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SUMMARY 

Spectral analyses techniques are applied to Li&thill's aerodynamic sound equation to derive a 
unified jet noise theory, in which shear noise, self noise, and non-isentropic effects are heated 
on the same basis and derived simultaneously. The result of this theory has a simple, yst 
rigorous, representation of the radiated sound field. 

The structure of the source terms i n  the turbulence and the mechanism of noise generation are 
examined in detail. Numerical examples of noise prediction are computed for two jet  configu- 
rations where model turbulence structures are assumed. These examples demonstrate that this 
theory can predict correct sound pressure levels for a jet  without any arbitrary constant. 
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1 .o INTRODUCi ION 

The advent of j e t  and rocket propulsion introduced a new form of noise, due to the 
high speed turbulent exhaust flows that characterize these engines. The noise from 
je t  and rocket engines can cause both community noise and structural fatigue 
problem!,. I n  spite of considerable noise control effort jet engined aircraft are still 
a major source of noise intrusion in  communities near airports. Rocket engine test 
schedules are also often controlled by rotential community noise problems. Both 
aircraft and rocket vehicles have experienced fatigue failures in regions close to 
the engine due to the intense noise levels occurring near the exhaust. Thus there 
are many problems in je t  and rocket noise which s t i l l  require solution. 

The problems are complicated by several factors. Although the noise f ield i s  cleurly 
related in  some way to the turbulence a wide variety of fluctuating mechanisms can 
be postulated as possible fundamental causes. Controversy still exists over whether 
the supersonic or subsonic portions of an exhaust flow are responsible for the major 
part of the noise. I n  some circumstances noise generated within the engine can be 
important while in  others noise radiated far downstream due to instability mechanisms 
could be significant. A t  the present time the real contribution of either of these 
sources in  a fdll scale case i s  unknown. Noise due to combustion, or even the 
effects of mean je t  temperature are s t i l l  essentially undetermined. Conflicting 
evidence i s  available regarding the possible significance of shocks in supersonic 
flow. Even such an apparently straightforward case as coaxial jet mixing has been 
found to cause almost insuperable problems in prediction by current techniques. Thus 
i t  appears that new methods are required. 

The major part of the published theoretical work on exhaust noise has attempted to 
calculate the noise field by evaluation of the appropriate retarded time integrals. 
This leads to the requirement for knowledge of the fourth derivative of a fourth 
order correhtion function in the turbulent flo*u. Not surprisingly, estimation of this 
function i s  difficult, but some success has ce-*siniy been achieved using this approach. 
The present report emphasizes the evcxfuation of the noise field via spectral methods. 
Thus the turbulence f ield i s  described by i t s  wave-number and frequency character- 
istics rather than in space and time. One re -ec ..rAation i s  simply the Fourier trans- 
form of the other, but i t  does appear that spectrcl methods offer considerable 
simplicity, and possibly clso greater insight into the problem. 

Most of the results previously found in jet noise theory can be rediscovered by a very 
simple spectral approach, and w i l l  be presented in  the report. The simplicity i s  
thought to be an important advantage. The present work has also enabled direct esti- 
mates of the noise to be made, as w i l l  be discussed in a later section, The .stork also 
suggests some experir??entai measurements of turbulence which appear to be particu- 
larly relevant to the noise problem. 

1 



2.0 

2.: 

BASIC MECHANISMS 

The Lighthill E- rtion - 
The clearest way to understcnd the mechanisms underlying noise generation by 
turbulent flows i s  via the basic equation first derived by Lighthill (Reference 1). 
This equation has been the basis for virtually a l l  wok on exhaust noise to date. It 
can be derived in a straightforward way from the two basic conservation equations 
in fluid dynamics, for mass and mmentum respectbely. The equation for mass 
conservation (the continuity equation) can be written, in tensor nototion with the 
summation convention, as 

where I, i s  the density 

t time 

v. (i = 1,2,3) a artesian velocity component 
I 

x.(i = 1,2,3) Q three-dimensional cartesian coordinate 
I 

Q a rate of introduction of mass per unit volume which can vary with 
spatial position h x . 

The equation for conservation of momentum can be written, in Reynolds' form, os 

where F. (i = 1,2,3,) are the components of external force per unit volume acting 
I 

over the fluid, and 

p.. (i,j = 1 , 2,3,) i s  the nine-component stress tensor which ificludes both 
IJ viscous stresses and internal presure forces on the fluid. 
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Differentiating Equation (1) wi th  respect to t and Equation (2) with respect to x. 
and subtracting gives 

I 

Now the "troze" of p.., that i s  the terms for which i = j, i s  essentially the scalar 

internal p-zssure which acts on the fluid. Here we are interested in calculating the 
sound, and thcrefore in  the fluctuating part of Equation (3). As is well known the 
fluctuating pressuio and velocity at a point in a homogeneous isotropic medium with 
speed of sound c are rebted by p = c2p. Thus, Lighthill (Reference 1) subtracted 

the term C: 8 ppx! from each side of Equation (3)J with the result, 

'J 

I 

where 

Equat i 

aF. aZT 
2 # P  = s-l+ ij 

at ax. ax.ax. c -  - -  8 P  

at2 O ax2 1 I I J  

T,, = pv.v. + p.. - cap&.. 2 

'J I J  'J 'J 
8.. = 1, i = j; = 0,  i # j (The Kronecker 6.) 

'J 

(4) 

n (4) w i l l  be termed the "Lighthill Equation". It can be sewn that th, left 
hand side of the Lighthill equation (4) i s  simply the wave equation, so that the right 
hand side gives the effect of various possible types of acoustic source. The Lighthill 
equation gives an expression therefore of the sound generation by various  pes of 
sources in an infinite homogeneous isotropic acoustic medium. 

Each term on the right hand side of Equation (4) gives the effects of a different 
acoustic source mechanism. The first, aQ/at gives the effect of mass introduction. 
Examples include pulse-jet$, sirens, tip je t  rotors, and the random mass fluctuations 
that can occur across the exit plane of a jet  exhaust. The second term, aFi/axi 
gives the effect of external fluctuating forces which can act on t k  sir. Examples 
include compressors, propel len, he1 icopter rotors, and the random fluctuating forces 
that exist on the exhaust l ip  or on any body ir a turbulent airstream. The third term 

aZT../ax.ax. incorporates several different effects. T.. i s  generally referred to as 
'J I J 'J 

the "Acoustic Stress Tensor," and can have nine components. In many cases the 
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most significant fluctuation of the acoustic stress tensor w i l l  be caused by turbulent 
velocity fluctuations which affect the V.V. product. Virtually a l l  calculations of 

I J  
noise radiation by turbulent *velocity fluctuations have therefore utilized the 
Lighthill equation with T.. put equal to pov.v,. This approach has given considerable 

'J I J  
success in predicting basic trends of turbulence induced noise, and h a s  also succeeded 
in predicting actual noise levels in  some cases. 

However, the remaining terms in the acoustic stress tensor T.. justify closer study.. 

The off-diagonal terms of p..(i # j) represent viscosity induced stresses and w i l l  rarely 

be significant. Similarly any bulk viscosity effects on the diagonal terms (i = j) can 
be neglected. However, i n  a real inhomogeneous flow the possibility exists that 

p # c2 p. Also the variable p appears in the ~v.v. term. Thus it is  possible that p 

can have first order effects on the right hand side of the equation as well as on the 
left. 

'J 

'J 

0 l J  

The Lighthill equation can be rewritten so that a l l  possible effects of varying density 
are brought onto the left hand side of (9, which thus becomes an equation for 
inhomogeneous convected waves. This was done by Phillips (Reference 3 ) .  
Unfortunately the resulting equation i s  almost impossible to solve even for the 
simplest types of acoustic source. For the types of source existing in a turbulent 
f luid 'it i s  doubtful if that equation can ever be solved exactly. 

Thus in most work to date the effects of mean inhomogeneity on the flow have been 
tacitly ignored. The Lighthill equation i s  exact and does,in principle, conwin these 
terms. However, the Lighthill equation i s  inevitably solved via the homogeneous 
retarded potential solution to the wave equation, with the right hand side being 
assumed known. Exact definition of the right hand side presumes knowledge of 
the necessary solution. Thus the first order approximations made in the solution 
wi l l  nearly always discard any possible acoustic effects of mean flow inhomcgeneity. 

The overall acoustic effects of inhomogeneities may be estimated by simple arguments. 
Consider a geometricai acoustics type of approximation to the inhomogeneous solu- 
tion, where the speed of sound at any location i s  considered to be the sum of the 
local speed of sound and the local convection velocity. Thus the effective local 
speed of sound for an eddy moving at Mach 1 can actually be doubl:! the homogeneous 
value usually assumed. Sound may then be considered to travel along some ray path 
bent in accordance with the local effective speed of sound. For very low frequency 
sound, with wavelengths much greater than the j e t  dimension, the effect of ray 
bending w i l l  be negligible. Thus the first order solution to the Lighthill equation 
may be expected to apply either at low frequencies, 3r low exhaust velocities 
(M << 1) Qgain at high frequencies when the inhomogeneity has a scale much 
greater than the wavelength, the Lighthill equation w i l l  apply locally. Thus it 
should predict overall power correctly, provided a local wave equation i s  used. 
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On the othe; k n d  the directionality pattern of the noise in  this case must be modified 
substanticily w e  to the surrounding refraction zone. But at m i d  frequencies, where 
inhomobenaity scale and wavelength are of the same order, no definite rules con be 
laid down. 

