NASA CONTRACFOR REPORT

Report No. 61308

CAPE KENNEDY PEAK WIND PROFILE PROBABILITIES FOR LEVELS FROM 10 TO 150 METERS

By J. L. Wood and W. Alan Bowman

Lockheed Missiles and Space Company
Huntsville Research and Engineering Center 4800 Bradford Blvd.
Huntsville, Alabama

September 1969

Prepared for
NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, Alabama 35812

16. ABSTRACT

Peak wind statistics for levels up to about 150 m for Cape Kennedy are presented for use in establishing design criteria for space vehicles and facilities. From distributions of peak winds at 10 m and a conditional (power-1aw profile) equation relating winds at levels between 10 and 152.4 m , a bivariate distribution function is integrated to provide: (a) cumulative probability distributions of peak winds for seven different levels and eleven different exposure periods, and (b) cumulative joint probability distributions of peak winds at a reference level and individual peak-wind profiles between 18.3 and 152.4 m . The cumulative distribution curves for all levels (10, 18.3, $20.5,61.0,91.4,121.9$ and 152.4 m) and all exposure periods (1 hour and $1,2,5,10$, $15,30,60.90,180$ and 365 days) possess the double-exponential shape, characteristic of Fisher-Tippett Type I (FII) extreme-value distributions. This feature is illustrated and results are summarized in tables of the two FT 1 distribution parameters, computed from each curve. Results indicate that the probability of a wind value not being exceeded decreases both with increasing height and exposure period.

The conditional equation defines a peak-wind profile subject to a random normally distributed variable. Cumulative joint probability distributions of peak winds at 18.3 m , and $0 \sigma, 1 \sigma, 2 \sigma, 3 \sigma$ wind profiles between 18.3 and 152.4 m are computed. These curves, which also possess a double-exponential shape, are illustrated.

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.
17. KEY WORDS

Peak wind profiles
Peak wind speeds
Exposure periods
18. DISTRIBUTION STATEMENT

PUBLIC RELEASE
E. D. GEISSLER, Director Aero-Astrodynamics Lab, MSFC

| 19. SECURITY CLASSIF. (of thie report) |
| :---: | :---: | :---: | :---: |
| U |\quad| 20. SECURITY CLASSIF. (of thie page) |
| :---: |
| U | | 21. NO. OF PAGES |
| :---: | :---: |
| 67 |

FOREWORD

This report presents the results of work performed by Lockheed's Huntsville Research \& Enginee ring Center while under subcontract to Northrop Nortronics (NSL PO 5-09287) for Marshall Space Flight Center (MSFC), Contract NAS820082. This task was conducted in response to the requirement of Appendix A-1, Schedule Order 28.

The NASA technical coordinator for this study is Mr. O. E. Smith of the Aerospace Environment Division of the Aero-Astrodynamics Laboratory.

ACKNOWLEDGMENTS

The authors wish to thank Mr. O. E. Smith and Dr. G. H. Fichtl of MSFC for several helpful discussions.

We are also grateful for the able assistance of Mr. J. E. Tyson of Lockheed/Huntsville who carried out the computer programming.

CONTENTS

Section Page
FOREWORD ii
ACKNOWLEDGMENTS ii
1 INTRODUCTION 1
2 THEORETICAL DEVELOPMENT 2
3 RESULTS 7
4 USE OF THE GRAPHS 10
5 SUMMARY AND CONCLUSIONS 13
6 REFERENCES 15
TABLES AND FIGURES 16

Section 1
 INT RODUCTION

Studies of peak winds at the $10-\mathrm{m}$ level observed at Cape Kennedy, Florida, show that such extremals fit the Fisher-Tippett Type I (FT1) distribution. Because of insufficient observational data, however, similar studies have not been attempted for levels above 10 m . This report outlines a method by which power-law profiles based on peak wind observations from the $150-\mathrm{m}$ meterological tower at Cape Kennedy, and FTl parameters developed for the $10-\mathrm{m}$ level and for various exposure periods can be used to find:

- Cumulative distributions of peak winds for levels up to about 150 m and for exposure periods ranging from one hour to one year, and
- Joint distributions of peak winds at a reference level (18.3 m) and peak wind profiles ($0 \sigma, 1 \sigma, 2 \sigma$ and 3σ profiles) extending to about 150 m , and for exposure periods ranging from one hour to one year.

