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ABSTRACT

A mechanism is proposed to explain the mass-loss observed for luminous,

hot stars. We show that the ultraviolet resonance lines of ions such as SiIV,

CIV, AV, and SVI can give strongly negative effective gravities in the outer

parts of the reversing layers of hot stars. We argue that a static reversing-

layer is then no longer possible ai.d that a continuous outflow of mass occurs.

To calculate mass-loss rates resulting from this mechanism, we formulate the

problem of steady-state, moving reversing-layers. From numerical solutions

of the equations of this problem, the mass-loss rate is found to be ti L/c2;

the evolution of the star is therefore not disturbed significantly. The do-

main in the (log Teff, 
log g)-plane where the greatest mass-loss rates are

expected is also approximately determined and found to be roughly consistent

with observation. Finally, the problem of the supersonic flow to large dis-

tances from the star is briefly discussed.
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I. INTRODUCTION

Recently Morton (1967a,b) has obtained spectra in the far ultraviolet

for three early-type supergiants showing that the resonance lines of such

ions as CIV, NV, and SiIV have P Cygni profiles (i.e., an undisplaced

emission line with a blue-shifted absorption component). Carruthers (1966)

has since reported similar observations for several stars including the 05f

star { Puppis. Interpreted clasically, the P Cygni line profiles imply that

these stars are losing mass and that the terminal velocity of the flow is

1%,2500  km/sec. Morton's discovery therefore confirms other evidence, which

he has reviewed (Morton 1967a), that luminous, hot stars are losing mass.

To explain this mass loss, one might first consider Parker's (1958)

solar wind mechanism; that is, to suppose the outflow results from a hot

stellar corona that cannot be contained by the star's gravitational field.

This would require, however, that the enthalpy (=5kT/m h for ionized hydrogen)

of the gas in the acceleratirib flow be sufficient to provide the kinetic

energy per gm. of the gas moving with the terminal velocity. From ;:his condition

and the observed terminal velocity, it follows that the temperature in the

accelerating flow must exceed 1070K, and we note that the ions CIV, NV, and

SiIV would then be destroyed by collisional ionization. The considerable

widths of the absorption components of the P Cygni line profiles prove,

however, that these ions do indeed exist in the accelerating flow. Accordingly,

we conclude that mass loss by hot stars is not a consequence of a hot corona.

M
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In this pa•)er, therefore, we develop the proposal (Lucy and Solomon

1967; "Paper I") that the maz;s loss results from the pressure exerted on the

gas by absorption of radiation in resonance lines, especially those of

abundant elements with wavelengths in the region where a hot star's continuum

flux is greatest. We shall show that near a star's surface the force per gm.

due to radiation pressure can exceed the star's surface gravity, thus making

a static atmosphere unlikely. We are then led to formulate the problem of

steady-state moving reversing-layers, the solution of which allows mass-loss

rates to be predicted.

The svggestion that radiation pressure can result in mass loss was

discussed over forty years ago by Johnson (1925) and Milne (1926, 1927). More

closely related to the present investigation, however, is Pikelner's (1947)

suggestion that atoms such as C, N, 0, and S may be ejected from hot stars

by the action of selective radiation pressure. The main difference between

our work and these early investigations is our emphasis on the hydrodynamics

of the problem as distinct from the expulsion of individual atoms.

4
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II. TEE 1• KhANIS1.1

In stellar atmosphere calculations for hot stars the support provided

by radiation pressure is commonly taken into account by writing the equation

of hydrostatic equilibrium as

dP	
(1)

dx = -F'eff P = -( g- g,R ) P

where P is the gas pressure, p is the density, g = G M,/R2 is the star's surface

gravity, and 
geff 

is the effective surface gravity. If 
7F  

is the radiative

flux at frequency v and B v is the total extinction coefficient per gm.

(absorption plus scattering), then g R , the amount by which the gradient of

radiation pressure reduces 
geff 

below g, is given by

W

gR =
n

J
csvFvdv

U

In order to drive material from the star by having geff ` 0 near

±.	 the surface, equation (2) suggests that frequenci?s where B y is large

4
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(e. ts., within l'nes)s: -uld be considere 1. iJormally, of co-rse, F  is small

when 
v 

is large; in particular, F  m 0 v-1 at large optical depths, so that

the contribution of a given frequency interval to g  does not then depend on

Sv . This behaviour no longer holds in the reversing layer, however. We shall

show that absorption in resonance lines can indeed give geff ` 0 close to

the star's surface.

a) An Upper Limit to the Contribution of One Line

We may get an upper limit, (gR ) 0 i , to the contribution of one line to

gR by supposing that the continuum flux F at the line frequency v is not
V 	 0

reduced by line absorption. This gives

00
TrF

V	 n.

( g-1l ) o = - c
0	 P1	

s  G' V

i

0

where n  is the number density of absorbing ions and s  is the line absorption

coefficient per ion. if n  is the number density of the atom in question,

including all stages of ionization, and nif is the number density of hydrogen

atoms, then equation (3) may be rewritten as

t

(3)
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(8 ) o = 

nFV0	

n 	 n 	
2X	 ,re 	

f
R i	 c	

nIf	 n 	 mli
	 m 

e 
c	 (4)

where X is the abundance of hydrogen by weight and f is the oscillator strength

of the transition.

