Quantum-Limited Detection of an Incoherent
 Object with a Lorentz Spectrum

$$
\text { Carl W. Helstrom }{ }^{*}
$$

Department of Applied Electrophysics University of California, San Diego

La Jolla, California, 92037

When the appropriate quantum threshold detectors are used, an object emitting incoherent light with a Lorentz spectrum has a lower probability of detection in the presence of thermal background light than an object emitting light with a rectangular spectrum of the same bandwidth.

The quantum threshold detector for an object emitting incoherent light that is received with thermal background light was worked out in a recent paper. It measures a quantum-mechanical operator U that is a quadratic functional of the field at the aperture of the observing instrument. The outcome u of the measurement is compared with a decision level u_{0}; if $u>u_{0}$, the decision that the object is present is made.

As a step toward calculating the probability Q_{d} of detection, the moment-generating function (m.g.f.)

$$
\begin{equation*}
\mu_{u}(s ; \beta)=\operatorname{Tr}\left[\rho_{1}(\beta) e^{U s}\right] \tag{1}
\end{equation*}
$$

of the distribution of u was derived. Here β is the strength of the object actually present relative to that of the object for which the detector was designed, and $\rho_{1}(\beta)$ is the density operator of the total field made up of object light and background. It was assumed that the product of the observation interval T and the bandwidth W of the object light is large, $T W \gg 1$, as is normally the case.

Here we compare the detectabilities of two incoherent objects with a rectangular and a Lorentz spectrum, respectively. For simplicity we assume that the light from both has first-order spatial coherence at the aperture; the spatial factor ${ }^{2}$ is $\mathscr{F}=1$. It was shown that when the temporal spectrum is rectangular, the outcome u, suitably normalized, is a random variable with a Poisson distribution, permitting the probability $Q_{d}(\beta)$ of detection to be easily calculated as a function of β for a fixed false-alarm
probability Q_{0}
When the object emits light with a Lorentz spectrum,

$$
\begin{equation*}
X(w)=2 w /\left(w^{2}+w^{2}\right), \tag{2}
\end{equation*}
$$

the m. g.f. of the suitably normalized statistic u is ${ }^{3}$

$$
\begin{align*}
\mu_{u}(s ; \beta)=\exp \left\{N_{0}\right. & s e^{s}\left[I_{0}(s)-I_{1}(s)\right] \\
& \left.+N_{s}\left[e^{s} I_{0}(s)-1\right]\right\} \tag{3}
\end{align*}
$$

where N_{s} is the average total number of photons received from the object during the observation interval, and $\mathrm{N}_{0}=\mathcal{N} \mathrm{TW}$, with

$$
\begin{equation*}
\mathcal{N}=\left[\mathrm{e}^{\hbar \Omega / K T}-1\right]^{-1} \tag{4.}
\end{equation*}
$$

$h=$ Planck's constant $h / 2 \pi, \Omega=$ the central angular frequency of the object spectrum, to which ω in Eq. (2) is referred, $K=$ Boltzmann's constant, and $I=$ the effective absolute temperature of the background. It is assumed that $\mathcal{N} \ll 1$, but with TW $\gg 1, N_{0}$ is of the order of 1 .

The m. g.f. in Eq. (3) cannot be inverted analytically to obtain the probability density function (p.d.f.) $p(u ; \beta)$ of the outcome u. Numerical calculations of the probability $Q_{d}(\beta)$ of detection were therefore undertaken. The results are shown in Fig. 1, where the probability Q_{d} is plotted versus the signal-to-noise ratio $D=N_{s} / N_{0}{ }^{1 / 2}$ for $N_{0}=15$ and two values of the false-alarm probability Q_{0}. The equivalent bandwidths of the two spectra
were taken equal, $W=w$. The object with the Lorentz spectrum has the lower probability of detection. Calculations for $N_{0}=5$ revealed the same relationship.

The detection probabilities for the rectangular spectrum were calcu.lated as described previously. ${ }^{4}$ For the Lorentz spectrum two methods were used. At low values of the signal-to-noise ratio the Laplace transform $\mu_{u}(-s ; \beta) / s$ of the cumulative distribution of u was inverted by the method \cdots steepest descents ${ }^{5}$ to obtain the approximate formula

$$
\begin{align*}
& q(u ; \beta)=\int_{u}^{\infty} p\left(u^{\prime} ; \beta\right) d u^{\prime} \cong \\
& {\left[2 \pi \Phi^{\prime \prime}(t)\right]^{-1 / 2} \exp [\Phi(t)]\left\{1+\frac{1}{8} \Phi^{\prime \prime \prime \prime}(t)\left[\Phi^{\prime \prime}(t)\right]^{-2}\right\}} \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
\Phi(s)=\ln \mu_{u}(s ; \beta)-s u-\ln s \tag{6}
\end{equation*}
$$

and t is the root of the equation $\Phi^{\prime}(t)=0$, primes denoting differentiation. Here β is proportional to N_{s}. The equation $\mathrm{q}\left(\mathrm{u}_{0} ; 0\right)=\mathrm{Q}_{0}$ was solved by Newton's method to obtain the decision level u_{0}. The'probability of detec. tion is then $Q_{d}=q\left(u_{0} ; \beta\right)$.

At large values of the signal-to-noise ratio the probability $Q_{d}(\beta)$ was calculated by writing it first as

$$
\begin{equation*}
Q_{d}(\beta)=q\left(u_{0} ; \beta\right)=1-\int_{0}^{\infty} R\left(u^{\prime} / u_{0}\right) p\left(u^{\prime} ; \beta\right) d u^{\prime} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
R(x)=1,0<x<1 ; R(x)=0, x>1 . \tag{8}
\end{equation*}
$$

is the rectangular function. $R(x)$ was expanded in a sexies of Laguerre functions, which was substituted into Eq. (7) and integrated tem by term to obtain a sexies whose terms involve the m. g.f. $\mu_{u}(s ; \beta)$ and its derivatives evaluated at a certain value of s. Twenty terms of the Laguerre series wexe used. Details of the method are given elsewhere. ${ }^{6}$ For $Q_{d}<0.3$, the xesults of the two methods agreed closely.

Footnotes

*This research was supported by grant NGR-05-009-079 of the National Aeronartics and Space Administration.

1. C. W. Helstrom, "Detection of Incoherent Objects by a QuantumLimited Optical System," submitted to J. Opt. Soc. Am. The notation of that paper is used here.
2. C. W. Helstrom, J. Opt. Soc. Am. 59, (1969); see Eq. (3.8).
3. See reference 1, Eq. (5.22).
4. See reference 1 , Section V.
5. G. Doetsch, Eandbuch der Laplace-Transformation (Birkhaüser Verlag, Basel and Stuttgart, 1955), vol. 2, ch. 3, §5, pp. 83-88.
6. C.W. Helstrom, Proc. IEEE 57, (1969).

Figure Caption

FrGURE 1: Probability of detection Q_{a} vs. signal-to-noise ratio $D=N_{S} / N_{0}^{1 / 2}$ for false-alam probabilities $Q_{0}=10^{-2}$ and 10^{-4}. R : rectangular spectrum; L: Lorentz spectrum.