The redirectioning of sound due to refraction has been studied by several authors 
(References 4-18 ), and i t  appeart that refraction may in  reality be the principal 
muse of the observed directionality patterns of jets. NO calculations of acoustic 
power appear to have been performed including this effect, but Powell and Ribner' 
(References 20,21) have pointed out that the well known Ua law, originated by 
:.ighthill would continue to  apply at the highest fquencies, since a l l  basic pamm- 
ctecs retained :he same velocity dependence. At the lowest frequencies the u8 law 

vc.;lld agcrin apply together with the (1 - M>"dependency given by Ffowcs Williams 
(Reference 19) following Lighthill (Reference 2) .  But at the m id  frequencies only a 

,xrrtiaI effect of the (1 - 
zero effect. 

term could be expected, and at high frequencies 

2. spite of :he shortcomings of the Lighthill equation (4) discussed above, it w i l l  be 
the basis of the theoretical work presznted in this report. This i s  because i t  does 
contain the first order effects t\hich might be expected in practice and because no 
wrnplete study of i t s  first order implications i s  yet available. Note that the aero- 
dynamic effect of inhomogeneities can be included in  the aerodynamic source terms 
of T.., but thct these sources are then considered to be operating in a uniform 

acoIratic medium at rest, so that the "acoustic" effects of inhomogeneities are not 
incorporated. 

'I 

2.2 Solution of the Lighthill Equation 

If the right hand side of the Lighthill equation (4) i s  assumed known then ie first 
order solution discussed in Section 2.0 i s  straightforward. First write the right hand 
side as G(X,t), so that G can represent any desired source term. The solution to 
the wave equation i s  well known from classical physics as 

where the volume Integral i s  over al l  space. The square brackets require that G 
must be evaluated at a retarded time f: = t - r/c. The symbol-denotes a vector or 
ten30r quantity,and i s  utilized because it requires the printer to reproduce the symbol 
i;i boldfase (Clarendon) type, as i s  used for vectors. Note also the subscript of co 
w i l l  be dropped for convenience for the rest of this report, except for discussions 
in Section 3.4. 
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It i s  of particular interest to study the spectral form of this solution. Jhe Fourier 
transform pair relating G and i t s  wave-number-frequency spectrum G are 

=//G(x,t) exp- Zni(kox N h  + w t )  dx ry d t  

G(E,t) =/ /6(k,w)exp 2 n i ( k e ~ + o t )  dk .y do 

and using (7) i n  (5) gives 

2 2 Now r = (XI - yJ + (3 - yz)2 + (x3 - y3)2 

r 2 2 2 2  = x ,  + %  + %  
1 

Put 

Thus, applying a geometric far f ield approximation, y<< r 
Equation (9) gives 

and expanding 
1 

Equation (10) may be substituted into Equation (8) to give a far f ield approximation 
to the noise as 

6 



d y  dk d o  
r y -  

Now l e x p  2 n i ( y  x )  dy  = & ( E )  - -  

so that Equation ( 1  1) may be integrated with respect to y and k to give 
ly - 

frcj i  which we can identify 

exp - 2niwr,/c 
p ( z , 4  = - 

4nc' r 

Equation (14) i s  a key rzsult, which &e5 not appear to be widely known, although 
it w a s  first found by Kraichnan (Reference 24)in 1953. The result gives the fluc- 
tuating density spectrum directly in terms of the wave-number frequency spectrum 
of the source function. The init iai exponential i s  simply a phase factor. Note 
particulaily that there are no integrals in Equation (14) , and that the pressure at 
a particular point i s  governed only by a single wave vector uA/cr, . Eqaation (14) 
therefore appears to cffer a particularly attractivs formulation for the prediction of 
exhwst noise. 
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If, as suggested by Equation (4) , we define 

then, assuming relations of the form of Equations (6)and (7) between the direct 
and spectral forms of the source functions, we find 

A 2 A A A 
G(k,w) = - 2aiw Q < k  ,w) + 3aik. F.(k W) - 4a k.k. T..(~,w) 

ry I I N ,  I J  IJ 

from which, the sound field i s  given by 

2 A 
2n iar . F. o r.r. 

I I  - 41r2- 'J A 
-2nio Q - 

c2 r2 
crl 1 

exp - Znior /c 
1 

2 
P(X,W) 5 = 

4ac r 
1 

where a l l  spectra are evaluated at (-or 'y /a,, o) , or more shortly 

2 C 

A w A  
i o Q  + i- F + 2a-Trr 

r 
C 

- exp - 2niwr, /c 
P ~ ? 4  = 

2c2r, 

where subscript r denotes the component i n  the direction r r  that i s  i n  the direction 
of the observer. 

cy 

In the above analysis, a l l  spectra are first order, simply the Fourier transformsof the 
original functions. For random functions this representation does not give a mean 
ingful result and, as i s  well known, a second order or power spectrum must be 
defined. The necessary analysis i s  given in more detail in Appendix A. Essentia 
the first order spectrum must be multiplied by i t s  complex conjugate and a l im i t  
tcken. Applying this process to Equation (18) the lexponential phase factor w i l l  
vanish with the result (assuming zero correlation between the various source$) 
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where the double hat notation has been introduced for second order spectra, 

2.3 Saund Field of a Pcirrt Source in Uniform Motion 

In order to obtain a better understanding of the present spectral description of the 
sound generation process it i s  helpful to consider this description as applied to a 
point source in motion. Figure 1 gives a wave number frequency diagram of the 
process. Consider a point source emitting a signal at a single frequency w . 
The Fourier transform of Q point singularity i s  a constant, so that the representation 
of a point source of a single frequency on the wave number-frequency plane i s  
sicply q straight line parallel to the k-axis, as shown in  Figure 1 . 

0 

Lines of constant slope through the origin on this plane are lines of constant 
velocity u = w / k .  The line w/k = c i s  of particular interest since, by Equation 
(14) the value of the field (@ along this line gives the magnitude of the sound 
radiated in  the k direction. (On the present diagram only a single component 
for k i s  shown which corresponds to the component in the direction cf the observer.) 
Consider next the wave number-frequency field, relative to some coordinate systems 
which now moves relative to fixed axes with uniform velocity component V in the 
k direction. The relation between the two fields i s  given by 

A A 
(k I O )  moving 

( k , w + k V )  = G 
fixed 

G 

Thus the f ie ld of the point source given relative to the mov.,ig axes by o = oo, 
becomes w = w + kV relative to moving axes, the dashed line in Figure 1 . 
Hence, while the fixed source produces souvd at frequency wo and wave number 

k o  = w /c, the moving source parameters w,k are found, by geometry, as 

k = o/. = (w - w )/V, which gives 

0 

0 

0 

OO k0 
w =  , k =  1 - Mr 1 - Mr 

These give the we1 I known Doppler shift effect. 
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The amplitude of the sound radiated may also be found by a simple argument. 
Figure 2 in whicti the incremental values 
are specifically displayed. For the stationary case the sound in  the frequency 
increment 6o i s  given by the part of the wave number spectrum lying in 6k, ,  But 
in  the moving 3se the wave number region of interest i s  Sk, wide. The ratio of 

the amplitudes i s  thus 6k2/6k,, which i s  in the ratio of k/ko in  Figure 2, which 

i s  in t u n  given by Equation (20) as 1/1 - Mr. 

shows an enlarged version of Figure 1 

A 
However, in general there i s  no reason to suppose that the value of G at k w i l l  
remain equal to the value at k, , so that the (1 - M ) - '  factor cannot be applied 
alone, except in the monopole case. Equation (16) shows how point dipole (force) 
and qua*'-upole (acoustic stress) fields would vary as k and k respectively, and 
this should be included in  the estimation of the amplitude. 

r 

2 

Thus Equation (18) for the sound can be rewritten, to include the effects of motion 
as 

(- 2niw0r,-) 1 io, io  

Fr + c(1 - M,) 
0 Q +  1 

Pk,4 = c(1- MJ 1 -Mr 2c2r,(1 - M,> 

where w, i s  the frequency in the moving axes. A l l  spectra are evaluated at 

1 -  w o ~ / c r ~ l  - MJ, w o / ( l  - Mr) . In the above equotion a l l  the arguments 
1 

presented above referred to velocity and wave vector components in the direction 
of the observer. Note also that the mass source term Q in Equation (21) corresponds 
to a mass source and not to a "simple monopole source" q = aQ/at which would have 

an overall ( 1  - M,.j-' dependence, rather than the (1 - Mr)-* found here. 