To have any possibility that g  > g as a result of line absorption,

we must obviously have i(gR)oi >> 9 . Let us therefore consider, as an example
0

to be used throughout this section, (gR) 
i 

for the stronger component of the
0

CIV doublet at 1548 A in an atmosphere with effective temperature Teff

25,1200K (log Teff 
= 4.4). At this effective temperature the line is in the

wavelength region where the star's continuum flux is greatest; therefore, to

a good approximation, we may se' F V= D V (`Lrff, , where B"' is the Planck
0	 0

function. If we also take n C /nIi = 3.3 x 10_ 4 (Allen 1963), f = 0.2 (Varsaysky

1961), and X = 1, then

n,
1

log (gR 01548 = 5.47 f log	 n
C

Comparing this with the typical value log g = 3 for an early-type supergiant,

we see that the upper limit for this one line exceeds g by a factor of 300

when all carbon is CIV (n i = nC).

e

(5)
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b) Correction fo- Line Formation

The actual contribution of a line to L^, may be written as

(CAE ) = T • (gR)0i
i

where T Is a correction factor allowing for the formation of the line. If

r  = Fv /Fv is the residual intensity at frequency v within the line, then
0

T is obviously giver.. by

m

r s dv
o	 v v

T = 

o l s dv
V

To calculate T , we suppose that the reversing layer is a region where

only line absorption occurs and, as -we are discussing resonance lines, we

adopt coherent scattering as the mechanism of line formation. if we assume

also that the scattering is isotropic and use EddinLton'3 approximations,

then the residual intensity throughout the reversing layer is (see, e.g.,

Ambartsamyan 1953, p.113)

(6)

(7)
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r y =	 1 3	 .	 (8;

+
^ Tv

where 
T  

is the optical thickness of the reversing layer at frequency v

within the line. (The residual intensity is independent of depth because for

pure seatterin(; problems flux is conserved at each frequency.) Substituting

this expression for r
v 

into equation (7) and considering only the Doppler

core of the line profile, we obtain

00

U/	
1	 dz	

z^
	

(9)
T 0 + e

--a

where T o is the optical thickness of the reversing; layer is -^'-ie line center.

This integral occurs in the theory of the curve of gro^rth and may be expanded

in an asymptotic series valid for 1nT 0 >> 1 (:;enzel 1936). Keepin6 oidy the

leading term, we have

Y	
3l^.(4 T 0 1 _	 (lo)

3 3n 	 T 0

which may be approximated by 3.5 /T o . CombininE this approximation with

equations (5) and (6), we find that the C IV lice alone gives 
geff ` 0 for
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the model under consideration (log T
eff - 

4.4, log E = 3) if

n
'i	 > i0-3 T	 (11)

n
c

Thus, provided T < 103
0	

, the effective gravity will be negative in those

parts of the reversing laver where carbon is predominantly CIV. To see if this

condition can be mel. in an atmosphere with these parameters, we must examine

the ionization equilib_ium in the reversing layer.

c) Ionization ;.quilibrium

The character of the ionization equilibrium is determined by the

relative importance of photoionization acid collisiunul ioniza tion. For a

given ionization potential, Xr = by r' the pliotoionize.tion rate, r, is a
c

function only of the radiation temperature, T x ; the c.ollisional rate, 1'C,

on the other hand, is determined by the electron density, ne , and the electron

temperature, T e . The ratio of the two rates is

f

ti
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11

00

Lv(7'R)

rR =	 yr 	 by	
av dv

F
C	 e	 r e

n < Q v >

where or is the cross-section for collisional ionization, v  is the electron

velocity, and a
v 

is the photoionization cross-section. B8hm (1960, p. t01)

has given approximations for these quantities from which we derive

1/2	 3
rR = 6 x 1010 l

e 	Xr

F 	 ne

where TR = T
e
 , by r / kT 

fi "- 
1, and the units of X r are electron volts.

Let us now apply this result to the ionization of CIII ions (X r = 47.9 eV)

in the atmosphere with log Teff 4.4 and loo g = 3. `faking T. = 0.7. Teff

= 17,600
0
 K and n  = 10 14cm-3 , we find r  / rC = 9 x 103 , so that collisional

ionization may be completely neglected. This conclusion applies for all the

calculation:, reported in this paper.

The appropriate ionization equilibrium is therefore a balance between

photioionization and radiative recombination in a manner familiar from studies

of planetary nebulae, except that W, the geometrical dilution factor, is now

not small. If we neglect photoiorizations from excited states, the relative

t

(13)
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abundance of the r and r+1 stages of ionization is given by

n	 n	 2w	 (2nm kT )3/2	
l 112	 Xr

r+n e = 1-^ . D.	 r+1	 e 3 N	 e

R	

e IcTR	 (14)
r	 r	 2 i	

i'

where w  and wr+l are the statistical weights of the ground states, and D

is the fraction of recombinations goint, to the ground state. If a n is the

recombination coefficient to state n and n  is the principal quantum number

of the ground state, then

a 1
D	 n

Eta
u n

which we calculate assuming hydrogenic _ • ecombination rates (Bates and Dalgano

1962, Table 1).

