@ https://ntrs.nasa.gov/search.jsp?R=19700003296 2020-03-12T04:40:24+00:00Z

*

h

WYLE LABORATORIES

TESTING DIVISION, HUNTSVILLE FACILITY

researc




WYLE LABORATORIES - RESEARCH STAFF
REPORT WR 68-21

SPECTRAL TECHNIQUES IN
JET NOISE THEORY

By

S.P. Paoand M.V. Lowson

Work Performed Ur.2r Contract NAS8-21060

I April 1969
WYLE LABORATORIES

RESEARCH DIVISION, HUNTSVILLE FACILITY COPY NO.




SUMMARY

Spectral analyses techniques are applied to Lighthill's aerodynamic sound equation to derive a
unified jet noise theory, in which shear noise, self noise, and non-isentropic effects are treated
on the same basis and derived simultaneously. The result of this theory has a simple, yet
rigorous, representation of the radiated sound field.

The structure of the source terms in the turbulence and the mechanism of noise generation are
examined in detail. Numerical examples of noise prediction are computed for two jet configu-
rations where model turbulence structures are assumed. These examples demonstrate that this
theory can predict correct sound pressure levels for a jet without any arbitrary constant.
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1.0

INTRODUC ION

The advent of jet and rocket propulsion introduced a new form of noise, due to the
high speed turbulent exhaust flows that characterize these engines. The noise from
jet and rocket engines can cause both community noise and structural fatigue
problems. In spite of considerable noise control effort jet engined aircraft are still
a major source of noise intrusion in communities near airports. Rocket engine test
schedules are also often controlled by notential community noise problems. Both
aircraft and rocket vehicles have experienced fatigue failures in regions close to
the engine due to the intense noise levels occurring near the exhaust, Tuus there
are many problems in jet and rocket noise which still require solution.

The problems are complicated by several factors. Although the noise field is cleurly
related in some way to the turbulence a wide variety of fluctuating mechanisms can
be postulated as possible fundamental causes. Controversy still exists over whether
the supersonic or subsonic portions of an exhaust flow are responsible for the major
part of the noise. In some circumstances noise generated within the engine can be
important while in others noise radiated far downstream due to instability mechanisms
could be significant. At the present time the real contribution of either of these
sources in a full scale case is unknown. Noise due to combustion, or even the
effects of mean jet temperature are still essentially undetermined. Conflicting
evidence is available regarding the possible significance of shocks in supersonic
flow. Even such an apparently straightforward case as coaxial jet mixing has been
found to cause almost insuperable problems in prediction by current techniques. Thus
it appears that new methods are required.

The major part of the published theoretical work on exhaust noise has attempted to
calculate the noise field by evaluation of the appropriate retarded time integrals.
This leads to the requirement for knowledge of the fourth derivative of a fourth
order correlation function in the turbulent flo'v. Not surprisingly, estimation of this
function is difficult, but some success has ce-'~iniy been achieved using this approach.
The present report emphasizes the evaivation of the noise field via spectral methods.
Thus the turbulence field is described by its wave-number and frequency character-
istics rather than in space and time. One re -ec ‘n*ation is simply the Fourier trans-
form of the other, but it does appear that spectrul methods offer considerable
simplicity, and possibly clso greater insight into the problem.

Most of the results previously found in jet noise theory can be rediscovered by a veiy
simple spectral approach, and will be presented in the report. The simplicity is
thought to be an important advantage. The present work has also enabled direct esti-
mates of the noise to be made, as will be discussed in a later section. The vork also
suggests some experimental measurements of turbulence which appear to be particu-
larly relevant to the noise problem.
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BASIC MECHANISMS

The Ligrhthill t- ition

The clearest way to understend the mechanisms underlying noise generation by
turbulent flows is via the basic equation first derived by Lighthill (Reference 1).
This equation has been the basis for virtually all work on exhaust noise to date. It
can be derived in a straightforward way from the two basic conservation equations
in fluid dynamics, for mass and mnmentum respectively. The equation for mass
conservation (the continuity equation) car be written, in tensor notation with the
summation convention, as

= Q (M

where p is the density
t time
vi(i =1,2,3) a cartesian velocity component
xi(i =1,2,3) a three-dimensional cartesian coordinate

Q a rate of introduction of mass per unit volume which can vary with
spatial position x .

The equation for conservation of momentum can be written, in Reynolds' form, as

a(pvi) apviv. 9p..

i i
i S * U F. (2

where F (i =1,2,3,) are the components of external force per unit volume acting
over the fluid, and

P (i,j =1,2,3,) is the nine-component stress tensor which includes both
' viscous stresses and internal pressure forces on the fluid.



Differentiating Equation (1) with respect to t and Equation (2) with respect to X,
and subtracting gives

#o QN &
2 O ¥ v (oviv * py) 3

Now the "troce" of pij' that is the terms for which i = j, is essentially the scalar

internal pressure which acts on the fluid. Here we are interested in calculating the
sound, and therefore in the fluctuating part of Equation (3). As is well known the

fluctuating pressure and velocity at a pomt in a homogeneous isotropic medium with
speed of sound ¢ are related by p = c?p. Thus, Lighthill (Reference 1) subtracted

the term cg & p/Bx? fron: each side of Equation (3), with the result,

7P _ 290 _ 9X_ + (4
a2 0 axﬁ ot axi axiaxj
- _ 2
where Tij = pvivj + pij c“p8ij

5..
')

ft

1,i=j;=0, i#j(The Kronecker §)

Equation (4) will be termed the "Lighthill Equation”. It can be seen that the left
hand side of the Lighthill equation (4) is simply the wave equation, so that the right
hand side gives the effect of various possible types of acoustic source. The Lighthill
equation gives an expression therefore of the sound generation by various types of
sources in an infinite homogeneous isotropic acoustic medium.

Each term on the right hand side of Equation (4) gives the effects of a different
acoustic source mechanism. The first, 3Q/dt gives the effect of mass introduction.
Examples include pulse-jets, sirens, tip jet rotors, and the random mass fluctuations
that can occur across the exit plane of a jet exhaust. The second term, oF; /ox;
gives the effect of external fluctuating forces which can act on the sir. Examples
include compressors, propellers, helicopter rotors, and the random fluctuating forces
that exist on the exhaust lip or on any body ir a turbulent airstream. The third term

if"Tij /axiaxj incorporates several different effects. Tij is generally referred to as

the "Acoustic Stress Tensor,” and can have nine components. In many cases the



most significant fluctuation of the acoustic stress tensor will be caused by turbulent
velocity fluctuations which affect the v.v: product. Virtually all calculations of
noise radiation by turbuleni velocity fluctuations have therefore utilized the

Lighthill equation with Tij put equal to vaiv-i . This approach has given considerable

success in predicting basic trends of turbulence induced noise, and has also succeeded
in predicting actual noise levels in some cases.

However, the remaining terms in the acoustic stress tensor Ti' justify closer study .
J
The off-diagonal terms of pi.(i # j) represent viscosity induced stresses and will rarely
J

be significant. Similarly any bulk viscosity effects on the diagonal terms (i =j) can
be neglected. However, in a real inhomogeneous flow the possibility exists that

p;‘cﬁp. Also the variable p appears in the pvivj term. Thus it is possible that p

can have first order effects on the right hand side of the equation as well as on the
left.

The Lighthill equation can be rewritten so that all possible effects of varying density
are brought onto the left hand side of (4), which thus becomes an equation for
inhomogenecus convected waves. This was done by Phillips (Reference 3).
Unfortunately the resulting equation is almost impossible to solve even for the
simplest types of acoustic source. For the types of source existing in a turbulent
fluid it is doubtful if that equation can ever be solved exactly.

Thus in most work to date the effects of mean inhomogeneity on the flow have been
tacitly ignored. The Lighthill equation is exact and does,in principle, contain these
terms. However, the Lighthill equation is inevitably solved via the homogeneous
retarded potential solution to the wave equation, with the right hand side being
assumed known. Exact definition of the right hand side presumes knowledge of

the necessary solution. Thus the first order approximations made in the solution

will nearly always discard any possible acoustic effects of mean flow inhomecgeneity.

The overall acoustic effects of inhomogeneities may be estimated by simple arguments.
Consider a geometricai acoustics type of approximation to the inhomogeneous solu-
tion, where the speed of sound at any location is considered to be the sum of the
local speed of sound and the local convection velocity. Thus the effective local
speed of sound for an eddy moving at Mach 1 can actually be doubl= the homogeneous
value usually assumed. Sound may then be considered to travel along some ray path
bent in accordance with the local effective speed of sound. For very low frequency
sound, with wavelengths much greater than the jet dimension, the effect of ray
bending will be negligible. Thus the first order solution to the Lighthill equation
may be expected to apply either at low frequencies, or low exhaust velocities

(M << 1), Again at high frequencies when the inhomogeneity has a scale much
greater than the wavelength, the Lighthill equation will apply locally. Thus it
should predict overall power correctly, provided a local wave equation is used.



2.2

On the othe: hcnd the directionality pattern of the noise in this case must be modified
substanticily uue to the surrounding refraction zone. But at mid frequencies, where
inhomoyeneity scale and wavelength are of the same order, no definite rules can be
laid down.

The redirectioning of sound due to refraction has been studied by several authors
(References 4-18 ), and it appears that refraction may in reality be the principal
cause of the observed directionality patterns of jets. No calculations of acoustic
power appear to have been performed including this effect, but Powell and Ribner’
(References 20,21) have pointed out that the well known U? law, originated by
..ighthill would continue to apply at the highest frequencies, since all basic param-
cte-s retained :he same velocity dependence. At the lowest frequencies the U® law

veuld again apply together with the (1 - Mr)-5 dependency given by Ffowes Williams
(Reference 19)followingLighthill (Reference 2). But at the mid frequencies only a

Jartial effect of the (1~ Mr)-s term could be expected, and at high frequencies
zero effect.

1. spite of the shortcomings of the Lighthill equation {4) discussed above, it will be
the basis of the theoretical work nresented in this report. This is because it does
contain the first order effects which might be expected in practice and because no
~omplete study of its first order implications is yet available. Note that the aero-
dynamic effect of inhomogeneities can be included in the aerodynamic source terms
of Tij' but that these sources are then considered to be operating in a uniform

acoistic medium at rest, so that the "acoustic" effects of inhomogeneities are not
incorporated.

