 FORMAT('l1l',35X,'FLIGHT TIME =',F10.5)
DO 6 I=1, 13
ROOT(I)= 1.0
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6 STARTP(I)= 1.0
DO 3 I=1,14
READ(1,2) YD(I,2), CONST(I,1)
2 FORMAT (2D16.8,2D24,16)
XD(I,1)= 1.0
YD(I’l)'_" 1.0
CONST(I,2)= 0.0
3 CONTINUE
DO 4 I=1,14
4 XD(I,2)= YD(I,2)
DO 100 J=1,50
LP=13 :
IER= 0O
DELT= 0.01
READ(1,10) T
READ(1,12) (ANUMR(T),I=1,14)"
READ(1,12) (DENOM(I),I=1,14)
10 FORMAT (17X,F6.4)
12 FORMAT (5E16.8)
13 CONTINUE
GAIN=-1.0
DO 15 I=1,14
15 CHEQ(I)= DENOM*I)+ GAIN * ANUMR(I)
DO 19 I=1,LP
CHECK= ABS (CHEQ(15-1)/CHEQ(14-I))
TF(CHECK-1.0E-04)17,17,21
17 CHEQ(15-I)=0.0
Lp=1P - 1
ROOT(14-I)= 0.0
STARTP (14-I)= 0.0
19 CONTINUE
21 GONTINUE
I=1
16 CONTINUE
ZOLD= ROOT(I)
CALL PRDZ(ZOLD,ZNEW,14,T,IER,DELT,GAIN,CONST,XD,UI,UJ,UK)
IF(IER.NE.0)ZNEW= ROOT(I)
STARTP (I)= ZNEW
IF(AIMAG(ROOT(I)))20,18,20
18 I=I+1
IF(I-LP)16,16,25
20 STARTP (I+1:3CONJG (ZNEW)
I=T+2
IF(I-LP)16,16,25
25 CONTINUE
CALL POLSER(CHEQ,ROOT,IER,IEND,LP,STARTP)
IF(IER,LT.98)GO TO 35
WRITE(3,28) IER
28 FORMAT('0', 10X,'IER = ',I5)
GO TO 100
35 IF(IEND.LT.98)GO TO 40
"WRITE(3,38) IEND
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38 FORMAT('0',10X,"'IEND =',15)
GO TO 100
40 CONTINUE
WRITE(3,45) T
45 FORMAT('0',12X,'SAMPLING PERIOD = ',F6.4)
WRITE(3,50)
50 FORMAT('0',2X,'PREDICTED ROOTS',21X,'ROOTS',14X, 'MAGNITUDES OF ROD
11s")
KS=0
DO 65 I=1,13
ABSRT= CABS(ROOT(I))
WRITE(3,55) STARTP(I), ROOT(I), ABSRT
55 FORMAT('0',2F10.5,10X,2F10.5,10X,F11.8)
‘IF(ABSRT,GE.1.0)KS=1
65 CONTINUE
IF(KS.LT.1)GO TO 80
WRITE(3,70)
70 FORMAT ('0',30X,'#*** SYSTEM UNSTABLE #*%')
GO TO-95
80 WRITE(3,90)
90 FORMAT('0',31X,'#** SYSTEM STABLE ##%')
95 CONTINUE
100 CONTINUE
110 CONTINUE

[y

STOP END

SUBROUTINE ' PRDZ(ROOT,ZPRED,N,T,IER,DT ,K,CONST,XD,UI ,UJ,UK)
C
c PREDICT Z
c

COMPLEX CABS,CEXP,CONST*16(20,20) ,XD(20,20) ,SON

COMPLEX*16 ROOT*8, ZPRED*8, ZX, CDABS, ZY, ZT, CMPLX*8, SUM
DOUBLE PRECISION PRNX,PRNY,PRNT,PINX,PINY,PINT,PDNX,PDNY,PDNT,
1 DN,RN,AIN,PRIX,PRIY,PRIT,PIIX,PIIY,PIIT,PGX,PGY,PGT,PIGX,
2 PIGY,PIGT

REAL K

IER=0

PGX=0.0

PGY=0.0

PGT=0.0

PIGX=0.0

PIGY=0.0

PIGT=0.0

X= REAL (ROOT)

Y= ATIMAG(ROOT)

DO 3 I=1,N

SON= CONST(I,1)

