General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

MADISON, WISCOHSIN

Spectroscopic Reassignment and Ground State Dissociation Energy of Molecular Iodine*
by

Hobert J. LeRoy

Theoretical Chemistry Institute and Department of Chemistry University of Wisconsin, Madison, Wisunisin 53706

ABSTRACT

Re-analyzing some early band head data for $I_{2}\left(B_{u}^{+}\left({ }^{3} \pi\right)\right.$), an improved value of the ground state dissociation energy is found to be $D_{0}=12429(\pm 4) \mathrm{cm}^{-1}$, differing significantly from the previously accepted value of R. D. Verma ($124,2.5(\pm 1.5) \mathrm{cm}^{-1}$). This result implies that the final state of one of the UV resonance series reported by R. D. Verma must have a rotationless potential maximum some $25(\pm 5) \mathrm{cm}^{-1}$ high. It is further shown that the original electronic assignment of this state as ground state $\mathrm{X}_{\mathrm{g}}^{+}\left({ }^{1} \Sigma\right)$ is implausible. A reassignment as $\mathrm{O}_{\mathrm{g}}^{+}\left({ }^{3} \Pi\right)$ is proposed and the nature of the $0_{g}^{+}\left({ }^{3} \Pi\right)$ potential is considered.

[^0]
Pretace

The present manuscript is a revision of sections I to IV, VI and VII of WIS-TCI-331, issued on December 27, 1968. The changes are based on a reinterprotation of the electronic reassignment. In this respect, the author would like to acknowledge the judicious criticisms of Professor R. D. Verma, which helped reveal the inadequacies of the original treatment.

The discussion of the properties of the ground electronic state in section V of WIS-TCI-331 (12-27-68) concomitant with the present work is virtually unchanged. The only changes in substance consist of dropping the RKR turning points above $v^{\prime \prime}=82$, and slight adjust. ments to the constants in Eqs. (5) and (6).

1. Introduct.on

Verma onserved ${ }^{1}$ six series of UV ressmance emission doublets which were excited by akserptin of the 1830.4 A iudine atomic line by moleoriles in 5 rutatimal levels of the $v^{\prime \prime}=0$ levotion the ground electronic state of I_{2}. Thas ansorption corresponded to transitions into bresonam vibrationalurotational levels of an excited
 yielded the observed series. Verma onciludedt that this emission always produced molecules in the ground electronic state, and this is unquestionably true for those final states to which he assigned vibrational quantum numbers $v^{\prime \prime} \leq 84$. However, the separate set of levels at the convergence limit of the emission spectrum (Verma's $v^{\prime \prime}=98$ to 115) causes a strange flattening of the Birge-Sponer plot for the ground state. Furthermore, their sharp convergence limit cut-off lies above a value of the ground state dissociation energy obtained from other data, which implies that the state to which they belong has a potential maximum. This suggests that the present best value of the dissociation energy, \mathbb{V}^{1} which is based on the position of this cutoff, is too large by an amount equal to the height of the barrier. The present paper presents a new value of the ground state dissociation energy, and proposes that the levels in question be reassigr dd to the $0_{g}^{+}\left({ }^{3} \pi\right)$ state.
II. Dissociation Energy of Ground State $I_{2}\left(\mathrm{X} \mathrm{O}_{\mathrm{g}}^{+}\left({ }^{1} \Sigma\right)\right)$ Two main approaches to the determination of the dissociation energy are considered. In the first, an estimate for D_{o} is obtained by

Spectroscopic Reassignment and Ground State Dissociation Energy of Molecular Iodine *
by

Mobert J. LeRoy

Theoretical Chemistry Institute and Department of Chemistry University of Wisconsin, Madison, Wisconsin 53706

Abstract

Re-analyzing some early band head data for $I_{2}\left(B O_{u}^{+}\left({ }^{3} \Pi\right)\right)$, an improved value of the ground state dissociation energy is found to be $D_{0}=12429(\pm 4) \mathrm{cm}^{-1}$, differing significantly from the previously accepted value of R. D. Verma $\left(124,2.5(\pm 1.5) \mathrm{cm}^{-1}\right)$. This result implies that the final state of one of the UV resonance series reported by R. D. Verma must have a rotationless potential maximum som $25(\pm 5) \mathrm{cm}^{-1}$ high. It is further shown that the original electronic assignment of this state as ground state $\mathrm{XO}_{\mathrm{g}}^{+}\left({ }^{1} \Sigma\right)$ is implausible. A reassignment as $\mathrm{O}_{\mathrm{g}}^{+}\left({ }^{3} \Pi\right)$ is proposed and the nature of the $0_{\mathrm{g}}^{+}\left({ }^{3} \Pi\right)$ potential is considered.

