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ABSTRACT 

This paper studies four mathematical programming methods 

which a r e  useful in pat tern classification. Two of the models a r e  for  

l inearly separable  problems,  while the others work without separabili ty,  



INTK ODUGTION 

This  r epo r t  is  designed t o  supplement "On Pa t t e rn  Classi f icat ion-  
:k 

Introduction and Survey, " [7], by descr ibing s e v e r a l  mathemat ica l  p ro -  

gramming approaches to  the classification problem. We'l l  a s s u m e  that  

the  r e a d e r  i s  famil iar  with the Ho and Agrawala paper  (a t  l eas t  sect ions  

I, 11, and IV) and d r a w  on the motivation, notation, and definitions used  

there .  

F o u r  mathematical  p rogramming models  a r e  descr ibed in detai l ,  

and two m o r e  a r e  mentioned briefly. Others  exis t ,  and a r e  r e f e renced  

in the publications cited here.  The four models were  selected for  t he i r  

computational and conceptual proper t ies .  

Before descr ibing the contents of the  paper ,  we ' l l  expand upon and 

change some  of the notation adopted in [7]. 

Definitions: 

(i). Instead of xl(i)T and xo( j )T ,  the  training samples  f r o m  

c l a s se s  one and z e r o  will  be denoted by m component 

1 
row vectors  A .  and A 

0 
1 j ' 

(ii). F o r  k = 0 , l ; ~ ~ i s  t h e n  x m m a t r i x w h o s e  rows a r e A  
k 

k i ' 

(iii). h,  1, e ,  q,  and f a r e  vec tors  of ones. T h e r e  dimensions 

a r e  given below. 

f -- n x 1, where n = n Sn 
1 0' 

:# 
Y. C. Ho and A. K. Agrawala,  Technical  Report  No. 557, Division of 
Engineering and Applied Phys ics ,  Harvard  University March (1968), a l so  
published in IEEE Trans .  on Auto. Cont. Vol. 13, No. 6, December  1968 
and Proceedings of the IEEE,  Vol. 56, No. 12, Deczinber 1968. 



(iv). A l inear  decision function is an  (mtl) x 1 vector w = 

Using these  definitions we note that 

Suppose the pat terns  a r e  described by a n  m component row vector x ,  

then the decision function defined by w i s  

f (x) = h + x u  = (1,x)w. 

(v). A l inear  decision function w is a if 

Problems a r e  specified by their  range of attributes. 

The ranges a r e  defined below. 

1 
(vi). S' = [ X I  P ( X I  H ) > O) 

0 I 

S O = { X I  ~ ( x ,  H ) > 0) 

(vii). The operator  C will denote convex closure.  Thus c(s') 
1 

i s  the closed convex hull of S . 
(viii). The problem is 

0 1 
i f  C(S ) and C(S ) a r e  disjoint. 

If they intersect  the problem i s  

0 1 (ix). The problem i s  decidable i f  S and S a r e  disjoint. 

k 
(x). We shal l  define C(A ) a s  the convex hull of the rows of 

k A ,  k = O , l .  

Thus 

0 
c ( A O )  = Z A  , Z A  = I ,  . n  0) 



Five sections and an appendix follow. Sections one and two 

descr ibe models used in the separable  and nonseparable cases .  The 

third section r e m a r k s  on the model 's  flexibility in t e r m s  of accommodat- 

ing new data and use  in judging new features.  Section four considers the 

model 's  generalization propert ies ,  while the l a s t  section descr ibes  an 

application, The  appendix is a brief introduction to l inear and quadratic 

programming. 

Of the four models ,  two have been descr ibed in  the published 

l i terature ,  One of the unpublished models is  due to  Canon and Cullum [ 3 ] ,  

the other is the au thor ' s  responsibility [ 6 ] .  



I. THE SEPARABLE CASE 

Charnes [4] and Mangasarian [9 ]  independe,ntly proposed a l inear 

programming model for  separat ing disjoint polyhedrons. Their  distinct 

approaches i l lustrate  the duality principle of l inear p r o g r a m i n g .  Charnes 

0 1 asks  i f  the se t s  C(A ) and C(A ) a r e  disjoint, while Mangasarian looks 

direct ly  for a separating hyperplane. 

k By definition, the C(A ) will intersect  if  and only i f  the sys t em (1) 

has  a feasible solution. 

We can discover a solution of (1) by adding ar t i f ical  var iables  to  the sys t em 

and minimizing the infeasibility. This gives us a l inear  program. 