Section 2

THEORETICAL DEVELOPMENT

The Fisher-Tippett Type 1 (FT1) density function ${ }^{*}$ for a wind speed variate u, with parameters α and μ (determined from the mean and variance of the wind sample) can be written

$$
\begin{equation*}
f(u)=\alpha \exp \left[-e^{-\alpha(u-\mu)}-\alpha(u-\mu)\right] \tag{1}
\end{equation*}
$$

Figure 1, based on work by Pope (Ref. 1), shows a distribution of $10-\mathrm{m}$ extreme winds. In the figure, the asterisks represent observed extremals, the curves are control bands (Refs. 1 and 2), and the straight line is the integral of the FTl function (Eq. 1). Experience with extreme winds indicates that they often fit a Fisher-Tippett distribution (c.f., Ref. 3).

Fichtl (Daniels, Ref. 4) established an empirical relationship

$$
\begin{equation*}
u_{h}=u_{18.3}\left(\frac{\mathrm{~h}}{18.3}\right)^{\mathrm{cu}_{18.3}^{-3 / 4}} \tag{2}
\end{equation*}
$$

between u_{h}, the peak wind speed ($\mathrm{m} / \mathrm{sec}$) at level $h(\mathrm{~m})$ and $\mathrm{u}_{18.3}$, the peak wind speed at the reference leve1, 18.3 m . The quantity c is a random variable with a mean of 0.52 and a standard deviation of 0.36 . Equation (2) represents a power-law profile with parameters c and $3 / 4$ derived by statistical analysis of Cape Kennedy wind records for a specific exposure period.

With this much as background, cumulative distributions of peak winds can be developed for various levels by combining Eq.(1) and Eq. (2). For some level h ,

[^0]\[

$$
\begin{equation*}
f\left(u_{h}, c\right)=f\left(u_{h} \mid c\right) f(c) \tag{3}
\end{equation*}
$$

\]

where $f\left(u_{h} \mid c\right)$ is a probability density function with random variable u_{h} subject to a given value of c; i.e., a conditional probability, which may be expressed in terms of Eq. (1) by

$$
\begin{equation*}
f\left(u_{h} \mid c\right)=\alpha \exp \left[-e^{-\alpha\left(u_{h}-\mu\right)}-\alpha\left(u_{h}-\mu\right)\right] \tag{4}
\end{equation*}
$$

where u_{h} is a function of c. For some other level h ', the corresponding probability $f\left(u_{h}^{\prime} \mid c\right)$, is related to $f\left(u_{h} \mid c\right)$ by the transformation

$$
\begin{equation*}
f\left(u_{h} \mid c\right)=f\left(u_{h} \mid c\right)\left|\frac{\partial u_{h}}{\partial u_{h^{\prime}}}\right| \tag{5}
\end{equation*}
$$

Then, from Eq. (5) and Eq. (3),

$$
\begin{equation*}
f\left(u_{h}^{\prime}, c\right)=f\left(u_{h} \mid c\right) f(c)\left|\frac{\partial u_{h}}{\partial u_{h}^{\prime}}\right| \tag{6}
\end{equation*}
$$

It is convenient to choose $h=10 \mathrm{~m}$, since the $10-\mathrm{m}$ FTl parameters α and μ required to determine $f\left(u_{h} \mid c\right.$) by Eq. (4) have been tabulated (Ref. 4, also see Section 3), and to choose $h^{\prime}=18.3$, since 18.3 appears explicitly in Eq. (2). Subject to these choices, and the fact that c is normally distributed*, i.e.,

$$
f(c)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(c-\bar{c})^{2} / 2 \sigma^{2}}
$$

[^1]then Eq. (6) can be integrated to give the probability density function
\[

$$
\begin{equation*}
f\left(u_{18.3}\right)=\int_{-\infty}^{\infty} f\left(u_{18.3}, c\right) d c \tag{7}
\end{equation*}
$$

\]

To summarize, from the distribution $\mathrm{f}\left(\mathrm{u}_{10}\right)$ given by Eq. (l) with α and μ specified in Table 1 , and a relationship between $u_{18.3}$ and u_{10} given by Eq. (2), the function $f\left(u_{18.3}\right)$ can be determined. Next the distribution $f\left(u_{h}\right)$ for any level, h, is found.

