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FOREWORD

ihis report was prepared by the Grumman Aircraft Engineering Corporation, Bethpage,
Gew York, under contract NAG8-2113, entitled, "Computer Program for Analysis of
¢hell Structures". The work was performed by the Structural Mechanics Section of

Ingineering and the Digital Computing Section of Management Information Systems.

The zuthor wishes to acknowledge the contributions of the following individusals:
or, lLarry Harris for contributing portions of Appendix A, Mr. Michael Shulman for

~hecking major portions of the derivations, and Mr. William Mueller for overall

contract coordination.

This volume is devoted to a presentation of the theory and numerical techniques
developed for implementation as a digital computer program. The user's information
for the actual program is presented in two separate volumes: "Numerical Analysis
of Shells, Vol II: A Users Manual for STARS II - Shell Theory Automated for
Retational Structures II - Digital Computer Program", by V. Svalbonas and N.
Angrisanoc, and "Numerical Analysis of Shells, Vol III: Engineer's Program Manusl for
STARS II - Shell Theory Automated for Rotational Structures II - Digital Computer

Program', by N. Angrisano, F. Hughes and V. Svalbonas.
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INTRODUCTION

The STARS II digital computer program is an automated procedure for the analysis of
thin orthotropic shells of revolution, reinforced in various ways, and subjected to
unsymmetric loads. The program can treat shells having multiply-connected joints,

walls of sandwich construction, and thermal variations through the walls.

The theory presented in this report and the techniques used for the unsymmetric case
are the ocutgrowth of work that began at Grumman in the early sixties (References 1
and 5). Much of this report involves modification of relationships that appear in
Reference 5 to include orthotropic effects (Section 5 and parts of Section 6 are
taken directly from that work). The basic shell theory is based upon the work of

J. Kempner (References 2 and 3).

The partial differential equations are derived for the general unsymmetric case.
They are then reduced to ordinary differential equaticns by a Fouriler series expan-
sion in the circumferential coordinate. These equations are specialized to several
convenient cocrdinate systems, and rederived to represent various reinforcement

cases.

The shell is divided into segments of common analytical form, cylinders, cones,
ellipsoids, ogives, parabolas, or any special function desired. Influence coeffi-
cients are calculated for each segment by combining unit sclutions obtained by
forward integration using a Runge-Kutta procedure. Since influence coefficients
cannot be accurately computed for segments that are too large, the size of these
segments is limited by the accuracy of calculation desired. This accuracy is de-
termined by checking the symmetry of the resulting stiffness matrices. The segments
are then elastically coupled by conventional matrix methods intec regions. These
regions are determined by shell branch points and concentrated line loadings. The
regior. matrices thus obtained are first reduced, and then coupled elastically to
forr. structure stiffness matrices. These matrices are inverted to get flexibility

metrices which are used to obtain deformation conditions at the ends of each region.
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@2 defermations are used as initial conditions for the final forward integration
“Lrough each segment, thus yielding the displacements at points throughout the

structure. Finally, the stress distributions are obtained, using the total

displacement, patterns.

ihe required input data is relatively simple, consisting of specification of

geometry, material properties, loads and support conditions.

The output is in a
form directly usable by the stress analyst, that is, stresses and displacements

.

2% various points on the shell.
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SYMBOLS

LOWER CASE LATIN

semi-diameter in ellipsoid (in.); index on applied loads
semi-height in ellipscid (in.); index on boundary conditions
offset in ogive (in.); cosine function

differential

distributed load in local coordinates (lb/in.z); stress resultant
matrix in local coordinates; parabolic geometry constant

thickness of face sheet in honeycomb shell

index: ©beginning edge of shell segment; independent joint of
kinematic link; subscript "inside"

index: ending edge of shell segment; dependent Jjoint of kinematic
link

segment stiffness matrix; lineal forces due to displacements;
curvature

length (in.); load matrix

mass (slugs); distributed moment (in.-lb/in.z); index on nodes
dimension of matrix; index on harmonic

subscript "outside"; subscript "reference surface"

distributed load in global coordinates (lb/in.2); index on
distributed loads

number of degrees of freedom
radius

index on segment; sine function; meridional coordinate in cylinder
or cone; arc distance

index on topological arrangement; core thickness in honeycomb
shell

circumferential displ.acement, positive by right-hand rule about
7 axis (in.)

meridional displacement, positive in direction of increasing ¢ (in.)

normal displacement, positive inward (in.)




SYMBOLS (Cont)

UPPER CASE LATIN

number of applied loads

number of different sets of boundary conditions
constant; bending-membrane interaction stiffness
shell flexural stiffness (in.-1b)

Young's modulus (lb/in.g)

subseript "free;" lineal force (1b/in. of circumference);
distributed load in nonlinear cases
shear modulus (lb/in.z)

total shell thickness (in.)

moment of inertia (in.h)

effective transverse shear stress resultant (ib/in.)

shell extensional stiffness (1b/in.); shell stiffness matrix
load matrix; fixed end forces due to distributed losd
bending moment on shell (in.-1lb/in.); number of nodes
membrane force (1b/in.); number of harmonics

number of distributed loads

transverse shear stress resultant (1b/in.)