*

Research supported by National Science Foundation Grant GP-7409 and National Aeronautics and Space Administration Grant NGL 50-002-001.

Preface

The present manuscript is a revision of sections I to IV, VI and VII of WIS-TCI-331, issued on December 27, 1968. The changes are based on a reinterpretation of the electronic reassignment. In this respect, the author would like to acknowledge the judicious criticisms of Professor R. D. Verma, which helped reveal the inadequacies of the original creatment.

The discussion of the properties of the ground electronic state in section V of WIS-TCI-331 (12-27-68) concomitant with the present work is virtually unchanged. The only changes in substance consist of dropping the RKR turning points above $v^{\prime \prime}=82$, and slight adjustments to the constants in Eqs. (5) and (6).

I. Introduction

Verma observed ${ }^{\frac{1}{2}}$ six series of UV resonance emission doublets which were excited by absorption of the $1830.4 \AA$ iodine atomic line by molecules in 5 rotational levels of the $v^{\prime \prime}=0$ leve \mathcal{V}^{2} of the ground electronic state of I_{2}. This absorption corresponded to transitions into 5 resonant vibrational-notational levels of an excited 0_{u}^{+}electronic state, and the subsequent emission from these levels yielded the observed series. Verma concluded ${ }^{2}$ that this emission always produced molecules in the ground electronic state, and this is unquestionably true for those final states to which he assigned vibrational quantum numbers $v^{\prime \prime} \leq 84$. However, the separate set of levels at the convergence limit of the emission spectrum (Verma's $v^{\prime \prime}=98$ to 115) causes a strange flattening of the Birge-Sponer plot for the ground state. Furthermore, their sharp convergence limit cut-off lies above a value of the ground state dissociation energy obtained from other data, which implies that the state to which they belong has a potential maximum. This suggests that the present best value of the dissociation energy, $\sqrt[\downarrow]{ }$ which is based on the position of this cutoff, is too large by an amount equal to the height of the barrier. The present paper presents a new value of the ground state dissociation energy, and proposes that the levels in question be reassigned to the $0_{g}^{+}\left({ }^{3} T\right)$ state.
II. Dissociation Energy of Ground State $I_{2}\left(\mathrm{X} \mathrm{O}_{\mathrm{g}}^{+}\left({ }^{1} \boldsymbol{\Sigma}\right)\right)$