A bivariate distribution can be formed relating the wind speed at.level h to that at 18.3 m by writing an expression similar to Eq. (3)

$$
\begin{equation*}
f\left(u_{h}, u_{18.3}\right)=f\left(u_{h} \mid u_{18.3}\right) f\left(u_{18.3}\right) \tag{8}
\end{equation*}
$$

where $f\left(u_{h} \mid u_{18.3}\right)$ is a conditional probability that can be expressed in terms of the normal deviate c by the transformation

$$
\begin{equation*}
f\left(u_{h} \mid u_{18.3}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(c-\bar{c})^{2} / 2 \sigma^{2}}\left|\frac{\partial c}{\partial u_{h}}\right| \tag{9}
\end{equation*}
$$

and where the explicit dependence among c, u_{h} and $u_{18.3}$, viz.,

$$
\begin{equation*}
c=\frac{\ln u_{h}-\ln u_{18.3}}{u_{18.3}^{-3 / 4} \ln (h / 18.3)} \tag{10}
\end{equation*}
$$

follows from Eq. (2). The Jacobian in Eq. (9) can be obtained by differentiating Eq. (10)

$$
\begin{equation*}
\frac{\partial c}{\partial u_{h}}=\frac{1 / u_{h}}{u_{18.3}^{-3 / 4} \ln (h / 18.3)} \tag{11}
\end{equation*}
$$

Substituting Eqs. (7), (9), (10) and (11) into Eq. (8), and integrating gives the probability density function for any level

$$
\begin{equation*}
f\left(u_{h}\right)=\int_{-\infty}^{\infty} f\left(u_{h}, u_{18.3}\right) d u_{18.3} \tag{l2}
\end{equation*}
$$

The cumulative distribution, or the probability that a peak wind speed will not exceed some value V, is obtained by integrating Eq. (12)

$$
\begin{equation*}
F(V)=\int_{-\infty}^{V} f\left(u_{h}\right) d u_{h} \tag{13}
\end{equation*}
$$

Consider now peak wind profiles. The profile of winds from 18.3 m to 152.4 m for a given value of $\mathrm{u}_{18.3}$ is determined by only one parameter - the normal deviate c. Furthermore, the probability that a profile will not be exceeded is equal to the probability the c will not be exceeded. Then, for a fixed value $c=C, f\left(u_{h}, u_{18.3}\right)$ in Eq. (8) is the probability that both $u_{18.3}$ and the "C" profile," given by Eq. (2) will occur. For example, the " $3 \sigma^{\prime \prime}$ profile is obtained by setting $C=\bar{c}+3 \sigma$ in Eq. (2). The cumulative distribution or the probability that neither $u_{18.3}$ nor the C profile will be exceeded is obtained by integrating Eq. (8)

$$
\begin{equation*}
F(W, V)=\int_{-\infty}^{W(C, V) V} \int_{-\infty} f\left(u_{h}, u_{18.3}\right) d u_{18.3} d u_{h} \tag{14}
\end{equation*}
$$

To evaluate Eq. (14), the arbitrary choice is made that $\mathrm{h}=152.4$ and $\mathrm{C}=\overline{\mathrm{c}}$, $\overline{\mathrm{c}}+\sigma, \overline{\mathrm{c}}+2 \sigma$, and $\overline{\mathrm{c}}+3 \sigma$.

Equations (13) and (14) were integrated numerically by Simpson's rule. The application of Simpson's rule to Eq. (7), summing over the limits $\overline{\mathrm{c}}+4 \sigma$,
was straightforward. Equation (8) was solved in blocks over a windspeed range of from 6 to 154 kts , each block having sides of 2 kts . For the integration of Eqs.(12), (13) and (14) only the blocks with probability greater than 0.00001 were included, and the, total probability was generally about 0.9993 . Figures 2 and 3 illustrate the double integration. The general results of this study are presented in Figs. 4 through 47, and are discussed in Section 3.

