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SUMMARY 

This report presents a development of a Green's function approach 
t o  the analysis of l inear,  undamped vibration of t h i n  spherical s h e l l  
segments. 
connected and may have mixed arbitrary boundary conditions specified 
along the bounding contour. A s  a demonstration, the developed method 
is applied to the shallow s h e l l  symmetric vibration problem and resu l t s  
are compared w i t h  a published solution. 

"he segment may be of arbi t rary contour, simply or multiply 

INTRODUCTION 

Thin spherical she l l s  and spherical s h e l l  segnients frequently f ind  
application i n  space vehicle structures.  
experience d.ynamic excitation from any of several sources, a knowledge of 
the vibrationalbehavior and response t o  excitation of spherical shells is 
essent ia l  t o  ra t ional  design and t o  trouble shooting analysis. 

As such vehicles are l ike ly  t o  

Other investigations have dea l t  w i t h  symmetric spherical segments and 

Excepting for f i n i t e  element techniques, 
with symmetric boundary conditions. 
vibration modes have been treated.  
insufficient a t tent ion has been directed t o  the spherical s h e l l  segment of 
general contour and w i t h  arbi t rary boundary conditioas. 

Both ani-symmetric and unsymmetric 

In what follows, an approximate method i s  developed f o r  obtaining 
The c lass  frequencies and mode shapes of th in  spherical s h e l l  segments. 

of problems considered i s  limited by the following assumptions: 
\ 



1. The vibration is undamped. 

2. The vibration is  of small amplitude and hence a l inear  elastic 
l a w  holds for  the spherical shell .  

3. The she l l  is thin, permitting use of t he  simplified e l a s t i c  l a w  
i n  which the thickness-to-radius r a t i o  i s  ignored when compared 
with unity. 

It should be noted, however, t ha t  although subject t o  the above 
limitations, the developed approach has application t o  spherical she l l  
segments with arbitrary boundary conditions and of arbitrary shape, 
including multiply connected shapes (within a spherical surface). 

emws FUNCTION FORMULATION 

The vibration problem t o  be considered is f irst  replaced by an equiva- 
len t  s t a t i c  problem. A s t a t i c  load proportional t o  displacement i s  substi tu- 
ted for  the i n e r t i a l  loading of the vibrating shell .  Additionally, the art i-  
f i ce  of an e l a s t i c  foundation i s  introduced such tha t  the foundation reaction 
is  proportional t o  displacement but i n  opposite sense. Thus, i f  the applied 
load i s  proportional t o  displacement, then also the  net load on t h e  she l l  
(applied load together with foundation reaction) adheres t o  t h i s  proportion- 
a l i t y .  This manner of  reacting applied loads permits a simplifying symmetry 
f o r  t h e  required fundamental problems and yet does not disturb t h e  propor- 
t iona l i ty  of load t o  displacement which i s  necessary t o  simulate the  vibra- 
t i on  problem. 

The relationship between the posed vibration problem and the equiva- 
len t  s t a t i c  problem may be expressed symbolically:* 

(a) For the  vibration problem 

where, 
4 q = i n e r t i a l  she l l  force per un i t  surface area 
p = she l l  mass per unit surface area 

w = natural  angular frequency 
u = displacement vector of  the middle surface -z 

(b) For the she l l  on the e l a s t i c  foundation 
4 b  1 -  - 5 . 1  q = - U  - ku = (- - k) G x x 

where 

* 
Symbols are l i s t e d  i n  Appendix I. 
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q = net load on she l l  (per unit  surface area) 
h. = proportionality factor  between applied load and displacement 
k = foundation modulus 

Consequently, 1 if (r - k)  is made equal 2 
w ,  the  static problem 

is equivalent t o  t h e  vibration problem. 

The equivalent s t a t i c  problem i s  next formulated in  terms of  influence 
functions, t ha t  is, response functions t o  unit  s t i m u l i  applied t o  the com- 
p le te  sphere on the  elastic foundation. 
stress f i e lds  are known f o r  a unit load (and a unit couple) applied t o  a 
point on the complete spherical she l l  then through superposition, the re- 
quired relationships may be written satisfying boundary conditions (speci- 
f ied  along the bounding contour) as w e l l  as the condition tha t  applied 
load must be proportional t o  displacement. I n  addition t o  the distributed 
surface load over the spherical segment of interest ,  a l i ne  load system is  
applied along the bounding contour t o  assist i n  meeting the  specified bound- 
axy conditions. 

I n  br ief ,  if the displacement and 

A t  t h i s  point, it is convenient t o  define four "vector" quantit ies 
If w e  introduce a global ( that  is, four sets of associated components). 

reference coordinate system, surface points may be located by the polar 
coordinates pr and e t  the usual la t i tud ina l  and meridinal angles (g  measured 
from the pole), 

and u. be defined such that: '9i 1 
Let  two three-dimensional vectors 

are physical components of t he  applied surface force 
(per un i t  surface area) i n  three orthogonal directions:  
respectively-- normal t o  the surface, tangential  t o  the 
meridian c i r c l e  (the increasing # direction),  and tangen- 
tial t o  the la t i tude  c i rc le  (the increasing 0 direction). 

91, 42, 93 

~ 1 ,  u u 

Consider next two four-dimensional "vectors", RJ and LJ 

are the displacement components i n  the normal and two *' tangential  directions, respectively. 
\ * 

associated 
with the spherical segment boundary. represents the four 
boundary condition "residuals", tha t  is, quantities t ha t  must vanish t o  
meet the prescribed boundary conditions. 

The vector R J 

As an example, i f  a free boundary 

* 
Upper case subscripts refer t o  four-dimensional quantities, lower case 
Latin indices are used f o r  three-dimensional quantit ies and Greek indices 
are reserved f o r  the two-dimensional surface tensors t o  be introduced 
later. 
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is specified, the edge resultants (per unit length) must vanish at  the  
boundary. 
the static equivalent edge force system consists of the quantit ies 

Referring t o  the  sketch and the introduced symbols below, 

N, and Mn. 'ntj 

Stress Resultmts Stress Couple Resultants 

Nn and Nnt are membrane stress resultants 

&n is  normal shear resultant 

Mnt i s  the twisting moment 
aMnt vn = (% + F), a s t a t i c  equivalent normal edge reaction 

Mnt Snk = (Nnt - T), a static equivalent tangential edge reaction 

a = radius of sphere. 

For the free edge boundary condition, w e  l e t  R1, R2, R3, R 4  be vn, 
SntJ Nn and Mn, respectively. J 
tion. Other possible components for  the "residual vector", RJ, include 

w, un, u and --, which a re  componehts of displacement and t h e  normal deriv- 

a t ive of W. These latter quantities would be involved i f  boundary conditions 
concern displacements. 

Then, R = 0, establishes the  free edge condi- 

\ a* 
t an 
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The "vector:' LJ, has as components l i n e  loads applied t o  the  can- 
p le te  s h e l l  along the .segment boundary contour, curve "C" - 

Referring t o  the abo7re sketch, let  LJ be: 

L1, J+, L3, . the physical ccnrponents of force (per uni t  contour 
length), respectively: normal t o  the surface, tan- 
gent ia l  t o  curve C and i n  the direction of the un i t  
surface vector n. 

. 
A -  

L4 is the force-couple (per u n i t  length) with axis tangen- 
tial. t o  carve C. - 

L e t  pi and FM be "base" load vectors with components defined similar- 

l y t o  vectors 9, and $, respectively, except that pi and FM are for  con- 
centrated loads and have components of un i t  magnitude. 

- I - 
N e x t  we define the influence matrix functions: 

A 
-- 

( # , 6 , @ , 8 )  as the displacement ui ( a t  point @ , e )  due t o  a 
ij I- 

load vector cmponent, pj, applied at point @ , e .  
as the residual component, %, (a t  point - s on I C )  
due t o  the load component, p applied at  point @,0 .  

as the residual component, %, ( a t  point - s on - C )  
due t o  a load component, FM, applied at  point - t 
on contour C. 

as the displacement component, ui(at point Q, e )  due 
t o  a load cmponent, FM, at point - t on contour - C. 

k(s,z,g 

Crn(S,t) 

- -  
3' 

- 
\ 

Dm( &O,t) 
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Then f o r  any applied surface load vector of components si, acting 
over the surface element 9, the  contribution t o  residual, %, is: 

3 

J = I  
o r  employing the summation convention (for  repeated indices) : 

%=*q q. J do 

Similarly, f o r  t he  l i ne  load system of components $ acting over 
arc  length - ds of the contour 2, the  contribution t o  residual, %, is: 

% = Cm % ds 

The requirement that a l l  residuals vanish along contour - C then leads 
t o  the integral  equation: 

S C 

I n  a similar fashion contributions t o  displacements, uiJ from the 
applied surface loads and l i n e  load system % lead t o  the relation- 

. ship: 
n n  n 

JJ Aij qj  da + 0 Dm $ ds = u i 
S C 

Next consider the vector function % ( t )  along contour - C t o  be 

eliminated between equations (1) and (2) (employing appropriate inverse 
operators). The result ing equation could be symbolized by: 

SJ’ Gij qj do = ui 

S 

(3) 

Finally, the requirement that the  surface load vector f ield be pro- 
portional t o  the displacement vector f ie ld ,  which proportionality may be 
expressed as, 

1 

( 
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leads t o  the  eigenvalue problem: 

Given t he  matrix f'unction, G ( g j ,  8, F, 3, t he  "Green's Function" 

o f t h e  problem, it is possible by numerical methods t o  obtain eigenvalues 
and eigenfunctions f o r  the equation (4). 

i j  

These, i n  turn, provide fre- 

quencies and mode shapes f o r  the or iginal  vibration problem. 

