NASA CONTRACTOR REPORT

Report No. 61299

NUMERICAL ANALYSIS OF SHELLS

Volume I
Unsymmetric Analys is of Orthotropic Reinforced Shells of Revolution

By V. Svalbonas
Grumman Aircraft Engineering Corporation Bethpage, New York 11714

September 1969

Prepared for
NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, Alabama 35812

TECHNICAL REPORT STANDARD TITLE PAGE

FOREWORD

Iti: report was prepared by the Grumman Aircraft Engineering Corporation, Bethpage, Llew York, under contract NAS8-2113, entitled, "Computer Program for Analysis of Sheli Structures". The work was performed by the Structural Mechanics Section of Ingineering and the Digital Computing Section of Management Information Systems.

The suthor wishes to acknowledge the contributions of the following individuals: Lir. liarry Harris for contributing portions of Appendix A, Mr. Michael Shulman for Wraine major portions of the derivations, and Mr. William Mueller for overall contract coordination.

This volume is devoted to a presentation of the theory and numerical techniquas developed for implementation as a digital computer program. The user's information for the actual program is presented in two separate volumes: "Numerical Analysis of Shells, Vol II: A Users Manual for STARS II - Shell Theory Automated for Rctational Structures II - Digital Computer Program", by V. Svalbonas and N. Angrisano, and "Numerical Analysis of Shells, Vol III: Engineer's Program Manual for STARS II - Snell Theory Automated for Rotational Structures II - Digital Computer Program", by N. Angrisano, F. Hughes and V. Svalbonas.

CONTENTS

Lection

Page
ILLUSTRATIONS iv
INTRODUCTION v
SYMBOLS vii
1 FORMULATION OF SHELL EQUATIONS 1-1
FOURIER ANALYSIS 2-1
3 PROGRAMMED EQUATIONS FOR VARIOUS CONFIGURATIONS
General Shell Equations for Ellipsoids, Parsbolas, Ogives $3-1$
Geometric Relations for Ellipsoids, Parabolas, Ogives 3-4
Shell Equations for Cylinders 3-5
Shell Equations for Cones 3-7
Thermal Stress Resultants 3-9
Stress Calculations 3-13
4 ORTHOTROPICALLY REINFORCED SHELLS
Eccentric Reinforcement 4-1
Non-Eccentric Reinforcement $4-7$
Waffle Construction 4-9
5 SEGMENT STIFFNESS MATRICES 5-1
6 STRUCTURE MATRICES AND STIFFNESS ANALYSIS 6-1
7 AXISYMMETRIC NON-LINEAR ANALYSIS 7-1
a REFERENCES $8-1$
AIELDDIX
A DERIVATIONS OF INTEGFATED HOOKE'S LAWS A-1
B APPLIED EDGE LOADS B-1

Figure
l-l Shell Element Geometry and Displacements
1-2 Forces on Shell Elemerit
1-3 Moments on Shell Element
1-4 Shell Section Properties
3-1 Ellipsoid
3-2 Ogive
3-3 Modified Ellipsoid
3-4 Paraboloid
3-5 Cylinder
3-6 Cone
5-1 Typical Shell Sezment
5-2 Forces on Typical Shell Segment
5-3 Calculations for Stiffness and Load Matrices
6-1 Example of Region Topology
6-2 Shell Structure and Idealization
6-3 Joirt Displacements
7-1 Non-Linear Effects

INTRODUCTION

The STARS II digital computer program is an automated procedure for the analysis of thin orthotropic shells of revolution, reinforced in various ways, and subjected to unsymmetric loads. The program can treat shells having multiply-connected joints, walls of sandwich construction, and thermal variations through the walls.

The theory presented in this report and the techniques used for the unsymmetric case are the outgrowth of work that began at Grumman in the early sixties (References l and 5). Much of this report involves modification of relationships that appear in Reference 5 to include orthotropic effects (Section 5 and parts of Section 6 are taken directly from that work). The basic shell theory is based upon the work of J. Kempner (References 2 and 3).

The partial differential equations are derived for the general unsymmetric case. They are then reduced to ordinary differential equations by a Fourier series expansion in the circumferential coordinate. These equations are specialized to several convenient coordinate systems, and rederived to represent various reinforcement cases.

The shell is divided into segments of common analytical form, cylinders, cones, ellipsoids, ogives, parabolas, or any special function desired. Influence coefficients are calculated for each segment by combining unit solutions obtained by forward integration using a Runge-Kutta procedure. Since influence cofficients cannot be accurately computed for segments that are too large, the size of these segments is limited by the accuracy of calculation desired. This accuracy is determined by checking the symmetry of the resulting stiffness matrices. The segments are then elastically coupled by conventional matrix methods intc regions. These regions are determined by shell branch points and concentrated line loadings. The region matrices thus obtained are first reduced, and then coupled elastically to for:.: structure stiffness matrices. These matrices are inverted to get flexibility metrices which are used to obtain deformation conditions at the ends of each region.
ne dercrmations are used as initial conditions for the final forward integration - arcuigh each segment, thus yielding the displacements at points throughout the structure. Finaliy, the stress distributions are obtained, using the total Asplacement patterns.

The required input data is relatively simple, consisting of specification of eeometry, material properties, loads and support conditions. The output is in a Form directly usable by the stress analyst, that is, stresses and displacements at various points on the shell.

SYMBOLS

LOWER CASE LATIN

semi-diameter in ellipsoid (in.); index on applied loads semi-height in ellipsoid (in.); index on boundary conditions offset in ogive (in.); cosine function differential
distributed load in local coordinates (lb/in. ${ }^{2}$); stress resultant matrix in local coordinates; parabolic geometry constant
thickness of face sheet in honeycomb shell
index: beginning edge of shell segment; independent joint of kinematic link; subscript "inside"
index: ending edge of shell segment; dependent joint of kinematic link
segment stiffness matrix; lineal forces due to displacements; curvature
length (in.); load matrix mass (slugs) ; distributed moment (in.-lb/in. ${ }^{2}$); index on nodes dimension of matrix; index on harmonic subscript "outside"; subscript "reference surface" distributed load in global coordinates (lb/in. ${ }^{2}$); index on distributed loads
number of degrees of freedom
radius
index on segment; sine function; meridional coordinate in cylinder or cone; arc distance
index on topological arrangement; core thickness in honeycomb shell
circumferential dispiacement, positive by right-hand rule about Z axis (in.)
meridional displacement, positive in direction of increasing ϕ (in.) normal displacement, positive inward (in.)

SYMBOLS (Cont)

UPPER CASE LATIN

number of applied loads
number of different sets of boundary conditions
constant; bending-membrane interaction stiffness
shell flexural stiffness (in.-ib)
Young's modulus ($\mathrm{lb} / \mathrm{in} .^{2}$)
subscript "free;" lineal force (lb/in. of circumference); distributed load in nonlinear cases
shear modulus ($\mathrm{Ib} / \mathrm{in} .^{2}$)
total shell thickness (in.)
moment of inertia (in. ${ }^{4}$)
effective transverse shear stress resultant (ib/in.)
shell extensional stiffness (lb/in.); shell stiffness matrix
load matrix; fixed end forces due to distributed load
bending moment on shell (in.-lb/in.); number of nodes
membrane force (lb/in.); number of harmonics
number of distributed loads
transverse shear stress resultant (lb/in.)
radius vector; subscript "region"
number of segments
effective membrane shear (lb/in.); number of topological arrangements; subscript total; temperature
amplitude of sinusoidally varying u
amplitude of cosinusoidally varying v
amplitude of cosinusoidally varying w
Cartesian coordinate, $\theta=0$ at X axis; matrix defined in Section 5
Cartesian coordinate; matrix defined in Section 5
Cartesian coordinate, coincides with axis of revolution

GREEK

```
    coefficient of thermal expansion (deg}\mp@subsup{}{}{-1}\mathrm{ )
    b/a - ratio of semi-height to semi-diameter of ellifsoid
    shear strain
    matrix of displacements in local coordinates
    extensional strain
    normal coordinate, positive inward
    circumferential angular coordinate (rad)
    Poisson's ratio
    dimensionless radius; position vector of shell relative to
    inertial frame (in.)
    normal stress (lb/in.')
    shear stress (lb/in.')
    meridional angular coordinate (rad)
    rotational displacement (rad)
    displacements in global system
    amplitude of cosinusoidally varying }
```


MISCELLANEOUS

\wedge denotes total forces, $2 \pi r_{0}$ times lineal force denotes partial differentiation
pre-superscript, denotes nonlinear terms

SUBSCRIPTS

eq equivalent

NOTE

Other symbols are defined in the text where they appear.

FORMULATION OF SHELL EQUATIONS

EQUILIBRIUM EQUATIONS

The equilibrium equations which are derived in general form in Reference 2 by means of the variational principle, are of the accuracy of Love's first approximation as modified by E. Reissner. The reduction of these general equations to the special case of shells of revolution is given in Reference 3, page 8. They are repeated here as Equations l-la through l-le. It shouli be noted that the equilibrium relations have been written in the undeformed coordinate system. See Figures 1-1, l-2, and l-3.

$$
\begin{align*}
& \sum F_{\theta}=0: r_{1} N_{\theta, \theta}+\frac{l}{r_{0}}\left(N_{\phi \sigma} r_{0}^{2}\right),{ }_{\phi}-Q_{\theta} r_{1} \sin \phi=-r_{1} r_{0} f_{\theta} \tag{1-1a}\\
& \sum F_{\phi}=0:\left(N_{\phi} r_{C}\right),_{\phi}+r_{1} N_{\phi \theta, \theta}-N_{\theta} r_{1} \cos \phi-r_{0} Q_{\phi}=-r_{1} r_{0} f_{\phi} \\
& \sum F_{\zeta}=C:\left(Q_{\phi} r_{0}\right),_{\phi}+r_{1} Q_{\theta, \theta}+r_{0} N_{\phi}+N_{\theta} r_{1} \sin \phi=-r_{1} r_{0} f_{\zeta} \tag{1-1c}\\
& \sum M_{\theta}=0:-r_{1} M_{\phi \theta, \theta}-\left(M_{\phi} r_{0}\right),_{\phi}+M_{\theta} r_{1} \cos \phi+r_{1} r_{0} Q_{\phi}=-r_{1} r_{0} m_{\theta} \tag{1-1d}\\
& \sum^{M_{\phi}}=0:-\left(M_{\phi \theta} r_{0}\right) r_{\phi}-r_{1} M_{\theta, \theta}-M_{\phi \theta} r_{1} \cos \phi+r_{1} r_{0} Q_{\theta}=-r_{1} r_{0} m_{\phi} \quad\left(1-l_{\epsilon}\right)
\end{align*}
$$

where commas denote partial differentiation, e.g.,

$$
N_{\theta, \theta} \equiv \frac{\partial N_{\partial}}{\partial \theta} ; \quad\left(N_{\phi \theta} r_{0}{ }^{2}\right)_{\phi} \equiv \frac{\partial}{\partial \phi}\left(N_{\phi \theta} r_{0}{ }^{2}\right)
$$

The distributei loading terms, " f " and " m ", are dimensionally in terms of force/unit grea of middle surface, and (force x length)/unit area of middle surface. Distributed moments occur, for example, in threaded connections in pressure vessels or fittings where they are associated with tangential loads applied away from the middle surface.

It should be noted that the sixth equilibrium equation:

$$
\begin{equation*}
\sum M_{\zeta}=0: \quad N_{\theta_{\phi}}-N_{\phi \theta}+\frac{M_{\theta \phi}}{r_{2}}+\frac{M_{\phi \theta}}{r_{1}}=0 \tag{1-2}
\end{equation*}
$$

Is rut included with the set of equilibrium equations since it will only Le satisfied when ζ / r is not neglected in comparison with unity in expressions for stress-resultants and strains (Reference 4, pages 5, 6, and 317). As will be seen later, for the case of $\zeta \ll r_{1}, r_{2}$ the physical definitions of the stress resultants lead to $N_{\theta \phi}=N_{\phi \theta}$ and $M_{\theta \phi}=-M_{\phi \theta}$. In this approximate theory then, the equation is identically satisfied in the special case when $r_{1}=r_{2}$ (sphere). Otherwise, the equation is violated.

STRAIN-DISPLACEMENT RELATIONS

The strain-displacement relations (Reference 3, pages 10,34 , and 39) are presented as follows:

$$
\begin{align*}
\varepsilon_{\theta_{0}} & =\frac{1}{r_{0}}\left(u, \theta_{\theta}+v \cos \phi-w \sin \phi\right) \tag{1-3a}\\
\varepsilon_{\theta} & =\frac{1}{r_{1}}\left(v,,_{\phi}-w\right) \tag{1-3b}\\
r_{\phi \theta_{0}} & =\frac{v r_{\theta}}{r_{0}}+\frac{r_{0}}{r_{1}}\left[\frac{u}{r_{0}}\right]_{\phi}=\frac{v,_{\theta}-u \cos \phi}{r_{0}}+\frac{u, r_{\phi}}{r_{1}} \tag{1-3c}\\
\omega_{\theta} & =\frac{1}{r_{1}}\left(w, \theta_{\phi}+v\right) \tag{1-3d}\\
\omega_{\phi} & =-\left(\frac{w, \theta}{r_{0}}+\frac{u}{r_{2}}\right)=-\frac{1}{r_{0}}\left(w,{ }_{\theta}+u \sin \phi\right) \tag{1-3e}\\
k_{\theta} & =-\frac{1}{r_{0}}\left(\omega_{\phi, \theta}-\omega_{\theta} \cos \phi\right) \tag{1-3f}\\
k_{\phi} & =\frac{1}{r_{1}} \omega_{\theta, \phi} \tag{1-3g}\\
k_{\phi \theta} & =k_{\theta \phi}=\frac{1}{2 r_{0}}\left[\omega_{\theta, \theta}-\frac{r_{0}}{r_{1}} \omega_{\phi, \phi}+\omega_{\phi} \cos \phi\right] \tag{1-3h}
\end{align*}
$$

Where the geometric relations

$$
r_{0, \phi}=r_{1} \cos \phi \quad r_{0}=r_{2} \sin \phi
$$

have been used.

STRESS-STRAIN RELATTONS

The stress-strain relations (Reference 3, page 32) are obtained by employing Hooke's Laws and assuming that dimensions " ζ ", normal to the middle surface, are much smaller than the radius of the shell. In this case, orthotropic relations will be used to increase the usefulness and applicability of the analysis.

$$
\begin{align*}
& \sigma_{\theta}=\frac{E_{\theta}}{1-v_{\phi \theta} v_{\theta \phi}}\left[\varepsilon_{\theta}+v_{\theta \phi} \varepsilon_{\phi_{\theta}}-\zeta\left(k_{\theta}+v_{\theta \phi} k_{\phi}\right)-\left(\alpha_{\theta}+v_{\theta \phi} \alpha_{\phi}\right) T\right] \tag{--4a}\\
& \sigma_{\phi}=\frac{E_{\phi}}{1-v_{\phi \theta} \nu_{\theta \phi}}\left[\varepsilon_{\phi_{0}}+v_{\phi \theta} \varepsilon_{\theta}-\zeta\left(k_{\phi}+v_{\phi \theta} k_{\theta}\right)-\left(\alpha_{\phi}+v_{\phi \theta} \alpha_{\theta}\right) T\right] \tag{1-4b}\\
& \tau_{\phi \theta}=G_{\phi \theta}\left[\gamma_{\phi \theta_{0}}-2 \zeta k_{\phi \theta}\right] \tag{1-4c}
\end{align*}
$$

where ε, k and γ are functions of θ and ϕ only. But α, T, E and v may, in general, also be arbitrary functions of ζ. Thus, the stresses, σ and τ, are arbitrary functions of the thickness coordinate. These equations assume that the thickness is negligible compared to the radii of curvature, r_{1} and r_{2}. If this assumption is not made, but normals do remain straight and normal, then strains (and stresses) are not linear functions of ζ, even with constant α, E and v. This is the same phenomenon that occurs in curved beams. (Refer to Reference 2, page 29 and Reference 4, page 316.) For present purposes, only T will be allowed to vary in the ζ direction.

STHESS RESULTANTS

Again neglecting thickness in comparison with the radii of curvature (Feference 3 , pages 33,34),

$$
\begin{align*}
& N_{\theta}=\int \sigma_{\theta} d \zeta \tag{1-5}\\
& M_{\theta}=\int \sigma_{\theta} \zeta d \zeta \\
& N_{\phi}=\int \sigma_{\phi} d \zeta \\
& M_{\phi}=\int \sigma_{\phi} \zeta d \zeta \\
& N_{\phi \theta}=+N_{\theta \phi}=\int \tau_{\phi \theta} d \zeta \quad \quad M_{\phi \theta}=-M_{\theta \phi}=+\int \tau_{\phi \theta} \zeta d \zeta \\
& N_{T \theta}=\int \frac{E_{\theta}\left(\alpha_{\theta}+v_{\theta \phi} a_{\phi}\right) T}{1-v_{\phi \theta} v_{\theta \phi}} \mathrm{d} \zeta \quad M_{T \theta}=\int \frac{E_{\theta}\left(\alpha_{\theta}+v_{\theta \phi} \alpha_{\phi}\right) T}{1-v_{\phi \theta} v_{\theta \phi}} \zeta d \zeta \tag{1-6}\\
& N_{T \phi}=\int \frac{E_{\phi}\left(\alpha_{\phi}+v_{\phi \theta} \alpha_{\theta}\right) T}{1-v_{\phi \theta}{ }^{v_{\theta \phi}}} d \zeta \\
& M_{T \phi}=\int \frac{E_{\phi}\left(\alpha_{\phi}+v_{\phi \theta} \alpha_{\theta}\right) T}{l-v_{\phi \theta} v_{\theta \phi}} \zeta \mathrm{d} \zeta
\end{align*}
$$

where the integrals are taken over the entire thickness. Neglecting "弓" compared to "r" ignores the fact that, for an elemental length ds along the median surface, the lamella inside and outside the median surface are shorter or longer than ds. (Refer to Reference 4, pages 4 and 5.) If this effect is considered, and the radii associated with the ϕ and θ directions are unequal $\left(r_{1} \neq r_{2}\right)$, then $N_{\theta \phi} \neq N_{\phi \theta}$ and $M_{\theta \phi} \neq-M_{\phi \theta}$.

The following general definitions of extensional, bending, and in-plane shear stiffnesses are introduced:

$$
\begin{array}{ll}
K_{11}=\frac{E_{\theta} h}{1-v_{\phi \theta} v_{\theta \phi}} & K_{22}=\frac{E_{\phi} h}{1-v_{\phi \theta} v_{\theta \phi}} \\
D_{11}=\frac{E_{\theta} h^{3}}{12\left(1-v_{\phi \theta} v_{\theta \phi}\right)} & D_{22}=\frac{E_{\phi} h^{3}}{12\left(1-v_{\phi \theta} v_{\theta \phi}\right)} \\
K_{33}=G_{\phi \theta} h & D_{33}=\frac{G_{\phi \theta} h^{3}}{12}
\end{array}
$$

The definitions for rigid-core sandwich configurations of various construction are presented in Figure 1-4.

Combining Equations $1-4$ through $1-7$ yields the stress resultants as functions of the strains, curvatures, and temperatures.

$$
\begin{align*}
& N_{\theta}=K_{11}\left[\varepsilon_{\theta_{0}}+v_{G \phi} \varepsilon_{\phi}\right]-N_{\mathrm{T} \theta} \tag{1-8a}\\
& N_{\phi}=K_{22}\left[\varepsilon_{\phi_{0}}+v_{\phi \theta} \varepsilon_{\theta}\right]-N_{\mathrm{T} \phi} \tag{1-8b}\\
& N_{\phi \theta}=N_{\theta \phi}=K_{33} \gamma_{\phi \theta} \tag{1-8c}\\
& M_{\theta}=-D_{11}\left[k_{\theta}+v_{\theta \phi} k_{\phi}\right]-M_{T \theta} \tag{i-8d}\\
& M_{\phi}=-D_{22}\left[k_{\phi}+v_{\phi \theta} k_{\theta}\right]-M_{T \phi} \tag{1-8e}\\
& M_{\phi \theta}=-M_{\theta \phi}=-2 D_{33} k_{\phi \theta} \tag{1-8f}
\end{align*}
$$

BOUNDARY CONDITIONS

The required boundary conditions at a plane of constant ϕ are obtained as a result of the variational procedure (Reference 3, page 28). It is necessary to specify either displacements or corresponding stress resultants.

$$
\begin{align*}
& u \text { or }\left[N_{\phi \theta}-\frac{M_{\phi \theta}}{r_{0}} \sin \phi\right] \\
& v \text { or } N_{\phi} \\
& w \text { or }\left[Q_{\phi}+\frac{M_{\phi \theta, \theta}}{r_{0}}\right] \\
& \omega_{\theta} \text { or } M_{\phi} \tag{1-9d}
\end{align*}
$$

In view of the form of the boundary conditions (Equation 1-9), the equilibrium equations are re-formulated in terms of the "effective stress resuitants", $\mathrm{T}_{\phi \theta} N_{\phi}, J_{\phi}$ and M_{ϕ} where,

$$
\begin{align*}
& T_{\phi \theta}=N_{\phi \theta}-M_{\phi \theta} \frac{\sin \phi}{r_{0}} \tag{1-10a}\\
& N_{\phi}=N_{\phi} \tag{1-10b}\\
& J_{\phi}=Q_{\phi}+\frac{M_{\phi \theta, \theta}}{r_{0}} \tag{1-10c}\\
& M_{\phi}=M_{\phi} \tag{1-10d}
\end{align*}
$$

The partial derivatives of $T_{\phi \theta}$ and J_{ϕ}, which will be required later, are:

$$
\begin{align*}
& \frac{T_{\phi \theta, \phi}}{r_{1}}=\frac{\mathbb{N}_{\phi \theta, \phi}}{r_{1}}-M_{\phi \theta, \phi} \frac{\sin \phi}{r_{0} r_{1}}+M_{\phi \theta} \frac{\sin \phi \cos \phi}{r_{0}^{2}}-M_{\phi \theta} \frac{\cos \phi}{r_{0} r_{1}} \tag{1-11a}\\
& \frac{J_{\phi, \phi}}{r_{1}}=\frac{Q_{\phi, \phi}}{r_{1}}+\frac{M_{\phi \theta, \theta \phi}}{r_{0} r_{1}}-M_{\phi \theta, \theta} \frac{\cos \phi}{r_{0}^{2}} \tag{1-11b}
\end{align*}
$$