radius vector; subscript "region"

number of segments

effective membrane shear (1b/in.); number of topological arrange-
ments; subscript total; temperature

amplitude of sinusoidally varying u

amplitude of cosinusoidally varying v

amplitude of cosinusoidally varying w

Cartesian coordinate, 6 = 0 at X axis; matrix defined in Section S
Cartesian coordinate; matrix defined in Section 5

Cartesian coordinate, coincides with axis of revolution




SYMBOLS (Cont)

GREEK

coefficient of thermal expansion (deg—l)

o

. B b/e - ratio of semi-height to semi-diameter of ellipscid
Y shear strain
§ matrix of displacements in local coordinates

' € extensional strain
4 normal coordinate, positive inward
8 circumferential angular coordinate (rad)
v Poisson's ratio
o} dimensionless radius; position vsctor of shell relative to

inertial frame (in.)
o normal stress (lb/in.z)
T shear stress (lb/in.2)
¢ meridional angular coordinate (rad)
w rotational displacement (rad)
A displacements in global system
Q amplitude of cosinusoidally varying w
MISCELLANEOUS
A denotes total forces, 2nr0 times lineal force
i . denotes partial differentiation
* pre-superscript, denotes nonlinear terms
\
SUBSCRIFTS
' eq equivalent
NOTE

Other symbols are defined in the text where they appear.




SECTION 1

FORMULATION OF SHELL EQUATIONS

EQUILIBRIUM EQUATIONS

The equilibrium equations which are derived in general form in Reference 2
by means of the variational principle, are of the accuracy of Love's first
approximation as medified by E. Reissner. The reduction of these general
equations to the special case of shells of revolution is given in Refer-
ence 3, page 8. They are repeated here as Equations l-la through 1l-le.

It shoula be noted that the equilibrium relations have been written in

the undeformed coordinate system. See Figures 1-1, 1-2, and 1-3.

) r. sin¢$ = -r.r.f

10 - . —
2, PNy o v (BT QT 1%0%s

2:F¢ = : (N¢ C) 9 * r1N¢e,e - Ner1 cos ¢ - rOQ¢ = —rlrof¢

Z:FC = : (Q¢r0)’¢ + rlQe,e + rON¢ + Nerl sin ¢ = —rlrofC

E:Me Poery ®e 0 ) s * Mgr, cos ¢ + r,r Q¢ =
2:“@ : -(4*6 0 g = rlMB,e - M¢6r1 cos ¢ + rerQ

where commas denote partial differentiation, e.g.,

2 -3 2
(NoaTo™) sy =35 (NagTo”)

The distributed loading terms, "f" and "m", are dimensionally in terms of
force/unit srea of middle surface, and (force x length)/unit area of
middle surface. Distributed moments occur, for example, in threaded
connections in pressure vessels or fittings where they are associated with

tangential loads applied away from the middle surface.




It should be noted that the sixth equilibrium equation:

M M
EM =0 : Ne - N¢ +_8_¢ +.ﬂ= 0 (1-2)
5 b 0 r, ry

fs not included with the set of equilibrium equations since it will only
Le satisfied vhen g/r is not neglected in comparison with unity in ex-
pressions for stress-resultants and strains (Reference 4, pages 5, 6, and
317). As will be seen later, for the case of [ << risT, the physical

definitions of the stress resultants lead to N and M = M

60 = Vo 00 = "Mee"
In this approximate theory then, the equation is identically satisfied in
the special case when ry =T, (sphere). Otherwise, the equation is

violated.

STRAIN-DISPLACEMENT RELATIONS

The strain-displacement relations (Reference 3, pages 10, 34, and 39) are

presented as follows:

24 =—%—(u,e + Vv cos ¢ - wsin ¢) (1-3a)
o) 0
£y =1 (v, - w) (1-3b)
0 rl ¢
v, r v,, -u cos¢ Usy
Y¢e=re+—£—?_— = er += (1-3c)
[} 0 1 Q b 0 1
Wy == (Ww +v) (1-3q)
1
w
9 u 1
w, = = (— +=—) = -=—(w,. +u sin 9) (1-3e)
$ g r, T, ’
o
kg = -TO (w¢’e - wy cos o) (1-31)
=
k‘b =< me,‘b (1-3g)
1
1 o
kcpe = ke¢ = 2r0 [me’e -—r;w¢’¢ *+ wg cos ¢ (1-3n)
1-2

]
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where the geometric relations

r0’¢ =71, cos $ r. =r, sin ¢

have been used.

STRESS-STRAIN RELATIONS

The stress-strain relations (Reference 3, page 32) are obtained by em-
ploying Hooke's Laws and assuming that dimensions "z", normal to the middle
surface, are much smaller than the radius of the shell. In this case,

orthotropic relations will be used to increase the usefulness and applica-
bility of the analysis.

E
i]
g, = ————e, +v e, -g(k+v k,)-(a.+v. .0 )T] (>-kLa)
8 1 - v¢e»6¢[ 60 0% ¢y B 6 ¢ 6 6 ¢
E¢ )
0, = ———|¢ + v, e, - ¢lk+v k)= (a,+v a T‘] (1-4b)
¢ "1 - v%vm[@o LT} eo ¢ ¢0°86 ¢ ¢80 €
oo Gyg [y¢eo - 2ck¢e] {1-hc)

where ¢, k and vy are functions of 6 and ¢ only. But «, T, E and v may,

in general, also be arbitrary functions of . Thus, the stresses, o and T,
are arbitrary functions of the thickness coordinate. These equations
assume that the thickness is negligible compared to the radii of curvature,
rl and r2. If this assumption is not made, but normals do remain straight
and normel, then strains (and stresses) are not linear functions of g,

even with constant o, E and v. This is the same phenomenosn that occurs in
curved beams. (Refer to Reference 2, page 29 and Reference kL, page 316.)

