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MATHEMATICAL PROGRAMMING METHODS

OF PATTERN CLASSIFICATION

By

Richard C. Grinold

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

ABSTRACT

This paper studies four mathematical programming methods
which are useful in pattern classification. Two of the models are for

linearly separable problems, while the others work without separability.




INTRODUCTION

This report is designed to supplement '""On Pattern Classification-
Introduction and Survey, ”*[7], by descriﬁing several mathematical pro-
gramming approaches to the classification problem., We'll assume that
the reader is familiar with the Ho and Agrawala paper (at least sections
I, II, and IV) and draw on the motivation, notation, and definitions used
there,

Four mathematical programming models are described in detail,
and two more are mentioned briefly. Others exist, and are referenced
in the publications cited here. The four models were selected for their
computational and conceptual properties,

Before describing the contents of the paper, we'll expand upon and
change some of the notation adopted in [7].

Definitions:
(i). Instead of xl(i)T and xo(j)T, the training samples from
classes one and zero will be denoted by m component
row vectors A; and AJQ.

(ii). For k =0,1; Ak is the n, X m matrix whose rows are Ai.{,

k
i=1,2, cooe sty

(iii). h, %, e,q, and f are vectors of ones, There dimensions

are given below,

h~ nlxl; Z~n0xl; e~myl; q~nl°n0xland

f~nx 1, where n = nl+n09

“Y. C. Ho and A. K. Agrawala, Technical Report No, 557, Division of

Engineering and Applied Physics, Harvard University March (1968), also
published in IEEE Trans, on Auto. Cont. Vol. 13, No, 6, December 1968
and Proceedings of the IEEE, Vol, 56, No. 12, December 1968,
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(iv). A linear decision function is an (m+l) x 1 vector w = (3;
L

[ A
o

Using these definitions we note that

™~
' h Al

A=
L.z -A®

Suppose the patterns are described by an m component row vector Xx,

then the decision function defined by w is
f(x) =N+xu=(l,x)w.
(v). A linear decision function w is a seEai‘ator if
Aw> 0

Problems are specified by their range of attributes.
The ranges are defined below. |
(vi). S'={x|P(x| H)> 0]
s%= (x| P(x| %> 0}
(vii). The operator C Will denote convex closure, Thus C(Sl)
is the closed convex hull of Sl,
(viii). The problem is separable if C(S°) and C(S') are disjoint.

If they intersect the problem is nonseparable.

(ix). The problem is decidable if S0 and Sl are disjoint,

(x). We shall define C(Ak) as the convex hull of the rows of

Ak k=o,L

Thus

c(a® = (b|b =24% 22 =1, 220}

cialy = (b|b =yal, yn =1, y= 0}




Five sections and an appendix follow, Sections one and two
describe models used in the separable and nonseparable cases, The
third section remarks on the model's flexibility in terms of accommodat-
ing new data and use in judging new features, Section four considers the
fnodel's generalization properties, while the last section describes an
application, The appendix is a brief introduction to linear and quadratic
programming,

Of the four models, two have been described in the published
literature, One of the unpublished models is due to Canon and Cullum [3],

the other is the author's responsibility [6].




I. THE SEPARABLE CASE

Charnes [4] and Mangasarian [9] independently proposed a linear
i)rogramming model for separating disjoint polyhedrons., Their distinct
approaches illustrate the duality principle of linear programming. Charnes
asks if the sets C(AO) and C(Al) are disjoint, while Mangasarian looks
'directly for a separating hyperplane,

By definition, the C(Ak) will intersect if and only if the system (1)

has a feasible solution,
1 0 > >
zA" - yA =0, yvh=1, 24 =1, vyZ20, 220 (1)

We can discover a solution of (1) by adding artifical variables to the system

and minimizing the infeasibility. This gives us a linear program,

- Minimize (r + s)e (2)
Subj, to
zA0 -yA1+rI- sI =0
zl =1
vh =1
220, y£20, rE0, 8290

This problem has m + 2 equality constraints with n + 2m nonnegative
variables, The value, (r + s)e, is nonnegative since r and s are non-
negative, Finélly, we can easily construct a first basic feasible sclution
of (2).

