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FOREWORD

ihl_ report was prepared by the Grumman Aircraft Engineering Corporation, Bethpage,

_iew York, under contract NASS-2113, entitled, "Computer Program for Analysis of

_heil Structures". The work was performed by the Structural Mechanics Section of

[ngineering and the Digital Computing Section of Management Information Systems.

fhe _uthor wishes to acknowledge the contributions of the following individuals:

iJ_-. l[arry Harris for contributing portions of Appendix A, Mr. Michael Shulman for

_=-<-king major portions of the derivations, and Mr. William Mueller for overall

cont,'act coordination.

This volume is devoted to a presentation of the theory and numerical techniqu,_s

developed for implementation as a digital computer program. The user's information

Cot the actual program is presented in two separate volumes: "Numerical Analysis

of Shells, Vol II: A Users Manual for STARS II - S_hell Theory A_utomated for

Rotational Structures II - Digital Computer Program", by V. Svalbonas and N.

Angrisano, and "Numerical Analysis of Shells, Vol III: Engineer's Program Manualfor

STARS II - S_hell Theory A_utomated for R__otational Structures II - Digital Computer

Program", by N. Angrisano, F. Hughes and V. Svalbonas.
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INTRODUCTION

The STg_S II digital computer progrmrl is an automated procedure for the analysis of

thin orthotropic shells of revolution, reinforced in various ways, and subjected to

unsymmetric loads. The program can treat shells having multiply-connected joi_ts,

walls of sandwich construction, and thermal variations through the walls.

The theory presented in this report and the techniques used for the unsymmetric case

are _he outgrowth of work that began at Grumman in the early sixties (References 1

and 5). Much of this report involves modification of relationships that appear in

Reference 5 to include orthotropic effects (Section 5 and parts of Section 6 are

taken directly from that work). The basic shell theory is based upon the work of

J. Kempner (References 2 _id 3).

The partial differential equations are derived for the general unsymmetric case.

They are then reduced to ordinary differential equations by a Fourier series expan-

sion in the circumferential coordinate. These equations are specialized to several

convenient coordinate systems, and rederived to represent various reinforcement

Cas_s.

The shell is divided into segments of common analytical form, cyl_nders, cones,

ellipsoids, ogives, parabolas, or any special function desired. Influence coeffi-

cients are calculated for each segment by combining unit solutions obtained by

forward integration using a Runge-Kutta procedure. Since influence coefficients

cannot be accurately computed for segments that are too large, the size of these

segments is limited by the accuracy of calculation desired. This accuracy is de-

termined by checking the symmetry of the resulting stiffness matrices. The segments

are then elastically coupled by conventional matrix methods into regions. These

regions are determined by shell branch points and concentrated line loadings. The

region matrices thus obtained are first reduced, and then coupled elastically to

form structure stiffness matrices. These matrices are inverted to get flexibility

matrices which are used to obtain deformation conditions at the ends of each region.



:_e deYcrmations are used as initial conditions for the final forward integration

_l,_-cugheach segment, thus yielding the displacements at points throughout the

_truc_u_'e. Finally, the stress distributions are obtained, using the total

_isplacement patterns.

iLc required input data is relatively simple, consisting of specification of

geometry, ma_rial properties, loads an_ support conditions. The output is in a

Ycrm directly usable by the stress analyst, that is, stresses and displacements

at various points on the shell.
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SYMBOLS

LOWER CASE LATIN

a

b

C

d

f

h

i

q

r

s

u

v

w

semi-diameter in ellipsoid (in.); index on applied loads

semi-height in ellipsoid (in.); index on boundary conditions

offset in ogive (in.); cosine function

differential

distributed load in local coordinates (Ib/in.2); stress resultanl

matrix in local coordinates; parabolic geometry constant

thickness of face sheet in honeycomb shell

index: beginning edge of shell segment; independent Joint of

kinematic link; subscript "inside"

index: ending edge of shell segment; dependent Joint of kinematic
link

segment stiffness matrix; lineal forces due to displacements;
curvature

length (in.); load matrix

mass (slugs); distributed moment (in.-lb/Jn.2); index on nodes

dimension of matrix; index on harmonic

subscript "outside"; subscript "reference surface"

distributed load in global coordinates (lb/in.2); index on

distributed loads

number of degrees of freedom

radius

index on segment; sine function; meridional coordinate in cylinder

or cone; arc distance

index on topological arrangement; core thickness in honeycomb
shell

circumferential displacement, positive by right-hand rule about
Z axis (in.)

meridional displacement, positive in direction of increasing $ (in.)

normal displacement, positive inward (in.)

vii



SYMBOLS (Cont)

UPPER CASE LATIN

A

B

C

D

E

F

nt_ber of applied loads

n_nber of different sets of boundary conditions

constant; bending-membrane interaction stiffness

shell flexural stiffness (in.-ib)

¥oung's modulus (Ib/in. 2)

subscript "free;" lineal force (ib/in. of circumference);

distributed load in nonlinear cases

shear modulus (ib/in. 2)

total shell thickness (in.)

moment of inertia (in. h )

effective transverse shear stress resultant (ib/in.)

shell extensional stiffness (ib/in.); shell stiffness matrix

load matrix; fixed end forces due to distributed load

bending moment on shell (in.-ib/in.); number of nodes

membrane force (ib/in.); number of harmonics

number of distributed loads

transverse shear stress resultant (ib/in.)

radius vector; subscript "region"

n_nber of segments

effective membrane shear (ib/in.); number of topological arrange-

ments; subscript total; temperature

amplitude of sinusoidally varying u

amplitude of cosinusoidally varying v

amplitude of cosinusoidally varying w

Cartesian coordinate, e = 0 at X axis; matrix defined in Section 5

Cartesian coordinate; matrix defined in Section 5

Cartesian coordinate, coincides with axis of revolution

4
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SYMBOLS (Cont)

A

eq

GREEK

coefficient of thermal expansion "'(deg-I)

b/a - ratio of semi-height to semi-diameter of ellipscid

shear strain

matrix of displacements in local coordinates

extensional strain

normal coordinate• positive inward

circumferential angular coordinate (rad)

Poisson's ratio

dimensionless radius; position vector of shell relative to
inertial frame (in.)

normal stress (lb/in. 2)

shear stress (ib/in. 2)

meridional angular coordinate (tad)

rotational displacement (tad)

displacements in global system

amplitude of cosinusoidally varying m

MISCELLANEOUS

d_otes total forces, 2_r times lineal force
o

denotes partial differentiation

pre-superscript, denotes nonlinear terms

equivalent

SUBSCRIPTS

NOTE

Other symbols are defined in the text where they appear.



SECTION i

FORMULATION OF SHELL EQUATIONS

t

°V

t

EQUILIBRIUM EQUATIONS

The equilibrium equations which are derived in general form in Reference 2

by means of the variational principle, are of the accuracy of Love's first

approximation as modified by E. Reissner. The reduction of these general

equations to the special case of shells of revolution is given in Refer-

ence 3, page 8. They are repe_ted here as Equations 1-1a through 1-1e.

It should be noted that the equilibrium relations have been written in

the undeformed coordinate system. See Figures l-l, 1-2, and 1-3.

1 (N¢6r_) . sin ¢ = -rlrof e_F e = 0 : rlNe, e +-r-o '¢ Qerl
(l-la)

ZF¢ = 0 : (N_rc),¢ + rlNce,e Nsr I cos ¢ - ro_ = -rlrof # (l-lb)

EF_ = C : (Q_ro),¢ + rlQe, 8 + r0N $ + Ner I sin ¢ = -rlr0f _ (l-lc)

_M e = 0 : -rlM_e,e - (M_r0),¢+ MetI cos ¢ + rlr0 Q$ = -rlrom 8 (l-ld)

_M¢ = 0 : -(Mcero),¢ - riMe, e - M$er Icos¢ + rlr0Q e -- -rlrom _ (i-i_)

where commas denote partial differentiation, e.g.,

_Nd 8 (Ncero2)Ne,0 _ _--6-; (Ncer02)'¢ : S-'_

The distributed lo_dlng terms, "f" and '_", are dimensionally in terms of

force/unit q-ca of middle surface, and (force x ]ength)/unlt area of

middle surface. Distributed moments occur, for example, in threaded

connections in pressure vessels or fittings where they are associated with

tangential loads applied away from the middle surface.

i-!



It should be noted that the sixth equilibrium equation:

_M = 0 : Nee Nee ÷ Me--/_+ M¢---!e= O (1-2)
r2 r1

is not included with the set of equilibrium equations since it will only

be satlsfied when _/r is not neglected in comparison with unity in ex-

pressions for stress-resultants and strains (Reference 4, pages 5, 6, and

317). As will be seen later, for the ease of _ << rl,r 2 the physical

definitions of the stress resultants lead to N8$ = N$8 and M8¢ = -M¢8.

In this approximate theory then, the equation is identically satisfied in

the special case when r I = r2 (sphere). Otherwise, the equation is

violated.

STRAIN-DISPLACEMENT RELATIONS

The strain-displacement relations (Reference 3, pages i0, 3h, and 39) are

presented as follows:

£0
O

= I____(U,8 + v COS _ - w sin @)
r0

1 (v,¢ - w)
E00 = rq

v'e r0 F]u v'e-u cos¢

_'¢e ° = +- L% l =r0 rI r0
¢

1
_0 =--- (w,_ + _)

rI

1

= - (W'e +t ) --- r-_ (w'0 + u sin ¢)

= _ i___.0(_¢,e - We cos ¢)k e

1

k¢ =_i '%'¢

' [ "0 ]kce = ke¢ = 2r---_ '"e,e ---_-i_0,¢ + _¢ cos ¢

(l-3a)

(l-3b)

U,@
+-- (l-3c)

rI

(1-3d)

(l-3e)

(l-3f)

(1-3g)

(l-3h)

I-2



where the geometric relations

ro, _ = rI cos

have been used.

r0 = r2 sin

STRESS-STRAIN RELATIONS

The stress-strain relations (Reference 3, page 32) are obtained by em-

ploying Hooke's Laws and assuming that dimensions "_", normal to the middle

surface, are much smaller than the radius of the shell. In this case,

orthotropic relations will be used to increase the usefulness and applica-

bility of the analysis.

E8

oe = 1 - _¢8_8¢ O°

E¢
oe = _ + Vee_e -

1 - _¢8Ve¢ LeO o

_(ke+ _8¢k¢ ) - (a8+ ve¢a¢)T ]
(:.-b,a)

¢(k¢+ uceke) - (a¢+ U¢e_e)T] (l-hb)

Tee = Gee [YCeo- 2r,kce ]
(l-_c)

where e, k and y are functions of 8 and _ only. But a, T, E and u may,

in general, also be arbitrary functions of _. Thus, the stresses, o and _,

are arbitrary functions of the thickness coordinate. These equations

assume that the thickness is negligible comp%red to the radii of curvature,

rI and r2. If this assumption is not made, but normals d__oremain straight

and normal, then strains (and stresses) are not linear functions of _,

even with constant a, E and _. This is the same phenomenon that occurs in

curved beams. (Refer to Reference 2, page 29 and Reference h, page 316.)

For present purposes, only T will be allowed to vary in the _ direction.