For present purposes, only T will be allowed to vary in the z direction.

1-3




STRESS RESULTANTS

Again neglecting thickness in comparison with the radii of curvature

{Reference 3, pages 33, 34),

-foe dz, -j.oec dg
f o¢ dz fooc dz
= *Ngo ’f‘w a4z Moy = *f‘epe‘ dc
—[ Eg Sag +vve¢u¢)Td; / Eg (ae + VW%)T;Q; (16)
40 9¢

" VeuYes
" (a, + v¢eae)Td . E¢ (a¢ + v¢6a9)T
1 ¢ Mg =

rdg
1= VegVae

96”04
where the integrals are taken over the entire thickness. Neglecting "z"
compared to "r" ignores the fact that, for an elemental length ds along the
median surface, the lamella inside and outside the median surface are
shorter ar longer than ds. {Refer to Reference L, pages L and 5.) If this
effect is considered, and the radii associated with the ¢ and 6 directions

are unequal (rl # r2), then Ne0 # N¢e and M9¢ # -M¢6'

The following general definitions of extensional, bending, and in-plane

shear stiffnesses are introduced:

Eh

Eeh

{ - )
12(1 vwve0
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“he definitions for rigid-core sandwich configurations of various con-
struction are presented in Figure 1-k.

Combining Equations 1-4 through 1-T yields the stress resultants as

functions of the strains, curvatures, and temperatures.

BQUNDARY CONDITIONS

The required boundary conditions at a plane of constant ¢ are ottained as

It is neces-
sary to specify either displacements or corresponding stress resultants.

a result of the variational procedure (Reference 3, page 28).

M
or [N¢e —-?29 sin ¢ (1-9a)
0

(1-9v)

(1-9¢)

(1-94)




In view of the form of the boundary conditions (Equation 1-9), the
equilibrium equations are re-formulated in terms of the "effective stress

resultants", T, N, J and M. where,

$8 "9’ "¢
- _ sin
T = N¢e - M¢8 T, (1-10a)
N, =N, (1-10b) )
Myo,0

5, =9 +-{}4— (1-10c)

(p O 1]
M¢ = M¢ (1-104)

The partial derivatives of T¢e and J¢, which will be required later, are:

T¢e,¢ - N¢6,¢ sin ¢ sin ¢ cos ¢ cos ¢

- M + M g M (1-11a)
rl rl 60,9 rorl ¢0 rO ¢80 rorl

J Q M

;D‘a‘b = f"$ + r"gteQ - Mq)e e ios (l-llb)
1 1 01 ’ 0

FINAL EQUATIONS

By eliminating strains and curvatures and utilizing the orthotropic identity

ve¢Ea = “¢6E¢’ each stress resultant is expressed ia terms of displacements

and other stress resultants. From Equations 1-3 and 1-8:

= 2 _ .
Ny = vag Ny * (Kpy = vye® Kpo) o, Noa * Vae Mo
) Usg + vcos ¢ -vwsinid
= vy Ny * (Kpy = Ve Kpp) T - Npg * V4o Npo )
(1-12a)
1-6 {

Y

E:




- ucos u,45
+ —

I'O rl

2
= Vgp Dpp) Ky = Mpy ¥ vy My

2 .
- V4 D22) [w,ee + U, sin ¢

r

o T + we cos ¢]

o]

0
M -—— +
46 “e,6 T “0s0

9

Using Equations 1-3d, 1-10a, and 1-12¢
Py

v v
=33 .0 u cos ¢ sin ¢ 9
Mo = Yo,0 * [(”e,e - =) +(

sin ¢ T

¥ T 1 To "o

2
M _ sin ¢
0 2
+ % - )+ u cos °]- ios ¢ (w,e + u sin 0)}

33 °0 1 0
)' Vg sli-n : "L)
0 LB

(1-13c)




L]
rxpansion of the equilibrium egquations yields:
r

n + 20, cos¢+ N —O-Q sin ¢ + r f_ =0 (1-1ka)
9,0 6 $6,¢ rl (¢} 08

o o
d N ~ - — = -
I‘~$,¢—r_1' + N¢ cos ¢ + N¢e,e - N, cos ¢ Q¢ N + r0f¢ 0 (1~1bv)

o o
U "1 *Q, cos¢+ Qo+ N¢Tl * Ny sino+ ryf =0 (1-1ke)

1
o
'M¢6,6 - M¢’¢-?l— - M¢ cos ¢ + M, cos ¢+ Q¢r0 = - rgm (1-1ka)
Yo

Mg o7 - Mg oSO Mg o+ QT = - T, (1-1ke)

1

A set of eight partial differential equations of first order in the inde-
pendent variable, ¢, will now be obtained by appropriate substitution of the
previous equations. The first four of these equations result directly from
the equilibrium equations. Combining Equations 1-1lla through e with

Equations 1-10 and 1-11 yields:

: T N
# $8,¢ _ _pp Sos $__9,8 + M sin g» -M cos ¢ _l__ _5sing
r $9 r r 0,0 2 $6 r T r