Solution of the Lighthill Equation

If the right hand cide of the Lighthill equation (4) is assumed known then its first
order solution discussed in Section 2.0 is straightforward. First write the right hand
side as G(y,t), so that G can represent any desired source term. The solution to
the wave equation is well known from classical physics as

p(x,t) = ! Sl gy (5)
- 4uc? r

where the volume integral is over all Y space. The square brackets require that G
must be evaluatea at a retarded time t' =t - r/c. The symbol~denotes a vector or
tensor quantity,and is utilized because it requires the printer to reproduce the symbol
in boldfaze (Clarendon) type, as is used for vectors. Note also the subscript of ¢
will be dropped for convenience for the rest of this report, except for discussions
in Section 3.4.

0



It is of particular interest to study the spectral form of this solution. /Jhe Fourier
transform pair relating G and its wave-number-frequency spectrum G are

6(!5‘,0) =//G(5,f) exp- 2wi(kex + wt) dx dt (6)

G(x,t) =//6(|,5‘,u) exp 2mi(kex +wt) dk dw (7)

and using (7) in (5} gives

1 6(!5_,1.:) exp 21ri(.|5'oz +wlt - r/c))dy dk dw
plx 1) = —~ (8
4qct r

2y . 1 y 2
Then 2 = r? {l - L =4 O(—) }
& " (9)

Thus, applying a geometric far field approximation, y<< fe and expanding
Equation (9) gives

i<
=

(10)

rr, -

Eyuation (10) may be substituted into Equation (8) to give a far field approximation
to the noise as



| {( o
plx, 1) = ///G(Lsrw)exp Zni gk “)'Y
41rc2rl l <N -
"
+w f--g dzd_lsdu (”)

Now /;xp 21ri(z - x)dy = 8(x) (12

so that Equation (11) may be integrated with respect to y and k to give

] A wr "
plx,t) = 4“c2,/ G -?F‘ w exp21riw<t-—c—> dw (13)

from wnich we can identify

exp-2niur‘/c A [-wr
p(x,0) = G ) (14)

- cr
4nc N ]

Equation (14) is a key rasult, which does not appear to be widely known, although
it was first found by Kraichnan (Reference 24)in 1953. The result gives the fluc-
tuating density spectrum directly in terms of the wave-number frequency spectrum
of the source function. The initiai exponential is simply a phase factor. Note
particulatly that there are no integrals in Equation (14), and that the pressure at

a particular point is governed only by a single wave vector wy /cr, . Equation (14)
therefore appears to cffer a particularly attractive formulation for the prediction of
exhaust noise.



If, as suggested by Equation (4), we define

oF. 1.,
Glx,n = Q. 1, i (15)

at axi axiax

then, assuming relations of the form of Equations (4) and (7) between the direct
and spectral forms of the source functions, we find

n A, A 2 A
Glk, o) = - 2io Q (ko) + ik, Fillg o) - 4" ki, Tk o (16)

from which, the sound field is given by

A\
exp - 2miwr_/c 2niwr,F, w? rr,
p(_)f_,u) = ! -Qniua - Ll gt — Y ?l (12
4nc?r cr, c? Y

1

where all spectra are evaluated at (-wr /cry, W), or more shortly

2
- exp - 2miwr, /c w w

plx,w) = L Lie@+i=F 2T, (18
2c2r' c c?

where subscript r denotes the component in the direction r, that is in the direction
of the observer .

In the above analysis, all spectra are first order, simply the Fourier transforms of the
original functions. For random functions this representation does not give a mean-
ingful result and, as is well known, a second order or power spectrum must be
defined. The necessary analysis is given in more detail in Appendix A, Essentially
the first order spectrum must be multiplied by its complex conjugate and a limit
tcken. Applying this process to Equation (18) the .exponential phase factor will
vanish with the result (assuming zero correlation between the various sources)



2.3

M 2 m im
Bl = —— 1+ @ + L B 44 T ) (19)
4c‘r% 2 ct rs

where the double hat notation has been introduced for second order spectra.

€.und Field of a Peint Source in Uniform Motion

In order to obtain a better understanding of the present spectral description of the
sound generation process it is helpful to consider this description as applied to a
point source in motion. Figure 1 gives a wave number frequency diagram of the
process. Consider a point source emitting a signal at a single frequency w

The Fourier transform of a point singularity is a constant, so that the representation
of a point source of a single frequency on the wave number-frequency plane is
simgely a straight line parallel to the k-axis, as shown in Figure 1

Lines of constant slope through the origin on this plane are lines of constant
velocity u =w/k. The line_w/k = ¢ is of particular interest since, by Equation
(14) the value of the field(@ along this line gives the magnitude of the sound
radiated in the k direction. (On the present diagram only a single component

for k is shown which corresponds to the component in the direction of the observer.)

Consider next the wave number-frequency field, relative to some coordinate systems
which now moves relative to fixed axes with uniform velocity component V in the
k direction. The relation between the two fields is given by

/N
Grixeq k0 tkV) =

()4

(k,w)

moving

Thus the field of the point source given relative to the moving axes by w = w,
becomes w = w, kV relative to moving axes, the dashed line in Figure 1 .
Hence, while the fixed source produces sound at frequency w, and wave number

ko = uo/c, the moving source parameters w,k are found, by geometry, as

k=w/f=(w- uo)/V, which gives

k = (20)

These give the well known Doppler shift effect.



The amplitude of the sound radiated may also be found by a simple argument.
Figure 2 shows an enlarged version of Figure 1 in which the incremental values
are specifically displayed. For the stationary case the sound in the frequency
increment 8w is given by the part of the wave number spectrum lying in 8k,. But
in the moving ¢ ase the wave number region of interest is &k, wide. The ratio of

the amplitudes is thus 8k, /8k,, which is in the ratio of k/kO in Figure 2, which
is in turn given by Equation (20) as 1/1 - M

A
However, in general there is no reason to suppose that the value of G at k will
remain equal to the value at k,, so that the (1 - Mr)'l factor cannot be applied
alone, except in the monopole case. Equation (16) shows how point dipole (force)
and qua- -upole (acoustic stress) fields would vary as k and k° respectively, and
this should be included in the estimation of the amplitude.

Thus Equation (18) for the sound can be rewritten, to include the effects of motion
as

i < 21t|w0r|> i, iu,
X,U) = e Q f o0 _F 4
P 2c2r](l-Mr) P\ el M)/ |- M c(1-M) r
w 2
[_ % |
HEE P v L (21)

where W, s the frequency in the moving axes. All spectra are evaluated at

{
i- Wo.L /crp -M), /(l - M) ( . In the above equation all the arguments
presented above referred to velocity and wave vector components in the direction

of the observer. Note also that the mass source term Q in Equation (21) corresponds
to a mass source and not to a "simple monopole source" q = dQ/0t which would have

an overall (1 - M,.)-l dependence, rather than the (1 - Mr)-2 found here.

Thus, we have re:overed *he .'e!! knowr. dependence of point monopole, dipole
and quadrupole sources =1 (1 - M) to the =1, -2, and -3 power respectively.
This also impliesa {1.- M} to the -2, -4, and -6 power for the intensity (~den5|fy )
of the sound. But note that this only applies when the spectrum analyzed in Figure

1 can be meaningfully represented as a first order spectrum, as in the case for a
point source. For a random variation in space and time only the second order
"power" spectrum (see Appendix A) can be meaningfully represented on Figure 1.
In this case the same arguments apply, but to the mean square of the signal. Thus
a factor of (1 - M) is lost from the intensity expression and the convection velocity
dependence of monopole, dipole and quadrupole random sources is as {1- M) to

10



the -1, -3, and -5 power respectively, as first pointed out by Ffowes Williams
(Reference 19).

A further point of interest is the effect of supersonic speeds. As indicated in
Figure 3, both positive and negative sound velocities can be found on the wave
number frequency diagram. For subsonic sources the negative sound velocities are
meaningless since the sound proceeds in the opposite direction to that of the
observer. But at superzonic speeds such directions of propagation can still give
rise to observed sound fields and must, therefore, be included. '

By geometry, as before, we find two observed frequencies for any given direction
at supersonic convection speeds

Both these factors can be applied in the basic equutions as was done for the
subsonic case,

The (1- MS) amplitude factors discussed above apply directly to the point source
(& function) case. but are basically estimates of the effect of motion. As can be
seen from Figure 2 , if a source with finite bandwidth (8w) was under study the
direct integration of the sound along the ray would give the same effect because
of the large area of the source region which contributes. These estimates may be
expected to be fairly accurate if the basic source strength does not vary too much
with k, For instance the quadrupole sound trends shown in Equation (16) does
include two additional k factors, and the (1 - MI,)‘3 estimate applies providing

Trr does not vary significantly between the fixed and moving axes values of k.

A more realistic turbulence spectrum will have values at all points of the wave
number-frequency plane. Figure 4 shows a typical case where contours of
equal vc lues of the spectium function have been plotted. Clearly, at zero wave
number very little sound would be radiated in this case. At subsonic speeds the
whole pattern slides sideways to the right and more sound would be radiated. At
transonic speeds the sound is given by values lying through the maximum region
of the spectrum, and at supersonic speeds the sound again goes down.

From this discussion it should be clear that the apparent transonic singularity of a
point source at M =1 reflects only a breakdown of the estimation procedure. At
the transonic condition the sound ray ¢ and velocity line V are parallel, ond
intercept at infinity thereby giving infinite frequency - an ultrasonic catastrophe.
However, even for a true mathematical point source the sound radiation would be
entirely dependent on the asymptotic values of the & function as k tended to

11



infinity. But in a more realistic case the source strength at sufficiently high wave
num:i:er will always be zero, and the integration along the ¢ ray will emphasize
other parts of the wave number spectrum. No particular difficulty at transonic
speeds therefore occurs.

A final point of considerable significance in much of the discussion which follows
may also be made by reference to Figure 4. Note that at both subsonic and at
supersonic speeds intercepts of the sound line with the spectrum near the origin

are of the greatest importance forsound radiation. These correspond to the low
wave numbers in the spectrum. Only at transonic speeds do all the wave numbers
in the turbulence contribute equally. Because of the factor of k? in Equation (16)
no sound is actually radiated at k = 0, but it will still generally be true to say
that it is the lower wave number components of the turbulence which dominate

the sound field.

12



3.0

3.1

DEFINITION OF THE SOURCE FUNCTIONS

General

The results found in the last section suggest that the sound field of any prescribed
turbulence field can be found directly from its wave number - frequency spectrum.
Thus the problem now hinges on the spectral estimation of the turbulence. Such
estimaiion typically requires evaluation of conyolution integrals, as discussed in
Appendix A. More specifically, Equation (17) showed how calculation of the sound
radiated by a je: required know ledge simply of Tij(‘ls'u) at *1e peints (=wr/cr,w) in’

wave nuniber-frequency space. Definition of this term requires further manipulations.

