## NASA CR LU

September 8, 1969
QUARTERLY PROGRESS REPORT
CONVOLUTIONAL CODING TGOHNIQUES
FOR DATA PROTECTION

NASA GRANT NGL-25~00L:-026

Submitited to:
Flight Data Systems Branch NASA Goddard Space Flight Genter Greenbelt, Nr, 207?l.
ATI: Dr. Fobert W. Rochelle (Code 710)
and National Aeronauties and Space Administration Washington, D. C. 20546
ATP: Miss Winnie Mo Forgan (Code - UST) Techrical Fevorts Assistant

Principal Investigator: Dr. Janes I. Massey
Professor of Electrical Engineeriog Univ. of Notre Dane Notre Dame, Ind. 16656

Research Assistants:
J. Chang
D. Costello
J. Geist

Research Period Reported: May 15, 1969 to Auglist 15,1969

1. Research on Inverse Systems

Previous work performed under this grant has demonstrated the fundanental connection between properties of convolutional codes and inverses of linear sequential circuits. A by-product of this research was the developnent of general inverses for linear sequential circuits (ISC's) and.continuous dynamical systems (CDS!s). This work is reported in the following journal article, preprints of which have been furnished to NASA but reprints of which are not yet available:
M. K. Sain and J. L. Massey, "Invertibility of Linear Time-Invariant Dynaniical Systems," IEEE Trans. on Auto. Control, AC-14, April 1969, pp. 141-149。

This paper shows how to construct an inverse, where one exists, for an m-input LSC (or CDS) such that each cutput of the inverse when cascaded with the original system is one of the inputs to the original system delayed by $L$ time units (integrated $L$ times).

During the period reported here, the investigators have shown that the techniques in the above paper can be extended to apply to the case when each of the inputs is recovered with individually the least delay (the least integration) rather than with uniform delay (integration). This work will be published as:
M. K. Sain and J. L. Massey, "A Modified Inverse for Linear Dynamical Systems," to be presented at IEEE 8th Adaptive Processes Symposium, Penn. State Univ., Nov. 17-19, 1969.

Preprints of this article will be furnished to NASA in the near future.
2. Simulation of the Jelinek Sequential Decoding Algorithm

Our last Quarterly Progress Report reported some preliminary results
based on the computer program being developed for the UNIVAS 1107 coniputer to simulate the new sequential decoding algorithm proposed by F. Jelinek in the following report:
F. Jelinek, "A Stack Algorithm for Faster Sequential Decoding of Transmitted Information," Tech. Rpt. , IBM T. J. Watson Research Center, Yorktown Heights, N. Y., 1969.

Our preliminary work had led us to pessimistic conclusions regarding the decoding speed for this algorithm compared to the Fano algorithm when both are simulated on a general. purpose digital computer such as the UNTVAC 1107, However, further programing simplifications together with a valuable suggestion which the investigators received from $F$. Jelinek have caused us to change this conclusion considerably. A new version oi our Jelinek simulation program has just been completed which we consider to be about the best possible that can be done on the UNIVAC 1107 computer. Comparison to the results of our Fano algorithm simulation program which we believe to represent comparable programning sophistication indicates that the Jelinek algorithm can be implemented on a general purpose computer with a considerable gain in decoding speed when the code rate is approximately $\mathrm{R}_{\text {comp }}$. In general, whenever the number of Fano computations exceeds about 2 or 3 times the number of decoding decisions on information bits, our results indicate that the Jelinek algorithm will decode the frane faster with greater savings as the computation is further increased. Production runs with the new algorithm are still in progress. As soon as these are completed within a few weeks, a detailed report will be made on this simulation. However, we would already encourage the idea that it may be very economical in computer time to convert fron Fano sequential decoding to Jelinek sequential decoding.
3. Comparison of Various $R=1 / 2$ Convolutional Codes for Sequential Decoding

During the period reported here, Mr. D. J. Costello who has been a research assistant under this grant completed the requirements for his Ph . D. degree in electrical engineering. His thesis will be published as the following technical report under the grant which is now in preparation:
D. J. Costello, Jr., "Construction of Convolutional Codes for Sequential Decoding, $" U$. of Notre Dame, Dept. of Elec. Engr. Tech. Rpt. EE-692, August 1969。