The ,justification for neglecting, photoionizations from excited states	 1

and assuming hydrogenic recombination is the extreme sensitivity of 	 I

nr+l / n  to Tx - changing; TB by only 10000K gives a factor - 4 in the

ionization equilibrium. Therefore, since the brightness temperatures of hot

stars in the extreme ultraviolet are not known accurately, our treatment

of the ionization equilibrium is entirely adequate.

rl

(15)
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d) A Model for th-, Reversing Layer

Because the Doppler width, AV D9 is large compared with the damping constant,

the absorption coefficient at the line center is determined only by the Doppler

effect. The optical thickness of the re3ersin^ layer at the line center is

then given by

w

3n e2	 f	
(16)t O 

= mec	
AV 	

Nabs

where Nabs is the column density of absorbing ions. For resonance lines, we

may take the number density of absorbers n  equal to n r+l , the number

density of atoms in the appropriate stage of ionization. This gives

00

id abs	 I nr+l dx	 (17 )

0
To evaluc."e this integral, we sup pose that

	

n  = (no ) p e 
H 

with R = 
ge

	
(18)

where (ne ) p is the photosphiric electron density and H is the scale-height

of the reversing layer. This formala holds for a plane-parallel,-isothermal,



(19)
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hydrogen atmosphere that is fully ionized and in which radiation pressure

contributes negligibly to the support. If we further take T e , T  and W

to be constant in the reversing layer, then equation (14) may be rewritten as

	

nr+1 ne	 nr+l ne
n	 -	 n
r	 r	 p

which shows that the degree of ionization increases with height in the revers-

ing layer because of the decreasing electron density. Formulae (18) and

(19) allow the integral (17) to be solved analytically; the result is

	

nn(r^e	 n	 n

jabs nF. H
	

r	
p	 nr+l	

nr + 
rnr-1 p

	 (20)

	assUaingthat (n /n ) « (n /n	 ) . notice that the factor (n n /n )
r+1 r p	 r r-1 p	 r+1 e r p

is independent of (ne ) p , so that if 
abs

depends on (ne ) p only through the

logarithmic term.

Let us now apply these results to the atmosphere with log Teff 4.4

and log g = 3, assuming it to be pure hydrogen and fully ionized, If electron

scattering; is the dominant source of continuous absorption and we take

T = 2/3 as the base of the reversing layer, and if we again neglect support

by radiation pressure, then
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(ne )p = 3 (Iia e ) -1	(21)

where a  is the scattering coefficient per electron. If we set T  = 0.7 Teff,

the scale height h = 2.9 x 109 cm anc (ne ) p = 3.5 x 10i4 cm -3 . Then, with

T  = T  in equation (14), the ionization equilibrium for CII-III-IV is

(nr+l/nr )p = 2.0 x 10-7 and (nr /nr-l )p = 0.22. Substitution of these values

into equation (20) with nC /nH = 3.3 x 10-4 gives ;dabs = 9.4 x 1014 cm -2 .

We then find from equation (16) that t
U 
= 88.3, assuming that Doppler

broadening arises only from thermal motions. The corresponding correction

factor for line formation from equation (9) is T = 3.4 x 10-2 , so that from

egsations (5) and (6) we have

log (gR ) 1548 = 4.0 +log nr+l	
(22)

C

This one line therefore gives geff ` 0 for those layers where more than

10% of the carbon atoms are CIV ions. From equation (19), we find that

this ,pplies to those layers above the point where log n  = 8.85.

Thus, for this particular model, the layers above the point where log n  =

8.85 have geff ` 0 because of absorption in this one line; consequently, these

layers are gaining outward momentum from the radiation field at a greater

rate than they are gaining inward moo._ntum from the star's gravitational

attraction. In this circumstance, these layers will be expelled from the star
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and we may reasonably suppose that a continuous outflow of material is then

set up. This outflow we identify with the mass loss inferred from observation.

Above we have considered the CIV 1548 R line in an atmosphere with

log Teff - 4.4 and log g = 3. For atmospheres with different parameters,

there are other ions with resonance lines in the ultraviolet capable of giving

g
eff ` 0 in the outer parts of the reversing layer.

III. 110VING REVIMSING-LAYERS

Having argued in §I1 that the hot, luminous stars observed to be losing

mass do so because their reversir, layers cannot be in hydrostatic equilibrium,

we now study the outflow from their atmospheres. In particular, we wish to

calculate mass-loss rates for these stars.

a) Hydrodynamics

We shall suppose that the flow is spherically symetric and steady. Then,

if v is the velocity at radius r, the mass-loss rate is

dr - 
4 n ^r 2 pvd t -

e

(23)
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e

and is a constent of the flow. low, frcm solar-wind t.neory (Parker 1958;

1960a,b), we know that the only solution of the hydrodynamical equations

satisfying the boundary condition of zero gas pressure at infinity is subsonic

near the star and supersonic far from the star. For such a solution, any

constant of the flow must be determined by the subsonic branch of the solution

because in the supersonic flow information carrot be propagated upstream.