STRESS RESULTANTS

Again neglecting thickness in comparison with the radii of curvature

(Peference 3, pages 33, 3h),

/ /N6 = a8 d_ M e ,, ae_ d_

N¢ =/ a¢ d_ M, = /a¢_ d_

N¢O = +Nee =/T¢o d_ M¢O = -MO¢= +/T¢o_ dE

Eo (ao + vO#a#)T [ E0 (a o + uOCa¢)T
= d_ MT8., i - uCVv8¢NTe i - _¢e_e¢

f
E¢ (% _¢eae[Tdc MT¢ =2 1 - _eve_NT¢ =j 1 - vceVe_

(i-5)

(1-6)

where the integrals are taken over the entire thickness. Neglecting "_"

compared to "r" ignores the fact that, for an elemental length ds along the

median surface, the lamella inside and outside the median surface are

shorter or longer than ds. (Refer to Reference h, pages h and 5.) If this

effect is considered, and the radii associated with the ¢ and e directions

are unequal (rI # r2) , then NO¢ # Nee and M8¢ # -M¢o.

The following general definitions of extensional, bending, and in-plane

shear stiffnesses are introduced:

KII =

E 8 h

1 - %o_o,

Eoh3

DII =
12(i - %e_e@)

K33 " G_oh

Z_h
(l-Ta)

K22 = i - u¢Sve¢

Z#h 3
- (1-7b)

D22 12(i - V¢oVo¢)

Gceh3
(i-7c)

D33 = 12

'I
I

I-4



7
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The definitions for rigid-core sandwich configurations of various con-

struction are presented in Figure l-h.

Combining Equations i-4 through 1-7 yields the stress resultants as

functions of the strains, curvatures, and temperatures.

?

N O = KII [g8o +v65 E$o ] - NTe (l-Sa)

N$ = K22 [a$o + v$8 a6o ] - NT$ (l-Sb)

Nse = N%$ = K33 YSeo (i-8c)

,.I8 = -Dll[k8 + yes k_]- MTe (i-Sd)

M S = -022 [ k S + v$6 k 6]- MT# (l-8e)

Mse = -Me¢ = -2 D33 ks% (l-8f)

BOUNDARY CONDITIONS

%,..

5.
:9

I.

The required boundary conditions at a plane of constant $ are obtained as

a result of the variational procedure (Reference 3, page 28). It is neces-

sary to specify either displacements o rr corresponding stress resultants.

MS e ]u or Nse r0 sin S (l-9a)

v or N S (l-9b)

[ Mee'e ]w or Q¢ + r0 (i-9c)

_6 or M S (l-9d)

I-5



in view of the form of the boundary conditions (Equation 1-9), the

equilibrium equations are re-formulated in terms of the "effective stress

m

resultants", _¢8 N¢, J¢ and M S where,

(l-10a)
T¢0 = Nee - M_S r 0

_I = N_ (1-10b)

j = Q$ + M$8'8 (l-10c)
r 0

M, = Me (l-10d)

The partial derivatives of T¢8 and J¢, which will be required later, are:

T¢8,¢ N¢8,¢ sin 2+ sin _ cos # . cos _ (l-lla)

rl - rl M¢8,¢ for I M¢8 r0 - M¢8 for I

r I - r I ror I - M¢8,8 r 0

(l-llb)

FINAL EQUATIONS

By eliminating strains and curvatures and utilizing the orthotropic identity

VS¢E 8 = _¢8E¢, each stress resultant is expressed in terms of displacements

and other stress resultants. From Equations i-3 and 1-8:

N 0 = _#8 N¢ + (KII - u¢82 K22) ¢80 - NT8 + _¢8 NT¢

a, + v cos ¢ - w sin _]= _¢_ N¢ + (KII - _¢82 K22) ' 8 _0 " NTe + _¢8 NT¢

(l-12a)

I-6
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_[¢ v8¢ N 8 + (K22 - v8¢ KII) e += ¢o Ve¢ NT8 NT¢

2 KII) [.v,_ - w
= ve¢ Ne + (K22 - v0¢ [ rl - NT¢ + ve¢ NT8

uoosN¢6 = Nee = K33 _¢e ° = K33 r0 + rI ]

M e = vCe Me - (DII - v¢8 Vce

(DII 2 D22) [w,ee + sin ¢

= vCe Me - vCe [ u'e +
r 0 r0 e

cos

(1-12b )

(i-12c)

ii •

(l-iBa)

2

Me = v_)¢ Me - (D22 - roe Dll) k¢ + vS, _ MTe - MT¢

MCo

2 Dn) rwe,_]
=_0_Me-(D22-_o, [r I]-%¢

_[ ]D33 w e + we cos ¢
= - r 0 ,e - r--q-w¢,¢

+ v8¢ MT8
(l-IBb)

Using Equations l-3d, 1-10a, and 1-12c

I [D33 + (we ,e rI r0Mce =- ro We,e

v,e sin ¢

r0

M_0 sln2¢_ ucos._._..__¢l.2 cos _ (w,8 ÷ LL sin ¢) _
K33 r0 ] r I J ro J

LDs3 r0 K33

- 2 w, 8 --

+ Tee sin ¢

K33

2 we, 8 + u rl ro \ro

cos ¢ Tee

ro + _ sin ¢I (z-13=)

I-7



_×l'_,nsic,n of the equilibrium equations yields:

r 0

N_,0 + __00°7 cos ¢ + Nce,¢ ---r1 Qe sin ¢ + rofe = 0 (l-lha)

r__o_o ro

I'_,¢ rl + N¢ cos¢÷ N¢8,8 - N 8 cos$- Q_ -_-i + rof _ = 0 (l-lhb)

r r 0

Q_,$ ri---9-0+ Q¢ cos$+ Qe,% + N¢-_l + N e sin_+ r0f _ = 0 (l-lhc)

r 0

-MCe,o - N¢,¢-_i- Me cos ¢ + M e cos ¢ + Qcr O = - rom e (1-1hd)

r O
-- _ _--- _

-Mce,8 rl 2M¢8 cos¢-M8, e + Qsro rom _ (l-lhe)

A set of eight partial differential equations of first order in the inde-

pendent variable, $, will now be obtained by appropriate substitution of the

previous equations. The first four of these equations result directly from

the equilibrium equations. Combining Equations 1-14a through e with

Equations l-lO and 1-11 yields:

T_e,¢ = _eT¢e _os ¢ _ %,__Ae+ M si-l_-_- cos ¢ [_ _si____]
r 1 r 0 r 0 e,e r02 M¢8-_0 r 0 j

sin ¢ (1-15a)
- f8 - me ro

rI ro 0 ro " ro - M,e,o -- _
I. r 0

(l-15b)

I-$



J

_,¢ _ _JcCOSr0¢
sin ¢ N¢ Me.ee ccs__ f + m¢,e

Ne T 0 - Tl- r0-_--- 2Mce,e r0_ r0

M¢,¢ = Me cos ¢ N¢ cos_____¢¢_ 2 Mce'-----_e+ J¢ + me
r]. r 0 r 0 r 0

(1-15c)

(1-15a)

The remaining four equations involve differentiation with respect to _ and

are obtained from Equations l-3d, l-lOa, 1-12b and c, and 1-13b.

u cos ¢ v, e Tee M#e sin ¢
= + + (l-16a)

r I r0 r0 K33 r0 K33

w_
= .__2 Ve¢ Kll. N¢- _ecNe + NT¢- VecNTe

r 1 r 1
(1-16b)

(1-16c)

]:

_e'¢= (De2 -_ejDzl)-I 1 /rl -M¢ + _ecMe - NT¢ + Ue¢_e tl-16d)

In order to obtain a complete set of equations, the following auxiliary

equations are necessary:

v¢82K22) [u, e + v cos ¢ - w sin ¢]N% = _¢e N¢ + (KII - r 0 - NTe + _¢e NT¢

(i-17a)

I-9



  02D22 []"w'se u'e + _8 cos ¢
Me = _¢_M - ro r0

- MT8 + vceMT¢
(l-17b)

IIr0 sin2¢

cos# T¢8 I- 2w,8 r0 +K_33 sin

N¢6 = T¢8 +--J-_rosin@

(i-17c)

(I-17_)

w'e u sine

r0 r0
(I-17_.)

M¢0,8

Q¢ = J@ r0
(l-17f)

Qe =
r 0

si__A_n2)2 cos¢ r0 K33 + D33 rl

ro2K33 + D33 sin2¢
Mce +

rl 2

r____O+______A
_e,e¢

+ u,¢ I c°sCrl

cos2¢ sin#

r0 rI

rl, _ cos ¢
2

r 1

1-10



,cos'siaI (s Ic°rsinco+ 2 - V'e¢ r 0 + - v'8 -- 2
r 0 _ ro ro

rl,¢ cos ¢ + 2w'e --+
2 - 2_'e¢ r_-o'- 2

r 1 \ ro r0

sin ¢ + cos ¢

+ TCe,¢ K33 Tee K33 Me'e me (l-17g)r 0

These auxiliary equations could be included in the eight partial differen-

tial equations by direct substitution, and indeed in the case of Equations

1-17d through g this has already been done. However these quantities are

also of technical interest and computing them separately is desirable.

The equations presented above constitute a complete formulation of a con-

sistent first-order thin shell theory. Techniques for the solution of this

set of equations are given in the following sections.

i-li
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Figure 1-3. Moments On Shell Element
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SECTION 2

FOURIER ANALYSIS

Efficient techniques for the numerical solution of partial differential

equations are not readily available. However, by assuming a Fourier series

d_stribution in the circular coordinate, e, it is possible to reduce the

solution to "N" sets of ordinary differential equations. Usually the num-

ber of sets (harmonics) that are required to solve practical problems is

rather limited. The actual number will depend upon the type of load dis-

tribution being investigated and the degree of accuracy demanded. By

restricting consideration to cases symmetric about e = 0, only "one-half"

of the general expansion is needed. By physical reasoning, (or ccmplete

expansion of the series), the appropriate function (sine or cosine) may be

chosen. The choices are verified when the trigonometric functions may be

factored out of the differential equations.

The reduction of the system of partial differential equations to sets of

ordinary differential equations is most convenient since these equations

may now be solved by employing a standard numerical integrating procedure

such as Runge-Kutta.

The expansion of the previously developed partial differential equations

into sets of ordinary differential equations will now be discussed. The

appropriate series expansions for the quantities of interest are:

= U (0) + n_ 1 U (n) sin n8

= n_0 V(u) cos ne

w(n)w = n 0 cos n8

_8 : n_ 0 cos ne

Ne = n_O N% (n) cos n8

N¢ = n_O N¢ (n) cos ne

(0) . _ (n)
Nee = N¢8 n_l N¢0 sin nS

Me(n)Me = n_O cos nO



_@ -- _¢(0) + n.__rl_¢(n) sin ne

fe(0 _ re(f8 = ) + n-E1 n) sin n8

f¢ = n_O f¢(n) cos ne

: _ f(n)fc n_0 cos ne

mO = n_ 0 me (n) cos ne

me = m¢ (0) + n_l m¢ (n) sin ne

(n)

NTe = n_O NT8 cos nO

(n)

NT¢ = n_ 0 NT¢ cos ne

T(n)T = cos nen_0

(n)
Me = n_ 0 M¢

(0) _ (n)
Mce = Mce ÷ n_l M_e

qe(n.)Qe = Qo (0) + a_l

(n)
Q¢ = n_O Q¢

(0) = Tee(n)T¢e =T¢e + n_l

Cn)

J¢ = n_ 0 J¢

(n)co

MTe = n__ZO MT8

(n)
_r¢ = n_O MT¢

cos ne

sin nO

sin ne

cos ne

sin ne

cos ne

cos n8

cos ne

(2-1)

FINAL SET OF EQUATIONS

Substituting these equations into the sets of partial differential equations

(Equations 1-15, 1-16, and 1-17) will yield the final harmonic form of the

equations required.