This report contains numerous nev techniques for constructing good convolutional codes as well as several new upper and lower bounds on verious distance measures defined for convolutional codes. The report will also include the detailed similation results for 13 different $R:=1 / 2$ codes of meriory 35 (i.e. a constraint length of $1+35=36$ branches or $2 \times 36=72$ bits.) The remainder of this report contains an extract from that section of Costello's report dealing with this simulation. This data is reported here since it may be of use to various personnel within NASA. independentiy of the rest of the Costello report.

1. Brief Description of the Simulated Sequential Decoder.

In order to test the codes constructed in this chapter along with other known good codes, a sequential decoder was simulated on the Univac 1107 at the University Computer Center. Two simulations were made, one for a BSC and one for a Gaussian channel. Each program consists of four parts: a main program DECODE for reading in data and printing out results, a subprogram RANGEN for generating random noise, a subprogram TABSET for converting the random noise into tabular form suitable for the sequential decoder, and a subprogram SECO for the sequential decoding algorithm. Special thenks. are due to Dr. K. Vairavan, who programmed both the RANGEN and TABSEP subprograms, to Mr. John Geist and Mr. James Wruck for their nunerous contributions to the efficiency of the programs, and to Mr. J. Chang and Mr. John Brennan for the preparation of the Gaussian program.

Each subprogram was written in assembly language to make the program as fast as possible, while the main program was written in FORTRAN to facilitate the input-output. Input information needed for the operation of the BSC program is as follows (for a complete discussion of sequential decoding parameters, see Gallager [25]):
(1) channel error probability $p$;
(2) the memony $m$ of the code:
(3) the generator of the code being tested;
(4) the threshold increment of the sequential decoding search; $H=$ CONMET $\times \Delta$ where $\Delta$ is the true threshold increment of the Fano algorithm;
(5) a constant CONMET used to spread the difference between the metric values; CONAET $=8$ was used in all the simulations reported here.
(6) bins for the number of computations.
$\mathrm{R}_{\text {comp }}$ and the metric values are then computed
from $p$ and CONET. The threshold increment Hused in the production runs was determined experimentally. The value of $\Delta$ which optimizes the bound on computation is known to be 2 [3]. Since CONMET was chosen as 8, the "optimun" H. is 26.

However, through testing a sincle code for different values of $H$, it was determined that choosing $H$ to be 32 was a better choice from both a computational and probability of error standpoint. These results are shown in table 6.12.

Each production run consisted of 1000 frames of 256 branches(blocks of information digits) each for a particular code and a particular channel errorprobability p. A frame was cut off and considered to be "erased" if it reached 50,000 computations. If a frame was decoded perfectly, it took ( $256 \div \mathrm{m}$ ) computations since 256 information blocks generate $(256+m)$ transmitted blocks and the algorithn would count one computation for each correctly decoded block. Hence the computational bins are just numbers inclusive between $(256+m)$ and 50,000 which record ho: many frames reached or exceeded that number of computations for decoding. Usually 13 computational bins were chosen for each production run.

In the Gaussian program the signal-tomoise ratio $\frac{E_{b}}{N_{0}}$ must be read in instead of $p$, where $E_{b}$ is the energy per information digit and $N_{0}$ is the noise power spectral density. Then the procedure outlined in Jacobs [33] is followed to compute the metric values needed by the sequential decoder.

Output information available from the BSC program includes the following:
(1) the actual branch metric values and $R_{\text {comp }}$;
(2) for each decoded frame:
(a) the number of computations;
(b) the number of decoding emrors:
(c) the last branch decoded if the frame is erased;
(d) the received sequence;
(e) the decoded sequence;
(3) for the entire 1000 decoded frames:
(a) the number of erased frames;
(b) the number of incorrectly decoded frames;
(c) the number of comectly decoded frames;
(d) the distribution of computation into bins.