Therefore, to calculate the mass-loss rate, we need only consider the flow

up to the sonic point.

Assuming the sonic point to be close to the star's surface, we adopt

plane--parallel geometry for the subsonic flow. The equation of motion for

steady flow is then

dv _ _ 1 dP
r^ix	 p dx - geff

and the continuity equation may be integrated to give

V

1

(24)

pv = J ,
	

(25)

where J is the constant mass flux through the atmosphere. To complete the

system, we need ! -i equavion giving the rate of change of the entropy of the

gas due to the emission and absorption of radiation. Here we avoid this

complication by simply assuming the flow to be isothermal. Equations (24)
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and (25) may then be combined into the single equation

(v2_a2 1 dv =
-v dx	 6eff	 '

where a = 3(P/p) is the Newtonian speed of sound.

From equation (26), we see that a necessary condition for a finite

velocity gradient at the sonic point (v = a) is

g
eff - 0 when v = a	 ,	 (27)

which is the analogue for this problem of the condition at the critical

point in solutions for the solar wind (Parker 1960a,b). As we shall see, this

condition pleys a crucial role in determining the mass flux J.

b) Radiative Transfer

In the present problem, the radiation field acts as a source of momentum

for the gas flow, the mechanism transferring momentum being absorption by

ions with ultraviolet resonance lines. Such an ion sees a radiation field

comprising; an approximately isotropic compon!c:t made up of photons scattered

in the resonance line and a strongly anisotropic component made up of

(26)
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continuum photons. This suggests that the momentum transfer may be approxi-

mated by assuming that the gas gains momentum only by absorption of con-

tinuum (unseattered) photons. The transfer problem then reduces merely to

the calculation of the extinction of the continuum radiation. Thus, if

1 0 (u) is the specific intensity of the continuum radiation at angle cos -1
 
11

to the local normal, the transfer equation to be solved in the moving re-

versing-layer is

dI 
V

	 i	 o
y	 _ -lv ( v - v i ) a I	 (28)

V

where 
1  

is the line absorption coefficient per gm., v i is the line fre-

quency, and v is the frequency of the radiation seen by the mU.ing medium.

If v is the frequency in the rest frame of the star, then

vl = v ( 1 - cv )
	

(29)

e

In terms of the solution of equation (28), the contribution of line:, to gR 	
I

is given by
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gR = c^	
lv IV v dude	

(30)
J

	

0	 0

This double integral has to be calculated qt every step in the solution of

equation ( 26) since the right hand side of that equation is 
-geff 0 % - g.

Although the contributions of lines to g R is the dominant effect, the

contribution of electron scattering cannot be neglected for models with low

surface gravities. We therefore vrite geff a 
g- % with gR given by equation
s

(30) and g given by
e

i

g = g - nF	 a	 .	 (31)*	 c	 I

where R F is the integrated flux and a is the electron-scattering coefficient 	 I

per gm.

For the cor.inuum flay: at the line frequencies, ve take F
v U Bv(Teff)^

Thus, if we ignore limb - darkening, I v (v) a Bv(Teff) is the obvious

boundary condition for the transfer equation at x = 0, the base of the re-

versing layer. However, the contribution of each line to % at x a 0 is

then (gq )i (see 4 IIa), no that an abundant ion at x a 0 gives gR >> g.

We avoid this by taking
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IV 
(u)
	

0 +1	 Bv(meff) at x = 0
	

(32)
V

which allows approximately for a reduced flux in the line already at x = 0

and always gives % < g at x = 0. The important ions in a given solution only

become abundant hi t;h in the reversing; layer so that for them equation (32)

reduces to I0	
v= d(Teff)'

c) An Upper Limit for the 144. =s Flux

In Paper 1, we briefly reported calculations of mass-loss rates made

under the assumption that the contribution of each line to 
g;rt 

was (g 0x)i

(cee 4 IIa). Since ((;1; ) 0 is a function only of n e when Te , TK and W are fixed,

the condition 
g
'eff = 0 at the sonic point then reduces to an alo ebraic

equation for n  at v = a, which in turn determines the mass flux J = m11nea.

Because attenuation of the continuum radiation is ignored in such calculations,

there is no limit to the moment ,.= that may be transferred to the gas.

This can result in such a high mas^ flux that the momentum flux at the

sonic point ( =Ja) is greater than that available by the absorption of

continuum radiation in the lines. When this occurs, the calculation is not

consistent.

This consistency check for the calculations of Paper I may be used to

derive an approximate upper limit for the r;ass flux. Let us consider an ion

I



6

22

with a resonanc e line at v = v i . As the gas accelerates from small velocities

up to the sonic velocity, the rest frequency of the continuum radiation absorb-

ed in the lire center shifts from v, to v.+uAv, where Av = ay .. Thu:, if the
i	 c i

line width is « Av, the frequency interval from which this line transfers

momentun, to the bas in the subsonic flow is (v i , v i+Av). The total momentum

available in this interval is TrF Av/c , which must therefore exceed the
V

momentum flux Ja of the gas flow at the sonic point. After substitution for

Av, this condition gives

nF v.
V. 1

1

J	 < 2
c

(33)

which may also be derived from the basic equations of the problem.