Two main approaches to the determination of the dissociation energy are considered. In the first, an estimate for D_{0} is obtained by
subtracting the ${ }^{2} p_{3 / 2}-{ }^{2} P_{1 / 2}$ spin-orbit spiltting of iodine atoms V^{3} from the convergence limit of the $\mathrm{B}_{\mathrm{u}}^{+}\binom{3}{)}-\mathrm{XO}_{\mathrm{g}}^{+1}(\Sigma)$ band spectrum. Steinfeld, Cample11, and Weiss $\sqrt[4]{\text { recently remeasured the energies }}$ of a number of levels of the $B 0_{u}^{+}\left({ }^{3} \pi\right)$ state, up to $v^{\prime}=51$. Much earlier, Brown had reported band head measurements for levels $v^{\prime}=48$ to 72,5 Although his absolute energies are approximately $12.1(\pm 2.3)$ cm^{-1} higher than the over lapping $\left(\mathrm{v}^{\prime}=48\right.$ to 51$)$ values of Steinfeld et al., 4 Brown's relative spacings should be fairly good. Combining the corrected (by subtracting $12.1(\div 2.3) \mathrm{cm}^{-1}$) $\mathrm{v}^{\prime}=72$ energy with a short $19.5(\pm 2) \mathrm{cm}^{-1}$ extrapolation ${ }^{7}$ places the B state dissociation Limit some $20032\left(\frac{14}{4}\right) \mathrm{cm}^{-1}$ above the $v^{\prime \prime}=0, J^{\prime \prime}=0$ level of the ground state. Subtracting from this the $7603.15 \mathrm{~cm}^{-1}{ }^{2} \mathrm{P}_{1 / 2}-{ }^{2} \mathrm{P}_{3 / 2}$ spin-orbit splitting energy ${ }^{9}$ yields $D_{0}=12429\left(\Psi^{4}\right) \mathrm{cm}^{-1} .10$ This result corresponds to the B state having $89(t)$ vibrational levels A second approach to D_{0}, that used by Verma,,$^{\frac{1}{2}}$ is based on the sharp low energy cut-off of the UV resonance series at the convergence limit. The electronic assigment of the lower state of this series is immaterial, since it could only dissociate to yield two ground state ${ }^{2}{ }^{P_{3 / 2}}$ atoms. Furthermore, the original rotational assignment of this resonance series $\left(J_{r}=25\right)$ is based on the rotational constants for the emitting levels, and hence is valid independent of the electronic assignment of the final state. Utilizing the data in essentially the same manner as Verma ${ }^{1}$ yields a D_{0} estimate of $12452.4(\pm 1.8) \mathrm{cm}^{-1}, 11 /$ In general, the final electronic states of the two transitions considered above may have repulsive potential barriers as well as attractive wells. Therefore, the two estimates of D_{0} are both upper bounds, being equal to the true D_{0} plus the height of the appropriate barrier.

Since the first value obtained is $24(\pm 6) \mathrm{cm}^{-1}$ smaller than the second, the state giving rise to the latter must have a rotationless $(J=0)$ potential barrier at least $24(\pm 6) \mathrm{cm}^{-1}$ high.

The moderately long-range interaction of two ${ }^{2} \mathrm{P}\left({ }^{2} \mathrm{P}_{3 / 2}\right.$ or $\left.{ }^{2} \mathrm{P}_{1 / 2}\right)$ iodine atoms may be expressed as ${ }^{13}$

$$
\begin{equation*}
V(R)=C_{5} / R^{5}+C_{6} / R^{6}+C_{8} / R^{8}+C_{10} / R^{10}+\ldots \tag{1}
\end{equation*}
$$

where the first term arises from the first order perturbation energy, and the next three terms from the second order. It may readily be shown that C_{6}, C_{8}, and C_{10} are ncgative (attractive) for all molecular states formed from two ground state $\left({ }^{2} P_{3 / 2}\right)$ atoms. $\sqrt{1.4}$ Furthermore, theoretical values of C_{5} have been calculated for all the states formed on combining ${ }^{2} P_{3 / 2}+{ }^{2} P_{3 / 2}$ or ${ }^{2} P_{3 / 2}+{ }^{2} P_{1 / 2}$ atoms. ${ }^{13,15}$ These values show which states are attractive and which are repulsive at the large distances at which the R^{-5} term dominates the interaction.

The theoretical C_{5} for the $B O_{u}^{+}\left({ }^{3} \pi\right)$ state, which dissociates to ${ }^{2} \mathrm{P}_{3 / 2}+{ }^{2} \mathrm{P}_{1 / 2}$, is negative (attractive). ${ }^{13}$ Furthermore, in reference 8 it is shown that the potential at the outer turning points of the highest observed B state levels is dominated by this R^{-5} term. Therefore, the $\mathrm{BO}_{\mathrm{u}}^{+}\left({ }^{3} \mathrm{~T}\right)$ potential cannot have a barrier maximum, $\left.D_{0}=12429(\pm)^{-1}\right)^{-1}$ Ion the ground electronic state, and the state giving rise to the UV convergence limit resonance series must have a potential barrier ca. $24(\pm 6) \mathrm{cm}^{-1}$ high.