D= REAL (SON)

E= AIMAG(SON)

E= E% K

D=D * K

OMEGA= . ~ATMAG(XD(I,2))

A= - REAL(XD(I,2))
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ACOS= COS (+OMEGA * T)

ASIN= SIN(+OMEGA * T)

AEXP= EXP(-A * T)
4 PRNX= 2,0 * X - AEXP * ACOS - 1.0

PRNY= 2.0 * Y + AEXP % ASIN

PRNT= A * AEXP * ((X - 1.0 )* ACOS - Y * ASIN) + OMEGA * AEXP *
17 (( X - 1.0) * ASIN + Y % ACOS)

PINX=-AEXP * ASIN

PINY==AEXP * ACOS + 1.0 R

% ACOS + (X = 1.0:%-ASIN) - OMEGA * AEXP- *

PINT= A * AEXP * (Y
1 ((X - 1.0) * ACOS - Y * ASIN)
PDNX= 2.0 * X — 2.0 % AEXP * ACOS
PDNY= 2.0 * Y + 2.0 % AEXP * ASIN
PDNT= 2.0 * A * AEXP %( X *ACOS - Y * ASIN) + 2.0 * OMEGA * AEXP *
1 (X * ASIN 4+ Y * ACOS) - 2.0%A % AEXP*AEXP
DN=X*X + Y#Y - 2.0 * AEXP * (X * ACOS- Y * ASIN) + AEXP * AEXP
IF(DN)7,6,7
6 Y= Y + 1.0E-06
GO TO 4

7 RN= X*(X - 1.0) + Y*Y ~ AEXP * ((X - 1.0) * ACOS - Y * ASIN)
AIN= Y - AEXP * ((X - 1.0) * ASIN + Y * ACOS)
PRIX= (DN * PRNX - RN * PDNX)/(DN * DN)

PRIY= (DN * PRNY - RN * PDNY)/(DN * DNJ
PRIT= (DN * PRNT - RN * PDNT)/(DN * DN)
PIIX= (DN * PINX - AIN * PDNX)/(DN * DN)
PIIY= (DN * PINY - AIN * PDNY)/(DN % DN)
PIIT= (DN * PINT - AIN * PDNT)/(DN * DN)
PGX = PGX + PRIX * D - E * PIIX
PGY = PGY + PRIY *# D - E * PITY
PGT = PGT + PRIT # D - E * PIIT

PIGX= PIGX + PIIX * D + E * PRIX
PIGY= PIGY + PIIY * D + E * PRIY
3 PIGT= PIGT + PIIT * D + E * PRIT
ROOTR= REAL (ROOT)
ROOTI= AIMAG(ROOT)
UI= PGY * PIGT - PIGY * PGT
UJ= PIGX * PGT - PGX * PIGT
UK= PGX * PIGY - PIGX * PGY
IF{UK.EQ.0.0)IER=1
IF(IER.GT.0)GO TO 10
5 CONTINUE
X= (UT/UK) * DT + ROOTR
Y= (UJ/UK) * DT + ROOTI
ZPRED= CMPLX(X,Y)
10 CONTINUE
RETURN
END
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SUBROUTINE POLSER(CONST,ROOT,IER,IEND,M,STARTP)
DIMENSION CONST(1), COF(20), YCONS(20)

DIMENSION RCOF(20)

DOUBLE PRECISION COF, YCONS, ALPHA,SUMSQ, RCOF
DOUBLE PRECISION FR,FI,PFRX,PFIX,PFRY,PFIY,FRO,FIO,PFRXO,
1 PFRYO,PFIXO,PFIYO,FRL,FI1,PFRX1,PFRY1,PFIY1,PFIX1,PFX,PFY
COMPLEX*16 SO,FUN, DERV, CDABS

COMPLEX S1,CMPLX, ROOT(20),CABS, STARTP(20), CONJG
N=M+1

DO 10 I=1,N

COF(I)= CONST(I)

J=1

IEND= 0

DO 6 I=1,N

YCONS (I)=COF(I)

X1= REAL(STARTP(J))