Thus, we have rezovered *he ,~*e!f knowfi dependence of point monopole, dipole 
and quadrupole souices :. ( 1  - M.) to the - 1, -2, and -3 power respectively. 
This also implies a ( I  .- PA+ to the -2, -4, and -6 power for the intensity (-densit$) 
of the sound. But note +bat this only applies when the spectrum analyzed in  Figure 

can be meaningfully represented as a first order spectrum, as in  the case for a 
point source, For a random variation in space and t i m t  only the second order 
"power" spectrum (see Appendix A) can be meaningfully represented on Figure 1 
In this case the same arguments apply, but to the mean square of the signal. Thus 
a factor of ( 1  - M,.) i s  lost from the intensity expression and the convection velocity 
dependence of monopole, dipole and quadrupole random sources i s  as ( 1  - MJ to 

1 
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the - I ,  -3, and -5 power respectively, as first pointed out by Ffowcs Williams 
(Reference 19). 

A further point of interest i s  the effect of supersonic speeds. As indicated in 
Figure 
number frequency diagram. For subsonic sources the negative sound velocities are 
meaningless since the sound proceeds in the opposite direction to that of the 
observer. But at super;onic speeds such directions of propagation can s t i l l  give 
rise to observed sound fields and must, therefore, be included. 

3, both positive and negative sound velocities can be found on the wave 

By geometry, as before, we find two observed frequencies for any given direction 
at supersonic convection speeds 

Both these factors can be applied in the basic equbtions as was done for the 
subsonic case. 

The (1 - M amplitude factors discussed above apply directly to the point source 
(6 function r’ case. but are basically estimates of the effect of motion. As can be 
seen from Figure 2 , if a source wi th  finite bandwidth (&i) was under study the 
direct integration of the sound along the ray would give the same effect because 
of the large area of the source region which contributes. These estimates may be 
expected to be fairly accurate i f  the basic source strength does not vary too much 
with k. For instance the quadrupole sound trends shown in Equation (16) does 
include two additional k factors, and the (1 - MJ-3 estimate applies providing 
T does not vary significantly between the fixed and moving axes values of k .  

rr 

A more realistic turbulence spectrum w i l l  have valuzs at a l l  points of the wave 
number-frequency plane. Figure 4 shows a typical case where contours of 
equal vc lues of the spectium function have been plotted. Clearly, at zero wave 
number very l i t t le  sound would be radiated in this case. At subsonic speeds the 
whole pattern slides sideways to the rlght and more sound would be radiated. A t  
transonic speeds the sound i s  given by values lying through the maximum region 
of the spectrum, and at supersonic speeds the sound again goes down. 

From this discussion i t  should be clear that the apparent transonic singularity of a 
point source at M = 1 reflects only a breakdown of the estimation procedure. At 
the transonic condition the sound ray c and velocity line V are parallel, and 
intercept at infinity thereby giving infinite frequency - an ultrasonic catastrophe. 
However, even for a true mathematical point source the sound radiation would be 
entirely dependent on the asymptotic values of the 6 function as k tended to 
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infinity, But in  Q more realistic case the source strength at sufficiently high wave 
num3.er w i l l  always be zero, and the integration along the c ray w i l l  emphasize 
other parts of the wave number spectrum. NO particular difficulty at transonic 
speeds therefore occurs, 

A final point of considerable significance in  much of the discussion which follows 
may ako be made by reference to Figure 4. Note that at both subsonic and at 
supersonic speeds intercepts of the sound line wi th  the spectrum near the origin 
are of the greatest importance for sound radiation. These correspond to the low * 

wave numbers i n  the spectrum Only at transonic speeds do al l  the wave numbers 
in  the turbulence contribute equally. Because of the facts;' of k2 in  Equation (16) 
no sound i s  actually radiated at k = 0, but i t  w i l l  s t i l l  generally be true to say 
that i t  i s  the lower wave number components of the turbulence which dominate 
the sound field. 
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3 .o DEFINITION OF THE SOURCE FUNCTIONS 

3.1 Genera I 

The results found i n  the last section suggest that the sound field of any prescribed 
turbulence field can be found directly from i t s  wave number - frequency spectrum. 
Thus the problem now hinges on the spectral estimation of the turbulence. Such 
estimaiion typically reqilires evaluation of con\ olution integrals, as discussed in  
Appendix A .  More specifically, Equation (17) s)?owed how calculation nf the sound 
radiated by a jef required know!edge simply of T..(k,u) at ;'le pcints (-wr/cr,w) i n '  

wave number-frequency space. Definition of this term requires further manipulations. 
'J 

The equation for the acoustic stress tensor i s  

T., = pv.v. + P.. 2 psij '1 I J  'J 

Regarding this stress tensor i n  Lighthill's original formulation, i t  i s  assumed that the 
viscous stresses are neglected because i t s  eftect i s  small compared to the inertial term. 
Furthermore, the flm i s  assumed to be isentropic at low Mach numbers, Therefore 
the sum of the last two terms in  Equation (22) vanishes for a homogeneous medium. In 
hot jet  exhausts, especially in rocket exhausts, very complicated thermal fluctuations 
are presented. The isentropic flow assumption i s  not valid and the thermal effects 
emerge and become important, as discussed in Section 2 .1  , 

The inertial term, p v.(x,t)v.(x,t), i s  a product of two quantities. I t s  spectrum i s  

thus given by a convolution, Equation (Aa) of Appendix A, 
0 1  J "  

or in  the longer form, Equation (A5), 

A 
So that, i f  the first order spectra C. are known, then the spectrum T.,(k,u) 
can be calculated. I IJ Inertial 
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It i s  common in je t  noise theory to split the velacity v, 
parts v. = U. + u. , thus 

nto mean and fluctuating 

t I t 

v. v = p (u. u. + u. u. + u. u.) 
p o l j  0 1 j  j t  I J  

where the mean value U. U. has been discarded since it does not contribute directly 
to the sound. I J  

Clearly the convolution integral Equation (24), w i l l  apply separately to each of the 
terms in  Equation (25). On contraction u. U. cannot be distinguished from u. U. so 

that the first two terms may be construed as a single contribution which i s  due to the 
interaction of the turbulence and mean shear (1-M) The lost term u. u. gives the 

sound due 
bution to T.. is giien by Equation (24) with LI v replaced by .y u . 
The two contributions w i l l  be &fined as the "shear noise" and "self noise" respectively. 
These ;NO terms together with the isermal effects cn the sound source w i l l  be discussed 
separately i n  further detail . 

' J  J t  

I J  
to turbulence-turbulence (1-T) interactions. Clearly the T-T contri- 

'J 

Shear Noise - 3.2 

in  order to evaluate the effec, of the T-M term i t  is convenient to uti l ize a different 
version of the classic source term. From the derivation of Equatior: (16) i t  i s  clear 
that an alternative form of the ~ p e c h ~ l  source term for turbulence i s  

A a t .  

ax. 
G(k,o) = -2ni k. '1 (k h ,a) 

I 

J 

Now putting T.. = 2p3 uiuj 
'J 

The first term i s  zero by continuity. The second term i s  zero unless some mean shear 
i s  present, so that the description shear noise i s  appropriate for sound radiation due to 
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this effect. A convenient, and commonly used, assumption for further discussion i s  
that the shear i s  a constant 3.. . The spectral source term then becomes 

'J 

e(k,o) = -4ni p k. s..;. (!c,u) 
O I I J  J hr 

A feature of th i s  shear noise sourr;e i s  that only a single wave number term k. multi- 

plies the spectrum. Thus, following the arguments of Section 2.3, a (1 -M )" low' 

w i l l  apply rather than the (1 -M )Os low more usual for turbulence generated sound. 

This result was recently given, by a different argument, by Jones (Reference 30). The 
shear noise term is, i n  many ways, essentially dipole rather thon quadrapole. But note 
the argument in Section 4.2 where a (1 -M )" law i s  found for the shear noise due to 
the presence of additional factors of k i n  'the 6. spectrum. 

In  many jet flms intense turbulence w i l l  be l imited to a region when the shear can 
reasonobly be approximated as a constant, so that a l l  the d o v e  results should apply. 
Note that i f  the shear dominates in a single direction then only that single component 
of the turbulence w i l l  interact with it to produce noise. A point of particular interest 
i s  that, under the constant shear assumption, only a direct spectrum of the turbulent i s  
required. Shear noise i s  therefore simpler to estimate. I f  the shear cannot be taken as 
constant then a convolution between the turbulent and shear spectra becomes necessary, 
and the implications of th i s  w i l l  be discussed at the end of the next section. 

