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SHORT ABSTRACT 

(For Information Retrieval) 

A hydrodynamic model of plasma turbulence is developed. The cascade 
concept is utilized for the problem of closure. 
electrostatic energies are investigated for both the collisional and collision- 
less cases. The anomalous diffslsiw, called Bohm diffusion, is also derived, 
and found to play an important role in the nonlinear transport properties of 
the problem. 

The spectra of kinetic and 



1. INTRODUCTION 

There are several areas of marked similarity between the nonlinear 

wave interactions in electron-ion gas plasmas and in electrQn-hole solid plasmas. 

Such a similarity in turbulence has been demonstrated by Betsy Ancker-Johnson 

in solid plasmas by an experiment equivalent to that in gas plasmas, and has 

been stressed by Hoh2 on theoretical cowiderations . 
in gas and solid plasmas have been very sketchy, and up to dace, only some 

phenomenological and quasilinear considerations have been treated, valid for a 

weak turbulence. 

turbulence in the aim o f  analyzing the nonlinear interactions #cross the indivi- 

dual spectra and between the spectra of kinetic and electrostatic energies. In 

view of the similarity in turbulence between the solid and gas pla$miis, as 

mentioned above, we shall retain the notations of gas pJasmas in our theoretical 

development, and shall not attempt to discriminate the singular distinctions of 

solid plasmas. 

1 

3 Theories on turbulence 

In the following, we attempt; a hydrodynarpicsl model of strong 

2. CASCME SYSTEM 

We consider a quasineutral plasms consisting of ions and electrons. 

The ions have a velocity u, a charge e and, a mass M. A magnetic field of 

constant strength O,O,B, has a cyclotron frequency dc = eB/M, and is assumed 

large compared to the pressure force. The electrons are hot, and asswe a 

Boltzmann distribution 

ry 

r z L =  

for the number density n for electrons or ioos, n is the average dengity, a 

is the phase velocity 
0 

with an electron temperature Te and the Boltzmann constant K. 

product of the self-consistent electric potential by e/M. Write the Navier- 

Stokes equation of motion and the equation of continuity for the fluctuacions 

Further ? is the 
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transverse to the magnetic field; 

Here 3 is the kinematic viscosity, .E is an antisymmetric unit tepsor, and 

b' = 0,0,1. 

: Using:.the cascade deeampositim 

k 

Similarly for 3, f '  4 ', we find the following cascade 

s y s t em : 

t k O * V  
D a 
Dt a t  - - = -  
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where 

g o =  - 6x9 a d N  E ) =  - d V y  
represent the self-consistent electric fields mwltiplied by e/M. 

The variables go 4 y o  are called the large scale flucfua- 

tions, and the variables MI Cd- y'are called the small scale fluctuations. 
N 

The system o f  equations (3) and (4) has been derived from (l), upon 

substituting for (2) and Qn the basis o f  che following assumptions: 

(i) The variables %'and yovary slowly and the variables 2' and p' 
vary rapidly, so that a variable transition scale k can be used to distinguish 
between the parts by a local average, denoted by (. r >  . A Le- 

average over an infinite length will be denoted by a bar. Tbis is the assump- 

tion known as the quasi-stationarity assumption. 

(ii) The turbulent motions are isotropic 

in the plane perpendicular to the magn9t;ic field. 

and 

homogeneous, i.e., within an interval g-', as their averages have been so de- 

fined. 

The quantities U, y, &4* 

%' y '  are Qnly locally 
cc 

y o  are homogeneous generally, but the qvantities 

The equations of kinetic and potential energies are derived by 

multiplying (3a) and (3b) by Lc"; and y o  respectively, by averaging and using 

where 

or identically 

as shown from averaging (3b). We have denQted 

-iy = R " ( k = q ,  J = jo(k=D0) 
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The express ions  (6) and (7) a r e  t r a n s p w t  f enc t iops ;  Fore spec i -  

gk i s  a product ion func t ion ,  t ransforming t h e  k i n e t i c  energy i n t o  f i c a l l y  

t h e  p o t e n t i a l  energy i n  t h e  form o f  e l e c t r o s t a t i c  f l u c t u a t i o n s .  and 

),, J "  
of energy ac ross  t h e  k i n e t i c  and p o t e n t i a l  spec t r a  r e spec t ive ly .  

a r e  k i n e t i c  and p o t e n t i a l  t r a n s f e r  func t ions ,  desc r ib ing  t h e  t r a n s f e r  

The equat ions  (5) r e p r e s q t  the  evo lu t ion  of t h e  k i n e t i c  and poten- 

t i a l  energy spec t r a .  I n  t h e  un ive r sa l  range, i.e., i n  t h e  range of not  t oo  

small  4 , t h e  r a t e  of change of energy i n  t h e  po r t ion  (0,k) of the spectrum 

i s  not: very much d i f f e r e n t  from t h a t  i n  t h e  whole spectrum (0, DO ) which i s  

a cons tan t  i n  equi l ibr ium. Under such circumstances,  we s impl i fy  (5) t o  

no t ing  t h a t  

as,  by d e f i n i t i o n ,  t h e r e  i s  no net: energy t r a n s f e r  i n  t;he whole g g e c t r m .  