Yl= AIMAG(STARTP(J)) + 1.0E-04

ISKIP= 0

IEND= IEND + 1

X= X1 1

Y= Y1 9

DO 18 I=1,N

KJ=N + 1 - I

RCOF(I)= COF(KJ)
FR= RCOF(1)
¥I= 0.0
PFRX= 0.0
PFIX= 0.0
PFRY= 0.0
PFIY= 0.0
FRO= X

Fio= Y
PFRX0= 1.0
PFIX0= 0.0
PFRYO= 0.0
PFIYO= 1.0
DO 25 I=2,N

PERX= PFRX + RCOF(I) * PFRXO
PFIX= PFIX + RCOF(I) * PFIXO
PFRY= PFRY + RCOF(I) * PFRYO
PFIY= PFIY + RCOF(I) * PFIYO
FR= FR + RCOF(I) * FRO
FI= FI + RCOF(I) * FIO
FR1= X # FRO - Y * FIO
FIl= Y % FRO + X * FIO

PFRX1= FRO + X * PFRXO -~ Y *®* PFIXO
PFIXl= Y * PFRXO + FIO + X * PFIXO
PFRY1l= X % PFRYO - FIO - Y * PFIYO
PFIYl= FRO + Y * PFRYO + X * PFIYO

PFRXO= PFRX1
PFIXO= PFIX1
PFRYO= PFRY1
PFIYO= PFIY1
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26
27

28

30

35

36

40

42

FRO= FRI1

FI0= FIl

CONTINUE

PFX= 2.0 * ( FR * PFRX + FI * PFIX )
PFY= 2.0 % ( FR * PFRY + FI * PFIY )
ZAP=DSQRT( FR * FR + FI * FI )

IER=0

IF(ISKIP.EQ.0Q)ZAP= ZAP + 100000.0
IF(ISKIP.EQ.0)GO TO 35

IF(Z1P + ZIP/ZOP.GE.1.0)DELX= 0.30
IF(ZI1P + Z1P/Z0OP.LT.1.00 )DELX= 0.20
IF(ZIP + ZIP/ZOP.LT.0.15 )DELX= 0.10
IF(zIP + ZIP/ZOF.LT.0.05 )DELX= 0.05
GO TO 27

DELX= DELX/2.0

DELX= ABS(DELX)

IF(PFX.GT.0.0)DELX= -DELX

DX= DELX

Xi= X + DX

IF(PFX.NE.0.0)GO TO 30

Yl= Y - PFY * DX / DABS(PFY)

X1l= X1 - DX

GO TO 35

Yl= (PFY/PFX) * DX + Y

IF(ABS(Y1-Y) + ABS( DX ).LT.SQRT(2.0*DELX*DELX))GO TO 35

DX=DX/2.0

GO TO 28

CONTINUE

ISKIP= 1

SO= CMPLX(XL,Y1)
IF(IER.GT.98)GO TO 50
IER= IER + 1

MONK=0

JX= N-1

NEND= 0

7 FUN= YCONS(1)

DERV= 0.0

NXX=JX+1

DO 40 I=1,JX

P= NXX - I

DERV= DERV * SO + YCONS(I) % P
FUN= FUN * SO + YCONS(I+1)
ZIP= CDABS (FUN)

ZOP= CDABS (DERV)

NEND= NEND + 1
IF(NEND.GT. 50) IEND=200
IF(MONK.GT.0)GO TO 42
IF(ZIP.GT.ZAP)GO TO 26
1F(CDABS (FUN/DERV) .GT.0.025)GO TO 15
IF(IEND.GT.98)GO TO 50

IF(CDABS (FUN/DERV)+ ZIP.LT.1.0E-04)GO TO 43

S0= SO - FUN/DERV
GO TO 37

131
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b

45

60

140

145
150

50

IF(MONK.NE.0)GO TO 45
MONK= MONK-+1
IF(MONK . GT. 5) IEND=100
MX=M+1

DO 44 I=1,MX

YCONS (I)= CONST(I)
JX= M

GO TO 37

ROOT (J)= SO

Sl= SO

IF(ABS (AIMAG(ROOT (J)) /REAL(ROOT(J))) .LT.1.0E-04)ROOT (J)=CMPLX (

% REAL(S1),0.0)

LF(AIMAG(ROOT(J)) .EQ.0.0)GO TO 60

ROOT (J+1)= CONJG(ROOT(J))

J=J+2

ALPHA= 2 * REAL(SL)