The above D_{0} value is based on the observed convergence of B $O_{1}^{+}\left({ }^{3} \Pi\right)$ vibrational levels to their diseociation limit. However, it is also confiraed from consideration of the highest observed $X 0_{\mathrm{g}}^{+1}\left({ }^{1} \Sigma\right)$ levels. In reference 8, an expression is given for the vibrational energies of levels lying close to the top of a potential well where the curvature of the Birge-Sponer plot is positive. This positive curvature 18 cxhibited by ground state I_{2} levels lying above $v^{\prime \prime}=73$; however, vibrationai levels have been observed only up to $v^{\prime \prime}=84,1$ and the energles of the two levels above $v^{\prime \prime}=82$ are somewhat uncertain. ${ }^{12}$ When the smooched energies of levels $v^{\prime \prime}=77$ to 822^{12} were fitted to the expression given in reference 8 , the value $D_{0}=12425(\pm 20) \mathrm{cm}^{-1}$ was obtained. The relatively large uncertainty is to be expected, in view of the fact that $v^{\prime \prime}=82$ lies $496 \mathrm{~cm}^{-1}$ below the dissociation limit. This result independently confirms the above value of $D_{0}=12429(\pm 4) \mathrm{cm}^{-1}$; furthermore, it suggests that the convergence limit resonance series (converging to $12452.4(\pm 1.8) \mathrm{cm}^{-1}$) cannot correspond to the ground electronic state.
III. Reassignment of the UV Resonance Series at the Convergence Limit
A. The Need for a Reassignment

The data considered for reassignment are the lines in the convergence limit portion of Verma's resonance series IVb, presented in his Table $V .1$ He concluded that the lower state of this series was the ground electronic state. While this is unquestionably the case for the other five UV resonance series observed, it is shown below that this assignment is quite implausible for the series in question.

The theoretical C_{j} for the ground $\mathrm{X} \mathrm{O}_{\mathrm{g}}^{+}\left({ }^{1} \Sigma\right)$ state of I_{2} is zero; $\mathbf{1}^{13,15}$ hence, the moderately long-range forces are dominated by the attractive second order perturbation terme $\left(G_{6}, G_{8}\right.$, and $\left.G_{10}\right)$. Since the exchange forces are also attractive (as is evidenced by the deep potential wel1), this state camnot have a potential maximum. Therefore, the final state of the UV convergence limit resonance series cannot be the ground state. This confirms the results of the fit to the highest observed ground state levels, discussed at the end of section II.

A more qualitative objection to the original assignment is based on the Franck-Condon accessibility of the final levels. Verma's Fig. $1 \mathrm{~b}, \sqrt[1]{ }$ shows that the emission into the eighteen adjacent levels at the dissociation iinit has roughly constant intensity. Therefore, it seems strange that none of the 23 levels immediately below his $v^{\prime \prime}=98$ are sufficiently accessible from the upper state to allow measurable emission. The observed behavior suggests
that Verma's $v^{\prime \prime}=98$ is the lowest vibrational level of some excited electronic state.

A final argument against the $\mathrm{XO}_{\mathrm{g}}^{+}\left({ }^{1} \Sigma\right)$ assignment is based on the expected behavior of a Birge-Sponer plot for vibrational levels lying near the dissociation limit. It has been shown that when the outer branch of the potential in this region is a short sum of attractive inverse power terms, the plot should have positive (upward) curvature. $8,16 /$ For the ground state of I_{2} this positive curvature is observed above $v^{\prime \prime}=73$ and increases from there up to $v^{\prime \prime}=82$ (the highest well known level below the convergence limit resonance series) where it equals $0.060 \mathrm{~cm}^{-1} \cdot 12$ For this state, the theory suggests $8 /$ that above
the point of inflection at $v^{\prime \prime}=73$ the curvature $\left(d^{3} G(v) / d v^{3}\right)$ should increase, perhaps pass through a silght maximum, and asymptotically approach a constant value of $94 . / \sqrt{C_{6}} \mathrm{cin}^{-1}$ (where C_{6} is $\mathrm{hn} \mathrm{cm}^{-1}$ $\AA^{6}, 17$ For a reasonable 8_{6} of $3.0 \times 10^{+6} \mathrm{cis}^{-1} 8^{6}$, this asymptotic curvature would be $0.054 \mathrm{~cm}^{-1}$. On the other hand, the level spacings in the convergence limit resonance series show negligibie curvature $\left(f<0.001 \mathrm{~cm}^{-1}\right.$; see Pigure 2). i^{8} This strengthens the argument that these levels cannot belong to the ground state.