The equation for the acoustic stress tensor is

— _ A2
Tij pviv-i + pij c pSij (22)

Regarding this stress tensor in Lighthill's original formulation, it is assumed that the
viscous stresses are neglected because its eftect is small compared to the inertial term.
Furthermore, the flow is assumed to be isentropic at low Mach numbers. Therefore
the sum of the last two terms in Equation (22) vanishes for a homogeneous medium. In
hot jet exhausts, especially in rocket exhausts, very complicated thermal fluctuations
are presented. The isentropic flow assumption is not valid and the thermal effects
emerge and become important, as discussed in Section 2.1,

The inertial term, P, Vi(’ﬁ'f)vj(ﬁ'f)' is a product of two quantities. Its spectrum is
thus given by a convolution, Equation (AB) of Appendix A,

”~ A A )
= L.3\
Tij I'S"N)Inerﬁ(ﬂ PC vi(hlw)* vj(,lslw) ( /

or in the longer form, Equation (A5),
A A A

= ) - - 24)

T fnertial = Po / / %L, 00, (e-k, u-a) dL da (

f o

So that, if the first order spectra Ci are known, then the spectrum ?ij(k,u)

Inertial
can be calculated.

13



3.2

It is common in jet noise theory to split the velocity v. nto mean and fluctuating
parts v. = Ui + U. thus

Py vivj = Py (ui Uj + uj Ui *+u, uj) (25)

where the mean value Ui U. has been discarded since it does not contribute directly
to the sound . ]

Clearly the convolution integral Equation (24), will apply separately to each of the
terms in Equation (25). On contraction u, Uj cannot be distinguished from uj Ui O

that the first two terms may be construed as @ single contribution which is due to the
interaction of the turbulence and mean shear (T-M). The last term u. v, gives the

sound due oniy to turbulence-turbulence (T-T) interactions. Clearly the T-T contri-
bution to 'l'ij is given by Equation (24) with v replaced by u. '

The two contributions will be dafined as the "shear noise" and "self noise" respectively.
These :~vo terms together with the ihermal effects on the sound source will be discussed
separately in further detail.

Shear Noise

in order to evaluate the effect of the T-M term it is convenient to utilize a different
version of the classic source term. From the derivation of Equation /16) it is clear
that an alternative form of the spectral source term for turbulence is

-
A,

aT..
Glk ,0) = -2mi k, —d (k ,0) (26)
' ax,
J
Now putting Tij =2p, Ui Uj
R B, au;
Glk,w) = ~4nip k. (U —d + y — (27)
) 0 axj ) axj

The first term is zero by continuity. The second term is zero unless some mean shear
is present, so that the description shear noise is appropriate for sound radiation due to
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3.3

this effect. A convenient, and commonly used, assumption for further discussion is
that the shear is a constant sij . The spectral source term then becomes

A . A
G(L(‘,u) = w4yi po ki sij uj (k ,w) (28)

A feature of this shear noise source is that only a single wave number term ki multi-
plies the spectrum. Thus, following the arguments of Section 2.3, a (1 -Mr)"3 law

will apply rather than the (1 -Mr)'s law more usual for turbulence generated sound.

This result was recently given, by a different argument, by Jones (Reference 30). The
shear noise term is, in many ways, essentially dipole rather than quadrapole. But note
the argument in Section 4.2 where a (1 -M )™ law is found for the shear noise due to
the presence of odditional factors of k in "the Gj spectrum.

In many jet flows intense turbulence will be limited to a region when the shear can
reasonably be approximated as a constant, so that all the above results should apply.
Note that if the shear dominates in a single direction then only that single component
of the turbulence will interact with it to produce noise. A point of particular interest
is that, under the constant sheor assumption, only a direct spectrum of the turbulent is
required, Shear noise is therefore simpler to estimate. If the shear cannot be taken as
constant then a convolution between the turbulent and shear spectra becomes necessary,
and the implications of this will be discussed at the end of the next section.

The Self Noise

As mentioned in 3.1, the source of the self noise term is g: ven by Equation (24) with
v replaced by u:

?J(h,(d) = pO/f Gi(i'obcj(h-i'u-a) dida. (29)
2

(¢4

L4

Upon multiplication with the directional unit vectors ki kj, the effective noise

generating component in the turbulence strucrure is the self-convolution of the velocity
spectrum in the direction of sound emission. Furthermore, only the points in the longi-
tudinal direction of wave number kr contributes to sound. The labor of integral

calculation can thus be greatly reduced:
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3.4

A
Trr(kr'k-T =0, w // u(k -l IT,u-a)d! leda (30)

where the subscript T denotes the wavenumber vectors transverse to the sound emission
direction. A substantial reduction of computation is realized because only one instead
of nine integrals needs to be calculated. Within the multiple integral, the integration
along the two I directions represents a sum of squares instead of a convolution, and

the evaluation of such an integral is usually much easier.

The source terms given both here, and in the preceeding section, are first order spectra,
so that effects such as phase and skewness of the turbulence are reflected in the spec-
tral parameters. For random variables it is, of course, necessary to toke the average
vaiues of the square of this spectrum to give a second order power spectrum. However,
this process will not alter the basic trends of any effects observed in the first order
spectra.

It is worthwhile, at this point to contrast the results for self and shear noise. As was
pointed out in Section 2.3, it is essentially the lower wave numbers of the turbulence
which contribute to the sound heard in most ports of the acoustic field. Since the
self noise is a self convolution the results at the low wave numbers are close to being
the integral of the square of the first order spectrum, and even high wave numbers in
the original turbulent field can give rise to low wave number intensity after self con-
volution. Also, it can be seen that the results will be comparatively insensitive to
the detailed wave number pattern of the turbulence, and depend more on its mean
level.

In the shear noise case the effect of a constant mean shear is to allow the turbulence
to radiate directly. Lighthill (Reference 2) described the effect as an "aerodynamic
sounding board." Here again we expect the lower wave numbers to radiate preferen-
tially, but in this case radiation of the low wave number turbulence - for instance
by breaking up the exhaust flow with splitters = should also reduce the noise. Also,
the intensity of the noise is a function of the mean shear, so if that is reduced then
noise should be also. A reduction in shear noise appears to be possible both by
reducing the absolute mugnitude of the shear, and by changing its distribution. If
the shear region has the same dimensions as that of important contributions to the
turbulence then the wave number convolution process will give large contributions
near zero wave number. Here again, splitting up the turbulent flow suggests itself
as a possible noise control measure. These arguments all suggest that the effective-
ness of current jet engine exhaust silencers may have been more due to their effect
on shear noise than on self noise.

Sound Generation by Compressible Flows with Heat Addition

Calculation of the sound generated by hot jet exhausts, and particularly by rocket
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flows require examination of radiation from a region where many complicating ther-
modynamic effects are acting. Direct use of Lighthill's equation will not give exact
results, for the reasons discussed in Section 2, although it is, of course, formally
correct and could form the basis for an iterative solution. To reiterate, the basic
conditions for Lighthill's equation stipulates that the fluid properties in the jet are
the same as the surrounding medium. Furthermore, the flow is assumed fo be isen=
tropic. Therefore, the second term in the acoustic stress tensor (p ] - c pS. J) contains

only the contribution from viscesity and thus was neglected in the Lughthull approach .
These conditions can be met in the far field, however, they are not satisfied in the.
near field. Thus, to use the Lighthill's equation to describe the sound field, it is
necessary to examine the source terms by including some thermal effects. Thus, we
will again use Lighthill's equation to obtain a first order estimate of the sound radiated.
An alternative approach is given by Peter and Cottrell (Reference 48).

There are two principal effects which appear to be of importance in hot flows. The
first is the direct effect of fluctuating density on the sound. The second is the possibi-
lity of non-isentropic processes which can cause the local pressure to differ from the
local density times loccl speed of sound squared. In order to separate these two
effects the quantity c? p8 i is added and subtracted to the right hand side of Equa-

tion (4), and relevant terms are grouped together:

= 2 _ .2 I -2
Tij—p Vi Y + (¢ co)sij} + ipij c pS..} (31)

where ¢ is the local speed of sound, which will vary over space with the local tem-
perature. Let us study first the second term in Equation (31) ignoring as usual the
viscous terms in pij so that pij = pSi i

First, some well-known results relating thermodynamic variables for thermally perfect
gases are required, (e.g., Reference 25). The differential notation will be used for
the fluctuating part of a thermodynamical variable, and these fluctuating quantities
are limited to small deviations from a reference local isentropic state.

ds=$-=c -‘:)—p--c dp

T v P P
v = c/e, (32)
R = (y-De,
p = pRT

where s is entropy, q is heat addition per unit mass, c, is the specific heat at
constant volume, cp is the specific heat at constant pressure, Y is the ratio of specific

heat, and R is the gas constant,
17



The entropy equation in Equations (32) gives

dq ¢,
c—= —= {dp- L 4
ds T b { P o P; (33)

Now define the local isentropic speed of sound ¢ by
¢ = yp/p = yRT (34)

Then Equations (33) may be written as

dp-ct dp = B (35)
v
or, by using Equation (32) as
dp-ctdp = (y-1) pdq (35q)

Since only fluctuaticns are significant in Equation :35), and (35q) give alternative
expressions for its last term, and ore clearly due to the effects of locally non-isentropic
processes, in particular heat addition. Thus, the second term of the acoustic stress
tensor, denoted by subscript 2, may be expressed as

(T.) =-PE_ = (y-1)pdq (36)

)2 cv

When the flow conditions in the source deviate from the isentropic condition, it appeors
that Equation (36) will enable the additional sound due to the entropy fluctuation or
heat addition, for example combustion, to be estimated.

Lighthill (Reference 27) gave
2 Po
[0-p0 -Ste-pp] 8y < 63905, @)
v

This is an approximation to Equation (35) and applies where the local mean variables
p, ¢ can be approximated by their values outside the flow Py 7 S5 This was a good

approximation in the case studied by Lighthill in Reference 27, where the interaction
of turbulence with sound or weak shock waves was investigated. But for a hot exhaust
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flow the approximations are less valid. The internal pressure of the exhaust may well
he close to atmospheric, but the speed of sound may be very different. For a rocket
the internal speed of sound is about three times that of the ambient environment, so
that the above opproximate expression is not appropriate. However, Lighthill's con-
clusion that "those kinetic temperature variations which result from the (necrly adia-
batic) pressure fluctuations in the turbulence can be neglected" still holds locally,
since thi- statement applies equally well to the expressions given by Equation (31) or
Equation (38) below.