For black-body radiation, the frequency of maximum emissions v  is

such that B
v	 m

v = 0.58 x (uT4 /n). Th refore, since the lines we are dis-

II

cussing are in the .requency range where the star's flux is greatest, we

expect that Fv	 vi = F, the integrate:! flux. We then have

i

J < nP
ti —

G
c

(34)
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We now note that the star's luminosity is 4rr1i 2 x nF and that the mass-loss

rate is LaR 2J. An approximate upper limit to the mass-loss rate when only

one line is considered is therefore given by

d" L	 (dt	 2	 35)
c

Thus we have the interesting result that the mass-loss rates expected from

this mechanism are comparable with the rate at which a star loses mass because

of the mass defect of the nuclear reactions in the stellar interior.

IV. RESULTS

In this section we give numerical solutions of the equations of the

simplified theory of moving reversing-layers formulated in §III. Additional

calculations of the effect of resonance line absorption on static reversing-

layers, using the simple model described in FId, are also reported.

a) Important Lines

The resonance lines included in our calculations are listed in Table 1.

The ionization potentials of these ions are appropriate for the atmospheres of

hot stars and the ions are from abundant elements. The oscillator strengths

I
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for these lines were taken from Vsrsa ysky (1961) and the abundances of the

eleiaents from Allen's (1963) compilation. Limes from excited states were

entirely neglected because the reduced population of the excited state 	 -

relative to the ground state and the smaller f-values usually combine to

make them unimportant. For VIII and SIV, however, there are low-lying excited

states (excitation potentials 0.02 and 0.12 eV) that are not unimportant,

but which were not included.

Note that the wavelength separations of the components of the doublets

in Table 1 are sufficiently large that they act independently in the subsonic

flow. Beyond the sonic point, however, the velocity may well become large

enough that the long wavelength components are deprived of continuum radiation

as a result of absorption in the short wavelength com ponents at smaller

velocities.

b) Approximations

The following approximations were made in the computations:

(i) The line absorption coefficient, l v (v- ,) i ), was approximated by a

pure Doppler profile when Iv-
v i I - 26v  and by the sum of the Doppler profile

and the pure damping profile when Iv- v i I > 20v D . This approximation for the

Voigt profile is excellent if the damping constant, y, is such that

yAn << AV  (see, e.g., Anbartsumya:: 1953, p. 138). For most of the cal-

culations the damping constant was taken to be y 0 , the classical value,

which mould be a good approximation for resonance line absorption at low

densities.	 '
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(ii) The electron temperature and the radiation temperature throughout

the moving reversing-layer were set by the formulae: T  = T  and T  s 0.7 Teff*

These formulae are intended to allow roughly for the result from model

atmosphere calculations (see, e.g., Mihalas 1965, , Fig. 2) that the surface

temperatures of hot stars are somewhat lower than the grey atmosphere

result: TO = 0.81 Teff'

(iii) The degree of ionization in the flow was calculated assuming

ionization equilibrium (eq. [14]) with the dilution factor W = 1/2.

(iv) The double integral for % (eq. (301) was evaluated with a

25-point trapezoidal gaudrature formula spanning the frequency of each

line and a one-point formula for the integration over p (with the point at p=2/3).

(v) The electron pressure, P e , at x = 0, the basc of the moving reversing-

layer, was calculated from the formula: log P e = log g - 0.5, which

corresponds roughly to t = 0.25. (The results are quite insensitive to this

choice.)

c) Details of the Calculations

A solution of the equations for a moving reversing-layer is obtained with

the following steps:

(i) The parameters of the problem, log Teff and log g, are specified

and a guess made for the mass flux J.

(ii) The velocity at x = 0 is calculated from equation (25) using the

guessed value for J and the density calculated from the specified values of

0
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i

T  and Pe (assuming pure hydrogen).

(iii) With the velocity at x = 0 now known and the specific intensity

at x = 0 given by equation (32), the differential equations (26) and (28)

may be integrated as an initial value problem. (The order of the system

depends on how many lines are included; if five lines are important in a

given model, the order is 5 x 25 + 1 = 126.)

(iv) In general the value of J will be wrong; the integration will

therefore not fulfill the condition: geff - 0 at v = a (eq. [27)). The

mass flux J is then decreased if geff ' 
0 as v -+ a and increased if geff i 0

when v < a. (Notice that decreasing J increases the degree of ionization in 	
IF

the flow because of the smaller electron densities.)

(v) The steps (ii) - (iv) are then repeated until the mass flux J is

determined with sufficient accuracy.

d) Solutions

From a large number of models, calculated in this way, we have con-

structed Figure 1, which shows lines of constant log J (the units of J being

gm • cm 2. sec -1 ) in the (log T
eff , l'og g)-plane. We see that the mass flux

is high for the parameters (log T
eff 

4.4 - 4.5, log g = 3.0 - 3.5) corres-

ponding to the early-type supergiants and also for the parameters (log Teff

ti 4.6, log g ti 4) corresponding to the Of stars. The mass flux is also high,

however, for early-type main-sequence stars (log T
eff = 4.35 - 4 .5, log g =

4.2) for which there are no observations indicating mass loss.

