

CASE FILE

COPY

Quantum-Limited Detection of an Incoherent

Object with a Lorentz Spectrum

Carl W. Helstrom

Department of Applied Electrophysics University of California, San Diego La Jolla, California, 92037

ABSTRACT

When the appropriate quantum threshold detectors are used, an object emitting incoherent light with a Lorentz spectrum has a lower probability of detection in the presence of thermal background light than an object emitting light with a rectangular spectrum of the same bandwidth.

🗓 CORE

rovided by NASA Technical Repo

The quantum threshold detector for an object emitting incoherent light that is received with thermal background light was worked out in a recent paper.¹ It measures a quantum-mechanical operator U that is a quadratic functional of the field at the aperture of the observing instrument. The outcome u of the measurement is compared with a decision level u_0 ; if $u > u_0$, the decision that the object is present is made.

As a step toward calculating the probability Q_d of detection, the moment-generating function (m. g. f.)

$$\mu_{u}(s;\beta) = \operatorname{Tr} \left[\rho_{1}(\beta) e^{Us} \right]$$
(1)

of the distribution of u was derived. Here β is the strength of the object actually present relative to that of the object for which the detector was designed, and $\rho_1(\beta)$ is the density operator of the total field made up of object light and background. It was assumed that the product of the observation interval T and the bandwidth W of the object light is large, TW >> 1, as is normally the case.

Here we compare the detectabilities of two incoherent objects with a rectangular and a Lorentz spectrum, respectively. For simplicity we assume that the light from both has first-order spatial coherence at the aperture; the spatial factor² is $\mathcal{F} = 1$. It was shown¹ that when the temporal spectrum is rectangular, the outcome u, suitably normalized, is a random variable with a Poisson distribution, permitting the probability $Q_d(\beta)$ of detection to be easily calculated as a function of β for a fixed false-alarm

1

probability Q_.

When the object emits light with a Lorentz spectrum,

$$X(\omega) = 2w/(\omega^2 + w^2),$$
 (2)

the m.g.f. of the suitably normalized statistic u is³

$$\mu_{u}(s;\beta) = \exp \{ N_{0} se^{s} [I_{0}(s) - I_{1}(s)] + N_{s} [e^{s} I_{0}(s) - 1] \}$$
(3)

where N_s is the average total number of photons received from the object during the observation interval, and $N_0 = \mathcal{N}TW$, with

$$\mathcal{N} = \left[e^{\hbar \Omega / K \mathcal{I}} - 1 \right]^{-1}, \tag{4}$$

h = Planck's constant h/2 π , Ω = the central angular frequency of the object spectrum, to which ω in Eq. (2) is referred, K = Boltzmann's constant, and \mathcal{T} = the effective absolute temperature of the background. It is assumed that $\mathcal{N} < <$ 1, but with TW >> 1, N₀ is of the order of 1.

The m.g.f. in Eq. (3) cannot be inverted analytically to obtain the probability density function (p.d.f.) $p(u;\beta)$ of the outcome u. Numerical calculations of the probability $Q_d(\beta)$ of detection were therefore undertaken. The results are shown in Fig. 1, where the probability Q_d is plotted versus the signal-to-noise ratio $D = N_s / N_0^{1/2}$ for $N_0 = 15$ and two values of the false-alarm probability Q_0 . The equivalent bandwidths of the two spectra

were taken equal, W = w. The object with the Lorentz spectrum has the lower probability of detection. Calculations for $N_0 = 5$ revealed the same relationship.

The detection probabilities for the rectangular spectrum were calculated as described previously.⁴ For the Lorentz spectrum two methods were used. At low values of the signal-to-noise ratio the Laplace transform $\mu_u(-s;\beta)/s$ of the cumulative distribution of u was inverted by the method of steepest descents⁵ to obtain the approximate formula

q (u;
$$\beta$$
) = $\int_{u}^{\infty} p(u'; \beta) du' \cong$

$$[2\pi \Phi''(t)]^{-1/2} \exp [\Phi(t)] \{1 + \frac{1}{8} \Phi'''(t) [\Phi''(t)]^{-2}\}$$
(5)

where

$$\Phi(s) = \ln \mu_u(s;\beta) - su - \ln s$$
(6)

and t is the root of the equation $\Phi^{\dagger}(t) = 0$, primes denoting differentiation. Here β is proportional to N_s. The equation $q(u_0; 0) = Q_0$ was solved by Newton's method to obtain the decision level u_0 . The probability of detection is then $Q_d = q(u_0; \beta)$.

At large values of the signal-to-noise ratio the probability $Q_d(\beta)$ was calculated by writing it first as

$$Q_{d}(\beta) = q(u_{0};\beta) = 1 - \int_{0}^{\infty} R(u'/u_{0}) p(u';\beta) du'$$
(7)

3

where

$$R(x) = 1, 0 < x < 1; R(x) = 0, x > 1.$$
 (8)

is the rectangular function. R(x) was expanded in a series of Laguerre functions, which was substituted into Eq. (7) and integrated term by term to obtain a series whose terms involve the m.g.f. $\mu_{u}(s;\beta)$ and its derivatives evaluated at a certain value of s. Twenty terms of the Laguerre series were used. Details of the method are given elsewhere.⁶ For $Q_{d} \lesssim 0.3$, the zesults of the two methods agreed closely.

Footnotes

*This research was supported by grant NGR-05-009-079 of the National Aeronautics and Space Administration.

- 1. C. W. Helstrom, "Detection of Incoherent Objects by a Quantum-Limited Optical System," submitted to J. Opt. Soc. Am. The notation of that paper is used here.
- 2. C. W. Helstrom, J. Opt. Soc. Am. <u>59</u>, (1969); see Eq. (3.8).
- 3. See reference 1, Eq. (5.22).
- 4. See reference 1, Section V.
- 5. G. Doetsch, Handbuch der Laplace-Transformation (Birkhauser Verlag, Basel and Stuttgart, 1955), vol. 2, ch. 3, § 5, pp. 83-88.
- 6. C. W. Helstrom, Proc. IEEE <u>57</u>, (1969).

Figure Caption

FIGURE 1: Probability of detection Q_d vs. signal-to-noise ratio $D = N_s / N_0^{-1/2}$ for false-alarm probabilities $Q_0 = 10^{-2}$ and 10^{-4} . R: rectangular spectrum; L: Lorentz spectrum.