Clearly the total number of error digits can be easily calculated from (2b). When the number of computations reached 50,000, decoding was terminated and the frame declared "erased". The output then recorded how far the search had progressed in the code tree when decoding was terminated. The printout of the received sequence and the decoded sequence for each frame is optiorial in the program.

For each computational bin, the number of frames which reached or exceeded that amount of computation is recorded. For example, the bin labeled 50,000 always contains the number of "erased" frames, and the bin labeled ( $256+\mathrm{m}$ ) always contains the total number of fremes.

In the Gaussian program, additional outputsinformation about the channel is available.

In the RANGEN subprogram, a library subroutine is used to generate a noise sequence distributed according to the channel erior probability $p$ for the BSC program. In the Gaussian program, the noise sequence is distributed according to the quantized channel model given by Jacobs [33]. TABSET merely converts the noise sequence into tabular data for use by SECO.

SECO is the actual sequential decoding algorithm. The version used is thoroughly discussed by Gallager [25]. A flow chart for $S E C O$ is shown in figure 6.7. It is always assumed that the all-zero sequence has been transmitted. Since this was known to the programmer, SECO was always biased to look out on a 1 branch before looking out on a 0 branch in case the metric values on the two branches were tied. (Here the discussion pertains only to $R=\frac{1}{N}$ codes, in which there are only two branches emanating from each node.) This undoubtedily resulted in slightly more computation than would be required nomally, but of course this deficiency was common to all runs and vould be expected to have no effect on the comparison between different codes.


| $\mathrm{LF}=$ look forward | $\mathrm{BB}=$ best branch $\quad \mathrm{V}=$ node value |
| :--- | :--- |
| $\mathrm{T}=$ threshold | $\Delta=$ threshold increment |
| $M F=$ move forvard | $\mathrm{LB}=$ look back $\quad \mathrm{MB}=$ move back |
| $\mathrm{WB}:=$ worst branch |  |

Fig. 6.7. SECO flow chart.

A computation was counted as a "forward look", i.e., every time the decoder looked forward on a branch, and at no other time, a single computation was counted. Each computation, including the calculation of the parity digits, took about $100 \mu \mathrm{sec}$ of computer time.
'The SECO algorithin is capable of handing both systematic and non-systematic codes with $m \leqq 72$. Programs actually available are for $R=\frac{1}{2}, R=\frac{1}{3}$, and $R=\frac{1}{4}$ only. However, only results on $R=\frac{l}{2}$ codes will be reported here, since they are sufficiently representative of all rates. Also, data was taken for only three values of $p$ and one value of $\frac{E_{\mathrm{b}}}{\mathrm{No}_{0}}$. These values are very typical, though, of a practical randomly distributed space channel. For $p=.033$, i.e., $R=\frac{1}{2}=(0.9) R_{\text {comp }}$, each production run of 1000 frames took about 2 minutes of computer time. For $p=.045$, i.e., $R=\frac{l}{2}=R_{\text {comp, }}$, each run took about 4 minutes. For $p=.057$, i.e., $R=\frac{1}{\Sigma}=(1.1) R_{\text {comp }}$, each run took about 20 minutes. And for $\frac{E_{b}}{N_{0}}=2$ or $3 d b$, each run took about 5 minvies:
2. Comparative Analysis of Codes.

In appendix A charts are given which have complete information on 13 different codes. A name and number is assigned to each code for identification purposes, and the means of construction for each code is briefly explajned. $\because$ Simulation results are given for the four channels described above. Not all the codes were tested with $p=.057$, since the computation time was so long.

An interesting comparison can be draw between code $i$ (from algorithm Al) and code 3 (from algorithm A6). Note that there are fewer error frames for code 3. This appears to be due to the fact that $d_{\text {FREE }}$ is larger for code 3, since $d_{F D}$ is the same for both codes, and substantiates the previous statement that $d_{\text {FREE }}$ is a more important parameter than $d_{F D}$ for sequential decoding.