I 

r 

r 

J 

3.3 The Self Noise 

As mentioned in  3.1 I the source of the self noise term i s  gl ren by Equation (24) with 
v replaced by u: 

Upon mvltipli~cotion with the directional unit vectors k. k., the effective noise 

generating component i n  the turbulence strucrure i s  the self-convolution of the velocity 
spectrum in  the direction of sound emission. Furthermore, only the points in  the longi- 
tudinal direction of wave number k 

calculation can thus be greatly reduced: 

I J  

contributes to sound. The labor of integral 
r 
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A .. 
T (k ,k = O , w )  

rr r -T 

where the subscript 

n # a  L 

T denotes the wavenumber vectors transverse to the sound 

(30) 

emission 
direction. A substantial reduction of computation i s  realized because only one instead 
of nine integrals needs to be calculated. Within the multiple integral, the integration 
along the two lT directions represents a sum of squares instead of a convolution, and 

the evaluation of such an integral i s  usually much easier 

The source terms given both here, and in  the preceeding section, are first order spectra, 
so that effects such as phase and skewness of the turbulence are reflected in  the spec'- 
tral parameters. For random variables it is, of course, necessary to take the average 
vaiues of the square of th i s  spectrum to give a second order p e r  spectrum . However, 
this process w i l l  not alter the basic trends of any effects observed in  the first order 
spectra. 

It i s  worthwhile, at this point to contrast the results for self and shear noise. As was 
pointed out in Section 2.3, i t  i s  essentially the lower wave numbers of the turbulence 
which contribute to the sound heard in  most pmts of the acoustic field. Since the 
self noise i s  a self convolution the results at  the low wave numbers are close to being 
the integral of the square of the first order spectrum, and even high wave numbers i n  
the original turbulent field can give rise to law wave number intensity after self con- 
volution. Also, i t  can be seen that the results wi l l  be comparatively insensitive to 
the detailed wave number pattern of the turbulence, and depend more on i t s  mean 
level. 

In the shear noise case the effect of a constant mean shear i s  to allow the turbulence 
to  radiate directly . Lighthil I (Reference 2) described the effect as an "aerodynamic 
sounding board." Here again we expect the lower wave numbers to radiate preferen- 
tially, but in this case radiation of the low wave number turbulence - for instance 
by breaking up the exhaust flow with splitters - should also reduce the noise. Also, 
the intensity of the noise i s  a function of the mean shear, so i f  that i s  reduced then 
noise should be also. A reduction in  shear noise appears to be possible both by 
reducing the absolute mugnitude of the shear, and by changing i t s  distribution. I f  
the shear region has the same dimensions as that of important contributions to the 
turbulence then the wave number convolution process wi l  I give large contributions 
near zero wave number. Here again, splitting up the turbulent flow suggests itself 
as a possible noise control measure. These arguments a l l  suggest that the effective- 
ness of current jet  engine exhaust silencers may have been more due to their effect 
on shear noise than on self noise. 

3.4 Sound Generation by Compresstble Flows with Heat Addition 

Calculation of the sound generated by hot jet exhausts, and particularly by racket 
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flaws require examination of radiation from a region where many complicating ther- 
modynamic effects are acting. Direct use of Lighthill's equation w i l l  not give exact 
results, for the reasons discussed in  Section 2, although it is, of course, formally 
correct and could farm the basis for an iterative solution. To reiterate, the basic 
conditions for Lighthill's equation stipulates that the fluid properties i n  the jet are 
the same as the surrounding medium. Furthermore, the flow i s  assumed to be isen- 
tropic. Therefore, the second term i n  the slcoustic stress tensor (p.. - c i  p6;j) contains 

only the contribution from viscmity and thus was neglected in the Lighthill approach. 
These conditions can be met in the far field, however, they are not satisfied in  the. 
near field. Thus, to use the Lighthill's equation to describe the sound field, it i s  
necessary to examine the source terms by including some thermal effects. Thus, we 
w i l l  again use Lighthill's equation to obtain a first order estimate of the sound radiated. 
An alternative approach is  given by Peter and CottreII (Reference 48). 

'J 

There are two principal effects which appear to be of importance in hot flaws. The 
first i s  the direct effect of fluctuating density on the sound. The second i s  the p i b i -  
l i ty  of non-isentropic processes which can cause the local pressure to differ from the 
local density times local speed of sound squared. I n  order to sepaate these two 
effects the quantity c2 ~ 6 . .  i s  added and subtracted to the ri&t hand side of Equa- 

tion (4), and relevunt terms are grouped together: 
'J 

where c i s  the local speed of sound, which w i l l  vary over space with the local tem- 
perature. Let us study first the second term i n  Equation (31) ignoring 03 usual the 
viscous terms in p.. SO that p.. 

' J  IJ 

First, some well-knwn results relating thermodynamic variables for thermally perfect 
gases are required, (e .g. , Reference 25) . The differential notation w i l l  be used for 
the fluctuating part of a thermodynamical variable, and these f!uctuating quantities 
are limited to small deviations ftom a reference local isentropic state. 

p 6iJ a 

- -  
P P  

d s  = 

y = c / c  
P V  

= (y = 1) cy R 

p = pRT 

where s i s  entropy, q i s  heat addition per unit mass, c 

constant volume, c 

heat, and R i s  the gas constant. 

i s  the specific heat at 
V 

i s  the specific heat at constant pressure, Y i s  the ratio of specific 
P 
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The entropy equation in Equations (32) gives 

Naw define the local isentropic speed of sound c by 

Then Equations (33) may be written as 

or, by using Equation (32) as 

Since only fluctuaticns are significant in  Equation :35), and (3%) give alternative 
expressions for i t s  last term, and are clearly duc to the effects of locally non-isentropic 
processes, in  paticular heat addition. Thw, the second term of the acoustic stress 
tensor, denoted by subscript 2, may be expressed os 

When the flaw conditions in  the source deviate from the isentropic condition, i t appears 
that Equation (36) w i l l  enable the additional sound due to the entropy fluctuation or 
heat addition, for example combustion, to be estimated. 

Lighthill (Reference 27) gave 

This i s  an approximation to Equation (35) and applies where the local mean variables 
p, c can be approximated by their values outside the flaw po , co. This WOI a good 

approximation in  the case studied by Lighthill i n  Reference 27, where the interaction 
of turbulence with sound or weak shock waves was investigated. But for a hot exhaust 
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flow the approximations are less valid. 'he internal pressure of the exhaust may well 
he close to atmospheric, but the speed of sound may be very different. For a rocket 
the internal speed of sound i s  about three times that of the ambient environment, so 
that the above opproximate expression i s  not appropriate. Hawever, Lighthill's con- 
clusion that " thae kinetic temperature variations which result from the (nearly adia- 
batic) pressure fluctuations ;E ihe turbulence can be neglected" s t i l l  holds locally, 
since thi: statement applies equally wel l  to the expressions given by Equation (31) or 
Equation (38) beluw. 

Nevertheless, local density changes can s t i l l  produce some sound even under isentropic 
conditions. T!,e first term of 1.. gives contributions to the sound field from density 

changes that could be locally isentropic. For the present case the dominant contri- 
bution to the V.V. te in  arises from the mean velocity i n  the direction of the flaw, for 

simplicity only this term w i l l  be retained. Using the definition of c ftom Equation 
(34) the first term of Equation (31) can be written 

'J 

' J  

For one-dimensional f laws (Reference 25) the total enthalpy i s  given by: 

u2 
-7- h = c  T = c  T +  

P t  P 
(39) 

where T i s  the local total temperature. Hence by usfng this equation and the 
t 

Equation (32) we have 

When either the density or the enthalpy fluctuates, the above expression provides a 
first order fluctuation quantity for (T..) relative to the magnitude of the fluctua- 

IJ  ' 
tiom. Hawever, it i s  important not to include the same contribution to the sound 
field more than once. Fluctuations in  velocity are included via the standad self 
and shear noise calculation. Fluctuations in entropy and enthalpy are included in  
Equation (36). Thus variations in static temperature from either isentropic or non- 
isentropic sources are included and do not require iurther consideration, Since the 
mean quantities do not contribute to the sound generation, we may write the density 
fluctuation effect as i n  the fo l lw ing  expression: 
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lhbs finally, density and temperature effects cn sound generation are given by Equa- 
tions (37) and (40), or as follows: 

When the spectra of the fluctuation quantities are knwn, the thermal noise sources' 
can be estimated by using Equation (41). It naw i s  possible to estimate the sound 
radiation in the far field due to thermal effects by incorporating the result from 
Equation (41) into the right hand side of Equation (18) as an additional sound source. 
Of course, the multiplicative facton for the convection velocity effect should be 
established for moving thermal sound sources i n  accordance wit4 the discussion in  
Section 2.3. 

20 



4 .O 

4.1 

PRE DIC T I 0  N 

Turbulence Spectra 

I n  order to calculat 

- 
the sound radiated by a jet exhaust i t  i s  necessary to possess 

information on i t s  turbulent parameters. T h i s  information i s  difficult to find. Most 
theoretical work on turbulence has emphasized the isotropic turbulence case, and 
although this has given usefui insights, a jet exhaust flow i s  sufficiently norrisotropic 
to introduce important difficui ties. Experimental studies of tuhulence also suffer 
from an important drawback since available measuring devices record only a volume 
integra! of the approaching turbulent field. Furthermore, measurements of jet 
turbulence are usually made in a fixed frame of reference past which the slowly 
developing tlirbulent structure i s  swept a t  high speed. 