FINAL EQUATIONS

By eliminating strains and curvatures and utilizing the orthotropic identity $v_{\theta \phi} E_{\partial}=v_{\phi \theta} E_{\phi}$, each stress resultant is expressed in terms of displacements and other stress resultants. From Equations 1-3 and 1-8:

$$
\begin{aligned}
N_{\theta} & =v_{\phi \theta} N_{\phi}+\left(K_{11}-v_{\phi \theta}{ }^{2} K_{22}\right) \varepsilon_{\theta}-N_{T \theta}+v_{\phi \theta} N_{T \phi} \\
& =v_{\phi \theta} N_{\phi}+\left(K_{11}-v_{\phi \theta}{ }^{2} K_{22}\right)\left[\frac{u_{, \theta}+v \cos \phi-v \sin \phi}{\mathbf{r}_{0}}\right]-N_{T \theta}+v_{\phi \theta} N_{T \phi}
\end{aligned}
$$

$$
\begin{align*}
& N_{\phi}=v_{\theta \phi} N_{\theta}+\left(K_{22}-v_{\theta \phi}{ }^{2} K_{11}\right) \varepsilon_{\phi_{0}}+v_{\theta \phi} N_{T \theta}-N_{T \phi} \\
& =v_{\theta \phi} N_{\theta}+\left(K_{22}-v_{\theta \phi}{ }^{2} K_{11}\right)\left[\frac{v_{\phi}-w}{r_{1}}\right]-N_{T \phi}+v_{\theta \phi} N_{T \theta} \\
& N_{\phi 6}=N_{\theta \phi}=K_{33} r_{\phi \theta}=K_{33}\left[\frac{r_{\theta}-u \cos \phi}{r_{0}}+\frac{u,_{\phi}}{r_{1}}\right] \tag{1-12c}\\
& M_{\theta}=v_{\phi \theta} M_{\phi}-\left(D_{11}-v_{\phi \theta}^{2} D_{22}\right) k_{\theta}-M_{T \theta}+v_{\phi \theta} M_{T \phi} \\
& =v_{\phi \theta} M_{\phi}-\frac{\left(D_{11}-v_{\phi \theta}{ }^{2} D_{22}\right)}{r_{0}}\left[\frac{w_{\theta \theta}+u_{\theta} \sin \phi}{r_{0}}+\omega_{\theta} \cos \dot{\phi}\right] \\
& -M_{T \theta}+v_{\phi \theta} M_{T \phi} \tag{1-13a}\\
& M_{\phi}=v_{\theta \phi} M_{\theta}-\left(D_{22}-v_{\theta \phi}{ }^{2} D_{11}\right) k_{\phi}+v_{\theta i \phi} M_{T \theta}-M_{T \phi} \\
& =v_{\theta \phi} M_{\theta}-\left(D_{22}-v_{\theta \phi}{ }^{2} D_{11}\right)\left[\frac{\omega_{\theta, \phi}}{r_{1}}\right]-M_{T \phi}+v_{\theta \phi} M_{T \theta} \tag{1-13n}\\
& M_{\phi \theta}=-\frac{D_{23}}{r_{0}}\left[\omega_{\theta, \theta}-\frac{r_{0}}{r_{1}} \omega_{\phi, \phi}+\omega_{\phi} \cos \phi\right]
\end{align*}
$$

Using Equations 1-3d, 1-10a, and 1-12c

$$
\begin{align*}
& M_{\phi \theta}=-\frac{D_{33}}{r_{0}} \int \omega_{\theta, \theta}+\left[\left(\omega_{\theta, e}-\frac{v, \theta}{r_{1}}\right)+\left(\frac{u \cos \phi \sin \phi}{r_{0}}-\frac{v \rho_{\theta} \sin \phi}{r_{0}}+\frac{T_{\phi \theta} \sin \phi}{K_{33}}\right.\right. \\
& \left.\left.\left.+\frac{M_{\phi \theta} \sin ^{2} \phi}{K_{33} r_{0}}\right)+\frac{u \cos \phi}{r_{1}}\right]-\frac{2 \cos \phi}{r_{0}}(w, \theta+u \sin \phi)\right\} \\
& M_{\phi \theta}=\left[\frac{-1}{\frac{r_{0}}{D_{33}}+\frac{\sin ^{2} \phi}{r_{0} K_{33}}}\right] \left\lvert\, 2 \omega_{\theta, \theta}+u\left(\frac{\cos \phi}{r_{1}}-\frac{\cos \phi \sin \phi}{r_{0}}\right)-v\right.,{ }_{\theta}\left(\frac{\sin \phi}{r_{0}}+\frac{1}{r_{1}}\right) \\
& -2 w, \left.\theta \frac{\cos \phi}{r_{0}}+\frac{T_{\phi \theta}}{K_{33}} \sin \phi \right\rvert\, \tag{1-13c}
\end{align*}
$$

rxansion of the equilibrium equations yields:

$$
\begin{align*}
& N_{\theta, \theta}+2 N_{\phi \theta} \cos \phi+N_{\phi \theta, \phi} \frac{r_{0}}{r_{1}}-Q_{\theta} \sin \phi+r_{0} r_{\theta}=0 \tag{1-14a}\\
& N_{\phi, \phi} \frac{r_{0}}{r_{1}}+N_{\phi} \cos \phi+N_{\phi \theta, \theta}-N_{\theta} \cos \phi-Q_{\phi} \frac{r_{0}}{r_{1}}+r_{0} f_{\phi}=0 \tag{1-14b}\\
& Q_{\phi, \phi} \frac{r_{0}}{r_{1}}+Q_{\phi} \cos \phi+Q_{\theta, \theta}+N_{\phi} \frac{r_{0}}{r_{1}}+N_{\theta} \sin \phi+r_{0} f_{\zeta}=0 \tag{1-14c}\\
& -M_{\phi \theta, \theta}-M_{\phi, \phi} \frac{r_{0}}{r_{1}}-M_{\phi} \cos \phi+M_{\theta} \cos \phi+Q_{\phi} r_{0}=-r_{0} m_{\theta} \tag{1-14d}\\
& -M_{\phi \theta, \theta} \frac{r_{0}}{r_{1}}-2 M_{\phi \theta} \cos \phi-M_{\theta, \theta}+Q_{\theta} r_{0}=-r_{0} m_{\phi} \tag{1-14e}
\end{align*}
$$

A set of eight partial differential equations of first order in the independent variable, ϕ, will now be obtained by appropriate substitution of the previous equations. The first four of these equations result directly from the equilibrium equations. Combining Equations 1-14a through e with Equations 1-10 and l-11 yields:

$$
\begin{align*}
\frac{T_{\phi \theta, \phi}}{r_{1}}=-2 T_{\phi \theta} & \frac{\cos \phi}{r_{0}}-\frac{N_{\theta, \theta}}{r_{0}}+M_{\theta, \theta} \frac{\sin \phi}{r_{0}^{2}}-M_{\phi \theta} \frac{\cos \phi}{r_{0}}\left[\frac{1}{r_{1}}-\frac{\sin \phi}{r_{0}}\right] \\
& -r_{\theta}-m_{\phi} \frac{\sin \phi}{r_{0}} \tag{1-15a}
\end{align*}
$$

$$
\begin{gather*}
\frac{N_{\phi, \phi}}{r_{1}}=-N_{\phi} \frac{\cos \phi}{r_{0}}+N_{\theta} \frac{\cos \phi}{r_{0}}-\frac{T_{\phi \theta, \theta}}{r_{0}}-M_{\phi \theta, \theta}\left[\frac{\sin \phi}{r_{0}{ }^{2}}+\frac{1}{r_{0} r_{1}}-\right] \\
+\frac{J_{\phi}}{r_{1}}-f_{\phi} \tag{1-15b}
\end{gather*}
$$

$$
\begin{align*}
& \frac{J_{\phi, \phi}}{r_{2}}=-J_{\phi} \frac{\cos \phi}{r_{0}}-N_{\theta} \frac{\sin \phi}{r_{0}}-\frac{N_{\phi}}{r_{1}}-\frac{M_{\theta, \theta \theta}}{r_{0}{ }^{2}}-2 M_{\phi \theta, \theta} \frac{\cos \phi}{r_{0}{ }^{2}}-f_{\zeta}+\frac{m_{\phi, \theta}}{r_{0}} \tag{1-15c}\\
& \frac{M_{\phi, \phi}}{r_{1}}=M_{\theta} \frac{\cos \phi}{r_{0}}-M_{\phi} \frac{\cos \phi}{r_{0}}-2 \frac{M_{\phi \theta, \theta}}{r_{0}}+J_{\phi}+m_{\theta} \tag{1-15a}
\end{align*}
$$

The remaining four equations involve differentiation with respect to ϕ and are obtained from Equations $1-3 d, 1-10 a, 1-12 b$ and c, and $1-13 b$.

$$
\begin{align*}
& \frac{u,_{\phi}}{r_{1}}=\frac{u \cos \phi}{r_{0}}-\frac{v_{0}}{r_{0}}+\frac{T_{\phi \theta}}{K_{33}}+\frac{M_{\phi \theta} \sin \phi}{r_{0} K_{33}} \tag{1-16a}\\
& \frac{r_{\phi}}{r_{1}}=\frac{w}{r_{1}}+\left(K_{c 2}-v_{\theta \phi}{ }^{2} K_{11}\right)^{-1}\left\{N_{\phi}-v_{\theta \phi} N_{\theta}+N_{T \phi}-v_{\theta \phi} N_{T \theta}\right\} \tag{1-16b}\\
& \frac{w_{1},}{r_{1}}=\omega_{\theta}-\frac{v}{r_{1}} \tag{1-16c}\\
& \frac{\omega_{\theta, \phi}}{r_{1}}=\left(D_{22}-v_{\theta \phi}{ }^{2} D_{11}\right)^{-1}\left\{-M_{\phi}+v_{\theta \phi} M_{\theta}-M_{T \phi}+v_{\theta \phi} M_{T \theta}\right\} \tag{1-16d}
\end{align*}
$$

In order to obtain a complete set of equations, the following auxiliary equations are necessary:

$$
N_{\theta}=v_{\phi \theta} N_{\phi}+\left(K_{11}-v_{\phi \theta}{ }^{2} K_{22}\right)\left[\frac{u,_{\theta}+v \cos \phi-w \sin \phi}{r_{0}}\right]-N_{T \theta}+v_{\phi \theta} N_{T \phi}
$$

(1-17a)

$$
\begin{aligned}
M_{\theta}= & v_{\phi \theta} M_{\phi}-\frac{\left(v_{11}-v_{\phi \theta}{ }^{2} D_{22}\right)}{r_{0}}\left[\frac{w,{ }_{\theta \theta}+u,{ }_{\theta} \sin \phi}{r_{0}}+\omega_{\theta} \cos \phi\right] \\
& -M_{T \theta}+v_{\phi \theta} M_{T \phi}
\end{aligned}
$$

$$
M_{\phi \theta}=\left[\frac{-1}{r_{0}}+\frac{\sin ^{2} \phi}{r_{0} K_{33}}\right] \int 2 \omega_{\theta, \theta}+u\left(\frac{\cos \phi}{r_{1}}-\frac{\cos \phi \sin \phi}{r_{0}}\right)-v,{ }_{\theta}\left(\frac{\sin \phi}{r_{0}}+\frac{1}{r_{1}}\right)
$$

$$
\left.-2 w,{ }_{\theta} \frac{\cos \phi}{r_{0}}+\frac{T_{\phi \theta}}{K_{33}} \sin \phi\right\}
$$

$$
(1-17 c)
$$

$$
\mathbb{N}_{\phi \theta}=T_{\phi \theta}+\frac{M_{\phi \theta}}{r_{0}} \sin \phi
$$

$$
\omega_{\phi}=-\frac{w \theta_{\theta}}{r_{0}}-\frac{u \sin \phi}{r_{0}}
$$

$$
Q_{\phi}=J_{\phi}-\frac{M_{\phi \theta, \theta}}{r_{0}}
$$

$$
Q_{\theta}=\left\{\frac{3}{r_{0}} \frac{\cos \phi}{2 \cos \phi\left(r_{0} K_{33}+D_{33} \frac{\sin \phi}{r_{1}}\right)}{r_{0}^{2} K_{33}+D_{33} \sin ^{2} \phi}^{r^{2}} M_{\phi \theta}+\left[\frac{-\frac{1}{r_{1}}}{\left.\frac{r_{0}}{D_{33}+\frac{\sin ^{2} \phi}{r_{0} K_{33}}}\right]\left(2 \omega_{\theta, \theta \phi}\right.}\right.\right.
$$

$$
+u,_{\phi}\left(\frac{\cos \phi}{r_{1}}-\frac{\cos \phi \sin \phi}{r_{0}}\right)+u\left(\frac{\sin ^{2} \phi}{r_{0}}-\frac{\cos ^{2} \phi}{r_{0}}-\frac{\sin \phi}{r_{1}}-\frac{r_{1, \phi} \cos \phi}{r_{1}{ }^{2}}\right.
$$

$$
\begin{align*}
& \left.+\frac{r_{1} \cos ^{2} \phi \sin \phi}{r_{0}{ }^{2}}\right)-v r_{\theta \phi}\left(\frac{\sin \phi}{r_{0}}+\frac{1}{r_{1}}\right)-v,_{\theta}\left(\frac{\cos \phi}{r_{0}}-\frac{r_{1} \sin \phi \cos \phi}{r_{0}{ }^{2}}\right. \\
& \left.-\frac{r_{1, \phi}}{r_{1}{ }^{2}}\right)-2 w, \frac{\cos \phi}{r_{0}}+2 w,\left(\frac{\sin \phi}{r_{0}}+\frac{r_{1} \cos ^{2} \phi}{r_{0}{ }^{2}}\right) \\
& \left.+T_{\phi \theta, \phi} \frac{\sin \phi}{K_{33}}+T_{\phi \theta} \frac{\cos \phi}{K_{33}}\right)+\frac{M_{\theta, \theta}}{r_{0}}-m_{\phi} \tag{1-17g}
\end{align*}
$$

These auxiliary equations could be included in the eight partial differential equations by direct substitution, and indeed in the case of Equations l-17d through g this has already been done. However these quantities are also of technical interest and computing them separately is desirable.

The equations presented above constitute a complete formulation of a consistent first-order thin shell theory. Techniques for the solution of this set of equations are given in the following sections.

Figure 1-1. Shell Element Geometry and Displacements

Figure 1-2. Forces On Sheli Element

Figure 1-3. Moments On Shell Element

Figure 1-i4. Shell Section Properties

FOURIER ANALYSIS

Efficient techniques for the numerical solution of partial differential equations are not readily available. However, by assuming a Fourier series distribution in the circular coordinate, $\dot{\theta}$, it is possible to reduce the solution to "N" sets of ordinary differential equations. Usually the number of sets (harmonics) that are required to solve practical problems is rather limited. The actual number will depend upon the type of load distribution being investigated and the degree of accuracy demanded. By restricting consideration to cases symmetric about $\theta=0$, only "one-half" of the general expansion is needed. By physical reasoning, (or complete expansion of the series), the appropriate function (sine or cosine) may be chosen. The choices are verified when the trigonometric functions may be factored out of the differential equations.

The reduction of the system of partial differential equations to sets of ordinary differential equations is most convenient since these equations may now be solved by employing a standard numerical integrating procedure such as Funge-Kutta.

The expansion of the previously developed partial differential equations into sets of ordinary differential equations will now be discussed. The appropriate series expansions for the quantities of interest are:

$$
\begin{align*}
& T=\quad \sum_{n=0}^{\infty} T^{(n)} \cos n \theta \tag{2-1}
\end{align*}
$$

FINAL SET OF EQUATIONS

Substituting these equations into the sets of partial differential equations (Equations 1-15, 1-16, and 1-17) will yield the final harmonic form of the equations required.

Differential Equations

When $n=0,1,2 \ldots$, then

$$
\begin{align*}
& \frac{T_{\phi \theta, \phi}(n)}{r_{1}}=-2 T_{\phi \theta}(n) \frac{\cos \phi}{r_{0}}+n \frac{N_{\theta}^{(n)}}{r_{0}}-n M_{\theta}^{(n)} \frac{\sin \phi}{r_{0}^{2}}-M_{\phi \theta}(n) \frac{\cos \phi}{r_{0}}\left[\frac{1}{r_{1}}-\frac{\sin \phi}{r_{0}}\right] \\
&-f_{\theta}^{(n)}-m_{\phi}^{(n)} \frac{\sin \phi}{r_{0}} \tag{2-2}
\end{align*}
$$

$$
\begin{aligned}
& \frac{N_{\phi, \phi}(n)}{r_{1}}=-N_{\phi}(n) \frac{\cos \phi}{r_{0}}+N_{\theta}(n) \frac{\cos \phi}{r_{0}}-n \frac{T_{\phi \theta}{ }^{(n)}}{r_{0}}-n M_{\phi \theta}(n)\left[\frac{\sin \phi}{r_{0}{ }^{2}}+\frac{1}{r_{0} r_{1}}\right] \\
& +\frac{J_{\phi}^{(n)}}{r_{1}}-f_{\phi}^{(n)} \\
& \frac{J_{\phi, \phi}(n)}{r_{1}}=-J_{\phi}(n) \frac{\cos \phi}{r_{0}}-N_{\theta}(n) \frac{\sin \phi}{r_{0}}-\frac{N_{\phi}(n)}{r_{1}}+n^{2} \frac{M_{\theta}^{(n)}}{r_{0}{ }^{2}}-2 n M_{\phi \theta}(n) \frac{\cos \phi}{r_{0}{ }^{2}} \\
& -\dot{r}_{\zeta}(n)+\frac{n m_{\phi}^{(n)}}{r_{0}} \\
& \frac{M_{\phi, \phi}^{(n)}}{r_{1}}=M_{\theta}^{(n)} \frac{\cos \phi}{r_{0}}-M_{\phi}^{(n)} \frac{\cos \phi}{r_{0}}-2 n \frac{M_{\phi \theta}^{(n)}}{r_{0}}+J_{\phi}^{(n)}+m_{\theta}^{(n)} \\
& \frac{U,_{\phi}^{(n)}}{r_{1}}=U^{(n)} \frac{\cos \phi}{r_{0}}+n \frac{v^{(n)}}{r_{0}}+\frac{T_{\phi \theta}^{(n)}}{K_{33}}+\frac{M_{\phi \theta}^{(n)} \sin \phi}{r_{0} K_{33}} \\
& \frac{v,_{\phi}^{(n)}}{r_{1}}=\frac{W^{(n)}}{r_{1}}+\left(K_{22}-v_{\theta \phi}{ }^{2} K_{11}\right)^{-1}\left\{N_{\phi}{ }^{(n)}-v_{\theta \phi} N_{\theta}{ }^{(n)}+N_{T \phi}(n)-v_{\theta \phi} N_{T \theta}{ }^{(n)}\right\} \\
& \frac{W_{1}{ }_{\phi}^{(n)}}{r_{1}}=\Omega_{\theta}^{(n)}-\frac{V^{(n)}}{r_{1}} \\
& \frac{\Omega_{\theta, \phi}^{(n)}}{r_{1}}=\left(D_{22}-v_{\theta \phi}{ }^{2} D_{11}\right)^{-1}\left\{-M_{\phi}^{(n)}+v_{\theta \phi} M_{\theta}^{(n)}-M_{T \phi}^{(n)}+v_{\theta \phi} M_{T \theta}{ }^{(n)}\right\}
\end{aligned}
$$

Auxiliary Equations

When $n=0,1,2 \ldots$, then

$$
N_{\phi \theta}(n)=T_{\phi \theta}(n)+M_{\phi \theta}(n) \frac{\sin \phi}{r_{0}}
$$

$$
U_{0}^{(n)}=\frac{n w^{(n)}}{r_{0}}-U^{(n)} \frac{\sin \phi}{r_{0}}
$$

$$
\partial_{\downarrow}(n)=J_{0}(n)-\frac{n M_{\phi \theta}(n)}{r_{0}}
$$

$$
\begin{aligned}
& V_{\theta}^{(n)}=v_{\phi \theta} N_{\phi}^{(n)}+\left(K_{21}-v_{\phi \theta}{ }^{2} K_{22}\right)\left[\frac{n U^{(n)}+V^{(n)} \cos \phi-W^{(n)} \sin \phi}{r_{0}}\right] \\
& -N_{T \theta}(n)+v_{\phi \theta} N_{T \phi}(n) \\
& M_{\theta}^{(n)}=v_{\phi \theta} M_{\phi}^{(n)}-\frac{\left(D_{11}-v_{\phi \theta}{ }^{2} D_{22}\right)}{r_{0}}\left[\frac{n U^{(n)} \sin \phi-n^{2} W^{(n)}}{r_{0}}+\Omega_{\theta}^{(n)} \cos \phi\right] \\
& -M_{T \theta}(n)+v_{\phi \theta} M_{T \phi}(n) \\
& M_{\phi \theta}(n)=\left[\frac{-1}{\frac{r_{0}}{D_{33}}+\frac{\sin ^{2} \phi}{r_{0} K_{33}}}\right]\left\{-2 n \Omega_{\theta}^{(n)}+U^{(n)}\left(\frac{\cos \phi}{r_{1}}-\frac{\cos \phi \sin \phi}{r_{0}}\right)\right. \\
& \left.+n V^{(n)}\left(\frac{\sin \phi}{r_{0}}+\frac{1}{r_{1}}\right)+2 n W^{(n)} \frac{\cos \phi}{r_{0}}+T_{\phi \theta}(n) \frac{\sin \phi}{K_{33}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{\theta}(n)=\left\{\frac{3 \cos \phi}{r_{C}}-\frac{2 \cos \phi\left(r_{0} K_{33}+D_{33} \frac{\sin \phi}{r_{1}}\right)}{r_{0}{ }^{2} K_{33}+D_{33} \sin ^{2} \phi}\right\} M_{\phi \theta}(n)+\left[\frac{\frac{-1}{r_{1}}}{\frac{r_{0}}{D_{33}}+\frac{\sin ^{2} \phi}{r_{0} K_{33}}}\right]\left\{-2 n \Omega_{\theta, \phi}(n)\right. \\
& +U_{q}(n)\left(\frac{\cos \phi}{r_{1}}-\frac{\cos \phi \sin \phi}{r_{0}}\right)+U^{(n)}\left(\frac{\sin ^{2} \phi}{r_{0}}-\frac{\cos ^{2} \phi}{r_{0}}\right. \\
& \left.-\frac{\sin \phi}{r_{1}}-\frac{r_{1, \phi} \cos \phi}{r_{1}{ }^{2}}+\frac{r_{1} \cos ^{2} \phi \sin \phi}{r_{0}{ }^{2}}\right)+n V,_{\phi}{ }^{(n)}\left(\frac{\sin \phi}{r_{0}}+\frac{1}{r_{1}}\right) \\
& +n v^{(n)}\left(\frac{\cos \phi}{r_{0}}-\frac{r_{1} \sin \phi \cos \phi}{r_{0}{ }^{2}}-\frac{r_{1, \phi}}{r_{1}{ }^{2}}\right) \\
& +2 n W,_{\phi}{ }^{(n)} \frac{\cos \phi}{r_{0}}-2 \operatorname{riW}{ }^{(n)}\left(\frac{\sin \phi}{r_{0}}+\frac{r_{1} \cos ^{2} \phi}{r_{0}{ }^{2}}\right) \\
& \left.+T_{\phi \theta, \phi}(n) \frac{\sin \phi}{K_{33}}+T_{\phi \theta}(n) \frac{\cos \phi}{K_{33}}\right\}-\frac{n M_{\theta}(n)}{r_{0}}-m_{\phi}(n) \\
& \text { If } m_{\phi}^{(0)}=f_{\theta}^{(0)}=0 \text {, then } Q_{f}^{(0)}=0 \text {. }
\end{aligned}
$$

For the axisymmetric case, the problem is defined by only one harmonic, $n=0$. For an unsymmetric problem, the required harmonics may be superimposed, and agin, only one set of ordinary differential equations need be solved at a time.