Differential Equations

'_.en n = 0, I, 2..., then

(n) _e(n)

T¢0,¢rl _ _2T¢ (n) COSr0 ¢ + n --r0 _ nMe(n) sin¢r02 _M¢ e(n) cos...__¢r!r0[rl sin_]r0



r I
(n) cos ¢ + Ne(n) cos_____.¢__n

r0 r 0

. (n)

+ Lt___ _ (_)
rI f¢

(n)

rum (n)[sin

r 0 ¢8 Lr02
+ rorl

(n)

j¢(n) cos ¢ sin ¢- Ne(n) 70

(n) Me(n)
N + n2

2
rl r0

_ f (n) + )nine(n_

r 0

(n) cos ¢
- 2n Mce 2

r 0

(n)
Me ,¢

r I
.. Me(n) cos ¢ M¢(n)

r0

cos ¢

ro

(n)

2n M@O + j(n)
r 0

u'¢(n) __ v(n). = u(n) cos _ + n -- +

rI r0 r0

(n)

Tee

K33

+ MCe(n) sin

roK33

V,e (n) _ W (n)

rI rI
. 2 KII)-I+ (K22 Ue¢

w'¢ (n) (n) V (n)

rI = f18 rI

[Ze,¢

rI

(n)

= (022-Ve¢2Dll) -I {-M¢
(n)

{N(n) Ne(n) (n)- _e¢ + NT_

+ v0¢M0 (n) - MT (n) ÷ vocMT0 (n)}

" _e@ NTe (n)}

2-S



Auxiliary Equ&tions

When n = O, i, 2..., then

(n) (n) 2 [nU (n) + V (n) COS ¢ - W(n) sin ¢
K22) [N_ = v e N + (Ell " _¢0 r0

(n) NT(n)- NT9 + _¢_ (2-3)

2 D22) rnu (n) n 2 w (n) (n)

M_ (n) M (n) (DII -_B L sin ¢- + _e= _e _ - r0 r0
cos ,]

• _r_(n)_ MTe(n) V_e

Nee(n) =[ -1 2 "]_'2n_8 (n) + U(n) (cos ¢ cos , sln ,)

r 0 sin ¢ ,I_ k rI rfl

[

k "-_'-0 El ro + T¢9

(n) T_e(n) + (n) sln._./_
N¢8 = M¢8 r0

I_ (n) . nW (n) u(n) sin_.___

r 0 r 0

(n) j (n) nM¢e(n)
q_ " ro

I-4



m

i

(n)
Qo

2 cOS ¢ (r 0 sin ¢)1

3 cosre 4> 2 K33 + D33 _ [M¢0

r 0 K33 + D33 sin2¢

+ ,, (n) / cos

'¢ t rl

sin ¢ rl, ¢ cos ¢
-- +

rl r12

-1

77_
(n) +[ 1 ]I_2nn (n)

LV
cOS * sin ¢ + U (n) sin2* cos *

r0 r0 r0

2

r I cos ¢ sin ¢

) nV, (n)(sin _ 1 )
2 + _ +\ ro

r 0

+nv(nl(oos_ r_sin+oos_ _
ro r02 r12 /

rl eos2¢ )
+ 2n W,¢ (n) cos ¢ 2nw(n) sin ¢ +

r0 r 0 ro 2

(n)
+ Tee ,0 sin___¢+ m¢o(n) cos_____¢

K33 K33

If me (0) = fe(°) : o, then Qe (°) = 0.

riMe(n) (n)

- ro me

For the axisymmetric case, the problem is defined by only one harmonic, n = O.

For an unsymmetric problem, the required harmonics may be superimposed, and

again, only one set of ordinary differential equations need be solved at

a time.



SECTION 3

PROGRAMMED EQUATIONS FOR VARIOUS CONFIGURATIONS

j

/

_<..

!

The differential equations actually programmed are given below for shell

shapes using the coordinate angle ¢, and for the cylinder and cone, which

use the meridional distance coordinate s.

INDEPENDENT VARIABLE, ¢

(n)
T¢e,¢ (n) cos ¢ NS(n)

rl - 2Tee --to + n _r0 _ nMe(n) _sin ¢ _ M¢% (n) COSr0¢ [I_i sin_o_j"$]
r 0

N (n)
¢,___A__

r 1

_ fe (n) _ m¢ (n)

(n) cos

= -N¢ ro + NO

- nM¢8(n) [ sin2-----_
r0

sin____¢

r0

(n)
(n) cos ¢ Tee

r0 rO

(n)

i____]÷Lt___+ rorl rI

(n)
f¢

(3-_)

(n)

J_,¢

r I J¢
(n) cos___._¢¢_ Ne(n) sin ¢

r0 r0

N¢ (n) 2 Me (n)
.... ÷ n

rl ro 2

(n) cos ¢ n) + nine(n)

- 2n M¢8 ro 2 f( r0

(n)
_._
"¢,¢

r I
= Me(n) cos ¢ Me(n) cos ¢

r0 r0
• 2n )Mce(n-- + J¢

r0
(n) + me(n)

3-I



(n)
u

r I

Tee(n) (n)v(n) M¢e sin= u(n) cos ¢ + n-- + +
r0 r0 K33 r0 K33

r] rI + (K22 - v8¢ - _8¢ + NT¢(n'-VscNT8

(n)

rI

(n) v(n)

= _e r I

r I

(n)
N 9

(n)
Me 0

2 { (n)(n) (n)}
= (D22 - _)0@ D!I) -I -M@ + _ecM8 - MT¢(n) + _8¢MT8

2 [ nU (n) + V (n) cos _ - W (n) sin ¢]= _¢e N¢ (n) + (KII - _¢e K22) r0

(n) )
- NT8 + _¢8 NT¢(n

) (DII - v¢e .nU(n) )

= v¢8 Me (n - ro r0

(n)
- MT0 ÷ _¢e _¢(n)

=[ -! 2 ']_-2nn0(n)

[rO + sin¢--------I_

D33 r0 K33 ]

+ u(n) {cos ¢
\ rl

cos ¢ sin ¢_

r0 /

+ nv(n) /sin ¢ +i____+ 2nw(n) cos ¢ ÷ Tee(n)

ro rI r0/



L.

•(r:

(

/

(n)

(n)

On) (n) s±n
Tee + M_e

r 0

nW(n) u(n) sin

r0 r0

(n)
(n) nM_o

J_ r0

3 cos

r0

2 cos ¢ (r 0 K33 + D33 _i _)) (n)

[ ]
r1

+ ro sin2_
-- +

D33 r0 K33

(n) + U, (n) / c°s_____ _ c°s $ sin _. )-2nge ,¢ rI r0

+ u(n)< sin2_ cos2_ sin ¢ rl_# c°s $ rl cos2¢ sin ¢ )
r0 rI rl 2 " + 2r0

÷ Tee ,¢ K33 + Tee

+ nV, (n){sin_¢ + _ll)+ nv(n){cos # rI sin $ cos
\ \ ro ro 2

(+ 2n_¢, (n) cos $ 2nw(n) sin___
r0 r0

r0 /

(n) cos $ nMe(n) (n)

me

rI !

(o) fo(o)! :' :_:¢ : : 0, thea Qe (0) : 0.

When using Equations 3-i, it is necessary to specify the functions r0(¢) ,

rl(¢) , _nd rl(@), $. For completeness, these functions and r2($) are given

for the various analytic forms.
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U]'ipsoidal (Figure 3-i): W%ien 8 = b/a, 8 = i for a sphere, and "a" and

._ _rv gi_/en _ata, then:

= a(s_n-_ + _ cos 4) (3-2)i" 0

r 0 = r2 sin

_2 3

r I = _ r 2

oos, ir lsin,_r o)r!, /_ = 3 2 '
sin

rl, _ = 0 for sphere

" " and "c" are given data, then:{;giv_l (Yigure 3-2): When r I

C

r2 : rl sin _ (3-3)

ro = r 2 sin

....:.'.o_i_fied"_Ellipse Shape (Figure 3-3): When "n" and "a" are given data, and

=no range is 1 >_ n >- i, then:
1

r o = a (i + n) (3-h)
i + sin

r0

rI

rl ,:

= r2 sin ¢

2 + n

a ), (1 ÷ sin2
= -(2 ÷ n).-:-sin (n cos #

3÷_____n

(._÷ n)_ i

÷ n

/

3-4



.'"O*"

h = _ b/a = 0.707

:_ = -* b,/a = 0.679

', , -L b/a _- 0.61,_

.Lmrmboli.: (!"i_re 3-4): When the given parabolic equatLen is z = fl

+ f_r ÷ f3:' and " " "f " "f "f[ , ,) , and 3 are given input data, then:

-tan ¢ ÷ f2

r0 =
2f 3

r,3
r) :I sLn ¢

l 2f 3

-_ zec ¢ sin ¢
rl ,¢ = 2r 3

(3-5)

%

:YLINDPICAL, s _EASURED OPPOSITE TO GLOBAL COORDINATE Z (Figure 3-5)

4I',_ .: _Ie _4e ( n ) 1 ( n )

,is : *. --re - n-----Yr0 - t o - tom*

(n} (n) (.3

aN Tee _ t,(n)
.is =, -n ro n 2 "

rO

t,' :n! ,; (n) [M_B_ ] fC(n;__L-_ . _ -___ ÷ n2 . )

j, r0 Lr0 ]

(n)
m)

÷ n__

r 0

(3-6)



$

]$

,!S

ts

_q

= -_.j (n)
,, ¢ ÷ mO

m,_n) :, (a) (n)
---'----- ÷ _0 M

33 rO _33

= ('L': 2 - v 2

- Cn) (_)VO¢ [70

÷ :_'T_ - veSf_Te(n) /

+ _e ('n) (a)
vee " _Te

v ÷ 2 \r .(n) ,(n)

{D - v 2 D

= 'v;O _'f_(a) "'_) [nu(n) n2 W(n,l

, (n)

:"] r:<' "_3{ ) .v(") T (")= _ _ (n''-'_

/D _/_ r 0 +
L ]3 _0 _33J K33

• ", = T (n) ,",1"
" _9 _"

%

.
'_ r 9



(n)
(n) (n) nMce

Q¢ = J_ rc

= .... ÷

ds +ro ds
D33 rO K33 ]

(n)
- 171

if me (0) = fe (0)= o, then Qe (0) = O.

aT (n)
l__ _/A__
K33 ds r0

C,%NICAL, s MEASURED ALONG MERIDIAN FROM APEX (Figure 3-6)

(n) (n) (n) (n) (n)

dT¢o 2Tee nN e nM O sin ¢ MCo tan ¢
= + +

ds s s cos ¢ s2cos2¢ s 2

(n) (n) (n) (n) (n)

N 8 nTc8 sin ¢dS¢ = _ __He ÷ -- _ nMce (n)

2 2¢ - f¢ds s s s cos ¢ s cos

(n) Ne(n) tan ¢ n2Me (n) 2nM¢8(n)dJ¢ (n) _ J_
-- ÷

ds s s 2 eos2¢ 2s s cos ¢

Cn)
nm

. f (n) + ___
s cos ¢

• (n) (n) (n) (n)

% _ 2"M_e %(.) %(")d_ "-7 - _ _ cos ¢ + _ +

(n)

fe

(3-7

3-?