Theory shows $\sqrt[8]{ }$ that vibrational levels lying near the dissociation limit which yield a linear Birge-Sponer plot, correspond to a longrange potential wich is either exponential, or is dominated by an effective inverse power term R^{-n} with n being large ($n \gg 10$). $\sqrt[19]{ }$ This high effective power is qualitatively the type of behavior one would expect on the attractive branch of a potential barrier arising from a sum of attractive and repulsive inverse power terms.

B. The Reassignment

The final state to which the levels in question belong must have a potential barrier of height ca $24(\pm 6) \mathrm{cm}^{-1}$ as well as an attractive well, and must correiate with two ground state ${ }^{2} P_{3 / 2}$ atoms. Nine states in addition to the ground state correlate with two ground state atoms; of these three are non-degenerate and $s i x$ are doubly Ω degenerate. 2^{20} The nature of the emission and absorption spectrum of Verma's upper state clearly indicates that
it is

selection rule immediately removes two possible assignments. In addition, the gerade*ungezade symmetry selection rule for electric dipole ${ }^{23}$ transitions, $(B \longleftrightarrow u, g \nless g, u \not x \rightarrow u)^{24}$ leaves the $0_{g}^{+}\left({ }^{3} \pi\right)$ and the $\lg \left({ }^{3} \Pi\right)$ states as the only electronically allowed assign ments.

The rotational selection rules for transitions from a 0_{u}^{+}state into singly degenerate 0_{8}^{+}or doubly $\boldsymbol{\Omega}$-degenerate 1 g states allow $\Delta I= \pm 1$ and $\Delta J=0, \pm 1$ transitions respectively, the first giving rise to doublet and the second to triplet structure. While transitions into the separate branches of the Ω-doublet (lg) would correspond to $\Delta J= \pm 1$ and $\Delta J=0$ respectively, the in tensity of the Q-branch $(\Delta j=0)$ is theoretically twice that of the P or R branches, so this spectrum would be observed as either the full triplet or as a singlet..24 Verma was able to resolve the structure of the emission into the three lowest levels of the convergence limit series, and it is clearly doublet in nature. Therefor?, the only completely allowed reassignment of the levels in question is to the $0_{\mathrm{g}}^{+}\left({ }^{3} \pi\right)$ state.

The theoretical long-range R^{-5} term for the $0_{g}^{+}\left({ }^{3} \pi\right)$ state is repulsive 13,15 while its R^{-6}, R^{-8}, and R^{-10} terms are attractive; ${ }^{14}$ thus it seems plausible that it will have an attractive we 11 bounded by a potential maximum. On the other hand, the theoretical C_{5} for this state $\left(2.3 \times 10^{5} \mathrm{~cm}^{-1} \mathrm{p}^{5}\right) 13,15 /$ is too small to yield a $2+(\pm 6) \mathrm{cm}^{-1}$ barrier, either alone or when the competing attracitve R^{-6} term is taken into account.

Although the origin of the poren+ial bartier is somewhat

uncertain, the reassignment of the UV convergence limit resonance series to the $9_{8}^{+}(\Pi)$ state still seems much more likely than its original assignment as $\times 0^{+}\left(^{2} \Sigma\right.$ The vall \sum^{2} ty of this reassignment Wi11 now be assymed and the eoncomitant properties of the $0^{+}\left(\frac{3}{8} \Pi\right)$ stabe wili be constdered.
IV. The $0_{g}^{+}(3 \pi)$ state

This state was previously observed by Venkateswar $10 \vee$ in diffuse bands arising as emission from discrete levels of the previously mentioned highly excited 0_{u}^{+}state, into the $0_{g}^{+}(\Pi)$ sontinumm. Venkateswar lu concluded that its potential was repulaive in the neighborhood of the mimimum of the ground state potential, and that it lay below and iu the left of the $B G_{u}^{+3}(T)$ curve, 22 This same conclusion was also inferred by Steinfeld from considerations involving the quenching of B state fluorescence.