Minimize ( r  + s ) e  ( 2 )  

Subj. to  

This  problem has m + 2 equality constraints with n + 2m nonnegative 

variables.  The value, ( r  -I- s ) e ,  i s  nonnegative s ince r and s a r e  non- 

negative. Finally,  we can easi ly  construct a f i r s t  basic  feasible  solution 

of (2). 

The al ternate  approach involves the decision function directly.  

Suppose the m vector u and s c a l a r s  (y ,  6) satisfy the following conditions: 



then w = + ti , u) is  a separa tor .  A solution of ( 3 )  can be discovered (T 

by solving (4). 

Maximize 6 - y 

Subj. t o  

1 
- A u - h y s  0 

0 
+A u t R 6 s O  

Prob lem (4) has n inequality constraints ,  two f r e e  var iables  (y, 6), and 

m variables  with upper and lower bounds. The bounds-rule out infinite 

solutions. Evidently, (y , 6 ,  u) = (0 ,0 ,  0) i s  a feasible solution of (4).  

Appealing to  the resu l t s  in the appendix we can s ta te  that problem 

(4)  i s  the dual of problem ( 2 ) ,  and the duality theorem applies. This 
- 

guarantees the existence of optimal solutions ( z ,  t, E., s )  and (7, 6, c) such 

that: 
- ... - 

( r  f s ) e  = 6 - 7 2  0, 

V J - 6  The re  a r e  two possibilities. If 6 - y > 0, then (------ 2 , 6) is  a 

separa tor .  If e (<  + s) = 0, then (g, y) solves (1) , and the convex hulls 

intersect .  These  facts a r e  summarized  below. 

Theorem: ( 5 )  

(i). Problems (2) and (4) have optimal solutions with equal, 

nonnegative values. 



(ii). If the optimal value is zero ,  the patterns a r e  not 

l inearly separable.  - - 
(iii). If the optimal value is  positive, thkn E = ( 

defines a s eparator  which maximizes 

Subj. t o  

1 1 for  j = 1 , 2  ,..,, m 
J 

Statements ( i ) ,  ( i i ) ,  and the f i r s t  pa r t  of (iii) a r e  established above. The 

final s ta tement  can be established by contradiction. 

The l inear  programs will be solved using some variant of Dantzig's,  

[2], simplex method. This is  a rapidly convergent combinatorial procedure,  

while the adaption algorithms, see  [7]  Table I, a r e  gradient descent  tech- 

niques which converge slowly. If the pat terns  a r e  not separable ,  slow and 

nonconvergence can be confused. See [ 9 ] ,  pg. 451, for a more  detailed 

comment along this line. The adaption algorithms do have the advantage 

of simplicity,  but this is largely offset by the wide availability of p ro fes -  

sionally writ ten l inear programming codes. Ei ther  (2) or  (4) can be solved, 

but the simplex algorithm is m o r e  efficient with fewer nontrivial constraints.  

It is  not very sensit ive to  the number of variables.  Since m -I- 2 << n it is  

reasonable to  solve (2).  

Canon and Cullum [3 ]  have proposed a quadratic programming method 

for the separable  case.  Although it i s  generally m o r e  difficult to  solve 

quadratic p rograms ,  the authors take advantage of the problem's  spec ia l  

s t ruc ture  and c la im their  method is  competitive with the l inear programming 

model. 



F o r  each i and j, i = 1,2, . . n j = 1,2,  . . , ng; we can  define 

a difference vector 

1 D~ = A ~  - A P  for  k = 1,2,  ... ,nln0. 
J 

The  vectors  D a r e  the rows of the n n m matr ix  D. Recal l  
k 1 0  

0 
C(D) = [ u l u  = yD, yg = 1, y z  03. It i s  easy  to  establish that C(A ) and 

1 
C(A ) will be separable  i f  and only i f  the origin i s  not contained in C(D). 

This suggests a t e s t  for  separabili ty:  find the vector in C(D) with 

minimum norm. The  problem can be written in two ways: 

UIU Minimize - 
2 

Subj. t o  

I 

Minimize 
2 

Subj. t o  

The  following facts about (6)  and (7) should be clear :  they a r e  equivalent, 

the objectives a r e  convex and quadratic,  they have optimal solutions with 

nonnegative values,  and the sets  a r e  separable  i f  and only if  the optimal 

value is positive. 

It is well  known that any point in  C(D) can be expressed a s  a convex 

combination of a t  most  m + 1 rows of D. This fact is  used to reduce the 

problem's  size.  The algorithm solves a modified version of (6), res t r ic t ing  



attention to a subset  of m -k 1 rows.  A t e s t  s ees  if the res t r ic ted  

solution is optimal with a11 rows considered. If so,  (6 )  is  solved. If 

not, a new row is added, an old row dropped, and the algorithm proceeds,  

finding an  optimal solution in a finite number of steps.  The optimal solu- 

tion of (6) defines the l inear decision surface.  