3.  TRANSPORT FUNCTIONS 

The t r a n s f e r  func t ions  (7) involve the  s t a t i s t i c a l  e f f e c t s  from 

t h e  f l u c t u a t i o n s  5' and J/' which a r e  c a l c u l a t e d  by incegra t ing  (4a) .  

During t h i s  procedure,  it i s  important t o  note  t h a t  t h e  func t ions  (7) con ta in  

a coupling wi th  uo o r  Po t o  i t s  f i r s t  power, and t h e r e f o r e  t h e  i n t e g r a t i o n  

of (4a) should s e l e c t  terms of such a coupl ing only,  f o r  t h e  genera l  average 

t o  make a non zero  con t r ibu t ion ,  a l l  o t h e r  terms having no con t r ibu t loe .  

Hence, w e  f i n d  t h e  stresses i n  (3) and (7) :  
Z Q  cyk au/L/ax > = -9, Q w L  

d 

(5'. V P J )  = ?A6 u y  
y ie ld ing ,  by a genera l  average, 
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u: (l4; a&& > - - - %  "2 V Z U O  
k 

L'k R" - - 
yo  (Lc'-VyJ'> - = -A/+ y0V')D0 

- = AkJe 
The terms V2LLQr N and V 2 P L  have been dropped on account of the homo- 

and 

genei ty  assumption (ii). From the  above ope ra t ions ,  we f i n d  
P O  

I n  t h e  d e r i v a t i o n  of ( loa)  from (4a) ,  we have dropped fhe  viscous a f f e c t .  

(b) The product ion func t ion  (6b), on the Other hand, does not  i n -  

volve a coupl ing with U* and y o  . Therefore ,  t he  de te rmina t ion  of  %' from 

(4a),  f o r  t h e  purpose of eva lua t ing  (6b),  should s e l e c t  terne without  a 

coupl ing,  a s  any t e r m  wi th  a coupl ing wi th  e Q o r  t o  i t s  f i r a t  power 

would vanish by a genera l  average. 

N 

Hence we f i n d  t h e  product ipn func t ion  

(6b) t o  be 

aga in  we have dropped t h e  viscous e f f e c t .  

4. TRANSPORT COEFFICIENTS 

The time integrationl of t h e  au to -co r re l a t ions  of v e l o c i t y  apd 

f i e l d  f l u c t u a t i o n s  de f ine  t h e  t r a n s p o r t  c o e f f i c i e n t s  

i n  (10). They a r e  very s i m i l a r .  

Using t h e  Four i e r  t ransform of a func t ion  t runca ted  wi th in  a t i m e  

i n t e r v a l  7 and a length  i n t e r v a l  w i th  

3~ = 72;+/rx3 
w e  can wri te  

where t h e  ba r  with s u p e r s c r i p t s  ( t ,x )  denotes  an average over  t i m e  and space 

wi th in  t h e  above mentioned t r u n c a t i o n  i n t e r v a l g .  Fu r the r  T, and 

Y-XL k k t  and t h e  Lagangian time i n t e g r a t i o n  g ives  
C V -  r y -  I 
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Here we have introduced the approximation 

Similarly we conclude that 

?% L G ~  4& 

- I  
Y 

'Ug 

Hence (loa) and (1Oc) become 

'lk = F q - '  ($'> 

9 = 32 wq-' q'=> 
k . 4  

Introduce the spectral functions F(k) and G(k) for the kinetic and poten- 

- tial energies respectively. We cae write - 
L- yot = /"..A 4 k 

/ 2 
Uo2 = I 

2 , "  
- 

0 0 

Ro = L J ~ ~ ~ F ,  J " =  2 & P C ;  
a 0 

and reduce (lla) to 

Since 

and 



we can rewrite (llb) in the form 

with 

the diffusion coefficient of Bob. It is foung to be proportional to 

Wc-: in contrast t o  the classical diffusion acrosg the magnetic field whiah 

is proportional to 

without demonstration. 

coefficient smaller than in (12c). 

";' . The formula (12~) has been proposed by Bohm 

His proposed formula contained an ewpirical numerical 

Formula (12b) determines 

$ = *  r U Q  

which substitution into (8b) produces 

The evlluation of according t o  (lob) requires equally g 
k 

Lagrangian time integration,with the paramgter Wc 

variable relaxation frequency Qy and we find 

in ( l l a )  replaced by a 

c! "h)  

( '2 9 

c.3 

J 4.c ( u l c ~ ) .  2 7  f 2 k  F / d *  0 3") 
k * T c l o  

The relaxation frequency @is to be determined by the very 

. We write quch a process for 
"k 

cascade process (5b) which introduced 

the energy band Gdk, according to (5b) 

or simply 

as 

in the spectral region dominated by 

We rewrite the system (13 ) ,  

follows : 

with the consideration of (lob), as 

yielding the solution 
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The formulas (12) and (14) aye the important expressions of 

transport coefficients needed in the determination of the spectra. 