SUMSQ= REAL(S1) * REAL(S1) + AIMAG(SL) * ATMAG(SL)
N=N-2

GO TO 140

J=J + 1

SUMSQ= 0.0

ALPHA= REAL(S1)

N=N-1

COF(2)= COF(2) + ALPHA % COF(1)

NX= N-1

DO 150 L=2,NX

COF(L#1)= COF(L+1) + ALPHA * COF(L) - SUMSQ * COF(L-1)
IF(N-1)50,50,5

RETURN

END
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APPENDIX E

OPEN LOOP SAMPLED-DATA FREQUENCY RESPONSE PROGRAM

The ensuing digital routine is an open loop frequency response
program for the simplified version of the sampled-data control system
of the Saturn V/S-1C. The input variables are defined in the
following list:

1. TF = Flight time

2. YD - The open loop s-plane roots

3. CONSl - The partial fraction expansion coefficients of
sHOWSS(GT + K Gy F KlzGu)

4. CONS2 - The partial fraction expansion coefficients of

H W,  (Gp + K G, + ngGq) which is also obtained from
Figure 6.
All the preceding information i§ simply the output information of the
prograsm in Appendix A. The output information in this program is
well defined on its print-outs.

The method of cbtaining the frequency response is to take the
z-transform form of the open loop transfer function and then plug
in values of z that are on the unit circle. The general incrementation
of the z's is accomplished by picking fifty evenly spaced points on the
unit circle between z = 1 and z = -1. The program takes additional
points if poles of the open loop transfer function are within some

preassigned 8 of the unit circle. The reason for this is to keep the

printed out phase angles and magnitudes from changing abruptly.
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COMPLEX GSIR
COMPLEX XD(20,20), CONST*16(20,20), YD*16(20,20)
COMPLEX*16 A(20),GSAM, Z

COMPLEX GSUM, CEXP, CMPLX, ARGU, CABS, WROOT
COMPLEX*16 CONS1(20,20), CONS2(20,20)

DIMENSION WCRIT(20)

COMPLEX GCOMPS

FOR NO HOLD DEVICE H SHOULD EQUAL 0.0
FOR A ZERO ORDER HOLD TO BE INCLUDED H SHOULD EQUAL I.

H= 1.0

DECLARE ORDER OF SYSTEM(IF A HOLD DEVICE IS USED, IT MUST BE
INCLUDED) .

LP=14

DO 65 LTF=1,8

SET STARTING VALUE OF T.
T=0.30
SET OPEN LOOF GAIN

GAIN=-1.0

READ(1,1) TF

WRITE(3,5) TF

FORMAT (14X,F10.5) .

FORMAT('1',30X, FLIGHT TIME = ',F10.5)

DO 3 I=1,LP

READ(1,2) YD(I,2), CONSI(I,1)

READ(1,4) CONS2(I,1)

FORMAT (2D16.8,2D24.16)

FORMAT (2D24,16)

CONST(I,1)= CONS1(I,1) + CONS2(I,1)

XD(L,ly= 1.0

YD(I,1)= 1.0

CONST(I,2}3= 0.0

XD(IL,2)= ¥YD(I,2)

CONTINUE

DO 60 KO=1,15

T= T + 0.01

WRITE(3,7) T

FORMAT('0',30X,'SAMPLING PERIOD ='F6.4)

DO 30 I=1,LP

A(I)=CEXP(XD(L,2) * T)

WRITE(3,32)

FORMAT('0',30X,"OPEN LOOP POLE LOCATIONS')

WRITE(3,34) (A(I),I=1,19)

FORMAT(' ',6F13.5)

WRITE(3,10)

FORMAT('0',4X, 'FREQUENCY' ,4X, 'FREQUENCY' ,4X, 'MAGNITUDE',4X,
1 'MAGNITUDE',3X,'PHASE ANGLE',4X,'OMEGA-W'/7X,'IN HZ',6X,
2 "IN RAD/SEC',7X,'DB',8X,'UNITLESS',6X,'IN DEG',5X,'IN RAD/SEC'
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)
DETERMINE FREQUENCY INCREMENT.

DELW= 3,1416/(50.0%T)
OMEGA= 0.0
OMEGAL=0.0

1.X=0

CHECK TO SEE IF ANY OPEN LOOP POLES ARE IN A DELW DISTANCE OF
THE UNIT CIRCLE.