W

n)

da

(n)

u(n) nv(n) T_O(n) M_O tan

s s cos $ K33 K33s

dv(n) = @22 2 KII) -I:!_ %¢ { N¢(n) (n) (n)- - v@¢Ne + NT¢

n)
- VecNTe ( }

dW (n) = _0 (n)
ds

(n)

N o

(r,.)
!.Ie

+ ,)coMe(n - MT¢ + ueO_e (n) }= (D22_ Ve¢2 Dll) -1 {_Me(n) ) (n)

2 [ nU (n) + V (n) cos ¢ -W (n) sin *

n) + ( KII - re@ K22 ) [ s cos ¢

(n) (n)
- NTe + _¢eNT¢

n2w n'On,](n) DII - VCe D22 nU (n) sin ¢ - + 20 cos
= v¢gM¢ - _ cos ¢ s cos

- MTe(n) )+ v¢eMT¢ (n

nv( "t n,-i _2nno(n) - U(n) sin ¢ +

sin2$ s s

s cos ¢ + K33 s cosD33

(n)
Tee sin ¢

+ K33

2nW {n)

S

(n)

(n)

(n) Mce(n)
÷

= Tee s

nw(n) U (n)

3 cos ¢ s

,, j0 (n) . nMoo(n)s col ¢

tan ¢

tsn ¢

3-11



2 [ l 11 Cn,QACn ) 2K33s cos ¢ I (n) s cos ¢ sin2@ d_¢

_33 s cos _+D33sln _ D33

/,

V,

dU (n) sin ¢ + u(n) sin ¢ + dV (n) tan ¢ nV (n) tan #
ds s 2 his s 2

S S

2n dW (n) 2nW (n) dT_@ (n) 1 )

sin _ nM8(n m (n)

s ds s2 + ds K33 s cos ¢ ¢

If me (0) = f8 (0) = 0, then Q6 (0) = O.

All the above equations are written in terms of stiffness parameters (K and D)

rather than explicit geometry. This is due to the fact that a variety of

crossection geometries are to be considered, specifically those described

in Figure 1-4. However, one more option is available (described in detail

in Section 4 and Reference 7): that of inputing the K's and D's representing

any shell wall construction directly into the equations. With this option

there becomes available an analysis for a great multitude of shell wall con-

structions. (In this respect refer to Section h.) With all the geometries

available, it becomes necessary to calculate thermal resultants separately.

As noted in Section i, Equation 1-6, the deflnitlons of the thermal resultants

are:

E¢ (a¢ ÷ _#e _e) T= d_
NT¢ 1 - _¢e _e¢

/ E_ (_8 + _8_ a#) TNT8 I - v¢8 _8_

M_
we 1 - vCe _e¢

Ee (_e + _e¢ a¢) T
M_
we I - _¢8 Ve¢



Thetemperatureis definedto vary linearly as follows:

I_ - til •
Ti = (T::- Tic) _--::--iJ + Tic - _

m.o = (Toc- T)oo (_) + Too - 7

(3-8)

Tii

/
TIe

T
oc

/
T

oo

h i

t i

t
o

h
o

Neutral Axis

where T is the stress-free temperature. Combining Equations 3-8 and 1-6,

the necess=ry thermal resultants are obtained.

_>_THOTROPIC SINGLE LAYER

NT8 =

MT¢ =

MT8 =

MT¢ =

Ee (_0 + _e_ _)(_ -!i) IT I
1 - u_8 Vs_ ii ÷ Tic ÷To¢ _ Too - h_

E_ (a_ + v#8 o8)(hi)IT + T - h_]
I - V_e v8_ I_- ii + Tic + Toc oo

i - v¢8 _e¢ 12Tii + Tic - Toc " 2Too]

(3-9)



EQUALFACESHEETSANDWICH

_0_0._. _0,(_[ ]
NT% = I-- vCe ue¢ \2 / Tii + T.Lc + Toc + Too - 4_

_-;_°_--%'(;qF_--_..,._-_]
NT, = 1 - v¢_ ve¢ \2 ] le oe oo

MT8 = E^ (_^ ÷ v^. _.) / _[_ _ _ thi|lhi (2 ÷ - Ti- _0 _e_ \T/IT %1 Tie oe

+ _ Tii ÷ Tic - Toe - Too

÷
Tic Toe

+ _ hi _c oe oo
lJ

- 2Too )

- 2Too )

(3-10)

UNEQUAL FACE SHEET SANDWICH

NT8

NT¢

MTe

MT_

E0 (a0 ÷ v0¢ % ) [___i h= (TiE * - 2'_) ÷-_ (Toe ÷ T
i - v¢8 v8¢ Tie oo

E@ (_x ÷ v,B c_O) [2h__i h= (Tii ÷ Tie - 2T) ÷_ (Toe + T
I - re0 roe oo

E_ ((,8 ÷ ve_ eL@) [_ 2 h 2..... (2Tii - 3T) --_ (2T
: re0 ve¢ ÷ Tic oo

tlh i t. ]
-_---(Tii + Tic 2_) - o o - 2T)- -,2--(Too * Toc J

1 - vCev8¢ i ÷ Tie oo= (2T i - 3V) _.%,.9_(_

'" ]+ _ (TIi + "ic _ (Too + Toe

÷T
oe

+T
oe

(3-11)

- _)

- _)



where:

h2-h2+ 2ht
O l O

ti : _i- hi : 2 (h. + h )
1 O

h. 2 - h 2 ÷ 2h.t

=_ -h = I o x

to o o 2 (h i ÷ h O)

ARBITRARY STIFFNESS PARAMETERS (K AND D)

Since the geometry is not known in this case, certain assumptions are

necessary in order to calculate the thermal resultants. The given stiffnesses

are set equal to equivalent single sheet stiffnesses:

3
h0 "E8 eq he eqE0 eq eq

KII = 1 - u¢8 vO¢ DII = 12 (i - v_8 v8_)

IF this wayE e
eq

can be calculated.

and h 8 eq and similarly in the _ direction, E_ eq and he eq

Substituting the values thus obtained i,to Equation 3-9:

Kll
÷

F

[%i÷Tic÷T +T - 13- 2 _TO - L oc oo

Ko._ * s0) _]NT,_ = _ ('_¢h V¢O [Tii + Tic < Toc ÷ Too - h

(-KIIDII)½ (_e + v8¢ s¢)

_'I'_°= _v_ [2Tii + Tic- T°c- 2T°°]

(-K22D22)_ (_¢ ÷ v¢9 _8 )

. . [2Tii ÷ Tic - T - 2T ]"_T_ 4V_ o¢ oo

Yh_, [n this case the thermal resultants to be applied are obtained on the

b_sis of equivalent stiffness sections, and are then applied to the original

-'ructure. In inputlng the stiffness parameters (K and D) one must remember

"._at they are functions of material properties, and thus _etions of

t_::._erature. The negative definition of the bending stlffnes|, D, is

used to be conslstant with Section h and Appendix A.



STRESS CALCULATIONS

The stress formulas to be used are given below:

N@ M e __
cO " = __ + N@

In -'_ J-- _in o@ -
out A

N¢ Me _ N_ Me _
_¢in - A +T _in o - '

¢out _X J t°ut

N¢@ M¢8 _

we@in = A-- + -J- _in T - Nee
Ceout A

(3-13a)

(i - v¢@ v@¢) KII

A - Ee J = Ee
(i - Vce v@¢) DII (3-13b)

Configuration

h

Orthotropic

equal face sheets

unequal face sheets

in

h i

2

t
_÷h i

out

2

t
_+h I

2 2
h i + h o + 2hih o + 2hot

2(h i + h )o

2 2
h i + h o + 2hth ° + 2hit

2(h i + h o)

S-iS

.,...J



In addition, the Huber-ven Mises-Hencky effective stresses will also be cal-

culated.

2 2 2OF. - ae. o¢ o= oe ÷ ,÷ 3_ (3-i_)
In in zn in ¢in ¢81n

2 2 2_F : o - d@ o + _ + 3T
out Cant out ¢out ¢out ¢@out

These stresses are not aseful for design or failure criteria, since such

criteria are material dependent. However, they are useful for comparison,

since they com0ine all stress components in a consistent manner character-

ized by a single number. Stresses for the arbitrary stiffness parameter

(K and D) case are calculated using the appropriate Hooke's Laws of shell,

ring, or stringer.

Approximations to core transverse shear stresses in a sanuwieh shell will

be calculated as follows:

Q¢ ( 3-]-5 )

,t
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÷z

l

\

o

Top Ellipsoid

Specify a, B = b
a

Bottom Elli2soid

Specify a, B = i
or use ogive with

rl=a,C=O

Figure 3-1. Ellipsoid
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+z

Specify rl, C • 0

Figure 3-2. Oglve

S-18



+2

l= ,, _1

I
J

Specify n,a



+Z

J

2
Parabola z _ fl ÷ f2 r ÷ f3r

Speci_ l"1, 12, f3

Fll_ure 3-b. Pswabolold

_-i$



ro

in

i

out

!.

Specl _y r0

Vl_re _-b. _linder

_..i9



+Z

Speelfy ¢ _ 0

- • out

-¢ 1 In j

I J

Plate

Spect_ ¢ • 0



SECTION h

EQUATIONS FOR ORTI{OTROPICALS¥ REINFORCED SRESLS

As mentioned in Section 3, the dlfferential equations are written in terms of

stiffness p_rameters since a variety of wall crosaection geometries are to

be considered. There will also be cases allowed in the program, where

the stiffness parameters are input directly. Since this option will mcst

often be used to describe reinforced shells, the eccentricity of any re-

inforcement must be taken into consideration. To this end, some of the

differential equations derived in Section I must be revised, since new

stress-resultant to strain relationships must be used. In the case of

orthotroplc shell reinforcement, this relationship _omes as follows*:

Ne = Klle0o • KI2 c$ ° - C£1k 8 - NTe (_-la)

N$ • K22c _ K21 ¢8 . C22k_ _ NT0 (l_-Ib)
$o o

N_8 • N8_ • K33 Y_8 (k-lc)
o

Me • Dtlke ÷ Dl2kS • Ciiee - MTe (_-ld)
o

MS . D22k $ • D2lk e • C22¢_o - MT$ (',-le)

M$6 • -'465 • -2D33k$0
(_-If)

As can be seen, due to the eccentric reinforcement, fie and N$ are _nctions

of curvatures, and Me and MS also depend upon membrane strain. This was not

the case in Equation i-8.

* Refer to Appendix A for de_'ation and definitions of K, C, and D

parameters for several cues.



._nenew Equation _-1 thus requires • chanle in tour of the orllinal

differential and auxiliary rqutt!ons formed In Section 1. These changed

equations will now be obtained. By co=d_.nlng Equations _-Ib and _-le

first to eliminate k, and then qain te ellm_;,ate c , the followint dif-

ferential equations can be obtained: $o

rI rI r0

- w ÷ ÷ , _ (_-2b)

c2 2 Lr"_" U,ee u, e =t. $ ue rO

Utilizing the above solutions in Equations h-l• and h-ld, the new auxiliary

equations are obtained.

N0 " KI2

-I

22 ÷ D22 ÷ NT4 + D22

Vo ro _ "_r;;j .,.-, oo... w.,., .)

ll D22 _2 22--J _r o

*u, e sin ,}÷ "e cos.__**_
"o /

(b-3a)
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¢

J

|, •

,,--°12_2.c-/-I_,

r C r 0 C22 +

_ DI2K2_D2_ _+ ii C22 22

K22 ("_ * _*) I÷ NT¢ - C2-_
_9

_2_, -_

•_-_cj ]tVt ,0o.e ooro j
(L-It)

The Equations _-2 and 4-3 are the four equations which must be substituted

for their counterparts in the set of equations developed in Section I, to

adapt the earlier analFsls to handle eccentric reinforcement. These

revised equations are expanded in Four_cr Series as described in Section 2,

and presented for the necessary geometries below.