1 0 0 ro 0 1 0

2

-f -n Sin¢ (1-15a)

& ¢ o \

" N ¢ cos ¢ [o]e] Ttbe 5} sin ¢ 1 :
g N r *Ne ISJ r, ‘Mee[ 2+ T, :
1 L 0 0 9, r,2 T

3 +_rT- f¢ (1-15b)

R




[ ]
J@ ® cos ¢ sin ¢ N¢ Me L] ces ¢ m¢ ]
LA, - -2 - oM - f 422
r* ¢ rO [5} ro rl ro ¢$6,0 ro 4 rO
(1-15¢)
M M
$s¢ _ cos ¢ _ cos ¢ _ $0,0 N
- My M¢ - 2— +J¢ +my (1-154)

0 0

The remaining four equations involve differentiation with respect to ¢ and

are obtained from Equations 1-34, 1-10s, 1-12b and c, and 1-13b.

u, u cos ¢ v, T M sin ¢
.__@. = — _0 + Ele_ + _}ﬁf(— (1—168.)
1 o o 33 Yo "33
o -1
- ( oy 2 - _ .
v, T Ve T Ve <) Ny = Veolo * Moy = Voo're (1-160)
w’
";¢i= ) - (1-16c)
1 1
w -1
8,6 _ 2 ) i
T (Dze Vae P11 g'Mqa * VoMo = Mpy * "e¢MTe‘- (1-164)

In order to obtain a complete set of equations, the following auxiliary

equations are necessary:

Ne=v N +(Kll—

° ) Usg + v cos ¢ - w sin ¢
46 ¢

r, ] - NTe * Vo0 NT¢

[1-17a)

1-9




2
(D y = v, D )[w, +u,, sin¢ ]
11 $6 22 L] 0
Mg = Veplly - + w, COs ¢
e $0 ¢ rO ro 2]
= Mpg ¥ VeeMrg (1-17b)
= -1 cos¢ cos ¢ sin ¢ sin ¢ 1 '
M 2w + u - ool ———
¥ ‘o siny g 8.9 1 o ®\ o T
+
33 To "33 .
cos ¢ T¢e
= EW’ + Sin¢ (1-170)
6 ry K33
oo
Moo = Tgo T T, Sn¢ (1-174)
w’ .
o = - _’6 _using (1-170)
b ry T,
M
$6,0
=dy Ty (1-17¢
% ¢ Ty 7f)
gin ¢ 1
2 ccs ¢ (ro K33 + D33 —;———) - -
Q. = 3 cos¢ _ 1 M . 1 -
° o r 2K, +D sin2¢ 96 Ty sin® 6,04
0 33 33 Tt x
33 70733 :
3
. cos¢ _cos ¢ sin ¢ N sin2¢ _ cose¢ _ sing _ rl,@ cos ¢ .
AR "o Yo To ! r.?
1
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2 . .
rl cos ¢ sind sin ¢ 1 cos ¢ rl sin ¢ cos ¢
+ - v —_— | - v -
r 2 ’8¢ r, r ’8 ry N 2
0 0
r si r cosg¢
1,6 cos ¢ ing 1)
- b + QV,
2 0¢ ry 9 Ty r 2
! 0
sin ¢ cos ¢ 0,6
+ T + T + -m (1-17g)
08,6 Ko 40 K5 T, )

These auxiliary equations could be included in the eight partial differen-
tiel equations by direct substitution, and indeed in the case of Equatinns
1-17d4 through g this has already been done. However these quantities are

also of technical interest and computing them separately is desirable,

The equations presented above constitute a complete formulation of a con-
sistent first-order thin shell theory. Techniques for the solution of this

set of equations are given in the following sections.
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Figure 1-1. Shell Element Geometry and Displacements
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Figure 1-2. Forces On Shell Element
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SECTION 2

FOURIER ANALYSIS

Efficient techniques for the numerical solution of partial differential
equations are not readily available. However, by assuming a Fourier series
distribution in the circular coordinate, b, it is possible to reduce the
solution to "N" sets of ordinary differential equations. Usually the num-
ber of sets (harmonics) that are required to solve practical problems is
rather limited. The actuel number will depend upon the type of load dis-
tribution being investigated and the degree of accuracy demanded. By
restricting consideration to cases symmetric about 8 = 0, only "one-half"
of the general expansion is needed. By physical reasoning, (or complete
expansion of the series), the appropriate function (sine or cosine) may be
chosen. The choices are verified when the trigonometric functions may be

factored out of the differential equations.

The reduction of the system of partisl differential equations to sets of
ordinary differential equations is most convenient since these equations

may nov be solved by employing a standard numerical integrating procedure

such as Runge-Kutta.