DO 22 I=1,LP

WROOT = CMPLX(0.0,AIMAG(XD(I,2)))

1F(CABS (CEXP (XD(I,2)*T)-CEXP (WROOT*T)) .GT.3.6/57.3 ) GO TO 22
IF(CABS(XD(I1,2)).EQ.0.0)GO TO 22

LX=LX+1

WCRIT (LX)= AIMAG(XD(I,2))

CONTINUE

DEFINE SUB-FREQUENCY INCREMENT.

WINK= DELW/10.0
DO 50 N=1,50

SET FREQUENCY.

OMEGA= OMEGA + DELW
MUL=0
KSTOP=0

DETERMINE IF THE CHOSEN POINT ON THE UNIT CIRCLE IS WITHIN A DELW
DISTANCE FROM A OPEN LOOP POLE. IF IT IS, SUB-INCREMENT THE
FREQUENCY IN A DELW INTERVAL.

IF(LX.EQ.0)GO TO 26

DO 24 I=1,LX

IF(ABS (WCRIT (I)-OMEGA) .GT .DELW)GO TO 24
MUL=10

OMEGA= WCRIT(I) - DELW/2.0
TF(OMEGA-OMEGAL. LT. 0. 0) OMEGA=OMEGAL
CONTINUE

IF(MUL.EQ.0)GO TO 26

OMEGA=OMEGA + WINK

CONTINUE

CALCULATE THE MAGNITUDE AND PHASE OF THE OPEN LOOP TRANSFER
FUNCTION AT THE CHOSEN FREQUENCY.

GSAM=0.0
ARGU= CMPLX(0.0,0MEGA * T)
Z= CEXP (ARGU)
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EVALUATE COMPENSATOR AT CHOSEN FREQUENCY.

GCOMPS= (L.1%Z*7Z+0,2%72-0.9) / (2.4%Z%2-1.6%Z)
DO 40 I=1,LP

GSAM= GSAM + GAIN * CONST(I,1) * (Z- H) /(Z-A(I))
GSIR= GSAM

GCANCL= 57.3 * ATAN2(AIMAG(GSIR) ,REAL(GSIR))
COMPCG= 20.0 * ALOGLO(CABS(GSIR))

GSUM= GSAM * GCOMPS

GMAG= CABS (GSUM)

B= AIMAG(GSUM)

C= REAL (GSUM)

ANGLE= 57.3 * ATAN2(B,C)

FRHZ= OMEGA/6.2832

GMAGDB= 20.0 #* ALOG10(GMAG)

IF(ABS ( (OMEGA*T/2.0)-1.5708) . LT.0.0005) OMEGA=OMEGA+DELW/2.0

OMEGAW= TAN(OMEGA * T / 2.0)

WRITE(3,45) FRHZ, OMEGA, GMAGDB,GMAG, ANGLE, OMEGAW, COMPCG,

1 GCANCL
FORMAT(' ',8F13.5)
OMEGAL= OMEGA

DETERMINE IF OMEGA # T IS GREATER THAN PI. IF IT IS, TERMINATE

FOR THE SAMPLING THAT IS BEING USED.

IF(OMEGA.GT.3.1416/T)GO TO 53
KSTOP= KSTOP + 1
IF(KSTOP.LE.MUL)GO TO 25
CONTINUE

CONTINUE .

WRITE (3,55)

FORMAT('1")

CONTINUE

CONTINUE

STOP

END
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APPENDIX F

REGULAR ROOT LOCI PROGRAM

The succeeding computer program is a variation of the computer
program in Appendix D. The input and output variables are the same.
The difference is that this program is used for finding root locations
so that a regular root locus can be made. Slight modifications have
been made in the main program and in the subroutine PRDZ. The modi-
fications in the main program are that the sampling is held constant
while the gain is varied; whereas, in the program in Appendix D the
gain is held constant and the sampling period is varied. The changes
in the subroutine PRDZ were so that another root would be predicted
when a change in gain occurs, rather than a change in sampling period

as in Appendix D.