COORDINATE

k

_f

r 1 " r--_ ÷ 22 ÷ D22 ] ÷ NT_(n ÷ D22

K21(nU(n) VCnlcos,-d nl,in*)
r 0

- D22 r0 ro J
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c Yl8,¢ K22D22 1 N$ (n
r-"'_ = " 22 + _

) (.}
+ NT$ " G "'_/"")

K21(.u(_) v(nl , - w("),in_)- _ + co$
r 0

•--[ '_°,, __{oo_°,.,o,.°_.lo,}.oo,.o
C2;- r0

c 2]-1\. _ I I(,,.C")
NTe ( _ ro r0

I K12C2aD2%[K÷ V (_ cos _ - W (n) sin _) - ii + D22 22

=in _ - n2w(n) I * fie (n)

(h-_b)

L-he)

• -DI2 (C22 +
(n) x22 (M(.)

• NTO - C2G
_T$(• "))}- HTe(n)

K22D22T_ (nU(n)

" %1/_ ÷ V(n) co= $ - V(n) sin t)

D DI2K22D21 [C22ii C22

nU(p) sin ¢



CYLINDER

av(n)

ds 22 _'22 J { <_ ÷ NT_(n ÷ D22 4. M,I.,4_

_'0

(4-5,)

d_8 (n) K22D22 N¢(n)
d, " - 22 + _/ + ':T¢

(n) K22 (M(n) (n)-_ -_, )

K_, ,,l_,,c,,I)_[ .,,I ,,_,,Cnl}]I-_o(,,_< .__ ._{,,,:, _
c22 ro (h-Sb)

(n)
Ne C 2\-I

( I('
- Cll D22 D22 "

÷ NT ¢( ÷ D22 _ NT 8(n

(_-5c)

(n) '22 (M (n) n))l

[ K22D22-]'I_("d")w_._)

D DI2K22D21 [C22÷ ;.i C22

(_-Sd_

4_S



_:CNE

K21 (nu(n) + V (n) _ W (n)s cos _ cos _ sin #)

[ n']Ic22Ni i { .u("_ .i., - .2w("_} + %(
D22 s2 cos2@ -_

(h-6a)

dfieCn) <C K22D22,ylIN (n)(n) K2_..22(M(n) + MT (n))d'q- •" 22 + C22 ,/ + NTI " c22

s cos _ cos _ - sin

....:.__.K_2N11 {nU(_) ,l., - ,2w(")} +
C22 s2 cos2¢

(k-6b)

(n)
-22 | .(.) + .T(.) c2.___P.(Me(.) ÷ MT(.) (.)

• KI2 K22 ÷ D22 _ ÷ D22 " NT8

+ CO, _ S COl ) D--_2 j /, COl @ - ,in

Ii + D22 22 + D22 J / I i cos21

_e(n)). n2W(n)} +--_, (h-6c)
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u

(n)
Me • /"D12 C22 + C22 I

- _8 (n) +Is ellcos

IN Cn) (n) K22(M(n)+MT(n))I+ NT¢ - C2-_

+--_-;__ + c22 J /(nuCnl

+ vCn) cos _ - w(n) sin _) + IDII

DI2K22D21 ^

)/+  *n0-
C22 J s2 cos2_ s

(h-6d)

F-.

r

A.
#
¢

Although the stress-resultant to strain relationships (Equations h-l)

were der ?ed in Ap_endlx A on the physical basis of eccentric orthotropic

shell reinforcing, they can be used to describe other shell wall construc-

tion as well. This is possible in the program since the parameters K, C,

and D are direct input. It is only necessary to use the proper formulas

in place of those _iven in Appendix A to calculate the stiffness

parameters which are to be input. Although in Equations h-1 membrane

forces are dependent upon curvature and moments upon extensional strain,

these equations are not completely general, and thus cannot be used for

arbitrary layered shells. Fully general equations, adapted specifically

for layered shells, can be obtained in Reference 8.

When the reinforcement is not eccentric, simpler equations than Equations

l__t_, h-5, and h-6, can be applied. The necessary equations for this

case can be derived as in Section I, and they are presented belowe:

In this case the Hooke's Laws contain no coupling between bending and

membrane, therefore Cll = C22 _ O.
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COORDINATES

(a)

V_ _ w(n) ( K21KI2_ liNe(n) (n)
rl rl ÷ K22 q 7 + NT¢ - K11K21(NS(n) ÷ NTS(n))I

h-Ta)

(n) (D DI2D21yII+ M (n) (n)
_ m +

DII
(h-Tb )

= -- (n)_oon) Kz2(N_¢_)+ _T/_I)- _T8
K22

( KI2K21_[.nu(n) + v(n)cos_- w (n) sinai+ KII _22 / ro
(h-To)

(n3

CYLINDER

= DI2 (M(n)
D22

+ _e(n) cos _ 700

DI2D21_[.u¢"),i._Z2- n2w¢_)+ MT_Cn)} - MTe(n) + DII D22 / r0

--d_ " 22 Kn J .¢n)+._¢n).KZ_qK2Z(.eC.)+N_e¢.)

(h-Td)

(_-Ss)

/

N (n) NT( n) qK_[0(n) = Kp2KI-'_2( + n))" NTe( _" ii

KI2K21

(h-8_)

(_-8c)

:n)
Me

r_

D22

,I-8

. n2W(")]

rO 2 J
(_-8_)



,e, •

bf_

CONE

))}

Ne(n) KI2 (N¢(n) n) (n)= K2% + NT¢( )- NTO

+ (KII KI2K2I [ nu(n) + V(n) c°s # "' W(n) sin_]_22) s cos ¢

D22

nU n) n2W (n) £ (n)'i
DII D22 - +

The specific type of reinforcement which can be analyzed by all the pre-

vious equations has to be placed coincident with the coordinate axes of

the shell (e and ¢ or s). More complex reinforcement, such as waffle

construction rotated 45 deg from the coordinate axes, must also be

analyzed on the Saturn SII stage. The specific integrated Hooke's Law

relationships for this case are given belov (derivations and stiffness

parameter definitions can be found in Appendix A):

Ne = KII ee + KI2 e - (k e + k¢)
o ¢o Cll - NT8

N¢ = K22 e# + K21 s 9
o o

- Cll (k e + k¢) - NT¢

Nee = K33 YCeo 2 Cll kce

4-9

(h-9a)

(_-9b)

(4-9c)

(4-9d)

(h-lOa)

(h-lOb)

(h-lOt)



M8 = Dllk 8 + D].2k ¢ + Cll (e 8 + £¢o ) - _'e (h-10_)
o

!4 + + (: 0 + e¢o) - MT¢ (h-10e)¢ = D22k¢ D21ke CII o

M¢0 = -2D33kCe + Cll Y¢@o (4-10f)

Equations h-10 will also necessitate a change in some of the auxiliary

and differential equations derived in Section i. These revised equations

are given below. Eliminating k¢ and a¢o successively from Equations

l,-lOb and h-10e we obtain equations for v,¢/r I and _8,@/rl. Substituting

these equations respectively into the equations obtained by subtracting

4-10b from 4-10a and 4-10e from 4-10d we arrive at equations for N@ and

M@. Finally, equations for u,¢/r I and M¢e can be obtained from h-lOt and

4-10f, and Qe is obtained from equilibrium. Thus the revised equations

are provided below, already expanded in Fourier Series, for the

necessary coordinate systems:

COORDINATE

v,_(n) _ w(n)

r I r I + + + NT¢ * D22

(K CIJ_I (nu(n' V (n) w(n' ¢)
- 12 + D22 /r 0 + cos ¢ - sin

D2--_ r 0 ro_e (n)

(n) ICr I ii

÷ D22K22_-I I K22 n) (n) (n) (n)

l (nu(n) v(n)cos ¢ _ w(n)sin ¢)" - :o

4-.10



- ICll

(n)
U,_ _ u(n)cos ¢

rI r0

DI2K22 h ) n2w(n) n)c°s _)I"ellJ (sOl° inO-
(4-1Zb)

+ r--_'-- + 33 D33 / T¢8
+ M_e

\ r 0 D33/I

(_-].ie)

Ne(n)
(N¢ (n) + NT¢(n) ) 1 + (K12 - K22) 22+ D22 / - NT8 (n)

:i

_ (KI2 _ K22) ( Dl2cll i LI1022_ (nu(n)sin n2W (n)

\ K22D22 + Ci12/ _ ¢ -

Me(n)

1

+ ron@ (n) cos ¢) +-_0 (nu(n) + v(n)c°s ¢

(
- w(n)_in ¢) IKll - KI2 - (Kl2 - K22)

'_12 2;" L

22D22 + CI12/

= (Me(n) + MT¢(n) ) I1
+ (DI2 - D22)

ICll K22 > 12 ÷ D22K22

(h-lld)

MTe (n) (N¢ (n)_ _ + NT¢

4-11

<°_)_°_2-_I ( c_:
Ci12 + D22K22 /



l

c °n _l (n_(O)v(n)co_,+ (_12 - D22) (K12 " K22) ' 2 .... *
11 _" D22K22J r0

_ w(n)sin ¢)+ l(nu(n)sin ¢ - n2W (n)

r0

+ ro_e(n)eos ¢)
\ell 2+D22K22/

(_-iie)

Mce(n) = {_

sin @

r 0

K33 _ sin @/D33 sin ¢ c..).[_.oo.,o,/I I\ c_ ro

+ u(n) (cos ¢
r I

+ 2nw(n) cos ¢,

r 0

r0 r 0

+ (n) FD33 sin ¢ 1If%_ [ _ - (b-11f)

(n)
Qe 4 cos ¢= r0

2 cos ¢ Cll
r0

+ sin ¢ -
rI Cll r0K33

2r 0 Cll sin ¢ - ro 2 K33 - D33 $in2¢

1

rI

2 sin ¢

ro

K33 D33 sin2¢

Cll r02 CII

KB3D33

[ _ (n)

-2n B ,¢

CII r 0

(n)
2n fie rI cos $

2
r0

4-12

(n)
Nee



/

/;

i!! °

<

i
I

i
t

(o)
If m¢

COME

u(n) ( sin _ cos ¢ [rorl,¢ + rl 2 cos ¢]
÷

\ rlro rl2rO 2

(_0s2¢ - sin2¢) + 2rl c°S2¢r03sin _I + nV,¢(n)2

r 0

+ 2nW,¢(n) cos _2 - 2nw(n) ( sin-_-_2+

r0 \ r 0

2r I cos ¢

3
r 0

°÷ T¢°'¢ L CilrO + ToO(n) [' _llr"--O

D33 rI cos ¢ sin ¢]

CllrO 2 ]

(o) (o)
= fo = O, then Q8 = O.

(n)
nMe (n)

ro me

(4-11g)

= 22 + D22 I + NT¢ + D22

- 12 + D22 / s cos ¢ cos ¢ - '_in ¢

DI2CII > [ 1- k _ cn 2 _o,2¢
nu(n)sin ¢ - n2W (n))
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+ (KI2 - K22) iscos _ (nU(n) + V(zl) cos $ - W (n) ,in $)

CII

DI2K22h[ I .