Theoretical relations which describe some of these effects can be written down, 
based on the wor': of Batchelor (Reference 36). The notation used here corresponds 
to that of the rest of the report. If the turbulent velocity component in  the i direc- 
tion i s  ui, thsn by an obvious extension of Equations (A-1 1) to (A-13) a cross spectrum 
and cross correlation function can be defined respectively by 

1 A  - {ui (k,o) 2.* (k, o) 
VT J 

M u.. (k,w) = Limit 
VI T--a, IJ  - 

and 

where u. u. are assumed to act within the space-time volume VT. 
I J  

M u.. i s  a nine-component cross spectrum and can vary i n  an arbitrary manner with the 

wave vector k. I f  the turbulence i s  isotropic, then the spectrum wi l l  be a function of 
the magnitudeSbf h k only, and not direction. Thus, a "scalar spectrum'' E(k,o) can be 
defined by 

'J 

where the integration i s  carried out over a spherical surface for each value of k = I kJ. 
Most possible measuring devices for use i n  a turbulent flow measure a single integral 
parameter as a function of time. An ideal one-dimensional device, to which a hot 
wire closely approximates, measures the "one-dimensional velocity spectrum" +, (k, o), 
defined by 
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Note that tpl(k,,w) wi l l  usually be quite different from the component on the three- 

dimensional spectrum u11 (k1 8 0, 0, 0). 
M 

I f  the turbulence i s  assumed to be isotropic, then relations between the various 
spectra can be derived. The full crass-spectrum i s  related to the scalar spectriirn by 

(k2 Sij - k. k.) 
U ; j ( ! y )  = 4rr k4  I J  

M 

and the one-dimensional velocity spectrum i s  related to the scalar spectrum by 

or 

The basic condition of isotropy imposes very strong restrictions on the application of 
these formulae. Both the spectra +,(k,w) and E(k,w) are positive functions for a l l  k. 
Thus, when tp, (k, w) i s  derived from E( k, w) i n  Equation (46), the factor (1 - k:/ k2)/ k 
acts as a band pass filter. A plot of this factor for various values of k i s  shown in  
Figure 6 .  I t  wi l l  be seen that i t  i s  very heavily weighted for low values of k, Note 

that E(k, o) at any given value of k always has a larger contribution, the lower the value 
of k1 . Note also that the peak contribution to a given k, comes from a value of 

k = $k, , In  other words, a hot wire i n  isotropic turbulence actually responds most 

strongly to wave numbers at 55' to the normal 

Although an arbitrary scalar spectrum function w i l l  always give an allowable one- 
dimensional velocity spectrum, the reverse i s  not true. Since E(k,w) must always be 
positive, several limitations are imposed on the possible shape of cp (k,w). I t  must 

be a monotone decreasing function of k with i t s  maximum at k = 0. In  fact, many 
measured spectra are not of t h i s  form. This i s  extremely unfortunate as i t  suggests 
that the convenient assumption of isotropy cannot be applied. Thus, i n  turn, a l l  the 

1 
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convenient formulae above cannot be applied, and i t  becomes very difficult to 
estimate the spectral form in  a given direction as required by acoustic theory of 
Section 2 .O. 

Nevertheless, some genera/ conclusions can be drawn . Wills (Reference 34) has 
measured wave numbe, spectra of the u1 (axial) component of turbulence He has 

kindly lent copies of his original data plots to the authors to allob, further analysis. 
A contour plot i s  used to display the measured wave number spectrum in Figure 4. 
The vertical axis i s  wave number and is, of course, the wave number of the measured 
one-dimensional velocity spectrum. The horizontal axis, in  convection velocity, * 

obtained simply by dividing frequency by wave number. The overall convection 
velocity of the turbulence can be defined via the locus of maxima of the contours 
in  the plot, and i s  shown in  Figure 4. 

The typical value of the convection velocity i s  205 ft/sec which corresponds closely 
to the mean velocity at the measurement position . But clearly the convection velocity 
i s  also a function of wave number. A comm,., assumption in  turbulence theory i s  that 
the exhaust flow consists simply of a homogeneous decaying turbulence which i s  being 
cxvected. I f  the spectrum of Figure 4 i s  replotted relative to i t s  moving frame of 
reference as a function of wave number, then the result shown in  Figure 5 i s  obtained. 
The intensity contours are symmetric with respect to frequency as measured relative 
to the moving frame. This result does justify the convecting assumption, which has 
alrecldy been used extensively in  Section 2.3. 

Another point of interest i s  the very rapid decay of the turbulent energy wi th  higher 
convection speeds. I f  the spectrum were of a true wave number component, then the 
energy at the speed of sound in  the figure would be, identically, the sound radiated 
by the turbulence. Since the spectrum i s  actuallyan integral measurement, this identity 
i s  no longer true, but there i s  obviously a fairly direct connection between the energy 
at the speed of sound in  this spectrum and the real sound generated. 

Finally, i t  i s  necessary to specify some form for the turbulence spectrum in  order t c  
make an initial evaluation of the possible noise radiation field. At the present time, 
no available experimental data specifies the full three-dimensional turbulenc 3 to such 
a detail as required by the noise prediction theory. Nevertheless, the spectral noise 
prediction techni?ue i s  applicable to any given turbulent je t  model . I t  i s  intended 
here to choose a simple turbulence model which may bring out a l l  the important 
aspects relative to sound radiation. I t  wi l l  be particularly beneficial to choose a 
model such that al l  subsequent analysis can be carried through in  analytical form. 
We w i l l  be able to draw rigorous conclusions about the detail of noise generation 
mechanisms i n  the turbulence and features of the radiated sound field. One form of 
the central l im i t  theorem (Reference 49) states that multiple convolution gives rise to 
Gaussian correlation functions. Since the final noise radiation i s  the result of at 
least four convolutions, it appears reasonable to take a simple error function curve for 
the form of the correlation, and thus also spectral I functions. 
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A simple isotropic turbulence structure, defined in  the convected frame of reference, 
wi l l  be chosen. The spectral representation of this model i s  given by 

i.. = a2 k. k } exp- { (ka)* i- ( a ~ ) ~ )  
'J ~j 

where i s  the mean turbulence intensity, a i s  the integral spatial scale, and Pis' 
the integral time scale. A l l  these three parameters can be adjusted to values of 
corresponding parameters i n  a typical jet. Experimental results (References 21 -23) 
suggest that 

and 

r 0 . 2 0 -  0.35 a 
c M B  

a = -  

This spectral form, Equation (U), corresponds to the correlation description 

Th is  model can easily be extended to a scale anisotropic turbulence, namely, a 
model using more than one spatial integral scale. 

I t  i s  important to bear i n  mind that the chosen model of turbulence only resembles the 
turbulence structure i n  a real jet in  i t s  intensity and integral scales, and other features 
of possible importance are not incorporated. 

4.2 Shear N oi se 

The analysis in  Section 3.2 found that the shear noise i s  generated through the inter- 
action between the mean flow shear gradient and the u*!k,w) component of the tup  
bulence spectrum . I n  particular, the shear noise spectrum i s  directly proportional to 
u2(kro) when shear gradient i s  assumed to be constant Hence, with the choice of 
fJrbulence model (48); the second order spectrum of the velocity fluctuation in  the 

62=direction, u (lc, w), i s  M 
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M - ’’8 ((k a)2 + (k a)Z) exp - { (ka)2 + ( p ~ ) ~ }  
1 3 

uz (k,4 - 
16r2 

The noise intensity i s  given by the follawing formulr: (Reference 23); 

where zo denotes the location of an observer in  the fc: f ield. 