Also compare code 1] (the non-wsystematic code from algorithn A9) with code 12 (from Forney [28]). The non-systematic code is clearly superior in number of error frames, although it has more erased frames. For the noisiest BSC, $p=.057$, code 1.1 makes no decoding errors while code 12 incorrectly decodes about lo\% of the franes. However code 11 erases about $15 \%$ more frames than does code 12 . But of these frames it appears that about half of them were incorrectly decoded by code 12. Massey [32] has termed this a "fools rush in where angels fear to tread" phenomenon. The slight computational advantage of code 32 over code 11 is clearly due to this phenomenon. Since code 3 ll is more easily inplemented than code 12 and it has the "quick look" property, we can conclude that it is far superior to code 12 in system performance as well as system complexity. In fact, code ll did not make a single decoding error in all four simulations. To the author's knowledge, code 12 is generally considered the best $m=35$ systematic code available for sequential decoding The performance of code 11 verifies the earlier statement that better results can be obtafned for non-systematic codes than
for systematic codes when used with sequential decoding (since more free distance is available for non-systematic codes).

1 Finally, compare the performance of code 2 with code 1 . This indicates the advantage of using longer codes. However, encoder complexity increases with code length, which is an important consideration in many applications.

EFFECT OF VARYING THE THRESHOLD INCREMENT H Code No. 1 Code Name Minimum Weight Code
Memory $=35$

$$
\text { Rate }=\frac{1}{2}
$$ Type Systematic

Generators:

| Norinal Form (Octal) | Read-in Form (Octal) |  |
| :--- | :--- | :--- |
| 400000000000 |  |  |
| 6511.02104421 |  |  |

Know Distance Properties:-.

$$
\mathrm{d}_{\text {min }}=13
$$

$$
d_{\text {free }}=13
$$

Nature of Construction: Algniltim Al

Simulation Results:
(I) Channel BSC: $p=033 \mathrm{H} 4$ Total 1000 Error 10 Erased 0 Computation:

(2) Chanel $B S C: p=033 \ldots$ H. 8 Total 1000 Error 10 Erased 0


(3) Chanel ESC: 0.033 H 16 FrataI 1000 Error 11 Erased

(i) Channel BSC: $R=033$ \& 32 Motel Francis 1000 Error 16 . Erased




(6) Chanel RSC: $p=033$, 128 Frotats 1000 Error 177 Erased 0 Computation: Total es error Frames 88


Code No.


Memory $=35$

Code Name Minimum Weight Code Rate $=\frac{1}{2} \quad \therefore$ Type Systematic

Generators:

| Normal Form (Octal) | Read-in Form (Octal) |
| :--- | :--- | :--- |
| 400000000000 |  |
| 651102104421 |  |

Known Distance Properties:

$$
d_{\min }=13
$$

$$
d_{\text {Ere }}=13
$$

Nature of Construction: Algor lir: Al

Simulation Results:

(2) Channel BSC: $p=032$ H 32 Total 1000 Error 16 Erased 0 Computation:

(3) Channel BSC: $p=045$ H 32 Total Frames 1000 Erromes 73 Erased

Computation: - Total Error Bits: 355

(4) Channel BSC: $p=.057$ H 32 Total 100 Error 428 Erased 9


(5) Channel $\qquad$ H Total $\qquad$ Error


(6) Chanel $\qquad$ $\dot{H}$ $\qquad$ Total?
Computation: Frames $\qquad$ Error

Erased


Code No. 2
Memory $=71$
Generators:

| Normal Form (Octal) | Read-in |  |
| :--- | :--- | :--- |
| 400000000000000000000000 |  |  |
| 651102104421022041101101 |  |  |

Known Distance Properties:

$$
d_{\text {min }}=21
$$

Code Name Minimum Weight Code

$$
\text { Rate }=\frac{1}{2}
$$

Type Systematic

$$
a_{\text {ire e }}=21
$$

Nature of Construction: Algorithm Al

Simulation Results:

Computation: $\frac{1}{N}$

(2) Channel BSC: $p=033$ н 32 Total 1000 Error 11 Erased


(3) Channel $B S C: ~$
Computation:
C

Computation: $12924001550170018501100011500 / 2000$ Total Error Bits: 320

(4) Channel

Computation:
$\mathrm{H} \quad$ Total

(5) Channel $\qquad$ H $\qquad$ $\ldots \begin{gathered}\text { Total } \\ \ldots\end{gathered}$
Computation:
Enron
Frames Eased Total Error o he en $\qquad$