+ C--_I )L2co,2,
nU n) sin ¢ - n2w(n_)

dU(n) U (n) nV (n)

ds s s cos @

No(n] = (N¢ (n) + NT¢

(n) + M_e(n) •

(_ c _\-_I+ -ii ] -
(n)) i+ (KI2-K22) 22 D22 ]

D33/_

(_-12c)

l CII

+ (KI_-K22) _K22D22

- _Kl2 \___ +c__ J [? oo,,_; _-

+ + -------- nu + v(n)cos ¢
s cos _t

(h-z2a)



, I

+ i 112 + D22K2e/J

IC D22K22_-I+ NT¢(n))(D12 " D22) ll + Cll ]

(D12 D22)(K12 K22)/C _/-l(_'_(nu(n)+ - - ll + \s eo_ ¢!

Is2 n2w(n))v(_l_o__ wC_i_ _) i _ (_<_ _ _ -+ - + eos2¢

_C 2

ii

DI2- (DI2 - D22 112

+ DI2K22_ {

+ D22K22/

(h-12e)

(
(n) | 4an ¢

M¢e = I
K33 tam ¢ (D33 tan ¢.,-I) Ik cll
el-_ - -T- V %1

r S S

, %e(_ [c--_7- -

(h-12f)
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[_ 2 cos _ (CI I sin @- sK53 cos _)= - 2SCll cos @ sin _ - s2K33 c°s2@

+ _ D33 tan;'_. \ Cll

- Cll" S2Cll J

(n)- D33 sin2j M_ O

._ . _oco____
s cos _ ds

÷ 2n_8 (n) dU(n)Itan @_ + u(n)(2 t'n _1 dv(n) I tan ' @}a--C-\ 2 ! s3 +n_ \s 2cos
S_COB

- \ s3co s %/ ds

(n)
nMe (n)
s cos _

(L-12g)

IS m_(°) = seC°)

CYLINDER

av(n) <Kd--_----= 22

(0) = O.
= O, then Qe

c_-_I -I.,_°_._,_°_Iii + NT% + D__2

- _2",_ I_ " \ '_

-
(b-z3a)
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_:°_(c D2_K2_":_ ("o:°__-7-" _ %..}_c_
+ - lq - NT¢

. (Kl2_ K22)-r0 " ii

+ CII I r 0

_-(_,(n) +N_,(n) i+ (Kl2- K2e) n2_ +D22/

_ <_:12- K_2}\K27_2 ÷ c ÷ %

(h-13e)

/D12011 - CzID22_l_!.(nU(n) - n_W(_))

" (KI2 - K22i _K22 D22 ÷ CII 2 / ro 2

+l

r0 " { _ _K22D22 + Cll I

(h-:3a)



(n)MO(n) = Me

_ 11+c--q-_/

/
D22K22_-I 1

-1

MOB(n) = ro Cll r 0 Cllr 0 _ ell

(_-13e)

+ r---jj_ LCllro

I I II K 3o33
/_0 CII r02 CII_ _

(h-13f)

+ as [%ciI i] %

[ d_e(n) av(n) ]
_ 2n _ n

Cll z0 _s ro 2 ds

If me (0) = f@(0) = 0, then Q8 (0) = 0.

(h-_3g)
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SECTION 5

SEGMENT STIFFNESS MATRICES

For each segment of the shell, we will require a relationship between the

edge displacements and edge forces in global coordinates. These are ob-

tained as stiffness matrices which are to be used in calculating the

elastic interaction of all segments making up the structure. The global

components in te_s of the local coordinates are, in accordance with

Figures i-i, 5-1 and 5-2.

{Fci_}=[i_]{f(i)}

{Fcj)}:IJFT]{fCJ)}

and

{A(i)} =I IDT] l+(i)l

PT 'I
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+si +ci 0

-ci +si 0

0 0 +i

0 0 0

-sJ -eJ 0

+eJ -sJ 0

0 0 -i

0 0 0

-si -el 0
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I
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(j)

(1)
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(5-3)



=[ TI

AT

AZ

AR

fie

(j) =
q

+I 0 0

0 -sJ -cJ 0

0 +cJ -sJ 0

0 0 0 +i

i

0 u

V

W

_0

(J) (5-h)

Where the letters in the I Force Transformation and J Force Transformation

matrices are £ines o1" sosines of %ior Cj, the meridional coordinates of

the beginning and end of the segment. (Similarly for the 2isplacements.)

These transformations hold for functions F(e,% i or J) and A(e,@ i or J)

as well as for the amplitudes of harmonics, F(n) (¢i or J) and

A(n) (¢i or J)" Only one harmonic at a time is considered. Thus,

the transformation matrices are hxh.

The set of influence coefficients represents the general solution of the

boundary value problem for conditions imposed on the edges of the segment.

In addition, there is a solution corresponding to each distributed loading

on the segment. Since the differential equations are linear, we expect

a linear relationship between segment edge forces and displacements.

Further, the edge forces for zero displacements are linear functions of

the loading for each problem. Thus we Leek matrices [k] and [g] such tha_

= [*ii: h0"]tip)']Si:,5J.] * [
8xP 8x8 8xP 8xP

(5-5)

The quantities [£] are the "fixed end forces" due to unit value distributed

loads; that is, the forces at the ends when displacements are zero and

the distributed loads are applied. The indices i and J indicate the be-

ginning and end points of the segment. When automating the theory, P will

be set equal to I0 in order to obtain the capability of analyzing a single

structure under I0 consecutive loading conditions within one machine sub-

mission.
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The differential equations are solved by Runge-Kutta forward integration

for different sets of initial conditions. Since there are four boundary

conditions for each edge, we would expect eight separate solutions to be

required to construct the 8x8 stiffness matrix. Additional solutions

are required for the distributed load. For s_plicity, these solutions

are obtained by assuming a unit value of a force or displacement. The

process is schematically outlined in Figure 5-B. In columns 1 through h,

successive unit values of local displacement with zero forceE are assumed.

In columns 5 through 8, the unit forces are applied and the displacements

are taken as zero. In further runs, the initial forces and displacements

are both set to zero and the distributed load cases are applied. The solu-

tions are obtained simultaneously by applying all the initial conditions

at once as an 8x18 (maximum) matrix into the Runge-Kutta integration

scheme. Each initial and load condition then will become an equation as

the matrix proceeds through the Runge-Kutta integration to the final values.

It should be noted that these assumptions, choosing both forces and dis-

placements at one boundary, are not inconsistent. It is permissible to

specify four on each edge, or to give all eight at one edge (or any inter-

mediate combination). The forces f(J) arising at the _th edge due to

initial displacements, I, and forces, 2, at the i th edge, and distributed

loading, B, are recorded in the matrix

_x(8+P)

Similarly, the displacements 6(J) are recorded in the matrix.

kx(8+P)

5-$



where P is the number of external loading conditions (maximum - 13).

Thus, the forces and displacements at the jth edge may he expressed in

terms of" forces and displacements at the i th edge.

maximum ease of P = i0 is used, therefore:

hxl hxh hxl hxh hxl8

For simplicity, the

',x3] (i

18xl

! !

fCi) (5-7)
hxl hxh 4xl hxh hxl8

18xl

From Equations 5-1 and 5-7,

I_(i_} : [_F_I[_l -_([;_1_ I,_(j_l - [_l
From Equations 5-6 and 5-8,

I_(i)l- 1,311_1)(5-8)

(5-9)

Using Equations 5-5, 5-8, and 5-9, and transforming the (6) matrices to

( A ) matrices _v Equations 5-3 and 5-h, vhere necessary, we obtain for

"P" loading conditions:

x(B+P) L k(ji) ' _(_)-"q(_l -

%
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I" "I

As canbe seen, it is necessary only to invert the hxh matrix iY2/ in

order to compute the matrix of stiffness [k] and fixed end forcesaJ [£]

Equation 5-10 is actually a more compact matrix formulation of Equations

5-8 and 5-9.

SOME STIFFNESS MATRIX [k] PROPERTIES

In the reciprocity law, the integral of forces must be used, thus, in the

linear case, the stiffness matrix [k] , is symmetric in the sense that

and

[k(ii)] = [k(ii)] T, Ik(JJ)] = [k(JJ)] T

[k(Ji)] - ro(i)
r0(J ) [k(iJ)] T

We shall find it more convenient to utilize the fully symmetric matrix

and

[A]
'2_ro(i) I 1

'
" U0,i]

l



sot.at [_I ÷ I¢] (5-_11

I¢I
where

: [_] [_l

/X

F(J

2_ro(i) F(i)

2_r0(j) F(J)

A
Where "F" is in units of force/unit length, and "F" is measured in units

of force.

IDENTIFICATION OF SEGMENT PROPERTIES

In order to identify data in the subsequent discussions and in caleula-

tions, the following notation is introduced.

s[AF](n) = s[Ak](n) siAl(n) ÷ s [A](n)

or, in greater deta_l,

IF 1 l-l.k__l(n) I I(') I_,(i_P 1 (n)

A (n) k(iJ A(ip) )

(iI ) (ii) _

....... • _.LJ(jpl] sL"(ji'I .k .L"J_'.J

8xP 8x8 8xP 8xP
(5-12)

where the following symbols are used:

s,i,J The s th segment connects Joints i and J. The i and J appear

in parentheses next to the main symbol. Right-hand subscripts

are reserved for component directions or total and reduced

stlffnesses.

Fourier harmonic

A Denotes total force



HARMONIC JOINT LOAD PHYSICAL CHARACTERISTICS

The expansion in a Fourier Series results in a separation into physically

distinct effects. The 0 th term (n = 0) is the axisymmetric case. It

includes net axial forces and net torsion. The first harmonic (n = I)

is the antisymmetric case. It includes net lateral loads in the X

direction, and net moments about the Y axis. The remaining harmonics,

n = 2, 3..., are self-equilibrating systems.



Figure 5-1. Typical Shell Segment
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Figure 5-3. Calculations for Stiffness and Load Matrices
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SECTION 6

STRUCTURE MATRICES AND STIFFNESS ANALYSIS

3-¸¸¸

'-7;

-L

In order to calculate the interaction of the segments comprising the

structure, the "direct stiffness method" is used (References 5 and 6).

Familiarity with this method will be assumed in the following discussion.

To increase zhe capacity of the program, the shell segments will first be

coupled into regions. These regions are defined as singly-connected shells

with no internal concentrated line loadings (Figure 6-1). The next step

is to construct the region sziffness matrix I _ and the matrix of fixed-

end forces L R . This requires splitting each segment's [k] matrix znto

its four bxh matrices and inserting the portions into the region stiff-
A

ness matrix in accordance with the topological arrangement. The [i']matrix

is similarly split into two hxP matrices. Thus, in addition to the geo-

metric description of each segment, its position in the assembly must be

specified. To this end, all segments begin (i) and end (J) at a Joint.

The s th segment is said to connect the ith and jth Joints. (Not the jth

and i th Joints, since direction of increasing coordinate within the segment

must be from i to J ). To allow for the possibility of discontinuous

centerlines within a region, kinematic links must be included. These links

are rigid pieces which relate displacements across a discontinuity. Thus
i- -i

llnk matrix ]SKL] must also be formed. Due to the topology anda kinematic
i. J

line-load requirements for regions, the equations of the coupled segments

will be the following:

A . - A

FiR LiR 1

F jR

(SxP)

I

I

KII t KI2

I

I

!
(8x8) I

I
I

K21 I K22

- q
AiR

i

I

LjRI

(8xP)

(6-1)
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where.