Figure 2 is an example (Cape Kennedy, 30-day exposure period) of a plot of the probability contained in the individual blocks. Rather than a density function, the ordinate is the probability that an $18.3-\mathrm{m}$ wind value lies between $u_{18.3}$ and $u_{18.3}+2$ (kts) on the horizontal axis, while a $152.4-\mathrm{m}$ wind value lies between $u_{152.4}$ and $u_{152.4}+2(\mathrm{kts})$ on the diagonal axis (unlabeled, but on which the lines are spaced at two-knot intervals, beginning at six knots).

Figure 3 illustrates the same results in two-dimensional blocks. The solid blocks represent probability greater than 0.0001 , the shaded blocks probability between 0.0001 and 0.00001 , and the clear blocks probability less than 0.00001 .

Section 3
RESULTS

Results of Eq. (13) are shown in Figs. 4 through 25 for eleven different exposure periods. The curves are almost straight. Since a straight line on this graph represents an FTl distribution, all curves are interpreted as representing such distributions. The dashed curves on the one-hour exposure period figures (Figs. 4 and 15) are linear extensions of the solid curves; this is discussed below.

The $10-\mathrm{m} \alpha$ and μ values for Cape Kennedy, given in Table 1, vary with the exposure period t according to

$$
\begin{aligned}
& \alpha=(a+b \ln t)^{-1} \\
& \mu=(c+d \ln t)
\end{aligned}
$$

with coefficients given below.

	annual reference values		"env"' values	
	$1 \mathrm{ln} \leq \mathrm{t} \leq 24 \mathrm{hrs}$	1 day $\leq \mathrm{t} \leq 365$ days	$1 \mathrm{ln} \leq \mathrm{t} \leq 24 \mathrm{hrs}$	1 day $\leq \mathrm{t} \leq 365$ days
a	4.6782	4.7668	5.3487	5.4579
b	0.0279	0.3687	0.0343	0.9170
c	9.3997	16.8799	14.9100	19.8496
d	2.3537	4.7451	1.5535	4.3462

The coefficients designated by "env," result from the interpolation of an envelope of maximum-monthly, bimonthly, and yearly (including hurricane data) means and standard deviations of one- and 30-, 60-, and 365-day peak winds, respectively. The corresponding α 's and μ 's represent conservative
distributions for design and operational purposes. They may be thought of as limiting cases of peak-wind distributions that could be expected to occur (see Ref.4).

Values of α and μ for the other levels (18.3, 30.5, 61.0, 91.4, 121.9 and 152.4 m) were determined from the linear expression

$$
y=\alpha(u-\mu)
$$

by substituting values of u and y (the reduced variate) from two points on each curve; they appear in Table 1 also.

Before proceeding further, several comments about exposure period should be made. In the present context, exposure period is the interval of time chosen for which the largest or peak wind is extracted from a given wind record. This period may be 10 minutes ${ }^{*}$ (Ref. 4) which was the case in establishing Eq. (2), or it may be an hour, a day, a month, etc. The importance of exposure period is manifested in the α and μ parameters which vary with the logarithm of exposure period, and which determines the shape of the FTI distributions.

Figures 26 through 47 result from Eq. (14). The curves represent the joint probability (ordinate value) that $u_{18.3}$ (abscissa value) and the profile indicated in the legend will not be exceeded. These figures show clearly that there is little difference between the cumulative distributions of 0σ and 3σ profiles.

Before proceeding with examples of how the results of this report can be used (Section 4), several points should be made.

[^2]Difficulty arises from trying to integrate Eqs.(12) and (14) for small values of u_{h}. In the present study, only the one-hour and one-day exposure period cases were affected (Figs. 4, 5, 15, 16, 26, 27, 37 and 38). The center of difficulty is the empirical expression (Eq. (2))which enters into the integrated $f\left(u_{h}, u_{18.3}\right)$. Equation (2) possesses a minimum u_{h} for some small value ${ }^{*}$ of $u_{18.3^{\prime}}$ Such a minimum (call it u_{h}^{\prime}) is not ordinarily observed, so the empirical relation is not meant to hold for $u_{h}<u_{h}^{\prime}$. Therefore, the contribution to Eqs. (12) and (14) from the range ($-\infty, u_{h}^{\prime}$) is lost. Because, theoretically, the integrals must approach unity as their upper limits tend to ∞, it is reasonable to assume that any computed deficit results from this loss. Accordingly, the distributions were adjusted by assigning the deficit value as the cumulative distribution for u_{h}^{\prime}, and by shifting the values for $u_{h}>u_{h}^{\prime} u p-$ ward. The curves were then completed by linear extrapolation downward to the 0.001 ordinate value (dashed lines in figures).