PROGRAMMED EQUATIONS FOR VARIOUS CONFIGURAPIONS

The differential equations actually programmed are given below for shell shapes using the coordinate angle ϕ, and for the cylinder and cone, which use the meridional distance coordinate s.

INDEPENDENT VARIABLE, ϕ

$$
\begin{align*}
& \frac{T_{\phi \theta, \phi}(n)}{r_{1}}=-2 T_{\phi \theta}(n) \frac{\cos \phi}{r_{0}}+n \frac{N_{\theta}^{(n)}}{r_{0}}-n M_{\theta}(n) \frac{\sin \phi}{r_{0}^{2}}-M_{\phi \theta}(n) \frac{\cos \phi}{r_{0}}\left[\frac{1}{r_{1}}-\frac{\sin \phi}{r_{0}}\right] \\
& -f_{\theta}^{(n)}-m_{\phi}^{(n)} \frac{\sin \phi}{r_{0}} \tag{3-1}\\
& \frac{N_{\phi, \phi}(n)}{r_{1}}=-N_{\phi}(n) \frac{\cos \phi}{r_{0}}+N_{\theta}^{(n)} \frac{\cos \phi}{r_{0}}-n \frac{T_{\phi \theta}^{(n)}}{r_{\rho}} \\
& -n M_{\phi \theta}(n)\left[\frac{\sin \phi}{r_{0}{ }^{2}}+\frac{1}{r_{0} r_{1}}\right]+\frac{J_{\phi}(n)}{r_{1}}-f_{\phi}(n)
\end{align*}
$$

$$
\begin{aligned}
& \frac{J_{\phi, \phi}^{(n)}}{r_{1}}=-J_{\phi}(n) \frac{\cos \phi}{r_{0}}-N_{\theta}(n) \frac{\sin \phi}{r_{0}}-\frac{N_{\phi}^{(n)}}{r_{1}}+n^{2} \frac{M_{\theta}^{(n)}}{r_{0}{ }^{2}} \\
&-2 n M_{\phi \theta}(n) \frac{\cos \phi}{r_{0}{ }^{2}}-r_{\zeta}{ }^{(n)}+\frac{n m_{\phi}(n)}{r_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{U^{\prime} \phi^{(n)}}{r_{1}}=U^{(n)} \frac{\cos \phi}{r_{0}}+n \frac{v^{(n)}}{r_{0}}+\frac{T_{\phi \theta}^{(n)}}{K_{33}}+\frac{M_{\phi \theta}^{(n)} \sin \phi}{r_{0} K_{33}} \\
& \frac{v_{\phi}^{(n)}}{r_{1}}=\frac{W^{(n)}}{r_{1}}+\left(K_{22}-v_{\theta \phi}^{2} K_{11}\right)^{-1}\left\{N_{\phi}^{(n)}-v_{\theta \phi} N_{\theta}^{(n)}+N_{T \phi}^{(n)}-v_{\theta \phi} N_{T \theta}(n)\right\} \\
& \frac{W_{\phi}(n)}{r_{1}}=\Omega_{\theta}^{(n)}-\frac{V^{(n)}}{r_{1}} \\
& \frac{\Omega_{\theta, \phi}^{(n)}}{r_{1}}=\left(D_{22}-v_{\theta \phi}^{2} D_{11}\right)^{-1}\left\{-M_{\phi}^{(n)}+v_{\theta \phi} M_{\theta}^{(n)}-M_{T \phi}^{(n)}+v_{\theta \phi} M_{T \theta}^{(n)}\right\} \\
& N_{\theta}^{(n)}=v_{\phi \theta} N_{\phi}^{(n)}+\left(K_{11}-v_{\phi \theta}^{2} K_{22}\right)\left[\frac{n U^{(n)}+V^{(n)} \cos \phi-W^{(n)} \sin \phi}{r_{0}}\right] \\
& -N_{T \theta}(n)+v_{\phi \theta} N_{T \phi}(n) \\
& M_{\theta}(n)=v_{\phi \theta} M_{\phi}^{(n)}-\frac{\left(D_{11}-v_{\phi \theta}{ }^{2} D_{22}\right)}{r_{0}}\left[\frac{n U^{(n)} \sin \phi-n^{2} W^{(n)}}{r_{0}}+\Omega_{\theta}^{(n)} \cos \phi\right] \\
& -M_{T \theta}(n)+v_{\phi \theta} M_{T \phi}(n) \\
& M_{\phi \theta}(n)=\left[\frac{-1}{\frac{r_{0}}{D_{33}}+\frac{\sin _{\phi}^{2}}{r_{0} K_{33}}}\right]\left\{-2 n \Omega_{\theta}^{(n)}+U^{(n)}\left(\frac{\cos \phi}{r_{1}}-\frac{\cos \phi \sin \phi}{r_{0}}\right)\right. \\
& \left.+n V^{(n)}\left(\frac{\sin \phi}{r_{0}}+\frac{1}{r_{1}}\right)+2 n W^{(n)} \frac{\cos \phi}{r_{0}}+T_{\phi \theta}(n) \frac{\sin \phi}{K_{33}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& a_{\phi \theta}^{(n)}=T_{\phi \theta}^{(n)}+M_{\phi \theta}(n) \frac{\sin \phi}{r_{0}} \\
& a_{\phi}(n)=\frac{n W^{(n)}}{r_{0}}-U^{(n)} \frac{\sin \phi}{r_{0}} \\
& \hat{a}_{\phi}(n)=J_{\phi}{ }^{(n)}-\frac{n M_{\phi \theta}(n)}{r_{0}} \\
& Q_{e}(n)=\left\{\frac{3 \cos \phi}{r_{0}}-\frac{2 \cos \phi\left(r_{0} K_{33}+D_{33} \frac{\sin \phi}{r_{1}}\right)}{r_{0}{ }^{2} K_{33}+D_{33} \sin ^{2} \phi}\right\}_{\phi \theta}(n) \\
& +\left[\frac{\frac{-1}{r_{1}}}{\frac{r_{0}}{D_{33}}+\frac{\sin ^{2} \phi}{r_{0} K_{33}}}\right]\left(-2 n \Omega_{\theta, \phi}(n)+U,{ }_{\phi}^{(n)}\left(\frac{\cos \phi}{r_{1}}-\frac{\cos \phi \sin \phi}{r_{0}}\right)\right. \\
& +U^{(n)}\left(\frac{\sin ^{2} \phi}{r_{0}}-\frac{\cos ^{2} \phi}{r_{0}}-\frac{\sin \phi}{r_{1}}-\frac{r_{1, \phi} \cos \phi}{r_{1}{ }^{2}}+\frac{r_{1} \cos ^{2} \phi \sin \phi}{r_{0}{ }^{2}}\right) \\
& +n V,_{\phi}(n)\left(\frac{\sin \phi}{r_{0}}+\frac{1}{r_{1}}\right)+n V^{(n)}\left(\frac{\cos \phi}{r_{0}}-\frac{r_{1} \sin \phi \cos \phi}{r_{0}{ }^{2}}-\frac{r_{1, \phi}}{r_{1}{ }^{2}}\right) \\
& +2 n^{W},_{\phi}(n) \frac{\cos \phi}{r_{0}}-2 n W^{(n)}\left(\frac{\sin \phi}{r_{0}}+\frac{r_{1} \cos ^{2} \phi}{r_{0}{ }^{2}}\right) \\
& \left.+T_{\phi \theta, \phi}(n) \frac{\sin \phi}{K_{33}}+T_{\phi \theta}(n) \frac{\cos \phi}{K_{33}}\right\}-\frac{n M_{\theta}^{(n)}}{r_{0}}-m_{\phi}(n) \\
& \because U^{(0)}=f_{\theta}^{(0)}=0 \text {, then } Q_{\theta}^{(0)}=0 .
\end{aligned}
$$

When using Equations 3-1, it is necessary to specify the functions $r_{0}(\phi)$, $r_{1}(\phi)$, and $r_{1}(\phi), \phi_{\phi}$. For completeness, these functions and $r_{2}(\phi)$ are given for the various analytic forms.
?i.ipsoidal (Figure 3-1): When $B=b / a, B=1$ for a sphere, and "a" and ire given data, then:

$$
\begin{align*}
& r_{2}=a^{\left(\sin ^{2} \phi+\beta^{2} \cos ^{2} \phi\right)^{-\frac{1}{2}}} \begin{aligned}
& r_{0}=r_{2} \sin \phi \\
& r_{1}=\frac{\beta^{2}}{a^{2}} r_{2}^{3} \\
& r_{1, \phi}=3\left(\frac{r_{2}^{2}}{a}\right)^{\frac{\cos \phi}{s^{2}}\left(r_{1} \sin \phi-r_{0}\right)} \\
& r_{1, \phi}=0 \text { for sphere }
\end{aligned} \tag{3-2}
\end{align*}
$$

$$
\begin{aligned}
& r_{0}=r_{2} \sin \phi \\
& r_{1, \phi}=0
\end{aligned}
$$

"Gotieied" Ellipse Shape (Figure 3-3): When " n " and "a" are given data, and ane range is $1 \geq r>-1$, then:

$$
\begin{align*}
& r_{2}=a\left(\frac{2}{1+\sin ^{(1+n)_{\phi}}}\right)^{\frac{1}{1+n}} \tag{3-4}\\
& r_{0}=r_{2} \sin \phi \\
& r_{1}=\frac{3}{2}\left(\frac{r_{2}^{2}}{2}\right)^{2+n} \\
& r_{1,4}=-(\therefore+n) \frac{a}{4} \sin ^{(n)}+\cos \phi\left(\frac{2}{1+\sin (1+n)}\right)^{\frac{3+n}{1+n}}
\end{align*}
$$

$\therefore 0$
$a=$:
$\mathrm{b} \cdot \mathrm{a}=0.707$
$n=1$
bia $=0.006$
$n=-1$
$b / 3=0.589$
:: - 1
$\mathrm{b} / \mathrm{a}+0.613$

Eargboin (Eigure 3-i.): When the given parabolic equaiton is $z=f_{1}$ $+f_{2} r+f_{3} u$ " and " f_{1} ", " f_{2} ", and " f_{3} " are given input data, then:

$$
\begin{align*}
& r_{0}=\frac{-\tan \downarrow+r_{2}}{2 f_{3}} \tag{3-5}\\
& r_{2}=\frac{r_{0}}{\sin \phi} \\
& r_{1}=\frac{-\sec ^{3} \phi}{? f_{3}} \\
& r_{1, \phi}=-\frac{2 \sec ^{4} t \sin }{2 f_{3}}
\end{align*}
$$

YYINDFICAL, s MEASUREL OPPCEITE TO GLOBAL COORDINATE 2 (Figure 3-5)

$$
\begin{equation*}
\frac{d r^{(n)}}{d s}=+n \frac{M_{\theta}^{(n)}}{r_{n}}-n \frac{M_{\theta}^{(n)}}{r_{0}^{2}}-r_{\theta}^{(n)}-\frac{1}{r_{0}} m_{\phi}^{(n)} \tag{3-6}
\end{equation*}
$$

$$
\frac{d N_{\theta}^{(n)}}{d s}=-n \frac{T_{\theta \theta}^{(n)}}{r_{0}}-n \frac{M_{p \theta}^{(n)}}{r_{0}^{2}}-f_{\phi}^{(n)}
$$

$$
\frac{i n}{18}=-\frac{:(n)}{r_{0}}+n^{2}\left[\frac{M_{\theta}^{(n)}}{r_{0}^{2}}\right]-f_{5}^{(n)}+n \frac{m_{0}^{(n)}}{r_{0}}
$$

$$
\begin{aligned}
& \frac{n_{n}}{i n}=-\frac{2 n_{\phi \theta}(n)}{r_{\theta}}+J_{\phi}(n)+m_{\theta}(n) \\
& \frac{\because(n)}{a}=\frac{n v^{(n)}}{r_{0}}+\frac{T_{i \theta}^{(n)}}{K_{33}}+\frac{M_{\phi \theta}^{(n)}}{r_{0} K_{33}} \\
& \frac{\because a}{a s}=\left(\ell_{12}-v_{\theta \phi}^{2} K_{11}\right)^{-1}\left\{N_{\phi}^{(n)}-v_{\theta \phi} N_{\theta}^{(n)}+N N_{T \phi}^{(n)}-v_{\theta \phi} N_{T \theta}^{(n)}\right\} \\
& \frac{1 n^{i n}}{15}=\int_{0}^{(n)} \\
& \frac{i_{!}(n)}{1 S}=\left(\sum_{22}-v_{\theta \phi}^{2} \nu_{11}\right)^{-i}\left\{-M_{\phi}^{(n)}+v_{\theta \phi} M_{\theta}^{(n)}-M_{T \phi}^{(n)}+v_{\theta \phi} M_{T \theta}^{(n)}\right\} \\
& \because(n)=v_{\phi \theta} \ddot{\eta}^{(n)}+\left(K_{11}-v_{p \theta}{ }^{2} K_{22}\right)\left[\frac{n U^{(n)}-W^{(n)}}{r_{0}}\right]-N_{T \theta}(n)+v_{\phi e} N_{T \phi}(n) \\
& \because(n)=v_{0}(n)-\frac{\left(D_{11}-v_{\phi 9}^{2} D_{22}\right)}{r_{0}}\left[\frac{n U^{(n)}-n^{2} W^{(n)}}{r_{0}}\right]-M_{T \theta}^{(n)} \\
& +v_{i n} M_{T p}(n) \\
& \because: \therefore \quad\left[\frac{-1}{\frac{r_{0}}{U_{33}}+\frac{1}{r_{0} K_{33}}}\right]\left\{-2 n \Omega_{\theta}^{(n)}+\frac{n V^{(n)}}{r_{0}}+\frac{T_{\phi \theta}^{(n)}}{K_{33}}\right\} \\
& \because \because=Y_{0}^{(n)}+\frac{M_{p A}^{(n)}}{r_{0}} \\
& \because=\frac{n n^{(n)}}{r_{1}}-\frac{U^{(n)}}{r_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{\phi}(n)=J_{\phi}(n)-\frac{n M_{\phi \theta}(n)}{r_{0}} \\
& Q_{\theta}(n)=\left[\frac{-1}{r_{0}}+\frac{1}{D_{33} K_{33}}\right]\left(-2 n \frac{d \sigma_{\theta}(n)}{d s}+\frac{n}{r_{0}} \frac{d V^{(n)}}{d s}+\frac{1}{K_{33}} \frac{d T_{\phi \theta}^{(n)}}{d s}\right]-\frac{n M_{\theta}^{(n)}}{r_{0}} \\
& \quad-m_{\phi}^{(n)} \\
& \text { If } m_{\phi}^{(0)}=f_{\theta}^{(0)}=0, \text { then } Q_{\theta}^{(0)}=0 .
\end{aligned}
$$

CONICAL, s MLASURED ALONG MERIDIAN FROM APEX (Figure 3-6)

$$
\begin{align*}
\frac{d I_{\phi \theta}^{\prime}(n)}{d s}= & -\frac{2 T_{\phi \theta}^{(n)}}{s}+\frac{\mathrm{nN}_{\theta}^{(n)}}{s \cos \phi}-\frac{\mathrm{nM}_{\theta}^{(n)} \sin \phi}{s^{2} \cos ^{2} \phi}+\frac{\mathrm{M}_{\phi \theta}^{(n)} \tan \phi}{s^{2}}-f_{\theta}^{(n)} \\
& -\frac{m_{\phi}^{(n)} \tan \phi}{s} \tag{3-7}
\end{align*}
$$

$$
\frac{d N_{\phi}^{(n)}}{d s}=-\frac{N_{\phi}^{(n)}}{s}+\frac{N_{\theta}^{(n)}}{s}-\frac{n T_{\phi \theta}^{(n)}}{s \cos \phi}-\frac{{n M_{\phi \theta}^{(n)} \sin \phi}_{s^{2} \cos ^{2} \phi}}{(n)} f_{\phi}^{(n)}
$$

$$
\frac{d J_{\phi}(n)}{d s}=-\frac{J_{\phi}^{(n)}}{s}-\frac{N_{\theta}^{(n)} \tan \phi}{s}+\frac{n^{2} M_{\theta}^{(n)}}{s^{2} \cos ^{2} \phi}-\frac{2 n M_{\phi \theta}^{(n)}}{s^{2} \cos \phi}
$$

$$
-f_{\zeta}^{(n)}+\frac{n m_{\phi}}{s \cos \phi}
$$

$$
\frac{M_{\phi}^{(n)}}{d s}=\frac{M_{\theta}^{(n)}}{s}-\frac{M_{\phi}^{(n)}}{G}-\frac{2 n M_{\phi \theta}(n)}{3 \cos \phi}+J_{\phi}^{(n)}+m_{\theta}(n)
$$

$$
\begin{aligned}
& \frac{U^{(n)}}{d s}=\frac{U^{(n)}}{s}+\frac{n V^{(n)}}{s \cos \phi}+\frac{T_{\phi \theta}^{(n)}}{K_{33}}+\frac{M_{\phi \theta}^{(n)} \tan \phi}{K_{33^{s}}} \\
& \frac{d V^{(n)}}{d s}=\left(K_{22}-v_{\theta \phi}^{2} K_{11}\right)^{-1}\left\{N_{\phi}^{(n)}-v_{\theta \phi} N_{\theta}^{(n)}+N_{T \phi}(n)-v_{\theta \phi} N_{T \theta}(n)\right\} \\
& \frac{d W^{(n)}}{d s}=\Omega_{\theta}^{(n)} \\
& \frac{d \Omega_{\theta}(n)}{d s}=\left(\nu_{22}-v_{e \phi}^{2} D_{l l}\right)^{-1}\left\{-M_{\phi}^{(n)}+v_{\theta \phi} M_{\theta}^{(n)}-M_{T \phi}^{(n)}+v_{\theta \phi} M_{T \theta}^{(n)}\right\} \\
& { }_{N N_{\theta}}(n)=v_{\phi \theta} N_{\phi}(n)+\left(K_{i 1}-v_{\phi \theta}^{2} K_{22}\right)\left[\frac{n U^{(n)}+v^{(n)} \cos \phi \cdot W^{(n)} \sin \phi}{s \cos \phi}\right] \\
& -N_{T \theta}(n)+v_{\phi \theta} N_{T \phi}(n) \\
& M_{\theta}(n)=v_{\phi \theta} M_{\phi}^{(n)}-\frac{\left(D_{11}-v_{\phi \theta}{ }^{2} D_{22}\right)}{s \cos \phi}\left[\frac{n U^{(n)} \sin \phi-n^{2} W^{(n)}}{s \cos \phi}+\Omega_{\theta}{ }^{(n)} \cos \phi\right] \\
& -M_{T \theta}(n)+v_{\phi \theta} M_{T \phi}(n) \\
& \begin{aligned}
: A_{\phi}(n)= & {\left[\frac{-1}{\frac{s \cos \phi}{D_{33}}+\frac{\sin ^{2} \phi}{K_{33} s^{s} \cos \phi}}\right]\left\{-2 n \Omega_{\theta}^{(n)}-\frac{U^{(n)} \sin \phi}{s}+\frac{n V^{(n)} \tan \phi}{s}+\frac{2 n W^{(n)}}{s}\right.} \\
& \left.\quad+\frac{T_{\phi \theta}^{(n)} \sin \phi}{K_{33}}\right\}
\end{aligned} \\
& \therefore i_{\phi j}(n)=T_{\phi \theta}(n)+\frac{M_{\phi \theta}^{(n)}}{s} \tan \phi \\
& \therefore(n)=\frac{n W^{(n)}}{3 \cos \phi}-\frac{U^{(n)}}{s} \tan \phi \\
& Q_{\phi}^{(n)}=J_{\phi}^{(n)}-\frac{n M_{\phi \theta}^{(n)}}{\cos \phi}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{d U^{(n)}}{d s} \frac{\sin \phi}{s}+U^{(n)} \frac{\sin \phi}{s^{2}}+n \frac{d V^{(n)}}{d s} \frac{\tan \phi}{s}-\frac{n V^{(n)} \tan \phi}{s^{2}} \\
& \left.+\frac{2 n}{s} \frac{d W^{(n)}}{d s}-\frac{2 n W^{(n)}}{s^{2}}+\frac{d T_{\phi \theta}^{(n)}}{d s} \frac{\sin \phi}{K_{33}} \right\rvert\,-\frac{n M_{\theta}^{(n)}}{s \cos \phi}-m_{\phi}(n) \\
& \operatorname{If} \mathrm{m}_{\phi}(0)=f_{\theta}^{(0)}=0, \text { then } Q_{\theta}^{(0)}=0 .
\end{aligned}
$$

All the above equations are written in terms of stiffness parameters (K and D) rather than explicit geometry. This is due to the fact that a variety of crossection geometries are to be considered, specifically those described in Figure 1-4. However, one more option is available (described in detail in Section 4 and Reference 7): that of inputing the K 's and D's representing any shell wall construction directly intc the equations. With this option there becones available an analysis for a great multitude of shell wall constructions. (In this respect refer to Section L.) With all the geometries available, it becomes necessary to calculate thermal resultants separately.

As noted in Section 1, Equation 1-6, the definitions of the thermal resultants are:

The temperature is defined to vary linearly as follows:

$$
\begin{align*}
& T_{i}=\left(T_{i i}-T_{i c}\right)\left(\frac{\zeta-t_{i}}{h_{i}}\right)+T_{i c}-\bar{T} \tag{3-8}\\
& T_{0}=\left(T_{o c}-T_{o o}\right)\left(\frac{\zeta+t_{o}}{h_{o}}\right)+T_{o c}-\bar{T}
\end{align*}
$$

where $\overline{\mathrm{T}}$ is the stress-free temperature. Combining Equations 3-8 and 1-6, the necessary thermal resultants are obtained.