The cylindrically symmetric structure of a jet  also requires consideration. The 
radiation direction of sound to a fixed observer from different small volumes of 
turbulence around u circular slice of jet  w i l l  make different angles with the local 
normai of the shear flow. Hence, we shall first find the average contribution of 
shear noise sources of a l l  orientations. I f  we denote 

k, = k cos 8, k2 = k sin 8 cos tp, k3 = k sin 9 sin 9, (53) 

then the average shall be taken in  the variable 9 .  The most convenient entry point 
for taking this average i s  Equation (51): 

2n 2n ‘J t(k,w) dq = L ( k a ) ’ J  a 3 @ c 2  (CM2e+sin2esin2cf exp- ((ka)’+(&)’) dq 
2n 2 

0 16 n 0 

1 + ios 
073 ;jo‘ 

- - ( ’”) exp- ((kaf + ( B u t }  
16n2 

(541 

Substituting (54) into Equation (19) and combining the result into EqtLation (52), we 
obtain the noise radiation intensity per unit volume of tdrbulence as 

- 2  2 
uo p u2 a3 13 (ka) (cos4 0 + cos29) M 

! (ro,w) 9 = 2 3 2  3 - (k) exp- ( k 2 a 2 +  B’02) (55) 
alJ ’ 

3 2 n  c r (1-Mcos9)  

The shear noise directivity pattern contained in  Equation (55) agrees with the result 
given by Ribnet i n  Reference 21 
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Equation (55) con further be simplified to 

The noise intensity for any frequency band can readily be computed using Equation (56) 
and a simple integration. For example, the noise intensity for an octave band with 
center frequency wn i s  given by 

I (x  ,on) = 
-0 32n'cSrZ(l-Mcos6f 

1 + -1 1 do 
(l-Mcos8) 2 a2M2 

whelv the subscript n foro indicates the denurneration of the sequence octave bands . 
in  particular, when the wide band noise intensity i s  considered, the limits of the 
integration over o goes from zera to infinity. 
reads: 

i n  this case the resulting expression 

I t  i s  interesting to investigate the noise source distribu'Im in the wave numbelcfrequency 
space. The spatial and the time factors of the noise salGe ore plotted in separate 
figures. Figure 7 shows the turbulence intensity distribution in the kl, b-plane. The 
wave number kJ i s  set to zero for simplicity of rc ,>resentation . A vector OC i s  drawn 
along he direction of emission of the noise. In  this figure, the source intensity i s  
given along Ois and several other representative sections. I t  i s  clear that the shear 
noise i s  zero in  the transverse direction, k2, and reaches a maximum i n  the axial 
direction, k, . 
An important feature not represented i n  Figure 7 i s  the location of noise source i n  
the wave number space where the most intense sound radiation occurt. The definition 
of the turbulence structure, Equation (511, consists of separable wave-number and 
frequency factors. The peak tuhulecce intensity in  the wavenumber space i s  deter- 
mined entirely by the wave number component. However, the most intense part of 
the tuhulence spectrum does not necessarily generate the most intense sound. In 
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the formulation of shear noise, Equation (59, one may detect also two separable 
factors. In particular, the frequency factor i s  

The variation of turbulence intensity with wave number along section OC, and tho 
factor f(o), are plotted in  Figure 8 to the common abscissa k = w/c (1 - Mcos8) 
Their product, plotted on the same figure, i s  proportional to the shear noise intensity. 

The peak of f(w) i s  located at o = BO’. Since the intensity of the aurbulence varies 
with k2  i n  the low wave number range, i t s  product wi th f(o) prodsces a peak of shear 

noise at a frequency w = fi Po . The conclusion reached by this analysis shows 
that the location of sound of peak noise relative to the wave number space i s  
dominated by the frequency factor in the case of shear noise. 

1 

For the shear noise, the effect that the noise peaks half an octave above the frequency 
factor i s  somewhat artificial. 
wave number range, instead of rising CIS k2, the noise peak would be more or less 
coincident with the peak of the frequency factor. Hwever, some general effect 
along the lines discussed i s  expected. 

If the wme number spectrum were flatter in the Iuw 

I n  Reference 21, Ribner established that the shear noise w i l l  peak at a frequency one 
octave below the peak frequency of the self noise . The argument was based on the f r e  
quency factor alone. This phenomenon i s  born out by experimental evidences The 
present analysis leads to the same conclusion. However, i t  reveals that the physical 
mechanism i s  actually quite complex 

Finally, the dependence of the shear noise intensity on 04, Equation (S), instead of 
u2, i s  also due to the choice of the turbulence model Had the turbulence intensity 
spectrum curve been flat in  the low wave number range, the dependence would have 
been u2 . This also affects the dependence on the convection factor (1 - M cos 0). 
In Section 3 i t  was pointed out that the shear noise obeyed a (1 - MJ3 law . In 
Equaticn (56) the shear noise i s  obeying a (1 - Mr)05 law This i s  simply due to the 
two additional factors of k assumed in the present model of the turbulence. 

4.3 Self Noise 

I n  Section 3.4, i t  was found that the instantaneous self noise source spectrum i s  a 
self convolution of the spectrum of the fluctuating velocity component in the noise 
emission direction. It can be directly computed i f  the velocity fluctuation spectrum 
i s  known . In  any case, the instantaneous sound source itself i s  a second order 
quantity. While the turbulent flucuations are random, one can only define, or make 
meaningful n.easurements of their mean square magnitude . In the case of self noise, 
we should deal with 
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which i s  a fourth order quantity. The corresponding correlation representation 
quantity is, by definition 

M 
From an experimental point of view, the fourth order spectrum T (k,o) can be mea- 

rr 
sured directly (Reference 40). For the present example, i t i s  desirable to compute this 
quantity from the chosen model of turbulence. Here, it is  necessary to assume that in  
the turbulence the velocity fluctuations at any two points are jointly normal i n  proba- 
bi l i ty. Hawever, such an assumption must be used with care, as discussed by 
Proudman (Reference 50). 

By employing the above assumption, Batchelor (Reference 36) shows that Equation (61) 
can be reduced to 

- 2  

where u,' i s  a constant and irrelevant to sound generation. 

Now the fourth order spectrum of Trr(k, w) can be evaluated by means of a convolution 
of the known tuhulence spectrum ur (k, 0): 

M 

M N  
w 

In an isotropic turbulence structure the second order spectrum of a velocity component 
i n  any direction has the same form. 
velocity fluctuations i n  the direction of sound emission can be given as 

Hence, the second order spectrum of 

The convolution iaitegal as defined by Equation (63) i s  algebraically lengthy, though 
not difficult. I f  the Cartesian coordinates are oriented such that the first axis points 
i n  the direction of sound emission L, the component of wave number i n  this direction 
w i i l  be k I and the wave number vector i n  directions perpendicular to the first a x i s  

r 

2a 



wil l  be designated os CI k The general formu!cr for noise radiation states that the 

effective component of f (k,w) os a noise source i s  restricted to kr = +(1 -McOs8), 
r r -  

and - + = 0. The integration of Equation (63) can be greatly simplified because the 

component k of tht parametric wave number - k can naw be set to  zero: -T 

The integation i n  these directions degenerates kom a convolution to an operation of 
mean square sum. This can easily be seem i f  one omits the variables k I f, o, and 

u froin the above formula, and recalls that ?(k o) i s  cm even hnction in  al l  the 
variabies. 

r 
r -' 

M 
Substituting Equation (64) into Equation (63), the spectrum T (k,~) can be written 05 

IT 

where iT denotes the vector wave numbers which are transverse to the direction of 
sound emission and 1 denotes the mawitude of the vector +. T 

M 
Upon evaluating the above convolution integral 8 the spectrum Trr(k, h, w) as restricted 
to the k, component 

M 

i s  

Using Equations (19), (52), and (66), and go through similar steps of computation as 
i n  the shear noise case, the noise intensity per unit volume of source i s  
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4 3  

5 2  ( l - M ~ o s 6 ) ~  128c r 

1 1 
exp- -- 

2 2  ' w 2 a 2  C I ( I -M~os0)~  

M 1 ii;pw a 3 
I bo I 4  = 

Similarly, the broad band intensity can be obtained by integrating (67)over frequencyw 

For an octave band with center freqJency wn, the expression i s  

\ 
1 

4 3  1 -414 W 
0 4 e x p - A a (  2 2  J c ( l - M c a 8 )  128c r (1 - Mcos8f0.707wn 

p c 0 a  8 

5 2  
'k0 , On) = 

For the overall noise intensity, the result after integratim reads 

The directional variation of the noise intensity for fixed r comes entirely from the 
convection effect, because the source i s  isotropic in the moving frame of coordinates. 

When the noise source term i s  broken down into i t s  spatial and time factor, we see 
again that the time factor decides the location of the peak noise frequency. The 

distriwtion of $,.(lc,w) and Trr(i,w) i n  the k,, kT, plane are shown in  Figure 9. 

The general topography of the fourth order spectrum i s  markedly different from the 
second order spectrum. The time factor 

M 

1 62 2 
0 

4 f(o) = o exp - - 2 
.!M 

i s  plotted i n  Figure 10 together with. T (k ,O) and the noise spectrum given by the rr r 
product of the frequency factor and the spatial factor. The frequency factor f(o) h a  
a peak locate(; at o = 2,@ which i s  exactly one octave above the corresponding peak 
of frequency factor for the shear noise. Since the self noise spectrum at law wave 
numbers i s  quite flat due to the self convolution, the location of peak noise more 
or less covesponds to the peak of f(o). Hence, the peak self-noise frequency i s  

between 
the basic wave number spectrum as discussed i n  Section 4.2. . 

fi and 2 times as high 05 the shear noise, depending on the flatness of 
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4.4 

We find, from the convolution integral I Equation (65), that the sound source depends 
on the self-convolution of the second order spectrum in the longitudinal direction and 
the sum of square of the same spectrum in  the transverse directions. The strength of 
the noise source i s  therefore relatively insensitive to the assumed form of the turbulence 
structure as long as the total p w e r  remains the same. In  view of this property, one 
may expect that a simple model of turbulence may provide a good prediction of the 
self noise. 