The expansion of the previously developed partial differential equations
into sets of ordinary differential equations will now be discussed. The

appropriate series expansions for the quantities of interest are:

u = U(O) + ngl U(n) sin n@ Ng = ngo Na(n) cos nb
v = nko V(n) cos nb N¢ = nzo N¢(n) cos né
wo= nzo W(n) cos nf N¢9 = N¢e(o) + nzl N¢O(n) sin nb
wg = nZO ue(“) cos ab Me = nzo Me(n) cos nd




w, = Q¢(O) + ngl 9¢(n) sin no M¢ = ngo M¢(n) cos nf

£, = fe(O) + B fe(“) sin nd Myo = M¢e(0) + B Mw(“) sin ng

f¢ = nzo f¢(n) cos nb Q8 = Qe(O) + 21 Qe(n) sin né .
fC = nzo fC(n) cos né Q¢ = nzo Q¢(n) cos nb

My = nzo me(n) cos né T¢e = T¢e(o) + nzl T¢e(n) sin nd

m¢ = m¢(o) + nzl m¢(n) sin neé J@ = ngo J¢(n) cos né

NTe = ng NTe(n) cos nb MTO = ngo MTG(n) cos nb

N’N = nzo NT¢(n) cos nd M’N = nzo MT¢(n) cos nb

T = nzo T(n) cos nb (2-1)

FINAL SET OF EQUATIONS

Substituting these equations into the sets of partial differentisl equations é
(Equations 1-15, 1-16, and 1-17) will yield the final harmonic form of the :

equations required. PR

Differential Equations

When n =0, 1, 2..., then

(n) N {n)

T .
49,4 = _op (n) cos ¢ n 2 - (n) sin $_u {(n)} cos ¢[l_ _ sin §|
ry $0 ry T, ] r02 LX:] rs |fa Ty J 1
(n) (n) sin ¢ \
- fe - m¢ - (2-2)
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2 |

{n) cos ¢ (n) cos ¢ rY:] (n)fsin ¢ 1
- N OS¢ -n - oM sin¢é¢, 1
¢ rO 8 ro ro $0 [r02 r0r1]
1 (n)
s 2 _ p(m)
r ¢
1
N (n) M (n)
J(n)cos¢_N(n) sin¢ ¢ +n2 (] - on M (n) cos ¢
¢ ro ] r, r1 r $8 r
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(n)
nm
_pn) e
[ rO
M (n)
=Me(") =0 M‘p(“) R B J¢(n) + me(“)
Q 0 0
(n) (n) _.
U(n) cos ¢ +n V(n) + Tge + M¢e sin ¢
%o To 33 ToX33
W(n)+(K -y 2 )-I{N(n)_ N(n)+N (n)_v N(n)}
r 22~ Vgp M1 ¢ Yoo 0 T¢ 8¢ TO
(n) V(n)
g T Tr
1
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Auxiliary Equations

When n = G, 1, 2...

, then

cos ¢ - W

o

(n) sin ¢]

(2-3)

(n)

sin ¢ ~ ngw

-1

ri+ sin ¢
D

33

+ nV(n)(

(n)
+ Mw

(n)

(n)

D,,) (n)
22 [nU ”’e(n) cos {l

To

(n)
* Veg My

{_ane(n) . yln) (

cos ¢ cos ¢ sin ¢
1 o

ro K33

(n) sin ¢

)

33

sin ¢

To

2nu(®) 298¢ 4 ¢

1
+
T 0 40

1

)+
sin ¢
To

sin ¢
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i -1
2cos ¢ (r, K. +p_ 5in ¢') —-—
~ {n) 3 cos ¢ 0 733 3 07 {n) Ty (n)
g T - > > M¢8 +-—————————§- —QnQe o
C r.” K.+ D, sine r sin“¢ ?
0 33 33 0 +
P33 Ty Kag
. 2
+ 0 tn) ( cos o _ cos ¢ sin ¢) + yin) ( sin _cos'e
¢ r o Ty Ty
r cos2¢ sin ¢
) _sing T1,0 ©08 ¢ + L + nv (n) [ sin ¢ +
1 r 2 r 2 * Yo 1
1 0
) . nv(“) ( cos o rl sin ¢ cos ¢ ) rl,®
o] r 2 r 2
0 1
r c052¢
+onw, (M) cos e,y (sing T
r0 o] r 2
0
(n)
+ 7 (n) sin ¢ +7 (n) cos ¢ _ Mg Y
{
Ir m¢(0) =1, ) 20, then Q.9 o,
n Fer th

e axisymmetric case, the problem is defined by only one harmonic, n = 0.

For an unsymmetric problem, the required harmonics may be superimposed, and

\
again, only one set of ordinary differential equations need be solved at
i a2 time.
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SECTION 3

FROGFAMMED EQUATIONS FOR VARIOQUS CONFIGURATIONS

The differential equations actually programmed are given below for shell
shapes using the coordinate angle ¢, and for the cylinder and cone, which

use the meridional distance coordinate s.

INDEPENDENT VARIABLE, ¢

(n) {n)

%él Tso,6 = op e(n) cos ¢ Ni ) nMe(n) sin2¢ - M e(n) cos ¢ [l_ _sin ﬂ
) Ty ¢ o 0 r, b o "1 Yo
o _e ) _(n) sing (3-1)
- 8 [ r
i 0
o (n)
y () _(n) cos ¢, Ne(n) cos ¢ 49
2o ¢ To To Ty
1 ) 7 {n)
(n sin ¢ 1 b (n)
- pM + + - f
49 [ r 2 I'01”1] 1 ¢
0
5 (n) (n) y ()
g $,¢ _ (n) cos ¢ (n) sin ¢ ¢ 2_8
o r - _J¢ +— ~ Y r Sy tn 2
= 0 0 1 r
0
(n) (n) )
n) cos ¢ n $
- 2n Mo - 1, + = \
r 0
0
. y (n) M (n)
_‘L.(P__ = M (n) ﬂ.‘? - M (n) M - 2n 4'6 +J (n) +m (n)
rl ¢} T, [ ro 0 ¢ (2]
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; 2,,(n)
sin ¢ - nW (n)
+ 0 cos %]