The alternate approach involves the decision function directly,

Suppose the m vector u and scalars (v, 6) satisfy the following conditions:




-y >0 (3)
-Alu -hy=0
AOu + 450
then w = (Y ; 0 , u) is a separator. A solution of (3) can be discovered
by solving (4).
Maximize & - \{k (4)
Subj. to
—Alu ~-hy=0
0

+A u + 486 =0

e Eus e

Problem (4) has n inequality constraints, two free variables (y, 8), and
m variables with upper and lower bounds, The bounds-rule out infinite
solutions, Evidently, (y, &,u) =(0,0,0) is a feasible solution of (4).
Appealing to the results in the appendix we can state that problem
(4) is the dual of problem (2), and the duality theorem applies, This
guarantees the existence of optimal solutions (z,vy,r, s) and (Y, g,ﬁ) such

that:

7+
>

There are two possibilities, If 6 - y > 0, then ( , u) is a
separator, If e(r +s) =0, then (z,y) solves (1), and the convex hulls

intersect, These facts are summarized below,

Theorem: (5)
(i). Problems (2) and (4) have optimal solutions with equal,

nonnegative values,




(ii). If the optimal value is zero, the patterns are not

linearly separable,

- v +o
(iii).  If the optimal value is positive, then W = (l%m, q)

defines a separator which maximizes
Min[Aiwl i=1,2,...,n]

Subj. to.

~l1=w.=1, for j=1,2,...,m

Statements (i), (ii), and the first part of (iii) are established above., The
final statement caﬂ be established by contradiction,

The linear programs will be solved using some variant of Dantzig's,
[2], simplex method, This is a rapidly convergent combinatorial procedure,
while the adaption algorithms, see [7] Table I, are gradient descent tech-
niques which converge slowly, If the patterns are not separable, slow and
nonconvergence can be confused, See [9], pg. 451, for a more detailed
comment along this line, The adaption algorithms do have the advantage
of simplicity, but this is largely offset by the wide availability of profes-
sionally written linear programming codes, Either (2) or (4) can be solved,
but the simplex algorithm is more efficient with fewer nontrivial constraints,
It is not very sensitive to the number of variables, Since m + 2 << n it is
reasonable to solve (2).

Canon and Cullum [3] have proposed a quadratic programming method
for the separable case, Although it is generally more difficult to solve
quadratic programs, the authors take advantage of the problem's special
structure and claim their method is competitive with the linear programming

model,




For each iand j, i =1,2, ceesmy, j=12, e D3 We can define

a difference vector

D =A%-A9 for k=12, ...,nn..
i j 170

The vectors Dk are the rows of the nan x m matrix D, Recall

C(D) = fulu=yD, yg =1, y= 0}. It is casy to establish that C(A") and
C(Al) will be separable if and only if the origin is not contained in C(D).
This suggests a test for separability: find the vector in C(D) with

minimum norm, The problem can be written in two ways:

1
Minimize ‘3—129 (6)

Subj. to

1 1
Minimize ybD y (7)

Subj. to

<
1
o

The following facts about (6) and (7) should be clear: they are equivalent,
the objectives are convex and quadratic, they have optimal solutions with
nonnegative values, and the sets are separable if and only if the optimal
value is positive,

It is well known that any point in C(D) can be expressed as a convex
combination of at most m + 1 rows of D, This‘ fact is used to reduce the

problem's size, The algorithm solves a modified version of (6), restricting




attention to a subset of m + 1 rows, A test sees if the restricted
solution is optimal with all rows considered. If so, (6) is solved, If
not, a new row is added, an old row dropped, and the algorithm proceeds,‘

finding an optimal solution in a finite number of steps. The optimal solu-

tion of (6) defines the linear decision surface.

Suppose (y,u) solves (6), u # 0, and

2
i}

. I-1y .
Min {Aiul i=1,2, ..,Dl}

(]
il

H

Max {A?all j l, 2, ° e ;no}

Y ; g , u) is a sepatrator, If u =0, no separator exists, This is

demonstrated in the appendix using the Kuhn-Tucker theorem. Canon

then (

and Cullum do the same by showing problem (6) is equivalent to:

Max [Min {uz| weC(D)}] (8)

Subj. to

1A
—

z Iz

II, NONSEPARABLE

One approach to the nonseparable case was taken in [6]. A descrip-
tion will require two definitions,
n

A,
(xi). Leta = Z—;li be the average of the rows of A,

i=1
(xii). For any decision function w, let the quality of w be defined
as

Min[Aiw' i=12, ...,n]



If w is a separator, the quality is positive. If w is not a separator,
the negative of the quality (a nonnegative number) measures the largest
error the decision surface makes, To obtain a decision surface of highest

quality we solve

Maximize {Min[Aiw' i=1,2,....,n]}

Subj. to aw =1

The constraint is a normalization.
This problem can be transformed into a linear program by intro-
ducing a new variable P and requiring P = A.w fori=1,2,...,n. The

new problem and its dual are given below.

Maximize p {9)
Subj. to

Aw - fp =0

aw =1

Minimize vy (10)
Subj. to

yA - vya =0

yvi =1

y=0

Problem (10) has m + 2 equality constraints, n nonegative variables,
and one free variable,
The main result of [6] is:
Theorem (11)
(i). Problems (9) and (10) have optimal solutions with equal

objective values iff and a # 0, When a = 0, (9) is infeasible,
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(ii). If (w,p) solves (9) and p > 0, then w defines a separator
of maximum quality,
(iii). If (w,p) solves (9) and p = 0, then the patterns are not

separable and w defines a decision surface that minimizes

the maximum error.