Due to this intermediate-range repulsiveness of the $0_{g}^{+}\left(\frac{\pi}{\pi}\right)$ curve, its potential mimimum must lie at reasonebly large R and the we 11 is unlikely to be very deep. The non-crossing rule which forbids it from crossing the ground state $X 0_{g}^{+}(\Sigma)$ curve also implies that the we 11 must be quite shallow. In view of this, of the roughly constant intensity of the emission into the observed levelis, it seems probable that the lowest observed level is $v^{\prime}=0$. If this numbering is incorrect, it is unlikely to be more than one or two units too small.

The energies and assumed vibrational assignments of the convergence limit levels are given in Table \bar{I}. The snall rotational energy
contributions to the observed lines were removed after extrapolating beyond the three experimental B_{v}, values in the manner shown in Figure 1. Ut:11zitg pigtre 1 rather than the ampeach of reference 1

Table I: $I_{2}\left(0_{8}^{+}(\pi)\right)$ Vibrational Energies (in ca^{-1}) Expresse? Relat tve to the $v^{\prime \prime}=0, J^{\prime \prime}=0$ Level of the Ground State.

V^{\prime}	E	v^{\prime}	E	V^{\prime}	E
0	12362.4	6	12413.6	12	12444.0
1	12372.5	7	12420.1	13	12447.2
2	12381.9	8	12426.0	14	12449.7
3	12390.5	9	12431.4	15	12451.5
4	12399.0	10	12436.1	16	12452.9
5	12406.6	11	12440.4	17	12453.7

places the convergence 1 imit of this series at $12454.0(\pm 0.3) \mathrm{cm}^{-1}$ $\left(1.6 \mathrm{~cm}^{-1}\right.$ higher than the previous estimate). This yields $25(+5) \mathrm{cm}^{-1}$ as a better estimate of the height of the potential maximum. Nine of the eighteen observed leve is are metastable (for $J^{\prime}=0$), being bound only by this potential barrier.

Using the above vibrational assignnent, the vibrational energies may be represented within a standard error of $\pm 0.08 \mathrm{~cm}^{-1}$ by:

$$
\begin{equation*}
E\left(v^{\prime}\right)=12357.3+10.522\left(v^{\prime}+\frac{1}{2}\right)-0.2866\left(v^{\prime}+\frac{1}{2}\right)^{2} \tag{2}
\end{equation*}
$$

where the energy zero is the $v^{\prime \prime}=0, J^{\prime \prime}=0$ level of the ground state. This shows that this state has a potential well at least $72(\pm 4) \mathrm{cm}^{-1}$
deep (relative to the dissociation limit, not the potential maximum). Furthermore, the observed rotational splittings would place the potential minimum at $6.0(\div) .6)$. The experimental vibrational spacings are compared with those calculated from expression (2) in Figute 2; the curve suggests that there may exist one more, as yet unobgerved, quasibound state.

The potential curve for $0^{+}\left({ }^{3} \pi\right)$ is shown schematicaliy in Figure 3, Logether with curves for a number of neiginoring states. The ground state potenctal up to $11933 \mathrm{~cm}^{-1}$ and the $\left.B 0^{+}, 3 / 1\right)$ state potential up to $19703 \mathrm{~cm}^{-1}$ are $R K R$ potentials (taken from reference 12 , and references 4 and 6 respectively). The $0^{\circ}\left({ }^{3} \Sigma\right)$ curve was taken from reference 27 and the $A 1 u\left({ }^{3} T\right)$ curve is based on the conclusions of Brown. 2^{9} At large distances the $A 1 u\left({ }^{3} \pi\right)$ and $X 0_{g}^{+}\left(\sum^{1}\right)$ curves must cross, since the latter dies off as R^{-6}, and the former as R^{-5}. Furthermore, the $\mathrm{A} l u\left({ }^{3} \pi\right)$ curve may also cut acrass the $0_{\mathrm{g}}^{+}(\pi)$ we 11. The theoretical C_{5} for $\left.0_{u}^{-}()^{3}\right)$ is $1 / 3$ larger than that for $0_{g}^{+}(3 \pi), 13,15$ so these curves should not or oss at long range.
V. Conclusions

It has been shown that contrary to the original assigrment, a portion of the UV resonance spectrum of I_{2} does not corrcapoad to emission into the ground electronic state. The most probabie reassignment for the levels in question was found to be $0_{g}^{+}\left(\frac{3}{\pi}\right)$. This state appears to be an example of a van der Waals $2 \because$ mecule, bound only by the moderately long range dispersion forces, $30 /$ which has a potential barrier.