F ii I 12 i IK'll;,'K'llIS Lll S LII
LiRI

LjRI

_ L

= SKL

I L iR

I

L,jR 1

and where JR, JR refer to the region initial and final points, and the

[A], [K'], and [L'] are the deflection, stiffness, and load matrices of

internal segments. If there are no internal kinematic links, [SKL] will be

an identity matrix. Partitioning Equation 6-1 will yield:

_ A [C][_] [C],o, : ][_].._ _ ,___I "R I KII R

_ _. [ ][][,] _-_oI =K2_j t_] + K__2 A +

Solving Equation 6-2b for [A] and substituting into Equation 6-2a yields:

A A A

[_R]-- [KR][_R]÷ [LR]
8xP 8x8 8xP 8xP

(6-3)

where

A /_ /k /k -I /_ )[_] : [Kll ] - ( [K12][_22] [K21]

A A A A -i

The n_xt step is :o constr,,ot the total structure stiffness matrix _]T

and tLe matrix of fixed-end forces [A]T. This again requires splitting

each region's IKR matrix into its four hxh matrices and inserting the
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portions into the total stiffness matrix in accordance with the topological

of the structure. The [i_] matrix is similarly split into twoarrangement

_;xP matrices. Thus, in addition to the geometric description of each

region, its posit_on in the structure must be specified. To th_s end,

th
again ell regions begin (i) and end (J) at a Joint. The s region is

.th jth jth ithsaid to connect the i and Joints. (Not the and Joints,

since direction of increasing coordinate within the region must be from

i to J). If there are M Joints, the total st<ffness matrix is 4MxhM,

since there are four degrees of freedom at each Joint. Hence for

equilibrium at all the Joints,

[F]T : ÷ [LIT (6-h)

where M is the number of Joints, and subscript T denotes T_otal. This

equation characterizes a structure free in space. The singularity of the
A

matrJ_ [KIT for axisymmetz:e and antisymmetric (n = O, l) cases may be

physically interpreted. The stiffness matrix permits calculation of all

_rces due to all displacements; thus the inverse would relate displace-

ments to forces. But the displacements are not unique, and one valii

solutlon may differ from another by rigid body motion. Hence, we cannot

expect such a relationship to exist; the mathematical manifestation is

singularity. However, the total stiffness matrix of a complete shell of

revolution need not be singular. For harmonics greater than unity, the

forces are self-equilibrating systems and, since the displacements follow

the same pattern, there can be no rigid-body motion.

R_DUCED STIFFNESS

It is necessary to specify restrictions on the displacements such that

rigid-body motions are prevented or specific support condltions are met.

This is done by means of a "Boundary Condition" matrlz [BC(b)] for the

b th boundary condition,

{_(bllT " [BC(bl] {_(bl}r for qg_,_ (6-_)

4Mxl hMxq qxl

$-S



where q is the nmnber of degrees of freedom, subscripts T and F denote

and Free. The displacements {A(b}}T are in the global coordinates,T_otal

T, Z, E, _e' The free, (non-zero) displacements may be in the global

system, or they may be rotated through some angle. This may be done,

for example, to p2ovide a roller-on-a-ramp restraint for an edge. The

[BC(b)] matrix consistb merely of an identity matrix without the columns

corresponding to fixed coordinates. If, however, +here are some rotated

coordinates, trigonometric functions will appear. In addition, there

may be specified relations between the displacements of one Joint and

another. This occurs (for example) at discontinuities in thickness or

at multiple discontinuities. The [Be]matrix is developed for the simple

structure of Figure 6-2a. We have an assembly of conical shells with a

discontinuity in thickness. At the discontinuity, the median surface

shifts and a kinematic link (2-3) is needed, as shown in Figure 6-2b. The

upper edge is attached to a very heavy boss. The lower edge is to be

supported by membrane forces. Let us assume that the load is distributed

axisymmetric pressure.

The displacements at each of the free Joints are given in Figure 6-B.

Joint 3 is kinematically dependent on Joint 2 as indicated by algebraic

relations. Joint 5 is a support point where membrane stresses are

assumed to exist. The coordinate system is, therefore, rotated so that

the edge is supported on "rollers". Instead of Az and AR, we have A¢

and A, the meridional and normal components, where

= (6-6)

w At -cos ¢ -sin AR

it Joint 5, ¢ = 8, and we set A¢ = 0 for support. We see by inspection

that the structure is statically supported for all possible ioadings. If

this is not true, the reduced stiffness matrix, which relates forces to

t'ree displacements, will be singular.

Now let us construct the boundary condition matrix KBC] for this structure.

_ssume that the tangential displacement is zero at Joint 5 but that others

are free to move (although they will not displace under pressure loading).
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}<

E

.,'i_,-a 1 1 that

|Az I

Then we have

hMxl hMxq qxl

AT(l)

Az(1)

_R(1)

ao(1)

_T(2)

_z(2)

_R(2)

_T(3)

AZ(3)

_R(3)

no(3)

nz(4)

nR(_)

AT(5)

nz(5)

nR(5)

no(5)

and in greater detail:

I I I
--I_1_
_1_1

I I

I I,
I I
I I

_t l_
112_

t I
I I
I I

_1_1_
I_1_
I_1_

I I
I I

II

I I
I I

_1 I_
I I
I_1_
I I

I I
I I
II
I I
I I
I I
I I
I I

m

I I I I
Irn(2)l

I-_(3.__.)1
IZo(3)1

t r*o m_

_I_I_
IJ_

_U_
l I
I I

_l_l_
I I

I I
I I
I I
I I

--I_I_
_I--I
_I_I--
I I
I I I-o,
I I I-.,

J

II I I
m

B-$

(6-7)

AT(1)

_z(1)

aT(2)

AZ(2)

aR(2)

ae(2)

AT(_)

_R(h)

ae(&)

_(5)

ae(5)

(6-8)



NOTE

There is a blank row for each displacement specified as

zero (fixed). There are no components for the dependent

Joint 3 in the right-hand Side. The kinematic relations

are given in the [BC] matrix. The meridional component

A$(5) does not appear since it is fixed. But the per-

pendicular component A_(5) eontrlbutes to both AZ(5)

and AR(5).

By a similar procedure, it m_7 be shown that the forces in the directions

of free displacements may be expressed in terms of the total forces. This

relationship is

=[BclTleft
A A

Corresponding to A S and A , there are free forces F¢ and F .

exampl_, they are equal to 2_r0(j) N¢(J) and 2_r0(j) J (j).
th

at the i edge, there would be a change in sign. In general though,

the direction denoted by _ and & need not be related to the shell. It

is specified separately.

Thus, from Equations 6-_ through 6-6 and Equation 6-9:

(6-9)

In the

If applied

/%

I_I_ [BC] T A[KITCBe]I_IF CBc]T ^= ÷ ILIT (6-1o)

/k A ,_

IFIF--[Kb I_IF + ILIF (6-n_

A

" -ILIF) (6-12)

where
A ,%

[_,]_ =- [K]F-1 (6-13)

!he total displacements are then calculated from Equation 6-5

{_IT " [BC] {_IF

6-6
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Thus for the region ends, combining Equations 6-1h and 6-12

A A A

and in the interior of each region, for each segment

A -I _ A

(6-15)

(6-3.6)

j

FINAL STRESS DISTRIBUTION

We must obtain the forces and displacements at the i th edge of each seg-

ment to use as initial values in the integration of the differential

equations. Since the variables in the differential equations are given

in the local coordinate system, from Equation 5-3, we seek

l_(i)l= [ZDT]T l&(i)l

From Equations 5-1 and 5-5,

(6-17)

r

"_),,

_5-

i
t_

f

where the &(i) and A(J) are obtained from Equation 6-16.
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SECTION 7

AXISYMMETRIC NON-LINEAR ANALYSIS

The previous sections all dealt with linear shell analysis. Geometric

non-linear effects in the axisy_netrie ease can be included by the

use of a simple iterative analysis and some additions to the shell

equilibrium equations. The revised axisy_netric (n = O) equilibrium

equations are as follows:

T

INDEPENDENT VARIABLE, ¢

(o)

T¢@,¢ = _2T¢8(0) cos ¢ (0) cos ¢rl__ _ sin ¢1
q ro "¢e ro [rl _0 J

(0) (0) sin ¢

" fe - m¢ ro

(0) _ *j¢(0)
N¢,¢ N (0) cos_.___¢+ NS(0) cos ¢ + f¢(0)
r I ¢ r0 r0 rI

(o)
N¢(°1

cos____/¢_ Ne(0) sin ¢ (0)*J¢,¢ _ J¢ f
rI r0 r0 rI

(0)

M¢,¢ _ Me(0) cos
rI r0

-- _ Me(0) cos ¢ + j¢(0) + me(0)
r0

where the nonlinear terms are defined as follows:

,o,° o0,0,]
= J¢ -_( no(°)j¢(0) * (o) o)

fe (0) . Fe(0)

7-I

JN

(7-i)

f (0)

(7-2)



( v 0,oo,,w(o [lf(0) = F_(°) Z ÷ ro r-[ ro I rz

(0) O)
- F _e(

( v(0o(o) --F (o) i ÷ _. w(O) 1 +_ ÷
f% _ r0 r0 rI

+ F¢ (0) _e (0)

These terms are essentially components of the membrane forces and the

pressure loads in directions normal to their original lines of action

(Figure 7-1). Similar components of the transverse shear forces, Qe

and Q_, also exist, but for thin shells they are usually neglected

(Reference 3).

The equations specialized for other geometries are:

CYLINDER

(o)
dT_8 _ (0) 1 (0)

ds f8 - r-_m¢

* (o)
d J, _e(°)

.... re(°)
r0

dM (o)

ds = j (o) +me(°)

(7-3)
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where the nonlinear terms are defined as follows:

j (o) =*j (o) __(o) _e(O)

_(o) = _o(o)

w(°) av(°)_ (o) o)
(0) = F (0) 1 - -- + -

"_ _ ro q'_J F_ no(

w(0) av(O_) ' F¢(O) O)(0) 1 + --- + n_(
f(O) = F ro as

(_-_)

[,.

CONE

dT¢e(O) 2T¢ 9(0) Mce (O)tan _ (0)

= - --" + feds s 2
S

(o) _(o) No(O)
ands = - --s +--s - re(O)

d*j¢(O) j¢(O) N8 (O)tan @ (0) ** (0)
= ...... f - f

ds s s _

(o)
._m__

ds Me(°) _ + j¢(o) me(O)
= _ - S +

where the nonlinear terms are defined as follows:

**f (0) =-sl I_¢(0) _e(0)}

j (0) -- "j_(O) . _ (0) %(0)

fo (0) : F0(O)

7-8

(o)
me tan ¢

(7-5)
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v(°) w(°)tan ¢ dV(°)_ _(0) O)(0) = F (0) 1 + + -
f_ _ s s -_--! he(

dV (0)) F¢(O) (0)v(°) w(O)tan ¢ + + _e(o) _ F (o) 1 +-- -
f_ _ s s

The capital F's in all the above equations are the actual distributed

loads applied to the shell structure.

In this presentation, the capability for axisymmetric non-linear torsion

analysis is omitted.

The numerical procedure used to solve these differential equations is

entirely analogous to the linear case described in earlier sections.

The equilibrium equations given herein are coupled with equations

obtained from Hooke's Laws and the strain-displacement relations; for

instance the latter portion of Equations 3-1 for unreinforced shells.