This is equivalent to (5) in the separable case, In addition, a meaningful
decision surface is generated if the patterns are not ‘separable,
Smith, [13], has another approach, Note that Aw> 0 has a solution

iff Aw 2 f has a solution, In this spirit, we can solve

Minimize f'v
Subj. to
Aw +IvE S

vZ0

The Vi's measure the size of any error in the classification of the ith
sample, Thus if AiW Z ], there is no error and v, = 0, If AiW< 1, vy is
positive, There is some difficulty if 0 < AiW< 1. In this case the pattern
is correctly classified, but an error is counted. This behavior is observed
in optimal solutions.

The dual, (12), is a linear program with m + 1 equality constraints
and n nonnegative variables with upper bounds. It is relatively easy to
solve, [5].

Maximize yf (12)

Subj. to

vA =0

0Sy=f



]l

This model suggests several conceptually interesting but computa-
tionally difficult variations, For instance, we could minimize the sum of

squared errors, This leads to a quadratic program:

]
Minimize v Iv

Subj. to
CAw t+IvESL

vZ 0

Another variant maximizes the number of correctly classified samples:

n
Maximize Z 6(Aiw)

i=l

Subj. to—l§wi§l i=0,1,2, ...,m

8(-) is the step function; one if its argument is positive, zero otherwise.
This problem can be reformulated as an integer program, [12] pp.
194 -8,

Another method of treating the nonseparable case was proposed by
Mangasarian, [10]. The approach is similar to Arkadev and Braveman [1],
i, e, a piecewise linear decision surface is created which decides correctly
about all the data, Mangasarian uses mathematical programming to con-
struct the decision surface, We will not examine that algorithm in detail,

but we do comment on its generalization properties in section 4.

II1. FLEXIBILITY

This section examines the ability of the different models, (2), (6),

and (12) to handle new data and yield information useful in selecting new
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features, Models (2), (10), and (12) can accept new data points and find

a new decision surface easily, In each case, adding a new point is

equivalent to introducing a new activity (column) into the 1inéar program,
Model (6) has a similar property, For example, suppose a new

point in class one, A;lﬂ is observed, This adds n, new rows to the

matrix D, If

1 to . 1 .
ol %= Min [An'utl i=1,2, ....,nl]

1 i

A

no change is needed, the old decision surface is still optimal. If the
inequality does not hold, we continue to apply the Canon-Cullum algorithm
until a new optimal solution is obtained,

Introducing a new feature in (2), (10), or (12), t adds a new constraint
(row) to the linear program, If several new features are being considered,
we can devise a heuristic rule for chosing among them, Try the current
optimal solution for each new constraint, Select the constraint which is
the furtherest from being satisfied, If the optimal solution satisfies all
the new constraints, it is still optimal. This selects the feature which
maximizes the rates of improvement of the solution. Then a new optimal

solution can be obtained using the dual simplex method,

T There doesn't seem to be any way that new feature can be accommodated
by model (6).
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IV. GENERALIZATION

The generalization properties of the models are examined in this
section., In particular, we are interested in the decision surfaces gener-
ated as the number of sample points n becomes large, For each n the
models produce a decision surface defined by a nonzero m + 1 vector.
Without loss of generality we can uniformly bound these vectors. Thus,
there will be subsequences which converge, We shall study the properties
of the limiting decision surface,

For example, assume C(Sl) and C(SO) are disjoint with one set
compact, and consider model (2), Let (Xn, un) be the normalized optimal
decision surface for the n sample problém and let (A, u) be a limiting
surface: i, e, ('/\n,un)«s.(?\, u) on some subsequence. The following theorem
asserts (A, u) is optimal for the limiting problem,

Theorem:

With probability one (wp- 1) there exists a p > 0 such that (M, u, p)

solve:

Maximize p
Subj. to
Adxu-pZ0 x€C(Sl)
> 0

A -xu-p=0 x € C{S")
~e == e

Proof:

There exists a hyperplane which strictly separates C(Sl) and C(SO),

Therefore the problem has an optimal solution with positive value.




14 -

Suppose (A, u) and some p > 0 are not optimal. A contradiction
can be established by appealing to the the facts that (A, u) is (2) feasible
for all n, and that (A, u) is the limit of a subsequence of optimal solutions.