Nevertheless, local density changes can still produce some sound even under isentropic
conditions. The first term of Ti' gives contributions to the sound field from density

changes that could ke locally isentropic. For the present case the dominant contri-
bution to the v,v. temm arises from the mean velocity in the direction of the flow, for

simplicity only this term will be retained. Using the definition of ¢ from Equation
(34) the first term of Equation (31) can be written

(T, =p{Uz+yR(T-To)8ij} (38)
For one-dimensional flows (Reference 25) the total enthalpy is given by:
_ _ U2
h—cpT'—cpT'FT 39)

where T  is the local total temperature. Hence by using this equation and the
Equation (32) we have

= 3 -
Ty, ~p{(7-1) cp(T,-ToW;;-(—}—L) u’}

When either the density or the enthalpy fluctuates, the above expression provides o
first order fluctuation quantity for (Tij)l relative to the magnitude of the fluctua-

tions. However, it is important not to include the same contribution to the sound
field more than once. Fluctuations in velocity are included via the standard self
and shear noise calculation. Fluctuations in entropy and enthalpy are included in
Equation (36). Thus variations in static temperature from either isentropic or non-
isentropic sources are included and do not require further consideration. Since the
mean quantities do not contribute to the sound generation, we may write the density
fluctuation effect as in the following expression:

i 3-
1), = dp D e, (1= 0) 5 (35 1) ()
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Thus finally, density and temperature effects en sound generation are given by Equa~
tions (37) and (40), or as follows.

dp §(y-1) cp (Tf - TO) Sij + (—E%—L) U2

(T.) + (T.)
i ij2

(1..)

" thermal

+ds {p/cv} Sij

(41)

When the spectra of the fluctuation quantities are known, the thermal noise sources’
can be estimated by using Equation (41). It now is possible to estimate the sound
radiation in the far field due to thermal effects by incorporating the result from
Equation (41) into the right hand side of Equation (18) as an additional sound source.
Of course, the multiplicative factors for the convection velocity effect should be
established for moving thermal sound sources in accordance with the discussion in
Section 2.3.
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4.0

4.1

PREDICTION

Turbulence Spectra

In order to calculate the sound radiated by a jet exhaust it is necessary to possess
information on its turbulent parameters. This information is difficult to find. Most
theoretical work on turbulence has emphasized the isotropic turbulence case, ond
although this has given usefui insights, a jet exhaust flow is sufficiently non-isotropic
to introduce important difficulties. Experimental studies of turbulence also suffer
from an important drawback since available measuring devices record only a volume
integra’ of the approaching turbulent field. Furthermore, measurements of jet
turbulence are usually made in a fixed frame of reference past which the slowly
developing turbulent structure is swept at high speed.

Theoretical relations which describe some of these effects can be written down,

based on the wor': of Batchelor (Reference 36). The notation used here corresponds

to that of the rest of the report. If the turbulent velocity component in the i direc-
tion is uj, then by an obvious extension of Equations (A-11) to (A~13) a cross spectrum
and cross correlation function can be defined respectively by

M = Limi d_ A A
. (k, w) VL’.? _:m o {ui(k,u) b, (k,w)} (42)
and
.. (g,7) = Limit X {u-(£ T)* v, (-¢ -1\} (43)
U ’ VIT—’Q VT ' ’ J '

where u; u; are assumed to act within the space-time volume VT.

M . . . * .
U,. is a nine-component cross spectrum and can vary in an arbitrary manner with the

Y
wave vector k. If the turbulence is isotropic, then the spectrum will be a function of
the magnitude of k only, and not direction. Thus, a "scalar spectrum” E(k,w) can be
defined by )

E(k,w) = f Ui (k,0) dk (44)

I .-lf.l = const
where the integration is carried out over a spherical surface for each value of k = “&l

Most possible measuring devices for use in a turbulent flow measure a single integral
parameter as a function of time. An ideol one-dimensional device, to which a hot
wire closely approximates, measures the "one-dimensional velocity spectrum" ¢, (k, w),
defined by
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¢(k|,U) =-/:/Al$\" (k', k2, k3,u) dkz dk3 (45)

Note that ¢,(k,, w) will usually be quite different from the component of the three-

dimensional spectrum Uy, (k;, 0, 0, w).

If the turbulence is assumed to be isotropic, then relations between the various
spectra can be derived. The full cross-spectrum is related to the scalar spectrum by

B0 = 258 (s - i k)
4n k

and the one-dimensional velocity spectrum is related to the scalar spectrum by

® 2
]

‘PI(k],w) =-2-f (l - klz) EUL’Q) dk (46)

kl

or
d? (klu)
_,3 d 1N

E(k,w) = k T [-E- T ] (47)

The basic condition of isotropy imposes very strong restrictions on the application of
these formulae. Both the spectra q:‘(k,u) and E(k, w) are positive functions for all k.

Thus, when ¢l(k,u) is derived from E(k, w) in Equation (46), the factor (1= klz/kz)/k

acts as a band pass filter. A plot of this factor for various values of k is shown in
Figure 6. It will be seen that it is very heavily weighted for low values of k, . Note

that E(k, w) at any given value of k always has a larger contribution, the lower the value
of k; . Note also that the peak contribution to a given k, comes from a value of

k = ﬁ k, . In other words, a hot wire in isotropic turbulence actually responds most
strongly to wave numbers at 55° to the normal.
Although an arbitrary scalar spectrum function will always give an allowable one-

dimensional velocity spectrum, the reverse is not true. Since E(k,w) must always be
positive, several limitations are imposed on the possible shape of ¢, (k,w). It must

be a monotone decreasing function of k with its maximum at k= 0. In fact, many
measured spectra are not of this form. This is extremely unfortunate as it suggests
that the convenient assumption of isotropy cannot be applied. Thus, in turn, all the
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convenient formulae above cannot be applied, and it becomes very difficult to
estimate the spectral form in a given direction as required by acoustic theory of
Section 2.0.

Nevertheless, some generai conclusions can be drawn. Wills (Reference 34) has
measured wave numbe. spectra of the uj(axial) component of turbulence. He has

kindly lent copies of his original data plots to the authors to allov. further analysis.
A contour plot is used to display the measured wave number spectrum in Figure 4.
The vertical axis is wave number and is, of course, the wave number of the measured
one-dimensional velocity spectrum. The horizontal axis, in convection velocity,
obtained simply by dividing frequency by wave number. The overall convection
velocity of the turbulence can be defined via the locus of maxima of the contours

in the plot, and is shown in Figure 4.

The typical value of the convection velocity is 205 ft/sec which corresponds closely

to the mean velocity at the measurement position. But clearly the convection velocity
is also a function of wave number. A comm-.. assumption in turbulence theory is that
the exhaust flow consists simply of a homogeneous decaying turbulence which is being
convected. If the specirum of Figure 4 is replotted relative to its moving frame of
reference as a function of wave number, then the result shown in Figure 5§ is obtained.
The intensity contours are symmetric with respect to frequency as measured relative

to the moving frame. This result does justify the convecting assumption, which has
already been used extensively in Section 2.3.

Another point of interest is the very rapid decay of the turbulent energy with higher
convection speeds. If the spectrum were of a true wave number component, then the
energy at the speed of sound in the figure would be, identically, the sound radiated
by the turbulence. Since the spectrum is actually anintegral measurement, this identity
is no longer true, but there is obviously a fairly direct connection between the energy
at the speed of sound in this spectrum and the real sound generated.

Finally, it is necessary to specify some form for the turbulence spectrum in order i<
make an initial evaluation of the possible noise radiation field. At the present time,
no available experimental data specifies the full three-dimensional turbulenc2 to such
a detail as required by the noise prediction theory. Nevertheless, the spectral noise
prediction technique is applicable to any given turbulent jet model. It is intended
here to choose a simple turbulence model which may bring out all the important
aspects relative to sound radiation. It will be particularly beneficial to choose a
model such that all subsequent analysis can be carried through in enalytical form.

We will be able to draw rigorous conclusions about the detail of noise generation
mechanisms in the turbulence and features of the radiated sound field. One form of
the central limit theorem (Reference 49) states that multiple convolution gives rise to
Gaussicn correlation functions. Since the final noise radiation is the result of at
least four convolutions, it appears reasonable to take a simple error function curve for
the form of the correlation, and thus also spectral, functions.
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4.2

A simple isotropic turbulence structure, defined in the convected frame of reference,
will be chosen. The spectral representation of this model is given by

B oo = —— {(ke)? 6y, - otk ki exp- {(kal? + Gu?) (48)

where Uoz is the mean turbulence intensity, a is the integral spatial scale, and 8is’
the integral time scale. All these three parameters can be adjusted to values of
corresponding parameters in a typical jet. Experimental results (References 21-23)
suggest that

0’509 U2 (49)
ond
- -
a= %0.20~ 0.35 (50)

This spectral form, Equation (48), corresponds to the correlation description

2

— _ 2 n n? 1t§2 —
% (&) = % {(]_g;) R 51}”"'{(?) (%)

a

This model can =asily be extended to a scale anisotropic turbulence, namely, a
model using more than one spatial integral scale.

It is important to bear in mind that the chosen model of turbulence only resembles the
turbulence structure in areal jet in its intensity and integral scales, and other features

of possible importance are not incorporated.

Shear Noise

The analysis in Section 3.2 found that the shear noise is genearated through the inter~
action between the mean flow shear gradient and the u,(k, w) component of the tur-
bulence spectrum. In particular, the shear noise spectrum is directly proportional to
vz (k, w) when shear gradient is assumed to be constant. Hence, with the choice of
isrbulence mode! (48), the second order spectrum of the velocity fluctuation in the

§,=direction, @2 (k,w), is
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c.3f3520

6k, = — {(k,c)2+(kso)z}exp-{(ka)2+(ﬁu)2} (51)

The noise intensity is given by the follswing formulr (Reference 23).

M -
[ (xo,w) =c* o' B (ky0) (52)
where X, denotes the location of an observer in the far field.

The cylindrically symmetric structure of a jet also requires consideration. The
radiation direction of sound to a fixed observer from different small volumes of
turbulence around o circular slice of jet will make different angles with the local
normai of the shear flow. Hence, we shall first find the average contribution of
shear noise sources of all orientations. If we denote

ky =kcos®, ky=ksinBcose, ky = ksin8sin g, (53)

then the average shall be taken in the variable ¢. The most convenient entry point
for taking this average is Equation (51):

21! 2“
3 3e=2 .
5%[ /S(k,u) d¢=a—]f—ui—(kq)2/ (c%29+sin295in2¢'\ exp- {(k°)2+(30)l}d¢
0 n
o852 L,
= G ("——HEOS e) exp - {(ka)” + (801"} (54
167

Substituting (54) into Equation (19) and combining the result inro Eq:ation (52), we
obtain the noise radiation intensity per unit volume of turbulence as

M
! (_):0 M) =

D’Z;:w.)2 033(k0)2 (cost 8 + cos?B) [8U, \°

0 ! 2 2 2 2 \

P— 3 ™ exp-{ko +5u} (55)
327 3¢ (1- Mcos 6) 2

The shear noise directivity pattern contained in Equation (55) agrees with the result
given by Ribner in Reference 21.