Secondly, it should be mentioned that no special significance is implied by the use of FTl graphs for plotting Figs. 26 through 47. The graphs were used simply as a matter of convenience. On the other hand, it might be advantageous for some purposes (e.g., computer applications) to have joint distributions in a form other than graphical. Therefore, each curve was fit by the linear expression $Y(c, t)=\beta(c, t)\left[u_{18.3}-\gamma(c, t)\right]$; the constants β and γ appear in Table 2. Approximate joint distributions $F\left(u_{18.3}, c\right)$, for a specific $18.3-\mathrm{m}$ wind and profile, may be computed from

$$
\begin{equation*}
F\left(u_{18.3}, c\right)=\exp \left[-e^{-Y(c, t)}\right] \tag{15}
\end{equation*}
$$

[^3]
Section 4

USE OF THE GRAPHS

Figures 26 through 47 represent joint probability statements derived from two conditions, viz., the $18.3-\mathrm{m}$ wind is equal to a given wind A, and the profile of the winds from 18.3 to 152.4 m is equal to a given profile B when the $18.3-m$ wind is A. The product of these probabilities $P(A \cap B)$, is the probability that both conditions exist simultaneously.

Consider three statements of joint probability to determine how the figures and the table can be used.

Gase I The probability that the $18.3-\mathrm{m}$ wind A is less than a given value A^{\prime}, and the profile B is less than a given profile B^{\prime}, in other words, neither A nor B are exceeded, is given symbolically by $\mathrm{P}\left(\mathrm{A} \leq \mathrm{A}^{\prime} \cap \mathrm{B} \leq \mathrm{B}^{\prime}\right)$

Case II The probability that at least one of the conditions in Case I is violated, i.e., either the $18.3-\mathrm{m}$ wind is exceeded or the profile is exceeded or both are exceeded is given by $\mathrm{P}\left(\mathrm{A}>\mathrm{A}^{\prime} \cup \mathrm{B}>\mathrm{B}^{\prime}\right)=1-\mathrm{P}\left(\mathrm{A} \leq \mathrm{A}^{\prime} \cap \mathrm{B} \leq \mathrm{B}^{\prime}\right)$

Case III The probability that both the $18.3-\mathrm{m}$ wind and the profile are exceeded is given by $P\left(A>A^{\prime} \cap B>B^{\prime}\right)=1-$ $P\left(A \leq A^{\prime}\right)-P\left(B \leq B^{\prime}\right)+P\left(A \leq A^{\prime} \cap B \leq B^{\prime}\right)$.

To determine the probabilities in Cases I and II, choose the graph from Figs. 26 through 47 for the desired exposure period and the profile of interest. Using the $18.3-\mathrm{m}$ wind value on the abscissa, read the corresponding probability from the ordinate or, use Eq. (15) with β and γ from Table 2.

Example of Case I Suppose that a vehicle must remain on the pad for a period of three months and that its design limits will be exceeded if the $18.3-\mathrm{m}$ wind exceeds 55 kts and the profile of winds exceeds the 3σ peakwind profile. What is the probability that these conditions will not be exceeded? According to Eq. (2) with $c=\bar{c}+3 \sigma=1.60$ the profile includes
$u_{18.3} \leq 55.0 \mathrm{kts}$
$u_{30.5} \leq 58.78$
$u_{61.0} \leq 64.32$
$u_{91.4} \leq 67.80$
$u_{121.9} \leq 70.39$
$u_{152.4} \leq 72.46$.

Figure 34 gives joint probabilities for the 90 -day exposure period. Fiftyfive kts on the abscissa corresponds to $P=0.92$ on the ordinate for the 3σ envelope or profile.