Three comments are in order, First it is obvious that similar
results hold for models (6}, (10), and (12). Secondly, if compactness
is dropped a weaker, p = 0, statement is true, Finally, if separability
doesn't hold, then (wp,l) all models will indicate this for some large
value of n,

Assuming decidability we could obtain a like result using the
piecewise approach, [10]. Additional regularity assumptions are needed
to allow a piecewise linear function defined by a finite number of hyper-
planes., Without decidability, the piecewise approach would struggle in
vain to produce a perfect decision function,

Model (10) will work in the separable case, but it has questionable
generalization properties, It is very sensitive to the tails of the distribu-
tions, The decision surface minimizes the maximum error, therefore it
will react to the worst points or prehaps to a faulty observation., Things
can get worse,

Let ak be the finite means of the distributions, P(x[ Hk) for k = 0,1,

Then the row average of A will converge (wp-1) to

pl) ol - p?) a°

a =
pul) - @Y

The following is an example of what can go wrong. Suppose P(Hl) > P(HO),

and the sets described below have a nonvoid intersection:
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L ={d d=va, y=s1}
z ={d] d=(]), -becih)

1

then the limiting optimal solution is given by w = ( I 5. * 0) i, e,
P(H") - P(H")
the decision function is
1
f(x) = ) > 0 for all x

P(HI) - P(H")

The fact that f is correct more than not offers little consolation. Note
that this phenomenon will occur if SO = Sl = Rm, and P(HO) £ P(Hl): e. g.
multivariate normal,

| The generalization properties of (12) seem to be the best, It is a
reasonable conjecture that the limiting decision surfaces of (12) are

optimal solutions to the following:

Minimize F(w)

Subj. to

where

F(w) = P(H) j (-h-ux)P(x| HY) dx + PEHO) f (Mux)P(x| HY) dx
0 1
X X

is the expected error distance. It is also reasonable to assume that the
limiting decision surfaces of the integer program mentioned in section

two will minimize the probability of error among all linear decision func-

tions., A brief attempt was made to prove these conjectures, but the proof

is elusive,
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V. EXAMPLE

Models (10) and (12) were employed to design decision functions
using data from a NASA biomedical experiment. Two types of electro-
encephalograms (brainwaves, EEG) were recorded. In one instance the
subject was watching ’a strobe light. In the other case the light was not
visible, The object is to distinguish the two cases using the EEG data,

Of a possible one hundred features K, Prahbu selected five, using
a distance-dispersion technique and prepared the data for the linear pro-
=165, n

gramming models., The parameters were n =155, m =5, n = 320,

0 1
and the problems were solved on an IBM 360-65 using the mathematical

programming package, MPS 360, [11]. Results are tabulated below,

Model (10) Solution Time 0, 09 min.

Errors Number Percentage ]
m;‘;l;ela NN S ZSM N A l 6 , 6 ead
S . WZEPMW-L 127 S
T otal 46ﬁ N o ; o ‘14.4 ]

Model (12) Solution Time 0, 92 min.

Errors Number Percentage

o S R %18 i e 11*6\%‘__.

Type II 24 B 14.5

Total 42 R WlMB‘:’ i T
B N 15 SR
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Notice the performance of model (12) is slightly better although
the solution time is longer. Both problems had unique optimal solu-

tions and 31 of the points were incorrectly classified by both techniques.




APPENDIX

Linear and Quadratic Programming

Several results from mathematical programming have been used
in this report, This appendix attempts to motivate and explain these

results while citing more substantial references,

A linear program is an optimization problem

m

Min 2 x.C,
J ]
j=l
Subj. to
m
Zx.a..=b. i=12, ..,n
: In 1
j=L
xj =0 j =12, , m
Our vector notation is
Min xc
Subj. to
xA =b
x 0

cismx 1, Amx n, and blx n., We shall call this problem the primal.

There is an associated dual problem:

Max by

Subj. to

A

Ay



~20=

Linear programs appear in many forms: maximization or minimization,
equalities or inequalities, nonnegative or unrestricted variables, Any
problem can be transformed into the same form as our primal, which
allows us to know its dual. The dual can be found directly using the
diagrams on pp. 126-7 of [2].

An efficient algorithm known as the simplex method, has been
devised to solve linear programs, In a finite number of steps it finds
a feasible solution (if one exists), then again in a finite number of steps
it determines an optimal or an unbounded solution, An optimal dual solu-
tion is supplied as a by product of the calculations.'

The principle theoretical result in linear programming relates
primal and dual,
Theorem: (2] pg. 129

If both primal and dual have feasible solutions, they have optimal

solutions (x,y) such that

We shall discuss quadratic programming in the context of problem (6),

ulu'

Min -
Subj. to

yD - ul =0

Ve =1

\% 0

A central result in the study of these problems is the Kuhn-Tucker theorem,

[8]. In our case it states:



2] =

Theorem:

(y,u) is optimal for (6) if and only if there exist (x, z,A) such that

[

gh +Dx +2z =0

u =X =0
y=0

zZ 0

yg =1

yD -~ ul =0
yz = 0

Suppose u # 0 is optimal in (6), then ulu' > 0, Juggling the above

equations we can easily establish that

A= -ulu <0
and

Du = g(ulu') > 0,




10,

11,

12,

13,
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