ORTHOTROPIC SINGLE LAYER

$$
\begin{aligned}
& N_{T \theta}=\frac{E_{\theta}\left(\alpha_{\theta}+v_{\theta \phi} a_{\phi}\right)}{1-v_{\phi \theta}{ }_{\theta \theta \phi}}\left(\frac{h_{i}}{4}\right)\left[T_{1 i}+T_{1 c}+T_{o c}+T_{o o}-4 \bar{T}\right] \\
& N_{T \phi}=\frac{E_{\phi}\left(a_{\phi}+v_{\phi \theta} a_{\theta}\right)}{1-v_{\phi \theta} v_{\theta \phi}}\left(\frac{h_{1}}{L_{1}}\right)\left[T_{i i}+T_{i c}+T_{0 c}+T_{00}-4 T\right] \\
& M_{T \theta}=\frac{E_{\theta}\left(\alpha_{\theta}+v_{\theta \phi} \alpha_{\phi}\right)}{1-v_{\theta \theta} v_{\theta \phi}}\left(\frac{h_{i}{ }^{2}}{24}\right)\left[2 T_{i i}+T_{1 c}-T_{o c}-2 T_{\infty 0}\right] \\
& M_{T \phi}=\frac{E_{\phi}\left(a_{4}+v_{\phi \theta} a_{\theta}\right)}{1-v_{\theta \theta} v_{\theta \phi}}\left(\frac{n_{f}^{2}}{24}\right)\left[2 T_{1 i}+T_{1 c}-T_{o c}-2 T_{\infty 0}\right]
\end{aligned}
$$

$$
\begin{align*}
& N_{T \theta}=\frac{E_{\theta}\left(\alpha_{\theta}+v_{\theta \phi} \alpha_{\phi}\right)}{1-V_{\phi \theta} v_{\theta \phi}}\left(\frac{h_{i}}{2}\right)\left[T_{i i}+T_{i c}+T_{o c}+T_{O O}-4 \bar{T}\right] \tag{3-10}\\
& N_{T \phi}=\frac{E_{\phi}\left(\alpha,+v_{\phi \theta}\right.}{\left.l-v_{\phi \theta} v_{\theta \phi}\right)}\left(\frac{h_{i}}{2}\right)\left[T_{i i}+T_{i c}+T_{o C}+T_{00}-4 \bar{T}\right] \\
& M_{T \theta}=\frac{E_{\theta}\left(\alpha_{\theta}+v_{\theta \phi} \alpha_{\phi}\right)}{1-v_{\phi \theta} v_{\theta \phi}}\left(\frac{h_{i}}{2}\right)\left[\frac{h_{i}}{3}\left(2 T_{i i}+T_{i c}-T_{o c}-2 T_{o o}\right)\right. \\
& \left.+\frac{t}{2}\left(T_{i i}+T_{i c}-T_{o c}-T_{o o}\right)\right] \\
& M_{T \phi}=\frac{E_{\phi}\left(\alpha_{\phi}+v_{\phi \theta} \alpha_{\theta}\right)}{1-v_{\phi \theta} v_{\theta \phi}}\left(\frac{h_{i}}{2}\right)\left[\frac{h_{i}}{3}\left(2 T_{i i}+T_{i c}-T_{O c}-2 T_{O O}\right)\right. \\
& \left.+\frac{t}{2}\left(T_{i . i}+T_{i c}-T_{o c}-T_{o o}\right)\right]
\end{align*}
$$

UNEQUAL FACE SHEET SANDNICH

$$
\begin{align*}
& N_{T \theta}=\frac{E_{\theta}\left(\alpha_{\theta}+v_{\theta \phi} \alpha_{\phi}\right)}{1-v_{\phi \theta} v_{\theta \phi}}\left[\frac{h_{i}}{2}\left(T_{i i}+T_{i c}-2 \bar{T}\right)+\frac{h_{0}}{2}\left(T_{0 c}+T_{o o}-2 \bar{T}\right)\right] \tag{3-11}\\
& N_{T \phi}=\frac{E_{\phi}\left(x_{\phi}+v_{\phi \theta} a_{\theta}\right)}{1-v_{\phi \theta} v_{\theta \phi}}\left[\frac{h_{i}}{2}\left(T_{i 1}+T_{i c}-2 \bar{T}\right)+\frac{h_{0}}{2}\left(T_{o c}+T_{o c}-2 \bar{T}\right)\right] \\
& u_{T \theta}=\frac{E_{\theta}\left(\alpha_{\theta}+v_{\theta \phi} a_{\phi}\right)}{T-v_{\phi \theta} v_{\theta \phi}}\left[\frac{h_{1}{ }^{2}}{6}\left(2 T_{1 i}+T_{i c}-3 \bar{T}\right)-\frac{h_{0}{ }^{2}}{6}\left(2 T_{00}+T_{o c}-3 \bar{T}\right)\right. \\
& \left.+\frac{t_{1}{ }^{n_{1}}}{2}\left(T_{1 i}+T_{1 c}-2 \bar{T}\right)-\frac{t_{0}{ }^{h_{0}}}{2}\left(T_{o o}+T_{o c}-2 \bar{T}\right)\right] \\
& M_{T}=\frac{E_{\phi}\left(a_{\phi}+v_{\phi \theta} a_{\theta}\right)}{1-v_{\phi \theta} v_{\theta \phi}}\left[\frac{n_{1}{ }^{2}}{\sigma}\left(2 T_{i 1}+T_{i c}-3 T\right)-\frac{h_{0}{ }^{2}}{\sigma}\left(2 T_{00}+T_{o c}-3 T\right)\right. \\
& \left.+\frac{t_{1} h_{1}}{2}\left(T_{1 i}+T_{i c}-2 \bar{T}\right)-\frac{t_{0} h_{0}}{2}\left(T_{00}+T_{o c}-2 T\right)\right]
\end{align*}
$$

where:

$$
\begin{aligned}
& t_{i}=\tilde{\zeta}_{i}-h_{i}=\frac{h_{0}^{2}-h_{i}^{2}+2 h_{0}^{t}}{2\left(h_{i}+h_{0}\right)} \\
& t_{0}=\bar{\zeta}_{0}-h_{0}=\frac{h_{i}^{2}-h_{0}^{2}+2 h_{i} t}{2\left(h_{i}+h_{0}\right)}
\end{aligned}
$$

ARBITRARY STIFFNESS PARAMETERS (K AND D)

Since the geometry is not known in this case, certain assumptions are necessary in order to calculate the thermal resultants. The given stiffnesses are set equal to equivalent single sheet stiffnesses:

$$
K_{11}=\frac{E_{\theta \text { eq }} h_{\theta \text { eq }}}{1-v_{\phi \theta} v_{\theta \phi}} \quad D_{11}=\frac{-E_{\theta \text { eq }} h_{\theta \text { eq }}^{3}}{12\left(1-v_{\phi \theta} v_{\theta \phi}\right)}
$$

Ir this way E_{θ} eq and $h_{\theta \text { eq }}$ and similarly in the ϕ direction, E_{ϕ} eq and h_{ϕ} eq can be calculated. Substituting the values thus obtained into Equetion 3-9:

$$
\begin{align*}
& i_{T \theta}=\frac{K_{11}\left(\alpha_{\theta}+v_{\theta \phi} \alpha_{\phi}\right)}{4}\left[T_{i i}+T_{i c}+T_{o c}+T_{o o}-4 T\right] \tag{3-12}\\
& N_{T \theta}=\frac{K_{22}\left(\alpha_{\phi}+v_{\phi \theta} \alpha_{\theta}\right)}{4}\left[T_{i 1}+T_{i c} * T_{o c}+T_{o o}-4 \bar{T}\right] \\
& y_{i 0}=\frac{\left(-K_{11} D_{11}\right)^{\frac{1}{2}}\left(\alpha_{\theta}+v_{\theta \phi} \alpha_{\phi}\right)}{4 \sqrt{3}}\left[2 T_{i 1}+T_{i c}-T_{o c}-2 T_{00}\right] \\
& \therefore_{T_{\phi}}=\frac{\left(-K_{22} D_{22}\right)^{\frac{1}{2}}\left(\alpha_{\phi}+v_{\phi \theta} \alpha_{\theta}\right)}{4 \sqrt{3}}\left[2 T_{1 i}+T_{i c}-T_{o c}-2 T_{o o}\right]
\end{align*}
$$

This, in this case the thermal resultants to be applied are obtained on the basis of equivalent stiffness sections, and are then applied to the original \cdots ricture. In inputing the stiffness parameters (K and D) one must remember ?mat tiej are functions of material properties, and thus functions of Experature. The negative definition of the bending stiffness, D, is used to be consistant with Section 4 and Appendix A.

STRESS CALCULATIONS

The stress formulas to be used are given below:

$$
\begin{array}{rlrl}
\sigma_{\theta \text { in }} & =\frac{N_{\theta}}{A}+\frac{M_{\theta}}{l} \bar{\zeta}_{\text {in }} & \sigma_{\theta} & =\frac{N_{\theta}}{A}-\frac{M_{\theta}}{l} \bar{\zeta}_{\text {out }} \\
\sigma_{\phi \text { in }} & =\frac{N_{\phi}}{A}+\frac{M_{\phi}}{l} \bar{\zeta}_{\text {in }} & \sigma_{\phi_{\text {out }}} & =\frac{N_{\phi}}{A}-\frac{M_{\phi}}{l} \bar{\zeta}_{\text {out }} \\
\tau_{\phi \theta}=\frac{N_{\phi \theta}}{A}+\frac{M_{\phi \theta}}{l} \bar{\zeta}_{\text {in }} & \tau_{\phi \theta \theta_{\text {out }}} & =\frac{N_{\phi \theta}}{A}-\frac{M_{\phi \theta}}{l} \bar{\zeta}_{\text {out }} \\
A & =\frac{\left(I-v_{\phi \theta} v_{\theta \phi}\right) K_{l 1}}{E_{\theta}} & \Omega & =\frac{\left(1-\frac{\left.v_{\phi \theta} v_{\theta \phi}\right) D_{11}}{E_{\theta}}\right.}{}
\end{array}
$$

Configuration	$\bar{\zeta}_{\text {in }}$	$\bar{\zeta}_{\text {out }}$
Orthotropic	$\frac{h_{i}}{2}$	$\frac{h_{1}}{2}$
	$\frac{t}{2}+h_{i}$	$\frac{t}{2}+h_{i}$
	$\frac{h_{i}^{2}+h_{0}^{2}+2 h_{i} h_{0}+2 h_{0}^{t}}{2\left(h_{i}+h_{0}\right)}$	$\frac{h_{i}^{2}+h_{0}^{2}+2 h_{1} h_{0}+2 h_{i} t}{2\left(h_{i}+h_{0}\right)}$

In addition, the Huber-von Mises-Hencky effective stresses will also be calculated.

These stresses are not useful for design or failure criteria, since such criteria are material dependent. However, they are useful for comparison, since they comoine all stress components in a consistent manner characterized by a single number. Stresses for the arbitrary stiffness parameter (K and D) case are calculated using the appropriate Hooke's Laws of shell, ring, or stringer.

Approximations to core transverse shear stresses in a sanuwich shell will be calculated as follows:

$$
\begin{align*}
\tau_{\zeta \phi} & =\frac{Q_{\phi}}{t} \tag{3-15}\\
\tau_{\zeta \theta} & =\frac{Q_{\theta}}{t}
\end{align*}
$$

Figure 3-1. Ellipsoid

Figure 3-2. Ogive

Figure 3-3. Modi:Ied Ellipsold

Figure 3-4. Paraboloid

Figare 3-h. Cyllnder

Figure 3-6. Cone

SECTION 4

EQUATIONS FOR ORTHOTROPICALLY REINFORCED SHELLS

As mentioned in Section 3, the differential equations are uritten in terms of stiffness parameters since a variety of wall crossection geometries are to be considered. There will also be cases allowad in the program, where the stiffness parameters are input directly. Since this option will most often be used to describe reinforced shella, the eccentricity of any reinforcement must be taken into consideration. To this end, some of the differential equations derived in Section 1 must be revised, since new stress-resultant to strain relationships must be used. In the case of orthotropic shell reinforcement, this relationship macomes as rollows":

$$
\begin{align*}
& N_{\theta}=K_{11} \varepsilon_{0}+K_{12} c_{\phi_{0}}-C_{11} k_{\theta}-N_{T \theta} \tag{4-1a}\\
& N_{\phi}=K_{22} \epsilon_{\phi_{0}}+K_{21} \varepsilon_{\theta_{0}}-c_{22} k_{\phi}-N_{T \phi} \tag{1,-16}\\
& N_{\theta \theta}=N_{\theta \theta}=K_{33} r_{A \theta} \tag{4-1c}\\
& M_{\theta}=D_{11} k_{\theta}+D_{12} k_{\phi}+C_{11} \varepsilon_{\theta}-M_{T \theta} \tag{4-1d}\\
& M_{\phi}=D_{22{ }_{\phi}}+D_{21} k_{\theta}+C_{22 \phi_{\phi}}-M_{T \phi} \tag{1-1e}\\
& M_{\phi \theta}=\cdot q_{\theta \phi}=-2 D_{33_{\phi \theta}} \tag{4-1f}
\end{align*}
$$

As can be seen, due to the eccentric reinforcement, \mathbb{N}_{θ} and $N_{\text {, }}$ are fanctions of survatures, and M_{θ} and M_{ϕ} also depend upon membrane strain. This was not the case in Equation 1-8.

* Refer to Appendix A for dert. ation and definitions of K, C, and D parameters for several cases.

The new Equation $4-1$ thus requires chance in four of the oricinal differential and auxiliary cquations formed in Section 1 . Theae changed equations will now be obtained. By combining Equations $4-1 b$ and $4-1 e$ first to eliminate k, and then again to ellmiate ε_{0}, the following differential equations cen be obtained:

$$
\begin{aligned}
& \frac{v_{1}}{r_{1}}=\frac{v}{r_{1}}+\left(K_{22}+\frac{C_{22}^{2}}{D_{22}}\right)^{-1}\left(N_{1}+N_{T \phi}+\frac{C_{22}}{D_{22}}\left(M_{\phi}+M_{T \phi}\right)-\frac{K_{21}}{r_{0}}\left(u_{1 \theta}+v \cos \phi\right.\right. \\
& \left.-v \sin \phi)-\frac{C_{22} D_{21}}{D_{22}}\left[\frac{1}{r_{0}^{2}}\left\{v_{\theta \theta \theta}+u_{\theta \theta} \sin \phi\right\}+\omega_{\theta} \frac{\cos \phi}{r_{n}}\right]\right\}(4-2 a) \\
& \frac{\omega_{\theta, \phi}}{r_{1}}=-\left(C_{22}+\frac{K_{22} D_{22}}{C_{22}}\right)^{-1}\left\{H_{1}+N_{T 1}-\frac{K_{22}}{C_{22}}\left(M_{1}+M_{T 1}\right)-\frac{K_{21}}{r_{0}}\left(u_{1 \theta}+v \cos \phi\right.\right.
\end{aligned}
$$

Utilizing the above solutions in Equations $4-1$ and $4-1 d$, the nev auxiliary equations are obtained.

$$
\begin{align*}
N_{0}= & K_{12}\left(K_{22}+\frac{c_{22}^{2}}{D_{22}}\right)^{-1}\left\{N_{1}+N_{T 4}+\frac{c_{22}}{D_{22}}\left(M_{1}+\mu_{T 4}\right)\right\}-N_{T \theta} \\
& +\left(\frac{K_{11}}{r_{0}}-\frac{K_{12} K_{21}}{r_{0}}\left[K_{22}+\frac{c_{22}^{2}}{D_{22}}\right]^{-1}\right)\left(u_{\theta \theta}+\cdots \cos +v_{\sin \theta}\right) \\
& -\left(c_{11}+\frac{K_{12} c_{22} D_{21}}{D_{22}}\left[K_{22}+\frac{c_{22}^{2}}{D_{22}}\right]^{-1}\right)\left(\frac { 1 } { r _ { 0 } { } ^ { 2 } } \left\{w_{, \theta \theta}\right.\right. \\
& \left.\left.+u_{\theta \theta} \sin \phi\right\}+w_{\theta} \frac{c_{02} \phi}{r_{0}}\right) \tag{4-3a}
\end{align*}
$$

$$
\begin{align*}
& M_{\theta}=-D_{12}\left(C_{22}+\frac{K_{22} D_{22}}{C_{22}}\right)^{-1}\left\{N_{\phi}+N_{T \phi}-\frac{K_{22}}{C_{22}}\left(M_{\phi}+M_{T \phi}\right)\right\}-M_{T \theta} \\
&+\left(\frac{C_{12}}{r_{0}}+\frac{D_{12} K_{21}}{r_{0}}\left[c_{22}+\frac{K_{22} D_{22}}{C_{22}}\right]^{-1}\right)\left(u_{\theta}+v \cos \phi-w \sin *\right) \\
&+\left(D_{11}-\frac{D_{12} K_{22} D_{21}}{C_{22}}\left[c_{22}+\frac{K_{22} D_{22}}{C_{22}}\right]^{-1}\right)\left(\frac{1}{r_{0}^{2}}\left\{w_{\theta \theta}+u_{\theta} \sin \phi+\omega_{\theta} \frac{\cos \phi}{r_{0}}\right)\right. \tag{4-36}
\end{align*}
$$

The Equations $4-2$ and $4-3$ are the four equations which must be substituted for their counterparts in the set of equations developed in Section 1 , to adapt the earlier analysis to handle eccentric reinforcement. These revised equations are expanded in Fourdor Series as described in Section 2 , and presented for the necessary geometries below.

- COORDINATE

$$
\begin{aligned}
& \frac{V_{1}(n)}{r_{1}}=\frac{W^{(n)}}{r_{1}}+\left(K_{22}+\frac{C_{22}}{D_{22}}\right)^{-1}\left(N_{0}^{(n)}+N_{T \phi}^{(n)}+\frac{C_{22}}{D_{22}}\left(M_{0}^{(n)}+M_{T \phi}^{(n)}\right)\right. \\
& -\frac{K_{21}}{r_{0}}\left(n U^{(n)}+V^{(n)} \cos \phi-W^{(n)} \sin \phi\right) \\
& \left.-\frac{C_{22^{2}} D_{21}}{D_{22}}\left\{\frac{1}{r_{0}^{2}}\left\{n U^{(n)} \sin -n^{2} W^{(n)}\right\}+\Omega_{\theta}^{(n)} \frac{\cos d}{r_{0}}\right]\right\}(4-4 a)
\end{aligned}
$$

$$
\begin{align*}
& \frac{Z_{\partial,}^{(n)}}{r_{1}}=-\left(c_{22}+\frac{K_{22} D_{22}}{C_{22}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T \phi}^{(n)}-\frac{K_{22}}{C_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n i}\right)\right. \\
& -\frac{K_{21}}{r_{0}}\left(n u^{(n)}+v^{(n)} \cos \phi-w^{(n)} \sin \phi\right) \\
& \left.+\frac{K_{22} D_{21}}{C_{2 \varepsilon}}\left[\frac{1}{r_{0}^{2}}\left\{n U^{(n)} \sin \phi-n^{2} W^{(n)}\right\}+\Omega_{\theta}^{(n)} \frac{\cos \phi}{r_{0}}\right]\right\}(4-4 b) \\
& y_{\theta}(n)=K_{12}\left(K_{22}+\frac{C_{22}^{2}}{D_{22}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T}(n)+\frac{c_{22}}{D_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)\right\} \\
& -N_{T \theta}(n)+\left(\frac{K_{11}}{r_{0}}-\frac{K_{12} K_{21}}{r_{0}}\left[K_{22}+\frac{C_{22}^{2}}{D_{22}}\right]^{-1}\right)\left({ }_{n u}(n)\right. \\
& \left.+\mathrm{v}^{(\mathrm{a})} \cos \phi-W^{(n)} \sin \phi\right)-\left(c_{11}+\frac{\mathrm{K}_{12} c_{22} D_{21}}{D_{22}}\left[\mathrm{~K}_{22}\right.\right. \\
& \left.\left.+\frac{c_{22}^{2}}{D_{22}}\right]^{-1}\right)\left(\frac{1}{r_{0}^{2}}\left\{n U^{(n)} \sin t-n^{2} W^{(n)}\right\}+\Omega_{\theta}^{(n)} \frac{\cos \psi}{r_{0}}\right)(4-4 c) \\
& \forall_{\theta}^{(n)}=-D_{12}\left(c_{22}+\frac{K_{22} D_{22}}{C_{22}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T \phi}(n)-\frac{K_{22}}{c_{22}}\left(M_{\phi}^{(n)}+\mu_{T \theta}(n)\right)\right\}-M_{T \theta}(n) \\
& +\left(\frac{c_{11}}{r_{0}}+\frac{D_{12} K_{21}}{r_{0}}\left[c_{22}+\frac{K_{22} D_{22}}{c_{22}}\right]^{-1}\right)\left(n u^{(n)}+v^{(n)} \cos +w^{(n)} \sin \phi\right) \\
& +\left(D_{11} \cdot \frac{D_{12} K_{22} D_{21}}{C_{22}}\left[c_{22} \cdot \frac{K_{22} D_{22}}{C_{22}}\right]^{-1}\right)\left(\frac { 1 } { r _ { 0 } { } ^ { 2 } } \left\{n u^{(n)} \text { in } .\right.\right. \\
& \left.\left.-n^{2} w^{(n)}\right)+\Omega_{\theta}^{(n)} \frac{\text { cos } d}{r_{0}}\right) \tag{4-4d}
\end{align*}
$$

$$
\begin{aligned}
\frac{d V^{(n)}}{d s}= & \left(K_{22}+\frac{C_{22}^{2}}{D_{22}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T \phi}(n)+\frac{C_{22}}{D_{22}}\left(M_{\phi}(n)+N_{T \phi}(n)\right)\right. \\
& \left.\quad-\frac{K_{21}}{r_{0}}\left(n U^{(n)}-W^{(n)}\right)-\frac{C_{22^{2}} D_{21}}{D_{22}}\left[\frac{1}{r_{0}^{2}}\left\{n U^{(n)}-n^{2} W^{(n)}\right\}\right]\right\}(4-5 a)
\end{aligned}
$$

$$
\frac{d \Omega_{\theta}(n)}{d s}=-\left(c_{22}+\frac{K_{22} D_{22}}{C_{22}}\right)^{-1}\left\{N_{\phi}^{(n)}+H_{T \phi}(n)-\frac{K_{22}}{C_{22}}\left(M_{\phi}(n)+M_{T \phi}(n)\right)\right.
$$

$$
-\frac{K_{21}}{r_{0}}\left(n u^{(n)}-W^{(n)}\right)+\frac{K_{22^{2}}{ }^{(n)}}{C_{22}}\left[\frac{1}{r_{0}^{2}}\left\{n!^{(n)}-n^{2} W^{(n)}\right\}\right](4-5 b)
$$

$$
N_{\theta}(n)=K_{12}\left(K_{22}+\frac{C_{22}^{2}}{D_{22}}\right)^{-2}\left\{N_{\phi}^{(n)}+N_{T \phi}(n)+\frac{C_{22}}{D_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}(n)\right)\right\}-N_{T \theta}(n)
$$

$$
+\left(\frac{K_{11}}{r_{0}}-\frac{K_{12} K_{21}}{r_{0}}\left[K_{22}+\frac{c_{22}^{2}}{r_{22}}\right]^{-1}\right)\left(n U^{(n)}-w^{(n)}\right)
$$

$$
-\left(C_{11}+\frac{K_{12} C_{22} D_{21}}{D_{22}}\left[K_{22}+\frac{C_{22}^{2}}{D_{22}}\right]^{-1}\right)\left(\frac{1}{r_{0}^{2}}\left\{n U^{(n)}-n^{2} w^{(n)}\right\}\right)
$$

$$
M_{\theta}^{(n)}=-D_{12}\left(C_{22}+\frac{K_{22} D_{22}}{C_{22}}\right)^{-1}\left\{N_{0}^{(n)}+N_{T}(n)-\frac{K_{22}}{C_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)\right\}
$$

$$
-M_{T \theta}^{(n)}+\left(\frac{c_{11}}{r_{0}}+\frac{D_{12} K_{21}}{r_{0}}\left[c_{22}+\frac{K_{22} D_{22}}{c_{22}}\right]^{-1}\right)\left(n U^{(n)}-w^{(n)}\right)
$$