0

{~2nne(n) + U(n) (COS ¢ _cos ¢ sin ¢)




o (n) (n) (n) sin ¢
h@'U = T¢e +M¢>6 =
Q
) a2 (n) sin ¢
¢ ry r,
{(n)
n (n) = J (n) nM¢6
* ¢ T r
¢ 0
sin ¢
2cos¢<r K + D —-——)
oW al3cose B B n N m
¢ r 2 2 96
0 r, K33 + D33 sin"¢
-1
r
+ __“__l;—-—zr—- -2nQ, ¢(n) + U,¢(n) c:s ¢ _ Cosr¢ sin ¢
¥, sin ¢ ’ 1 0
p.. Yr x
33 To "33

2
rO ro rl r 2 r -

2 s
+ yln) ( 8in%¢ . c052¢__sin o _ T1,9 °°° ¢ 1r)cos¢ sin o >
1 0

+ nv (n) sin ¢ + L + nv(n) cos ¢ - rl sin ¢ cos ¢ _ rl,¢
o N Tq 2 2

2
+ ogy. (n) cos ¢ o) ( sin ¢, Ty cos ¢)
\

’

¢ Ty 0 r02
. oM )

T (n) sing¢ , 7 (n) cos % _ e m (n)
68,0 K 00 X T b
33 33 0

- I
s )
i 2 () L fO(O) = 0, then Q () _ 4.

When using Equaticns 3-1, it is necessary to specify the functions ro(o),
r (), =nd rl(¢),¢. For completeness, these functions and r,(¢) are given

for the various analytic forms.
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n_n

©ilipscidal (Figure 3-1;: When 8 = b/a, 8 = 1 for a sphere, and "a and

1o

are gisen data, then:

for sphere

Sgival {rigure 3-2): When "rl" and "¢" are given data, then:

1,4

siified" Ellipse Shape (Figure 3-3): When "n" and "a" are given data, and

she range is 1 2 n 2 - 1, then:

1

o 1 +n
sin(l + n)Q

-(2 + n) %sin(n)¢> cos cp(

1 + sin




(v
"3

HUE Y t/a = 0,707
n o= bra = 0 006
no= -t b/a = 0,539
noe =1 b’/a » 0.613
Faraboii~ {Flgure 3-i): When the given parabolic equaiicn is z = f‘l
+ f.r + f3:"' and "t‘l", "f,", and "f‘?" are given input data, then:
~tan ¢ + f
ro = ——r (3-5)
3
r 2 0
2 sin ¢
3
. _ =Sec™®
L of
3
L
r - -3 zec } sin 2
1,¢ 2f3
i CYLINDRICAL, s MEASUREL OPPCSITE TO GLOBAL COORDINATE Z (Figure 3-5)
| (a) (n) (n)
a1 . N, M
pes _ 9 9 (n) 1 (n)
. —ds— 2 +n !’n -0 > - fe - ?- m" (3'6)
. ' r 0
Q
(n) (n) {n}
an . Dpe Moo (n)
* 3 -n - n -f
% is Ty r 2 ]
Y ) 0
- . .
o | g (n) y (n) n (0
—2—- . - * n2 —9 - f () +n L
d r P 4 r
0 r0 0
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f (O)= 0, then QB( ) =

8 0.

CONICAL, s MRASURED ALONG MERIDIAN FROM APEX (Figure 3-6)

(n) (n)

av nM sin ¢ b (n) tan ¢

+

yl
— - * - 92 z 5
s cos ¢ s

36




(n) (n)
ib{n> . U(n) nv(n) . ?QQ . M¢e tan §
ds T s s cos ¢ K33 KBSS
atn) 2yt (n) (n) (n) (n)
s = (hgz = Voo Kll) { Nooom = vgeNg  * Tigg VaeNTg }
ey )
E{ - Qe(n)
{n)
[519] =1
a _ 2 (n) (n) (n) (n)
ds B ( Voo = Ve P2 ) {'M¢ *vgeMe T Mg * VeeMme }
(n) (n) {n) _.
- (n) (n) 2 nu + v cos ¢ - W sin ¢
Ny = Veely  * ( K1~ Ve Koo ) [ s o8 ¢
(n) (n)
- Npg  * Vaolpg
o
(n) _ N (n) _ (Dll MY D22) nU ) sin ¢ - nzw(“) + 0 (n) cos &
‘8 T Y48 ¢ s cos ¢ s cos ¢ 8
(n) (n)
= Mpg Tt vegMng
L) -1 oo () ') sin o, nv!®) tan o, 2aw'™
b - . ] 5 s s
s cos ¢ , sin $
953 K33s cos ¢
T (n) sin ¢
40 .
L z
33
(n)
M
. {a) _ (n) Y]
Ha = T@S + S tan ¢
{n) (n)
, (n) - nW _ U
1 3 cos b s tan ¢
{n)
nM
Q (n) J (n) _ 98
$ L] $ Cos ¢
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i3 e ©