ORation: $\quad \mathrm{H}$
Error

(6) Channel $\qquad$ 1 $\qquad$ Total
Erased

Computation:
Frances $\qquad$ Eringo
Erased
 $\qquad$


: Know Distance Properties:

$$
d_{\mathrm{min}}=13
$$

$$
d_{\text {ire }}=17
$$

Nature of Construction: Algorithm A6

Simulation Results: Ebb/ Ho 20 H 32 Total 1000 Error 5 . Erased 1
(1) Channel Gauss: 100 Tames 1
Computation: -

(2) Channel $B S C: ~ D=033$ H 32 Total 1000 Error 1 Erased 0 Computation:

(3) Channel $B S C: p=045$ н 32 Total Frames 1000 Error $\frac{17}{\text { Tr ames } \frac{17}{\text { Erased }} 3 \ldots}$,

Computation:

(4) Channel BSC: $p=.057$ н 32 Total 1000 Error 234 Eased 33

Computation:

(5) Channel $\qquad$ H $\qquad$ Total $\qquad$ Error
Computation: Frames Frames

Erased
CT, N $\qquad$

(5) Channel $\qquad$ H $\qquad$ a Total
Conpration: $\qquad$ Error
Erased


Code No. 4
Memory $=35$
Generators:

| Normal Form (Octal) | Read-in Form (Octal) |  |
| :--- | :--- | :--- |
| 400000000000 | $\therefore$ | $\ddots$ |

Known Distance Properties:..

$$
\dot{d}_{\mathrm{min}}=13
$$

Code Name Minimum Free Weight Adjoint
Rate $=\frac{1}{2}$
Type Systematic

Read-in Form (Octal)
$\vdots \quad \therefore \quad d_{\min }=13$

$$
a_{\text {free }}=18
$$

Nature as Construction: Adjoint of coddle no. 3



(3) Chanel BSC: $p=.045$ H 32 Total 1000 Error Frames 6 Erased: 4 Computation:

(4) Cham: $\qquad$ H $\qquad$ Total $\qquad$ Error Frames Erased $\qquad$ Computation: - - Cot Coal Error Bits:

(5) Channel $\qquad$ H $\qquad$ Total $\qquad$ Error
Computation: Total rote rs Framed $\qquad$


With $\because C Z N$
(6) Chanel $\qquad$ H $\qquad$ Total
Computation:

Error
franks - Frames
Coral Error Bits:


Code No. 5
Memory $=35$
Generators:
Normal Form (Octal)
400000000000
736677773575
Know Distance Properties:

$$
d_{\min }=13
$$

$$
d_{\text {free }}=16
$$

Nature of Construction: Algorithm: A7

Simulation Results:

(2) Channel $B S C: p=.033$
H 32. Total 1000
Error
Computation:
$\frac{\mathbb{N}}{\text { Trams }}$

| with ${ }^{H C} C$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

(3) Channel $B S C: p=.045$ н 32 Total 1000 Computation:

(4) Channel
Computation:_

(5) Channel

Computation:


Error
Error
ratal
Frise
Fraser


Code NO O 6
Memory $=35$
Generators:

| Normal Form (Octal) | Read-in Form (Octal) |  |  |
| :--- | :---: | :---: | :---: | :---: |
| 400000000000 |  |  |  |
| 656374423651 |  |  |  |

Known Distance Properties:

$$
\mathrm{a}_{\text {min }}=13 \quad 18 \leqq a_{\text {free }} \leqq 22
$$

Nature $=$ Construction: Adjoint of code no: 5

(2) Channel $B S C: p=033 \mathrm{~K} 32$ Total 1000 Error 0 Erased 0 Computation:

8) Chanel $B S C: 0=045$ H 32 Total 1000 Error 7 Erased 4 Fines 7 Frames computation:

(4) Chare $\qquad$ H $\qquad$ Total $\qquad$ Error Frames Erased $\qquad$

(5) Chanel $\qquad$ H $\qquad$ Total
Computation: Frames $\qquad$ Error Frames Erased $\qquad$

(6) Chanel $\qquad$ H $\qquad$ Total
Computations Frames $\qquad$ Error Totals error Frames $\qquad$
 Total Error Bits:

Code No. 7
Memory $=35$

Code Name Balanced Code

$$
\text { Rate }=\frac{1}{2}
$$

Type Systematic

Generators:

| Nominal Form (Octal) | Read -in Form (Octal) |  |  |
| :--- | :--- | :--- | :--- |
| 400000000000 |  |  |  |
| 653125446515 | $\cdots$ | $\cdots$ |  |

Known Distance Properties:

$$
d_{\min }=13 \quad 16 \leqq d_{\text {free }} \leqq 20
$$

Nature of Construction: Algorithm AS

Simulation Results:

(2) Channel $B S C: p=033$ H 32 Total 1000 Error O Erased.

(3) Channel BSC: $p=045$ H 32 Total 1000 Errors 12 Erased

(s) Channel $\qquad$ H $\therefore$ Pal Frontal Error

Error
erased
 $\qquad$

(5) Channel $\qquad$ H $\qquad$ Total $\qquad$ Error Frames Erased $\qquad$ Computation:

(5) Chanel $\qquad$ 2 $\qquad$ rata $\qquad$ Error Frances - Erased $\qquad$
Computation: $\qquad$ Total Error Bits:



Code No. 8
Memory $=35$
Generators:

| Normal. Form (Octal) | Read -in Form (octal) |  |
| :--- | :--- | :--- |
| 400000000000 | $\ddots$ |  |
| 732453703632 |  |  |

Known Distance Properties:

$$
d_{\min }=13 \quad 18 \leqq d_{\text {free }} \leqq 22
$$

Nature of Construction: Adjoint of code no. 7

(2) Channel 1 S Sc: $p=033$ _ H 32 Total 1000 Error 0 Erased 0 Computation: $\frac{1}{N}$

(3) Channel BSC: $p=04 S$ H 32 Total 1000 Error 5 Erased

Computation: 10 Frames 1000 Frames 5 Frames 6

(4) Channel $\qquad$ H Frat al

Total Error
Frames - Erased
 $\qquad$

(5) Channel. $\qquad$ H $\qquad$ Total
Error
Erased



Code No. -9
Memory $=35$
Generators:

| Mormal Form (Octal) | Read-in Form (Octal) |
| :--- | :---: |
| 400000000000 |  |
| 732443151623 |  |

$$
d_{\min }=13 \quad 18 \leqq a d \text { free } \leqq 20
$$

Nature uf construction: The code obtained by using Algorithm $A 8$ to extend one of Bussgang's optimal codes.

(2) Channel BSC: $0=033$ H 32 Fotal 1000 Error $O$ Erased. 0

(3) Channel BSC: $p=.045$ H 32 Total Franes 1000 Eranes 4 Erased 3

(4) Chame」 $\qquad$ $\mathrm{H} \quad$ Total Error
Gomputativo:
$\qquad$ Fomes Erasea

(5) Channel $\qquad$ H $\qquad$ Total $\qquad$ Error
Computation: Frames

Erased

| Computation: |
| :--- |
| \#rrass <br> mithen <br> m |

(5) Channel $\qquad$ H $\qquad$ Total. $\qquad$ Erros Erased Computation: Frames Prances $\qquad$
$\qquad$



Code No. 10
Memory $=35$

Code Name

$$
\text { Rate }=\frac{1}{2}
$$

Balanced Bussgang 2. Adjoint Type Systematic

Generators:


Known Distance properties:

$$
d_{\min }=13
$$

$$
17 \leqq d_{\text {Ere }} \leqq 23
$$

Nature of Construction: A joint of code no. 9

(2) Channel BSC: $R=033$ H 32 Total 1000 Error $O$ Erased 0 Computation: $\frac{1}{N}$

(3) Channel BSC: $p=045$ E 32 Tratal 1000 Error 3 Erased.