$$
\begin{equation*}
+\left(D_{12}--\frac{D_{12} K_{22} D_{21}}{C_{22}}\left[C_{22}+\frac{K_{22} D_{22}}{C_{22}}\right]^{-1}\right)\left(\frac{1}{r_{0}^{2}}\left\{n U^{(n)}-n^{2} w^{i n)}\right\}\right) \tag{4-5d}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d V^{(n)}}{d s}=\left(K_{22}+\frac{C_{22}^{2}}{D_{22}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T \phi}(n)+\frac{C_{22}}{D_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)\right. \\
&-\frac{K_{21}}{s \cos \phi}\left(n U^{(n)}+v^{(n)} \cos \phi-W^{(n)} \sin \phi\right) \\
&\left.-\frac{C_{22} D_{21}}{D_{22}}\left[\frac{1}{s^{2} \cos ^{2} \phi}\left\{n U^{(n)} \sin \phi-n^{2} W^{(n)}\right\}+\frac{\Omega_{\theta}}{s}\right]\right\} \tag{4-6a}
\end{align*}
$$

$$
\begin{align*}
\frac{d \Omega_{\theta}(n)}{d s}= & -\left(C_{22}+\frac{K_{22} D_{22}}{C_{22}}\right)^{-1}\left\{N_{\phi}(n)+N_{T \phi}(n)-\frac{K_{22}}{C_{22}}\left(M_{\phi}(n)+M_{T \phi}(n)\right)\right. \\
& -\frac{K_{21}}{\sin \cos \phi}\left(n U U^{(n)}+v^{(n)} \cos \phi-W^{(n)} \sin \phi\right) \\
& \left.+\frac{K_{22} D_{21}}{C_{22}}\left[\frac{1}{s^{2} \cos ^{2} \phi}\left\{n U^{(n)} \sin \phi-n^{2} w^{(n)}\right\}+\frac{\Omega_{\theta}(n)}{s}\right]\right\} \tag{4-6b}
\end{align*}
$$

$$
\begin{align*}
\pi_{9}(n)= & K_{12}\left(K_{22}+\frac{C_{22}^{2}}{D_{22}}\right)^{-1}\left\{N_{0}^{(n)}+N_{T 1}^{(n)}+\frac{C_{22}}{D_{22}}\left(M_{1}^{(n)}+M_{T 1}(n)\right)\right\}-N_{T \theta}(n) \\
& +\left(\frac{K_{11}}{s \cos }-\frac{K_{12} K_{21}}{s \cos }\left[K_{22}+\frac{i_{22}^{2}}{D_{22}}\right]^{-1}\right)\left(n_{n}^{(n)}+V^{(n)} \cos -W^{(n)} \sin \right) \\
& -\left(C_{11}+\frac{K_{12} D_{21} C_{22}}{D_{22}}\left[K_{22}+\frac{c_{22}^{2}}{D_{22}}\right]^{-1}\right)\left(\frac { 1 } { s ^ { 2 } \operatorname { c o s } ^ { 2 } } \left\{n U^{(n)} \sin \right.\right. \\
& \left.\left.-n^{2} W^{(n)}\right\}+\frac{n_{\theta}}{s}\right) \tag{4-6c}
\end{align*}
$$

$$
\begin{align*}
& M_{\theta}(n)=-D_{12}\left(C_{22}+\frac{K_{22} D_{22}}{C_{22}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T \phi}^{(n)}-\frac{K_{22}}{C_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)\right\} \\
& -M_{T \theta}(n)+\left(\frac{C_{11}}{s \cos \phi}+\frac{D_{12} K_{21}}{s \cos \phi}\left[C_{22}+\frac{K_{22^{2}} D_{22}}{C_{22}}\right]^{-1}\right)\left(n U^{(n)}\right. \\
& \left.+V^{(n)} \cos \phi-W^{(n)} \sin \phi\right)+\left(D_{11}-\frac{D_{12} K_{22}{ }^{D} 21}{C_{22}}\left[C_{22}\right.\right. \\
& \left.\left.+\frac{K_{22^{2}} 22}{C_{22}}\right]^{-1}\right)\left(\frac{1}{s^{2} \cos ^{2}}\left\{n U^{(n)} \sin \phi-n^{2} W^{(n)}\right\}+\frac{\Omega_{\theta}^{(n)}}{s}\right) \tag{4-6d}
\end{align*}
$$

Although the stress-resultant to strain relationships (Equations 4-1) were der ved in Appendix A on the physical basis of eccentric orthotropic shell reinforcing, they can be used to describe other shell wall construction as well. This is possible in the program since the parameters K, C, and D are direct input. It is only necessary to use the proper formulas In place of those given in Appendix A to calculate the stiffness parameters which are to be input. Although in Equations $4-1$ membrane forces are decendent upon cirvature and moments upon extensional strain, these equations are not completely general, and thus cannot be used for arhitrary layered shells. Fully general equations, adapted specifically for layered shells, can be obtained in Reference 8.

When the reinforcement is not eccentric, simpler equations than Equations $4-4,4-5$, and $4-6$, can be applied. The necessary equations for this case can be derived as in Section 1 , and they are presented below:

[^0]\[

$$
\begin{align*}
& \frac{V\}_{b}^{(n)}}{r_{1}}=\frac{W^{(n)}}{r_{1}}+\left(K_{22}-\frac{K_{21} K_{12}}{K_{11}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T \phi}(n)-\frac{K_{21}}{K_{11}}\left(N_{\theta}^{(n)}+N_{T \theta}(n)\right)\right\}_{(4-7 a)} \\
& \frac{I_{\theta, \phi}(n)}{r_{1}}=\left(D_{22}-\frac{D_{12} D_{21}}{D_{11}}\right)^{-1}\left\{+M_{\phi}^{(n)}+M_{T \phi}^{(n)}-\frac{D_{21}}{D_{11}}\left(M_{\theta}(n)+M_{T \theta}^{(n)}\right)\right\} \tag{4-7b}\\
& M_{\theta}(n)=\frac{K_{12}}{K_{22}}\left(N_{\phi}(n)+N_{T \phi}^{(n)}\right)-N_{T \theta}(n) \\
& +\left(K_{11}-\frac{K_{12} K_{21}}{K_{22}}\right)\left[\frac{n u^{(n)}+v^{(n)} \cos \phi-w^{(n)} \sin \phi}{r_{0}}\right] \\
& M_{\theta}^{(n)}=\frac{D_{12}}{D_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}(n)\right)-M_{T \theta}^{(n)}+\left(D_{11}-\frac{D_{12} D_{21}}{D_{22}}\right)\left[\frac{n U^{(n)} \sin \phi-n^{2} W^{(n)}}{r_{0}}\right. \\
& \left.+\Omega_{\theta}(n) \cos \phi\right] \frac{1}{r_{0}} \tag{4-7d}
\end{align*}
$$
\]

CYLINDFR

$$
\begin{align*}
& \frac{d V^{(n)}}{d s}=\left(K_{22}-\frac{K_{21} K_{12}}{K_{11}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T \phi}^{(n)}-\frac{K_{21}}{K_{11}}\left(N_{\theta}^{(n)}+N_{T \theta}^{(n)}\right)\right\} \tag{4-8a}\\
& \frac{d_{\theta}(n)}{d s}=\left(D_{22}-\frac{D_{12} D_{21}}{D_{11}}\right)^{-1}\left\{M_{\phi}^{(n)}+M_{T \phi}^{(n)}-\frac{D_{21}}{D_{11}}\left(M_{\theta}^{(n)}+M_{T \theta}^{(n)}\right)\right\} \tag{4-8b}\\
& N_{i j}(n)=\frac{K_{12}}{K_{22}}\left(N_{\phi}^{(n)}+N_{T \phi}^{(n)}\right)-N_{T \theta}^{(n)}+\left(K_{11}-\frac{K_{12} K_{21}}{K_{22}}\right)\left[\frac{n U^{(n)}-W^{(n)}}{r_{0}}\right](4-8 c) \\
& M_{\theta}^{(n)}=\frac{12}{D_{22}}\left(M_{\phi}^{(n)}+M_{T \theta}^{(n)}\right)-M_{T \theta}^{(n)}+\left(D_{11}-\frac{D_{12} D_{21}}{D_{22}}\right)\left[\frac{n U^{(n)}-n^{2} W^{(n)}}{r_{0}^{2}}\right] \tag{4-8~d}
\end{align*}
$$

$$
\begin{align*}
& \frac{d V^{(n)}}{d s}=\left(K_{22}-\frac{K_{21} K_{12}}{K_{11}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T \phi}(n)-\frac{K_{21}}{K_{11}}\left(N_{\theta}(n)+N_{T \theta}(n)\right)\right\} \tag{4-9a}\\
& \frac{d \Omega_{\theta}(n)}{d s}=\left(D_{22}-\frac{D_{12} D_{21}}{D_{11}}\right)^{-1}\left\{M_{\phi}^{(n)}+M_{T \phi}^{(n)}-\frac{D_{21}}{D_{11}}\left(M_{\theta}^{(n)}+M_{T \theta}^{(n)}\right)\right\} \tag{4-9b}\\
& N_{\theta}(n)=\frac{K_{12}}{K_{22}}\left(N_{\phi}(n)+N_{T \phi}(n)\right)-N_{T \theta}(n) \\
& +\left(K_{11}-\frac{K_{12} K_{21}}{K_{22}}\right)\left[\frac{n U^{(n)}+V^{(n)} \cos \phi \ldots W^{(n)} \sin \phi}{s \cos \phi}\right] \tag{4-9c}\\
& M_{\theta}^{(n)}=\frac{D_{12}}{D_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)-M_{T \theta}^{(n)} \\
& +\left(D_{11}-\frac{D_{12} D_{21}}{D_{22}}\right)\left[\frac{n u(n)-n^{2}(n)}{s^{2} \cos ^{2} \phi}+\frac{\Omega_{\theta}^{(n)}}{s}\right] \tag{4-9d}
\end{align*}
$$

The specific type of reinforcement which can be analyzed by all the previous equations has to be placed coincident with the coordinate axes of the shell (θ and ϕ or s). More complex reinforcement, such as waffle construction rotated 45 deg from the coordinate axes, must also be analyzed on the Saturn SII stage. The specific integrated Hooke's Law relationships for this case are given below (derivations and stiffness parameter definitions can be found in Appendix A):

$$
\begin{align*}
& N_{\theta}=K_{11} \varepsilon_{\theta_{0}}+K_{12} \varepsilon_{\phi}-C_{11}\left(k_{\theta}+k_{\phi}\right)-N_{T \theta} \tag{4-10a}\\
& N_{\phi}=K_{22} \varepsilon_{\phi_{0}}+K_{21} \varepsilon_{\theta_{0}}-C_{11}\left(k_{\theta}+k_{\phi}\right)-N_{T \phi} \tag{4-10b}\\
& N_{\phi \theta}=K_{33} \gamma_{\phi \theta}-2 C_{11} k_{\phi \theta} \tag{4-10c}
\end{align*}
$$

$$
\begin{align*}
M_{\theta} & =D_{11} k_{\theta}+D_{12} k_{\phi}+C_{11}\left(\varepsilon_{\theta}+\varepsilon_{\phi}\right)-M_{11 \theta} \tag{4-10d}\\
M_{\phi} & =D_{22} k_{\phi}+D_{21} k_{\theta}+C_{11}\left(\varepsilon_{\theta}+\varepsilon_{\phi_{0}}\right)-M_{T \phi} \tag{4-10e}\\
M_{\phi \theta} & =-2 D_{33} k_{\phi \theta}+C_{11} \gamma_{\phi \theta_{0}} \tag{4-10f}
\end{align*}
$$

Equations $4-10$ will also necessitate a change in some of the auxiliary and differential equations derived in Section 1 . These revised equations are given below. Eliminating k_{ϕ} and $\varepsilon_{\phi_{O}}$ successively from Equations $L_{1}-10 \mathrm{~b}$ and 4 -l0e we obtain equations for $v,{ }_{\phi} / r_{1}$ and $\omega_{\theta, \phi} / r_{1}$. Substituting these equations respectively into the equations obtained by subtracting $4-10 b$ from $4-10 a$ and $4-10 e$ from $4-10 d$ we arrive at equations for N_{θ} and M_{θ}. Finally, equations for $u,{ }_{\phi} / r_{1}$ and $M_{\phi \theta}$ can be obtained from 4-10c and $4-10 f$, and Q_{θ} is obtained from equilibrium. Thus the revised equations are provided below, already expanded in Fourier Series, for the necessary coordinate systems:

$\$$ COORDINATE

$$
\begin{align*}
\frac{V_{\phi}^{(n)}}{r_{1}}=\frac{W^{(n)}}{r_{1}} & +\left(K_{22}+\frac{C_{11}^{2}}{D_{22}}\right)^{-1}\left\{_{\phi}^{(n)}+N_{T \phi}^{(n)}+\frac{C_{11}}{D_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)\right. \\
& -\left(K_{12}+\frac{C_{11}^{2}}{D_{22}}\right) \frac{1}{r_{0}}\left(n U^{(n)}+V^{(n)} \cos \phi-W^{(n)} \sin \phi\right) \\
& \left.-\left(\frac{D_{12} C_{11}}{D_{22}}-C_{11}\right) \frac{1}{r_{0}^{2}}\left(n U^{(n)} \sin \phi-n^{2} W^{(n)}+r_{0} \Omega_{\theta}^{(n)} \cos \phi\right)\right\} \tag{4-11a}
\end{align*}
$$

$$
\begin{aligned}
& \frac{a_{1, \phi}^{(n)}}{r_{1}}=\left(C_{11}+\frac{D_{22} K_{22}}{C_{11}}\right)^{-1}\left\{\frac{K_{22}}{C_{11}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)-N_{\phi}^{(n)}-N_{T \phi}^{(n)}\right. \\
& \quad+\left(K_{12}-K_{22}\right) \frac{1}{r_{0}}\left(n U^{(n)}+V^{(n)} \cos \phi-W^{(n)} \sin \phi\right)
\end{aligned}
$$

$$
\left.-\left(C_{11}+\frac{D_{12} K_{22}}{C_{11}}\right) \frac{1}{r_{0}^{2}}\left(n U^{(n)} \sin \phi-n^{2} W^{(n)}+r_{0} \Omega_{\theta}^{(n)} \cos \phi\right)\right\}
$$

$$
\begin{equation*}
\frac{U,_{\phi}^{(n)}}{r_{1}}=\frac{U^{(n)} \cos \phi}{r_{0}}+\frac{n v^{(n)}}{r_{0}}+\left(K_{33}-\frac{C_{11}^{2}}{D_{33}}\right)^{-1}\left\{T_{\phi \theta}(n)+M_{\phi \theta}^{(n)}\left(\frac{\sin \phi}{r_{0}}-\frac{C_{11}}{D_{33}}\right)\right\} \tag{4-1.10}
\end{equation*}
$$

$N_{\theta}^{(n)}=\left(N_{\phi}(n)+N_{T \phi}(n)\right)\left\{1+\left(K_{12}-K_{22}\right)\left(K_{22}+\frac{c_{11}}{D_{22}}\right)^{-1}\right\}-N_{T \theta}(n)$

$$
+\left(K_{12}-K_{22}\right)\left(\frac{C_{11}}{K_{22} D_{22}+C_{11}^{2}}\right)\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)
$$

$$
-\left(K_{12}-K_{22}\right)\left(\frac{D_{12} C_{11}-C_{11} L_{22}}{K_{22} D_{22}+C_{11}^{2}}\right) \frac{1}{r_{0}{ }^{2}}\left(n U^{(n)} \sin \phi-n^{2} W^{(n)}\right.
$$

$$
\left.+r_{0} \Omega_{\theta}^{(n)} \cos \phi\right)+\frac{1}{r_{0}}\left(n U^{(n)}+v^{(n)} \cos \phi\right.
$$

$$
-W(n) \sin \phi)\left\{K_{11}-K_{12}-\left(K_{12}-K_{22}\right)\left(\frac{K_{1 c i c}+c_{11}^{2}}{K_{22} D_{22}+c_{11}^{2}}\right)\right\}(4-11 d)
$$

$$
M_{\theta}^{(n)}=\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)\left\{1+\left(D_{12}-D_{22}\right)\left(\frac{K_{22}}{c_{11}^{2}+D_{22} K_{22}}\right)\right\}
$$

$$
-M_{T \theta}^{(n)}-\left(N_{\phi}^{(n)}+N_{T \phi}^{(n)}\right)\left(D_{12}-D_{22}\right)\left(\frac{C_{11}}{C_{11}^{2}+D_{22} K_{22}}\right)
$$

$$
\begin{align*}
& +\left(D_{12}-D_{22}\right)\left(K_{12}-K_{22}\right)\left(\frac{C_{11}}{C_{11}^{2}+D_{22} K_{22}}\right) \frac{1}{r_{0}}\left(n U^{(n)}+v^{(n)} \cos \phi\right. \\
& \left.-W^{(n)} \sin \phi\right)+\frac{1}{r_{0}^{2}}\left(n U^{(n)} \sin \phi-n^{2} W^{(n)}\right. \\
& \left.+r_{0} \Omega_{\theta}^{(n)} \cos \phi\right)\left\{D_{11}-D_{12}-\left(D_{12}-D_{22}\right)\left(\frac{C_{11}^{2}+D_{12} K_{22}}{C_{11}^{2}+D_{22} K_{22}}\right)\right\} \\
& \text { (4-11e) } \\
& M_{\phi \theta}(n)=\left\{\frac{\sin \varphi}{r_{0}}-\frac{K_{33}}{C_{11}}-\frac{\sin \phi}{r_{0}}\left(\frac{D_{33} \sin \phi}{C_{11} r_{0}}-1\right)\right\}^{-1}\left\{(\frac { K _ { 3 3 } D _ { 3 3 } } { C _ { 1 1 } } - C _ { 1 1 }) \frac { 1 } { r _ { 0 } } \left[-2 n \Omega_{\theta}^{(n)}\right.\right. \\
& +U^{(n)}\left(\frac{\cos \phi}{r_{1}}-\frac{\sin \phi \cos \phi}{r_{0}}\right)+n V^{(n)}\left(\frac{1}{r_{1}}+\frac{\sin \phi}{r_{0}}\right) \\
& \left.\left.+2 n W^{(n)} \frac{\cos \phi}{r_{0}}\right]+T_{\phi \theta}(n)\left[\frac{D_{33} \sin \phi}{C_{11} r_{0}}-1\right]\right\} \tag{4-11f}\\
& Q_{\theta}(n)=\left[\frac{4 \cos \phi}{r_{0}}-\frac{2 \cos \phi\left(C_{11} \frac{r_{0}}{r_{1}}+C_{11} \sin \phi-r_{0} K_{33}-\sin \phi \frac{D_{33}}{r_{1}}\right)}{2 r_{0} C_{11} \sin \phi-r_{0}{ }^{2} K_{33}-D_{33} \sin ^{2} \phi}\right] M_{\phi \theta}^{(n)} \\
& +\left\{\frac{\frac{1}{r_{1}}}{\frac{2 \sin \phi}{r_{0}}-\frac{K_{33}}{C_{21}}-\frac{D_{33} \sin ^{2} \phi}{r_{0}{ }^{2} C_{11}}}\right)\left\{(\frac { K _ { 3 3 } D _ { 3 3 } } { C _ { 1 1 } } - C _ { 1 1 }) \left[\frac{-2 n \Omega_{\theta, \phi}(n)}{r_{0}}\right.\right. \\
& +\frac{2 n \Omega_{\theta}{ }^{(n)} r_{1} \cos \phi}{r_{0}{ }^{2}}+U,{ }_{\phi}(n)\left(\frac{\cos \phi}{r_{1} r_{0}}-\frac{\cos \phi \sin \phi}{r_{0}{ }^{2}}\right)
\end{align*}
$$

$$
\begin{align*}
& +U^{(n)}\left(-\frac{\sin \phi}{r_{1} r_{0}}-\frac{\cos \phi\left[r_{0} r_{1, \phi}+r_{1}{ }^{2} \cos \phi\right]}{r_{1}{ }^{2} r_{0}{ }^{2}}\right. \\
& \left.-\frac{\left(\cos ^{2} \phi-\sin ^{2} \phi\right)}{r_{0}^{2}}+\frac{2 r_{1} \cos ^{2} \phi \sin \phi}{r_{0}^{3}}\right)+n V,{ }_{\phi}(n)\left(\frac{1}{r_{1} r_{0}}\right. \\
& \left.+\frac{\sin \phi}{r_{0}^{2}}\right)+n V^{(n)}\left(\frac{-2 r_{1} \cos \phi \sin \phi}{r_{0}{ }^{3}}-\frac{r_{1, \phi}}{r_{1}{ }^{2} r_{0}}\right) \\
& \left.+2 n W,{ }_{\phi}(n) \frac{\cos \phi}{r_{0}{ }^{2}}-2 n W(n)\left(\frac{\sin \phi}{r_{0}{ }^{2}}+\frac{2 r_{1} \cos ^{2} \phi}{r_{0}{ }^{3}}\right)\right] \\
& +T_{\phi \theta, \phi}(n)\left[\frac{D_{33} \sin \phi}{C_{i 1} r_{0}}-1\right]+T_{\phi \theta}(n)\left[\frac{D_{33} \cos \phi}{C_{11} r_{0}}\right. \\
& \left.\left.-\frac{D_{33} r_{1} \cos \phi \sin \phi}{C_{11} r_{0}{ }^{2}}\right]\right\}-\frac{n M_{\theta}^{(n)}}{r_{0}}-m_{\phi}(n) \tag{4-11g}
\end{align*}
$$

$\operatorname{If} \mathrm{m}_{\phi}^{(0)}=f_{\theta}^{(0)}=0$, then $Q_{\theta}^{(0)}=0$.