To get the actual mass-loss rate frcm J, we must also
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specify the star's mass, radius, or luuinosity. In terms of the star's mass,

the mass-loss rate is

d--.r	 _ 4 irGJ

d- t	 g	 (36)

Applying this formula to the model with log Teff 4.4 and log g = 3:0 for

Q	
which log J = -7.69, we find the mass-loss rate is 1.1 x 10 -8 " /yr if the

star's mass is 20 7
c

Solutions are not given in the region of the (log 
Teff; 

log g)-plane

where g* (see eq. (311) is negative, for then not only is a static atmosphere

impossible but also a static envelope. This follows because both F and g

are a r -2 deep into the star; consequently,if g. < 0 in the atmosphere, it

is also negative throughout the stellar envelope. In this circumstance, we

would expect the entire envelope to be expelled on a short time-scale. The

region where g* < 0 is therefore obviously not relevant for stars that are

steadily losing mass with imperceptible motions in their photospheres.

Some understanding of the behaviour of the solutions may be obtained

from Figure 2, which shows various properties of the solutions as a function of

log Teff when log g = 3.5• The fractional contribution to gR of the lines of

the various ions at a point in the flow ,just below the sonic point is plotted

in the upper diagram; the logarithm of the fractional abundance of each ion

at the same *lint is plotted in the middle diagram; and log J is plotted in the

_

5	 '
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lower diagram.

Figubee2.,sh6ws.that the ions primarily responsible for the outflow are:

SiIV for log Teff 4.23-4.36, CIV for log T
eff	

4 . 38-4,51, and SVI for

log Teff 4 ' 52-4 ' 64• Taking CIV as an example, we see that its lines first

become effective when n(CIV)/n C = 0.01 at the sonic point and cease to be

effective as soon as n(CIV)/nC = 1. When the lines first become effective,

the column density of CIV ions is so small that the contribution of each

component of the doublet is = (gR ) i (see Ma); .:onsequently, only a small

abundance fo CIV ions at the sonic point gives g R = g* . With increasing

Teff' the column density, and therefore also the optical thickness,

increase so that a greater abundance of ions at v = a is needed to give

0: Finally, the column density reaches a point where the continuum
geff-- 

radiation with rest frequency v
i
(1 

c
), which is absorbed in the line

centre at v = a, has already been absorbed in the damping wings at smaller

velocities; the condition g  = g * can then no longer be fulfilled by the

CIV ions. When this happens, the mass flux adjusts until the line(s) of

some other ion gives geff = 0 at v = a. ThLs, when CIV drops out at

n
log Teff 4.51, the mass flux drops, thereby increasing the degree-of

ionization, until the abundance of the SVI ion is sufficient for its

resonance doublet to become an important contaibutor to 6 R . This drop is J
R

when CIV ceases to be effective shifts to lower effective temperatures if

the damping constant is increased (see lower diagram in Fig. 2) as we would

expect f, 1 the above discussion.	 '

e
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In §IIIc, we derived the approximate upper limit L/c 2 for the mass-loss

rate when only ;ne line is considered. The corresponding upper limit for the

mass flux is

o T	 4,
J* = 2 eff

c

where a is now the Stefan-Boltzmann constant. In the lower diagram of Figure

2, J* is compared with the calculated values of J. We see that J* is a

rather good approximation to the mass flux near the maxima of J.

e) Mass-Loss Domain

As we have seen, moving reversing-layers with large mass fluxes are

found for stars showing no evidence of mass loss, which suggests that

moving solutions might exist when static solutions are also possible. To

investigate this point, we make further calculations of (g R ) i (see equation

[6J) for the model reversing-layer described in §IId. All the lines listed

in Table i are now included and g is replaced by g * in the expression

(eq. [181) for the scale height in the reversing layer.

We regard the reversing layer as non-stationary if the condition

i (gR )
i > g* holds above some point in the layer. If this condition holds

only when these lines with T O > 1 (see eq. [161) are included, we expect

most of the momentum availa'_le to the lines to be transferred to the gas, so

that the mass flux will be close to the upper limit given in the inequality

(32). If, on the other hand, the condition holds only when thoso lines with

(37)
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t
0 

< 1 are included, the mass flux is likely to be substantially below this

upper limit.

Figure 3 contains the results of such calculations. The cross-hatched

areas define the domain of non-stationary reversing-layers where large mass

fluxes are expected (
T

< 1). The hatched areas show how the mass-loss

domain is extended if lines with 1 > T > 0.01 are included. Outside these
0

areas, we expect the mass flux to be negligible or the reversing layer to be

static .

It must be emphasized that the calculations used to construct this

diagram are not rigorous; in particular, the effect of lines on 
geff 

is not

allowed for in the stratification of the reversing layer. Thus our identi-

fication of the mass-loss domain in the (log 
Teff, 

log g)-plane is rather

tentative.