DIMENSION CHEQ(20), ANUMR(20), DENOM(20)
COMPLEX XD(20), CONST#*16(20,20), YD*16(20,20), STARTP(20),
1 ROOT(20),ZNEW, ZOLD, CMPLX, CABS, CONJG
COMPLEX ZSTART(20)
CALL INTERD
DO 100 JO=1.8
READ(1,1) TF
WRITE(3,5) TF
FORMAT(14X,F10.5)
FORMAT ('1',35X,'FLIGHT TIME = ',F10.5)
DO 6 I=1,13
ROOT(I)= 0.0
6 STARTP(I)= 0.0
DO 3 I=1,14
READ(1,2) YD(I,2), CONST(I,1)
2 FORMAT (2D16.8,2D24.16)
XD(I,1)= 1.0
¥D(I,1)= 1.0
CONST(I,2)= 0.0
3 CONTINUE
DO 4 I=1,14
4 XD(I,2)= YD(I,2)
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IER= 0
DELT=-0.1
DO 100 LOX= 1,3
READ(1,10) T
WRITE(3,9) T
9 FORMAT('0',12X.'SAMPLING PERIOD =',F6.4)
READ(1,12) (ANUMR(I),I=1,14)
READ(1,12) (DENOM(I),l=1,14)
10 FORMAT(17X,F6.4)
12 FORMAT(5E16.8)

GAIN=-0.1
DO 100 J=1,1l
LP=13

GAIN=GAIN + 0.1
IF(TF.EQ.100.0)GAIN=GAIN-0. 2
13 CONTINUE
DO 15 I=1,14
15 CHEQ(I)= DENOM(I)+ GAIN * ANUMR(I)
DO 19 I=1,LP
CHECK= ABS (CHEQ(15-1)/CHEQ(14-1))
IF(CHECK-1.0E-04)17,17,21
17 CHEQ(15-1)=0.0
LP=LP - 1
ROOT(14~T)= 0.0
STARTP (14~I)= 0.0
19 CONTINUE
21 CONTINUE
1=1
16 CONTINUE
ZOLD= ROOT(I)
CALL PRDZ(ZOLD,ZNEW,14,T,IER,DELT,GAIN,CONST,XD,UL,UJ,UK)
IF(IER.NE.O)ZNEW= ROOT(I)
STARTP(I)= ZNEW
1F(AIMAG(ROOT(1)))20,18,20
18 I=1+1
IF(I-LP)16,16,25
20 STARP(I+1)= CONJG(ZNEW)
I=I+2
IF(I-LP)16,16,25
25 CONTINUE
CALL POLSER(CHEQ,ROOT,IER,IEND,LP,STARTP)
IF(IER.LT.98)GO TO 35
WRITE(3,28) I1ER
28 FORMAT('0',10X,'IER =',I5)
GO TO 100
35 IF(IEND.LT.98)GO TO 40
WRITE(3,38) IEND
38 FORMAT('0',10X,'IEND = ',15)
GO TO 100
40 CONTINUE
WRITE(3,45) GAIN
45 FORMAT('O',12X,'OPEN LOOP GAIN =',F6.4)
WRITE(3,50)



anon

50 FORMAT('O',2X,'PREDICTED ROOTS',21X,'ROOTS',14X, 'MAGNITUDES OF

1 ROOTS')
KS8=0
DO 65 I=1,13

ABSRT= CABS(ROOT(I))

WRITE(3,55) STARTP(I), ROOT(I), ABSRT
55 FORMAT ('0',2F10.5,10X,2F10.5,10%,F11.8)

LF(ABSRT.GE.1.0)KS=1

65 CONTINUE
IF(KS.LT.1)GO TO 80
WRITE(3,70)

70 FORMAT ('0',30X,'#%% SYSTEM UNSTABLE #*%%')
GO TO 95

80 WRITE(3,90)
90 FORMAT('O',31X,'#%%* SYSTEM STABLE *w¥*')
95 CONTINUE
100 CONTINUE
110 CONTINUE
STOP
END

SUBROUTINE PRDZ(ROOT,ZPRED,N,T,IER,DT,K,CONST,XD,UI,UJ,UK)
PREDICT Z

COMPLEX CABS,CEXP,CONST*16(20,20) ,XD(20,20),SON

COMPLEX*16 ROOT*8, ZPRED*8, ZX, CDABS, ZY, ZT, CMPLX*8,SUM
DOUBLE PRECISION PRNX,PRNY,PRNT,PINX,PINY,PINT,PDNX,PDNY,PDNT,
1  DN,RN,AIN,PRIX,PRIY,PRIT,PIIX,PIIY,PIIT,PGX,PGY,PGT,PIGX,
2  PIGY,PIGT