Example of Case II What is the probability that one or both conditions will be exceeded? By subtracting 0.92 from $1.0,0.08$ is obtained for the probability that at least one of the conditions $u_{18.3} \leq 55 \mathrm{kts}$ and $u_{h} \leq u_{h}(3 \sigma)$ is violated.

Turning now to Gase III, it is suggested that the simplest way to evaluate $P\left(A>A^{\prime} \cap B>B^{\prime}\right)$ is term by term, according to the formula above. Figure 48 is used to find the value of $u_{152.4}$ that corresponds to the profile of interest and the particular $u_{18.3}$ value, or, it may be computed directly from Eq. (2). The terms $P\left(A \leq A^{\prime}\right)=F\left(u_{18.3}\right)$ and $P\left(B \leq B^{\prime}\right)=F\left(u_{152.4}\right)$ are obtained from the appropriate graphs (Figs. 4-25)*. $\mathrm{P}\left(\mathrm{A} \leq \mathrm{A}^{\prime} \cap \mathrm{B} \leq \mathrm{B}^{\prime}\right.$) is read from Figs. 26 through 47 or computed from Eq. (15).
*Alternatively, Eq. (1) could be integrated

$$
\begin{equation*}
F\left(u_{18.3}\right)=\int_{-\infty}^{u_{18.3}} f(u) d u=\exp \left(-e^{-\alpha\left(u_{18.3^{-\mu}}\right.}\right) \tag{16}
\end{equation*}
$$

and $P\left(A \leq A^{\prime}\right)=F\left(u_{18.3}\right)$ solved, using μ and α from Table 1. A similar expression for 152.4 m would lead to $P\left(B \leq B^{\prime}\right)=F\left(u_{152.4}\right)$.

Example of Case III Suppose that for an exposure period of 90 days, the probability is needed that the $18.3-\mathrm{m}$ peak wind is greater than 40 kts and the profile is greater than the 0σ profile. Accordingly

$$
P\left(u_{18.3} \leq 40\right)=F\left(u_{18.3}=40\right)=0.40 \text { (Fig. 12) }
$$

or

$$
\begin{aligned}
& \alpha=0.1509, \quad \mu=39.3919, \quad F(40)=0.40 \text { (Table 1, Eq. (16)), } \\
& u_{152.4}=44.83 \mathrm{kts} \text { (Fig. } 48 \text { or Eq. (2))), } \\
& P\left(u_{152.4} \leq 44.83\right)=F\left(u_{152.4}=44.83\right)=0.37 \text { (Fig. 12) }
\end{aligned}
$$

or

$$
\begin{aligned}
& \alpha=0.1463, \quad \mu=44.9120, F(44.83)=0.37 \text { (Table 1, Eq. (16)), } \\
& P\left(u_{18.3} \leq 40 \cap u_{152.4} \leq 44.83\right)=0.32 \text { (Fig. 34) }
\end{aligned}
$$

and finally

$$
P\left(u_{18.3}>40 \cap u_{h}>0 \sigma \text { profile }\right)=1-0.40-0.37+0.32=0.55
$$

Section 5
 SUMMARY AND CONCLUSIONS

Integral equations were developed that describe the cumulative distribution of peak winds for several levels viz., $10.0,18.3,30.5,61.0,91.4,121.9$ and 152.4 m , and several exposure periods viz., $1 \mathrm{hr}, 1,2,5,10,15,30,60$, 90,180 and 365 days. The equations are applicable to intermediate levels and time periods. The results are presented in graphical form for each exposure period. The curves in each figure were fitted by a linear expression whose coefficients are tabulated.

Equations describing the joint probability that a wind value at the reference level 18.3 m , and a given profile ($0 \sigma, 1 \sigma, 2 \sigma, 3 \sigma$ will not be exceeded are also derived. Results are presented in both graphical and tabular form.

The cumulative distribution, presented in this réport, of peak winds for levels between 10 and 150 m and for exposure periods between one hour and one year, possess the double exponential shape characteristic of FTl distributions. As one might expect, the probability that the wind will not exceed a given value, decreases with increasing height above ground (for all exposure periods), and decreases with increasing exposure period (at all levels).