FUNDAMENTAL PROBLEMS 

The Green's Function, Gij, (of the eigenvalue problem, equation 4) 

may be obtained from the influence functions, Aij, BKj, Cm and DiEl as 

introduced and defined i n  t h e  foregoing discussion. 
tions, i n  turn, are seen t o  be response functions ( s t r e s s  resul tants  o r  

displacements) t o  uni t  load stimuli. The s t i m u l i  include: the uni t  
normal load, unit  tangential  load and the  unit  force-couple w i t h  tangen- 
t i a l  axis. 
each of the three stimuli: 

* 
The influence func- 

We then define three fundamental problems associated w i t h  

Fundamental Problem I consists of a complete spherical she l l  on an 
elastic foundation subjected t o  a unit  normal load. 

Fundamental Problem I1 i s  similar t o  Problem I except t h a t  the  uni t  

load is  tangential  t o  t h e  spherical surface. 
Fundamental Problem I11 is again the same except t h a t  the  s h e l l  is  v 

subjected t o  a uni t  force couple. 

The solutions of each of the three fundamental problems is  developed 

i n  the discussion tha t  follows: \ 

* 
The mechanics of obtaining the Green's Function from the  influence functions 
is  treated i n  discussionto follow. 



- Unit Normal Load Problem - - 
Consistent with the symhols and conventions employed by Timoshenko 

in "Theory of Plates and Shells", the stress resultants and positive 
directions for displacements are taken as shown in the following sketches: 

Stress Resultants 
and Loads 

N@ 

Force Couple ResuLtants @e M 
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Equilibrium of an element of the spherical shell leads to: 
0 

(r N ~ )  + a N&- a N COS @ - rQ@ = -ra Y 9 
(I: N ~ ~ ) ’  + et NI + 

a Ng sin @ + r N@ 
9 

where 

N 

a Qe + (r Q@) = -ra Z 

cos # - a Q 0 sin 9 = -ra X e@ 
I 0 

M 

M 

cos # = ra Q, 
0 

w cos @ = ra QQ 

From strain-displacement relationships and Hooke’s Law, the thin 
spherical shell elastic l a w  reduces to the following: 

1 
,e sin gi a 

- t  
V - 

e =Go- Ll cot , + -1 - 
\ - ii? ‘ (7 4- GO) cot pr + W n 

2 2  a sin , 2 + 
a 2 n =  

(7 + - - 
0 a sin , 2 a % 

(6 a-f) 

- - 1 v‘  2 Gt 2 ; ; o r  - -  (3 -;cot,+--- %e a 2 sin , sin g cot + m) 



The elastic foundation reaction loads are: 

X = - k G  , Y = - k v  , Z = - &  

Since Fundamental Problem I possesses polar symmetry, equations ( 5 )  

- 

and (6) may be simplified accordingly. For polar symmetry, the displace- 
menti? is zero and derivatives wi th  respect t o  the variable, 0, vanish. 
However, several steps are still required t o  obtain the governing differ- 

en t i a l  equations for  Problem I 

' 

i n  the simplest form. 
We start by solving equations (6a) and (6b) f o r  the  s t ra ins  c and rzr 

This leads to:* =e* 
a 

(v" - w) = 2 '4 - vNe) 
K(.l-v ) 

a 

K(1-v ) 
(v cot @ - w) = 2 (Ne - vNrzr> 

Differentiating the la t ter  equation, we obtain, 

V a vo cot @ - - - wo = 2 s in  $ 
0 

The fknctions v and w may be eliminated from the three equations 

(7 a-c) t o  yield: 

(v + w O )  = [vN; - N i  + (1 + v)(Na - Ne) cot@] 
K(l-v2) , 

\ - v+wo .\ , 

or  introducing x = -  a , 

Q 
The symbols u, v, w (without bars) denote functions of $ only. 
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Consider ne-xt that portion of the shell lying above the l a t i t ud ina l  
plane, @ = constant. Acting upon t h i s  free body are the edge forces, I?@ 
and Qg, the foundation reaction forces, and the applied uni t  load at  the 
pole. Equilibrium then leads to: ld 

1 ka f [v sing + w cos@] sing +12 2nasin% s i n  g 
= - Q@ cot% - 

Upon substi tution of this expression in to  the equilibrium equation 
15 (4c) we obtain: 

When expressions (9) are introduced in to  equation (8) the Latter 
reduces to: 

where the operator L is defined by: 
L ( ) = ( ) 0 °  + ( )" cot@ - ( ) cot 2 er 

Substitution of the e l a s t i c  l a w  equations (6d,e) i n to  the equilibrium 
equation (5d) yields an expression f o r  Q i n  terns of X: er 

To obtain a th i rd  second order d i f fe ren t ia l  equation f o r  Problem I, 
we first add e l a s t i c  l a w  equations (6a) and (6b): 

vo + v cot@ = 'K(LcvS a (N@ + Ne) + *w 

Then we subst i tute  expressions (9) in to  the right hand s ide t o  obtain: 

V O  + v cot@ = & [ Q i  + Qgcotg] + 12 + K] 8 w 
\ 

Differentiation of t h i s  equation and combination w i t h  equation (10) 
yields: 

2 where : 
ka 

fhT 
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W e  naw define the  symbols: 

Y1 = Yo + v cot@ Y2 = v 

y3 = [Qg0+ Q cot@] 
@ 

aQ@ Yk = - K 

Then the three second order equations (10) (11) and (13) may be 
written as a s e t  of s i x  first order l inear  d i f fe ren t ia l  equations i n  the 
six functions Y, through Y6. In m a t r i x  form these are: 

'a - 
a@ 

where 
h2 n 

- 
0 (B-2) 0 1 0 (l+v) 

1 -cot@ 0 0 0  0 

-(l+v) 0 (1-v 2 +B: 0 -(2+v>fl 0 

0 0 1 -cot@ 0 0 

0 0 0 -- 0 -(l-v: 
a! 

0 0 0 0 1 -cot@ - 

y1 

y2 

y3 

y4 

5 Y 

- '6 

With sui table  sets of i n i t i d  values assigned the f'unctions 
Yl,...,Y solutions may be obtained numerically f o r  this set of equations. 
(The Kutta-Merson technique proves t o  be stn ef f ic ien t  and accurate means 
of acccunplishing t h i s  integration) .* 
of solutions, boundary conditions may be satisfied both at  the origin 
and at a remote boundary,@ = 

6 

Subsequently, through supmposition 

@no 

* 
See L, Fox,Numerical Solution of Ordinary and Partial Differential  
Equations (1962), Pergamon Press, (Addison-Wesley), pp. 24-26. 
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For the very thin spherical s h e l l  a special  d i f f i cu l ty  arises in 

the numerical integration of equations (15). 
small an i n s t ab i l i t y  arises i n  the numerical integration due t o  the 
element, l /a ,  i n  the coefficient matrix of eqmtions (15). For almost any 
set of i n i t i a l  values the magnitudes of the f'unctions Yi grow rapidly with 

i n m a s i n g  $6 w h i l e  in the physical problem a rapid decay actual ly  occurs 
of .the ntnctions, Y1through Y6. 
serious accumulation of loss i n  s ignif icant  figures i n  the suprpos i t ion  
process, should the numerical integration extend over a large range in  $6 . 

The di f f icu l ty  may be circumvented through the use of a "segmental" 

If the parameter - cy is extremely 

This ins t ab i l i t y  condition produces a 

numerical integration technique as described i n  Appendix 11. 
Dfrecting at tent ion now t o  the task of obtaining consistent i n i t i a l  

values f o r  functions Y. near the apex,@ = 0, to provide a s t a r t i ng  solution 
we proceed t o  simplify the governing equations (10) and (11) based upon the 
small magnitude of the independent var iab le# .  
placement v (near the origin) t o  be neg1fgibl.e in comparison with the quantity, 

ax (the va l id i ty  of which assmption is readily established from the result- 
ing solution). 

1 

Firs t ,  we assume the d is -  

Then equations (10) and (11) may be cmbined t o  obtain: 

W h e r e  

cot @. 