Suppose (F, ii) solves (6) ,  ; f 0, and 

1-1 
y = Min [ A ~ U  1 i = 1.2, . . ,n l ]  

0- 
8 = Max ( A . U  1 j = 1 ,  . . , n o ]  

J 

Y + 6  then (- 
2 

, G) is a separator .  If ; = 0, no separa tor  exis ts ,  This i s  

demonstrated in the appendix using the Kuhn-Tucker theorem. Canon 

and Cullum do the s a m e  by showing problem (6) i s  equivalent to: 

Max cu in (uzl UEC(D)]]  

Subj. to  

11. NONSEPARABLE 

One approach to  the nonseparable case  was taken in [6]. A descr ip-  

tion will requi re  two definitions. 

n 

(xi). Le t  a = 22 be the average of the rows of A .  

i=l 

(xii). F o r  any decision function w, let  the of w be defined 

Min [ A ~ w J  i = l , 2 ,  . . . , n] 



If w i s  a sepa ra to r ,  the quality is positive, If w i s  not a sepa ra to r ,  

the negative of the quality (a  nonnegative number) measures  the la rges t  

e r r o r  the decision sur face  makes. To obtain a decision surface of highest 

quality we solve 

Maximize { ~ i n [ ~ ~ w l  i = 1,2,  . . . . , n]] 

Subj. to  aw = 1 

The constraint i s  a normalization. 

This problem can  be t ransformed into a l inea r  program by in t ro-  

ducing a new variable P and requiring P d A. w for  i = 1,2,  . . . , n. The 
1 

new problem and i t s  dual  a r e  given below. 

Maximize p 

Subj. t o  

AW - f p  2 0 

aw = 1 

Minimize y 

Subj. to  

yA - ya = 0 

Y f = 1 

y s  0 

Problem (10) has m + 2 equality constraints ,  n nonegative variables ,  

and one f r e e  variable. 

The main resu l t  of [6] is: 

Theorem (11) 

(i). Problems (9) and (10) have optimal solutions with equal 

objective values i f f  and a f: 0. When a = 0, (9)  is  infeasible. 



(ii). If (w: p) solves (9)  and p > 0, then w defines a separa tor  

of maximum quality. 
- 

( i i i ) .  If ( w ,  p)  solves ( 9 )  and p S 0 ,  then the patterns a r e  not 

separable  and w defines a decision surface that minimizes 

the maximum e r r o r .  

This  i s  equivalent to (5) in  the separable  case.  In addition, a meaningful 

decision surface is  generated if the patterns a r e  not separable.  

Smith, [13], has  another approach. Note that Aw > 0 has a solution 

i f f  Aw 2 f has  a solution. In this sp i r i t ,  we can solve 

Minimize f lv  

Subj. t o  

The  v. ' s  m e a s u r e  the s i ze  of any e r r o r  in  the classification of the ith 
1 

sample.  Thus i f  A .w  1, t he re  is no e r r o r  and v. = 0. If Aiw< 1, v. is  
1 1 1 

positive. There  is  some difficulty i f  0 < A . w  < 1. I n  this c a s e  the pattern 
1 

i s  cor rec t ly  classified,  but a n  e r r o r  is counted. This behavior i s  observed 

in optimal solutions. 

The dual, (12), is a l inear  program with m + 1 equality constraints  

and n nonnegative variables with upper bounds. It is  relatively easy  to 

solve,  [5]. 

(12) Maximize yf 

Subj. to 

yA = 0 

O S y 5  f t  



This model suggests s e v e r a l  conceptually interesting but computa- 

tionally difficult variations. F o r  instance, we could minimize the sum of 

squared e r r o r s ,  This leads to  a quadratic program: 

I 

Minimize v Iv 

Subj. t o  

Aw 4-IvZ f 

v z  0 

Another var iant  maximizes the number of correct ly  classified samples:  

n 

Maximize ): d(Aiw) 

i =l 

Subj. to - 1 s  w . s  1 i = 0,1 ,2 ,  ..., m 
1 

6(- ) i s  the s tep  function; one i f  i ts  argument is  positive, z e r o  otherwise. 

This problem can  be reformulated a s  an integer  program, [12] pp. 

194-8. 