From a physical viewpoint, to the extent that wind gusts associated with individual small scale eddies can be envisioned as simultaneously influencing the entire planetary boundary layer at a given station and within a given exposure period, peak winds at levels above 10 m could be expected to be distributed according to a FTl distribution with parameters given by Table 1. However, to interpret the results obtained as proof that peak winds above 10-m fit such a distribution would be speculative.

With the reference wind $u_{18.3}$ and the exposure period t fixed, joint distributions for $0 \sigma, 1 \sigma, 2 \sigma$ and 3σ profiles are practically the same. The probability that $u_{18.3}$ will not exceed a given value and none of the four profiles will be exceeded decreases with exposure period.

Section 6

REFERENCES

1. Pope, J. E., "A Computer Program for Evaluating Extremes Distributed as Fisher-Tippett Type I," LMSC/HREC A791263, Lockheed Missiles \& Space Company, Huntsville, Ala., March 1968.
2. Gumbel, E. J., Statistics of Extremes, Columbia University Press, New York, 1958.
3. Thom, H. C.S., "New Distributions of Extreme Winds in the United States," J. Struc. Div., ASCE, July 1968, pp. 1787-1801.
4. Daniels, G. E., ed., "Terrestrial Environment (Climatic) Criteria Guidelines for Use in Space Vehicle Development, 1969 Revision," NASA TM X-53872, George C. Marshall Space Flight Center, Ala., 8 September 1969.

$$
\begin{aligned}
& \\
& \left.\right] \begin{array}{cc}
\text { ALPHA } & \text { MU } \\
0.1781 & 27.8100 \\
0.1760 & 29.0140 \\
0.1747 & 30.0894 \\
0.1719 & 31.7186 \\
0.1692 & 32.7280 \\
0.1678 & 33.5550 \\
0.1656 & 34.1506
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\text { CAPE } & \text { KENNEDY } \\
\text { E T } & \text { I DAY } \\
\text { ALPHA } & \text { MU } \\
0.2098 & 16.8800 \\
0.2067 & 17.9449 \\
0.2031 & 18.8697 \\
0.1991 & 20.3718 \\
0.1964 & 21.3869 \\
0.1932 & 22.1142 \\
0.1920 & 22.8098
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

(panuiguos) i arqei

$$
\begin{aligned}
& \left.\begin{array}{ll}
\text { CAPE KENNEDY } \\
\text { ET T } & \text { 15 DAYS }
\end{array}\right] \begin{array}{ll}
\text { BETA } & \text { GAMMA } \\
0.1673 & 32.4879 \\
0.1706 & 31.2995 \\
0.1713 & 30.9840 \\
0.1713 & 30.9473
\end{array}
\end{aligned}
$$

Table 2 (continued)
vended

CAPE KENNEDY	
ET TI DAYS (ENG)	
BETA	GAMMA
0.1588	25.4955
0.1613	24.3273
0.1620	24.0275
0.1620	23.9894

$0.1620 \quad 23.9894$

$$
\begin{array}{lc}
\text { CAPE KENNEDY } \\
\text { ET } & 15 \text { DAYS(ENV) } \\
\text { BETA } & \text { GAMMA } \\
0.1228 & 34.3740 \\
0.1242 & 33.1847 \\
0.1245 & 32.8839 \\
0.1245 & 32.8473
\end{array}
$$

CAPE KENNEDY
ET 60 DAYS (END)

 $\stackrel{o}{0}$
$\stackrel{y}{\bullet}$
$\underline{\varrho}$

m
n
0

 $\begin{array}{ccc}\stackrel{N}{\infty} & \underset{\sim}{\infty} & \approx \\ \stackrel{\infty}{0} & \underset{0}{\infty} & \underset{0}{0} \\ 0\end{array}$ 0.1832

Fig. 1-FTl Fit of 30-Day Peak Wind Data for Cape Kennedy

Fig. 2 - Joint Probability Curve for Cape Kennedy (30-Day, Annual Reference Period)

Fig. 3 - Joint Probability Plot for Cape Kennedy (30-Day, Annual Reference Period)