2 4 L ( x )  + K x = 0 

4 - 1 - v  2 + 8 - u c Y  2 
x -  

cy 

Equation (16) is factorable in to  two second order equations: 
2 L (X) A i K = o 

We further simplify these f o r  small @ by substi tution of l/# for  
The operator L then becomes:, 

-13 - 



m a t i o n s  (17) are then transfomed into Bessel's equations by 
appmpriate variable substitutions. 
in terms of the Kelvin (or Thompson) %nctiom.* Cambining solutions, 
we obtain: 

The result ing eqyations have solutions 

x = A ker' x + A2kei' x where x =  n@ 1 

From the  polar symmetry condition, x must vanish at  t h e  origin. 
Therefore, 

Using the additional boundary conditions that the shear Q must 

lim ( 2 1 ~ 4 Q p )  = -1 

er s a t i s f y  the load s ingular i ty  requirement, 

b o  

and the condition tha t  W, as evaluated from equation (X?), must be finite, 
the fol lar ing solution results: 

K, K Y ~  = rkerf 

- - - 1 [keil x + 2 l+v (ker' x + 1: 
X H a  KY2 2nn 

-1 K w  = - kei  x 
2 m  o! 2 

These values together with the function definit ions (13) then provide a 
s ta r t ing  solution, or  set  of i n i t i a l  values, f o r  the cap par t icu lar  solution. 
The actual  numerical integration could not start exactly at the origin as 
s ingular i t ies  prevent this, but the solution (18) permits a start at  an 
a r i b i t r a r i l y  small value of 9 .  

load s ingular i ty)  s t a r t i ng  so1utions f o r  i n i t i d  conditions are readi ly  
For the three "cOmplementarY1l cap solutions (associated with no uni t  

*See Flugge, Stresses i n  Shells, pp. 345. 



obtai3led by substi tution of polynmials i n  Id f o r  the  functions Y2, Yk and 

Y6 i n  the d i f fe ren t ia l  equations (15) tLna retention of terms up t o  third 

order in @. Three l tneas ly  independent solutions result :  

and 

Etaploying the foregoing starting solutions fo r  the i n i t i a l  values i n  
the first spherical cap, the segmental integration technique (as discussed) 
affords a numerical method f o r  solving Fundamental Problem I. (Plots of 
computational resul ts  for  an example problem appear in figures 1 through 3 ) 

Unit Tangent Load Problem - - 
. An essent ia l ly  similar pattern of solution is  employed f o r  the 

Fundamental Problem 11, the unit tangent load problem. Firs t ,  consistent 
with problem symmetry, i f  the tangent unit load is considered t o  l i e  i n  the 
meridianal plane e = 0, displacement Functions u, v a d  w may be taken as: 

- -  
- - - 
u = u sine, v = v cos6, w = w cos8 

where u, v and w are functions of @ only. 
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- 
* -  _ _ .  . .  

Secondly, it should be noted t h a t  the f'unction w is knm from the solution 
of Problea I since by Be t t i ' s  reciprocal theorem the  displacement function 
v of Problem I is equal. t o  -x of Problem 11. 

- -  
Substitution of expressians for u, v and w' in to  the elastic l a w  

eqwtions (6) and these i n  turn into equilibrium equations (5a,b) leads to: 

l+v vo - 2 3-v v cot@ + (l+v)w} 
-2 

If equation (lga) i s  differentiated,  multiplied by sing and added t o  (lgb), 
we succeed i n  eliminating w and obtain upon reduction: 

where 

A second useful d i f fe ren t ia l  equation is obtained through the elimination 
of v in equation (lga) by introducing 7. The resul t ing equation reduces to: 

-16- 



Introducing the symbols 

- To 
z1 - sinpr 

= z;; + \cot% 3 

2 =7 
2 sing 

A -  z k = u - c y w  

equations (20) and (21) are expressible as four first order equations: 

2; = pz2 

z; =zl - z 2  cot@ 

- 1+v sing Z + - 3-v cos$ z2 + 2 1-v p 24 z; - 2 1 2  

zi; = z3 - z4 cot% 

Unlike equations (15) f o r  Rmdamental Problem I, the above equatiops 
(22) do not contain the coefficient l / a ,  and hence lend themselves t o  a 
stable numerical integration. 

A solution of equations (22) f o r  the complete sphere is  then achieved 
through several  steps as outlined below: 

Obtain a ''particular'' solution f o r  the hemispherical she l l  
consistent with the load singularity.  

Obtain two l inear ly  independent "complimentary" solutions 
f o r  the hemispherical she l l  consistent w i t h  the no unit 
load condition at  the origin. 

\ 

Ccenbine the three solutions employing symmetry principles t o  
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t o  arrive at a solution i n  superposition f o r  the complete 
s@t?rical shell. W e  consider the s teps  f'urther detail: 

step 1 - 
A starting solution is first required. Near the load singularity,  

with the variable @ sui tably small, only the first terns in  the Maclaurin's 
series for  s in# and cos@ are retained. Consequently equation (20) becomes: 

- d2y + - 1 - dy - (l+-2)y 1 = 0 
X &2 x d x  

where 

Retaining the Bessel function 5 ( x )  as the solution consistent w i t h  
the load singularity:  

Ignoring the Tunction w for  s m a l l  $8 (the val id i ty  of which is  evident 
upon examining resulting solutions) and introducing the  solution far T in 
equation (21) yields: 

- 

Cumbining a part icular  and a complimentary solution of equation (24) 
one may obtain: 

which contains only the logarithmic singularity.  
fo r  u - the  dominant term (for small @ ) is : 

In the  result ing expression 

u = - A(&) k g  (s)  
4 

I 
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and hence f o r  v ( f m  the definit ion of 7) we have: 

v = .[t 3 v  Log (s) - +] 
Iir the neighborhood of the uni t  load the equilibrium boundary condition 

reduces to: 

Substitution of the e l a s t i c  l a w  f o r  the membrane stresses together 
with the solutions f o r  u and v permits the constant A t o  be evaluated: 

With i n i t i a l  values for ZL, 5, % and 2 for an appopriately 4 
smallv&Lue of pr taken d i rec t ly  frcan the s t a r t i ng  solution, the Xutta- 
Merson procedure is then employed t o  extend the solution t o  the "eqwtor", 

me result ing solution consitutes it f tpar t icuhr ' f  solution for @ ' Z *  
the hemispherical shell, that is, a solution consistent w i t h  the uni t  load 
singularity. 

Step 2 

Two additional independent solutions f o r  the hemispherical shell  are 
obtained from two separate se t s  of i n i t i a l  conditions. 

solution for small @ is (considering low order terms): 
In one case assuming a f i n i t e  i n i t i a l  value f o r  N a consistent @ 

z* = @ 

z = - 2 - -  5+v 1 
3 1-v p 

\ 
-\ 

, 
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2 A secmd solution is obtained fo r  zero i n i t i a l  M 

z1 = 0 

z* = 0 

U s i n g  these s t a r t i ng  solutions, the fitta-Merson integration provides 
two independent complimentary solutions fo r  the  hemispherical shell. 

Step 3 

The cmplete she l l  problem under the action of a uni t  t m g e n t i a l  load 
maybe resolved in to  two component problems, one symmetric with respect t o  
the equatorial  plane, the other anti-symmetric. 

I 

I 

S ymme t ri c 

The boundary conditions at the are: 

v = o  and u o = o .  

For the anti-symmetric case the equatorial  boundary conditions are: 

v 0 = O  and u = O .  
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Each of the ccnnponent problems may now be solved independently by 

Then f inal ly ,  the two cmponent problems 
superposition of solutions from Steps (1) and (2) t o  match the appropriate 
equatorial boundary conditions. 
&re supx5nposed t o  obtain the solution t o  Fundamental Problem 11. Cam- 
puted resu l t s  f o r  a sample problem are plotted i n  figures 4 through 6 . 

Unit Force-Couple Problem -- 
The Fundamental Problem I11 en ta i l s  a uni t  force couple at the origin 

acting on the complete spherical she l l  on the e l a s t i c  foundation. To permi t  
the meridiand plane, 8 = 0, t o  be a plane of syrmnetry, the uni t  force-couple 
vector is directed (in tangential  plane) i n  the - A  direction 8 = - n/2 radians. 
As - with Problem - I1 the displacement functions u t  v and w are then taken as 
u = u sine, v = v cosa, w = w cos@. 

The B e t t i  reciprocal theorem may then be employed together with solu- 
tions fmm Fundaental Problems I and I1 t o  provide d i r ec t ly  the solutions 
t o  Problem 111. 

We denote the displacement functions of the three Fundmental Problems 
as follows: 

Problem I 

Problem 11 

Problem 111 

wI 

uII’ wII 

111’ vIII’ wIII U 

Then observing fram Be,,i’s Theorem that ,he work done by a uni t  force couple 
rotated through the angle, 

-ww’ 1 -  +ZII = - w~~ s ino  + uII s i n e  r I1 a sin+ 

is equal t o  the work of a u n i t  tangent load displaced through the tangential  
displacement 1117 WE have: 

\ 

w-r, LL 
I1 + U  - - -  

I11 a sin@ U 
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Slmilar appLLicatlons of the reciprocal theorem lead to: 

v = "xrr = WOII + VIX 111 

wn = -VI 

CmbZning the four relationships above, Problem 111 displacement 
f m c t i m s  may be expressed as follows: 

VI - I - n r  a sing + u~~ U 

Summary of Required Functions 

The matrix influence flunetions Aij, BQ, Cm, DiM, are eqressed 
in  terms of specif ic  response ftmctions associated with each of the three 
fundamental problems. These include: 

a) the displacement functions, 

b) the  

Nv 

M> 

c) the 

stress resul tants  and moment components, 

No, Nger Qg, Q,, Mg, 'Me> MpJe and 

pzrtial derivatives of moment components, 
1 1 1\ No, Mo -MI -M' -MM'  