REAL K

IER=0

PGX=0.0

PGY=0.0

PGT=0.0

PIGX=0.0

PIGY=0.0

PIGT=0.0

X=REAL (ROOT)

Y=AIMAG (ROOT)

DO 3 I=1,N

SON= CONST(I,1)

D= REAL(SON)

E= AIMAG(SON)

R=D

S=E

E= E* K

D=D * K

OMEGA= -AIMAG(XD(I,2))

A= - REAL(XD(I,2))

ACOS=CO0S (+OMEGA * T)

ASIN=SIN(+OMEGA * T)

AEXP=EXP(-A #* T)
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4 PRNX= 2.0 # X -~ AEXP * ACOS - 1.0

10

1

PRNY= 2.0 #* Y + AEXP #% ASIN
PINX=-AEXP * ASIN

PINY=-AEXP * ACOS + 1.0

PDNX= 2.0 *# X - 2.0 * AEXP * ACOS
PDNY= 2.0 *# Y + 2.0 * AEXP * ASIN

DN=X#*X + Y*Y - 2,0 % AEXP * (X * ACOS- Y * ASIN) + AEXP * AEXP

IF(DN)7,6,7
Y= Y + 1.0E-06
GO TO 4

RN= X#(X - 1.0) -+ Y*Y - AEXP * ((X - 1.0) * ACOS - Y * ASIN)

AIN= Y - AEXP * ((X - 1.0) * ASIN + Y * ACOS)
PRIX= (DN #* PRNX - RN % PDNX)/(DN * DN)

PRIY= (DN * PRNY - RN * PDNY)/(DN * DN)

PRIT= RN/DN

PIIX=( DN * PINX - AIN * PDNX)/(DN * DN)
PITY=( DN * PINY - AIN * PDNX)/(DN * DN)
PIIT= AIN/DN

PGX= PGX + PRIX *# D - E * PIIX
PGY= PGY + PRIY *# D - E * PIIY
PGI= PGT + PRIT * R - S * PIIT
PIGX= PIGX + PIIX * D + E # PRIX
PIGY= PIGY + PIIY * D + E * PRIY
PIGT= PIGT + PIIT * R+ S * PRIT

ROOTR= REAL (ROOT)

ROOTI= AIMAG(ROOT)
UI= PGY % PIGT -~ PIGY % PGT
UJ= PIGX * PGT - PGX * PIGT
UK= PGX * PIGY -~ PIGX * PGY
IF(UK.EQ.0.0)IER=1
IF(IER.GT.0)GO TO 10
CONTINUE

= (UL/UK) * DT + ROOTR

= (UJ/UK) * DT + ROOTI
ZPRED= CMPLX(X,Y)

CONTINUE

RETURN
END

SUBROUTINE POLSER(CONST,ROOT,IER,IEND,M,STARTP)
DIMENSION CONST(1l), COF(20), YCONS(20)
DIMENSION RCOF(20)

DOUBLE PRECISION COF, YCONS, ALPHA,SUMQ, RCOF

DOUBLE PRECISION FR,FI,PFRX,PFIX,PFRY,PFIY,FRO,FIO,PERXO,
PFRYO,PFIXO,PFIYO,FR1,FI1,PFRX1,PFRY1,PFIY1,PFIX1,PFX,PFY

COMPLEX*16 SO, FUN, DERV, CDABS

COMPLEX S1,CMPLX, ROOT(20),CABS, STARTP(20), CONJG, SINT(20)

N=M+1
DO 10 I=1,N

10 COF(I)= CONST(I)

J=1

5 IEND= O

DO 6 I=1,N
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6 YCONS(I)= COF(I)
X1= REAL(STARTP(J))
Y1= AIMAG(STARTP(J)) + 1.0E-04
ISKIP= 0

15 IEND= IEND + 1
X= X1
Y= Y1
DO 18 I=1,N
KJ= N+ 1 - 1

18 RCOF(I)= COF(KJ)

FR= RCOF (1)
FI= 0.0
PFRX= 0.0
PFIX= 0.0
PFRY= 0.0
PFIY= 0.0
FRO= X
FI0= Y
PFRX0= 1.0
PFIX0= 0.0
PFRYO= 0.0
PFIYO= 1.0
DO 25 I=2,N