Figure 3 also contains an evolutionary track for a star of 30P,

(Stothers 1966) with composition X = 0.70, Z = 0.03 and tracks for stars of

9rr0 and 5-"0 (Hofineister 1067) with composition X = 0.739, Z = 0.021. (To

simplify the diagram, rapid phases of evolution are omitted for the 300

stars.) The diagram is then seen to be roughly in agreement with the

observational result that mass loss occurs for early-type supergiants and

not for main-sequence stars, except for those of high mass. These simple

cal--ulations do, however, indicate the possibility of significant mass loss

for main-sequence stars with log T
eff	 x'38	

4.44.

These calculations have shown that we do indeed find moving solutions

when static solutions are also possible. The reason for this is readily
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lAnderstood. In the example of §IId, we found that the CIV line at 15488

ceases to give 
geff ` 

0 when TO > 10 3 . When this happens, however, the

optical thickness of the reversing layer at frequency v i + AV, where

Ov=	 vi , is still small because AV	 3.5dv,for the CIV ion. Thus ions

moving out with the sonic speed still see sufficient continuum radiation for

the condition gR = g* to be satisfied.

f) Consistency Checks

Having obtained models of moving reversing-layers, we now check our

assumptions for self-consistency. We do this for the model with log Teff = 4.4

and log g = 3, the details of wh, tre given in Table 2. This table gives

the velocity, electron density, electron pressure, and effective gravity as

functions of height above the starting point. In addition, the logarithmic

abundance of CIV ions, which are almost wholly responsible for the outflow,

is given. The last line of the table gives the boundary condition: geff - 0

at v = a.

The major assumptions of the theory are: (i) plane-parallel geometry;

(ii) ionization equilibrium; (iii) isothermal flow; (iv) negligible drift

velocities; (v) momentum transfer by continuum photons only.

We see immediately that assumption (i) is ,justified. The height of

the sonic point above the starting point is 0.57 R 0 which is small com-

pared to the radii (v20 Ro ) of stars for which this solution is appropriate.

Assumption (ii) is justified if the time-scale for the removal of

deviations from ionization equilibrium, t i , is le.s than the time-scale of
-1

the flow, tF . For the latter we take t  = fdX) , which decreases with
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height and has the value t  = 2 x 10 3 sec at the sonic point. For CIV ions

we may show that t I-1 = an 
es 

where a is the recombination coefficient for

the CIV ion, provided that n(CIV) « n(CIII) and n(CIII) = n C . This gives

t i = 50 x (1010/ne ) sec, so that t  << t  throughout the subsonic flow and

assumption (ii) is justified. We may note, however, that departures from

iouizdtion equilibrium will become important in the supersonic flow.

Assumit ion (iii) is justified if the cooling of the gas by adiabatic

expansion, which occurs on the time -scale t F , is counteracted by heating due

to photoelectrons. If photofonization of hydrogen atoms is the dominant

process, then, because hydrogen is highly ionized, the important time-scale

is tR , the recombination time for protons. Taking t k
-1 

= an e9 we find that

tR = 300 x (1010/ne ) sec, so that t  << t  and assumption (iii) is justified. 	
P

Again we note that this assumption will break down in the supersonic flow.

Assumption (iv), in this case, asserts that the CIV ions have a

negligible drift velocity with respect to the rest of the gas. A necessary

condition for this to be true is that t  << t F , where t  is the relaxation

time for a CIV ion with thermal speed (= 5 km/sec). Applying the formula

given by Spitzer (1964, p. 132), we find t  = 10 4 x (1010/ne ) sec, so that

t  << tF . It is also necessary that in the time t  the velocity change,

AV, of a CIV ion, due to the scattering of 15488 continuum photons, should

be small compared to the thermal speed. Neglecting attenuation of the

continuum radiation, we find that in 10-4 sec a CIV ion scatters 1L2000

photons giving AV ti 0.5 km/sec << thermal speed. Thus, in the subsonic flow,

we may indded assume that all components of the gas move together. Beyond
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the sonic point, however, the velocity increment in time t  may become

large enough that drift velocities are no longer negligible.

Assumption (v) fails when the attenuuation of the continuum radiation

becomes very large, or, equivalently, when (gR ) i << (gH ) io . At the sonic

point in this model, we find that log (gA)1548	 2.56 and log (gR)1548

3.46, so that the validity of neglecting the flux in the scattered photons

is becoming doubtful. However, were we to include the scattered photons

by ad riing a source function to equation (28) the difficulty of getting

solutions would greatly increase. Moreover, the argument of §IIIc suggests

that the mass flux would not change significantly.
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V. SUNU,MY AND DISCUSSI0N

The main purpose of this paper has been to explain the mass-loss observed

for luminous, hot stars. We have shown that absorption in the ultraviolet

resonance lines of Si1V, CIV, IN and SVI can give strongly negative effective

gravities in the outer parts of a simple model for a static reversing-layer.

Interpreting this as a failure of hydrostatic equilibrium.., we have suggested

that the star would then set up a continuous mass flow and that this outflow

is thlt observed phenomenon. Support for this suggestion comes f rom the rough

agreement between the properties of stars known to be losing mass and the

dumain in the (log reff, log g)-plane where static reversing-layers have this

problem (eig.3).