0 r g' r 0' r g e  

From the e l a s t i c  l a w  equations (6), the stress resultant, moments, 
wd moment derivatives are expressible i n  terms s t r a i n  components, curvature 
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components and their derivatives: 

The n o m 1  shear stress resultants,  Q and Q may be obtained d i rec t ly  z e 
fmm eqkilibrium equations (5d,e) i n  terms moment components; (however, i n  
Problem I, the shear Q is most readily obtained f rcan  the dependent variable z 
Y4) 

Assuming at this  point that the set of equations (15) and the set of' 
equations (22) are solved numerically f o r  the functions Yl through Y6 and 
Z1 through Z4, zwpectively, we now proceed t o  express the required response 
f'unctions i n  terms of these solutions. . .  2 -  _ . I  

Without rewriting the e l a s t i c  law equations (6) here, we may observe 
that : 

and a l so  that M?, We, m d  MO require the  curvature derivatives: 
# # e  

x; = -2 1 ( ~ = ~ " ~ )  
a 

3 
1 cos@ + (vofwoo) cow - (7Pt.2w0) 2 1 + = - [z- 

2 s i n  # s i n  # sin @ e a2 sin@ 

v cos 2woo 
2 sin@ 

- -  U ;." - u cot# + - - -+ 
s i n  # s3n@ sin# 

4 9  cosg 2w( l+C0S2#) 
3 s i n  # +T- 

S2.n # 

It is seen frm eqressions"(26) and (27) together with the e l a s t i c  
la;w equations ( 6 )  that the following displacements and t h e i r  derivatives are 
required f o r  each of three f'undmental problems: 

0 

u, uo, uoo, v, vo, v o o ,  w, wo,  w o o ,  woo 

i 
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Additionally, from the reciprocal re la t ions f o r  Problem 111, the 
0 0 0  

displacements voo and w;O are also required ( for  P r o b l e m  I). 

together with the governing di f fe ren t ia l  equatims (12) (15) and (22) the 

following expressions are developed f o r  the required displacement 
quantities terms of Yi and Zi). 

I 
With a id  of the de f in i t ims  of the dependent variables Yi and Zi 

Problem I (non-zero flznctions only) 

VI = Y2 

v o  = Y; = Yl - yzc0tg I 

1, 

WI = 

w; = 

0 1 2 cos@ 
3 y2 

v:" = - VooCOt@ + VO (8-2+-) - 2 sing sin g I I 

'6  - '2 

1 '  2 cos@ 
3 '6 - - (Y -Y cotg) - 

@ 3 4  sin @ 
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Problem II 
h For convenience we first consider the quanity, u = uIIsin@, and 

express its derivatives as follows: 
h - 

cy 
u = Z 4 -  

where 

24" = z3 - zJ+ cot@ 

where 
1 

sin @ 
2;;" = zo - Z% cot@ + z4 2 3 

l+v 3 -v - 1-v 
2; = 2 si& z1 + - 2 cos@ z2 + $%J 24 + [ ( l+V)  - CY ( - p + 2 ) ]  VI 

Z i  given above 

A0 O - 0  0 0  uoo = 2: - Q VI 

where 
0 2 2 cos@ 

24 3 
zy = zoo - zycotgi 4- zo - - 

3 sin2g sin pr 

7 = 9 (singrl+cosg~ +,- 3-v (cosfl~o-sing~ -p I - V  z t  
1 2 2 2 
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Then w t t h 2  and its derivatives known, 

w =  I1 

Problem I11 

4 0  0 ZlSinPI - u 
( psinkcoser)Z2 

- 
- vo I 
- voo 

1 
0 

0 0  - 

0 
A0 0 - u  

The required displacement f'unctions for Problem I11 are expressed in 
terms of Problem I fluletions (28) as folluws: lus ing  a u n i t  sphere) 

+ U  = v  - 1 
I11 I sing TI U 

1 cos@ . U0 = vo-- v - 
+ UI: I11 I smg I si232g 

f u;; u o o  = voo- 1 - 2v0 cos# ' l+cos2 
3 - +'V 

I sin FI 2 I sin g M I  I sing 

v = - v 0 + v  111 I I1 
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vo = - vgo + VI; IT1 
0 

I WIXI = - w; - v 

GREEN'S NNCTION MATRIX 

The Green's flmction approach t o  the vibration analysis i n  a specif ic  
problem en ta i l s  a number of computational operations preliminary t o  the 
solution of' eigenvalue problem symbolized by equat iw (4). 
of these operations it is  convenient t o  consider separately: 
ics of the reduction of the s e t  of integral  equations (1) and (2) t o  single 
matrix equation defining the eigenvalue problem numerically and (B) the 
cmputational operations t o  obtain the elements of the required matrices 
that ccrmbine t o  form the Green's f'unction matrix. 

In the discussion 
(A) the mechan- 

f b i t e  
became 
column 

Reduction of lntegral  Equations - 
The governing integral  equatSons (1) and (2) are first replaced by 
difference approximations t o  the equations. 
r e c t a g u l a r  matrices and the flmctions ui.' and 4-i and LNbecome 
matrices (or "vectors"). 

The integral  operators 

Let the surface S (enclosed by the contour C )  be subdivided in to  NS - 
elements, the nth element denoted by Aon. 

with Asn denoting the m t h  segpent. 

\ 

Also le t  the bounding contour contour C be subdivided in to  MC - segaents, 
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The integrals of equation (1) may then be approximated by mechanical 
guadratures; f o r  example, 

where B (m,n) is B 
on the contour C and the nth surface element, and q.(n) is the central  value 

of q f o r  the surface element Aon. 

evaluated for  the central  points of the mth segment Ks K j  

J - 
3 

N e x t  let the symbol [B] denote a 4NC by 3HS rectangular matrix whose - - 
element in row [4(m-1) + K] and column [3(n-1) + j1 is Also 
let 2 be a c o l m  matrix whose element i n  row [3(n-1) + j]  is qj(n). Then: 

N 

W e  define other rectangular and column matrices correspondingly t o  
represent the other integral  operators and functions appearing in equations 

A 

U 

The mechanical quadrature 
then: 

! I  

ROW 

4(m-1) + K 

3(r-1) + i 

3(r-1) .+ i 

4(p-1) + M 

3(r-l) + i 

h(p-1) + M 

approximation t o  equations (1) an 
-\ 
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Y 

which substi tuted in to  (2b) 

inverse of matrix [Cf, then from equation (lb): 

leads to: 

Equation (4b) is then the matrix eigenvalue equation corresponding 
t o  the in tegra l  equation (4) that defined the eigenvalue problem. 
elements of matrix [GI are computed, it m a i n s  only t o  find the eigenvalues 
and associated eigenvectors. 

Once the 

Cmputation - f o r  Influence Matrices 

The Green's M c t i o n  matrix is expressed i n  terms of influence matrices 
[A], [B], [C] and [D], whose elements m u s t  first be computed. 

To f a c i l i t a t e  the present discussion as w e l l  as actual  computational 
steps, two spherical polar  coordinate systems are introduced, one fixed in 
space (called the "global" system) t o  serve as a reference, the other oriented 
with respect t o  two selected points on the sphere and referred t o  as the 
"relative" system. The global coordinates (@,e) serve t o  Locate smple points 
on the sper ical  surface S and on the enclosing cantour C. 
coardinate system, with Tariables ( @ , e )  is  oriented sucE t h a t  the pole, $= 0, 
is located a t  a 'lstimuLus" point, defined as a sample at which a un i t  force 
o r  un i t  couple is considered t o  act .  
plane, $' = 0, is  oriented t o  contain a "response" point, defined as a sample 
point at  which a displacement o r  stress resultant quantity is sought. 

The re la t ive  
4-  

Then the re la t ive  system meridianal 

W e  have earlier observed that the influence functions (or for present 
puqposes, the elements of the influence matrices) are the responses at one 
point on the  sphere due t o  a uni t  stimulus a t  a second point, with both 
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location of points and surface vector (or tensor) components expressed i n  
the f-ed global system. The solutions t o  the fundlamental. problems, on 
the other hand, are necessarily obtained i n  the relative system (as the  
stimulus is always a t  the pole). 
required at both the stimulus points and at the response points, in order 
t o  transform the f'undamental problems fram the re la t ive  coordinate system 
t o  the global system f o r  each pa i r  of points involved.. 
exist i n  a two dimensional space are resolved into rectangular Cartesian 
cmponents i n  the plane tangential  t o  the spherical surface at the given 
point. 
required spherical  geometric relationships are presented i n  Appendix 1x1. 

- 
Consequently, tensor transformations are 

Surface tensors which 

The de ta i l s  of surface tensor transformations together with the 

me response functions (matrices) relate response kensors components a t  
one point t o  st imuli  tensor components acting at the second point on the 
sphere. The response tensor quantit ies include the following: (Greek subscripts 
range over two dimensions) 

displacement responses: 

w scalar normal. displacement 
u surface vector with cmponents u" and 7 

CY respectively. 

response teiisors f o r  boundary conditions: 

- w  w, = - gradient vector of normal displacement w, where x 
represents are length along geodesic sucface 
coordinates with or igin at the point. 

CY CY ax, 

shear resul tant  on edges normal respectively t o  the 
x1 and 5 coordinate directions. &a! 