Since,

- W

=c(l-McosB)

k
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Equation (55) can further be simplified to

+
(1- McosB)’  a? M2

M
I(ﬁx'olu) =

Uoz o’ 3pu (cos*B+cos?) au, 2 o2 ot ! 1
exp - *

2 (1-Mcos)  \%2

(56)

The noise intensity for any frequency band can readily be computed using Equation {56)
and a simple integration. For example, the noise intensity for an octave band with
center frequency w,, is given by

1,414
-2 4 2 2 n
o 3p T, (cos*B+cos’0) (BU,) wla? { ] ]

axz 4

Ix ,0)= w' exp -

~0

32425 (1= McosB)’ 2 (1-Mcos8)® oM

0.707 @,
()
where the subscript n for w indicates the denumeration of the sequence octave bands.

In particular, when the wide band noise intensity is considered, the limits of the
integration over w goes from zero to infinity. in this case the resulting expression
reads:

(58)

v, )2 3 ‘/?p Uo: a* M* a(cos* 3 +cos? B)

“’*‘0):(3"2

256 ' ¢ {(1 - Mcos8) + o M} 72

It is interesting to investigate the noise source distribu'ian in the wave number-frequency
space. The spatial and the time factors of the noise soL.ce are plotted in separate
figures. Figure 7 shows the turbulence intensity distribution in the k;, k,~plane. The
wave number k; is set to zero for simplicity of re oresentation. A vector OC is drawn
along the direction of emission of the noise. In this figure, the source intensity is

given along OC and several other representative sections. It is clear that the shear
noise is zero in the transverse direction, k,, and reaches a maximum in the axial
direction, k.

An important feature not represented in Figure 7 is the location of noise source in

the wave number space where the most intense sound radiation occurs. The definition
of the turbulence structure, Equation (51), consists of separable wave-number and
frequency factors. The peak turbulerce intensity in the wave-number space is deter~
mined entirely by the wave number component. However, the most intense part of

the turbulence spectrum does not necessarily generate the most intense sound. n
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4.3

the formulation of shear noise, Equation (55), one may detect also two separabie
factors. In particular, the frequency factor is

fw) = wl exp - (32 uz) (59)

The variation of turbulence intensity with wave number along section OC, and the
factor f(w), are plotted in Figure 8 to the common abscissa k = w/c (1= Mcos8).
Their product, plotted on the same figure, is proportional to the shear noise intensity .

The peak of f(w) is located at w = 8", Since the intensity of the wrbulence varies
with k? in the low wave number range, its product with f(w) produces a peak of shear

-' - L)
noise at a frequency w = Y2 B . The conclusion reached by this analysis shows
that the location of sound of peak noise relative to the wave number space is
dominated by the frequency factor in the case of shear noise.

For the shear noise, the effect that the noise peaks half an octave above the frequency
factor is somewhat artificial. If the wave number spectrum were flatter in the (ow
wave number range, instead of rising as k?, the noise peak would be more or less
coincident with the peak of the frequency factor. However, some general effect
along the lines discussed is expected.

In Reference 21, Ribner established that the shear noise will peak at a frequency one
octave below the peak frequency of the self noise. The argument was based on the fre-
quency factor alone. This phenomenon is bom out by experimental evidences. The
present analysis leads to the same conclusion. However, it reveals that the physical
mechanism is actually quite complex.

Finally, the dependence of the shear noise intensity on w*, Equation (56), instead of
w?, is also due to the choice of the turbulence model. Had the turbulence intensity
spectrum curve been flat in the low wave number range, the dependence would have
been w? . This also affects the dependence on the convection factor (1 = M cos 6).
In Section 3 it was pointed out that the shear noise obeyed o (1 - Ml.)"3 law. In

Equaticn (56) the shear noise is obeying a (1 = M,)™° law. This is simply due to the
two additional factors of k assumed in the present model of the turbulence.

Self Noise

In Section 3.4, it was found that the instantaneous self noise source spectrum is a
self convolution of the spectrum of the fluctuating velocity component in the noise
emission direction. It can be directly computed if the velocity fluctuation spectrum
is known. Inany case, the instantaneous sound source itself is a second order
quantity . While the turbulent flucuations are random, one can only define, or make
meaningful n.easurements of their mean square magnitude. In the case of self noise,
we should deal with
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M A A .
Tee(ks @) = T (ko) » T (k,w) (60)

which is a fourth order quantity. The corresponding correlation representation of this
quantity is, by definition

T (& = ol ol (y + &t (©1)

M :
From an experimental point of view, the fourth order spectrum T"(k,u) can be mea-

sured directly (Reference 40). For the present example, it is desirable to compute this
quantity from the chosen model of turbulence. Here, it is necessary to assume that in
the turbulence the velocity fluctuations at any two points are jointly normal in proba-
bility. However, such an assumption must be used with care, as discussed by
Proudman (Reference 50).

By employing the above assumption, Batchelor (Reference 36) shows that Equation (61)
can be reduced to

—2
¥ _ 2
Tor (E'T) Y

+2 {"J‘r (£ 'r)}2 62)
—2

where ur2 is a constant and irrelevant to sound generation.

M
Now the fourth order spectrum of T (k,w) can be evaluated by means of a convolution
of the known turbulence spectrum ’&r (k, w):

M .
T, (k,w) = /f’ﬁ, (1, u)'t’.‘,(gd-,g, w-0)dl do ©3)
1 0

In an isotropic turbulence structure the second order spectrum of a velocity component
in any direction has the same form. Hence, the second order spectrum of
velocity fluctuations in the direction of sound emission can be given as

o’ 852

AUAI- (hl w) =

» {(ko)z - (kru)z} exp - {(ka)2 + (Bu)z} (64)
1r

The convolution itegral as defined by Equation (63) is algebraically lengthy, though
not difficult, If the cartesian coordinates are oriented such that the first axis points
in the direction of sound emission r, the component of wave number in this direction
wiil be k_, and the wave number vector in directions perpendicular to the first axis
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will be designated as k,. The general formulo for noise radiation states that the
effactive component of "(.'Sr"’) as a noise source is restricted to |<r = «w/c(1 ~Mcos6),
and _lgr = 0. The integration of Equation (63) can be greatly simplified because the

component ET of the parametric wave number k can now be set to zero:

M _ _ M M
T &, k=0, 0) = f [ % &t 0 -2~ t0m0) 4L dlyo
Lo

The integration in these directions degenerates from a convolution to an operation of
mean square sum, This con easily be seen if one omits the variables kr’ [r' w, and

¢ from the above formula, ond recalls that 'ta'\(_ls',u) is an even function in all the
variables. r

Substituting Equation (64) into Equation (63), the spectrum "\I'A"(k,u) can be written as

M

T (ke 0) =

o o]
2 2
oy f (tya)* exp-{Z(ITo)z} -exp-{(lro) + (0 8) }
-

c exp - {(k - £)° o + (=0’ g} derds do (63)

where iT denotes the vector wave numbers which are transverse to the direction of

sound emission, and £ denotes the magnitude of the vector L.

M
Upon evaluating the above convolution integral, the spectrum T, (k,w) as restricted
to the k. component is

X J gy

a BT

: exp--l—{k2 o +u252} (66)
2 2T

512w

M
Trr(krl u) =

Using Equations (19), (52), and (66), and go through similar steps of computation as
in the shear noise case, the noise intensity per unit volume of source is
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M : 1 ol 1 1
(x,,0) = exp = % ~— { + 2} (67)

(I-Mcos8’® 128¢° ¢ ¢ {(1-Mcos)? oM

Similarly, the broad band intensity can be obtained by integrating (67) over frequencyw.

For an octave band with center frequency w,,, the expression is

oot g T
Hxgr0g) = — 5_/ wlexp-3 = 2’ 3 2id“’
128¢” r (1- Mcos8) 0707wy, (1-McosB) a'M
(68)
For the overall noise intensity, the result ofter integration reads
3Va2rp uo4 at m
(69)

I(x) = 5
~ 256 ac {(I-Mcose)2 +a2M2* /2

The directional variation of the noise intensity for fixed r comes entirely from the
convection effect, because the source is isotropic in the moving frame of coordinates.

When the noise source term is broken down into its spatial and time factor, we see

again that the time factor decides the location of the peak noise frequency. The
M

distrioution of Al?r(L(',u) and T, (k,w) in the k., ky, plane are shown in Figure 9.

The general topography of the fourth order spectrum is markedly different from the

second order spectrum. The time factor

fw) = w* exp~ -;-32 w? (70)

M
is plotted in Figure 10 together with' Trr(kr ,0) and the noise spectrum given by the

product of the frequency factor and the spatial factor. The frequency factor f(w) has
a peak locateu at w = 2/8 which is exactly one octave above the corresponding peak
of frequency factor for the shear noise. Since the self noise spectrum ot low wave
numbers is quite flat due to the self convolution, the location of peak noise more

or less corresponds to the peak of f(w). Hence, the peak self-noise frequency is

between ﬁ and 2 times as high as the shear noise, depending on the flatness of
the basic wave number spectrum as discussed in Section 4,2,
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4.4

We find, from the convolution integral, Equation (65), that the sound source depends
on the self-convolution of the second order spectrum in the longitudinal direction and
the sum of square of the same spectrum in the transverse directions. The strength of
the noise source is therefore relatively insensitive to the assumed form of the turbulence
structure as long as the total power remains the same. In view of this property, one
may expect that a simple model of turbulence may provide a good prediction of the
self noise.

Comparison with Existing Experimental Results and Possible Further Experiments

Equations (57), and (58) of Section 4.2 and Equations (68) and (69) of Section 4.3
represent some final results of noise radiation prediction out of an assumed model jet.
These equations can be applied immediately to numerical computations. For a given
set of jet parameters, predictions can be made on the directivity pattern of overall

far field sound pressure level, octave band sound pressure levels, and the overall
acoustic power output. The required input data contains simply the jet diameter, exit
velocity, integral spatial and time scales of the turbulence model, the parometer «,
and physical ~onstants of the surrounding medium.

Some jet noise experimental data are available for comparison with theoretical pre-
dictions. Both sets employed below are obtained under controlled Iaboratory condi-
tions. For in practical cases, jet noises are often accompanied by other intensive
sources of noise. Notably, in the case of a real jet engine the compressor noise is
just as powerful as the jet noise, and can cause difficulties in interpretation.