The matrix procedures described in Sections 5 and 6 are then utilized

as previously. First, however, the equations are linearized by

assuming a value for Ne. This will also destroy the symmetry of the

"stiffness" matrix, since Maxwell'_ Law of reciprocity holds only for

linear systems. In the mathem_.tical sense, we may now regard this as

an arbitrary linear boundary value problem, since the equations have

been linearized by the assumption of N . Thus the "stiffness" matrix

[k] now simply represents the quantities {F} as a linear combination

of the quantities {A}. Of course, it is understood that the relation-

ship is linear only for the special loading case which produces the

particular assumed N¢ value. Thus for the non-linear case, use of the

matrices [k] in Sections 5 and 6 may be regarded only as elements in

matrix algebra, and no assumption of symmetry is required. However,

the physical interpretation still exists in the linear cases.

'[he iteration procedure for a non-linear analysis would then operate

as follows:

i. A value of N_ is obtained for a first approx_matlon. This

* %



valu_ may be obtained by a hand computation utilizing membrane theory

or a full linear bending solution of the problem.

2. Utilizing this value of N as a constant, a solution _

obtained for the linearized system of equations.

3. The solution for Ncfrom step 2 is compar_a with the assumed

. If the agreement is not close enoug>. _he N value is used as the

new assumed _ .

4. Steps 2 and 3 are repeated until the agreement of N¢ with --i

is within the accuracy desired

p_
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APPENDIX A

DERIVATIONS OF INTEGRATED HOOKE'S LAWS

One method of obtaining the necessary relationships between stress-

resultants and strains for eccentrically reinforced shells is basically

an "equivalent energy" approach. First we obtain the energy of the com-

posite system in terms of stress-resultants and strains, and then equate

it to an equivalent shell energy expression. Since the necessary

equations for an orthotropie sheet are known (Equations 1-7 and 1-8),

only the equations for the eccentric stiffeners have to be cast in the

proper form.

Consider the strain energy of a circumferential rib:

l_ < 2/r0< E8 2 OSJe 2/O_rO k6¢2d61
ue = Z 7 _ _Aeae +-_-- (A-i)

k=l eT k

"5

where n is the number of circumferential stiffeners, and the rib is

assumed to have the same twist as the shell., If the stiffeners are

spaced a distance S e apart, Equation A-I can be rewritten as:

o0.0/-o]ue = -_e 7 eT -_-
0

Substituting for the total strain in terms of centro_dal strain and

curvature, and using the assumption that the stiffeners are integrally

connected to the shell and remain so after deformation, we obtain

Ue -- s--_ / Ee (%0- _ke)2aAeae+7- ke_2de d@

0 Ae 2 0

!- A-i



Simplifying:

S 2_r0/EeA 0 E0 2

Ue = s-_l / / ______ c8 2 E8CeAeCe ke + __ isk 8
0 0 o o

GeJe ke¢21+_ dea¢
(A-3)

where:

aA e = A e /¢dA e = teA e /¢2dA e

A e Ae Ae

-- Ie

Similarly, the stiffeners in the meridlonal direction have a total strain

energy of:

+G_2-_ k¢e21 dSd¢
(A-4)

The strain energy expression of a particular shell sheet is

US = -_i NBeB o+ N¢¢¢o+ Mek e - Me k¢ -2M¢ek¢e ded¢

0 0 (A-5)

Equa+ing like terms of Equations A-3 and A-_ to A-5 we can obtain the

additional terms to expand Equations 1-8 which were written a_

Equations h-i in Section 4.
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E_h F E@RA@ •

Ne :) o

: 7 :e + '* _ + " c S kN I-_ +¢ $_ e S ¢o ¢ ¢ - NT¢

(A-6)

Nee : Gooh _:e
9

-Eeh3 [ ] EeRie EeRCeAek e ve_k ¢ - _ ke ce - MTeMe - 12(1-_¢eVe¢) + +" ST o

G J G 8 J_
-G.nh _ Cp t R "

* - t _,u 2S n k¢o

where A : area of _'einforce_ent

C = eccentricity of reinforcement f'ro_ shell middle surface

(inwards positive)

I = moment of inertia of reinforcement about_= _llcer_rolda_lax_

J = crossection twist constant of reinforce=_nt

S _ spacing of reinforcement

subscripts 8 er¢ indicate coordln_te directions, and subscript R refers

to reinforcement properties.

.G
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Thus the stiffness parameters in Equation 4-1 are defined as follows:

Eeh EeRA8 E_h E¢RA¢

KII = l-_¢e_e¢ s s K22 l-_¢eVe_ s¢ (A-Z)

vecE0h _¢8E¢ h

KI2 = i__¢8_8¢ K21 = i__¢8_8¢

ESRCeA8 ECRC¢A ¢

Cll = S e C22 = S¢

-E@h 3 ECRI ¢

K33 = G¢eh D22 = 12(i-9¢6_8¢) S¢

-Esh3 E_RI8 -_@eE@h3

DII - ]2(l_v¢ewe¢ ) s e D21 = 12(l_U¢eVe¢ )

o¢ J_
-ve@Eeh3 _ _R _+ GeRJ8

DI2 = 12(1-_¢8_e¢) D33 = 12 + 4s¢ hs 8

Utilizing the orthotropic identity, KI2 = K21 and DI2 = D21.

The Equations A-6 are somewhat approximate. Firstly, since the re-

inforcement properties are "smeared", the equations will not be accurate

where the reinforcement is widely spaced. To this end, when loading a

shell with a high circumferential harmonic (n) loading, one should check

if the load peaks attain closer spacing than the reinforcement. If this

is so, the Equations A-6 are not applicable. The load patterns should

similarly be checked in the meridional direction. Secondly, due to our

first order theory assumption that Me = -Me¢, the torsional constant is

only approximate in cases where reinforcement properties GJ/S are not

equal in the two coordinate directions.
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The above derivations are valid when the reinforcement coincides with the

coordinate directions of the shell. If the reinforcement is rotated,

such as in a waffle orLented at 45 degrees, extensive revisions are

necessary. Such equations, applicable only to a 45-degree waffle

construction are derived in a different manner below (Reference 9).

The rotated rib grid stresses are:

tER [ _¢o )=-- + - _ (k¢°e 2S (E8o

_¢0 2S Ce°

J+ ke) = o¢

(A-8)

When the above equations are integrated and added to the sheet stress

resultant Equations i-8_ the final set is obtained.

E0h [_ o] + ERA ERACN_ - i-_¢e_¢ eo + v0¢_¢ _-(c0o + E¢o) - 2---_(ke + k$) - NT6

(A-9)

E@h [¢ l ERA ERACN¢ + _ (_0 + E ) - -- (k 0 + k¢) -
= i-_¢_v@¢ $o $0_@o_ +_- o ¢o _S NT¢

ERA ERAC

N¢0 = G¢ohY¢o ° +_-_--Y¢0 ° S k¢0

M0 = i2(i__,0,;0¢) k 0 + ,.,0¢k¢ - _ (k 0 + k¢) + _ (_0o + _¢o) - MTO

-E,h3 [k ] ERI ERAC

= _ ERI ERAC

MCe 6 k¢0 S kCe +_-_"-YCe °
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where A = area of reinfcrcement

C = eccentricity of reinforcement from shell middle surface

(inwards positive)

I = moment of inertia of reinforcement about bask shell ce_troid_laxis

S = spacing of reinforcement

and subscript R refers to reinforcement properties.

Thus the stiffness parameters in Equation h-10 are defined as follows:

Eeh ERA E#h ERA
= +- = +- (A-10)

KII l-v#Ov8# 2S K22 l-v@sve_ 2S

us# Esh ERA _#8 E h + ERA

KI2 1-9,e_e# 2s K21 1-958_8_ 2S

ERAC ERA

Cll = 2-_-- K33 = G*eh + 2--_--

-Eeh3 ERI -E_h 3 ERI

DII = 12(l-_e_e,) 2s D22 = 12(l-v_eVe#) 2s

-Vet Eeh3 _ ER__I -v%8 E#h 3 ERI

DI2 = 12(l-v_evS#) 2S D21 = 12([-v@eve_) 2s

G#sh ERI

D33 = 12 + 2"-{-

Utilizing the orthotropic identity, KI2 = K21 and DI2 = D21.
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APPENDIX B

AFPL!ED EDGE LOADS

--%-

In utilizing the prcgra2.., it is frequently necessary to apply forces at

the edge of the structure. We first note some relations between the

internal stress resultants and global forces in the rotated system. Re-

ferring to Figure 5-2, we see that it is necessary to distinguish be-

tween the i th and jth edges of the loaded segment. For any harmonic n,

FT(

F(

J

i)M(j

n)

= _+

-i 0 0 0

0 -I 0 0

0 0 -] 0

0 0 0 +i

i

T_e(j

i

N, (j

i

J, (j

M, (_1

(n)

(R-_)

.th

where the t corresponds to the _th edges.
J

As in Equation 6-7 for rotated displacements, the rotated forces are

given by

(n)

F T

F Z

F R

M

i 0 0 0

0 -s_ -c¢ 0

0 +c¢ -s_ 0

0 0 0 i

(n)

F T

F¢

F&

M

(B-3)

We now relate the resultant external loads (_) to the magnitudes of

distributed loads. These will involve only the 0 th and Ist harmonics.
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AXISYMMETRIC LOADS (n = 0)

We may write directly

F Z

+x +y

ANTISYMMETRIC LOAD (n = i)

M Z

= 217r0

0 1 0
r0 0 0

FT
(o)

F z

F R

M

Here, the integration of the distributed forces is not obvious.

21T

0

_X--_ro [-FT(1)+ FR(1)]

2_

0

cos 8

0

2_" 2'_

0

_r 0 [-roFz(1)÷ M (I)]

m _r 0

{% -ro

÷X

(1)
FT

÷i 1 FZ
0 + FR

M

(B-h)

(_-5)
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SPECIFYING LOADS

_:en the loaded edge has standard coordinates, Equations B-4 or B-5 are

used to determine tke forces FT, FZ, FR, and M in terms of the net applied

loads. In the axisyr_etric case, this is straight forward; contributions

to _Z are made only by Fz(O) aI_.i there is a similar relation between _Z

(0)
and F T

However, in the antisym_etric case, there are four unknowns and only two

equations. Thus, additional data is required. Often, these loads are

a region of assumed membrane stress; then FR(1) = 0 (cylinder)applied in

FZ(1) i)or = 0 (plate) and M ( = O, since these are transverse shear and

bending stress resultants.

When the loaded edge h_s rotated coordinates, use of Equation B-3 with

B-h and B-5 yields:

_Z

Fz

= 2_r 0

F T

F¢

F

M

(o)

(B-6)

and

= _r 0

[I ÷c¢ -s¢ 01
rose rOc¢ +i

(1)
F T

F¢

F

(B-T)

B-3



In thq axisymmetric case, _Z nov depends on F¢ ani F t. For memLrane

support, F_ (0) • O. Then FT(O) and Fv(O) are uniquely determined. In

the antis2_metric case, membrane support implies F_ (I) = M (I) = O. Then

I = "tO

which permits evaluation of FT

FT
F¢

(l) (t)
and F@ .

(l)

(5-7')

CHECKING RESULTS

It is frequently desirable to be able to calculate net loads at a cut

section, or a built-in edge.

From Equations B-l, 5-2, 5-6 and B-l, B-2, B-7 respectively we have

T¢O( j )

1(

i

k M¢(j) ;

(o)

and

(5-98 )

2.r 0

Im I=%1

r-6e'1'

]
o _,(j

i}
*I J¢(d

i)
S¢(d

(i)

I

I

where the sign is chosen to correspond with the edge, i or J, on which

the applied force l0 desired.
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