5. ENERGY SPECTRA 

With the use of (12b), (12d) and (12e), we can reduce (8) to the 

sys tem 
t = v R  

determining the flow o f  energy across and between the spectra. Each spec- 

trum F or G possesses a source, a sink and a nonlinear cransfer across the 

spectrum. The source maintains the high Reynolds number of tyrbulence, 

in such a way that its structure does not appear directly in the universal 

range of the spectrum (range of large k), but its amwnt has to balance the 

total rate of energy dissipation. which was written on the right hand sides 

of respective equations (15a) and (15b). The sink is a dissipation of 

thermal origin: it is Yf?" proportional to the molecular viscosity due to 

collisions in the F-spectrum, and is 

diffusion in the G-spectrum. It: is to be remarked that the Bohm diffusion 

can also be considered as Qf thermal nature,since 

to a 2 = k G . / M  , according to (12c). Hente the qrnallest scale of 

the G-spectrum is the Larmor radius a c or A B / &  
dual spectrum, there exist6 an energy transfer characteristic of the non- 

linear interactions. This transfer is t R o  in the F-spectrum and &To 
in the G-spectrum. This description completes the energy flow in the G- 

spectrum, as indicated by (15b). Hpwever, the transfeF pf electrohtatic 

energy has to be driven by the kinetic energy, requiring a coupling term of 

equal value 

7" proportional to the pohm 
3 

A& is proportional 

. Across each indivi- 

= X,J" 

see (12e). This coupling is an additional loss to the F-spectrum. In this 

way, we have completed the flow of energy in the F-spectrum, as indicated by 

(15a). 
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6. SPECTRUM IN A COLLISIONLFSS PLASMA 

The equations (15) represent a system of rather complicated and 

comprehensive dynamical processes. Sivplifications are necessary for their 

solutions. To this end, consider first the case wlpere the collision is 

negligible. The F-spectrum transfers its energy across the $Recfrum by an 

amount L' R" , to be converted into electrostatic energy, 
perpetuates its full pattern (15b). In order to assure this flow effect- 

ively, the F-spectrum,'khich plays the role of a driving force, phould have 

a high Reynolds number, and therefore should be in the inertial range, 

while the G-spectrum, having a low Reynolds,number, is in the dissipative 

range, in view of the dominant Bohm diffusion causing an early drop of the 

G-spectrum. 

The latter k 

The interactions between tan inertial F-spectrum and a dissi- 

pative G-spectrum can be simply described by a differential form of (15), 

d J "  - , \  - = o  written as follows: dR" 
?4 &k B dR 

and obtained by the approximations 

R" Z 0, 7"s 7, 
An addition of the two equations (16) gives 

d R 0  
'k 

/\A A. 

yielding the solution 

in the inertial subrange. It entails frov ( $ 4 )  and (15b) 

in the dissipative subrange. 
-5 

The spectral law k , as predicted by (47b), has been verified 

Dimensional, arguments based on the parameters a and WC 
4 

by experiments. 

have proposed earlier a spectral law, forprovisional experiment31 usage, 
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Since a spectrum should have Lts magnitude dependent on the rate 

of dissipation, the proposed formula (17c) cannot be fully valid. 

7. SPECTRUM IN A COLLISIONAL PLASMA 

The collision is assumed to dominate the coupling term 

decoupling the two energy equations (15a) and (15b). The F-spectrum in 

the inertial subrange is determined by (15a), reduced to 

giving the solution 

Under the inertial regime (18) of the F-spqctrum, the G-spectrum 

is determined by (15b), rewritten in the form 

or, after integration and use of (14). 

where 
% 'A (3 = (Z7/&) , 

The formula (19) for the G-spectrum reduces to its jnerfial law for $<< /$ 

and to its dissipative law, for R 5* kB , 

The transitions from the inertial law (20a) to the dissipative law (20b) 

occurs at the critical wave-number j3'L'34B . 

8. CONCLUSIONS 

By means of a hydrodynamic model, valid f o r  a plaspa of hot 

electrons and cold ions, we have established the development of spectra of 

kinetic and electrostatic energies. The nonlinear interactions have been 



described by two transfer functions valid for the nonlinear transfer of 

modes across each spectrum, and by a productian function serving the coupling 

between the two spectra. The closure problem, as characteristic to any 

nonlinear system, has of course to be solved, and in the present theory, the 

approximation is resorted to the cascade concept. The cqncept helped in 

the derivation of the equations for the energy spectre, and in the formula- 

tion of a "turbulent relaxation frequency". 

important in determining the structure o f  turbulent transport coefficients 

entering in all the above nonlinear transport phenomena. Finally the 

equations of energy spectra are solved for the collisonal and collisionless 

cases. 

in gas plasmas. It seems that experiments in solid plasmas, which often 

are simpler, should soon be able to check the theoretical predictions 

more fully. 

The latter frequency is very 

Some of the theoretical results have been confirmed by experiments 
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