CONE

$$
\begin{aligned}
\frac{d V}{d s}(n) & \left(K_{22}+\frac{C_{11}}{D_{22}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T \phi}^{(n)}+\frac{C_{11}}{D_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)\right. \\
& -\left(K_{12}+\frac{C_{11}}{D_{22}}\right) \frac{1}{\cos \phi}\left(n U^{(n)}+V^{(n)} \cos \phi-W^{(n)} \sin \phi\right) \\
& -\left(\frac{\left.\left.D_{12^{C} 11}^{D_{22}}-C_{11}\right)\left[\frac{1}{s^{2} \cos ^{2} \phi}\left(n U^{(n)} \sin \phi-n^{2} W^{(n)}\right)+\frac{\Omega_{\theta}^{(n)}}{s}\right]\right\}}{(4-12 a)}\right.
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \Omega_{\theta}}{(n)}=\left(c_{11}\right. & \left.+\frac{D_{22} K_{22}}{c_{11}}\right)^{-1}\left\{\frac{K_{22}}{C_{11}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)-N_{\phi}^{(n)}-N_{T \phi}^{(n)}\right. \\
& +\left(K_{12}-K_{22}\right) \frac{1}{s \cos \phi}\left(n U^{(n)}+V^{(n)} \cos \phi-W^{(n)} \sin \phi\right) \\
& \left.-\left(C_{11}+\frac{D_{12} K_{22}}{C_{11}}\right)\left[\frac{1}{s^{2} \cos _{\phi}^{2}}\left(n U^{(n)} \sin \phi-n^{2} W^{(n)}\right)+\frac{\Omega_{\theta}^{(n)}}{s}\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
& \frac{d U^{(n)}}{d s}=\frac{U^{(n)}}{s}+\frac{n V^{(n)}}{s \cos \phi}+\left(K_{33}-\frac{c_{11}^{2}}{D_{33}}\right)^{-1}\left\{T_{\phi \theta}(n)+M_{\phi \theta}(n)\left(\frac{\tan \phi}{s}-\frac{c_{11}}{D_{33}}\right)\right\} \\
& \text { (4-12c) } \\
& N_{\theta}{ }^{(n)}=\left(N_{\phi}^{(n)}+N_{T \phi}{ }^{(n)}\right)\left\{1+\left(K_{12}-K_{22}\right)\left(K_{22}+\frac{C_{11}^{2}}{D_{22}}\right)^{-1}\right)-N_{T \theta}(n) \\
& +\left(K_{12}-K_{22}\right)\left(\frac{C_{11}}{K_{22} D_{22}+C_{11}^{2}}\right)\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right) \\
& -\left(K_{12}-K_{22}\right)\left(\frac{D_{12} C_{11}-C_{11} D_{22}}{K_{22} D_{22}+C_{11}^{2}}\right)\left[\frac{1}{s^{2} \cos _{\phi}^{2}}\left({ }_{n U}^{(n)} \sin \phi-n^{2} W^{(n)}\right)\right. \\
& \left.+\frac{\Omega_{\theta}^{(n)}}{s}\right]+\frac{1}{s \cos \phi}\left(n U^{(n)}+v^{(n)} \cos \phi-W^{(n)} \sin \phi\right)\left\{K_{11}\right. \\
& \left.-K_{12}-\left(K_{12}-K_{22}\right)\left(\frac{K_{12} D_{22}+c_{11}^{2}}{K_{22} D_{22}+c_{11}^{2}}\right)\right\} \tag{4-12d}
\end{align*}
$$

$$
\begin{align*}
& M_{\theta}^{(n)}=\left(M_{\phi}^{(n)}+M_{T \phi}(n)\right)\left\{1+\left(D_{12}-D_{22}\right)\left(\frac{K_{22}}{C_{11}{ }^{2}+D_{22} K_{22}}\right)\right\}-M_{T \theta}(n) \\
& -\left(N_{\phi}(n)+N_{T \phi}(n)\right)\left(D_{12}-D_{22}\left(C_{11}+\frac{D_{22} K_{22}}{C_{11}}\right)^{-1}\right. \\
& +\left(D_{12}-D_{22}\right)\left(K_{12}-K_{22}\right)\left(C_{11}+\frac{D_{22} K_{22}}{C_{11}}\right)^{-1}\left(\frac{1}{\sin \dot{\phi}}\right)\left(n u^{(n)}\right. \\
& \left.+V^{(n)} \cos \phi-W^{(n)} \sin \phi\right)+\left[\frac{1}{s^{2} \cos ^{2} \phi}\left(n U^{(n)} \sin \phi-n^{2} W^{(n)}\right)\right. \\
& \left.+\frac{\Omega_{\theta}{ }^{(n)}}{s}\right]\left\{D_{11}-D_{12}-\left(D_{12}-D_{22}\right)\left(\frac{C_{11}{ }^{2}+D_{12} K_{22}}{C_{11}{ }^{2}+D_{22} K_{22}}\right)\right\} \\
& M_{\phi \theta}^{(n)}=\left\{\frac{\operatorname{ian} \phi}{s}-\frac{K_{33}}{C_{11}}-\frac{\tan \phi}{s}\left(\frac{D_{33} \tan \phi}{C_{11}}-1\right)\right\}^{-1}\left\{\left(\frac{K_{33} D_{33}}{C_{11}}\right.\right. \\
& \left.-c_{11}\right)\left(\frac{1}{s \cos \phi}\right)\left[-2 n \Omega_{\theta}^{(n)}-\frac{U^{(n)} \sin \phi}{s}+n V^{(n)} \frac{\tan \phi}{s}+\frac{2 n W^{(n)}}{s}\right] \\
& \left.+\mathrm{T}_{\phi \theta}(\mathrm{n})\left[\frac{\mathrm{D}_{33} \mathrm{Can} \phi_{\mathrm{Ca}} \mathrm{C}^{\mathrm{s}}}{}-1\right]\right\} \tag{4-12f}
\end{align*}
$$

$$
\begin{align*}
& Q_{\theta}(n)=\left[\frac{4}{s}-\frac{2 \cos \phi\left(C_{11} \sin \phi-s K_{33} \cos \phi\right)}{2 s C_{11} \cos \phi \sin \phi-s^{2} K_{33} \cos ^{2} \phi-D_{33} \sin ^{2} \phi}\right] M_{\phi \theta}(n) \\
& +\left\{\frac{1}{\frac{2 \tan \phi}{s}-\frac{K_{33}}{C_{11}}-\frac{D_{33} \tan ^{2} \phi}{s^{2} C_{11}}}\right\}\left\{(\frac { K _ { 3 3 } D _ { 3 3 } } { C _ { 1 1 } } - C _ { 1 1 }) \left[\frac{-2 n}{s \cos \phi} \frac{d \Omega_{\theta}^{(n)}}{d s}\right.\right. \\
& +\frac{2 n \Omega_{\theta}^{(n)}}{s^{2} \cos \phi}-\frac{d U^{(n)}}{d s}\left(\frac{\tan \phi}{s^{2}}\right)+U^{(n)}\left(\frac{2 \tan \phi}{s^{3}}\right)+n \frac{d V^{(n)}}{d s}\left(\frac{\tan \phi}{s^{2} \cos \phi}\right) \\
& \left.-\mathrm{nV}{ }^{(\mathrm{n})}\left(\frac{2 t \varepsilon n \phi}{\mathrm{~s}^{3} \cos \phi}\right)+\frac{d W^{(n)}}{\mathrm{ds}}\left(\frac{2 \mathrm{n}}{\mathrm{~s}^{2} \cos \phi}\right)-2 \mathrm{nW}{ }^{(n)}\left(\frac{2}{\mathrm{~s}^{3} \cos \phi}\right)\right] \\
& \left.+\frac{d T_{\phi \theta}{ }^{(n)}}{d s}\left[\frac{D_{33} \tan \phi}{C_{11} s^{s}}-1\right]-T_{\phi \theta}(n)\left(\frac{D_{33} \tan \phi}{C_{11} s^{2}}\right)\right\} \\
& -\frac{n M_{\theta}}{s \cos \phi}-m_{\phi}^{(n)} \tag{4-12g}
\end{align*}
$$

If $m_{\phi}^{(0)}=f_{\theta}^{(0)}=0$, then $Q_{\theta}^{(0)}=0$.

CYLINDER

$$
\left.\begin{array}{rl}
\frac{d V^{(n)}}{d s}=\left(K_{22}\right. & \left.+\frac{c_{11}}{D_{22}}\right)^{-1}\left\{N_{\phi}^{(n)}+N_{T \phi}^{(n)}+\frac{C_{11}}{D_{22}}\left(M_{\phi}^{(n)}+M_{T \phi}(n)\right.\right.
\end{array}\right)
$$

$$
\begin{align*}
\frac{d \Omega_{\theta}(n)}{d s}=\left(c_{11}\right. & \left.+\frac{D_{22} K_{22}}{C_{11}}\right)^{-1}\left\{\frac{K_{22}}{C_{11}}\left(M_{\phi}^{(n)}+M_{T \phi}^{(n)}\right)-N_{\phi}^{(n)}-N_{T \phi}(n)\right. \\
& +\left(K_{12}-K_{22}\right) \frac{1}{r_{0}}\left(n U^{(n)}-W^{(n)}\right)-\left(c_{11}\right. \\
& \left.\left.+\frac{D_{12} K_{22}}{C_{11}}\right) \frac{1}{r_{0}{ }^{2}}\left(n U(n)-n^{2} W^{(n)}\right)\right\} \tag{4-13b}
\end{align*}
$$

$$
\frac{d U^{(n)}}{d s}=\frac{n V^{(n)}}{r_{0}}+\left(K_{33}-\frac{c_{11}^{2}}{D_{33}}\right)^{-1}\left\{T_{\phi \theta}^{(n)}+M_{\phi \theta}^{(n)}\left(\frac{1}{r_{0}}-\frac{C_{11}}{D_{33}}\right)\right\}
$$

$$
N_{\theta}^{(n)}=\left(N_{\phi}^{(n)}+N_{T \phi}^{(n)}\right)\left\{1+\left(K_{12}-K_{22}\right)\left(K_{22}+\frac{C_{11}{ }^{2}}{D_{22}}\right)^{-1}\right\}-N_{T \theta}(n)
$$

$$
+\left(K_{12}-K_{22}\right)\left(\frac{C_{11}}{K_{22} D_{22}+C_{11}^{2}}\right)\left(M_{\phi}^{(n)}+M_{T \phi}(n)\right)
$$

$$
-\left(K_{12}-K_{22}\left(\frac{D_{12}{ }^{C_{11}}-C_{11} D_{22}}{k_{22} D_{22}+c_{11}^{2}}\right) \frac{1}{r_{0}^{2}}\left(n v^{(n)}-n^{2} W^{(n)}\right)\right.
$$

$$
+\frac{1}{r_{0}}\left(n U^{(n)}-w^{(n j)}\right)\left\{K_{11}-K_{12}-\left(K_{12}-K_{22}\right)\left(\frac{K_{12} D_{22}+c_{11}^{2}}{K_{22} D_{22}+c_{11}^{2}}\right)\right\}
$$

$$
(4-13 e)
$$

$$
M_{\phi \theta}(n)=\left\{\frac{1}{r_{0}}-\frac{K_{33}}{C_{11}}-\frac{1}{r_{0}}\left(\frac{D_{33}}{C_{11} r_{0}}-1\right)\right\}^{-1}\left\{(\frac { K _ { 3 3 } D _ { 3 3 } } { C _ { 1 1 } } - c _ { 1 1 }) \frac { 1 } { r _ { 0 } } \left[-2 n \Omega_{\theta}(n)\right.\right.
$$

$$
\begin{equation*}
\left.\left.+\frac{n V^{(n)}}{r_{0}}\right]+\mathbb{I}_{\phi \theta}(n)\left[\frac{D_{33}}{C_{11} r_{0}}-1\right]\right\} \tag{4-13f}
\end{equation*}
$$

$$
Q_{\theta}(n)=\left\{\frac{1}{\frac{2}{r_{0}}-\frac{K_{33}}{C_{11}}-\frac{D_{33}}{r_{0}^{2} C_{11}}}\right\}\left\{\left(\frac{K_{33} D_{33}}{C_{11}}-C_{11}\right)\left[-\frac{2 n^{2}}{r_{0}} \frac{d_{0}^{(n)}}{d s}+\frac{n}{r_{0}^{2}} \frac{d V}{d s}(n)\right)\right.
$$

$$
\begin{equation*}
\left.+\frac{d T_{\phi \theta}^{(n)}}{d s}\left[\frac{D_{33}}{r_{0} C_{11}}-1\right]\right\}-\frac{n M_{\theta}^{(n)}}{r_{0}}-m_{\phi}^{(n)} \tag{4-13g}
\end{equation*}
$$

If $\mathrm{m}_{\phi}^{(0)}=\mathrm{f}_{\theta}^{(0)}=0$, then $Q_{\theta}^{(0)}=0$.

$$
\begin{aligned}
& M_{\theta}^{(n)}=\left(M_{\phi}^{(n)}+M_{\Gamma \phi}^{(n)}\right)\left\{1+\left(D_{12}-D_{22}\right)\left(\frac{K_{22}}{C_{11}^{2}+D_{22} K_{22}}\right)\right\}-M_{T \theta}(n) \\
& -\left(N_{\phi}(n)+N_{T \phi}(n)\right)\left(D_{12}-D_{22}\right)\left(C_{11}+\frac{\Gamma_{22} K_{22}}{C_{11}}\right)^{-1} \\
& +\left(D_{12}-D_{22}\right)\left(K_{12}-K_{22}\right)\left(C_{11}+\frac{D_{22^{K}} K_{22}}{C_{11}}\right)^{-1} \frac{1}{r_{0}}\left(n U(n)-W^{(n)}\right) \\
& +\frac{1}{r_{0}}\left(n^{2} U^{(n)}-n^{2} W^{(n)}\right)\left\{D_{11}-D_{12}-\left(D_{12}-D_{22}\right)\left(\frac{C_{11}^{2}+D_{12} K_{22}}{C_{11}^{2}+D_{22} K_{22}}\right)\right\}
\end{aligned}
$$

SECTION 5

SEGMENT STIFFNESS MATRICES

For each segment of the shell, we will require a relationship between the edge displacements and edge forces in global coordinates. These are obtained as stiffness matrices which are to be used in calculating the elastic interaction of all segments making up the structure. The global components in terms of the local coordinates are, in accordance with Figures 1-1, 5-1 and 5-2.

$$
\begin{align*}
& \{F(i)\}=[\operatorname{IFT}]\{f(i)\}\left\{\begin{array}{c}
F_{T} \\
F_{Z} \\
F_{R} \\
M
\end{array}\right\}(i)=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & +s i & +c i & 0 \\
0 & -c i & +s i & 0 \\
0 & 0 & 0 & +1
\end{array}\right]\left\{\begin{array}{c}
T_{\phi \theta} \\
N_{\phi} \\
J_{\phi} \\
M_{\phi}
\end{array}\right\}(i) \tag{5.-1}\\
& \{F(j)\}=\{J F T]\{f(j)\}\left\{\begin{array}{c}
F_{T} \\
F_{Z} \\
F_{R} \\
M
\end{array}\right\}(j)=\left[\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & -s j & -c j & 0 \\
0 & -c j & -s j & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left\{\begin{array}{c}
T_{\phi \theta} \\
N_{\phi} \\
J_{\phi} \\
M_{\phi}
\end{array}\right\}(j) \tag{5-2}
\end{align*}
$$

and

$$
\{\Delta(i)\}=[I D T]\{\delta(i)\}\left\{\begin{array}{c}
\Delta_{T} \tag{5-3}\\
\Delta_{Z} \\
\Delta_{R} \\
a_{\theta}
\end{array}\right\}(i)=\left[\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & -s i & -c i & 0 \\
0 & +c i & -s i & 0 \\
0 & 0 & 0 & +1
\end{array}\right]\left\{\begin{array}{l}
u \\
v \\
w \\
\omega_{\theta}
\end{array}\right\}(1)
$$

$$
\{\Delta(j)\}=[J D T]\{\delta(j)\}\left\{\begin{array}{c}
\Delta_{T} \\
\Delta_{Z} \\
\Delta_{R} \\
\Omega_{\theta}
\end{array}\right\}(j)=\left[\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & -s j & -c j & 0 \\
0 & +c j & -s j & 0 \\
0 & 0 & 0 & +1
\end{array}\right]\left\{\begin{array}{l}
u \\
v \\
w \\
\omega_{\theta}
\end{array}\right\}(j) \quad(5-4)
$$

Where the letters in the I Force Transformation and J Force Transformation matrices are sines or cosines of ϕ_{i} or ϕ_{j}, the meridional coordinates of the beginning and end of the segment. (Similarly for the Displacements.) These transformations hold for functions $F\left(\theta, \phi_{i}\right.$ or $\left.g\right)$ and $\Delta\left(\theta, \phi_{i}\right.$ or $\left.j\right)$ as well as for the amplitudes of harmonics, $F^{(n)}\left(\phi_{i}\right.$ or j) and $\Delta^{(r)}\left(\phi_{i}\right.$ or $\left.j\right)$. Only one harmcnic at a time is considered. Thus, the transformation matrices are 4×4.

The set of influence coefficients represents the general solution of the boundary value problem for conditions imposed on the edges of the segment. In addition, there is a solution corresponding to each distributed loading on the segment. Since the differential equations are linear, we expect a linear relationship between segment edge forces and displacements. Further, the edge forces for zero displacements are linear functions of the loading for each problem. Thus we seek matrices $[k]$ and $[\ell]$ such that

$$
\begin{aligned}
& {\left[\begin{array}{l}
F(i p) \\
\hline F(j p)
\end{array}\right]=\left[\begin{array}{l:l}
k_{i i} & k_{i j} \\
\hline k_{j i} & k_{j j}
\end{array}\right]\left[\begin{array}{l}
\Delta(i p) \\
\hdashline \Delta(j p)
\end{array}\right]+\left[\begin{array}{c}
\ell(i p) \\
\hdashline(j p)
\end{array}\right]} \\
& 8 \times 8 \quad 8 x 8 \quad 8 x P \quad 8 x P
\end{aligned}
$$

The quantities [l] are the "fixed end forces" due to unit value distributed loads; that is, the forces at the ends when displacements are zero and the distributed loads are applied. The indices i and J indicate the beginning and end points of the segment. When automating the theory, P will be set equal to 10 in order to obtain the capability of analyzing a single structure under 10 consecutive loading conditions within one machine submission.

The differential equations are solved by Runge-Kutta forward integration for different sets of initial conditions. Since there are four boundary conditions for each edge, we would expect eight separate solutions to be required to construct the 8×8 stiffness matrix. Additional solutions are required for the distributed load. For simplicity, these solutions are obtained by assuming a unit value of a force or displacement. The process is schematically outlined in Figure 5-3. In columns 1 through 4, successive unit values of local displacement with zero forces are assumed. In columns 5 through 8, the unit forces are applied and the displacements are taken as zero. In further runs, the initial forces and displacements ere both set to zero and the distrituted load cases are applied. The solutions are obtained simultaneously by applying all the initial conditions at once as an 8×18 (maximum) matrix into the Runge-Kutta integration scheme. Each initial and load condition then will become an equation as the matrix proceeds through the Runge-Kutta integration to the final values. It should le noted that these assumptions, choosing both forces and displacements at one boundary, are not inconsistent. It is permissible to specify four on each edge, or to give all eight at one edge (or any intermediate combination). The forces $f(j)$ arising at the $j^{\text {th }}$ edge due to initial displacements, 1 , and forces, 2 , at the $i^{\text {th }}$ edge, and distributed loading, 3 , are recorded in the matrix

$$
\left[\begin{array}{l:c:c}
x_{1} & x_{2} & x_{3}
\end{array}\right]
$$

Similarly, the displacements $\delta(\mathrm{j})$ are recorde \bar{i} in the matrix.

$$
\begin{gathered}
{\left[\begin{array}{l:c:c}
Y_{1} & Y_{2} & Y_{3}
\end{array}\right]} \\
4 \times(8+P)
\end{gathered}
$$

where. P is the number of external loading conditions (maximum $=10$). Thus, the forces and displacements at the $j^{\text {th }}$ edge may be expressed in terms of forces and displacements at the $i^{\text {th }}$ edge. For simplicity, the maximum case of $P=10$ is used, therefore:

From Equations 5-1 and 5-7,

$$
\{F(i)\}=[\operatorname{IFT}]\left[Y_{2}\right]^{-1}\left([\operatorname{JDT}]^{T}\{\Delta(j)\}-\left[Y_{1}\right]\{\delta(i)\}-\left\{Y_{3}\right\}\{\ell]\right)(5-8)
$$

From Equations 5-6 and 5-8,

$$
\begin{align*}
\{\mathrm{F}(\mathrm{j})\}= & {[\mathrm{JFT}]\left[\mathrm{x}_{1}\right]\{\delta(\mathrm{i})\}+[\mathrm{JFT}]\left[\mathrm{x}_{2}\right]\left[\mathrm{Y}_{2}\right]^{-1}\left([\mathrm{JDT}]^{\mathrm{T}}\{\Delta(\mathrm{j})\}\right.} \\
& \left.\left.-\left[\mathrm{Y}_{1}\right]\{\delta(i)\}-\left\{\mathrm{Y}_{3}\right\}\{\ell\}\right)+[\mathrm{JFT}]\left\{\mathrm{x}_{3}\right\} \ell \ell\right\} \tag{5-9}
\end{align*}
$$

Using Equations 5-5, 5-8, and 5-9, and transforming the (8) matrices to (Δ) matrices tv Equations $5-3$ and $5-4$, where necessary, we obtain for " P " loading conditions:

As can be seen, it is necessary only to invert the 4×4 matrix $\left[Y_{2}\right]$ in order to compute the matrix of stiffness [k] and fixed end forces [ℓ]. Equation $5-10$ is actually a more compact matrix formulation of Equations 5-8 and 5-9.

SOME STIFfNess matrix [k] properties
In the reciprocity law, the integral of forces must be used, thus, in the linear case, the stiffness matrix $[k]$, is symmetric in the sense that

$$
[k(i i)]=[k(i i)]^{T}, \quad[k(j j)]=[k(j j)]^{T}
$$

and

$$
[k(j i)]=\frac{r_{0}(i)}{r_{0}(j)}[k(i j)]^{T}
$$

We shall find it more convenient to utilice the fully symmetric matrix

$$
[\hat{k}] \equiv\left[\begin{array}{ll:l}
2 \pi r_{0}(i) & \\
\hdashline- & 2 \pi r_{0}(j)
\end{array}\right][k]
$$

and

$$
[\hat{l}]=\left[\begin{array}{c:c}
2 \pi r_{0}(i) & \\
-2-\lambda-2 \pi r_{0}(j)
\end{array}\right]\left[\begin{array}{ll}
-\frac{l}{l}(i p) \\
& 1
\end{array}\right]
$$

$[\hat{\mathrm{F}}]=\left[\begin{array}{l}\hat{k}\end{array}\right][\Delta]+[\hat{\hat{\ell}}]$
where

$$
\left\{\begin{array}{|c}
\hat{F}
\end{array}\right\} \equiv\left\{\begin{array}{c}
F(i) \tag{5-11}\\
---- \\
F(j)
\end{array}\right\} \equiv\left\{\begin{array}{c}
2 \pi r_{0}(i) F(i) \\
------ \\
2 \pi r_{0}(j) F(j)
\end{array}\right\}
$$

Where "F" is in units of force/unit length, and " F " is measured in units of force.

IDENTIFICATION OF SEGMENT PROPERTIES

In order to identify data in the subsequent discussions and in calculations, the following notation is introduced.

$$
\left.{ }_{s}[\hat{F}](n)=s^{[\hat{k}]^{(n)}} s^{[\Delta}\right]^{(n)}+{ }_{s}\left[\begin{array}{l}
\hat{\wedge} \\
l
\end{array}\right](n)
$$

or, in greater detail,

where the following symbols are used:
s,i,j The $s^{\text {th }}$ segment connects joints i and j. The i and j appear in parentheses next to the main symbol. Right-hand subscripts are reserved for component directions or total and reduced stiffnesses.
n Fourier harmonic
\wedge Denotes total force

HARMONIC JOINT LOAD PHYSICAL CHARACTERISTICS

The expansion in a Fourier Series results in a separation into physically distinct effects. The $0^{\text {th }}$ term ($n=0$) is the axisymmetric case. It includes net axial forces and net torsion. The first harmonic ($n=1$) is the antisymmetric case. It includes net lateral loads in the X direction, and net moments about the Y axis. The remaining harmonics, $n=2,3 \ldots$, are self-equilibrating systems.