N -  membrane stress resultant tensor (with components 
w3 

M orf3 

i n  the global system as N 

(with cmponents i n  the global system 

g >  'e) 

M = -  - ma' gradient of ' the moment tensor (with components i n  
ol~,y ax Y the global system, f o r  example: 
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The response points that l ie on the contour - C, require as response 
f'unctions f o r  the influence matrices [B] and [C], the  residuals, %, 
introduced earlier. 
the ccmtour C we introduce the surface uni t  vectors n and t The un i t  
vector n lies i n  the tangential plane but normal t o  the curve C; w h i l e  
the vector t 

For definit ion of these residuals at a given point on 

a a' - 
- a 

is tangential  t o  the curve C. - a 
Depending on the boundary conditions t o  be specified, the required 

residuals, RK, would be selected appropriately from the eight sca la r  invariants 
listed below (which make use of the Kirchoff formulation f o r  edge reaction 
resul tants)  : 

W 

un = n u  
C y Q !  

u = t u  t C y a !  

M = n n M  n ey R Cyg 

To evaluate these scalar quantit ies it is convenient t o  use the re la t ive  
coordinate system as this  entails a minimum of transformations. 
n and t which are specified i n  the global coordinate system need be trans- 
cy a 

formed; the response tensor quantit ies are already i n  the relat ive system. 
(The transformation of the vectors n and t 

Only vectors 

is discussed i n  Appendix 111). 
cy CY 
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The required tensor stimuli are defined i n  the follawing manner:  

unit n o m 1  load stimulus, a scalar. 

un i t  tangential  load vector directed in the increasing 0 
direction (in the global system). 

un i t  tangent load vector directed i n  the increasing pr 
direction. 

un i t  load vector directed tangentially t o  the contour curve - C. 

un i t  load vector in the direction of the surface vector n f o r  
a given point on curve C. 

un i t  force-couple vector directed tangentially t o  the curve - C. 

CY - 

We have now defined the  necessary symbols and developed the relation- 
ships t o  outline a s tep by s tep  procedure f o r  the computation of the elements 
of the influence matrices [A], [B], [Cl and [D], and hence the Green‘s function 
matrix [GI. 
1) The spherical  segment surface is sub-divided in to  NS surface elements with 
sample points f o r  numerical cumputation located at t&T&emental gemetric 
centers. Similarly, the enclosing curve C is sub-divided into NC elemental 
segments again w i t h  central  points as sa&e points. 
(whether on the surface or  on the curve C )  is  considered i n  its turn t o  be a 
stimulus point and also i n  its turn is t a e n  as response point, all combi- 
nations considered. 

Each sampG point 

2) For a given stimulus point and a given response point the re la t ive  coor- 
dinate system f o r  the two points is  established and the required transfoma- 
t i a n  matrices are computed. 

3) Displacement functions of %&mental Problems I, I1 and I11 are evaluated 
(using the re la t ive  coordinate Pr , that locates the response point) by means 
of expressions (28), (29) and (30). 
responses (in the relat ive system) due t o  unit st imuli  i n  the re la t ive  system. 

(Appendix III relationships employed). 

These functions are then displacement 
-- 

\ 

4) If the response point l ies 
fram expression (31), are the 
then cmputed f o r  each of the 
e l a s t i c  h w  equations (6) and 

on the curve C, the appropriate sca la r  invariants, 
residuals for-that point. 
three fundamental problems, making use of the 
displacement functions of s tep  3. 

These residuals are 

- 



5) Global un i t  stimuli, as defined earlier, are transformed from the global 
system h t o  the relative system. 
steps 3 and 4 are then multiplied by the appropriate re la t ive  system compo- 
nents zf ea& separate unit global stimulus. 
displacement responses (in the relative system) and scalar  residual responses 
due t o  separate uni t  global stimuli. 

6) If the response point is a surface point, the rlispI.acmat response m c t i o n s  
of s tep  5 are transformed fromthe re la t ive  system t o  the global reference 
system, &us providing a l l  responses i n  the  global system due t o  uni t  global 
stimuli. 

The response functions as computedin 

There results from th i s ,  

7) As the influence matrix [A] consists of displacement responses (in the 
global system) t o  uni t  load stimuli (also in  the global system) f o r  surface 
sample points, then should both the stimulus and the  response points be 
surface points, the results of s tep  6 are elements i n  the matrix [A]. - 
8) If the response point l i e s  on the curve C. the residuals as computed i n  
s tep 5 constitute elenents of matrix [B] or-matrix [C] (according t o  whether 
the s%nulus point is a surface point or a boundary point). 

9) If the stimulus 'point l i e s  on the curve C while the response is sought at 
surface point, the resul ts  of s tep - 6 consti&.te elements in the m t r i x  [D]. 

10) Upon completion of the computation of a l l  elements of matrices [A], [B], 
[CJ and [D], the Green's function matrix [GI is then found by the matrix 
operations indicated i n  the  definit ion of [G] (equation bb). 

A m o r e  complete and detailed algorithm f o r  the computation of the 
Green's function matrix appears i n  Appendix IV. 

With the construction of the Green's function matrix, the problem 
reduces t o  finding the eigenvalues and eigenvectors of [GI. Standard tech- 
niques ex is t  t o  accomplish this operation. Finally, the natural  angular 
frequencies fo r  the vibration problem are found from the eigenvalues, &, 
recalling: 

p a n  2 -  - 'a- 1 k) 
\ 
-\ 

Also the associated mode shapes (for  the or iginal  vibration problem) 
are  defined by the eigenvectors which a re  the displacement components at  the 
sample points i n  the s t a t i c  equivalent problem. 
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EXAMPLE €'ROBLE34 

To demonstrate the procedures of the previous sections, natural  
frequencies have been obtained for  a shallow spherical she l l  with clamped 
edges. Specifically, the par t icular  properties 

a/h = 10, w = 0.3, $o = 30' 

were chosen where (0 is  the  meridianal angle t o  the boundary edge. 
0 

As explained i n  the detailed algorithm of Appendix I V ,  the  first 
s tep consists of num&rically solving the three fundamental problems. 
After studying the behavior of the solutions i n  t h i s  particular example, 
the integration increment A(O = 0.01 radians w a s  chosen as a compromise 
between high numerical accuracy and reasonable computer time. Typical 
resu l t s  from these solutions are shown i n  Figures 1 through 6. 
ing the complete solution of the fundamental problems, each of the 
functions on page 22 w a s  f i t t e d  w i t h  a polynomial i n  the Chebeychey sense. 

Follow- 

For the next s tep  the s h e l l  w a s  subdivided in to  discrete surface 
elements and boundary arcs. In t h i s  par t icular  instance the s h e l l  w a s  
coarsely sectioned in to  four surface elements and four boundary arcs as 
shown below. Following t h i s  subdivision the matrices A ,  B, C ,  and D were 
constructed i n  the manner described i n  Appendix I V  from which the  matrix 
C w a s  then determined i n  accordance with equation (4b) on page 29. 

xs = 4 
NB = 4 

The f i n a l  step w a s  t o  calculate the eigenvalues of the matrix G 
after which the natural  frequencies were found by the equation on page 
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33. When non-dimensionalized, t h i s  equation takes 
form 

the more convenient 

(32) 

where 
2 

Eh 
2 a  Q2 = vu - 

For simplicity only, the fundamental (lowest) eigenvalue w a s  
The result ing funda- 

is plotted i n  Figure 7 fo r  various values of 8.  
determined using t h e  Stodola-Vianello method. 
mental frequency R 
The dependence of &he solution on 6 has been investigated i n  reference 
40. I n  short ,  it is  seen from equation 32 t h a t  f o r  larger values of 
6, the eigenvalue A must be determined w i t h  greater numerical accuracy 
i n  order t o  produce accurate approximations of Q. That i s ,  f o r  large 
values of 8 ,  t h e  value of Q2 depends on the difference of two large 
depends on the difference of two large numbers on the r ight  hand side 
of equation 37. 
fo r  increasing P. 

Hence, the  degeneration of accuracy is  t o  be expected 

From Figure 7 it is noted tha t  the asymptotic value of fi is 
Upon comparing t h i s  value w i t h  the resul ts  obtainable by the 1 1.73. 

methods of other authors such as 1.87 by Reissner's (27),  1.85 by 
Kalnins ' (38), and 1.80 by Kalnins ' (391, we see the  present solution 
d i f f e r s  by approximately 4%. 
i n  view of the coarseness of the present subdivision. 