If the present reassignment is correot verma's UV spectrumbis
 These levels clearly cannot be okserved in absorption from the ground state because of the st) symmetry sele thon ruie. However they may be observable in neas if fluorescence (at ar ound 1.4 microns) from some of the nigher levelfot the B \&.3.T. state. One restrition to this type of measurement is that the flunresceniong state cannot have a very high rotational quantum number, as in this case the centrifugal potential would bury the shallow $\int_{g}^{+}{ }^{3} \Pi$) weil. However, if appropsiate $B+.3 T$) leveis can be exoited, these ${ }^{+}(3 \pi)$ levels may be observed togethor with neighboring $x 0_{g}^{+}\left({ }^{1} \Sigma\right)$ ieveis, giving direct confirmation of the proposed zeassignment.
VI. Acknowledgments

I am pleased to acknowledge helpful discussions with Protessor
A. S. Dickinson, the comments, encouragement and support of Protessor

R B. Bernstein, and interesting correspondence with Professor J. I. Steinfeld. I am also deeply indebted to Professor R. D. Verma for some very telling criticisms of an early version of this pemer.

Footnotes

1. R. D. Verma, J, Chem. Phys. 32, 738 (1960)
2. Throughout, double primed quantities will reter to the ground electronic state and single primed quantities to an exolted electronic state.
3. This step is necessary because $B 0_{u}^{+}(3 \pi)$ dissociates to