As a first example, the sound field parameters are computed for a jet of one inch
diometer, with exit Mach number of 0.80. The results of computation are shown in
Figure 11. For the same jet diameter and exit speed, Mollo~Christensen (Reference
39) has measured the overall noise intensity, and separately noise intensities in the
low frequency range and the high frequency range of the noise spectrum. He finds
that in the low frequency range the noise is predominantly directed forward, while
in the high frequency range a peak appears at about 45 degrees from the jet axis.
According to theoretical analysis, the low frequency noise is mainly produced by the
shear gradient and turbulence interaction mechanism. Since the frequency is very
low, it is less affected by the refraction effec*s of the mean flow. Hence, this set
of measurements can be compared to our shear noise computation. On the other hand,
the high frequency portion of the nojse spectrum is greatly refracted. The appear-
ance of a peak at 45 degrees is generally considered as a result of refraction (see
discussion in Section 2.1).

The rms sound pressure given in Reference 39, however, is in terms of milli=volts
of the signals from the microphone. Hence, the comparison between theory and
experiment can only show frends ot best. The data of measurement and the compu-
tation from the present theory are matched ot a point on a 45 degree radial line, The
sound intensities inferred from the data for the overall noise and the noise in the low
frequency range compare favorably with our computation of overall noise and shear
noise, respectively.
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The second set of data considered here is the jet noise measurements obtained by
Mangiarotty et al. (Reference 38). This report presents a more systematic collection
of results about far field jet noise radiation. Tne experimental program is intended
for evaluation of various designs of noise abatement exit nozzles. Three special
nozzle designs are tested against a smooth conical nozzle, which has an area of

6 .42 square inches and a diameter of 2.86 inches. With the smooth nozzle, the
overpressure in the reservoir has been adjusted to three level to provide jet exit
Mach numbers of 0.50, 0.80, and 0.90. Sound pressure levels are recorded simul-
taneously by a series of microphones along a straight line ranging from 2 to 18 feet
from the nozzle exit. '

For each of the three run conditions, sound pressure level directivity patterns are
measured for noise in nine consecutive octave bands (Table 1), and for the overall
noise. The re;ults are presented in a series of graphs. The general trend shows again
that the low frequency noise has a predominantly forward pattern, and the high fre-
quency noise pattern has a peak near the 40-degree direction. The refraction effects
begin to appear near the characteristic frequency of the jet.

Far field noise radiation prediction has baen made for one case where M =0.80
(Pressure head = 13.5 inches Hg). Computations for sound pressure level cover simi-
lar octave bands as in the experiment. T-z numerical results, together with experi-
mental dcta from Reference 38, are shown in Figures 12 and 13.

Figure 12 shows that overall levels are predicted to within 5 dB over the whole acoustic
field, This is thought to be a significant result. It will be observed that the spectral
shape prediction of the theory are considerably less accurate. However, the present
work used a much simplified spectral model for analytic convenience, and many im-
provements are clearly possible. The prediction and experimental data agree well in
the octave bands where the peak noise intensities occur. But for high frequency bands
the predictions are very poor. In the chosen model of turbulence, the frequency spec-
trum drops off much faster than any actual turbulence structure.

One can recognize in Equations (57), (58), (68), and (69) that the turbulence scales
a, B, and the constant parameter « are very important in noise prediction. These
parameters can only be confirmed by experiments. Moreover, we should hardly be
satisfied with the simple estimation mode possible by assuming an isotropic turbulence
model .

Although extensive data on jet turbulence are available in the literature, most

are not applicable to predictions of jet noise. The reason is either that the measured
turbulence component is not directly related to sound generating elements, or that
the measurement is not sufficiently accurate in the low wave number range to render
meaningful sound radiation estimates. The only exception so far is the experimental
work by Chu (Reference 40). This study was specifically designed according to basic
jet noise theory.
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Chu measured the space=iime correlation functions Trr(g ,7) and v (£ ,7) in several
~ LY )

orientations of r with a pair of single-wire hot wire anemometers. Corrections are
made for the effect of mean convection velocity in the mixing region. Chu based his
work on jet noise theory in its correlation form, which predicts noise by means of an
integration of the fourth time derivative of the space time correlation functions. This
approach is equivalent to assumingthat the noise is generated by the zero wave number
component of the turbulence. Hence the above obtained data is not further analyzed
in spectral form. Instead, a numerical smoothing scheme is judicially chosen to handle
the derivatives and integration. The important information of the spectral content,’
which could be obtained from measurements of this type, are not preserved.

In this set of measurements, the G;(g ,1) component of the turbulence was not

measured. This is partly due to the instrumentation employed by Chu, because a cross
wire probe is necessary for such measurements. It is clear in the present theory that
this component of turbulence is essential in the prediction of shear noise.

It should be noted here that Chu's work has made significant contribution towards
resolving the very difficult problem of measuring fully three~dimensional jet turbu-
lence structure. The obove discussions serve only as guide-lines to further investi-
gations.

In addition to the above mentioned general shortcomings of existing ¢ -a on jet
turbulence, one important aspect has been ignored altogether. It is familiar that
the turbulence intensity across the jet is non-uniform. This spatial inhomogeneity
of the turbulence structure has a profound influence on the spectrum of the turbu-
lence according to theories of spectral analysis. This effect is particularly impor-
tant for the low wave number range, where most sound is generated. The inhomo-
geneity must therefore be considered thoroughly in both the experimental design and
the data analysis phases of the experimental program.

The following quantities require definition:
M
a. The fourth order spectrum Trr (k,w) for varic.s values of r orientation;

b. The mean flow velocity profile UI (£2 )i

c. The transverse velocity fluctuation spectrum Auj; (k ,u);

d. The turbulence intensity profile of the jet Gf) (';‘2) .
Some data on all these parameters exists except for the transverse spectrum, This is
important for the shear noise estimation and justifies careful experimental study, When

the data from the above set of measurements is properly analyzed and organized, the
jet noise can be estimated through the application of the present theory.
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5.0

SUMMARY AND CONCLUSIONS

Space/time spectral analysis techniques have been used in an attempt to understand
and predict the noise from turbulent exhaust flows. A unified theory has been derived,
based on Lighthill's Equation, in which shear noise, self noise, and non-isentropic
noise generation can be described. It appears that the present spectral techniques

can give a simple, convenient and accurate theoretical description of the noise
generating process from jet exhaust flows.

Several of the familiar results in jet noise theory have been regenerated in a simple
manner, and new insight has been gained into the basic mechanisms of the noise
generating processes. The shear noise is found to be dependent on the detailed struc=
ture of the flow, while the self noise is found to be essentially independent. Thus,

it appears that shear noise can be reduced by geometrical modifications to the exhaust
flow, while the self noise can only be controlled by reduction of the turbulent inten-
sities. The theoretical analysis also suggests that the peaks of the shear noise spectrum
is somewhat less than one octave below that of the self noise.

Existing data on jet turbulence is inconvenient for estimation of noise radiation. How-
ever, data has been reviewed and its implications for jet noise discussed. Recommen-

dations for experiments to gather more meaningful turbulence data for jet noise prediction
are put forward.

Theoretical calculations of jet noise intensities have been made corresponding to two
reported experiments. A simple analytical model of the turbulence was taken, but
overall levels were found to agree within 5 dB over the whole noise field. Further-
more, the predictions agree well with experimental data in the octave bands where
the peak noise intensities occur. The frequency spectrum shape was not predicted
well, but this is thought to be due to the simplifying assumptions made in the present
analysis. The agreement in overall level was achieved without the use of disposable
parameters and justifies hope that more detailed theoretical calculations will endble
the whole acoustic field to be predicted accurately from theory for the first time.
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TABLE 1

OCTAVE BANDWIDTH SPECIFICATION®*

Octave Band Lo UB:::r Conter
( N:tnber Frequency Frequency Frequency
on Figures) Ha Hz Hz
] 178 355 250
2 355 708 500
3 708 1410 1000
4 1410 2820 2020
5 2820 5620 4000
6 5620 11.2 ke 8000
7 11.2 ke 22 .4 ke 16 ke
8 22 .4 ke 44 .6 ke 32 ke
9 44 .6 ke 89.1 ke 64 ke

*These octave bands are chosen as the same as given in Reference 38.

39



Qk

bk /
C
vr/ y L (4
/ 6 /’
/. L AT
k / 1
/ 7 ¢
// o// ,/
. / 6 ky
o 7] W, B Y /,
,/ / / ’/ //
714 ?' | - — —
™ @ e [T

Figure 1. Location of Sound Radiating Figure 2. Enlargement of Figure 1.

Element of a Moving Source
in the Wave-Number Fre-
quency Space: Subsonic Case

bk

N\, ,
N

b V]

AN

Figure 3. Location of Sound Radiating Element of a Moving Source in the

Va

P 4
/-
e
7”7~

rd

’

/
/ T\:' 0

N

N\ -

Wave-Number Frequency Space: Supersonic Case



1000 T T T 1 T T 71

Convection Velocity  _|

ANNS 0 .
| Q@&,{/é’ 0,50

100\ S Il‘;i\}\‘g‘é:i‘gl
AN\
A 23\ Q
AN \
i "*“!Mm) \
- HEZRHIINY
HE= \.//\
t 0754//

U:

=|e

Figure 4. One-Dimensional Wave-Number Phasa Velocity Spectrum of the Longitudinal
Fluctuating Velocity Component in the Mixing Region of a Round Jet. (From
Reference 34 as replotted to double logarithmic scales.)