Th i s  difference seems quite acceptable 
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APPENDIX I 

Table of Symbols 

constant 
influence matrix 
ith - jth elenent of matrix Function 
radius of spherical shell 

influence matrix 
K~~ - jth element of matrix m c t i o n  
un i t  base surface vectors 
surface tensor transformation matrix 

iqf luence matrix 
K * ~  - M~~ e l w e n t  of mtrix function 
uni t  base surface vectors 

surface tensor transformation matrix 

shell  flexural r i g i d i t y  
influence matrix 
ith - M~~ element of matrix function 
surface tensor transformation matrix 

Young' s modulus 

Green's function matrix 
ith - jth element of,matrix Green's function 

shell e l a s t i c  constant 
foundation modulus 
modified Bessel's f'unctions of the second kind 



LJ 

P 

P l d  P2a 
p i  

Q n 
Q!a, &e 

RJ 
r. 
A r 

‘nt 
S 

S 
A 

a! 
S 

t b  J cmpnen t  of line load system 

bending mament at boundary 
twisting namnt at boundary 
bending moment cmpnen t s  
twisting moment 
bending moment tensor (surface) 

membrane s t r e s s  resul tants  at boundary 
membrane stress resul tant  components 
membrane stress resul tant  tensor (surface) 
m f a c e  vector, n o m  t o  curve C - 
nomaJ., ( t o  surface) unit force vector 
&face uni t  force vectors 
force vector with three uni t  magnitude components 

shear stress resultant at boundary 
shear stress resul tant  components 
shear stress resul tant  tensor (surface) 
applied load vector (per un i t  area) 
columu. matrix f o r  applied load 

Jth boundary condition residual  
cylindrical  coordinate f o r  pint on spherical surface 
position vector of response point 

\ 

s t a t i c  equivalent ed&e membrane shear reaction 
independent variable 
position vector of stimulus p i n t  
typ ica l  stimulus surface vector 
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-L 

-unit tangent vector ( t o  curve C )  t Y  ta - 

displzrcement vector (three dimensional) 
column matrix f o r  displacements 
ctmnponents of surface vector displacement, normal and 
tangential  to curve C Unf ut - 

U surface vector displacement 

u, 5, % 
U Y  VY w displacement functions of pr alcme 

cy - displacements of point on shell 

displacement functions fo r  Problem I 

displacement f’unctions f o r  Problem I1 
displacement functions fo r  Problem I11 

wI 
uII’ “11) wII 
uIII’ vIIIJ wIII 

s t a t i c  equivalent t o  nomal. edge reaction 

independent variable 

dependent functions in  sets of d i f f e ren t i a l  equations 

geometric parameter of shell  

e l a s t i c  foundation parameter 
s t r a in  components ‘ey ‘$0 
polar coordinate ( for  spherical  surface) 
dimensianless constant 
curvature change cmponents 
eigenvalue 
shell  mass per unit surface area 
Poisson’s r a t i o  

‘ey uge 

dAmensionless c o n s t a t  
dependent variable 
pohr coordinate ( for  spherical surface) 
rotat ion of element 
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.dependent variable . x  
u1 natural a;n@;ular frequency 

Subscripts and Operators 

cu, BYy* 

i y  jyk. 

Greek indices denote cmpnen t s  of two dimensional 
surface tensors 
subscripzs asszciated with dzrections of surface unit 
vectors n and t; respectively 
lmr case Latin indices denote conmnents of three 

_I 

d. - 
dimensional space vectors (or range over three dimensions 
in matrix functions) 
upper case Latin indices range over four dimensions i n  
pseudo-vectors o r  in  matrix fbnctions 
denotes gradient of ( 

denotes 
denotes different ia t ion with respect t o  the variable 0 

denotes the operator ( ) O 0  + ( )" cot @ - ( ) cot cd 

denotes the operator L( ) - ( ) 

- 
) i n  two dimensional surface space 

differentiation with respect t o  the variable 6 

2 



Segmental N u m e r i c a l  iktegration 

In the numerical integration of equations (15) a51 i n s t a b i l i t y  condition 
arises from the large magnitude of the coefficient I / M .  

moderately large range Zn !i5, the integratian leads t o  a serious loss in sig- 
If extended over a 

nif icant  figures ( in  the superposition process). 
a segmental integration technique has been devised.* 

To circumvent this diff icul ty ,  

Briefly, the technique en ta i l s  the solutions of a succession of problems 
each of which is similar t o  the previous problem except f o r  the addition t o  
shell of a small segment associated with the angle A@. 
explained through a consideration of its application to the problem at hand. 

of equations (15); one of which (we c a l l  the "particluar" solution) is con- 
s i s t en t  with the  unit load singularity, the other three ("complementary" 
solutions) a re  l inear ly  independent solutions tha t  s a t i s f y  the no load bound- 
ary conditions at the origin. 
particular solution plus a l inear  combination of the three complementary 
solutions (or f o r  no load, we canit the par t icular  solution). 

The method is best  

Suppose that fo r  a spherical cap, Id s g1, we have four valid solutions 

A general cap solution is then made up of the 

Consider next the adjacent spherical segment, g1 S ld 5 !i52. Six 
l inear ly  independent solutions f o r  the segment may be obtained from equations 
(15) by l e t t i ng  each of the functions Yl through Y6 be non-zero independently 
as the i n i t i a l  conditions (at Id = IdI). 

solutions then provides the general solution f o r  the segment. 
A l inear  combination of these six 

Nine boundary conditions a re  now required t o  detemnine the three - 
coefficients of the complimentary solutions f o r  the cap plus the s ix  coef- 

f ic ien ts  of the segmental solutions. 
- \ 

Six of the required relationships a r i s e  

* 
The technique is similar i n  some respects t o  one developed by Kalnins. 
'reference 37 

See 



frcrmnatchhg the  fbnctions Y through Y at the juncture between the cap 1 6 
and the segnent. 
s e d  ways. 
remote boundary (@ = g2) of the segment. 
each of Yz, Y , and Y6 be nm-zero independently at @ = Z2' 

The remaining three c a d i t i o n s  may be selected i n  any of 
~n case (1) we l e t  the functions yZ, y4 and Y6 be zero on the 

In cases (2), (3) and (4) we let  
Moreover, i n  4 

the latter three cases we amit the cap part icular  solution i n  the superposi- 
tion. 
spherical  cap which consists of the old cap with the added segment. 

--- 
There results fromthese four cases four solutions t o  a new enlarge6 

The 
first of the result ing solutions is  a new part icular  solution f o r  the en- 
larged cap; the other three are new complementary solutions ( l inear ly  inde- 
pendent ) . 

- 

The process may then be repeated introducing a new segment, @ S 9 s g3. 2 
A successive introduction of new segments extends the spherical cap t o  a suit- 
ably m o t e  edge @ = $. 
u n t i l  e i t he r  of two 'conditions are met: 

The succession of problem solutions would continue 

(1) If 9 reaches the value n radians thus defining a canplete sphere, 
the process shmld terminate. 
at @ = TT, are  precisely that Y Y and Y should equal zero; hence, the 2' 4 6 
final "part;icular" solution' is the solution t o  Fundamental Froblem I. 

It should be noted that the boundary conditions 

(2) Since the functions Yi are  known t o  decay i n  the physical problem, 
if for any particular solution in the segmental process, the computed 
values of Y1, Y and Y are found t o  be negligibly small (where Y 

Y6 are  set equal t o  zero at pl = gn) the process is terminated. 
is equivalent t o  having found the significant portion of the complete spher- 

Y4 and 
This condition 

3 5 2' 

i c a l  s h e l l  solution f o r  Problem I. 

I 
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Spherical Geometry and Tensor Transformations 

In the discussian of the cmputational steps t o  obtain the Green’s 
function matrix, use is made of two surface polar coordinate systems, the 
global system which is fixed on the spherical  surface, and the relative 
system which is oriented w i t h  respect t o  a given stimulus point and a given 
response point. 
these two coordinate systems and transformation relationships far surface 
tensors, a th i rd  coordinate system is introduced: 
coordinate system wi th  i t s  origin at the center of the sphere, the y-axis 
along the global polar axis and the x-axis i n  the fixed meridianal plane 

To develop the required geometric relationships between 

A rectangular Cartesian 

e = 0. 

The fmdamental problems (I, I1 and III) which form the basis f o r  the 
influence matrices, are developed in  the relative coordinate s y s t e m  and i n  
par t icular  i n  terms of the  re la t ive  polar angle 9 which locates the response 
point w i t h  r e z e c t  t o  the stimulus point. 
required f o r  9. 

Consequently, an expression is 

- -  
I;et point S be the stlmulus point and have coordinates, Id, 8 i n  the 

global system. AGO l e t  point R be the response point having coordinates 
%, 8 i n  the global system. In Ehe relat ive system S is  a t  the origin and 
4 is the polar angle of R (8 = 0). 
Thea position vectors s and f respectively of S and R may be expressed i n  
the spacial  Cartesian coordinate system as: 

For convenience-we assume a un i t  sphere. 
a- - - 

-3. -2% -2 -.A s = s inFcose  i -C cos@ j + s i n F s i n 8  k 
-5. A A 
r = sin@ cos8 -i”+ cos@ j + sing sin8 k 

A A  
where i, j and care the usual un i t  base vectors. 

The angle between $ and 7? is the relative polar angle $. Hence, 
& A  cos$ = s r and s i n 3  = ,l-cos .$1-27; Id (b 1 

-\ 

where 2 is taken i n  the branch from zero to i-r radians. 

From equations (a) and (b), 3 and i ts  functions may now be found. 



A t  point -S, either scalar  or  vector st imuli  may act. The vector un i t  - 
s t b u l i  include pla, p2,, Fld Fza, C as defined earlier. 
vectors tangential  t o  the spherical  surface and may be resolved in to  compo- 
nents e i the r  i n  the global system or the r e h t i v e  system. 
matrices [A], [B], [C] and [D] deal with uni t  st imuli  defined in  the global 
system but the f'undamental problems require unit st imuli  i n  the re la t ive  system, 
8 transformation of vector components is  required. 

helpf'ul t o  define base un i t  vectors f o r  each system. 

and 7 respectively, i n  the increasing 
direction. Th? unit  -_  vector b2 is given by: 

These are uni t  
Q! 