Comparison with Existing Experimental Results and Possible Further Experiments 

Equations (57), and (58) of Section 4.2 and Equations (68) and (69) of Section 4.3 
represent some final results of noise radiation prediction out of an assumed model jet. 
These equations can be applied immediately to  numerical computations. For a given 
set of jet parameters, predictions can be made on the directivity pattern of overall 
far field sound pressure level, octave band sound pressure levels, and the averall 
acoustic p e r  output. The required input data contains simply the jet diameter, exit 
velocity, integral spatial and time scales of the turbulence model, the pameter  cy, 

and physical Tonstants of the surrounding medium . 
Some jet noise experimental data are available for comparison with theoretical pre- 
dictions. Both sets employed below are obtained under controlled laboratory condi- 
tions. For in practical cases, jet noises are often accompanied by other intensive 
sources of noise. Notably, in the case of a real jet engine the compressor noise i s  
just as puwerful as the jet noise, and can cause difficulties in interpretation. 

As a first example, the sound field parameters are computed for a jet of one inch 
diameter, with exit Mach number of 0.80. The results of computation are shown in 
Figure 11. For the same jet diameter and exit speed, Mollo-Christensen (Reference 
39) has measured the overall noise intensity, and separately noise intensities in the 
law frequency range and the high frequency range of the noise spectrum. He finds 
that i n  the law frequency range the noise i s  predominantly directed forward, while 
in the high frequency range a peak appears at about 45 degrees from the jet axis. 
According to theoretical analysis, the low frequency noise i s  mainly produced by the 
shear gradient and turbulence interaction mechanism . Since the frequency i s  very 
low, i t  i s  less affected by the refraction effec+s of the mean flaw. Hence, this set 
of measurements can be compared to our shear noise computation . On the other hand, 
the high frequency portion of the noise spectrum i s  greatly refracted. The appear- 
ance of a peak at 45 degrees i s  generally considered as a result of refraction (see 
discussion i n  Section 2 . 1). 

The rms sound pressure given in Reference 39, however, i s  in  terms of milli-volts 
of the signals from the microphone. Hence, the comparison between theory and 
experiment can only show trends at best. The data of measurement and the compu- 
totion from the present theory are matched at a point on a 45 degree radial line. The 
sound intensities inferred from the data for the overall noise and the noise i n  the low 
frequency range compare favorably with our computation of overall noise and shear 
noise, respectively . 
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The second set of data considered here i s  the jet noise measurements obtained by 
Mangiarotty et al . (Reference 38). This report wesents a more systematic collection 
of results about far field je t  noise radiation. The experimental program i s  intended 
for evaluation of various designs of noise abatement exit nozzles. Three special 
nozzle designs are tested against a smooth conical nozzle, which has an area of 
6.42 square inches and a diameter of 2.86 inches. With the smooth nozzle, the 
overpressure in  the reservoir has been adjusted to three level to provide jet exit 
Mach numbers of 0 S O ,  0.80, and 0.90. Sound pressure levels are recorded simul- 
taneously by a series of microphones along a straight line ranging from 2 to i 8  feet 
from the nozzle exit. 

For each of the three run conditions, sound pressure level directivity patterns are 
measured for noise in  nine consecutive octave bands (Table I ) ,  and for the overall 
noise. The re;ults are presented i n  a series OF graphs. The general trend shows again 
that the lw frequency noise has a predominantly forward pattern, and the high fre- 
quency noise pattern has o peak near the 404egree direction. The refraction effects 
begin to appear near the chwacteristic frequency of the jet 

Far field noise radiat;on yediction has bPen made for one case where M = 0.80 
(Pressure head = 13.5 inches Hg). Computations for sound pressure level cover simi- 
lar octave bands as in the experiment . T - e  numerical results, together with experi- 
mental dcta from Reference 38, are shown in figures 12 and 13. 

Figure 12 shws that overall levels are predicted to within 5 dB Over the whole acoustic 
field. This i s  thought to be a significant result . It w i l l  be observed that the spectral 
shape prediction of the theory are considerably leu accurate. However, the present 
work used a much simplified spectral model for analytic convenience, and many im- 
provements are clearly passible. The prediction and experimental data agree well in 
the octave bands where the peak noise intensities occur. But for high frequency bands 
the predictions are very poor. I n  the chosen model of turbulence, the frequency spec- 
trum drops off much faster than any actual turbulence structure. 

One can recognize i n  Equations (57), (58), (68), and (69) that the turbulence scales 
arb, and the constant parameter cy are very important i n  noise prediction. These 
parameters can only be confirmed by experiments. Moreover, we should hardly be 
satisfied with the simple estimation made possible by assuming an isotropic turbulence 
model . 
Although extensive data on jet turbulence are available in the literature, most 
are not applicable to predictions of jet noise. The reason i s  either that the measured 
turbulence component i s  not directly related to sound generating elements, - 

.-I-_ or that 
the measurement i s  not sufficiently accurate i n  the low wave number range to render 
meaningful sound radiation estimates. The only exception so far i s  the experimental 
work by Chu (Reference 40) . Th is  study was specifically designed according to basic 
j e t  noise theory. 

- --I 
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Chu measured the space-rime correlation functions T ( E  ,t) and T( E ,T) in  several rr - r -  

orientations of ry r w i t h  a pair of single-wire hot wire anemometers. Corrections are 
made for the effect of mean convection velocity i n  the mixing region. Chu based his 
work on jet noise theory in its correlation form, which predicts noise by means of an 
integration of the fourth time derivative of the space time correlation functions. T h i s  
approach i s  equivalent to assuming that the noise i s  generated by the zero wave number 
component of the turbulence. Hence the above obtained data i s  n d  further analyzed 
in  spectral form. Instead, a numerical smoothing scheme i s  judicially chosen to handle 
the derivatives and integration. The important information of the spectral content, 
which could be obtained from measurements of this type, are not preserved. 

In this set of measurements, the T'(t ,t) component of the turbulence was not 

measured. This  i s  partly due tg the instrumentation employed by Chu, because a cross 
wire probe i s  necessary for such measurements. I t  i s  clear in  the present theory that 
this component of turbulence i s  essential in  the prediction of shear noise. 

2 &  

It should be noted here that Chu's work has made significant contribution towards 
resolving the very difficult problem of measuring fully three-dimensional jet turbu- 
lence structure. The above discussions serve only as guide-lines to further investi- 
gations. 

In  addition to the above mentioned general shortcomings of existing cc*a on jet 
turbulence, one important aspect has been ignored altogether It i s  familiar that 
the turbulence intensity across the jet i s  non-uniform This spatial inhomogeneity 
of the turbulence structure has a profound influence on the spectrum of the turbu- 
lence according to theories of spectral analysis. This effect i s  particularly impor- 
tant for the low wave number range, where most sound i s  generated. The inhomo- 
geneity must therefore be considered thoroughly i n  both the experimental design and 
the data analysis phases of the experimental program. 

The following quantities require definition: 

M 
a The fourth order spectrum T (k,w) for varic:.;s values of r orientation; 

rr - 
b.  The mean flow velocity profile u (6 ); 

1 - 2  
M c. The transverse velocity fluctuation spectrum u (k ,o); 

2 -  

d . The turbulence intensity profile of the jet G2 (E ) . 
0 - 2  

Some data on a1 I these parameters exists except for the transverse spectrum , This i s  
important for the shear noise estimation and justifies careful experimental study, When 
the data from the above set of measurements i s  properly analyzed and organized, the 
jet noise can be estimated through the application of the present theory. 
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5 .o SUMMARY AND CONCLUSIONS 

Spaceltime spectral analysis techniques have been used in  an attempt to understand 
and predict the noise from turbulent exhaust flows. A unified theory has been derived, 
based on Lighthill': Equation, in which shear noise, self noise, and non-isentropic 
noise generation can be described. It appears that the present spectral techniques 
can give a simple, convenient and accurate theoretical description of the noise 
generating process from jet exhaust flows. 

Several of the familiar results in j e t  noise theory have been regenerated i n  a simple 
manner, and new insight has been gained into the basic mechanisms of the noise 
generating processes. The shear noise i s  found to be dependent on the detailed struc- 
ture of the flow, while the self noise i s  found to be essentially independent. Thus, 
it appears that shear noise can be reduced by geometrical modifications to the exhaust 
flow, while the self noise can only be controlled by reduction of the turbulent inten- 
sities. The theoretical analysis also suggests that the peaks of the shear noise spectrum 
i s  somewhat less than one octave beiow that of the self noise. 

Existing data on je t  turbulence i s  inconvenient for estimation of noise radiation. How- 
ever, data has been reviewed and i t s  implications for jet noise discussed. Recommen- 
dations for experiments to gather more meaningful turbulence data for j e t  noise prediction 
are put forward. 