Fig. 4 - Surface Wind Cumulative Distributions

Fig. 5 - Surface Wind Cumulative Distributions

Fig. 6 - Surface Wind Cumulative Distributions

Fig. 7 - Surface Wind Cumulative Distributions

Fig. 8 - Surface Wind Cumulative Distributions

Fig. 9 - Surface Wind Cumulative Distributions

Fig. 10 - Surface Wind Cumulative Distributions

Fig. 11 - Surface Wind Cumulative Distributions

Fig. 12 - Surface Wind Cumulative Distributions

Capf nemetor Etien oars

Fig. 13 - Surface Wind Cumulative Distributions

Fig. 14.- Surface Wind Cumulative Distributions

Fig. 15 - Surface Wind Cumulative Distributions

Fig. 16 - Surface Wind Cumulative Distributions

Fig. 17 - Surface Wind Cumulative Distributions

Fig. 18 - Surface Wind Cumulative Distributions

Fig. 19 - Surface Wind Cumulative Distributions

Fig. 20 - Surface Wind Cumulative Distributions

Fig. 21 - Surface Wind Cumulative Distributions

Fig. 22 - Surface Wind Cumulative Distributions

Fig. 23 - Surface Wind Cumulative Distributions

Fig. 24 - Surface Wind Cumulative Distributions

Fig. 25 - Surface Wind Cumulative Distributions

Fig. 26 - Surface Wind Profile Cumulative Distributions

Fig. 27 - Surface Wind Profile Cumulative Distributions

CAPE KENMEDY ET 2 days

Fig. 28 - Surface Wind Profile Cumulative Distributions

CAPE KENNEDY ET 3 Dars

Fig. 29 - Surface Wind Profile Cumulative Distributions

Fig. 30 - Surface Wind Profile Cumulative Distributions

Cape kennedy E 15 oays

Fig. 31 - Surface Wind Profile Cumulative Distributions

CAPE KEMEETY E 30 DAYS

Fig. 32 - Surface Wind Profile Cumulative Distributions

CAPE KENNEDY E 160 DAYS

Fig. 33 - Surface Wind Profile Cumulative Distributions

Fig. 34 - Surface Wind Profile Cumulative Distributions

CAPE KEMNEDY E T 180 DAYS

Fig. 35 - Surface Wind Profile Cumulative Distributions

Fig. 36 - Surface Wind Profile Cumulative Distributions

Fig. 37 - Surface Wind Profile Cumulative Distributions

CAPE REMUED E T 1 DAY (EMV)

Fig. 38 - Surface Wind Profile Cumulative Distributions

CAPE KEMNEDY E T DAYS (ENV)

Fig. 39 - Surface Wind Profile Cumulative Distributions

CAPE REMEDE E 15 DAYS (EWW

Fig. 40 - Surface Wind Profile Cumulative Distributions

CAPE KEMAEOY E 20 DAYS (ENV)

Fig. 41 - Surface Wind Profile Cumulative Distributions

CaPE REMNEDY E I 15 DAYS (ENV)

Fig. 42 - Surface Wind Profile Cumulative Distributions

Fig. 43 - Surface Wind Profile Cumulative Distributions

Fig. 44 - Surface Wind Profile Cumulative Distributions

CAPE KEMMEDY E T SO OAYS (ENV)

Fig. 45 - Surface Wind Profile Cumulative Distributions

Fig. 46 - Surface Wind Profile Cumulative Distributions

CAPE KENMEDY E T $3 * 5$ DAYS (ENV)

Fig. 47 - Surface Wind Profile Cumulative Distributions

MSFC-RSA, Ala
Fig. 48 - Wind Profile Plots

[^0]: * In this report, probability density functions are represented by $f(u)$ where u is a random variable.

[^1]: *Fichtl, private communication.

[^2]: *The peak wind observed at each level $h=18.3,30.5,61.0,91.4,121.9$ and 152.4 m during an exposure period of 10 minutes was tabulated. The peak winds were assumed to have occurred simultaneously at all levels (Fichtl, private communication).

[^3]: Below this small value of $u_{18.3}, u_{h}$ tends toward ∞ as $u_{18.3}$ tends toward zero.