(4) Channel $\qquad$ H $\qquad$ $2: 50$ $\qquad$ Error Frames - Erased $\qquad$ Computation: Fans Total Error Bits:

(5) Channel. $\qquad$ H $\qquad$ Total $\qquad$ Error
Computation: $\qquad$ Frames Fran Erased $\qquad$

(6) Chanel $\qquad$ H $\qquad$ Total $\qquad$ Error
Computation: $\qquad$ Frames Error Erased Total Error Bits: $\qquad$


Code No. 11
Memory $=35$
Generators:

| Normal Form (Octal) Read -in Form (Octal) |
| :--- | :--- | :--- | :--- |
| $7.33533676737 \ldots$ |

Known Distance Properties:

$$
a_{m i n}=11
$$

Code Name Non-systematic Code

$$
\text { Rate }=\frac{1}{2}
$$

Type Nen-systematic

Read-in Form (Octal)
$\therefore \quad \because \quad a_{\min }=11$

$$
17 \leqq d_{\text {free }}
$$

Nature of Construction: Algorithm Aq

(2) Channel $B S C: p=.033$ H 32 Total 1000 Error OM e Erased G


(3) Channel $B S C: p=045$ H 32 Total Frames 1000 Error 0 Frames 0 Erased Computation: $\quad$ Total Error Frames 8 - 8 .

(4) Cane RSC: $p=.057$ H 32 Total 1000 Error 0 Frames 0 Erased 249 Computation: Frames Frames Error Bitanes s015001

(5) Chanel $\qquad$ H $\qquad$ Total
Computation:
$\qquad$ Error Frames Erased $\qquad$

(6) Chanel $\qquad$ H $\qquad$ Total $\square$ Error
computation: Error Erased $\qquad$


Code No. $\qquad$ 12

Code Name
NASA Code
Memory $=35$
Rate $=\frac{1}{2}$

Type Systematic
Generators:

| Normal Form (Octal) | Read -in Form (Octal) |  |
| :--- | :--- | :--- |
| 400000000000 |  |  |
| 715473701317 |  | $\ddots$ |

Known Distance Properties:

$$
d_{\text {min }}=14 \quad \quad d_{\text {free }}=18
$$

Nature of Construction: The adjoint of the code Forney obtained by using the Lin - Lyme algorithm to extend one of Bussgang's optimal codes.
Simulation Results:
(1) Channel Gauss: $E_{b} / N_{t}=20$ H 32 Frat as 1000 Error 0 Erased 4



(3) Chanel BSC: $p=045$ H 32 Total 1000 Error Eras 2 Erased 4 Computation: 1292 Total ERror Bitas:12

(4) Channel BSC: $p=057$ H 32 That 1000 Error 87 Erased 108 Computation:

(5) Channel $\qquad$ H Total $\qquad$ Error
Computation: $\qquad$ Frames Error

Erased Total Error ines: $\qquad$

(6) Channel $\qquad$ E $\qquad$ Totals $\square$ Error
Computation: Frames Erased $\qquad$
 Lotas Error Bits:


Know Distance Properties:

$$
d_{\min }=14 \quad 19 \leqq d_{\text {free }} \leqq 22
$$

Nature un Construction: Forney extension of the Lin-Lyne vigo, ! time.
simulation Results:

(2) Chanel $B S C: p=033$ H 32 Total 1000 Error O Era med Erased 0

Computations

(3) Chanel $B S C$ : 045 H 32 Fratal 1000 Error 3 Erased Computation: $\quad$ Total Error ${ }^{\circ}$ Frames 31 Total Error Bits:

(4) Channel BSC: $p=.057$ H 32 Total 1000 Error 80 Erased 118 Computation: Total Error Bits: 1824

(5) Channel $\qquad$ Total
Computations H $\qquad$ Error
Frames Erased Total error Bits:

(6) Channel $\qquad$ H $\qquad$ Total $\qquad$ Error
Erased
Computation:
Frames $\qquad$ Frames Frames $\qquad$
1 Cl 1 C
-TIT