Figure 5-1. Typical Shell Segment
5-8

Figure 5-2. Forces on Typical Shell Segment

		$\underset{\substack{\text { Dispnatements } \\ \text { Appli ed }}}{\text { Unit }}$	$\begin{gathered} \text { Unit } \\ \text { Hpreses } \\ \text { Applied } \end{gathered}$	$\begin{gathered} \text { Distrifuted Load } \\ \text { Applied (10 possiigle } \\ \text { 1oading cases) } \end{gathered}$
Colum Number			5 6 7 8	9 10 $\cdots \cdots$ 18
$\begin{aligned} & \text { 喜 } \\ & \text { 品 } \end{aligned}$		$\left[\begin{array}{ll}0\end{array}\right]$	$\left[\begin{array}{lll} \\ & & \\ & \\ & & \end{array}\right]$	$\left[\begin{array}{cccc}0 & \ldots & \cdots & \cdots\end{array}\right]$
$\begin{aligned} & \text { a } \\ & \text { a } \end{aligned}$		$\left[\begin{array}{ll} \\ I_{4}\end{array}\right]$	$[0]$	
$\begin{aligned} & \text { 品 } \\ & \text { 品 } \end{aligned}$		$\left[\begin{array}{ll} \\ \mathbf{X}_{1} \\ \end{array}\right]$	$\left[\begin{array}{ll} \\ X_{2}\end{array}\right]$	$\left[\begin{array}{ll} \\ \mathbf{x}_{3}\end{array}\right]$
$\begin{aligned} & \stackrel{0}{0} \\ & \vec{a} \\ & \vec{B} \end{aligned}$		$\left[\begin{array}{ll} \\ \mathbf{Y}_{1} \\ & \end{array}\right]$	$\left[\begin{array}{ll} \\ Y_{2}\end{array}\right]$	$\left[\begin{array}{ll} \\ \\ \\ \end{array}\right]$

Figure 5－3．Calculations for Stiffness and Load Matrices

SECTION 6

STRUCTURE MATRICES AND STIFFNESS ANALYSIS

In order to calculate the interaction of the segments comprising the structure, the "direct stiffness method" is used (References 5 and 6). Familiarity with this method will be assumed in the following discussion.

To increase the capacity of the program, the shell segments will first be coupled into regions. These regions are defined as singly-connected shells with no internal concentrated line loadings (Figure 6-1). The next step is to construct the region stiffness matrix $\left[\begin{array}{l}\hat{K}_{R}\end{array}\right]$ and the matrix of fixedend forces $\left[\hat{L_{R}}\right]$. This requires splitting each segment's $[\hat{k}]$ matrix into its four 4×4 matrices and inserting the portions into the region stiffness matrix in accordance with the topological arrangement. The $[\hat{\boldsymbol{\ell}}]$ matrix is similarly split into two $4 x P$ matrices. Thus, in addition to the geometric description of each segment, its position in the assembly must be specified. To this end, all segments begin (i) and end (j) at a joint. The $s^{\text {th }}$ segment is said to connect the $i^{\text {th }}$ and $j^{\text {th }}$ joints. (Not the $j^{\text {th }}$ and $i^{\text {th }}$ joints, since direction of increasing coordinate within the segment must be from i to j). To allow for the possibility of discontinuous centerlines within a region, kinematic links must be included. These links are rigid pieces which relate displacements across a discontinility. Thus a kinematic lirk matrix [SKL] must also be formed. Due to the topology and line-load requirements for regions, the equations of the coupled segments will be the following:

(6-1)
where

and where $i R$, $j R$ refer to the region initial and final points, and the $[\Delta],\left[K^{\prime}\right]$, and $\left[L^{\prime}\right]$ are the deflection, stiffness, and load matrices of internal segments. If there are no internal kinematic links, [SKL] will be an identity matrix. Partitioning Equation 6-1 will yield:

$$
\begin{align*}
& \left.\left.\widehat{F_{F}}\right]=\left[\widehat{K_{11}}\right]\left[\Delta_{R}\right]+\widehat{\left[K_{j \hat{2}}\right.}\right][\Delta]+\left[\widehat{\mathrm{L}_{R 1}}\right] \tag{6-2a}\\
& {[0]=\left[\widehat{K_{21}}\right]\left[\Delta_{\mathrm{H}}\right]+\left[\widehat{K}_{22}\right][\Delta]+[\hat{L}]} \tag{6-2b}
\end{align*}
$$

Solving Equation $6-2 b$ for $[\Delta]$ and substituting into Equation 6 -2a yields:

where

$$
\begin{aligned}
& \left.\hat{\hat{K}_{R}}\right]=\left[\hat{K_{11}}\right]-\left(\left[\hat{\hat{K}_{12}}\right]\left[\hat{K_{22}}\right]^{-1}\left[\hat{K_{21}}\right]\right) \\
& {\left[\hat{\mathrm{L}_{R}}\right]=\left[\hat{\mathrm{L}_{R 1}}\right]-\left(\left[\hat{\hat{K}_{12}}\right]\left[\hat{K_{22}}\right]^{-1}[\hat{\mathrm{~L}}]\right)}
\end{aligned}
$$

The next step is $i o$ construct the total structure stiffness matrix $[\hat{K}]_{T}$ and th. matrix of fixed-end forces $[\hat{\mathrm{I}}]_{\mathrm{T}}$. This again requires splitting each region's $\left[\hat{K}_{R}\right]$ matrix into its four 4×4 matrices and inserting the
portions into the total stiffness matrix in accordance with the topological arrangement of the structure. The $\left[\hat{r_{R}}\right]$ matrix is similarly split into two $4 x P$ matrices. Thus, in addition to the geometric description of each region, its position in the structure must be specified. To this end, again all regions begin (i) and end (j) at a joint. The $s^{\text {th }}$ region is said to connect the $i^{\text {th }}$ and $J^{\text {th }}$ joints. (Not the $j^{\text {th }}$ and $i^{\text {th }}$ joints, since direction of increasing coordinate within the region must be from i to j). If there are M joints, the total stiffness matrix is 4 Mx 4 M , since there are four degrees of freedom at each joint. Hence for equilibrium at all the joints,

where M is the number of joints, and subscript T denotes Total. This equation characterizes a structure free in space. The singularity of the matrix $[\hat{K}]_{T}$ for axisymmetr:c and antisymmetric ($n=0,1$) cases may be physically interpreted. The stiffness matrix permits calculation of all trees due to all displacements; thus the inverse would relate displacemeats to forces. But the displacements are not unique, and one valid solution may differ from another by rigid body motion. Hence, we cannot. expect such a relationship to exist; the mathematical manifestation is singularity. However, the total stiffness matrix of a complete shell of revolution need not be singular. For harmonics greater than unity, the forces are self-equilibrating systems and, since the displacements follow the same pattern, there can be no rigid-body motion.

REDUCED STIFFNESS

It is necessary to specify restrictions on the displacements such that rigid-body motions are prevented or specific support conditions are met. This is done by means of a "Boundary Condition" matrix [$B C(b)]$ for the $u^{\text {th }}$ boundary condition,

$$
\begin{equation*}
\{\Delta(b)\}_{T}=[\mathrm{BC}(\mathrm{~b})]\{\Delta(\mathrm{b})\}_{\mathrm{F}} \quad \text { for } \mathrm{q} \leq 4 \mathrm{M} \tag{6-5}
\end{equation*}
$$

$$
4 M \times 1 \quad 4 M \times q \quad q \times 1
$$

where q is the number of degrees of freedom, subscripts T and F denote Total and Free. The displacements $\{\Delta(b)\}_{\mathrm{T}}$ are in the global coordinates, T, Z, R, Ω_{θ}. The free, (non-zero) displacements may be in the global system, or they may be rotated through some angle. This may be done, for example, to p:ovide a roller-on-a-ramp restraint for an edge. The $[B C(b)]$ matrix consists merely of an identity matrix without the columns corresponding to fixed coordinates. If, however, there are some rotated coordinates, trigonometric functions will appear. In addition, there may be specified relations between the displacements of one joint and another. This occurs (for example) at discontinuities in thickness or at multiple discontinuities. The $[B C]$ matrix is developed for the simple structure of Figure 6-2a. We have an assembly of conical shells with a discontinuity in thickness. At the discontinuity, the median surface shifts and a kinematic link (2-3) is needed, as shown in Figure 6-2b. The upper edge is attached to a very heavy boss. The lower edge is to be supported by membrane forces. Let us assume that the load is distributed axisymmetris pressure.

The displacements at each of the free joints are given in Figure 6-3. Joint 3 is kinematically dependent on Joint 2 as indicated by algebraic relations. Joint 5 is a support point where membrane stresses are assumed to exist. The coordinate system is, therefore, rotated so that the edge is supported on "rollers". Instead of Δ_{Z} and Δ_{R}, we have Δ_{ϕ} and Δ_{ζ}, the meridional and normal components, where

$$
\left\{\begin{array}{l}
v \tag{6-6}\\
w
\end{array}\right\} \equiv\left\{\begin{array}{c}
\Delta_{\phi} \\
\Delta_{\zeta}
\end{array}\right\}=\left[\begin{array}{ll}
-\sin \phi & +\cos \phi \\
-\cos \phi & -\sin \phi
\end{array}\right]\left\{\begin{array}{c}
\Delta_{Z} \\
\Delta_{R}
\end{array}\right\}
$$

fit Joint $5, \phi=\beta$, and we set $\Delta_{\phi}=0$ for support. We see by inspection that the structure is statically supported for all possible loadinge. If this is not true, the reduced stiffness matrix, which relates forces to tree displacements, will be singular.

How let us construct the boundary condition matrix [BC] for this structure. Assime that the tangential displacement is zero at Joint 5 but that others are free to move (although they will not displace under pressure loading).

Perall that

$$
\left\{\begin{array}{c}
\Delta_{Z} \tag{6-7}\\
\Delta_{R}
\end{array}\right\}=\left[\begin{array}{c}
-\sin \phi \\
\hline+\cos \phi \\
+\cos \phi
\end{array}\right]\left\{\begin{array}{c}
\Delta_{\phi} \\
\Delta_{\zeta}
\end{array}\right\}
$$

Then we have

$$
\begin{aligned}
& \{\Delta\}_{\mathrm{T}}=[\mathrm{BC}] \quad\{\Delta\}_{F} \\
& 4 \mathrm{Mxl} \\
& 4 \mathrm{Mxq}
\end{aligned}
$$

NOTE
There is a blank row for each displacement specified as zero (fixed). There are no components for the dependent Joint 3 in the right-hand side. The kinematic relations are given in the $[B C]$ matrix. The meridional component $\Delta_{\phi}(5)$ does not appear since it is fixed. But the perpendicular component $\Delta_{5}(5)$ contributes to both $\Delta_{2}(5)$ and $\Delta_{R}(5)$.

By a similar procedure, it may be shown that the forces in the directions of free displacements may be expressed in terms of the total forces. This relationship is

$$
\begin{equation*}
\{\hat{F}\}_{F}=[B C\}^{T}\{\hat{F}\}_{T} \tag{6-9}
\end{equation*}
$$

Corresponding to Δ_{ϕ} and Δ_{ζ}, there are free forces \hat{F}_{ϕ} and \widehat{F}_{ζ}. In the example, they are equal to $2 \pi r_{0}(j) N_{\phi}(j)$ and $2 \pi r_{0}(j) J_{\phi}(j)$. If applied at the $i^{\text {th }}$ edge, there would be a change in sign. In general though, the direction denoted by ϕ and ζ need not be related to the shell. It is specified separately.

Thus, from Equations 6-4 through 6-6 and Equation 6-9:

$$
\begin{align*}
& \widehat{\{F\}_{F}}=[B C]^{T}[\widehat{K}]_{T}[B C]\{\Delta\}_{F}+[B C]^{T}\{\hat{L}\}_{T} \tag{6-10}\\
& \left.\left.\widehat{\{F\}_{F}}=\widehat{[K}\right]_{F}\{\Delta\}_{F}+\hat{L}\right\}_{F} \tag{6-11}\\
& \left.\left.\left.\{\Delta\}_{F}=\widehat{A A}\right]_{F}(\widehat{F F}\}_{F}-\hat{\{L}\right\}_{F}\right) \tag{6-12}
\end{align*}
$$

where

$$
\begin{equation*}
\left.\widehat{[A}]_{F} \equiv \hat{[K}\right]_{F}^{-1} \tag{6-13}
\end{equation*}
$$

I he total displacements are then calculated from Equation 6-5

$$
\begin{equation*}
\{\Delta\}_{T}=[B C]\{\Delta\}_{F} \tag{6-14}
\end{equation*}
$$

Thus for the region ends, combining Equations 6-14 and 6-12

$$
\begin{equation*}
\left\{\hat{p}_{\mathrm{R}}\right\}=\left[{ } ^ { \mathrm { s }] } \left[\hat { \mu } _ { \mathrm { F } } \left(\left\{\hat{p}_{\mathrm{F}}-\hat{\hat{m}_{F}}\right)\right.\right.\right. \tag{6-15}
\end{equation*}
$$

and in the interior of each region, for each segment

$$
\begin{equation*}
\left.\{\Delta\}=\left[\mathrm{SKL}_{\hat{2} 2}\right]\left\{-\left[\hat{\mathrm{K}_{22}}\right]^{-1}\left(\left[\hat{K_{21}}\right]\left\{\Delta_{\mathrm{R}}\right\}+\hat{[\mathrm{L}}\right]\right)\right\} \tag{6-1.6}
\end{equation*}
$$

FINAL STRESS DISTRIBUTION

We must obtain the forces and displacements at the $i^{\text {th }}$ edge of each sagmen to use as initial values in the integration of the differential equations. Since the variables in the differential equations are given in the local coordinate system, from Equation 5-3, we seek

$$
\{s(i)\}=[\operatorname{IDT}]^{\mathrm{T}}\{\Delta(i)\}
$$

From Equations 5-1 and 5-5,

$$
\{f(i)\}=[I F T]^{T}\left(\left[\begin{array}{l:l}
k_{i i} & k_{i j}
\end{array}\right]\left\{\begin{array}{ll}
\Delta(j) \tag{6-17}\\
\hdashline \Delta(j)
\end{array}\right\} \quad\{\ell(i)\}\right)
$$

where the $\Delta(i)$ and $\Delta(g)$ are obtained from Equation 6-16.

Figure 6-1. Example of Region Topology

Figure 6-2. Shell Structure and Idealization

Figure 6-3. Joint Displacements

SECTION

AXISYMMETRIC NON-LINEAR ANALYSIS

The previous sections all dealt with linear shell analysis. Geometric non-linear effects in the axisymmetric case can be included by the use of a simple iterative analysis and some additions to the shell equilibrium equations. The revised axisymmetric ($n=0$) equilibrium equations are as follows:

INDEPENDENT VARIABLE, Φ

$$
\begin{align*}
& \frac{T_{\phi \theta, \phi}(0)}{r_{1}}=-2 T_{\phi \theta}(0) \frac{\cos \phi}{r_{0}}-M_{\phi \theta}^{(0)} \frac{\cos \phi}{r_{0}}\left[\frac{1}{r_{1}}-\frac{\sin \phi}{r_{0}}\right] \\
&-f_{\theta}^{(0)}-m_{\phi}^{(0)} \frac{\sin \phi}{r_{0}}
\end{align*}
$$

$$
\frac{N_{\phi, \phi}^{(0)}}{r_{1}}=-N_{\phi}^{(0)} \frac{\cos \phi}{r_{0}}+N_{\theta}^{(0)} \frac{\cos \phi}{r_{0}}+\frac{{ }^{*} J_{\phi}(0)}{r_{1}}-f_{\phi}^{(0)}
$$

$$
\left.\frac{{ }^{*} J_{\phi, \phi}(0)}{r_{1}}=-J_{\phi}^{\prime}\right) \frac{\cos \phi}{r_{0}}-N_{\theta}{ }^{(0)} \frac{\sin \phi}{r_{0}}-\frac{N_{\phi}^{(0)}}{r_{1}}-f_{\zeta}{ }^{(0)}-{ }^{* *}{ }_{f_{\zeta}}(0)
$$

$$
\frac{M_{\phi, \phi}(0)}{r_{1}}=M_{\theta}(0) \frac{\cos \phi}{r_{0}}-M_{\phi}^{(0)} \frac{\cos \phi}{r_{0}}+J_{\phi}(0)+m_{\theta}(0)
$$

where the nonlinear terms are defined as follows:

$$
\begin{aligned}
& { }^{*{ }^{*} f_{\zeta}(0)}=\frac{\cos \phi}{r_{0}}\left[\bar{N}_{\phi}(0) \Omega_{\theta}^{(0)}\right] \\
& J_{\phi}(0)={ }^{*} J_{\phi}(0)-\bar{N}_{\phi}(0) \Omega_{\theta}(0) \\
& f_{\theta}(0)=F_{\theta}(0)
\end{aligned}
$$

$$
\begin{aligned}
f_{\phi}^{(0)}= & F_{\phi}^{(0)}\left(1+\frac{v^{(0)} \cos \phi}{r_{0}}-W^{(0)}\left[\frac{1}{r_{1}}+\frac{\sin \phi}{r_{0}}\right]+\frac{v s_{\phi}^{(0)}}{r_{1}}\right) \\
& -F_{\zeta}^{(0)} \Omega_{\theta}^{(0)} \\
f_{\zeta}^{(0)}= & F_{\zeta}^{(0)}\left(1+\frac{v^{(0)} \cos \phi}{r_{0}} \cdot W^{(0)}\left[\frac{1}{r_{1}}+\frac{\sin \phi}{r_{0}}\right]+\frac{v_{s_{\phi}}^{(0)}}{r_{1}}\right) \\
& +F_{\phi}^{(0)} \Omega_{\theta}^{(0)}
\end{aligned}
$$

These terms are essentially components of the membrane forces and the pressure loads in directions normal to their original lines of action (Figure 7-l). Similar components of the transverse shear forces, Q_{θ} and Q_{ϕ}, also exist, but for thin shells they are usually neglected (Reference 3).

The equations specialized for other geometries are:

CYLINDER

$$
\begin{equation*}
\frac{d T_{\phi \theta}^{(0)}}{d s}=-f_{\theta}^{(0)}-\frac{1}{r_{0}} m_{\phi}^{(0)} \tag{7-3}
\end{equation*}
$$

$\frac{d N_{\phi}(0)}{d s}=-f_{\phi}(0)$
$\frac{d^{*} J_{\phi}^{(0)}}{d s}=-\frac{N_{\theta}^{(0)}}{r_{0}}-f_{\zeta}^{(0)}$

$$
\frac{d M_{\phi}(0)}{d s}=J_{\phi}^{(0)}+m_{\theta}(0)
$$

where the nonlinear terms are defined as follows:

$$
\begin{align*}
& J_{\phi}(0)={ }_{J_{\phi}}(0)-\bar{N}_{\phi}(0) \Omega_{\theta}(0) \tag{7-4}\\
& f_{\theta}(0)=F_{\theta}^{(0)} \\
& f_{\phi}(0)=F_{\phi}(0)\left(1-\frac{W(0)}{r_{0}}+\frac{d V^{(0)}}{d s}\right)-F_{\zeta}^{(0)} \Omega_{\theta}(0) \\
& f_{\zeta}(0)=F_{\zeta}^{(0)}\left(1-\frac{W}{r_{0}}+\frac{d V^{(0)}}{d s}\right)+F_{\phi}^{(0)} \Omega_{\Omega_{\theta}}(0)
\end{align*}
$$

$\frac{d N_{\phi}(0)}{d s}=-\frac{N_{\phi}^{(0)}}{s}+\frac{N_{\theta}^{(0)}}{s}-f_{\phi}^{(0)}$

$$
\begin{aligned}
& \frac{d^{*} J_{\phi}^{(0)}}{d s}=-\frac{J_{\phi}^{(0)}}{s}-\frac{N_{\theta}^{(0)} \tan \phi}{s}-f_{\zeta}^{(0)}-{ }^{* *}{ }_{f_{\zeta}}(0) \\
& \frac{d M_{\phi}^{(0)}}{d s}=\frac{M_{\theta}^{(0)}}{s}-\frac{M_{\phi}^{(0)}}{s}+J_{\phi}^{(0)}+m_{\theta}^{(0)}
\end{aligned}
$$

where the nonlinear terms are defined as follows:

$$
\begin{align*}
& { }^{* f_{\zeta}}(0)=\frac{1}{s}\left\{\bar{N}_{\phi}^{(0)} \Omega_{\theta}(0)\right\} \tag{7-6}\\
& J_{\phi}(0)={ }_{J_{\phi}}(0)-\bar{N}_{\phi}(0) \Omega_{\theta}(0) \\
& f_{\theta}(0)=F_{\theta}(0)
\end{align*}
$$

$$
\begin{aligned}
& f_{\phi}^{(0)}=F_{\phi}^{(0)}\left(1+\frac{V^{(0)}}{s}-\frac{W^{(0)} \tan \phi}{s}+\frac{d V^{(0)}}{d s}\right)-F_{\zeta}^{(0)} \Omega_{\theta}^{(0)} \\
& f_{\zeta}^{(0)}=F_{\zeta}^{(0)}\left(1+\frac{v^{(0)}}{s}-\frac{W^{(0)} \tan \phi}{s}+\frac{d v^{(0)}}{d s}\right)+F_{\phi}^{(0)} \Omega_{\theta}^{(0)}
\end{aligned}
$$

The capital F^{\prime} s in all the above equations are the actual distributed loads applied to the shell structure.

In this presentation, the capability for axisymmetric non-linear torsion aralysis is omitted.

The numerical procedure used to solve these differential equations is entirely analogous to the linear case described in earlier sections. The equilibrium equations given herein are coupled with equations obtained from Hooke's Laws and the strain-displacement relations; for instance the latter portion of Equations $3-1$ for unreinforced shells. The matrix procedures described in Sections 5 and 6 are then utilized as previously. First, however, the equations are linearized by assuming a value for $\overline{\mathrm{N}}_{\phi}$. This will also destroy the symmetry of the "stiffness" matrix, since Maxwell's Law of reciprocity holds only for linear systems. In the mathemetical sensf, we may now regard this as an arbitrary linear boundary value problem, since the equations have been linearized by the assumption of \bar{N}_{ϕ}. Thus the "stiffness" matrix $[k]$ now simply represents the quantities \{F\} as a linear combination of the quantities $\{\Delta\}$. Of course, it is understood that the relationship is linear only for the special loading case which produces the particular assumed \bar{N}_{ϕ} value. Thus for the non-1inear case, use of the matrices [k] in Sections 5 and 6 may be regarded only as elements in matrix algebra, and no assumption of symmetry is required. However, the physical interpretation still exists in the linear cases.