Il i
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‘

B

1 ]
2 -1
2K_.s cos ¢ (n)
qu(n) - g _ 3313 p | (n) ,|s cos ¢ . sin2¢ Qndﬁe
y H33chos'¢+D335in ¢ 66 D33 K335 cos ¢ ds
(n) . , . (n) (n)
_4au sin ¢ U\n) sin ¢ | dV tan ¢ nV tan ¢
ds 5 2 "3 -
s S 2
s s
(n) {n)
Jan ™ g (n) AT nMy n (n)
s ds s2 ds K33 s cos ¢ ¢
If n (o) =f (0) = 0, then Q (0) _ 0
¢ 8 i ] -

All the above equations are written in terms of stiffness parameters (K and D)
rather than explicit geometry. This is due to the fact that a variety of
crossection geometries are to be considered, specifically those described

in Figure 1-4. However, one more option is available (described in detail

in Section ) and ReferenceT): that of inputing the K's and D's representing
any shell wall construction directly intc the equations. With this option
there becomes available an analysis for a great multitude of shell wall con-
structions. (In this respect refer to Section L.) With all the geometries

available, it becomes necessary to calculate thermal resultants separately.

4s noted in Section 1, Equation 1-6, the definitions of the thermal resultants

are:

E, (a, +v._a.) T E (a.+v,_ a )T
| Eo % * V46 % o %0 * Vg0 %
Bry / e G| My " / T~ s

Voo Voo 00 “o¢
Eg,(da * Vg, QQ) T Eq (ae * Voo a¢) T
Neg = T - v . v o | Mpy = T -v. v 5dg
%8 8¢ $8 6¢




The temperature is defined to vary linearly as follows:

=== =Neutral Axis

where T is the stress-free temperature. Combining Equations 3-8 and 1-6,

the necessary thermal resultants are obtained.

GRTHOTROPIC SINGLE LAYER

E. (a. +v.. a,)fh
: 1 NN (ﬁi) rrii * e * Toe * Too - hT]
" Ve0 Voo

(a

h
2 1 ? e (Tl) rrii * Tic * Toc * Too - l“‘]
= Voo Voo '

Ey (ag ¢ eo a,)

B

1 - v

et

(a

[2T11 * “ Toe © eTooI
2Ti

1l - VQO 0e

E, (a oe“e’(.x_[
2L

+ T, =T - 2T ]
ie o¢ 00
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EQUAL FACE SHEET SANDWICH

Le(aa¢u
1 - v

99
YT

+

Ys0 “ae

+* Vv

= o
o = 2 v (T,

a ) |h
95 8 i (T,, + T
veo 2 it

\)¢e

* Vgy %) h12 = h02
Vo0 Voo (2‘11 *Tie - 3T) -e (2Too * Toe

thy - thy =
* = (T“ + Tic - 2T) - - ('l'oo . Toc - 27)

E (a, +v..a) ] n? n°
¢ ¢ 46 "8 i _ __o -
1 - V46”09 [T (ﬂii * Tie ki) T (2Too + Toe = 3T

tth th
* =3 (Too * Toe - 2T




where:
ho2 - hie + 2hot
by =& - by = > {h, +0)
1 [o]
hi2 - h02 * oht
o T % ho = 2 (h, +h )
1 ]

ARBITRARY STIFFNESS PARAMETERS (K AND D)

Since the geometry is not known in this case, certain assumptions are
necessary in order to calculate the thermal resultants. The given stiffnesses

are set equal to equivalent single sheet stiffnesses:

E h -E h 3
K = 8 eq "0 eq D.. = 6 eq & eq
= i =
11 Veo Voo 11 12 {1 V40 VOQ)
Ir this wayEg eq and hg eq and similarly in the ¢ direction, E¢ eq and h¢ eq

cun be calculated. Substituting the values thus obtained into Equation 3-9:

K.,. (a, +v,, a,)
wo o= 21 e 8¢ o [T. +T, +T +T - hT] (3-12)
Ta L ii ie oc oo
Kss (-;n® * Voo ae) _ V3
Npp = N [Tii *Tie " Toe * Too - T]
(~k..D. . 1* (a v, a,)
" 11711 G 8¢ ¢ 4T =T =2T
JTc T [2T11 ie oc 00
]
_ (KypDap)* (ay + vy, ag) -
Yy T [2Tii * Mo~ Toe = %o
w3

Thus, in this case the thermal resultants to be applied are obtained on the
basis of equivalent stiffness sections, and are then applied to the original
~*ructure. In inputing the stiffness parameters K and D) one must remember
*hat they are functions of material properties, and thus functions of
“ziperature. The negative definition of the bending stiffness, D, is

used to be consistant with Section b and Appendix A.
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STRESS CALCULATIONS

The stress formulas to be used are given below:

. %in
in

Configuration

s——)
—— 1

Orthotropic

— 0
=,

equal face sheets

2 2
hi + ho + 2hih° + 2h°t

L

unequal face sheets

2(h, + h )
i <)




In addition, the Huber-von Mises-Hencky effective stresses will alsc be cal-
culated.

2 2 2
o = ol - g o + 0 + 37 (3-1L)
Fin v// ein ein ¢)in ¢in ¢ein

g =V//c 2 [¢] o + g 2 + 37 2
Fout eout eout q)out ¢out ¢eout

These stresses are not useful for design or failure criteria, since such

criteria are material dependent. However, they are useful for comparison,

since they comoine all stress components in a consistent menner character—

ized by a single number. Stresses for the arbitrary stiffness parameter

(K and D) case are calculated using the appropriate Hooke's Laws of shell,
ring, or stringer.