Theoretical calculations of jet noise intensities have been made corresponding to two 
reported experiments. A simple analytical model of the turbulence was taken, but 
overall levels were found to agree within 5 dB over the whole noise field. Further- 
more, the predictions agree well with experimental data i n  the octave bands where 
the peak noise intensities occur . The frequency spectrum shape was not predicted 
well, but this i s  thought to be due to the simplifying assumptions made in  the present 
analysis. The agreement i n  overall level was achieved without the use of disposable 
parameters and justifies hope that more detailed theoretical calculations wi l  I enable 
the whole acoustic field to be predicted accurately from theory for the first time. 
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TABLE 1 

OCTAtE BANDWIDTH 5 PECIFICAnON* 

Octave Band 
Number 

(on Figures) 
~ 

1 

2 
3 
4 

5 

6 

7 

8 

9 

Band 
Lower 

Frequency 
HZ 

~ 

1 78 

355 

708 

1410 

2820 

5620 

11.2 kc 

22.4 kc 

44.6 kc 

Band 
Upper 

Frequency 
Hz 

355 ~ 

708 
1410 

2820 

5620 
11.2 kc 

22.4 kc 

44.6 kc 

89.1 kc 

- 

Band 
Center 

Frequency 
Hz 

250 

500 

lo00 

2030 

4Ooo 

8000 

16 kc 

32 kc 

64 kc 

*These octave bands are chosen as h e  same as given in Reference 38. 
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Figure 1 .  Location of Sound Radiating 
Element of a Moving Source 
in the Wave-Number Fre- 
quency Space: Subsonic Case 

Figure 2.  Enlargement of Figure 1 .  

Figure 3. Location of Sound Radiating Element of a Moving Source in the 
Wave-Number Frequency Space: Supersonic Case 
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Figure 4. One-Dimensional Wove-Number Phase Velocity Spectrum of the Longitudinal 
Fluctuating Velocity Component in the Mixing Region of a Round Jet. (From 
Reference 34 as replotted to double logarithmic scales .) 
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APPENDIX A 

i ilREE -D IMENSIO N A L  SPECTRUM FUNCTIONS 

A. 1 Introduction 

T h e  notion of three- and four-dimensional spectrum functions i s  used extensivefy in 
the present report. One-dirnensional spectra are widely familiar as a result of their 
use in the analysis of time mrying phenomena, and the clarity and usefulness of the* 
frequency spectrum of a time varying function is  well known. Seveml books are 
available which treat one-dimensionol spectra In defuil (References 42-45). The 
three- or four-dimensional spectrum i s  a natural extension of the one-dimwsioml 
ideas. Here we are concerned with the spatial frequency, or wave number, repre- 
sentation of a spatially varying function. Since space has three dimensions, three 
wave-number components must be wed to describe the complete wove spectrum. 
Analysis of a function into muIti-dimensioMl spectra is a straightforward extension 
of the one-dimensionol case, but because of i ts comparativ? unfamiliarity it has been 
thought worthwhile to include a fairly complete discussion here. The analysis below 
i s  restricted to three space dimensions, but the fourth, (time), dimension can readily 
be added, as was &ne in Section 4.0 of this report. 

Several different forms for the basic Fourier decompition are possible. The one used 
below, and in the body of the report has been used by several authors, and has the 
advantage that odd factors of 2s do not appear in the integrals. 

Consider any function ~ ( 5 ) .  Then C (k) .the three-dimensional wave number 
spectrum of ~ ( x )  rcI can be defined by 

Thus it can be seen that the three-dimensional wave spectrum of u is  simply the 
multiple of three one-dimensional Fourier integrals, one for each dimension. The 
extensiov to additional dimensions is obvious. I t  i s  also clear that the Fourier inversion 
theorem m y  be applied to each one-dimenslocal integral separately. Equation (Al) 
and its inverse may be written in shorter form as 
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Two points should be noted about Equations (A2), and (A3). The integrals are basically 
overall space. Therefore, u, Q must tend to zero sufficiently rapidly at infinity to 
allow the integral to converge. Thus, homogeneous (e.g., random) functions, which 
do not tend to zero at infinity must be specially analyzed, as . . I  Section A, 3 below. 
Note particularly that O(k) i s  an integral representation of the entire function u (5 ) .  
No details of IxaI ized spcr io! structure appear, and the wave spectrum u (k) may be 
assumed to apply miformly w e t  the whole space. 

A.2 Convolution Product 

The spectral form of the multiple of two functions i s  used extensively in the report 
(Section 3, and w i l l  also be required below. To siwplify the understanding of the 
proof of the rela! m s ,  cmsiljer first the vector quantities below as scalars. The proof 
applies directly for scalars, and the steps may then readily be extended to the vector 
form. 

Now introduce the spectrum function v(l) of v(x) in  a relation as ( A 3  
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A.  

The 
written 

integral may be identified as G ( k  -4) via (A2) so that Equation (AS) may be 

Expression (Ab) i s  known as the Convolution Product of the spectral functions. A 
short notation in wide use for convolution products i s  

d 

The above analysis shows that when the space function i s  the product of two space 
functions the spectrum i s  the convolution product of their spectra. Thus 

An inverse relation also applies, and may be proved directly by the same methods as 
atmv’e. It i s  

These convolution relationsh8) and (AS) have very wide application, as shown in 
Section 4o f  this report, and in the next two sections below. 

3 Random Functions 

I f  u(x) i s  now assumed to be a random function of space then it wi l l  not satisfy the 
limits at infinity required for the Fourier integration. In  principle this raises con - 
siderable problems of mathematical rigor. However, i t  i s  possible to treat the integral 
as a form of “Generalized Function”. Jones (Reference 46) has given an extensive 
development of the mathematics necessary in this case, which essentially shows that 
a l l  common mathematical manipulations of the infinite integral are possible. 

Now the random variable u(x) w i l l  cancel out identically a Fourier integration 
overallspace, except for k = 0. The fluctuating quantities have zero mean, by 
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definition. Thus the futrstion u(k) has a rather ne'- ulous meaning. But the square of 
the random variable w i l l  have contributions at a l l  wave numbers. To find t h i s  define a 
function u (x) which exists only inside a limited volume V, and define therefore V 

u (x) exp - 2+i  k * x  dx 0 V -  (k) = I V- r r r c  

The mean square value of G (Jc) can now be defined as 
V 

where the * superscript denotes a complex conjugate. C' i s  thus a second order 
spectrum. From (A10) it i s  clear that u* (k) = u (A), so that using relations (AS) 

the Fourier Transform of u(k) can be defined as 
V V 

or, in the longer form 

n 
u(6) = Limit 

V-00 
c1 

uation A13 shows that u([ j i s  actually the cross correlation function of u(x). 
may readily be observed to be even in 5 by substitirting & ry 

The negative sign for 5 can therefore be replaced by a positive sign if desired. 
ry 

;Cg i s  the three-dimensional correlation function. 
representation of the whole u ( ~ )  field, and i s  dependent only on the separation $, . 
(Note that i t  would be meaningless to use the x variable in u). %'(k) i s  the wave 
number energy density spectrum, and i s  the Fourier Transform of correlation 
function, as i s  familiar from the one-dimensional case. Equation (A12) makes it clear 
that 3 j c )  i s  a mean square energy per unit volume. This fact i s  of importance when 
considering transformed coordinate systems, which may involve volumetric changes. 

I t  i s  again an integral 
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A.4 Three-Dimensional Transfer Functions 

An important class of problems involve operations 4 ich can be described by 

I- 

ie. u(x) = h(x)* v(5) 
Y LI 

From Equai:or. (A9) the spectrcl form i s  

and thus the energy density spectrum i s  clearly 

Thus for this transfer function problem the spectrum i s  described particularly easily 
by simple multiplication of the power spectra of the input and transfer functions. 

This case corresponds to the response of a constant parameter linear system, such as a 
body or an instrument, to the random variable v(x). This forml1lation wus extenzively 
used by Uberoi and Kovasznay (Reference 47) in their study of instrumentation 
effects in turbulence measurements. The formuiation can be applied whenever the 
kernel function 'h  i s  not a function of space. For instance the spectra! response 
function of c hot-wire anemometer i s  not a function of location. Neither would the 
response of an aircraft to a turbu!ant environment be dependent on position. Thus, the 
transfer function approach doer apply. to a wide variety of problems and giver answers 
directly. But note that in this report the inhomogeneity of the jet  i s  a function of 
position, and transfer function methods are not appropriate. Thus, Equations (A8) are 
used rather than the transfer Equations (A9). For this case a more complex formulation 
i s  required, 
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APPENDIX B 

COMPUTING PROGRAM FOR THE MODEL JET NOISE PREDICTIONS 
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3200 CORTUAW O I A W O S T l C  RESULTS rn FOR NOlSFS 
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3200 CORTRAN ( 2 . 2 )  

3200 FORTRAN DIAGNOSTIC RESULTS 0 FOR ALOGlO 

NO ERRORS 
LOAD, 56 
RUN 
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