Ihe iteration procedure for a non-linear analysis would then operate as follows:

1. A value of \bar{N}_{ϕ} is obtained for a first approximation. This
vaiue may be obtained by hand computation utilizing mambrane theory or a full linear bending solution of the problem.
2. Utilizing this value of \bar{N}_{ϕ} as a constant, a solution ${ }^{i}=$ obtained for the linearized system of equations.
3. The solution for N_{ϕ} from step 2 is compared with the assumed \bar{N}_{ϕ}. If the agreement is not close enougr. tle N_{ϕ} value is used as the new assumed \bar{N}_{ϕ}.
4. Steps 2 and 3 are repeated until the agreement of N_{ϕ} with $\overline{\mathbb{N}}_{\phi}$ is within the accuracy cesired

Figure 7-1. Non-Linear Effects

SECTION 8

REFFERENCES

1. Mason, P., Rung, R., Rosenbaum, J. and Ebrus, R., Non-Linear Numerical Analysis of Axisymmetrically Ioaded Arbitrary Shells of Fevolution, AIAA Journal, Vol. 3, No. 7, July 196́5, pp. 1307-1313.
2. Kempner, J., PIBAL No. 566, Unified Thin Shell Theory, Polytechnic Institute of Brooklyn, March 1960.
3. Kempner, J., Notes on Non-linear Equations for Arbitrary Shells and Shells of Revolution, Based on PIBAL No. 566, (Unpublished).
4. Flügge, W., Stresses in Shells, Springer-Verlag, Berlin, Second Printing, 1962.
5. Rung, R., Mason, P., and Rosenbaum, J., Unsymmetric Analysis of Shells of Revolution, Grumman Advanced Development Report ADR 02-11-65.3, December 1965.
6. Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. J., Stiffness and Deflection Analysis of Complex Structures, Journal of the Aeronautical Sciences, Vol. 23, No. 9, Sept. 1956, pp. 805-823, and 854.
7. Svalbonas, V., and Angrisano, N., Numerical Analysis of Shells, Vol II: A User's Manual for STARS II - Shell Theory Automated for Rotational Structures II - Digital Computer Program, NASA CR-61300
8. Prince, N., Rung, R., and Svalbonas, V., Unsymmetric Non-Linear Firstorder Analysis of Multilayered Orthotropic Shells of Revolution, Grumman Advanced Development Report ADR 02-11-66.2, May 1966.
9. Meyer, R. R., Buckling of 45° Eccentric-Stiffened Waffle Cylinders, Journal of the Royal Aeronautical Society, Vol. 71, July 1967, pp. 516-520.

APPENDIX A

DERIVATIONS OF INTEGRATED HOOKE'S LAWS

One method of obtaining the necessary relationships between stressresultants and strains for eccentrically reinforced shells is besically an "equivalent energy" approach. First we obtain the energy of the composite system in terms of stress-resultants and strains, and then equate it to an equivalent shell energy expression. Since the necessary equations for an ortnotropic sheet are known (Equations $1-7$ and $1-8$), only the equations for the eccentric stiffeners have to be cast in the proper form.

Consider the strain energy of a circumferential rib:

$$
\begin{equation*}
\mathrm{U}_{\theta}=\sum_{k=1}^{n}\left(\int_{0}^{2 \pi r_{0}} \int_{A_{\theta}}^{E_{\theta}} \varepsilon_{\theta_{T}}^{2} d A_{\theta} d \theta+\frac{G_{\theta} J_{\theta}}{2} \int_{0}^{2 \pi r_{0}} k_{\theta \phi}^{2}{ }^{2}{ }^{2}\right)_{k} \tag{A-1}
\end{equation*}
$$

Where n is the number of circumferential stiffeners, and the rib is assumed to have the same twist as the shell. If the stiffeners are spaced a distar.ve S_{θ} apart, Equation $A-1$ can be rewritten as:

$$
U_{\theta}=\frac{1}{S} \int_{\theta}^{S}\left[\int_{0}^{2 \pi r_{0}} \int_{A_{\theta}}^{E_{\theta}} \varepsilon_{\theta_{T}}{ }^{2} d A_{\theta} d \theta+\frac{G_{\theta}{ }^{J} \theta}{2} \int_{0}^{2 \pi r_{0}}{ }^{k_{\theta \phi}}{ }^{2} d \theta\right] d \phi \quad(A-2)
$$

Substituting for the total strain in terms of centroidal strain and curvature, and using the assumption that the stiffeners are integraliy connected to the shell and remain so after deformation, we obtain

$$
U_{\theta}=\frac{1}{S_{\theta}} \int_{0}^{S}\left[\int_{0}^{2 \pi r_{0}} \int_{A_{\theta}} \frac{E_{\theta}}{2}\left(\varepsilon_{\theta_{0}}-\zeta k_{\theta}\right)^{2} d A_{\theta} d \theta+\frac{G_{\theta} J_{\theta}}{2} \int_{0}^{2 \pi r_{0}} k_{\theta \phi}^{2} d \theta\right] d \phi
$$

Simplifying:

$$
\begin{align*}
U_{\theta}=\frac{1}{S_{\theta}} & \int_{0}^{S} \int_{0}^{2 \pi r_{0}}\left(\frac{E_{\theta} A_{\theta}}{2} \varepsilon_{\theta}^{2}-E_{\theta} C_{\theta} A_{\theta} \varepsilon_{\theta} k_{\theta}+\frac{E_{\theta}}{2} I_{\theta} k_{\theta}^{2}\right. \\
& \left.+\frac{G_{\theta} J_{\theta}}{2} k_{\theta \phi}^{2}\right) d \theta d \phi \tag{A-3}
\end{align*}
$$

where:

$$
\int_{A_{\theta}} d A_{\theta}=A_{\theta} \quad \int_{A_{\theta}} \zeta d A_{\theta}=C_{\theta} A_{\theta} \quad \zeta_{A_{\theta}} d A_{\theta}=I_{\theta}
$$

Similarly, the stiffeners in the meridional direction have a total strain energy of:

$$
\begin{align*}
& U_{\phi}= \frac{1}{S_{\phi}} \\
& \int_{0}^{S} \int_{0}^{2 \pi r_{0}}\left(\frac{E_{\phi}^{A}{ }_{\phi}}{2} \varepsilon_{\phi}\right. \tag{A-4}\\
& 2-E_{\phi} C_{\phi} A_{\phi} \varepsilon_{\phi} k_{\phi}+\frac{E_{\phi}}{2} I_{\phi} k_{\phi}^{2} \\
&\left.+\frac{G_{\phi}^{J} \phi}{2} k_{\phi \theta}^{2}\right) d \theta d \phi
\end{align*}
$$

The strain energy expression of a particular shell sheet is

$$
U_{S}=\frac{1}{2} \int_{0}^{2 \pi r_{0}} \int_{0}^{S}\left(N_{\theta} \varepsilon_{\theta}+N_{\phi} \varepsilon_{\phi}+N_{\phi \theta} \gamma_{\phi \theta}-M_{\theta} k_{\theta}-M_{\phi} k_{\phi}-2 M_{\phi \theta} k_{\phi \theta}\right) d \theta d \phi
$$

Equeting like terms of Equations $A-3$ and $A-4$ to A-S we can obtain the additional terms to expand Equations 1-8 which were written aa Equations $4-1$ in Section 4.

$$
\begin{aligned}
& N_{\phi \theta}=G_{\phi 0^{\prime}}{ }^{h} \neq \theta_{0} \\
& M_{\theta}=\frac{-E_{\theta} h^{3}}{12\left(1-v_{\theta \theta} v_{\theta \phi}\right)}\left[k_{\theta}+v_{\theta \phi} k_{\phi}\right]-\frac{E_{\theta R} I_{\theta}}{S_{\theta}} k_{\theta}+\frac{E_{\theta} C_{\theta} A_{\theta}}{S_{\theta}} \varepsilon_{\theta}-M_{0 \theta} \\
& M_{\phi}=\frac{-E_{\phi} h^{3}}{12\left(1-v_{t+v_{i}}\right)}\left[k_{\phi}+v_{\phi \theta^{\prime}} k_{\theta}\right]-\frac{E_{\phi} I_{\phi}}{S_{\phi}} k_{\phi}+\frac{E_{\phi_{R}} C_{\phi} A_{\phi}}{S_{\phi}} \varepsilon_{\phi}-M_{T \phi} \\
& M_{D \theta}=\frac{-G_{i} h^{3}}{6} k_{: \because}-\frac{\phi_{p}{ }^{J}}{2 S_{i}} k_{\nu U}-\frac{G_{R} J_{\theta}}{2 S_{\theta}} k_{\phi \theta}
\end{aligned}
$$

where $A=$ area of reinforcement
$C=$ eccentricity of reinforcement from shell middle surface (inwards positive)
$I=$ moment of inertia of reinforcement about besic shell centroidal axis
$J=$ crossection twist constant of reirforcenent
$S=s p a c i n g$ of reinforcerent
subscrifts θ or ϕ indicate coordinate directions, and subscript R refers to reinforcement properties.

Thus the stiffness parameters in Equation $4-1$ are defined as follows:

$$
\begin{aligned}
& K_{11}=\frac{E_{\theta} h}{1-v_{\phi \theta}{ }^{\nu}{ }_{\theta \phi}}+\frac{{ }_{E_{\theta}} A_{\theta}}{S_{\theta}} \\
& K_{22}=\frac{E_{\phi}{ }^{\prime}}{I-v_{\phi \theta}{ }^{\nu} \theta \phi}+\frac{E_{\phi_{R}} A_{\phi}}{S_{\phi}} \\
& K_{12}=\frac{v_{\theta \phi} E_{\theta} h}{1-v_{\phi \theta}{ }^{\nu} \theta \phi} \\
& K_{21}=\frac{v_{\phi \theta} E_{\phi} h}{1-v_{\phi \theta} v_{\theta \phi}} \\
& C_{11}=\frac{{ }_{E_{R}}{ }_{R}{ }_{\theta} A_{\theta}}{S_{\theta}} \\
& C_{22}=\frac{{ }_{E_{\phi_{R}}}{ }^{C_{\phi}{ }^{A}{ }_{\phi}}}{S_{\phi}} \\
& K_{33}=G_{\phi \theta} h \\
& D_{11}=\frac{-E_{\theta}^{h^{3}}}{12\left(1-v_{\phi \theta^{v} \theta \phi}\right)}-\frac{E_{\theta_{R}} I_{\theta}}{S_{\theta}} \\
& D_{12}=\frac{-v_{\theta \phi} E_{\theta} h^{3}}{12\left(1-v_{\phi \theta} v_{\theta \phi}\right)} \\
& D_{22}=\frac{-E_{\phi} h^{3}}{12\left(1-v_{\phi \theta}{ }^{v_{\theta \phi}}\right)}-\frac{E_{\phi_{R}}{ }^{I}{ }_{\phi}}{S_{\phi}} \\
& D_{21}=\frac{-v_{\phi \theta} E_{\phi} h^{3}}{12\left(1-v_{\phi \theta} v_{\theta \phi}\right)} \\
& D_{33}=\frac{G_{\phi \theta}{ }^{3}}{12}+\frac{{ }_{\mathrm{G}}{ }_{\mathrm{R}}{ }^{J}{ }_{\phi}}{4 S_{\phi}}+\frac{{ }_{\theta_{R}}{ }^{J} \theta_{\theta}}{4 S_{\theta}}
\end{aligned}
$$

Utilizing the orthotropic identity, $K_{12}=K_{21}$ and $D_{12}=D_{21}$.

The Equations A-6 are somewhat approximate. Firstly, since the reinforcement properties are "smeared", the equations will not be accurate where the reinforcement is widely spaced. To this end, when loading a shell with a high circumferential harmonic (n) loading, one should check if the load peaks attain closer spacing than the reinforcement. If this is so, the Equations A-6 are not applicable. The load patterns should similarly be checked in the meridional direction. Secondly, due to our first order theory assumption that $M_{\phi \theta}=-M_{\theta \phi}$, the torsional constant is only approximate in cases where reinforcement properties GJ/S are not equal in the two coordinate directions.

The above derivations are valid when the reinforcement coincides with the coordinate directions of the shell. If the reinforcement is rotated, such as in a waffle oriented at 45 degrees, extensive revisions are necessary. Such equations, applicable only to a 45-degree waffle construction are derived in a different manner kelow (Reference 9).

The rotated rib grid stresses are:

$$
\begin{align*}
& \sigma_{\theta}=\frac{t E_{R}}{2 S}\left[\left(\varepsilon_{\theta_{0}}+\varepsilon_{\phi_{0}}\right)-\zeta\left(k_{\phi}+k_{\theta}\right)\right]=\sigma_{\phi} \\
& \tau_{\phi \theta}=\frac{t E_{R}}{2 S}\left[\gamma_{\phi \theta_{0}}-2 \zeta k_{\phi \theta}\right]=\tau_{\theta \phi} \tag{A-8}
\end{align*}
$$

When the above equations are integrated and added to the sheet stress resultant Equations $1-8$, the final set is obtained.

$$
\begin{aligned}
& N_{\theta}=\frac{E_{\theta} h}{1-v_{\phi \theta}{ }^{\nu}{ }_{\theta \phi}}\left[\varepsilon_{\theta}+v_{\theta \phi} \varepsilon_{\phi_{0}}\right]+\frac{E_{R} A}{2 S}\left(\varepsilon_{\theta_{0}}+\varepsilon_{\phi_{0}}\right)-\frac{E_{R} A C}{2 S}\left(k_{\theta}+k_{\phi}\right)-N_{T \theta} \\
& \text { (A-9) } \\
& N_{\phi}=\frac{E_{\phi} h}{I-v_{\phi \theta^{\nu} \theta \phi}}\left[\varepsilon_{\phi_{0}}+v_{\phi \theta^{\prime} \varepsilon_{0}}\right]+\frac{E_{R}{ }^{A}}{2 S}\left(\varepsilon_{\theta_{0}}+\varepsilon_{\phi_{0}}\right)-\frac{E_{R} A C}{2 S}\left(k_{\theta}+k_{\phi}\right)-N_{T \phi} \\
& N_{\phi \theta}=G_{\phi \theta} h \gamma_{\phi \theta_{o}}+\frac{E_{R} A}{2 S} \gamma_{\phi \theta_{o}}-\frac{E_{R} A C}{S} k_{\phi \theta} \\
& M_{\theta}=\frac{-E_{\theta} h^{3}}{12\left(1-v_{\phi \theta} v_{\theta \phi}\right)}\left[k_{\theta}+v_{\theta \phi} k_{\phi}\right]-\frac{E_{R} I}{2 S}\left(k_{\theta}+k_{\phi}\right)+\frac{E_{R} A C}{2 S}\left(\varepsilon_{\theta}+\varepsilon_{\phi_{0}}\right)-M_{T \theta} \\
& M_{\phi}=\frac{-E_{\phi} h^{3}}{12\left(1-v_{\phi \theta} \nu_{\theta \phi}\right)}\left[k_{\phi}+v_{\phi \theta} k_{\theta}\right]-\frac{E_{R} I}{2 S}\left(k_{\phi}+k_{\theta}\right)+\frac{E_{R} A C}{2 S}\left(\varepsilon_{\theta_{0}}+\varepsilon_{\phi_{0}}\right)-M_{T \phi} \\
& M_{\phi \theta}=\frac{-G_{\phi \theta} h^{3}}{6} k_{\phi \theta}-\frac{E_{R} I}{S} k_{\phi \theta}+\frac{E_{R} A C}{2 S} Y_{\phi \theta}
\end{aligned}
$$

where $A=$ area of reinforcement
$C=$ eccentricity of reinforcement from shell middle surface (inwards positive)
$I=$ moment of inertia of reinforcement about basic shell centroidal axis
$S=$ spacing of reinforcement
and subscript R refers to reinforcement properties.
Thus the stiffness parameters in Equation $4-10$ are defined as follows:

$$
\begin{equation*}
K_{11}=\frac{E_{\theta} h}{1-v_{\phi \theta^{\nu} \theta \phi}}+\frac{E_{R} A}{2 S} \quad K_{22}=\frac{E_{\phi} h}{1-v_{\phi \theta^{\nu}}{ }^{\nu}{ }_{\theta \phi}}+\frac{E_{R} A}{2 S} \tag{A-10}
\end{equation*}
$$

$K_{12}=\frac{v_{\theta \phi} E_{\theta} h}{1-v_{\phi \theta} v_{\theta \phi}}+\frac{E_{R} A}{2 S} \quad K_{21}=\frac{v_{\phi \theta} E_{\phi} h}{1-v_{\phi \theta}{ }^{v_{\theta \phi}}}+\frac{E_{R} A}{2 S}$

$$
C_{11}=\frac{E_{R} A C}{2 S}
$$

$$
K_{33}=G_{\phi \theta} h+\frac{E_{R} A}{2 S}
$$

$$
D_{11}=\frac{-E_{\theta} h^{3}}{12\left(1-v_{\phi \theta} v_{\theta \phi}\right)}-\frac{E_{R} I}{2 S}
$$

$$
D_{22}=\frac{-E_{\phi} h^{3}}{12\left(1-v_{\phi \theta} v_{\theta \phi}\right)}-\frac{E_{R} I}{2 S}
$$

$$
D_{12}=\frac{-v_{\theta \phi} E_{\theta} h^{3}}{12\left(1-v_{\phi \theta} v_{\theta \phi}\right)}-\frac{E_{R} I}{2 S}
$$

$$
D_{21}=\frac{-v_{\phi \theta} E_{\phi} h^{3}}{12\left(1-v_{\phi \theta} v_{\theta \phi}\right)}-\frac{E_{R} I}{2 S}
$$

$$
D_{33}=\frac{G_{\phi \theta} n^{3}}{12}+\frac{E_{R} I}{2 S}
$$

Utiiizing the orthotropic identity, $K_{12}=K_{21}$ and $D_{12}=D_{21}$.

APPENDIX 3

AEPLIED EDGE LOADS

In utilizing the program, it is frequently necessary to apply forces at the edge of the structure. We first note some relations between the internal stress resultants and global forces in the rotated system. Keferring to Figure $5-2$, we see that it is necessary to distinguish between the $i^{\text {th }}$ and $j^{\text {th }}$ edges of the loaded segment. For any harmonic n,

$$
\begin{aligned}
& \left(B-\frac{1}{2}\right)
\end{aligned}
$$

Where the \pm corresponds to the $\mathrm{i}_{\mathrm{j}}^{\text {th }}$ edges.
As in Equation 6-7 for rotated displacements, the rotated forces are given by

$$
\left\{\begin{array}{l}
F_{T} \tag{B-3}\\
F_{Z} \\
F_{R} \\
M
\end{array}\right\}^{(n)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -s \phi & -c \phi & 0 \\
0 & +c \phi & -s \phi & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad(\begin{array}{l}
F_{T} \\
F_{\phi} \\
M
\end{array} \underbrace{}_{\zeta}{ }^{(n)}
$$

Ne now relate the resultant external loads (\sim) to the magnitudes of distributed loads. These will involve only the $0^{\text {th }}$ and $1^{\text {st }}$ harmonics.

AXISYMMETRIC LOADS ($n=0$)

$$
\left\{\begin{array}{c}
\widetilde{F}_{Z} \tag{B-4}\\
\widetilde{M}_{z}
\end{array}\right\}=2 \pi r_{0}\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
r_{0} & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
F_{T} \\
F_{Z} \\
F_{R} \\
M
\end{array}\right\}
$$

ANTISYMMETRIC LOAD ($\mathrm{n}=1$)
Here, the integration of the distributed forces is not obvious.

$$
\begin{aligned}
& \tilde{F}_{X}=\int_{0}^{2 \pi}\left(-F_{T}(1) r_{0} d \theta\right) \sin \theta+\int_{0}^{2 \pi}\left(F_{R}^{(1)} r_{0} d \theta\right) \cos \theta \\
& \tilde{F}_{X}=\pi r_{0}\left[-F_{T}(1)+F_{R}^{(1)}\right]
\end{aligned}
$$

$$
\tilde{\mathrm{M}}_{Y}=\int_{0}^{2 \pi}\left(-\mathrm{F}_{Z}^{(1)} r_{0} d \theta\right)\left(r_{0} \cos \theta\right)+\int_{0}^{2 \pi}\left(M^{(1)} r_{0} d \theta\right) \cos \theta
$$

$$
\tilde{M}_{Y}=\pi r_{0}\left[-r_{0} F_{Z}^{(1)}+M^{(1)}\right]
$$

SPECIFYING LOADS

When the loaded edge has standard coordinates, Equations B-4 or B-5 are used to determine the forces F_{T}, F_{Z}, F_{R}, and M in terms of the net applied loads. In the axisymmetric case, this is straight forward; contributions to \tilde{F}_{Z} are made only by $F_{Z}{ }^{(0)}$ and there is a similar relation between \tilde{M}_{Z} and $\mathrm{F}_{\mathrm{T}}{ }^{(0)}$.

However, in the antisymmetric case, there are four unknowns and only two equations. Thus, additional data is required. Often, these loads are applied in a region of assumed membrane stress; then $F_{R}^{(1)}=0$ (cylinder) or $F_{Z}^{(1)}=O$ (plate) and $M^{(1)}=0$, since these are transverse shear and bending stress resultants.

When the loaded edge has rotated coordinates, use of Equation B-3 with B-4 and B-5 yields:

$$
\left\{\begin{array}{l}
\widetilde{F}_{Z} \tag{B-6}\\
\tilde{M}_{Z}
\end{array}\right\}=2 \pi r_{0}\left[\begin{array}{cccc}
0 & -s \phi & -e \phi & 0 \\
r_{0} & 0 & 0 & 0
\end{array}\right] \quad\left\{\begin{array}{l}
F_{T} \\
F_{\phi} \\
F_{\zeta} \\
F_{\zeta} \\
M
\end{array}\right\}
$$

and

$$
\left\{\begin{array}{c}
\widetilde{F}_{X} \tag{B-7}\\
\widetilde{M}_{Y}
\end{array}\right\}=\pi r_{0}\left[\begin{array}{cccc}
-1 & +c \phi & -s \phi & 0 \\
0 & r_{0} s \phi & r_{0} c \phi & +1
\end{array}\right]\left\{\begin{array}{l}
F_{T} \\
F_{\phi} \\
F_{5} \\
M
\end{array}\right\}^{(1)}
$$

B-3

In the axisymmetric case, \vec{F}_{2} now depends on F_{ϕ} and F_{ζ}. For memirane support, $F_{C}{ }^{(0)}=0$. Then $F_{T}{ }^{(0)}$ and $F_{\psi}(0)$ are uniquely determined. In the antisymuetric case, membrane support implies $F_{\zeta}^{(1)}=M^{(1)}=0$. Then

$$
\left\{\begin{array}{l}
\tilde{F}_{X} \tag{B-7'}\\
\tilde{M}_{Y}
\end{array}\right\}=\pi r_{0}\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\left\{\begin{array}{l}
r_{0} s \phi
\end{array}\right]\left\{\begin{array}{l}
F_{T} \\
F_{\phi}
\end{array}\right\}^{(1)}
$$

which permits evaluation of $F_{T}{ }^{(1)}$ and $F^{(1)}$.

CHECKING RESULTS

It is frequently desirable to be able to calculate net loads at a cut section, or a built-in edge.
From Equations $B-1, B-2, B-6$ and $B-1, B-2, B-7$ respectively we have

$$
\left\{\begin{array}{l}
\tilde{F}_{2}\binom{1}{1} \\
\tilde{M}_{2}\binom{1}{j}
\end{array}\right\} \pm \pm 2 r_{0}\left[\begin{array}{ccc}
0 & 4 s \phi & +c \phi \\
-r_{0} & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
T_{\phi \theta}\binom{i}{j} \\
N_{\phi}\binom{1}{j} \\
J_{\phi}\left(\frac{1}{j}\right) \\
M_{\phi}\binom{1}{j}
\end{array}\right\}
$$

and
where the sign is shrsen to correspond with the edge, i or J, on which the applied force is desired.

END

[^0]: - In this case the Hooke's Laws contain no coupling between bending and membrane, therefore $C_{11}=C_{22} \equiv 0$.