Approximations to core transverse shear stresses in a sanuwich shell will
be calculated as follows:

Q
. = 2 (3-15)
5o t

1 Qe
;o t
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Top Ellipsoid

Specify a, B =

P o

Bottom Ellipsoid

Sphere

Specify a, B = 1
or use ogive with
r =a, cC=0

- Figure 3-1. Ellipsoid

3-18




Specify F1e C<0

Figure 3-2. Ogive
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be]
Parebola 1z = fl + fzr + r3r

Specify fl' 159 f3

Figure 3-4. Paraboloid
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Figure 3«5. Cylinder
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Standard Cong
i Specify ¢ > 0
8
i
out
’ \
J

" 8% Jut Elate
-9 1 in J Specify ¢ = 0
|
J
out
: { in Inverted Cone
Specify ¢ < 0

Figure 3-6. Cone
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SECTION b

EQUATIONS FOR ORTHOTROPICALLY REINFORCED SHELLS

As mentioned in Section 3, the differential equations are written in terms of
stiffness perameters since a variety of wall crossection geometrles are to

be considered. There will also be cases allowed in the program, vhere

the stiffness parameters are input directly. Since this option will mcst
often be used to describe reinforced shells, the eccentricity of any re=-
inforcement must be taken into consideration. To this end, séme of the
differential equations derived in Section 1 must be revised, since new
stress-resultant to strain relationships must be used. In the case of

orthotropic shell reinforcement, this relationship “ecomes as follows*:

Ne = Ku‘o . K12 € " ane - Nng (L-1a)
Q [}
- C - (1PN
No = K22c° + Kel €q <,22k° "To (li=1b)
Qo Q
NM = NN = K33 Y“’o (belc)
) Mg = Dyjkg * Djok, * Cu‘eo - My (b-14)
(o4 - e
M, = Dypky # Dy kg * "2t Mre (4-le)
Moe s . ,(00 = -2033k08 (b-17)

As can be seen, due to the eccentric reinforcement, Ne and §, are functions

{*‘i.!‘

¢
of curvatures, and Me and M0 aiso depend upon memtrane strain. This was not

the case in Equation 1-8,

® Refer to Appendix A for der!:ation and definitions of K, C, and D 3
parameters for several cases.
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The new Equation L-l thus requires a change in four of the original
differential and auxiliary cquations formed in Section 1. These changed
equations will now be obtained. By comb.ning Equations l=1lb and l-le
first to eliminate k, and then again tc elim.uate €y 0 the following dif-
ferential equations cen be obtained: °

vy c..2\! ¢ K

.;i [ 3 %I + K22 + Dz: 'N’ + "T¢ + 3§§ (MO + M%‘ ) - ;El u.e + v cos ¢

(’.’2:2 D

- w ain 0) - <5 21 -=5 {v.eo +u,, sin Ql * W S%;.! (b-2a)
22 Ty 0

-1 K K
2 22 el
—) ‘u‘ +* NT’ - 62—2- (H’ + ur.). ;—o— ‘.I'e +* V cos¢

K.,D

22721 11 coe ¢

- w 8in 0) + "E;;"[;'E'l"oe + u.0 ain 0' ® wy ’o :]} (u-2v)
0

Utilizing the above solutions in Equations L-la and L«ld, the new auxiliary
aquations are obtained.

C
22
e * Dy, (Mo * Kro); )

C

21~1
22 ) -
[K22 + 5;;-] (u.o 4+ 7co8 ¢ ~-vsin

. -1

e+ 512 %02 P [x . c222] 2, "
2 22 21 22 \

11 b, 22 * B, i

+ Uiy sin 0} + we ;gz-!




-1

,] Uy # vV COS & - W sin c)

-1
K..D K_.D
1272221 P27 22 1 [ } cos ¢
- e | C b —— Wa .t U, Singl+ w, ————
c22 [ 22 022 ] (’05 00 8 o r, )

(L-3b)

The Equations L4-2 and L-3 are the four equations which must be substituted
for their counterparts in the set of equations developed in Section 1, to

adapt the earlier analysis to handle eccentric reinforcement. These

revised equations are expanded in Fouricr Series as described in Section 2,
and presented for the necessary geometries below.
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8
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. (n) 22 (n) (n) , 22 (n (n) (n)
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(n) KooPo2 (n) _ %22 ¢ (n) (n)
My =Dpo (sz C.n ) SN +NT¢ T, (M¢ * Moy )

-1
c
T AN U E E 1% c s Ko2P22 (nU(n)
QTB s cos ¢ S cos ¢ 22 [
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D, K, D
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Although the stress-resultant to strain relationships (Equations L-1)

were der ved in Appendix A on the physical basis of eccentric orthotropic
shell reinforcing, they can be used to describe other shell wall construc-
tion as well. This is possible in the program since the parameters K, C,
and D are direct input. It is only necessary to use the proper formulas
in-place of those given in Appendix A to calculate the stiffness
parameters which are to be input. Although in Equations 4-1 membrane
forces are dependent uporn curvature and moments upon extensional strain,
these equations are not completely general, and thus cannot be used for
arbitrary layered shells. Fully general equations, adapted specifically

for layered shells, can be obtained in Reference 8.

when the reinforcement is not eccentric, simpler equations than Equations
4-4, L-5, and L-6, can be applied. The necessary equations for this

case can be derived as in Section 1, and they