4. J. I. Steinfeld, J. D. Campell, and N. A. Weiss, J. Mol. Spectry. 29. 204 (1969).
5. W. G. Brown, Phys. Rev. 38, 709 (1931). The accepced vibraclonal numbering for the B state has recentily been revised $\sqrt[6]{ }$ so the numbering used by Brown should be decreased by one.
6. J. I. Steinfeld, R. N. Zare, L. Jones, M. lesk, and W. Klemperer, J. Chem. Phys. 42, 25 (1965).
7. The extrapolation procedure is based on a new method for determining long range forces from vibrational spasings, which is reported elsewhere.8
8. R. J. LeRoy and R. B. Bernstein, to be published. The extrapolation to the dissociation limit of the B state is discussed here in more detail.
9. C. Moore, U S. Nat. Bur. Std. Circ. No. 467, 3, 105 (1958). The results quoted are based on the data of C. C. Kiess and C. H. Corliss (U. S. Nat. Bur. Std. J. Res. 63A, 1 (1959)).
10. This value differs from Brown' $8 \sqrt[5]{12439 \mathrm{~cm}^{-1} \text { mainly because of }}$ the apparent $12.1 \mathrm{~cm}^{-1}$ error in his absolute energies, and because he used a scmewhat less accurate value ($7598 \mathrm{~cm}^{-1}$) of the spin-orbit
spiitting energy. However, this effect is somewhat ameliorated by the present improved extrapolation to the dissociation limit. 7,8/
 from the use of a slightly different frequency for the line exciting the resonance series (see reference 12), and the use of the $J=25$ rotational energy rather than $J=24$.
11. R. J. LeRoy, following paper.
12. T. Y. Ghang, Rev. Mod. Phys. 39, 911 (1967).
13. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liguids (John Wiley and Sons Inc., 1954). The expression for the second order perturbation energy derived in section 13.3 b is negative for all states formed from two ground state atoms.
14. J. K. Knipp, Phys. Rev. 53, 734 (1938).
15. This was noted previously by H. Harrison and R. B. Bernstein (J. Chem. Phys. 38, 2135 (1963)) for the cases of Lennard-Jones $(12,6)$ and exponential $(\alpha, 6)$ potentials, both of which have R^{-6} tails.
16. This is true because the long-range potential for the ground state is described by expression (1) with $C_{5}=0.013,15$ and $\mathrm{C}_{6}, \mathrm{C}_{8}$, and C_{10} all attractive (negative).
17. A third-order least-squares fit to these energies (see Table I) had the same standard error as a second order fit $\left(0.08 \mathrm{~cm}^{-1}\right)$, and yielded a curvature ol only $0.0012 \mathrm{~cm}^{-1}$. A curvature rate of $0.054 \mathrm{~cm}^{-1}$ over the 18 observed levels would add $7.8 \mathrm{~cm}^{-1}$ to the $d G / d v(\Delta G(v))$ for the highest observed level, over the value
obtained by linearly extrapolating from the lowest $d G / d v$ values. For a curvature of $0.0012 \mathrm{~cm}^{-1}$, this effect is reduced to $0.17 \mathrm{~cm}^{-1}$
18. The potential is assumed to be fitted to an expression of the form $A / R^{n}+B$ where $n=-(1+d \log (d V / d R) / d \log R)$.
19. R. S. Mulliken, Phys. Rev. 36, 699 (1930).
20. This upper state has been previously observed in absorption by H. Cordes, (Z. Physik 97, 603 (1935)), and in emission by P. Venkateswar lu. 2^{22} This electronic assignment was not questioned in the later analyses by L. Mathieson and A. I.. G. Rees (J. Chem. Phys. 25, 753, 1956) and by A. Nobs and K. Wieland (He IV. Phys. Acta 39, 564, 1966).
21. P. Venkateswariu, Proe. Ind. Acad. Sci. 24A, 480 (1946). The author would like to thank R. D. Verma for bringing this reference to his attemtion.
22. The intensity of the observed emission indicates that the transitions could only be electric diple.
23. G. Herzberg, Spectra of Diatomic Molecules, second edition (d. Van Nostrand Co. Inc., Toronto, Canada, 1950).
24. F. E. Cummings has developed a new method of calculating R^{-6} termo and applied it to the different states of I_{2} correlating with two ground state atoms. This work is to be presented at the $24^{\text {th }}$ Symposium on Molecular Structure and Spectroscopy in Columbus, Ohio, in September, 1969; the present author is grateful to Dr. Cummings for making his results available in advance.
25. J. I. Steinfeld, private communication (1969).
26. E. O. Degenkolb, J. I. Steinfeld, E. Wasserman, and W. Klemperer, to be published.
27. W. G. Brown, Phys. Rev. 38, 1187 (1931).
28. See reference $24, p, 377$.
29. This seems rather likely since the $0_{g}^{+}\left(\frac{3}{} \pi\right)$ potential well is quite shallow and its $R_{E Q} \approx 6 \AA$, is considerably larger than the $2.66 \AA$ for the ground $\times 0_{8}^{+}\left({ }^{1} \Sigma\right)$ state, $V^{2} 3.03 \AA$ for the $B 0_{\mathrm{U}}^{+1}\left(\frac{3}{}\right.$) state $\sqrt[4]{4}^{\text {and }}$ ca $3.2 \AA$ for the $A \operatorname{lu}\left(3 \pi\right.$) state. ${ }^{2}$.

Legends for Figures

Figure 1. Rotational Constants for Final State of Convergence Limit Resonance Series

The $v^{\prime \prime}$ numbering corresponds to Verma's $X 0_{g}^{+}\left({ }^{1} \Sigma\right)$ assignment $\vee^{1 /}$ and v^{\prime} numbering to the present $0_{g}^{+}\left(\frac{3}{\pi}\right)$ assignment. - are Verma's experimental values and the arrow denotes the highest observed level.

Figure 2. Vibrational Spacings of Levels in Convergence Limit Resonance Series
$v^{\prime \prime}$ represents the old $\mathrm{X}_{0}^{+}\left({ }^{1} \Sigma\right)$ vibrational numbering ${ }^{1} /$ and v^{\prime} the proposed $0_{g}^{+}\left({ }^{3} \pi\right)$ numbering. The curve is generated from expression (2).

Figure 3. Schematic Potential Curves for $0_{g}^{+}\left({ }^{3} \Pi\right)$ and Some Neighboring States

The zero of energy is the $v^{\prime \prime}=0, J^{\prime \prime}=0$ level of the ground electronic state.

[^0]: * Research supported by National Science Foundation Grant GP-7409 and National Aeronautics and Space Administration Grant NGL 50-002-001.