Another method of treating the nonseparable c a s e  was proposed by 

Mangasarian, [lo]. The approach i s  s imi lar  to Arkadev and Braveman [l], 

i. e. a piecewise l inear decision sur face  is  created which decides correct ly  

about a l l  the data. Mangasarian uses  mathematical programming to  con- 

s t ruc t  the decision surface.  We will not examine that a lgori thm in detail ,  

but we do comment on its generalization propert ies  in section 4. 

111. FLEXIBILITY 

This  section examines the ability of the different models ,  (2 ) ,  (6), 

and (12) to handle new data and yield information useful in selecting new 



features.  Models ( 2 ) ,  ( lo) ,  and (12) can accept new data points and find 

a new decision surface easily. In each case,  adding a new point i s  

equivalent to introducing a new activity (column) into the linear program. 

Model (6)  has a s imi lar  property. F o r  example, suppose a new 

point in c lass  one, 
1 

Anl+l 
i s  observed. This adds n new rows to the 

0 

mat r ix  D. If 

1 I 1 ,  
AnIt1 u S Min [A n, u'l i = 1, 2 ,  . . . . ,n l ]  

no change is needed, the old decision surface i s  s t i l l  optimal. If the 

inequality does not hold, we continue to  apply the Canon-Cullum algorithm 

until a new optimal solution is  obtained. 

Introducing a new feature in ( 2 ) ,  ( lo) ,  o r  (IZ), ' adds a new constraint 

(row) to the l inear program. If s eve ra l  new features  a r e  being considered, 

we can devise a heuris t ic  rule for chosing among them. T r y  the cu r ren t  

optimal solution for each new constraint. Select the constraint which is 

the fur therest  f r o m  being satisfied. If the optimal solution sa t i s f ies  a l l  

the new constraints ,  it is s t i l l  optimal. This selects  the feature which 

maximizes the r a t e s  of improvement of the solution. Then a new optimal 

solution can  be obtained using the dual simplex method. 

There  doesn ' t  s e e m  to be any way that new feature can be accommodated 
by model (6) .  



IV. GENERALIZATION 

I The generalization propert ies  of the models a r e  examined in this  

section. In par t icular ,  we a r e  interested in the decision surfaces gener-  

ated a s  the number of sample points n becomes large. F o r  each n the 

models produce a decision surface defined by a nonzero m C 1 vector. 

Without loss of generality we can uniformly bound these vectors.  Thus ,  

there  will  be subsequences which converge. W e  sha l l  study the proper t ies  

of the limiting decision surface.  

1 0 
F o r  example, assume C(S ) and C(S ) a r e  disjoint with one s e t  

n 
compact, and consider model (2).  Let  (hn, u ) be the normalized optimal 

decision surface for  the n sample problem and let  ( h ,  u) be a limiting 

n 
surface: i. e. (A", u )-+(A, u) on some subsequence. The following theorem 

a s s e r t s  ( A ,  u) i s  optimal for the limiting problem. 

Theorem: 

With probability one (wp- 1) there  exists a p > 0 such that (1, u, P) 

solve: 

Maximize p  

Subj. t o  

A t x u - p 2 0  

Proof: 

1 0 
There  exists a hyperplane which s t r ic t ly  separa tes  C(S ) and C(S ). 

Therefore the problem has an optimal solution with positive value. 



Suppose (A, u) and some p > 0 a r e  not optimal. A contradiction 

can  be established by appealing to the the facts that ( h ,  u) i s  ( 2 )  feasible 

fo r  a l l  n, and that ( h ,  u) i s  the l imit  of a subsequence of optimal solutions. 

Three  comments a r e  in order .  F i r s t  it is  obvious that s imi l a r  

resul ts  hold for  models (6 ) ,  ( lo) ,  and (12). Secondly, if  compactness 

i s  dropped a weaker,  p 2 0 ,  statement i s  true.  Finally,  i f  separabili ty 

doesn't  hold, then (wp, 1) a l l  models will indicate this for some la rge  

value of n. 

Assuming decidability we could obtain a like resu l t  using the 

piecewise approach, [lo]. Additional regularity assumptions a r e  needed 

to allow a piecewise l inear  function defined by a finite number of hyper- 

planes. Without decidability, the piecewis e approach would struggle in 

vain to produce a perfect decision function. 

Model (10) will work in the separable  case ,  but i t  has  questionable 

generalization properties.  It is  very sensit ive to  the ta i ls  of the distribu- 

tions. The decision surface minimizes the maximum e r r o r ,  therefore  it 

will reac t  to  the worst  points o r  prehaps to a faulty observation. Things 

can get worse.  

k Let  ak be the finite means of the distributions,  ~ ( x l  H ) for  k = 0,1. 