In addition to identifying the mechanism responsible for the outflow, we

have calculated mass-loss rates for these stars. Viith a simple theory of

moving reversing-layers, we have found that the mass-loss rate is

ti L/c2 , a result that may also be obtained %rith a simple physical argument

(§IIIc). On the basis of this result, we therefore assert that the mass loss

observed for Ob supergiants and Of stars is of no consequence for their

evolution.

Because of our interest in mass-loss rates, we have restricted this

paper to the subsonic flow. It may be of interest, however, to report without

details some limited results for the supersonic flow. For a star with

M =20 'n'j o , R = 23 R o , L = 1.9 x 10 5 Lo , the velocity reaches 1000 km/sec

I
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at r/R = 1.3, 2000 kru/sec at r/H = 1.9, and the terminal velocity is 3,300 km/sec.

In this calculation, we included only the CIV resonance doublet and computed

the abundance of the ion from the appropriate rate equations assuming an

isothermal, steady flow. A further result of interest is that the extinction

of the continuum radiation gives r v = 0.3 for the residual intensity in the

absorption component cf the P Cygni profile for the CIV doublet.

Although these limited results are encouraging, a major difficulty

remains: If the outflow is steady, there seems to be no way of getting an

abundance of NV ions sufficient to produce the strong line observed at

1240 R. [Note that the low electron densities in the supersonic flow do not

increase the degree of ionization significantly because the time-scale of the

flow (ti 104 sec) is much shorter than the time required to establish ionization

equilibrium (cf. §IV f).J A possible answer to this problem is that the

flows are unlikely to be steady. If we increase the velocity of a fluid element

with respect to the surrounding gas, the ions in this element then see a

greater flux of continuum radiation. TLe force per gm on this element is

therefore increased and this in turn increases the perturbation in velocity.

We suggest that the growth of this instability results, throng,'., dissipation

at shock fronts, in a small fraction of the kinetic energy available in the

mean flow being used to heat the gas. If temperatures ti 2.10 5 °I: arise in

this way, IN ions will be created by collisional ionization on a time-scale

comparable to the time-scale of the flow. We might add that temperatures

at which NV and OVI would be destroyed by collisional ionization are unlikely
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to be reached, for then no ions capable of absorbing continuum radiation with

X > 911 R would remain, so that the source of the instability and heating

would be removed. Clearly further investigations of the supersonic flows

are recLuired before we can claim to understand the spectra of these stars.
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grant GP 9374 and by the National Aeronautics and Space Aiministration under
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TABLE 1

RESONANCE LINES

0 0
Ion a(A) Ion A(A)

CIII 977.0 SiIV 1393.7

CIV 1548.2 " 1402.7

it 1550.7 SIII 1190.2

NIII 989.8 SIv 1062.7

NV 1238.8 svI 933.4

" 1242.8 it 944.5
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TABLE 2

A MOVING REVERSING-LAYER

(log Teff 0 
4.4, log g = 3.0; log J = -7.69)

x
8effv

(km/sec) log ne log Pe log n( CIV (1010 cm) (cm sec-1)

0.001 14.115 2.500 -6.64 0.000 700.6
0_04 12.483 0.868 -4.65 1.556 70M
0.61 11.300 -0.315 -3.45 2.684 700.0
1.54 10.895 -0.720 -3.05 3.070 698.7
2.72 1o.650 -0.965 -2.80 3.301 695.7
3.89 10.494 -1.121 -2.65 3.445 690.0
5.06 10.379 -1.235 -2.53 3.549 679.8
6.23 10.289 -1.326 -2.44 3.629 663.6
7.4o 10.214 -1.401 -2.37 3.693 638.9
8.57 10.150 -1.464 -2.30 3.747 6o4.2
9.74 10.095 -1.520 -2.25 3.792 557.7

10.91 10.045 -1.569 -2.20 3.831 499.1
12.08 10.001 -1.614 -2.15 3.866 427.7
13.25 9.961 -1.654 -2.11 3.897 344.1
14.43 9.924 -1.691 -2.o8 3.925 249.2
15.36 9.897 -1.718 -2.05 3.946 165.4
16.30 9.871 -1.744 -2.02 3.965 75.3
16.97 9.854 -1.761 -2.01 3.978 6.9
17.03 0_0
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FIGURE CAPTIONS

FIG. 1--Lines of constant mass flux, J, in the (log Teff'

log g)-plane.

FIG. 2--Properties of models with log g = 3.5 as functions

of log 
Teff' 

Upper diagram shows fractional

contribution to gR of various ions near the

sonic point. Middle diagram shows the fractional

abundance, x i , of the ions at the same point in

the flow. Lower diagram shows mass flux, J,

and also limiting mass flux, J * (see eq. (361).

FIG. 3--Mass-loss domain in the (log T ,,ff , log g)-plane.

Cross-hatched area- are regions where the

greatest mass fluxes are expected. The evolutionary

track for 30 " o is from Stothers (1966) and

the tracks for 9'T o and 5 r o are from Hofineister

(1967).
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