PFRX= PFRX + RCOF(I) * PFRXO
PFIX= PFIX + RCOF(I) * PFIXO
PFRY= PFRY + RCOF(I) * PFRYO
PFIY= PFIY + RCOF(I) * PFIYO
FR= FR + RCOF(I) * FRO
FI= FI + RCOF(I) * FIO
FR1= X # FRO -~ Y * FIO
FIl= Y * FRO + X * FIO
PFRX1= FRO + X * PFRXO - Y #* PFIXO
PFIX1l = Y ®# PERXO + FIO + X * PFIXO
PFRY1= X * PFRYO - FIO - Y * PFIYO
PFI¥1l= FRO + Y *# PFRYO + X * PFIYO
PFRX0= PFRX1
PFIX0= PFIX1
PFRYO= PFRY1
PFIYO= PFIY1
FRO= FR1
FI0= FI1

25 CONTINUE
PFX= 2.0 * ( FR # PFRX + FI * PFIX )
PFY= 2,0 * ( FR * PFRY + FI * PFIY )
ZAP=DSQRT( FR * FR + FI * FI)
IER=0
IF(ISKIP.EQ.0)ZAP= ZAP + 100000.0
IF(ISKIP.EQ.0)GO TO 35
IF(zIP + ZIP/ZOP.GE.1.0)DELX= 0.30
IF(ZIP + ZIP/ZOP.LT.1.00) DELX= 0.20
IF(ZIP + ZIP/ZOP.LT.0.15) DELX= 0.10
IF(zIP + ZIP/ZOP.LT.0.05) DELX= 0.05
GO TO 27
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DELX= DELX/2.0

DELX= ABS (DELX)

IF(PFX.GT.0.0)DELX= -DELX

DX= DELX

Xl= X + DX

IF(PFX.NE.0.0)GO TO 30

Yl=Y - PFY * DX / DABS(PFY)

Xl= X1 -DX

GO TO 35

Y1= (PFY/PFX) * DX + Y

IF(ABS(Y1-Y) + ABS( DX ).LT.SQRT(2.0*DELX*DELX))GO TO 35

DX=DX/2.0

GO TO 28

CONTINUE

ISKIP= 1

SO= CMPLX(X1,Y1)

IF(IER.GT.98)GO TO 50

IER= IER + 1

MONK=0

JX=N-1

NEND= 0

FUN= YCONS (1)

DERV= 0.0

NXX=JX+1

DO 40 I=1,JX

P= NXX - 1

DERV= DERV * SO + YCONS(I) * P

FUN= FUN * SO + YCONS(I+1)

ZIP= CDABS (FUN)

Z0P= CDABS(DERV)

NEND= NEND + 1

IF(NEND. GT.50) IEND=200

IF(MONK.GT.0)GO TO 42

IF(ZIP.GT.ZAP)GO TO 26

IF(CDABS (FUN/DERV) .GT.0.025)GO TO 15

IF(IEND.GT.98)GO TO 50

IF(CDABS (FUN/DERV)+ZIP.LT.1.0E~04)GO TO 43

SO= SO - FUN/DERV

GO TO 37

IF(MONK.NE.0)GO TO 45

MONK= MONK+1

IF(MOND.GT. 5) IEND=100

MX=M+1

DO 44 I=1,MX

YCONS (I)= CONST(I)

JX= M

GO TO 37

ROOT(J)= SO

Sl= SO

IF(ABS (AIMAG(ROOT(J)) /REAL(ROOT(J))) .LT.1.0E-04)ROOT (J)=CMPLX(
REAL (S1),0.0) :

IF(AIMAG(ROOT(J)).EQ.0.0)GO TO 60
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ROOT (J+1)= CONJG(ROOT(J))

J=J+2

ALPHA= 2 * REAL(S1)

SUMSQ= REAL(S1) * REAL(S1) + AIMAG(S1) * AIMAG(S1)
N=N-2

GO TO 140

J=J + 1

SUMSQ= 0.0

ALPHA= REAL(S1)

N=N-1

COF(2) + ALPHA * COF(1)

NX= N-1

DO 150 L=2,NX

COF(L+1)= COF(L+1) + ALPHA * COF(L) - SUMSQ * COF(L-1)
IF(N-1)50,50,5

CONTINUE

RETURN

END
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