4]



-600 -400 -200 0 200 400
Frequency - Hz

Figure 5. One-Dimensional Wave Number Frequency Spectrum
In o Moving Frome of Reference

42



1000

100

10

T -1 T Y T I 1 1 T
ky =1 4
-
-

10
1
k,=100

-
-

e 1 L1 ] L [ | 1

10 100 1000
Wave Number, k
Figure 6. Values of the Integration Factor, (1 - k":/kz) 1/k, for Converting E(k) to ¢, k)

43



Yy (ky . ky, 0,0)

J-kl

Figure 7. Distribution of Spectral Intensity of AJ; (k ,w) in the k' , k2 Plane



X

* SIXY JIQUINN-IADA 3y} uo uo1Bay uoidINPOLY ISION] IDBYG D34 3Y4 §O UoyDIoY ° g anbiy

@soow - )12

1 0

=

L (8502 N~1) g2
L |
|
|

0%
(;” uhuv dxa "= (")

Aj1suagu] asiopN 10ays

(8PS 1pdulY AiD)jiqy)
SUOI}oung JO aNn|BA PuD Ajisusjuf 3sSION

45



r (krl k"’I ol O)

M
v

T (ks kg, 0,0)

M

. ' M
The Fourth Order Turbuli:nce Spectrum I'rr(_ls,u)

Figure 9. The Second Order and the Fourth Order Turbulence
Spectral Intensity Distributions in the kr’ kT Plane



SIXy Jaquini| 2ADM 3Yy4 uo uoiBay uoloNpoLy SSION §|9G JD3Y dYi 4O UODDOT (| ainb 4

@soowW-1)12

=
10
o o (@s02W- 1) g2
c | A
- _ T ] | T _ r “ T
_
|
|
~
o1
w

oo 2] o oo

Ajisuaju] asioN §]9S

(9025 08Ul Aipiyiqiy)
SUOI4OUNY JO 3N|DA PUD A}isudqu] SsioN

47



(6€ aduaiajay) uasuaysiyH-ojjow Aq
SIUIWINSDAYY |DJUIWLIRAX] i M UOHDIPILY ISION {3 |DD142I03Yy( JO uosLdwor) || anb1y

242/3u4p 7000 0 = 2uaiajay gp 0197

- ajzzou 43l 3y

_ wosj Abmp sayou;  syutod 1oy

paindwod st [9AF] 3uNssa1Y PUNOS

08° 0 = f3quinN Y2oW 4ix3
youp | = Ja4awpig 430

Asudguf jloRAO @)
Ajisuaqu] obupy Aouanbasy mo @
oﬂmoz bgﬂ_m —— — —— — a— og

asioN 195

‘uasuagsuyD~cjlow

omvu:ohomou M
Aq sjuawainsoay




* £ PUD | SpUDg 3ADID() PUD BSION] ||PIBAQD * (8E @0ud1ayaYy)  |P 42 ApoiniBuoyy Aq
SJUBWIAINSDIY |DjudWIIBdX] YiiM UODipaLlY ISION 1o |PO14d109Y) jo uosupodwor) g a4nbiy

oLl 001 06 o8 o 08 06 o0l oLl

*9|zzou g3l ayy
woyy ADMD 4 9 sjuiod jo
paindwod pup painsoaw
24D s|2A9| ainssaud punog

v 08°0 = 43qunN yaoW 413
‘Ul 9g° g = 19jawpi( 43
Aoy}

49



*6 PUD ‘/ ‘g spubg 9ADIO() (8 @oudLRRY) * |D 4@ Ajjoup1Budyy
Aq sjuawainsoapy |DjuaWIIRdXT YiIM UOLIDIPaL4 BSION] {9 |DO14al0aY| 4o uosipdwor g anBiy

W2 /BuAp Z000' 0 : 9ouSIRjBY gp 0107

*2.nBiy s1yy Ul UMOLS Jou D

—_~
‘\ ‘
‘\w

-

TSI
ﬂ i ,\QQM\s% w&”&w«#&..
SCSET I A
S ERNC L] »‘0"’

*9)zzou 4of ayy

woyy Aomo 44 9 syutod 4o
paindwos pup painsoaw

[

O8 -

SOAIND

353Y] " gp 0G MO|aq 3D 4 pupg pup
/ puDg 10§ $|9A9| 510U P4OIPRIY

94D $|9A9| ainssaid punog
08°0 = 13qUINN YoDW $1x3
‘Ul 98°Z = 494owpiq 43
Aiovyy




APPENDIX A
1 HREE-DIMENSIONAL SPECTRUM FUNCTIONS

Introduction

The notion of three- and four-dimensional spectrum functions is used extensively in
the present report. One~dimensional spectra are widely familiar as a result of their
use in the analysis of time varying phenomena, and the clarity and usefulness of the’
frequency spectrum of a time varying function is well known. Several books are
available which treat one-dimensional spectra in defail (References 42-45). The
three- or four~dimensional spectrum is a natural extension of the one-dimensionral
ideas, Here we are concerned with the spatial frequency, or wave number, repre-
sentation of a spatially varying function. Since space has three dimensions, three
wave-number components must be used to describe the complete wave spectrum.
Analysis of a function into multi-dimensional spectra is a straightforward extension
of the one-dimensional case, but because of its comparative unfamiliarity it has been
thought worthwhile to include a fairly complete discussion here. The analysis below
is restricted to three space dimensions, but the fourth, (time), dimension can readily
be added, as was done in Section 4.0 of this report.

Several different forms for the basic Fourier decomposition are possible. The one used
below, and in the body of the report has been used by several authors, and has the
advantage that odd factors of 2x do not appear in the integrals.

Consider any function u(x). Then ¥ (k) the three-dimensional wave number
spectrum of u(x) can be defined by

+to +o +a

G(k',kz,k3)=ff/ u(x',xz,xs)exp-Zni(klx'+k2x2

-0 =0 =®

+ |<3 xs) dxl dx2 c:lx3 (A1)

Thus it can be seen that the three-dimensional wave spectrum of u is simply the
multiple of three one-dimensional Fourier integrals, one for each dimension. The
extension to additional dimensions is obvious. It is also clear that the Fourier inversion
theorem may be applied to each one-dimensioral integral separately. Equation (A1)
and its inverse may be written in shorter form as
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A.2

’“\(.lf.) = / ulx) exp = 2wi (5-5) dx (A2)
ulx) = jf 0(!5_) exp 21ri(‘l_<_.£)d5 (A3)

Two points should be noted about Equations (A2), and (A3). The integrals are basically
overall space. Therefore, u, U must tend to zero sufficiently rapidly at infinity to
allow the integral to converge. Thus, homogeneous (e.g., random) functions, which
do not tend to zero at infinity must be specially analyzed, as .1 Section A, 3 below.
Note particularly that G(k) is an integra! representation of the entire function u(x).
No details of localized spaiio! structure appear, and the wave spectrum u(k) may be
assumed to apply uniformly ove: *he whole x space.

Convolution Product

The spectral form of the multiple of two functions is used extensively in the report
(Section 5), and will also be required below. To simplify the understanding of the
proof of the relat ins, consider first the vector quantities below as scalars. The proof
applies directly for scalars, and the steps may then readily be extended to the vector
form.

Let ulx) = vix) wix) (A4)

By (A2) k) = f vx) wix) exp =(2mi kx)dx

Now introduce the spectrum function v({t) of v(x) in a relation as (A3)

0k

[ f @) exp(2ni tx)w(x) exp (- 2nik + x) dx de
x 1

f () f wly) expl- 2mi (k-0 - x|dx df
P (A5)

Ix
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A.3

The x integral may be identified as W (k -£) via (A2) so that Equation (A5) may be
written

k) = / ) Gk-1) de (A6)
L

-~

Expression (A6) is known as the Convolution Product of the spectral functions. A
short notation in wide use for convolution products is

B W) = f O M k-2 dt

A
1 (A7)

The above analysis shows that when the space function is the product of two space
functions the spectrura is the convolution product of their spectra. Thus

when ulx) = v(x) wix) }

then 0k = ¥k Pk (A8)

An inverse relation also applies, and may be proved directly by the same methods as
above. It is

when 0k = k) Wk
then uix) = vix)s wix) (A9)

These convolution relations (A8) and (A9) have very wide application, as shown in
Section 4 of this report, and in the next two sections below.

Random Functions

If u(x) is now assumed to be a random function of space then it will not satisfy the
limits at infinity required for the Fourier integration. In principle this raises con -
siderable problems of mathematical rigor. However, it is possible to treat the integral
as a form of "Generalized Function”, Jones (Reference 46) has given an extensive
development of the mathematics necessary in this case, which essentially shows that
all common mathematical manipulations of the infinite integral are possible.

Now the random variable u(x) will cancel out identically a Fourier integration
overallspace, except for k =0. The fluctuating quantities have zero mean, by
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definition. Thus the function u(k) hes a rather net ulous meaning. But *he square of
the random variable will have contributions at all wave numbers. To find this define a
function uv(x) which exists only inside a limited volume V, and define therefore

0 k) = / UV()‘(') exp - 2mi k *x dx (A10)
The mean square value of Gv(k) can now be defined as

(A1)

where the * superscript denotes a complex conjugate. ' is thus a second order
spectrutn. From (A10) it is clear that u:/(k) = uv(-k), so that using relations (A9)

the Fourier Transform of u(k) can be defined as

s b'_':'; ]V {uv(g)* uv(-g)= (A12)
or, in the longer form
Q- el v f ‘e o) dx (A1

E uation A13 shows that :J—(ES is ocfually the cross correlation function of u(x).
may readily be observed to be even in £ by substituting y=x+ £ in (A13).

The negative sign for 5 can therefore be replaced by a posmve sign if F desired.

{;_(-g)‘ is the three-dimensional correlation function. It is again an integral
representation of the whole u(x) field, and is dependent only on the separation £ .
(Note that it would be meomngless to use the x variable in u). u(k) is the wave
number energy density spectrum, and is the Fourier Transform of correlation
function, as is familiar from the one-dimensional case. Equation (A12) makes it clear
that 'ﬁ\(k) is a mean square energy per unit volume. This fact is of importance when
considering transformed coordinate systems, which may involve volumetric changes.



A.4

Three=Dimensional Transfer Functions

An important class of problems involve operations which can be described by

u(x) = [Mg)v(_x_-é) d¢ (A14)
ie. ulx) = h () v(x)

From Equation (A9) the spectrcl form is
00 = Rk) k) (A15)

and thus the energy density spectrum is clearly

(k)A*(k)
N\('k) = Limit {

V-0

} T V) (A10)

Thus for this transfer function problem the spectrum is described particularly easily
by simple multiplication of the power spectra of the input and transfer functions.

