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ABSTRACT o fﬁi@?y

When the appropriate quantum threshold

detectors are used, an object emitting incoherent light
with a Lorentz spectrum has a lower probability of
detection in the presence of thermal background light
than an object emitting light with a rectangular spec-

trum of the same bandwidth.
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The gquantum threshold detector for an object emitting incoherent
light that is received with thermal background light was worked out in a
recent paper, ! It measures a quantum-mechanical operator U that is a
quadratic functional of the field at the aperture of the observing instrument.
The outcome u of the measurement is compared with a decision level Uy
if u > ENE the decision that the object is present is made,.

As a step toward calculating the probability Qd of detection, the
moment-generating function (m. g. f.)

by (si8) = Tr [ pl@q)“eUSJ (1)

of the distribution of u was de rrivéd; HHere B is the
strength of the object actually present relative to
that of the object for which the detector was designed, and pl(B) is the
density operator of the total field made up of object light and background.
It was assumed that the product of the observation interval T and the band-
width W of the object light is large, TW > > 1, as is normally the case.
Here we compare the detectabilities of two incoherent objects with
a rectangular and a Lorentz spectrum, respectively. For simplicity we
assurﬁe that the light from both has first-order spatial coherence at the
aperture; the spatial factor2 is F=1. It was showrx1 that when the temporal
spectrum is rectangular,the outcome u, suitably normalized, is a random
variable with a Poisson distribution, permitting the probability Qd(B) of

detection to be easily calculated as a function of B for a fixed false-alarm



probability Q .
o

When the object emits light with a Lorentz spectrum,
2 2
X (w) =2w/(w +w ), (2)

the m. g.f. of the suitably normalized statistic u is

w (s;B) =exp {NO ses[IO(s) -I1.(s)]

u( 1

+N_[e® I,(s) - 113

where Ns is the average total number of photons received from the object

during the observation interval, and NO = NTW, with

N =B OET (4)

h = Planck's constant h/2m, Q =the central angular frequency of the object
spectrum, to which w in Eq. (2) is referred, K = Boltzmann's constant,

and T = the effective absolute temperature of the background. It is

assumed that N < < 1, but with TW >>1, NO is of the order of 1.

The m. g.f. in Eq. (3) cannot be inverted analytically to obtain the
probability density fungtion (p.d.f.) p(u;B) of the outcome u. Numerical
calculations of the probability Qd(B) of detection were therefore undertaken.
The results are shown in 'Fig. 1, where the probability Qd is plotted versus
/2

for N_ =15 and two values of the

the signal-to-noise ratioD = NS/NO1 0

false ~alarm probability QO. The equivalent bandwidths of the two spectra




were taken equal, W =w. The object with the Lorentz spectrum has the
lower probability of detection. Calculations for NO =5 revealed the same
relationship.

The detection probabilities for the rectangular spectrum were calcu-

. . 4

lated as described previously. For the Lorentz spectrum two methods were
vsed., At low values of the signal-to-noise ratio the Laplace transform
L u(ms; B )/s of the cumulative distribution of u was inverted by the method

5
“ steepest descents to obtain the approximate formula

q (u;B) =J p(u’B) du’ =
u

[zrs ()1 Y2 exp (2 (t)] tiece © 02 ()17 | (5)
where
& (s) =1n b (s;Bﬂ) ~-su=-4ns ‘ (6)

and t is the root of the equation &' (t) = 0, primes denoting differentiation,
Here B is proportional to NS. The equation q(uo; 0) :QO was solved by
Newton's method to obtain the decision level Uy The' probability of detec-
tion is then Qd = q(uo; B).

At large values of the signal-to-noise ratio the probability Qd(B)

was calculated by writing it first as

048) =q (ugiB) =1 - fo R(u’/ug)p (o3 8) du’ (1)



where

R{x) =1 0<x < I;R(x})=0, x> 1. (8)

is the rectangular function. R(x) was expanded in a series of Laguerre

functions, which was substituted into Eq. (7) and integrated term by term

to chtain a series whose terms involve the m. g.f. u u(s; B ) and its derivatives

svaluated at a certain value of s. Twenty terms of the Laguerre series were
. . . 6 .

used, Details of the method are given elsewhere. For Qd < 0,3, the

v=sults of the two methods agreed closely.



Footnotes
“7This research was supported by grant NGR-05-009-079 of the National
Aervonautics and Space Administration.

1. C, W, Helstrom, "Detection of Incoherent Objects by a Quantum-
Limited Optical System, " submitted to J. Opt. Soc. Am. The notation

of that paper is used here.
C, W. Helstrom, J. Opt. Soc. Am. 59, (1969); see Eq. (3. 8]).

3. See reference 1, Eq. (5.22).

KN

See reference 1, Section V.

5. G. Dostsch,Handbuch der Laplace-Transformation (Birkhauser

Verlag, Basel and Stuttgart, 1955), vol. 2, ch. 3, § 5, pp. 83-88,

C. W, Helstrom, Proc. IEEE 57, (1969).

o~



Figure Caption

FIGURE I Probability of detection Qd vs, signal-to-noise ratio
B VA s -2
D = ilsfl\jg for false-alarm probabilities QO =10
ik

and 10 7., R: rectangular spectrum; L: ILorentz spectrumi.
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