As the influences 

To accomplish th i s  it is 

4 

1 For the global system we introduce the base uni t  tangent vectors b 

direction. and i n  the increasing 
-L 

2 
- 

--4 = (2 C O S T  - -3 csc 7 b2: I 

as may be v e k f i e d  from vector addition and the sketch below: 

b2 sin@ 

\ 

2 -.. 4% \ 

Then, as vector bl is perpendicular both t o  b2 and s, we have: 

bl = b2 x s 
- L A  -5 

f 
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For the re la t ive  coordinate system we introduce base uni t  tangent 
a t  A t  

vectors bl and b respectively, tangential  t o  the great c i rc le  f r o m  S 

to R - and i n  the appropriate perpendicular direction. 
t o  (c) and (d) are obtained i n  a similar manner. 

2: 
Expressions analogous 

A A -5, 

bi = (r - s cos#) csc er 

b; = s x b' 1 
-L A d  

We r eca l l  that f o r  any point on the contour curve C we have given the - 
uni t  surface vectors 
n bas components n 

and 2, as defined earlier. If in the global system 
given by: 

cy 

-* A 4 

n = n b  + n b  1 1  22' 

then fm t h e ' s k t c h  below we f ind the vector t must be: 
4 a A 

t = n b  - n b  2 1  1 2  

J 

61 
C - 

Fram the definit ions of un i t  vector stimulS we observe the components 
of these stimuli i n  the global systeni t o  be the following: 
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A 

Coefficient of bl Coefficient ofT2 

1 0 

0 1 

p l c V  

' p20! 

92 -3 

1 n2 F2a 

Q n2 -? 

n 

C 

The transformation relat ions of these vectors t o  the re la t ive  system 
A 

is t reated i n  the general case i f  we l e t  S represent a typical  stimulus 
vector. 
and i n  the relat ive system, we may resolve 
system aad equate vector expressions: 

If then S and S' are respectively the components of 3 i n  the global 
Q! Q 

in to  components within each 

a -4 A 

'b' + S ' i f i  = S b + S2b2 

Fram this  it is seen t h a t :  

sll 2 2  1 1  

- 5 a  
S i = b i * b S  + 1 1  

-..I -5 

§; = b2 blSl + 

o r  in more compact form 

§ ' = b  S 
cy QB B 

where 

a 3  
b i  b2S2 

b; b2S2 
- r &  

(with summation convection) 

\ 
\ 

A t  the response point R, response functions are first obtained in  - 
re lat ive coordinate s y s t e m  (from Fundamental Problems I, 11, and 111). For 
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A 
the influence matrices [A] and [D], the displacement response vector, u, 
requires transformation back t o  the global system. However, f o r  the 
influence matrices [B] and [C], the  scalar invariant residuals, expressions 
(33.1, only require the transformatim of the contour un i t  vectors 2 and 
fram the  global t o  the re la t ive  s y s t e m  (as the other f'unctions within the 

scalar residual expressions are already i n  the re la t ive  system). 
tntnsforma.tions we m u s t  again define appropriate un i t  base vectors. 

For these 

In the global system at a response point we define the base uni t  
tangent vectors < and 2 (analogous t o  rl and 2 for a stimulus point): 2 2 

-)r 4 
c2 = (??cos@ - J )  csc @ 

& A - L  
c = c  x r  1 2  

For the relative system at a response point we introduce the base 

2 
A A 

u n i t  tangent vectors ;i and cb, where c '  is tangential  t o  the great c i rc le  
t h a t  includes the stimulus point, but directed i n  the increasing 9 directlon; 
c'  i s  perpendicular t o  c '  i n  the increasing 0 direction, Hence, 
-*. a 

1 2' - 
= ( F C O S $  - z?) c s c g  

-.r A -L 

c '  = c '  x r 1 . 2  

Following a development similar t o  t h a t  f o r  the stimulus point, we 

obtain the transformation of vector 
t o  denote the re la t ive  system components) t o  the global s y s t e m :  

from the relative system (using primes 

u = c  u' 
Q w3 B 

where \ 
\ 



a 
For the transfomation of the unit vectors :and t (at contour points) 

from the global system t o  the relative system (as required for  the scalar  
islvasiant expressions 31) we obtain: - 

n l = d  n 

t ' = d  t 

CY cUg8 

a CUB B 

where the primed ccanponents are i n  the mla t ive  system, and 
-L a 

dae = e& . C8 



APPENDIX IV 

Algoritlrm f o r  Computation of the Green's Rmction Matrix 

The numerical computation of the Green's flulction matrix may be divided 
in to  two separate phases. F i r s t ,  the Fundmental Problems I, I1 and I11 m u s t  ~ 

be solved and the relevant response flrnctions represented i n  sui tably accurate 
yet numerically e f f ic ien t  approximate forms. Secondly, with the f'undamental 
problems solved and the response functions available, the elements of the 

influence matrices may be computed,which matrices are then combined t o  provide 
the Green's function matrix. We now consider each phase separately: 

J3mdamentaal Problem Solution 

1. The set  of first order d i f fe ren t ia l  equations (15) are solved numerically 
by the Kutta-Merson technique (using a l so  the segmental integration procedure 
outlined i n  Appendix 11), providing a set values Y 

spaced net  of points. 
f o r  a sui tably closely i 

0 
0 -  00  0 0  0 0 0  2. A t  each point the displacement Rulctions vI, vI, vI , vI , wI, wI, wI , 

0 0  
0 0  0 0  are computed from the equations (28). (uI = 0 from symmetry) WI Y W I  t 

3. bploying expressions (27) and the e l a s t i c  l a w  equations (6) the stress- 
Mg, &$ and @ are evaluated (also a t  each resultant functions Npi, Ne, $, e 

and Q are zero. 
' g  e' Mg 8' e point ) . 

4. From the expression f o r  Y4, equations (I&), Q 

5. Each of the displacement functions of step (2) and of the stress-resultant 
functions of steps ( 3 )  and (4) is  represented by a Chebeychev polynomial 
f i t  (minima f i t )  i n  each of separate ranges of the dependent variable @ . 
This provides the necessary response functions both fo r  Problem I(and fo r  
Problem 111, by vir tue of equations 30 which arise from the reciprocal 
theorem. ) 

is evaluated. 
pi 

\ 



6 .  For the  response function evaluation In the immediate neighborhood or 
d i rec t ly  under the uni t  load, a special approach is required t o  avoid d i f f i -  

cul t ies  arising fram singular i t ies .  Ln this case the concentrated load is  
replaced by a s t a t i c a l l y  equivalent dis t r ibuted load acting over a l i n e  
bs surface element of sui table  s ize .  
correspond t o  the s i ze  of the f ini te  element subsequently selected f o r  the 
influence matrix c m p t a t i o n s . )  The response at  the center of the element 
is then obtained by numerical integration of response due t o  the distrihuted 
load. 

(The s i z e  of the element should 

7. The set of first order d i f fe ren t ia l  equations (22) are solved f o r  the 

functions Ziy by the Kutta- Merson 
obtained from s tep  (5) is used fo r  

8. The displacement functions uII, 
woo are computed f o r  each point of 

0 

If 

technique. (The p o l y n d a ~ .  f o r  vI as 
-w i n  equations 22). - _.. 

9. The e l a s t i c  law equations (6) together with expressions (27) are used t o  
compute the s t ress-resul tant  f’unctbns (except fo r  Q and Q ) at each point. 

10. Theequilibrium equations (Faye) are then employed t o  evaluate the f’unction 
Q@ and Q0 at each point. 

11. The values f o r  response flrnctions d i rec t ly  under the uni t  load are eval- 
uated in a manner similar t o  s tep  (6). 

E3 0 

12. A Chebeychev minimax f i t  is  used t o  represent both displacement and stress 
resultant functions i n  each of the separate ranges of the variable @, provid- 
ing the required response flmctions f o r  Fundamental Problem 11. 

13. From relationships (30), the Chebeychev polynomial representation displace- 
ment functions are obtained d i rec t ly  f o r  Fundamental Problem III using the 
resul ts  of steps (5) and (6). 

\ 
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14. The cambinat3on of displacement ftmctions ( in  polynomial form, from 
step - 13) is used t o  obtain the stress-resultant flrnctions i n  polynumial form. 
The e m t i c  l a w  equations (6) and equations (27) are used fo r  this. 

The forgoing fourteen steps then provide us with the necessary response 
functions fo r  the three flmdamental problems i n  an e f f i c i en t  polynatnial fonn. 

Matrix Element Computation 

1. The surface of the spherical segment is sub-divided in to  NS surface elements 
with coordinates of element central  points specified. 
are assigned each element. Similarly, the bounding contour is sub-divided 
into NC L_ elemental arcs (also ident i f ied numerically) with coordinates of 
element central  points specified. 

- 
Indentifying numbers 

Additionally, the surface vector $, with 

cainponents n 

2. The position vector 2 and base vectors bl, b 

base vectors c“ 
on the contour) employing the equations (a), (c)  and (a) of Appendix 11. 