Then the row average of A will converge (wp* 1) to 

1 0 The following is  an example of what can go wrong. Suppose P(H ) > P(H ) ,  

and the se t s  described below have a nonvoid intersection: 



L = {dl d = ya, y 2 13 

b 0 Z = (dl d = -b E C(S ) ]  

L 
then the limiting optimal solution is given by w = ( , 0) i. e. 

P(H') - P(H ) 
the decision function is 

f(x) = 
1 

> 0 fo r  a l l  x 

The fact  that f is c o r r e c t  m o r e  than not offers little consolation. Note 

O l m  that this  phenomenon will occur if S = S = R 
0 , and P(H ) f ~ ( 5 3 ~ ) :  e. g. I 

multivariate normal. 

The  generalization propert ies  of (12) s e e m  to be the best. It i s  a 

reasonable conjecture that the limiting decision surfaces of (12) a r e  

optimal solutions to  the following: 

Minimize F (w) 

Subj. to  

1 w. 1 i = 0,1,2,  ... , m  
1 

where 

is the expected e r r o r  distance. It is  a lso reasonable to a s sume  that  the 

limiting decision surfaces of the integer program mentioned in section 

two will minimize the probability of e r r o r  among a l l  l inear  decision func- 
- - -- 

tions. A brief attempt was made to  prove these conjectures,  but t h e  proof 

i s  elusive. 



V. EXAMPLE 

Models (10) and (12) were  employed to design decision functions 

using data f r o m  a NASA biomedical experiment, Two types of e lectro-  

encephalograms (brainwaves, EEG) were  recorded. In one instance the 

subject was watching a s t robe light, In the other case  the light was not 

visible. The object i s  to distinguish the two cases  using the EEG data. 

Of a possible one hundred features  K, Prahbu selected five, using 

a distance-dispersion technique and prepared the data for the l inear  pro-  

gramming models. The pa ramete r s  were  n = 165, n = 155, m = 5, n = 320, 
0 1 

and the problems were  solved on an  IBM 360-65 using the mathematical 

programming package, MPS 360, [ll], Results a r e  tabulated below. 

Model ( lo)  Solution Time 0. 09 min. 

Model (12) Solution Time 0, 92 min. 



Notice the performance of model  (12 )  i s  slightly bet ter  although 

the solution t ime  is longer. Both problems had unique optimal solu- 

tions and 3 1  of the points were  incor rec t ly  classified by both techniques. 



APPENDIX 

Linear  and Quadratic P r o g r a m i n g  

Several  resu l t s  f r o m  mathematical programming have been used 

in this report .  This appendix attempts to  motivate and explain these 

resu l t s  while citing m o r e  substantial references.  

A is  an optimization problem 

m 

Min 2 x.c 
I j 

j =1 

Subj. to 

x.a. .  = b i = 1 , 2 ,  . . , n  
J 11 i 

j =1 

Our vector notation i s  

Min xc 

Subj. to 

c is m x 1, A m x n, and b 1 x n. W e  shal l  ca l l  this  problem the 

There  is an  associated' dual problem: 

Max by 

Subj. to  

A y s  c 



Linear  programs appear in many forms:  maximization o r  minimization, 

equalities or  inequalities, nonnegative o r  unrestr ic ted variables.  A n y  

problem can be t ransformed into the same  f o r m  a s  our pr imal ,  which 

allows us to  know i ts  dual. The dual can be found direct ly  using the 

diagrams on pp. 126-7 of [ Z ] .  

A n  efficient algorithm known a s  the simplex method, has  been 

devised to solve l inear  programs,  In a finite number of s teps it finds 

a feasible solution (if one ex is t s ) ,  then again in  a finite number of s teps 

it determines an  optimal o r  an unbounded solution, A n  optimal dual solu- 

tion i s  supplied a s  a by product of the calculations. 

The principle theoretical resul t  in l inear  programming re la tes  

pr imal  and dual. 

Theorem: [2] pg. 129 

If both pr imal  and dual have feasible solutions, they have optimal 

solutions (x, y) such that 

We sha l l  discuss quadratic programming in the context of problem (6) .  

uIu ' 
Min - 

2 

Subj. to  

yD - uI = 0 

Y& = 1 

Y 0 

A cent ra l  resu l t  in  the study of these problems i s  the Kuhn-Tucker theorem, 

[8], I n  our case  it s ta tes:  



Theorem: 

(y ,  u) is  optimal fo r  (6) if  and only if there  exis t  (x, z, )I) such that 
I 

I 

gk t D x t z  = O  

Suppose u # 0 is  optimal in (6) ,  then ulul  > 0. Juggling the above 

equations we can easily establish that 

and 
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