This case corresponds to the response of a constant parameter linear system, such as a
body or an instrument, to the random variable v(x). This formlation was exten:ively
used by Uberoi and Kovasznay (Reference 47) in their study of instrumentation

effects in turbulence measurements. The formuiation can be applied whenever the
kernel function h is not a function of space. For instance the spectral response
function of G hot-wire anemometer is not a function of location. Neither would the
response of an aircraft to a turbu!ent environment be dependent on position. Thus, the
transfer function approach does apply-to a wide variety of problems and gives answers
directly. But note that in this report the inhomogeneity of the jet is a function of
position, and transfer function methods are not appropriate. Thus, Equations (AB) are
used rather than the transfer Equations (A9). For this case a more compiex formulation
is required.
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APPENDIX B

COMPUTING PROGRAM FOR THE MODEL JET NOISE PREDICTIONS



B.1

Listing ot the Compuing Program 3200 TORTRAN (2.2) /

AC OO0 nO0a GO

LR
LN
e
e
LR
e
‘e
e
LR
‘e
LR
e
‘e
te
4¢
e

PROGRAM NOISFS

CALCULATES TilE FOLLOWING ,..,
. OCTAVE BAND LEVEL NOISE

« SHEAR » DB

. SEL® = DB

« TOTAL = DB

. OVERALL NOJSE
. SHEAR e DB
. SELF e DB
« TOTAL = DB

+ OVERALL POWFR
« SHEAR e WATTS
. SELF e WATTS
: TOTAL = WATTS

CIMENSICN SHER(11), SELF(11), YOT(11), KITLEt20), Y(45), 2(65)
DIMENSION KATE(2), U(181), V(181), W(10)

LOOP = 0

Pl = 3,1415927

CTR » 0,017453292

RTD = 87,295779

P12 s P] « P|

WATT s 1,35582

SMALL =21, 7 ( 1.¢%12 )

READ(60,500) (KATE(J),Js1,2)

10 READ(60,500) (KRiTLE(J),J%2,20)

IF( KITLE(1) ,EQ. 4HEND ) 499,20

20 READ(60,502) SA, RHO, PARTIAL, SU, SC, SR

READ(60,502) BIGM, ALPHA, WN, BIGD

BETA =2 SA /7 ( ALPHA ¢ SC « BIGM )
BIGY & 2,5 * Pl « B[GDevJ

WRITE(61,530)

WRITE(61,504) (KITLE(J)»Ju1,20), (KATE(J),Jsi,2)
WRITE(61,532) SA,RHD, PARTIAL,SU

WRITE(61,534) SC.SR,BIGM,ALPHA

WRITE(61,536) WN, B]GD, BETA, B]GYV

WRITE(61,506)
WRITE(61,508)

SA2 8 SA « SA

SA3 8 SA ¢ SA2

SC3 & SCoeJ

AM2 8 ( ALPHA * RIGM )ee2
AC2 » SA2 7 C SC + §C )

AM 8 §, / AM2

FOUR » ( SU » ALPHA ¢ BIGM )owd

SCR2 = ( SC % SR )ee2

SU2 s SU » SU

TOP = 1,5 « SGRT(2,¢P]) ¢ FOUR ¢ BIGV
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BEQT s 128, ¢ SA ¢ SCR2
F3 = ( YOP * RND) # Pl ) /7 ( 84, * SA *» SC )
P3 3 PI * WAYY
C9 = T0P / BOY ‘
TOP = BIGV * PARTJAL * PARTIAL o {,5 ¢ SQRT(P]) *« SA ¢ FOUR
EQOT = 128, ¢ P]2 ¢ SCR2 * SY2
F2 = ( TOP * RHO ) 7 ( 64, * p| ¢« SC » SU2 )
P2 s P2 ¢ WATT
C8 = TOP / BOTY
VA32 8 ( BIGV « SA3 ) /7 32,
SQS » { SA * SU « PARTIAL ) 72 ( P] *«# SR * SC3 )
8QS = S$QS + S@S
Ci = VAJ2 » SQS » BETA
L1 s BIGV * SAI ¢ BETA * SUewgq
P2 = 128, ¢ ( SC3I#SR )ee?2
c2 = vl /7 D2
W(1) = WN
L0 30 J = 2,10
30 k(J) = 2, * W(JU=1)
WRITE(61,538) (wW(J?,Js1,10)

ts BEGINNING OF THETA LOOP, *+ THETA s 0 - 180 DEGREES 1N
10 DEGREE INCREMENTS

CO 200 KT = 10,19C,10

KTHETA = KT - 10 .

THETA = DTR ¢ FLOAT( KTHETA )
CTHETA = COS( THETA )

‘LY = 1, o« BIGM*CTHETA

3 = D1 » DI
C4 = C3 « C3 ¢ Dt
cé6 =1, /7 C3

L2 = CTHETA » CTHETA
TCO0S s D2 + D2¢D2

CS « C1 » TCOS /7 C4

C6 s gAC2 ¢ ( CO6 ¢ AN )
C? = 0,5 » C6

C10 = C2 s/ C4o

*e EAND LEVEL COMPUTAT1ON

CTO 150 KB = 1,10
W s H * W(KB)
SW 3 0,707¢W(KB) < HW

L0 110 KH = 1,65

SW = SW + WNW

Wi = SW = SW

k2 s W1 * W}

Y(KH) = H2 » EXP( WieC6 )
110 Z(KH) = W2 » EXP( WieC? )

YA = @,
Yé = ¢,
Yé = 0,
A 2 0,
28 = 0,
2C ¢ 93,

YA 8 Y(1) + Y(65)
A 3 2(1) + 2(6%)
00 112 J s 2,64,2
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(g ]

aaO0O0n

(2]

aaaQo

Y8 = v(J) + YB
18 28 s 2(J) + 28
L3 114 U s 3,63,2
YC = Y(J) + YC
11¢ 2C = 2¢(J) + 2C
YA 8 C5 * HN & ( YA ¢ 4,¢YB ¢ 2,¢YC ) / 3,
ZA 8 C10 o HW ¢ ( ZA o 4,078 » 2,020 ) / 3,

IFC ABS( YA ) ,LE, SPMALL ) 121,120
120 CHECK 127,6 ¢ 10,9AL0G10( YA )
IFC CHECK LT, 0. ) 121,122
122 SHER(KB) s CMECK

IF( ABS( 2A ) ,LE, SMALL ) 127,126
12¢ CHECK = 127,6 + 10,*AL0G10(¢ 2A )
IF( CHECK LT, 0. ) 127,128
127 CHECK = 0,0
128 SELF(KB) s CHECK

IFC ABS( YA*ZA ) ,LE, SMALL ) 133,132
132 CHECK = 127,6 + 10,¢AL0G10( YAeZA )
IF( ZHECK LT, 0. ) 133,134
133 CHECK = 0,0
134 TO0T(KB) s CHECK

150 CONTINUE

*e OVERALL NOISE COMPUTATION

EOT s ( C3 ¢ AMZ )we(2,5)
04 = TCOS » C8 / B8OV
‘L2 s C9 /7 BOT

SHER(11) = 127,6 ¢ 10,#ALOGL0( D1 )
SELF(1%) = 127,6 ¢ 10,*ALOG10( D2 )
TOT(11) = 127,6 ¢ 10,*ALOGL0( Di1eD2 )

IFC LOOP ,GT, 9 ) 160,170

160 WRITE(61,530)
WRITE(61,504) (KITLE(J))J®1,20)) (KATE(J),JB81,2)
WRITE(61,506)
WRITE(61,508)
WRITE(61,538) (W(J)sJu1,30) -
LOOP s 0

170 WRITE(61,510) KTHETA, (SHER(J),J®1,11)
WRITE{61,512) (SELF(J),J®1,11)
WRITE(61,514) (TOT(Y),Jsl,11)

LOOP s LOGP + 1

400 CONTINUE

¢e OVERALL POWER CALCULATION

‘ONEDEQ s DTR
THETA = oONEDEG
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anaan

310

Jae

330

49§

500
302
904
Soe

s08

St0
Sg2
%14
91¢
Sse

320
52¢
S24

CO 310 J = 1,184

THETA = THETA ¢ ONEDEG

T 2 C3S( THETA )

€Y 3 SINC THRETA )

12 s 7V « 7

14 s T2 ~ 12

TM = ( 1, = BIGHeT )ee?

TUM 2 ST /7 ( TH o AN2 )ee (2 .§5)
L(J) 8 ( Y4 « T2 ) = DUM

V{(J) = DUM

LA 3 o.

L8 = 0,

LC s 0,

VA = 0,

Vg = 0,

VL = 0,

LA 3 U(g) + u(181)
VA 8 yY(1) + V(1861)
O 320 J = 2,180.2
Leé = uly) + ue

VB = v(J) ~ vB

CO 330 J = 3,179.2
Lty 3 UGJy) « UuC

VC & vy} +» VvC

LB = ONEDEG ¢ ( UA ¢ 4,%UB ¢ 2,0UC ) 7/ 3,
VB & ONEDEG * ( VA + 4,*VQ9 ¢ 2, eyC ) / 3,
LA 3 P2 ¢ UB

VA = P3 = VB

TA 2 UA + VA

WRITE(61,516)

WRITE(61,518)

WRITE(61,520) UA, UB
WRITE(61.522) VA, V8
WRITE(€1,524) TA

LOOP = 0
GO TC 10

WRITE(61.530)

FORMAT STATEMENTS

FORMAT( 20A4 )

FORMATC( 6F10,0 )

FORMAT( IOXOZOA‘ JOX,2A8 /7 )

FORMAT( SX,5HTHETA,29X,57HO C T A V E 8 AND LEEVEL N
¢ 0] Sk . 08,24X, 7HOVERALL )

FORMAT( 6X,12HDEG NOISE,11X,1H1,8X,1MH2,8X,1.!13,8X,1H4,8X,1H5,8X,
* 1H608X.1H7o8Xolﬂlol!.1ﬂ9.7x.2H1009Xo10HN01SE e "B )

FORMAT( 66X, I3,4X.SHSHEAR,4X,10F9,2,7X,F9,2 )

FORMAT( 14X,4NSELF ,4X,10F9,2,7X,F9,2 )

FORMAT( 13X,SHTOTAL,4X,10F9,2,7X,F9,2 /7 )

FORMAT(///7 13X,36HOVERALL POWER CALCULATIONS vee /7 )
FORMAT( 32X, 7HOVERALL ,12X,8HINTEGRAL /7 13X,5HNOISE,11X,

¢ L3HPONER ~ WATTS,181X,SHVALUE 7 )

FORMAT( 13X,5HSHEAR,SX,2E20,8 )

FORMAT( 13X,5H SELF,5X,2E20,8 )

FORMAT( 13X,5HTOTAL,%X,E20.8 )
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530 FORMAT( 1M1 )

9532 FORMATL /7 SXs313HCONSTANTS ,,, 77 5X.4HA = E13,7,3X,6HRHO =
1 E13.7:3X,10HPART]AL = E13.7,3X,8M Us EL13,7)

534 FORMATC SX,4HC » E13,7,3X,6H R = E13,7,3X,10H M s EL3,7,
i 3!.8"‘LP“A 8 51307 )

S36 FORMAT( SX,4HW ® E13,7,3X,6H D = E13,7,3X,10H BETA = E13,7,3X,
1 8 V = E13,7 /7 )

S32 FORMAT( 22X,10F9.0 /7 )

END
3200 FORTRAN DIAGNOSTIC RESULTS » FOR NOISES

NULL STATBFENT NUMBERS
: 13¢ 126 120
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3200 FORTRAN (2,2)
FUNCTJON ALOGLOC( X )

C
lr( b | .LE. o. , 20.10
C
10 TENLCGE = 0,43429448192
ALOG10 = TENLOGE ¢ ALOG(X)
RETURN
c
20 ALOG10 = O,
RETURN
c
END
3200 FORTRAN DIAGNOSTIC RESULTS = FOR ALOG10
NO ERRORS
LOAD, 56

RUN
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