( in  the global system), is specified f o r  each contour point. 
cy 

( and hence, vectors $and 2 
c‘) are evaluated f o r  each central  point (on the surface and 1’ 2 

3. Star t ing with the first surface point and cantinuing through a l l  surface 
points, each point is taken i n  turn t o  be a response point. 
surface response point, each surface point i s  a l so  considered i n  turn t o  be 
a stimulus point. For each canbination (say, response point - r and stimulus 
point - n)  a contribution t o  influence matrix [A] is computed. If we consider 
matrix [A] t o  be a parti t ioned matrix composed of sub-matrices, one fo r  each 
canbination of response point and stimulus point, then the sub-matrix i n  the 

rth row and’nth column of [A] is  the 3 by 3 matrix of global displacement 
components f o r  each of three uni t  global stimuli. 
operations is  carried out t o  obtain,the sub-matrix f o r  row - r and column - n 
of [A]: 

Then f o r  any given 

The following sequence of 

n 
i) The re la t ive  polar angle @ and the transfoxmation coefficients 

and c are calculated employing the equations (b), (e), e6 
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(g), (i) and (j) of ATpendix 11. 
A 

ii) The response functions vIy w u are e w u a t e d  at  g .  I II' wII 

iii) The global response-stiaulus matrix f o r  point r and point m is - - 
then obtained from the relationship: 

, '  

to Relative (stimulus 

1 r l a t i v e  System J[ Transformation 
frm Relative Response-Stimulus Matrix from Global 

-- ( r e p s e  pt .)  Matrix 
-. --- - 

or symbolically: 

where  

LTR1= >I 
[R'S' 3 = 

0 

.e 11 

21 22 
C C 
- " 

I1 ~*~ 
W 

0 

0 I1 V 

b21 , b22 

iv) The resul t ing response-stimulus matrix is contributed t o  
influence matrix [A] as the sub-mtr ix  i n  row r and column n. - - 



4. For each surface response point (as described in s tep  - 3), each contour 
point is taken in turn as a stimulus point, t o  develxlp contributions t o  the 
influence matrix fD]. As with m a t r i x  [A], we consider matrix [DI t o  be a 
partitioned mat r ix  composed of three by four sub-matrices, one for each 
combination of a surface response point with a contour stimulus point (say, 
suflace point - r and c a t o u r  point 9). - 
folluwed fo r  each conbination of points: 

Tfie follaring sequence of steps are 

4 
i )  !Phe polar angle @ and transformation coefficients b and c a6 a0 

are computed as in s tep (3) .  
ii) Response functions vI, w , uII, vTI' WII, uIII' vIII' wIII are I 

evaluated at @ . 
is caputed 'from the relationship: 

i i i )  The global response-stimulus matrix fo r  point r and point p - - 

CRsI = [TRltR's' ][TsI 

where: 

[TR] is the same as step (3) 

0 I1 W 
CR"S'l = PI 

l o  
0 

- 
I11 W 

0 I1 -'III 0 U 

0 II V LYI  0 I11 V 
- 



- 
1 0 0 0 

n + b  n )  0 

n - b  n )  n + b  n )  0 
( b l l  1 I2 2 

Cb21 1 22 2 

n - b  n )  (bll 2 12 1 

(B1.2 22 1 

0 

0 

0 0 

0 0 - 

n -b n 

Cb21 n 2 -b 22 n 7 

(bll 2 I 2  1 0 

0 

iv) The result ing response-stimulus matrix is contributed t o  
influence matrix [D], as the sub-matrix i n  row r and column p. - - 

5. Star t ing with the first contour point and continuing through a l l  contour 
points, each point is taken i n  turn t o  be a response point. 
given contour response point each surface point i n  turn is considered t o  be 

a stimulus point. 
[B] is  computed. 
is considered t o  be parti t ioned matrix. 
are performed t o  compute the sub-matrix associated with contour point m and 

surface point n: 

Then f o r  any 

For each canbination a contribution t o  influence matrix 
The contribution is i n  the form of a sub-matrix where [B] 

The following sequences of operations 

- 
- 

CUB' c ~ 6  
i) The polar angle $and transfonaation coefficients b 

are computed as i n  step (3) .  and 
Ai) Response displacement fwct ions  vI, wI, uIIy vII, wn: as well 

as stress-resultant functions N $> Ne> Nge, Mgi, Me, Mge, $, 
Mi, M i e ,  Qg, Q (for Fundamental Problems I and 11) are eval- 
uated at g i .  

e 

We r e c a l l  that Problems I1 and I11 lack polar symmetry 
A 

and the functions u, v, w are defined as fwct ions  of 9 i n  
the expressions for displacement: - I - 

u = u sing v = v sing w = w sing 
It then I"01lows frm the e l a s t i c  l a w  equations (6) that the stress 



resultant fltnctians (and cmponents of grad w') are expressible 
as functions of each multiplied by either s i n  8 or  cos e . 

- Consequently, we may refer t o  the symmetric f'unctions, those 
with the cos Qcoefficient,  and t o  the anti-symmetric Functions, 
those with sinS'as the coefficient,  
and anti-symmetric response f lmct ims appears below: 

A separation in to  symmetric 

Symmetric 
e 

V 

W 
- 
- 
W0 

M% 

M0 
% 

Q, 

Anti - s m e t r i c  

U - 
W' 

In fkcdanental Problem 11 the  non-zero response f'unctions due 

t o  the stimulus component (unit tangent load) i n  the direction 
of base vector b' includes only the symmetric; the anti-symmetric 

-1 -L 

functions are due t o  the stimulus component i n  the b' direction. 
2 - 5 1  

For Fundamental Problem 111, the unit stimulus cmponent -- i n  the % 
direction produces only symmetric f h c t i o n s ( a t  the response point) 
while f o r  a unit stimulus component i n  the bi direction,the 
negative anti-symmetric response functions of 
is evaluated at  e = - . -  .n/2). 

A - 

\ 

* 

resu l t  (as s ine  



i i i )  The response-stimulus sub-matrix f o r  response point rn - (on the 

contour) and stimulus point n - (on the surface) is observed t o  
be residuals, RJ2 at point m - due t o  global force stimuli at 
point n. This sub-matrix is then calculated from the relation- - 
ship: 

tB1 = IP'S'lCTsI 
w h e r e  : 

[Tsf is the same as the corresponding matrix in  step (3) 

[R'S'] is ccanposed of the following columns: 

coLumn (1) cont4ns the selected residuals, R;, ( for  the 

specified boundary conditions) from Fundamental Problem I. 

column (2) contains the residuals, R i ,  associated with the 

symmetric f'unctions of Problem 11. 

colurq (3) contains the residuals, R;, associated with the anti-  
symmetric f'unctions of Problem 11. 

R' are the selected four sca la r  invariants ( f m  expressions J 
31) evalmted in the relative system, hence, containing n '  and 
e * .  

a - 
CY 

& A  

n' 
the  transformation relations:  

t '  are cmponents of u n i t  vectors n, t and are obtained fram 
CY' a 

n' = d n . t k  = d  t a a6 6 

i v )  The sub-matrix computed i n  s tep  ( i i i )  is contributed t o  the 

parti t ioned influence matr$x [B] i n  row m - and column n. - 
6 .  With each contour response point (as introduced i n  s tep  - 5),a contour 
stimulus point (taking a= points i n  turn) is associated t o  devebp 
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F 

P 

contributions t d  the influence matrix [C]. 

[C] is a parti t ioned matrix. It is composed of four by four sub-matrices, one 
f o r  each cmbination of response point with a stimulus point (say, contour 
p o b t s  m - and 2, respectively). 

As with other influence matrices, 

The following sequence of operations are  per- 
formed t o  obtain the required sub-matrix. - 

i) The quantit ies $ baq, ccuA, daa are computed as i n  s tep ( 3 ) .  

i i )  Response displacement functions vI, wI, uII, vII, wII, uIIIy 
V as well as stress-resultant ftinctions are  evaluated 
at (for each Fundamental problem). These f h c t i o n s  are 
separated into a symmetric, anti-symmetric dichotamy for Problems 

III' wIII 

11 and 111. 

i i i )  The response-stimulus sub-matrix is calculated from the relation- 
ship: 

= C R ' ~ ' l C T S l  

[TQ] is the same as the corresponding matrix in  s tep  (4) 

[R'S'] contains the following columns of elements: 

columns (1) through ( 3 )  are ident ical  w i t h  those of matrix 

[R'S'] i n  s tep  (5). 

column (4) contains the residuals, R ' ,  associated with the negative 
anti-symmetric response functions of Problem 111 (as computed in  
operation ( i i )  above). 

column (5) contains the residuals, R;, associated with the symmetric 
response f'unctions of Problem 111. 

J 

, 

R' are the selected four scalar  invariants described in  s tep  (5). J 



iv) The sub-matrix as cmputed above is contributed t o  influence 
matrix [C] i n  row m, column p - of sub-matrices. - 

7. With influence matrices [A][B][C] and [D] 
matrix [G] is obtained through the followfag 

i) [C"] is obtained by inverting [C] 

ii) The m a t r i x  [G] is then [G] = [A] - 

computed, the Green's fhnction 
matrix operations: 
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